Authors: Klein, Martin
Wegner, Nils
Walther, Frank
Stangier, Dominic
Jung, Ole
Smeets, Ralf
Hartjen, Philip
Schnettler, Reinhard
Feyerabend, Frank
Henningsen, Anders
Rendenbach, Carsten
Heiland, Max
Barbeck, Mike
Kopp, Alexander
Title: Improved in vitro test procedure for full assessment of the cytocompatibility of degradable magnesium based on ISO 10993-5/-12
Language (ISO): en
Abstract: Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nevertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continuous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristics were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and osteogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations.
Subject Headings: Magnesium
ISO10993-5/-12
PEO
Degradation
Biocompatibility
Implant
URI: http://hdl.handle.net/2003/38332
http://dx.doi.org/10.17877/DE290R-20302
Issue Date: 2019-01-10
Rights link: https://creativecommons.org/licenses/by/4.0/
Appears in Collections:Fachgebiet Werkstoffprüftechnik

Files in This Item:
File Description SizeFormat 
ijms-20-00255-v2.pdf5.22 MBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.