Full metadata record
DC FieldValueLanguage
dc.contributor.authorKijanski, Wojciech-
dc.contributor.authorBarthold, Franz-Joseph-
dc.date.accessioned2021-04-30T05:45:36Z-
dc.date.available2021-04-30T05:45:36Z-
dc.date.issued2021-03-06-
dc.identifier.urihttp://hdl.handle.net/2003/40166-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22038-
dc.description.abstractThis contribution presents a theoretical and computational framework for two-scale shape optimisation of nonlinear elastic structures. Particularly, minimum compliance optimisation problems with composite (matrix-inclusion) microstructures subjected to static loads and volume-type design constraints are focused. A homogenisation-based FE2 scheme is extended by an enhanced formulation of variational (shape) sensitivity analysis based on Noll’s intrinsic, frame-free formulation of continuum mechanics. The obtained overall two-scale sensitivity information couples shape variations across micro- and macroscopic scales. A numerical example demonstrates the capabilities of the proposed variational sensitivity analysis and the (shape) optimisation framework. The investigations involve a mesh morphing scheme for the design parametrisation at both macro- and microscopic scales.en
dc.language.isoende
dc.relation.ispartofseriesComput Mech;67-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectFEMen
dc.subjectNumerical multiscale methods (FE2) and homogenisationen
dc.subjectTwo-scale structural analysisen
dc.subjectVariational sensitivity analysisen
dc.subjectStructural optimisationen
dc.subjectShape optimisationen
dc.subject.ddc690-
dc.titleTwo-scale shape optimisation based on numerical homogenisation techniques and variational sensitivity analysisen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access-
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s00466-020-01955-6de
eldorado.secondarypublication.primarycitationKijanski, W., Barthold, FJ. Two-scale shape optimisation based on numerical homogenisation techniques and variational sensitivity analysis. Comput Mech 67, 1021–1040 (2021).de
Appears in Collections:Lehrstuhl Baumechanik und Statik

Files in This Item:
File Description SizeFormat 
Kijanski-Barthold2021_Article_Two-scaleShapeOptimisationBase.pdfDNB2.17 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons