Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

Derivation of a homogenized bending–torsion theory for rods with micro-heterogeneous prestrain

dc.contributor.authorBauer, Robert
dc.contributor.authorNeukamm, Stefan
dc.contributor.authorSchäffner, Mathias
dc.date.accessioned2021-03-11T13:56:59Z
dc.date.available2021-03-11T13:56:59Z
dc.date.issued2020-05-29
dc.description.abstractIn this paper we investigate rods made of nonlinearly elastic, composite–materials that feature a micro-heterogeneous prestrain that oscillates (locally periodic) on a scale that is small compared to the length of the rod. As a main result we derive a homogenized bending–torsion theory for rods as Γ-limit from 3D nonlinear elasticity by simultaneous homogenization and dimension reduction under the assumption that the prestrain is of the order of the diameter of the rod. The limit model features a spontaneous curvature–torsion tensor that captures the macroscopic effect of the micro-heterogeneous prestrain. We devise a formula that allows to compute the spontaneous curvature–torsion tensor by means of a weighted average of the given prestrain. The weight in the average depends on the geometry of the composite and invokes correctors that are defined with help of boundary value problems for the system of linear elasticity. The definition of the correctors depends on a relative scaling parameter γ, which monitors the ratio between the diameter of the rod and the period of the composite’s microstructure. We observe an interesting size-effect: For the same prestrain a transition from flat minimizers to curved minimizers occurs by just changing the value of γ. Moreover, in the paper we analytically investigate the microstructure-properties relation in the case of isotropic, layered composites, and consider applications to nematic liquid–crystal–elastomer rods and shape programming.en
dc.identifier.urihttp://hdl.handle.net/2003/40077
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21954
dc.language.isoende
dc.relation.ispartofseriesJ Elast;141(1)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectHomogenizationen
dc.subjectDimension reductionen
dc.subjectElastic rodsen
dc.subjectPrestrainen
dc.subjectResidual stressen
dc.subject.ddc510
dc.titleDerivation of a homogenized bending–torsion theory for rods with micro-heterogeneous prestrainen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationBauer, R., Neukamm, S. & Schäffner, M. Derivation of a Homogenized Bending–Torsion Theory for Rods with Micro-Heterogeneous Prestrain. J Elast 141, 109–145 (2020).de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s10659-020-09777-6de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bauer2020_Article_DerivationOfAHomogenizedBendin.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: