Volatility forecasting accuracy for Bitcoin

dc.contributor.authorKöchling, Gerrit
dc.contributor.authorSchmidtke, Philipp
dc.contributor.authorPosch, Peter N.
dc.date.accessioned2019-08-05T12:52:14Z
dc.date.available2019-08-05T12:52:14Z
dc.date.issued2019
dc.description.abstractWe analyse the quality of Bitcoin volatility forecasting of GARCH-type models applying the commonly used volatility proxy based on squared daily returns as well as a jump-robust proxy based on intra-day returns and vary the degrees of asymmetry in robust loss functions. We construct model confidence sets (MCS) which contain superior models with a high probability and find them to be systematically smaller for asymmetric loss functions and the jump robust proxy. Our findings suggest a cautious use of GARCH models in forecasting Bitcoin's volatility.en
dc.identifier.urihttp://hdl.handle.net/2003/38165
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20144
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;14/2019en
dc.subjectbitcoinen
dc.subjectcryptocurrencyen
dc.subjectGARCHen
dc.subjectvolatilityen
dc.subjectmodel confidence seten
dc.subjectrobust loss functionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleVolatility forecasting accuracy for Bitcoinen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1419_SFB823_Köchling_Schmidtke_Posch.pdf
Size:
325.54 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: