Graph learning in machine‐readable plant topology data
dc.contributor.author | Oeing, Jonas | |
dc.contributor.author | Brandt, Kevin | |
dc.contributor.author | Wiedau, Michael | |
dc.contributor.author | Tolksdorf, Gregor | |
dc.contributor.author | Welscher, Wolfgang | |
dc.contributor.author | Kockmann, Norbert | |
dc.date.accessioned | 2025-01-23T09:25:25Z | |
dc.date.available | 2025-01-23T09:25:25Z | |
dc.date.issued | 2023-05-03 | |
dc.description.abstract | Digitalization shows that data and its exchange are indispensable for a versatile and sustainable process industry. There must be a shift from a document-oriented to a data-oriented process industry. Standards for the harmonization of data structures play an essential role in this change. In engineering, DEXPI (Data Exchange in the Process Industry) is already a well-developed, machine-readable data standard for describing piping and instrumentation diagrams (P&ID). In this publication, industry, software vendors, and research institutions have joined forces to demonstrate the current developments and potentials of machine-readable P&IDs in the DEXPI format combined with artificial intelligence. The aim is to use graph neural networks to learn patterns in machine-readable P&ID data, which results in the efficient engineering and development of new P&IDs. | en |
dc.identifier.uri | http://hdl.handle.net/2003/43379 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-25211 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Chemie - Ingenieur - Technik; 95(7) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Artificial intelligence | en |
dc.subject | Data management | en |
dc.subject | DEXPI | en |
dc.subject | Graph neural networks | en |
dc.subject | Piping & instrumentation diagram | en |
dc.subject | Process industry | en |
dc.subject.ddc | 660 | |
dc.title | Graph learning in machine‐readable plant topology data | en |
dc.type | Text | |
dc.type.publicationtype | ResearchArticle | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | |
eldorado.secondarypublication.primarycitation | Oeing, J., Brandt, K., Wiedau, M., Tolksdorf, G., Welscher, W. and Kockmann, N. (2023), Graph Learning in Machine-Readable Plant Topology Data. Chemie Ingenieur Technik, 95: 1049-1060. https://doi.org/10.1002/cite.202200223 | |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1002/cite.202200223 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Chemie Ingenieur Technik - 2023 - Oeing - Graph Learning in Machine‐Readable Plant Topology Data.pdf
- Size:
- 1.75 MB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.82 KB
- Format:
- Item-specific license agreed upon to submission
- Description: