Autor(en): Dette, Holger
Liu, Xin
Yue, Rong-Xian
Titel: Design admissibility and de la Garza phenomenon in multi-factor experiments
Sprache (ISO): en
Zusammenfassung: The determination of an optimal design for a given regression problem is an intricate optimization problem, especially for models with multivariate predictors. Design admissibility and invariance are main tools to reduce the complexity of the optimization problem and have been successfully applied for models with univariate predictors. In particular several authors have developed sufficient conditions for the existence of saturated designs in univariate models, where the number of support points of the optimal design equals the number of parameters. These results generalize the celebrated de la Garza phenomenon (de la Garza, 1954) which states that for a polynomial regression model of degree p -1 any optimal design can be based on at most p points. This paper provides - for the first time - extensions of these results for models with a multivariate predictor. In particular we study a geometric characterization of the support points of an optimal design to provide sufficient conditions for the occurrence of the de la Garza phenomenon in models with multivariate predictors and characterize properties of admissible designs in terms of admissibility of designs in conditional univariate regression models.
Schlagwörter: admissibility
optimal design
multi-factor experiment
conditional model
dual problem
URI: http://hdl.handle.net/2003/39070
http://dx.doi.org/10.17877/DE290R-20989
Erscheinungsdatum: 2020
Enthalten in den Sammlungen:Sonderforschungsbereich (SFB) 823

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
DP_0820_SFB823_Dette_Liu_Yue.pdfDNB361.34 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.