Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchweizer, Ben-
dc.date.accessioned2019-08-02T13:32:10Z-
dc.date.available2019-08-02T13:32:10Z-
dc.date.issued2019-05-10-
dc.identifier.urihttp://hdl.handle.net/2003/38161-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20140-
dc.description.abstractThe Helmholtz equation $ - \nabla \cdot (a \nabla u) - \omega^2 u = f$ is considered in an unbounded wave-guide $\Omega := \mathbb{R} \times S \subset \mathbb{R}^d$, where $S \subset \mathbb{R}^{d-1}$ is a bounded domain. The coefficient $a$ is strictly elliptic and (locally) periodic in the unbounded direction $x_1\in \mathbb{R}$. For non-singular frequencies $\omega$, we show the existence of a solution $u$. While previous proofs of such results were based on operator theory, our proof uses only energy methods.en
dc.language.isoen-
dc.relation.ispartofseriesPreprint;2019-3-
dc.subjectHelmholtz equationen
dc.subjectwave-guideen
dc.subjectperiodic mediaen
dc.subjectFredholm alternativeen
dc.subject.ddc610-
dc.titleExistence results for the Helmholtz equation in periodic wave-guides with energy methodsde
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access-
eldorado.secondarypublicationfalse-
Appears in Collections:Schweizer, Ben Prof. Dr.
Preprints der Fakultät für Mathematik

Files in This Item:
File Description SizeFormat 
Preprint 2019-03.pdfDNB466.67 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.