Volatility forecasting accuracy for Bitcoin
dc.contributor.author | Köchling, Gerrit | |
dc.contributor.author | Schmidtke, Philipp | |
dc.contributor.author | Posch, Peter N. | |
dc.date.accessioned | 2019-08-05T12:52:14Z | |
dc.date.available | 2019-08-05T12:52:14Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We analyse the quality of Bitcoin volatility forecasting of GARCH-type models applying the commonly used volatility proxy based on squared daily returns as well as a jump-robust proxy based on intra-day returns and vary the degrees of asymmetry in robust loss functions. We construct model confidence sets (MCS) which contain superior models with a high probability and find them to be systematically smaller for asymmetric loss functions and the jump robust proxy. Our findings suggest a cautious use of GARCH models in forecasting Bitcoin's volatility. | en |
dc.identifier.uri | http://hdl.handle.net/2003/38165 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-20144 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB823;14/2019 | en |
dc.subject | bitcoin | en |
dc.subject | cryptocurrency | en |
dc.subject | GARCH | en |
dc.subject | volatility | en |
dc.subject | model confidence set | en |
dc.subject | robust loss function | en |
dc.subject.ddc | 310 | |
dc.subject.ddc | 330 | |
dc.subject.ddc | 620 | |
dc.title | Volatility forecasting accuracy for Bitcoin | en |
dc.type | Text | de |
dc.type.publicationtype | workingPaper | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DP_1419_SFB823_Köchling_Schmidtke_Posch.pdf
- Size:
- 325.54 KB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: