Using ARMA Models in Stochastic Enterprise Valuation

dc.contributor.authorJöckel, Karl-Heinz
dc.contributor.authorPflaumer, Peter
dc.date.accessioned2025-04-08T08:27:32Z
dc.date.available2025-04-08T08:27:32Z
dc.date.issued2024-04
dc.description.abstractThis article presents a method for estimating the variance of the firm or enterprise value distribution by incorporating temporal dependencies in cash flows using ARMA models. The analysis highlights the importance of considering these dependencies, as neglecting them can lead to a significant increase in variance and subsequent erroneous decision-making. By utilizing ARMA models, decision-makers can obtain a more accurate assessment of the underlying risks and make informed investment decisions based on a comprehensive understanding of the firm's value distribution. The proposed method provides valuable insights for evaluating the uncertainty associated with future cash flows and enhances the accuracy of investment decision processes.en
dc.identifier.urihttp://hdl.handle.net/2003/43599
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-25432
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/
dc.subjectfirm valuationen
dc.subjectrisk management in businessen
dc.subjectinvestment decision-makingen
dc.subjectautocorrelationen
dc.subjecttime series analysisen
dc.subject.ddc310
dc.subject.rswkUnternehmensbewertung
dc.subject.rswkARMA-Modell
dc.subject.rswkZeitreihenanalyse
dc.subject.rswkAutokorrelation
dc.subject.rswkInvestitionsentscheidung
dc.subject.rswkRisikomanagement
dc.titleUsing ARMA Models in Stochastic Enterprise Valuationen
dc.typeText
dc.type.publicationtypeConferenceProceedings
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sefbisJoePfl2024.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.82 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections