Full metadata record
DC FieldValueLanguage
dc.contributor.authorGutknecht, Florian-
dc.contributor.authorTraphöner, Heinrich-
dc.contributor.authorClausmeyer, Till-
dc.contributor.authorTekkaya, A. Erman-
dc.date.accessioned2022-06-13T13:24:28Z-
dc.date.available2022-06-13T13:24:28Z-
dc.date.issued2021-10-29-
dc.identifier.urihttp://hdl.handle.net/2003/40949-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22799-
dc.description.abstractBackground: Many metals exhibit a stress overshoot, the so-called cross-hardening when subjected to a specific strain-path change. Existing tests for sheet metals are limited to an equivalent prestrain of 0.2 and show varying levels of cross-hardening for identical grades. Objective: The aim is to determine cross-hardening at large strains, relevant for forming processes. Mild steel grades (DC04, DC06, DX56) and high strength steel grades (BS600, DP600, ZE800) are investigated to quantify the level of cross-hardening between different grades and reveal which grades exhibit cross-hardening at all. Method: A novel test setup for large prestrain using hydraulic bulge test and torsion of curved sheets is developed to achieve an orthogonal strain-path change, i.e. the strain rate tensors for two subsequent loadings are orthogonal. The influence of strain rate differences between the tests and clamping of curved sheets on the determined cross-hardening are evaluated. The results are compared to experiments in literature. Results: Cross-hardening for sheet metal at prestrains up to 0.6 true plastic strain are obtained for the first time. For DX56 grade the maximum cross-hardening for all prestrains have a constant level of approximately 6%, while the maximum cross-hardening for DC04 and DC06 grades increases, with levels between 7 and 11%. The high strength grades BS600 and ZE800 do not show cross-hardening behavior, while, differencing from previous publications, cross-hardening is observed for dual phase steel DP600. Conclusion: Depending on the microstructure of the steel grade the cross-hardening increases with large prestrain or remains constant.en
dc.language.isoende
dc.relation.ispartofseriesExperimental mechanics;Bd 62. 2022, H. 3, S. 441-458-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectExperimental characterizationen
dc.subjectSheet metal - Cross-hardeningen
dc.subjectMechanical behavioren
dc.subject.ddc620-
dc.subject.ddc670-
dc.titleCharacterization of flow induced anisotropy in sheet metal at large strainen
dc.typeTextde
dc.type.publicationtypearticlede
dc.subject.rswkBlechumformende
dc.subject.rswkBlechde
dc.subject.rswkBulge-Testde
dc.subject.rswkMechanische Eigenschaftde
dc.subject.rswkMechanische Spannungde
dcterms.accessRightsopen access-
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s11340-021-00776-9de
eldorado.secondarypublication.primarycitationExperimental mechanics. Bd 62. 2022, H. 3, S. 441-458en
Appears in Collections:Sonstige Veröffentlichungen

Files in This Item:
File Description SizeFormat 
Gutknecht2022_Article_CharacterizationOfFlowInducedA.pdf5.03 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons