Estimating a convex function in nonparametric regression

dc.contributor.authorBirke, Melanie
dc.date.accessioned2005-07-29T09:23:21Z
dc.date.available2005-07-29T09:23:21Z
dc.date.issued2005-07-29T09:23:21Z
dc.description.abstractA new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the new estimate and show that it is first order asymptotically equivalent to the initial unconstrained estimate if the regression function is in fact convex. If convexity is not present the method estimates a convex function whose derivative has the same Lp-norm as the derivative of the (non-convex) underlying regression function. The finite sample properties of the new estimate are investigated by means of a simulation study and the application of the new method is demonstrated in two data examples.en
dc.format.extent248277 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/21539
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14173
dc.language.isoen
dc.subjectConvexityen
dc.subjectNadaraya-Watson estimateen
dc.subjectNondecreasing rearrangementen
dc.subjectNonparametric regressionen
dc.subjectOrder restricted inferenceen
dc.subject.ddc004
dc.titleEstimating a convex function in nonparametric regressionen
dc.typeTexten
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr21-05.pdf
Size:
242.46 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: