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Chapter 1

Numerical Simulation and Bench-

marking of Drops and Bubbles

Stefan Turek∗,1 and Otto Mierka∗

, ∗TU Dortmund, Institut für Angewandte Mathematik (LS3), Vogelpothsweg 87, 44227 Dortmund,

Germany

1.1 INTRODUCTION

The numerical simulation of immiscible multiphase flow problems, particu-
larly including drops and bubbles, is very important in many applications, and
performing accurate, robust and efficient numerical computations has been the
object of numerous research and simulation projects for many years. One of
the main challenges for the underlying numerical methods - besides the fact that
the computational simulation of the incompressible Navier-Stokes equations is
challenging by itself - is that the position of the moving interface between two
fluids is unknown and must be determined as part of the boundary value problem
to be solved. If we assume, in the following, a domain Ω with two immiscible
fluids, then the time dependent subdomains Ω1(t) and Ω2(t) are bounded by an
external boundary Σ and a dynamic interior boundary or interface Γ(t) which
might consist of several components (see Figure 1.1).

FIGURE 1.1 Illustrative sketch of the complete domain Ω = Ω1 ∪ Γ ∪Ω2.

Then, the usual model for (laminar) multiphase flow is described by the
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incompressible Navier-Stokes equations

ρ(x, t)

[
∂u

∂t
+ u · ∇u

]
−∇ · (µ(x, t)[∇u+ (∇u)T ])+∇p = ρ(x, t)g+ fΓ(σ) (1.1)

∇ · u = 0 in Ω = Ω1 ∪ Γ ∪Ω2 (1.2)

which contain an additional force term fΓ(σ) due to the surface tension σ at the
free interface Γ. Here, the density ρ as well as the viscosity µ are variable and
discontinuous, that means

ρ(x, t) =

{
ρ1, ∀ x ∈ Ω1(t)

ρ2, ∀ x ∈ Ω2(t)
, µ(x, t) =

{
µ1, ∀ x ∈ Ω1(t)

µ2, ∀ x ∈ Ω2(t)
(1.3)

which significantly influences the velocity u as well as the pressure p.

This contribution provides a numerical description and related computa-
tional studies of both interface capturing and interface tracking approaches,
representating two prominent methodologies for handling multiphase flow prob-
lems, particularly in the framework of the Finite Element Method (FEM). Our
main emphasis is laid on the description of special benchmarking tools and
corresponding results for both discussed approaches which can be utilized for
validation and evaluation of today’s and future numerical methods as well as
their realization in CFD software. Since we aim to provide such tools for (al-
most) ‘real life’ applications, we concentrate on fully 3D configurations while
corresponding 2D results can be found in the literature, for instance in [29]. For
this purpose, the open-source CFD package FeatFlow (www.featflow.de)
was utilized and extended with the described multiphase flow modules such
that the existing numerical ingredients of the FeatFlow approach [12, 32, 55],
namely flexible, higher order FEM discretization schemes in space and time with
flux correction and edge-oriented stabilization techniques, unstructured meshes
with adaptive grid deformation, efficient Newton-Multigrid solvers and paral-
lelization based on domain decomposition could be directly exploited. It should
be also mentioned that the utilized techniques in this contribution are represen-
tative for many other approaches based on Finite Volume, Finite Difference or
Radial Basis Function discretizations of the Navier-Stokes equations as well as of
equivalent flow models based on Lattice Boltzmann methods (LBM), Smoothed
Particle Hydrodynamcis (SPH) methods and many others.

The outline of the contribution is as follows: After a short description in
section 1.2 of the state-of-the-art regarding interface tracking and capturing
methods, we describe in section 1.3 the chosen solution techniques which are
based on Discrete Projection methods [53, 54] for the Navier-Stokes equations,
combined with corresponding numerical tools for the interface capturing, resp.,
tracking approaches. To be precise, discretization aspects regarding the in-
compressible Navier-Stokes equations using the Crank-Nicolson method and the
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Q2/P1 finite element pair are discussed in section 1.3, too, whereas the details
of the employed FEM approaches for the Level Set equation as well as adapting
the mesh towards the dynamic interface can be found in sections 1.4,1.5 and 1.6.

Moreover, section 1.7 presents several numerical test cases which first of all
shall help to evaluate the quality of the underlying single-phase flow solver, here
providing quantitative results for a 3D ‘flow around a cylinder’ configuration.
Subsequently, we present recently developed benchmark settings for prototypical
3D multiphase flows which can be used for ‘simple’ validation and evaluation of
multiphase CFD codes without the necessity of complex postprocessing opera-
tions: Besides a 3D ‘rising bubble’ benchmark [1], we also present numerical
reference values for a ‘Taylor bubble’ setting [34]. Additionally, we provide
simulation results of a reactive Taylor bubble flow in a framework of which a
reaction parameter estimation has been performed in order to match the corre-
sponding experimentally measured results. Finally, the results are summarized
in section 1.8.

1.2 MATHEMATICAL MODEL

The free interface Γ is permanently being deformed and moved so that its position
has to be treated as an unknown and has to be determined in every time step.
Depending on the technique for the representation of the interface, one can
distinguish between front tracking and front capturing approaches which can be
realized on fixed as well as dynamically moving meshes. For an overview of
existing numerical approaches and their classification we recommend references
[47] and [51]. In the following, we provide a compact summary of the most
important characteristics and properties of both classes of methods.

The ‘natural’ front tracking approach [2, 21, 37, 60] is based on an explicit
tracing of the dynamic interface between the two phases. Here, in the case of La-
grangian finite element methods [24], the underlying mesh has to be continuously
adapted to the free interface so that the grid points move with the interface. More
flexibility is promised by the Arbitrary Lagrangian Eulerian (ALE) formulation
[6, 7, 10, 18, 19] and [44] which is based on local grid adaptation and which
provides excellent results in the case of moderate deformations (for instance for
small waves at the free surface). Moreover, there are many more techniques of
fictitious domain and Chimera type which allow the highly accurate tracking of
the dynamic interfaces via overlapping surface meshes [25].

According to the recently published works of Bäumler [8] and Basting [4]
the use of front tracking methods in combination with additional numerical com-
ponents establishes an extremely powerful simulation framework being suitable
for benchmarking purposes of multiphase flows experiencing no topological
changes. These additional numerical components are:

• isoparametric finite elements
• (semi)implicit treatment of surface tension
• PDE-based mesh deformation



444

which are all together inevitable to reach the resulting synergic effect guarantee-
ing high convergence properties of the resulting numerical scheme. The real-
ization of above mentioned work was performed in a 2D environment (Basting
[4] pure 2D; Bäumler [8] axisymmetric 3D, i.e. pseudo 3D) where its potential
was clearly demonstrated on classical 2D benchmark problems such as ‘static
bubble’ and ‘rising bubble’ [29] with excellent convergence properties. This
is the reason why exactly these two approaches have been used as guideline to
perform the corresponding extensions in a fully 3D flow solver environment in
the open-source software FeatFlow. It is also worth to mention that the original
2D work showed additional potential in case of

• topological remeshing where a novel model for the relocation of the fluidic
interface on the level of the otherwise fixed mesh topology was develeped
[4] making it possible to use the front tracking method in the case of strong
deformations of the interface, too, for the second test case of the 2D ‘rising
bubble’ benchmark (see [29]).

• additional transport equations for the reactive transport of species as well as
their backcoupling via concentration dependent surface tension (known as
Marangoni effects) which has been successfully modeled in [8].

Let us summarize the properties of the up-to-date available front tracking
approach first from the point of view of its advantages:

• due to its higher order geometrical approximation of the interfacial surface
(via isoparametric FEM), excellent spatial convergence properties are natu-
rally supported with excellent mass conservation which is already achieved
on relatively coarse meshes. For the very same reason, any artificial mass
correction mechanism is not necessary.

• thanks to the aligned mesh strategy, no smoothening of material properties is
necessary to perform what makes this approach (more or less) parameter-free.

• due to the used (semi-)implicit treatment of the surface tension via the Laplace
Beltrami operator, no global recovery of the normal vectors or the curvature
is necessary and no capillary time-step restriction is needed to be applied.

Unfortunately, the front tracking approach is related to disadvantages, too, from
which the following are important to be mentioned:

• due to the time dependent mesh motion and the employed ALE techniques, the
temporal discretization may reduce to first order accuracy which can only be
compensated by the use of small timesteps or special discretization schemes.

• neither topological nor drastic deformations of the interfacial surface are
allowed. Moreover, special care has to be taken for the generation of the
computational mesh, so to obtain meshes suitable for the overall course of
unsteady simulations.

These aspects make this method suitable for benchmarking purposes of relatively
simple multiphase configurations, but unfortunately not robust enough for its
generic use in the field of general laminar multiphase flows.
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In contrast to such (often highly accurate) Lagrangian methods, Eulerian
front capturing methods seem to be much more robust and flexible. They are
applicable even to free interface problems with significant topology changes
(breakup of bubbles, fragmentation, coalescence, etc.). Based on the early
Marker-and-Cell method of Harlow and Welch [62], the implicit reconstruction
of the interface is based on an indicator function φ(x, t) which contains the
information about the corresponding subdomain for the point x at time t. The
distribution in the complete domain Ω can then be calculated via the scalar
transport equation

∂φ

∂t
+ u · ∇φ = 0 (1.4)

so that the exact position of the free interface Γ(φ) at any time can be recon-
structed from φ with the help of postprocessing techniques. One of the most
well known methods is the Volume-of-Fluid (VOF) method [38] in which case
the indicator function φ can be interpreted as volume fraction which should have
the discrete values 0 or 1 depending on the location of x:

φ(x, t) =

{
1, ∀ x ∈ Ω1(t)

0, ∀ x ∈ Ω2(t)
(1.5)

The numerical drawback of this approach is that artificial diffusion smears
out the (originally) discontinuous indicator function which arises from the so-
lution of the discretized advection problems resulting in a boundary layer with
0 < φ < 1. Therefore, numerical schemes and locally adapted meshes have to
be designed to address this boundary layer as thin as possible so that the corre-
sponding error for reconstructing the free interface is reduced. Moreover, due
to the steep gradients and the discontinuity of the indicator function, standard
Galerkin schemes lead to unphysical oscillations which significantly deteriorate
the accuracy or even lead to unphysical over- and undershoots. As conclu-
sion, the development of corresponding higher order monotone discretization
schemes in combination with unstructured, locally refined meshes still belongs
to the numerical challenges one has to solve.

As a successful alternative, the Level Set approach [39, 40, 49] has been
established which represents the interface as zero isoline of a continuous indicator
function φwhich should be close to the distance with respect to the free interface

φ(x, t) =

{
dist(x, Γ), ∀ x ∈ Ω1(t)

−dist(x, Γ), ∀ x ∈ Ω2(t)
(1.6)

so that Γ(t) = {x ∈ Ω | φ(x, t) = 0} holds. In contrast to the VOF approach, φ
as a distance function is smooth and allows the calculation of a globally defined
normal vector n towards the interface Γ and of the corresponding curvature via

n =
∇φ

|∇φ|
, κ = −∇ · n = −∇ ·

(
∇φ

|∇φ|

)
. (1.7)
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Here, special FEM techniques for gradient recovery can be used which allow
highly accurate approximations of normal vectors and curvature [51] which are
necessary for the direct evaluation of the surface tension force fΓ = κσδ(φ)n,
with δ(φ) denoting the corresponding Dirac Delta function. Hence, the develop-
ment and implementation of a typical Level Set approach consists of performing
the following sequence of tasks:

• Discretization of the Level Set transport problem in (1.4).
• Reinitialisation, resp., redistancing of the Level Set function.
• Additional correction so that mass and volume is preserved (if necessary).
• Calculation of normal vector fields (and curvature if needed) based on φ.
• Evaluation of the discontinuous fluid parameters ρ(φ), µ(φ), and of fΓ, with

or without reconstruction of Γ.

The above sequence of tasks involves very many different possibilities and
choices which inevitably lead to numerous differing solution approaches. This is
evident from the rich collection of publications on Level Set methods which also
demonstrates the high potential of these methods for a wide range of applica-
tions (see for instance the books by Osher [39] and Sethian [49]). However, the
resulting quality of the solutions mainly depends on the underlying numerical
and computational approaches, and one has to acknowledge the fact that many
existing Level Set codes are still based on uniform Cartesian meshes which is
easy to implement. The drawback is that the computational cost typically is quite
high since uniform mesh refinement has to be performed to resolve the necessary
scales, particularly near the fluidic interfaces, but also due to complicated ge-
ometries with small-scale structures. Unstructured meshes are particularly well
suited for such approaches which leads us to finite volume and finite element
discretization methods which are the most prominent candidates for unstructured
simulation approaches. Examples for corresponding approaches in the frame-
work of VOF and Level Set methods can be found in [3, 10, 11, 17, 28, 35, 36, 45].
In many approaches, for example in the Interface Proximity Adaption Method

of Barth and Sethian [3], the mesh is locally refined near the interface which is
quite easy to find if φ is a distance function [35].

Although finite element methods together with locally refined grids seem to
possess a very advantageous behaviour for the simulation of multiphase flow
problems with free interfaces, many existing Level Set codes are still based on
finite differences. It is only during the last years that FEM codes have been
successfully applied for these special CFD problems ([42, 46, 50]; see also [16,
23, 36, 43, 51, 52, 56]). However, there is still a huge potential for improvement
if ‘optimal’ modern discretization and solution techniques shall be adapted to
the special characteristics of FEM-Level Set methods. In constructing a modern
Level Set solver it is important to focus on unstructured meshes with local grid
refinement strategies for highly nonstationary multiphase flow simulations, and
to make detailed studies for higher numerical stability. Additionally, stable and
accurate discretization of the convective terms (for instance, VOF and Phase-
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Field methods show very steep gradients near the interface, similarly as Level Set
approaches without redistancing), robust treatment of large density differences,
and the handling of large surface tension σ also require special attention.

Summarizing the properties of FEM-Level Set techniques for multiphase flow
problems, we may conclude the following (potentially) advantageous behaviour
in comparison to interface tracking methods as well as VOF and Phase-Field
approaches which motivates our recent and future work for the combination of
finite elements and Level Set methods:

• If the Level Set function satisfies the distance property, it is smooth so that
even on highly uniform meshes qualitatively good results can be obtained.
Local refinement around the interface will help to improve the accuracy, but
in contrast to VOF and Phase-Field methods, which may lead to smeared
interfaces due to numerical diffusion or to unphysical oscillations due to steep
gradients, adaptive meshes are not necessary.

• Accurate FEM discretizations of higher order can be adapted to the special
characteristics of Level Set functions, that means higher smoothness because
of the distance function properties.

• Accurate representations of the interface are provided, without explicit de-
scription, but even for complex geometrical changes, which is important for
handling the surface tension term.

• Auxiliary quantities like normal vectors and curvature are provided, even
globally, which is particularly advantageous for the Continuous Surface Force
(CSF) [9] approach.

On the other hand, there are still several problems with Level Set approaches
(and some of them are also valid for VOF and Phase-Field methods) which are
numerically challenging and which are in the focus of recent research activities:

• The standard Level Set formulation is not conservative which may lead to
mass loss.

• Since reinitialisation is necessary to preserve the distance property, often
highly expensive computational operations might be necessary, for instance
via solving globally the Eikonal equation [13, 26], or redistancing is based
on ‘cheaper’ methods which however change the position and shape of the
interface, leading again to mass loss.

• Due to the standard explicit treatment of surface tension, the time step size is
restricted by the capillary time step restriction [27], that means the necessary
time steps depend by purely numerical reasons on the size of surface tension
and on the local mesh size.

In the following sections, we first of all describe the overall solution tech-
niques for the underlying incompressible Navier-Stokes equations which are
based on the ‘Discrete Projection method’ which is followed by a discussion of
the FEM discretization details, on the one hand regarding numerical techniques
for treating the Level Set equation, and on the other hand discussing interface
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tracking methods in detail.

1.3 DISCRETE PROJECTION METHODS FOR THE INCOMPRESS-

IBLE NAVIER-STOKES EQUATIONS

In this section, we briefly review the ‘Discrete Projection method’ as a special
variant of Multilevel Pressure Schur Complement (MPSC) approaches for the
solution of incompressible flow problems, and we combine it with FEM dis-
cretization techniques. We will explain some characteristics of high-resolution
FEM schemes as applied to incompressible flow problems and discuss the com-
putational details regarding the efficient numerical solution of the resulting non-
linear and linear algebraic systems. Furthermore, we will discuss the coupling
mechanisms between the ‘basic’ flow model (standard Navier-Stokes equations
for velocity and pressure) and the scalar transport equations for the Level Set
indicator function in our multiphase flow solver.

1.3.1 Discretization techniques

For a better illustration, we consider first of all numerical solution techniques for
the (single-phase) incompressible Navier-Stokes equations,

ut − ν∆u + u · ∇u + ∇pρ = f

∇· u = 0, in Ω × (0,T] with pρ =
p

ρ
and ν =

µ

ρ

(1.8)

for given force f which might contain the surface tension. Moreover, boundary
values are prescribed on the boundary ∂Ω as well as an initial condition at t = 0.
Solving this problem numerically is still a considerable task in the case of long
time calculations and high Reynolds numbers, particularly in 3D and if the time
dynamics is complex. The common solution approach is a separate discretiza-
tion in space and time. We first (semi-) discretize in time by one of the usual
methods known from the treatment of ordinary differential equations, such as the
Forward or Backward Euler-, the Crank-Nicolson- or Fractional-Step-θ–scheme,
or others, and obtain a sequence of generalized stationary Navier-Stokes prob-
lems.

Basic θ-scheme:

Given un and ∆t = tn+1 − tn, then solve for u = un+1 and pρ = pn+1
ρ

u − un

∆t
+ θ[−ν∆u + u · ∇u] + ∇pρ = gn+1 , ∇· u = 0 , in Ω (1.9)

with right hand side gn+1 := θfn+1
+ (1 − θ)fn − (1 − θ)[−ν∆un

+ un · ∇un]
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In the following simulations, the parameter θ is chosen as θ = 1/2, repre-
senting the Crank-Nicolson-scheme which is of second order. Alternatively, the
Fractional-Step-θ-scheme [59] which uses three different values for θ and for the
time step ∆t at each time level, is another excellent candidate with slightly better
robustness properties.

For the spatial discretization, we choose a finite element approach which is
based on a suitable variational formulation. On the finite meshTh (3D hexahedral
elements in our case) covering the domain Ω with local mesh size h, one defines
polynomial trial functions for velocity and pressure. These spaces Hh and Lh

should lead to numerically stable approximations as h → 0, i.e., they should
satisfy the so-called inf-sup (LBB) condition [20]

min
qh ∈Lh

max
vh ∈Hh

(qh,∇· vh)

||qh ||0 ||∇vh ||0
≥ γ > 0 (1.10)

with a mesh-independent constant γ. While the original FeatFlow solvers
are based on rotated multilinear nonconforming finite element functions for
the velocity and piecewise constant pressure approximations, we extended the
complete solver package to higher order Stokes elements, namely conforming
triquadratic ansatz functions for the velocity and discontinuous linear pressure
approximations (Q2/P1), which belong to the ‘best’ finite element pairs for
laminar incompressible flow w.r.t. accuracy and robustness. Since so far most
of our numerical simulations have been performed for small up to moderate
Reynolds numbers, the (nonlinear) convective operator was discretized using
standard stabilization techniques only. Currently, we use edge-, resp., face-
oriented FEM stabilization techniques [55] which can be easily realized for
higher order ansatz functions, too. Here, special jump terms of the gradient of
the solution as well as of the test function have to be included into the weak
formulation which leads to a consistent stabilization, for stationary as well as
nonstationary configurations. For an overview regarding such special FEM
stabilization techniques, we refer to [41, 55] and particularly to [12] which
contains corresponding results for the Q2/P1 approach, too.

1.3.2 Solution techniques

Using the same notation u and pρ also for the coefficient vectors in the represen-
tation of the approximate solution, the discretized Navier-Stokes equations may
be written as a coupled (nonlinear) algebraic system of the form:

Given un and f, compute u = un+1 and pρ = pn+1
ρ by solving

Au + ∆tBpρ = g , BTu = 0, where (1.11)

g = [M − θ1∆tN(un)]un
+ θ2∆tfn+1

+ θ3∆tfn . (1.12)
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Here and in the following, we use the more compact form for the diffusive
and advective part

N(v)u := −ν∆u + v · ∇u (1.13)

while M is the (lumped) mass matrix [61], B is the discrete gradient operator,
and −BT is the associated divergence operator. Furthermore,

Au = [M + θ∆tN(u)]u, N(u) = K(u) + νL, (1.14)

where L is the discrete Laplacian and K(u) is the nonlinear transport operator
incorporating a certain amount of artificial diffusion due to some appropriate
FEM stabilization as described before. The solution of nonlinear algebraic sys-
tems like (1.11) is a rather difficult task and many aspects, namely the treatment
of the nonlinearity and of the incompressibility as well as the outer control of
the couplings, need to be taken into account. Consequently, this leads to a
great variety of incompressible flow solvers which are closely related to one an-
other but exhibit considerable differences in terms of their stability, convergence,
and efficiency. The Multilevel Pressure Schur Complement (MPSC) approach
outlined below makes it possible to put many existing solution techniques into
a common framework and to combine their advantages so as to obtain better
run-time characteristics.

The fully discretized Navier-Stokes equations (1.11) as well as the linear
subproblems to be solved within the outer iteration loop for a fixed-point defect
correction or, with a similar structure, for a Newton-like method admit the
following representation

[
A ∆tB

BT 0

] [
u

pρ

]
=

[
g

0

]
. (1.15)

In general, we have A = M + βN(u), with β = θ∆t for time-dependent problems.
If the operator A is nonsingular, the velocity can be formally expressed as

u = A−1(g − ∆tBpρ) (1.16)

and plugged into the discretized continuity equation

BTu = 0 (1.17)

which gives a scalar Schur complement equation for the pressure only

BT A−1Bpρ =
1

∆t
BT A−1g. (1.18)

Thus, the coupled system (1.15) can be handled as follows

1. Solve the Pressure Schur Complement (PSC) equation (1.18) for pρ.
2. Substitute pρ into relation (1.16) and compute the velocity u.
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It is worth mentioning that the matrix A−1 is full and should not be assembled
explicitly. Instead, an auxiliary problem is to be solved by a direct method or
by inner iterations. For instance, the velocity update (1.16) is equivalent to the
solution of the discretized momentum equation Au = g − ∆tBpρ. Likewise,
the matrix S := BT A−1B is never generated in practice. Doing so would be
prohibitively expensive in terms of CPU time and memory requirements. It is
instructive to consider a preconditioned Richardson method which yields the
following basic iteration for the PSC equation

p
(l+1)
ρ = p

(l)
ρ − C−1

[
Sp

(l)
ρ −

1

∆t
BT A−1g

]
, l = 0, . . . , L − 1. (1.19)

Here, C has to be chosen as suitable preconditioner to S but being easier to
‘invert’ in an iterative way. The number of PSC cycles L can be fixed or
chosen adaptively so as to achieve a prescribed tolerance for the residual. The
basic idea behind the family of global MPSC schemes is the construction of
globally defined additive preconditioners for the Schur complement operator
S = BT A−1B. Recall that the matrix A has the following structure

A := M + βK(u) + γL, (1.20)

where β = θ∆t and γ = νβ. Unfortunately, even today it is still a challenging
task to construct a matrix Ã and a preconditioner C = BT Ã−1B that would be a
sufficiently good approximation to all three components of A and S, respectively;
particularly for the convective part with K(u). Therefore, one may start with
developing individual preconditioners for the reactive (M) and diffusive (L)
part, while the convective (K) part is neglected by applying this special kind
of operator splitting. In our case, the Reynolds numbers in the considered
flow configurations are so far quite moderate, so that this approach can be
justified, particularly if small time steps are used to resolve to complex dynamical
behaviour. Therefore, the (lumped) mass matrix M proves to be a reasonable
approximation to the complete operator A, so that our basic iteration (1.19) for
the pressure Schur complement equation

p
(l+1)
ρ = p

(l)
ρ + [B

T M−1B]−1 1

∆t
BT A−1

[
g − ∆tBp

(l)
ρ

]
(1.21)

can be interpreted and implemented as a discrete projection scheme, if L = 1,
such as those proposed in [14, 22]. Here, the important step is that for the chosen
Stokes element pair, Q2/P1, the matrix P := BT M−1B can be explicitly built up
relatively easily even in a domain decomposition framework due to the chosen
discontinuous pressure. Then, the main algorithmic steps are as follows [53]:
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1. Solve the ‘viscous Burgers’ equation for ũ

Aũ = g − ∆tBp
(l)
ρ .

2. Solve the discrete ‘Pressure-Poisson’ problem

Pqρ =
1

∆t
BT ũ.

3. Correct the pressure and the velocity

p
(l+1)
ρ = p

(l)
ρ + qρ, u = ũ − ∆tM−1Bqρ .

In essence, the right-hand side of the momentum equation is assembled using the
old pressure iterate and the intermediate velocity ũ is projected onto the subspace
of solenoidal functions so as to satisfy the constraint BTu = 0. Moreover, the
matrix P corresponds to a mixed discretization of the Laplacian operator [22]
so that this method is a discrete analogue of the classical projection schemes
derived by Chorin (p(0)ρ = 0) and Van Kan (p(0)ρ = pρ(tn)) via operator splitting
for the continuous problem.

Now, in the case of multiphase problems, the above addressed scheme serves
as the core which has to be extended with additional mechanisms depending on
the adopted realization (interface tracking or capturing) but still resulting in an
operator splitting framework. The Navier-Stokes equations with the arising time-
dependent and discontinuous material properties - density ρ(φ) and viscosity
µ(φ) - and surface tension term fΓ,σ(φ) can still be written for both realizations
formally in a common way, as follows

ρ(φ)

[
∂u

∂t
+ u · ∇u

]
− ∇ · (µ(φ)[∇u + (∇u)T ]) + ∇p =

= ρ(φ)g + fΓ,σ(φ), ∇ · u = 0

(1.22)

which depending on the applied realization of the interface treatment is then
extended with the corresponding additional transport equation. At first, let us
extend the scheme towards the interface tracking realization according to that
approach in which the additional transport equation is the mesh deformation
PDE, which is governing the motion of the time-dependent computational mesh
being deformed due to the tangential movement of the internal boundary points
associated with the corresponding interface at every timestep. The corresponding
mesh deformation equation is written as follows

∇ · [∇d + (∇d)T ] = 0 (1.23)

where d stands for the displacement vector. The equation above has to be ex-
tended with the corresponding boundary conditions acting on the outer bound-
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aries of the domain, as well as on the interfacial surface, so to enable a tangential
slip of the nodes on the individual (curved) surfaces. To do this, only the sur-
face related to the interface requires special attention since that depends on the
actual velocity distribution at the given time level. This coupling between the
mesh deformation and the Navier-Stokes equations is realized by means of the
projection method according to which the velocity field is obtained first in the
framework of the ALE method for a fixed interface position Γn and by means
of the mesh velocity ωn: note that both originate from the previous time level
tn. Then the update of the interface position is performed from Γn to Γn+1 by
means of the interface-normal components of the velocity at the old interface,
as follows

Γ
n+1
= Γ

n
+ un+1

n · ∆t (1.24)

where un is the normal component of the velocity calculated by projecting the
local velocity field into the interface normal direction evaluated from the old
time level nn

Γ
. After discretization in space and time, we obtain again a system

of nonlinear algebraic equations which can be written in matrix form as follows:

Au(u
n+1, Γn+1)un+1

+ ∆tF(Γn+1) + ∆tBpn+1
= gu, (1.25)

Ad(u
n+1)dn+1

= gd, BTun+1
= 0 (1.26)

Note that equation (1.25) in contrast to (1.11) and (1.14) is multiplied with
ρ(Γ), which gives rise to the modified operators Mρ, Kρ(u) and Lµ. Here and
below the superscript n + 1 refers to the time level, while subscripts identify
the origin of discrete operators (u for the momentum equation and φ for the
Level Set equation); moreover, ρ and µ are evaluated w.r.t. the old time level tn

which makes this formulation semi-implicit. The system of nonlinear equations
written above - corresponding to the interface tracking approach - is casted in the
framework of the used Discrete Projection Method into the following solution
scheme consisting of four main algorithmic steps:
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1. Compute ũ from the momentum equation

Au(ũ, Γ
n)ũ = gu − ∆tF(Γn) − ∆tBpn.

2. Solve the discrete Pressure-Poisson problem

Pρq =
1

∆t
BT ũ with Pρ := BT M−1

ρ B.

3. Correct the pressure and the velocity

pn+1
= pn + q, un+1

= ũ − ∆tM−1
ρ Bq.

4. Solve the mesh deformation equation for d and obtain
Γ
n+1

Addn+1
= 0

with boundary conditions depending on un+1.

This solution strategy is realized for only one outer iteration step, however only
under the condition that the used time step is sufficiently small.

Now, in case of addressing our multiphase flow problem in the framework of
the interface capturing method, the system of equations (1.22) has to be extended
with the Level Set transport equation (1.4).

After discretization in space and time, we obtain again a system of nonlinear
algebraic equations which can be written in matrix form as follows

Au(u
n+1, φn+1)un+1

+ ∆tF(φn+1) + ∆tBpn+1
= gu, (1.27)

Aφ(u
n+1)φn+1

= gφ, BTun+1
= 0. (1.28)

Note that we have the freedom of using different finite element approximations
and discretization schemes for the velocity u and indicator function φ, and
the discrete problem (1.27),(1.28) can be solved again in the framework of the
Discrete Projection Method. For relatively small time steps, this strategy works
very well, and simulation software can be developed in a modular way making
use of optimized multigrid solvers. Consequently, in the simplest case (just one
outer iteration per time step), the sequence of algorithmic steps to be performed
is as follows:
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1. Compute ũ from the momentum equation

Au(ũ, φ
n)ũ = gu − ∆tF(φn) − ∆tBpn.

2. Solve the discrete Pressure-Poisson problem

Pρq =
1

∆t
BT ũ with Pρ := BT M−1

ρ B.

3. Correct the pressure and the velocity

pn+1
= pn + q, un+1

= ũ − ∆tM−1
ρ Bq.

4. Solve the Level Set equation for φ

Aφ(u
n+1)φn+1

= gφ .

Due to the nonlinearity of the discretized convective terms, resp., of the reinitiali-
sation step, iterative defect correction or Newton-like methods, resp., corrections
via redistancing, must be invoked in steps 1 and 4. However, due to the assumed
relatively small time steps, such nonlinear iteration methods are not critical for
the complete flow simulation.

1.4 TREATMENT OF SURFACE TENSION EFFECTS

Surface tension effects are taken into account through the following force balance
at the interface Γ:

[u]|Γ = 0, [−pI + µ(∇u + (∇u)T )]
��
Γ
· n = σκn

The first condition implies continuity of the velocity across the interface, whereas
the second describes the force balance on Γ. n is the unit normal at the interface
pointing into Ω1, [A]|Γ = A|Ω1∩Γ − A|Ω2∩Γ denotes the jump of a quantity A

across the interface, σ is the surface tension coefficient, and κ is the curvature
of the interface Γ. The surface tension term according to the used finite element
discretization is transformed into its variational equivalent by multiplying it with
a suitably chosen test function and integrating it over Γ, which yields:

fst =

∫

Γ

σκn · vdΓ

Since the above addressed integration has to be performed on the interfacial
surface which in general might not be be aligned with the computational mesh,
there are different possibilities offered in order to account for the appropriate
representation of this source term. According to the more natural but at the same
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time also more challenging representation, the integration is indeed performed
on the interfacial surface in a framework of a time dependent deformed compu-
tational mesh being aligned with the interface (front tracking method) by taking
advantage of the Laplace Beltrami transformation by introducing the surface
tangential derivatives ∆ and ∇

fst =

∫

Γ

σ
(
∆x|Γ

)
· vdΓ

which then, by applying partial integration, transfers one derivative into the test
function

fst = −

∫

Γ

σ∇x|Γ · ∇vdΓ +

∫

γ

σ∂γx|Γ · vdγ

where the second term will be vanishing for closed interfacial surfaces. In order
to reduce the related time step restriction we follow the work of Bänsch [6, 7] and
Hysing [27, 28] and introduce a semi-implicit treatment of the surface tension
term by taking advantage of

(x|Γ)
n+1
= (x|Γ)

n
+ ∆tun+1

where ∆t is the time step and un+1 is the velocity field at the new time step.
Under the assumption of having a continuous ALE velocity of the computational
mesh we arrive at the following representation of the surface tension term

fst = −

∫

Γn

σ∇ (x|Γ)
n · ∇vdΓ − ∆t

∫

Γn

σ∇un+1 · ∇vdΓ

where the second term represents a positive definite matrix which can be directly
built into the stiffness matrix guaranteeing a relaxation of the time step restriction
due to surface tension.

The second strategy, which is used in our front capturing Level Set method,
is related to extending the surface integral to a volumetric one by the help of the
Dirac delta funcion δ(x) corresponding to the location of the interface:

fst =

∫

Ω

σκn · vδ (Γ) dx

This strategy forms the basis of the Continuous Surface Force (CSF) approach.
Accordingly the Dirac Delta function δ is to be replaced by its continuous
regularized counterpart which in particular has the following construction:

δ(φ) =




φ < 0 max
(
0, 1

ǫ
+

1
ǫ2 φ

)

φ ≥ 0 max
(
0, 1

ǫ
− 1

ǫ2 φ
)
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The introduced parameter ǫ is the extent into which the volumetric integration
is extended. Its choice is clearly not arbitrary, but related to the underlying mesh
resolution h. Since the interface normal vector n and curvature κ are higher order
derivatives of the Level Set function φ, their spatial distributions can be obtained
by a combination of appropriate projection and gradient recovery techniques.
Additionally, due to the employed explicit treatment in the framework of the
used interface capturing method, all evaluations are related to the Level Set
solutions being evaluated at the previous time step. Accordingly, the continuous
(piecewise trilinear) interface normal nn

Q1
is obtained by L2-projection (and

normalization) from the piecewise discontinuous P1 space into the continuous
Q1 space. Finally, the continuous approximation κn

Q1
of the curvature κn is

reconstructed via L2-projection, as follows
∫

Ω

κnQ1
wdx = −

∫

Ω

w ∇ · nn
Q1

dx, (1.29)

where w denotes the test functions from the conforming trilinear Q1 space.

1.5 THE Q2/P1/Q1-FEM-INTERFACE TRACKING APPROACH

In the current work in case of the front tracking method, the computational mesh
is always perfectly aligned with the free interface Γ and therefore the computa-
tional mesh is deformed in every timestep in order to follow the movement of
the interfacial surface. For this reason a suitable mesh deformation algorithm
is needed to be integrated into the computational scheme which is in this case
the simple PDE based Mesh Deformation Equation (MDE) already addressed
in (1.23). The spatial discretization of the MDE is realized by FEM in the Q1

space. Since the underlying equation is time-independent (i.e. steady state) and
has to be solved at every timestep due to the time dependent boundary condi-
tions, its solution is accelerated by the employed geometric multigrid methods.
The only disadvantage of this methodology is that it is not suitable to introduce
the slip condition of the displacement in the surface tangential directions as for
example described in ([15]) by transformation of the corresponding degrees of
freedom and related matrix entries into a local coordinate system. Therefore
we have embedded the underlying slip conditions of the boundary nodes into
the defect correction scheme described in [33] by transforming the (otherwise
linear) MDE to a nonlinear solution algorithm which then needs to be solved
only up to a relaxed tolerance. Accordingly, in every nonlinear solution step
the resulting normal and tangential directions are updated which then define the
direction of the applied slip condition for the individual degrees of freedom.
Additional remarks to the realization of the mesh deformation are necessary due
to the fact that only the motion of the Q1 nodes (the vertices of the underlying
hexahedral elements) is governed by the MDE and therefore the coordinates of
the remaining Q2 nodes need to be performed carefully on an algebraic level.
This in particular means to obtain the updated coordinate values of all edge-,
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face- and element-centered nodes which, in case of being located on a curved
surface (either outer or interfacial surface), therefore need to be projected onto
the underlying curved surface. The generally used coordinate averaging algo-
rithm might fail especially in case of already highly stretched elements where the
obtained averaged face- or element-midpoints can displace the resulting point
outside of the corresponding element. For this reason we propose to update
the face coordinate by using a limited edge-point based averaging according to
which coordinate of the face midpoint will be calculated from the shorter pair
of edge-midpoints (see Figure 1.2). The same mechanism is then transferrable
for the update of the element midpoints based on the face-midpoint coordinate
averages.

FIGURE 1.2 Midpoint calculation strategies. Left: based on the vertices of the element (red)
which may result in placing the midpoint outside of the element. Right: based on the shortest
edge-midpoint (green), recovering an acceptable coordinate.

After the computation of the corresponding edge-, face- and element-oriented
midpoints, the surface normal and resulting surface tangential vectors are recon-
structed by means of a FEM L2-projection for the isoparametric Q2 element.

For completeness, the mesh deformation equation after applying the FEM
discretization can be written in the following simple form

Ld d = 0 (1.30)

where the Ld operator is the discrete Q1 diffusion operator which (as recom-
mended in [4]) due to the motion of the computational mesh during the simu-
lation is updated based on the last available mesh coordinates from time level
tn. This way the displacement solution vector is incremented with respect to the
computational mesh from the last time step instead of the initial mesh at t = 0.

Concerning the ALE formulation we refer to [8] which is basically related to
addressing a generic conservation equation for a quantity b (like linear momen-
tum in our case) written as

∂tb + div (bu) = −divF + BV , (1.31)

where F corresponds to the diffusive flux, BV refers to the volumetric or surface
force terms. Here, in the framework of the used ALE formulation, we define
the mesh velocity as ω(x, t) so that the corresponding transport equation is,
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according to the used ALE formulation, transformed to

∂̂tb + (u − ω) · b + (divu) b = −divF + BV , (1.32)

where the ∂̂tb stands for the ALE time derivative which in the case of a general
time discretization framework introduces the problem of evaluating the old ve-
locity distribution on the new mesh. However, this difficulty can be overcome
by the use of the fully implicit Euler method (as used in this work) which at
the same time results in an only first order temporal discretization of the overall
scheme.

The moving reference frame is introduced to fix the barycenter of a single
drop or bubble to the origin and this way the coordinate system experiences
acceleration which has the consequence of a transformation of the momentum
balance equations in terms of the Dirichlet values and modifying the volume
force f = ρg to f = ρ(g − a) where a is the acceleration of the frame velocity.

1.6 THE Q2/P1/Q2-FEM-INTERFACE CAPTURING APPROACH

In the current work in case of the front capturing method, the location of the
free interface Γ is treated by means of the Level Set approach which represents
the interface as a zero isosurface of a continuous indicator function φ and its
distribution in the complete domain Ω can then be calculated via the following
scalar transport equation:

∂φ

∂t
+ u · ∇φ = 0 (1.33)

Since φ approximates the distance function, it is smooth and it allows the cal-
culation of the globally defined normal vector n at the interface Γ and of the
corresponding curvature via 1.7, which are evaluated by the help of FEM based
special gradient recovery techniques (as desribed in Sec. 1.4).

The implementation of the here applied Level Set approach consists of the
following sequence of tasks:

• Advection of the Level Set function based on the underlying velocity field u

(as in (1.33))
• Geometric reinitialization of the Level Set function
• Recovery of the normal vector n and curvature κ
• Evaluation of the discontinous fluid parameters ρ, µ, and fst based on the

reconstructed distribution of Γ

One has to keep in mind that the reinitialization of the Level Set field is nececcary
for two main reasons, and these are that by reinitialization the Level Set function
becomes smooth and stabilization of the convection terms does not need to be
incorporated, while the second reason is that the recovery of the curvature in
(1.7) requires as input a distance field. On the other hand, it is well known from
the literature, that the reinitialization of the Level Set field leads to artificial
"movement" of the interface, and may exhibit even its systematic translation in
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cases when it is performed too often. That is the reason why the two previously
mentioned requirements can be satisfied through an additionally introduced
function φ̃. According to the proposed approach one can reinitialize the Level Set
field φ into φ̃ and all the postprocessing steps (recovery of the normals, curvature
and physical properties) are then performed only with respect to φ̃ (which is the
most accurate approximation of the distance distribution) without influencing the
interface. This way, reinitialization of the Level Set field φ becomes crucial only
for stability reasons. The link between the fields φ and φ̃ is the interface Γ which
is reconstructed from the Level Set distribution φ at every timestep. During this
global surface reconstruction process all elements of the computational domain
intersected by the interface are visited and according to the used higher order
Q2 element the zero level surface is triangulated in a recursive fashion so to
provide subgrid resolution of the interface. The arising set of triangles is then
organized into groups with respect to the elements they originate from. Due
to the underlying multigrid mesh structure this data management is performed
in a hierarchical manner while for the coarser level representation for efficiency
reasons only the mass of points of the individual groups are to be used. This
allows us to design a very efficient reinitialization algorithm, which starts on
the coarse representation of the surface and ends by determination of the closest
triangle to an analyzed point. The role of efficiency in such a "point to triangle
distance" implementation plays a crucial role since the reinitialization described
by us is related to a L2-projection, as follows

∫
φ̃ w dx =

∫
dist w dx, (1.34)

where w is the Q2 basis funcion and ‘dist’ is the distance which on the level
of practical realization means the evaluation of the distance with respect to the
surface in each cubature point during the numerical integration. This linear
equation can also be solved iteratively by the help of the lumped mass matrix
ML , and according to our experience, already the first iteration of this solution
process provides an accurate approximation:

φ̃ = M−1
L

∫
dist w dx (1.35)

Then, for the reinitialization of the Level Set function two procedures offer
themselves. The first alternative is a full one (φ := φ̃) with a given frequency freini

or according to the second alternative it can be performed in an underrelaxation
approach even at every timestep:

φ := M−1
L

∫
(αreinidist + (1 − αreini)φ) w dx. (1.36)
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1.7 NUMERICAL BENCHMARKING AND SIMULATIONS

This section contains several numerical studies for examining and validating
the methodology described in the previous sections. Moreover, the presented
multiphase flow configurations are designed to serve as benchmarking configu-
rations, hereby providing reference values for the quantitative evaluation of new
approaches for 3D multiphase flow problems.

1.7.1 Single-phase 3D flow around a cylinder

FIGURE 1.3 Geometry and coarse mesh for the ‘Flow around cylinder’ benchmark.

The first incompressible flow problem to be dealt with, particularly to
demonstrate the accuracy of the higher order Q2/P1 approach, is the well-
known benchmark Flow around cylinder developed in 1995 for the priority
research program “Flow simulation on high-performance computers” under the
auspices of DFG, the German Research Association [58]. This project was
intended to facilitate the evaluation of various numerical algorithms for the
incompressible Navier-Stokes equations in the laminar flow regime. A quan-
titative comparison of simulation results is possible on the basis of relevant
flow characteristics such as pressure values as well as drag and lift coeffi-
cients, for which sufficiently accurate reference values are available (see also:
www.featflow.de/en/benchmarks/ff_benchmarks.html). Here, we con-
sider two test cases, namely steady and nonstationary incompressible flow around
a cylinder with circular cross-section. An in-depth description of the geometrical
details and boundary conditions can be found in reference [58] and particularly
in [5] which contain all relevant information regarding this benchmark config-
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uration. This single-phase flow problem is chosen here with the special aim to
demonstrate the accuracy improvement related to the use of isoparametric finite
elements, which allow to exploit the full order of the employed finite element ap-
proximations also in case of curved boundaries. The role of these discretization
aspects becomes especially crucial in case that the quantities computed at such
curved boundaries have backcoupling effects, just as it is in case of multiphase
problems involving strong surface tension effects on evolving interfaces.

The first test case, the flow at Re = 20 is actually dominated by diffusion and
could be simulated by the standard Galerkin method without any extra stabiliza-
tion. The corresponding results are shown in Table 1.1 which demonstrates the
numerical properties of the Q2/P1 approach. The advantage of the isoparametric
version of the same numerical framework is clearly visible via the achieved L2

error reduction which is especially visible at the finer resolution levels.

TABLE 1.1 Mesh convergence results - obtained by successive refinement of the

coarse mesh in Fig.1.3 - in terms of drag, lift for the ‘Flow around cylinder’ problem at

Re = 20. CD and CL are the normalized ( 1
2 ρU

2
meanLcylDcyl) drag and lift coefficients.

As reference values are used for drag CD = 6.185330 and for lift CL = 0.009401 [30].

mesh stats non-isoparametric isoparametric

Level NEL NDOF(u, p)
CD CL CD CL

%err %err %err %err

3 6,144 199,200
6.13973 0.009569 6.18040 0.009881

0.7372 1.7870 0.0797 5.1058

4 49,152 1,482,816
6.17433 0.009381 6.18455 0.009464

0.1778 0.2127 0.0126 0.6701

5 393,216 11,432,064
6.18261 0.009387 6.18521 0.009407

0.0440 0.1489 0.0019 0.0638

6 3,145,728 89,760,016
6.18465 0.009397 6.18531 0.009402

0.0110 0.0425 0.0003 0.0106

The second testcase is related to a nonstationary realization of the same ge-
ometrical and parameter setup of the first test case which is achieved by a time
dependent inflow boundary condition starting with a fluid in rest reaching a max-
imum flowrate and Reynolds number at t = 4.0 and then decreasing the flowrate
back to zero at t = 8.0. For detailed description we refer to [58] and particularly
to [5] which reports the currently available reference computation results and
provides comparisons with other mainstream CFD software tools. The reported
reference results were obtained with the same Q2/P1 FEM simulation software
as the one used in this work with the only difference of the isoparamtric element
transformation which proves to be an essential ingredient guaranteeing additional
accuracy for the price of only negligibly increased computational cost spent in
matrix assembly procedures. For this test case we provide the demonstration
of the improved accuracy due to the use of isoparametric transformations in
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terms of graphical proofs which are displayed in Figure 1.4. Due to the fact
that the prediction of the target drag and lift coefficients is qualitatively already
very close already on the 3rd resolution level to the reference curves, the corre-
sponding close-up views of the interesting maximum and minimum regions are
supplemented next to the overall t = [0, 8s] evolution of benchmark quantities.
As it may be visible from the inserted figures the isoparametric counterpart is
predicting considerably more accurate drag and particularly lift values at each
resolution level.
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FIGURE 1.4 Results of the instationary Flow around a cylinder benchmark. Time evolution of the drag coefficient (top), time evolution of the lift coefficient (bottom).
Close-ups for the drag-maximum and lift-minimum regions are visualized at the right side. REF stands for the reference results published in Bayraktar et al. [5].
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1.7.2 3D Rising Bubble Benchmark

Having validated the 3D single-phase flow solver we provide the computational
details of a 3D multiphase flow benchmark problem which follows its already
well-established 2D counterpart originally introduced by Smoliansky [51] and
later analyzed by Hysing et al. [29]. The only introduced difference with respect
to the 2D benchmark case (aside of the additional spatial dimension) is the type
of boundary condition applied at the side of the channel which according to the
original 2D is attributed to free slip boundary condition, but in the 3D benchmark
[29] it is related to a no slip boundary condition. Pioneering work on the 3D
extension of this benchmark is related to Adelsberger et al. [1] where simulation
results for different multiphase flow solvers have been presented and compared.
However, due to the relatively widely spread computational results and absence
of detailed convergence analysis, the determination of the benchmark results was
not fully accomplished. The geometrical setup according to the 3D configura-
tion is depicted in Figure 1.5 and the summary of all dimensionless physical
parameters is displayed in Table 1.2. Both simulation frameworks (front track-
ing and front capturing) have been utilized for this benchmark problem and their
respective spatial and temporal convergence have been taken into consideration.
A partial compilation of the here presented results (missing the finest spatial
and temporal resolution results) has been published by Turek et al. [57]. The
sequence of computational meshes used for the Level Set based front capturing
simulation was created on the basis of simple fully-structured and isotropic mesh
generation where the corresponding mesh sizes were varied in the range of 1/24
to 1/128 by using two basic coarse meshes of 1/24 and 1/32 which have been
refined to levels 2, 3 and 4 according to geometrical multigrid techniques. In
case of the front tracking simulations an interface-aligned unstructured coarse
mesh (displayed in the right subfigure of Figure 1.5) has been used for the sim-
ulations which was then refined according to geometrical multigrid techniques
up to resolution levels 2, 3 and 4.

TABLE 1.2 The complete parameter set of dimensionless physical properties used for

the 3D Benchmark problem according to Hysing et al [29].

ρ1 ρ2 µ1 µ2 g σ

1000 100 10 1 0.98 24.5

The considered benchmark quantities are selected as for the original 2D
benchmark, namely:

• Bubble Size - Size of the bubble in two different directions, namely in the
rise direction (z) expressed as Rz/R0 (normalized w.r.t. initial bubble size R0)
and in a perpendicular to rise direction being aligned with one of the cartesian
axis (x or y) expressed as Rx,y/R0.
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FIGURE 1.5 Left: Geometrical setup of the 3D rising bubble benchmark. Right: Sequence of
coarse meshes used for the transient ALE based front-tracking simulations.

• Bubble Sphericity - The "degree of sphericity" in R3 can be defined as

A0

A
=

4πR2
0

A
.

Here, A0 denotes the interfacial area of an equivalent (in terms of volume)
spherical bubble of radius R0 (i.e. the surface area of the initial bubble) and
A denotes the interfacial area of the simulated bubble at the given time level.

• Rise Velocity - The mean velocity with which the bubble is rising or moving
and is defined as

Uc =

∫
Ω2

u dx
∫
Ω2

1 dx

where Ω2 denotes the region that the bubble occupies. The velocity com-
ponent in the direction opposite to the gravity vector is then denoted as rise
velocity Vc , for which the stationary limit is called ’terminal velocity’.

According to the definition of this benchmark problem, the evolution of all
these quantities is to be predicted in the course of a transient simulation starting
with a bubble at rest, which due to the buyoancy forces begins to rise in the
surrounding fluid giving rise to an interplay of surface tension forces with the
hydrodynamic forces in form of deformation of the bubble surface. The dura-
tion of the simulation covers a dimensionless time interval from t = 0 up to t = 3.

First, let us to present the results obtained for the front tracking benchmark
computations. The results are organized into tables (see Table 1.3 and 1.4)
and into graphical representations (see Figure 1.10 and 1.11) in order to ob-
tain a visual representation of the convergence study. Since in case of the here
adopted front-tracking technique - due to the used ALE scheme - the temporal
discretization is only of first order, the investigation of the temporal convergence



Numerical Simulation and Benchmarking of Drops and Bubbles Chapter | 1 27Numerical Simulation and Benchmarking of Drops and Bubbles Chapter | 1 27Numerical Simulation and Benchmarking of Drops and Bubbles Chapter | 1 27

TABLE 1.3 Absolute convergence of the monitored quantities at final time t=3.0 w.r.t.

temporal and spatial refinements - Front tracking framework. Explanation of the sym-

bols is as follows: L - spatial refinement level, ∆t is the used time step, V0, V are the

initial and actual volumes of the bubble, zc is the z location of the bubble associated

with its point of mass. The remaining parameters are introduced in Section 1.7.2.

L ∆t

103 A0/A
V0−V
V0

% zc Vc Rz/R0 Rx,y/R0

2 1/64 0.96070 0.19833 0.97311 0.34899 0.73328 1.15683

2 1/16 0.95984 0.06895 0.97282 0.34885 0.73359 1.15735

2 1/4 0.95911 0.05389 0.97238 0.34865 0.73408 1.15752

2 1/1 0.95625 0.53683 0.97060 0.34787 0.73601 1.15862

3 1/64 0.95928 0.00622 0.97267 0.34877 0.73368 1.15781

3 1/16 0.95910 0.03623 0.97256 0.34872 0.73380 1.15793

3 1/4 0.95839 0.15608 0.97211 0.34852 0.73428 1.15819

3 1/1 0.95557 0.63327 0.97034 0.34775 0.73621 1.15932

4 1/64 0.95924 0.01178 0.97264 0.34876 0.73370 1.15786

4 1/16 0.95906 0.04161 0.97253 0.34871 0.73382 1.15799

4 1/4 0.95836 0.16085 0.97209 0.34852 0.73430 1.15827

4 1/1 0.95556 0.63553 0.97033 0.34775 0.73623 1.15938

TABLE 1.4 Relative convergence of the monitored quantities at final time t=3.0 w.r.t.

temporal and spatial refinements - Front tracking framework. Explanation of the sym-

bols is as follows: L - spatial refinement level, ∆t is the used time step, V0, V are the

initial and actual volumes of the bubble, zc is the z location of the bubble associated

with its point of mass. The remaining parameters are introduced in Section 1.7.2.

L ∆t

103 A0/A zc Vc Rz/R0 Rx,y/R0

2 1/64 0.1520 0.0483 0.0659 0.0564 0.0897

2 1/16 0.0631 0.0185 0.0258 0.0145 0.0445

2 1/4 0.0132 0.0267 0.0315 0.0523 0.0298

2 1/1 0.3113 0.2097 0.2552 0.3154 0.0656

3 1/64 0.0042 0.0031 0.0029 0.0025 0.0044

3 1/16 0.0144 0.0082 0.0115 0.0142 0.0057

3 1/4 0.0884 0.0545 0.0688 0.0802 0.0283

3 1/1 0.3818 0.2365 0.2896 0.3427 0.1256

4 1/64 - - - - -

4 1/16 0.0184 0.0113 0.0143 0.0167 0.0107

4 1/4 0.0918 0.0565 0.0688 0.0829 0.0349

4 1/1 0.3831 0.2375 0.2896 0.3459 0.1312
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plays a crucial role. For this reason aside of the spatial convergence, special
attention has been paid to the temporal convergence, as well. Our converged
results are therefore related to the Level 4 resolution level and 1/64 · 10−3 time
step size. In Table 1.3 are listed the benchmark quantities at the end (t = 3.0)
of the simulation, which are then further processed in Table 1.4 which reveals
the relative convergence of the underlying simulations. As it is seen from the
presented results, the spatial convergence of the simulations is much faster than
the temporal (as expected), and the difference between the Level 3 and Level 4
results is already achieved to a satisfactory extent. Moreover, this observation is
valid for all temporal resolution levels. The influence of the temporal discretiza-
tion level - due to the mentioned first order scheme - is responsible for the need
to use so drastically small timestep sizes giving rise to simulations of 192,000
timesteps. The graphical representation of the evolution of the chosen bench-
mark quantities such as the rising speed and diameter are displayed in Figure 1.6
for bubble sphericity and relative bubble mass in Figure 1.7. Having the so far
computationally estimated evolution of the benchmark quantities from the work
of Adelsberger [1] makes it possible to compare the here estimated evolution
of the benchmark quantities. These comparisons in terms of the bubble rise
velocity and diameter are displayed in Figure 1.8 and for the bubble sphericity in
Figure 1.9, respectively. As seen from the mentioned figures, the best agreement
from the available data is provided by the NaSt3D simulation tool [1].
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FIGURE 1.6 From top to bottom: Evolution of bubble rise velocity Vc , bubble diameter 2Rz , 2Rx,y for the 3D benchmark problem (Front tracking method). L2,
L3, L4 represent the level of spatial resolutions and dt stands for the size of the corresponding time step.
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method). L2, L3, L4 represent the level of spatial resolutions and dt stands for the size of the corresponding time step.
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FIGURE 1.8 From top to bottom: Evolution of bubble rise velocity Vc , bubble diameter 2Rz , 2Rx,y in comparison with the results published by Adelsberger et al.

[1].



3
2

3
2

3
2

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0  0.5  1  1.5  2  2.5  3

FeatFlow
DROPS

OpenFOAM
NaSt3D

 0.956

 0.958

 0.96

 0.962

 0.964

 2  2.2  2.4  2.6  2.8  3

FIGURE 1.9 From top to bottom: Evolution of bubble sphericity A0/A in comparison with the results published by Adelsberger et al. [1].



Numerical Simulation and Benchmarking of Drops and Bubbles Chapter | 1 33Numerical Simulation and Benchmarking of Drops and Bubbles Chapter | 1 33Numerical Simulation and Benchmarking of Drops and Bubbles Chapter | 1 33

Due to the achieved highly accurate results, which seem to be (almost) mesh
independent, we consider from now on these results to be the reference results
which are subsequently used as reference for the obtained interface capturing
method. In contrast to the interface tracking method, the interface capturing
method is not parameter-free and, in fact, is related to two artificial parameters
which have to be adjusted according to the used spatial resolution. One of them
is the thickness of the smoothening distance ǫ which is directly related to the
used element size and therefore is here of order h. The choice of this parameter
was following the relation of ǫ = 2 · h for all spatial resolution simulations. The
other parameter is the underrelaxation factor αreini (see (1.36)) which is a more
tricky parameter than ǫ because it is not directly related to the resolution level
but instead to correct the mass loss in the course of simulation. According to the
simulations performed in this work the value of this underrelaxation paramter
αreini was always constant in the course of the individual simulations, however
its value has been found iteratively so to violate mass conservation as minimally
as possible. This strategy of tuning the underrelaxation parameter αreini leads
also to the consequence that its value would need to be newly determined for
each time step value which, due to the fact that the here employed temporal
discretization is second order accurate (Crank-Nicholson), was omitted by using
sufficiently small timesteps guaranteeing temporal discretization independent
results for each spatial resolution simulation. The results are summarized in
analogous formats as for the interface tracking framework. The absolute con-
vergence of the benchmark quantities is provided in Table 1.5 and the resulting
relative convergence results are compared in Table 1.6 against the reference val-
ues obtained by the above described interface tracking framework results. As
seen from the mentioned tables the reached spatial convergence here is con-
siderably weaker than experienced for the other numerical framework, but as
expected, the results are asymptotically approaching the reference results, too.
The clear benefit of these simulations on the one hand is the independence of
temporal discretization, at least for the here analyzed sufficiently small timesteps.
On the other hand it is necessary to mention that the timestep size is linearly
scaling with the spatial discretization size h due to the underlying capillary time
step restriction, taking into account the underlying explicit treatment of surface
tension (in case of our interface capturing framework). Graphical representa-
tions of the obtained results in terms of time evolution of the bubble rise speed
and bubble diameter are displayed in Figure 1.10 and bubble sphericity and
relative bubble mass in Figure 1.11. As seen from the evolution of the relative
bubble mass the interface capturing framework has a much weaker conservation
property as its front tracking counterpart.
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FIGURE 1.10 From top to bottom: Evolution of bubble rise velocity Vc , bubble diameter 2Rz , 2Rx,y for the 3D benchmark problem computed by the Level Set
approach. The line captions represent the number of elements corresponding to the spatial resolution of the mesh.
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FIGURE 1.11 From top to bottom: Evolution of bubble sphericity A0/A and relative bubble mass V/V0 for the 3D benchmark problem computed by the Level Set
approach. The line captions represent the number of elements corresponding to the spatial resolution of the mesh.
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FIGURE 1.12 Particle tracing flow visualization of the 3D rising bubble benchmark.
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TABLE 1.5 Absolute convergence of the monitored quantities at final time t=3.0 w.r.t.

temporal and spatial refinements - Front capturing framework. Explanation of the sym-

bols is as follows: h - element size, ∆t is the used time step, V0, V are the initial and

actual volumes of the bubble, zc is the z location of the bubble associated with its point

of mass. The remaining parameters are introduced in Section 1.7.2.

h ∆t

103 A0/A
V0−V
V0

% zc Vc Rz/R0 Rx,y/R0

1/128 1.25 0.97459 0.00714 0.27504 0.35756 0.78918 1.10444

1/96 1.67 0.97480 0.00154 0.27473 0.35781 0.79009 1.10387

1/64 2.50 0.97523 0.00203 0.27387 0.35802 0.79266 1.10254

1/48 3.33 0.97572 0.00062 0.27279 0.35799 0.79555 1.10108

1/32 5.00 0.97706 0.00869 0.27005 0.35827 0.80335 1.09728

1/24 6.67 0.97803 0.05194 0.26642 0.35898 0.81327 1.09310

ref 0.97417 0.00262 0.27585 0.35709 0.78709 1.10618

TABLE 1.6 Relative convergence of the monitored quantities at final time t=3.0 w.r.t.

temporal and spatial refinements - Front capturing framework. Explanation of the sym-

bols is as follows: h - element size, ∆t is the used time step, V0, V are the initial and

actual volumes of the bubble, zc is the z location of the bubble associated with its point

of mass. The remaining parameters are introduced in Section 1.7.2.

h ∆t

103 A0/A zc Vc Rz/R0 Rx,y/R0

1/128 1.25 0.00253 0.13230 0.05597 0.11495 0.02076

1/96 1.67 0.01237 0.18025 0.06827 0.17787 0.05510

1/64 2.50 0.00226 0.30373 0.09548 0.39158 0.05629

1/48 3.33 0.01411 0.45560 0.14855 0.63078 0.17584

1/32 5.00 0.12567 0.83760 0.20051 1.21112 0.21355

1/24 6.67 0.41291 1.41440 0.30198 1.94954 0.82673

Finally, as a demonstration (see Figure 1.12) of the established nonstationary
flow patterns during the rise of the bubble, a visualization in terms of particle
tracing is displayed at several instances from the beginning (t = 0.0) to the end
(t = 3.0). Due to the chosen planar initial seed the particles are located in the
primary and secondary phase at the same time. The particle motion captures the
internal recirculation pattern inside of the bubble leading to a mushroom shape
deformation of the initially planar structure.

1.7.3 3D Taylor Bubble Benchmark

Taylor bubbles are elongated bubbles being transported in straight and smooth
capillaries. The specific feature of such a multiphase flow setup is the presence
of a thin liquid film which is squeezed between the capillary wall and the trans-
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FIGURE 1.13 Geometrical definition of the Taylor bubble benchmark according to the Moving
Reference Frame (MFR) technique. vF stands for the frame velocity, vL stands for the liquid
velocity which corresponds to the required flowrate, vw and vi are the velocity boundary values
prescribed at the channel wall and inlet surfaces. aF and g are the accelerations of the reference
frame and gravity, respectively.

ported bubble. The hydrodynamics of Taylor bubble flows is governed in steady
flow regimes mainly by surface tension and viscous forces, while unsteady flow
regimes arise due to the increasing contribution of inertial forces. For this reason,
there are introduced two dimensionless quantities which are used to characterize
the underlying flow conditions of Taylor bubble flows. These are the capillary
number Ca = ηlUb/σ and the Reynolds number Re = ρldhUb/ηl , where ρl and
ηl stand for the liquid density and viscosity, Ub is the bubble velocity, dh is the
hydraulic diameter of the channel and σ is the surface tension coefficient. In
this section we present numerical results for a Taylor bubble benchmark which
was introduced in the work of Marschall et al. [34] not only numerically, but
also experimentally. The experimentally measured system [34] consisting of an
aqueous solution of glycerol - constituting the liquid phase - and air - representing
the gas phase - was operated at such conditions that the Capillary and Reynolds
numbers were as follows: Ca = 0.088 and Re = 17.0. The square cross section
of the used capillary was 1.98 mm× 1.98 mm and the experimentally measured
bubble volume was determined as Vb = 17.5 mm3. The corresponding phys-
ical properties of the respective phases were as follows: ρl = 1195.6 kg/m3,
ρg = 1.3 kg/m3 and ηl = 28.54 mPa · s, ηl = 20.0 · 10−3 mPa · s. The realiza-
tion of the Taylor bubble flow problem was performed in a cocurrent flow (see
Figure 1.13) so that the bubble rise velocity was experimentally determined to
be 205.57 ± 0.82 mm/s. The reference work of this Taylor bubble flow setup
[34] has described several numerical frameworks which have have been used for
the computational validation covering both front capturing (VOF, Level Set) and
front tracking techniques. All CFD simulation results have qualitatively well
captured the experimental reference results, but since they showed out small
variations with respect to each other and the experimental results, unfortunately
no benchmark values could have been determined. The differences between the
results of the different software packages can mainly be attributed to the differ-
ent realizations of the same problem by imposing periodic boundary conditions
(with pressure drop), moving window techniques and the moving reference frame
(MFR) technique. Our numerical realization follows the MFR technique used
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by the FS3D and OpenFoam software packages. Another special feature of this
computational problem is related to the fact that it corresponds to a steady state
solution which is to be reached by an unsteady simulational approach. Con-
sidering that some numerical schemes are either not fully conservative or are
adjusted with mass correction mechanisms, makes this computational problem
very challenging, especially in the framework of a mesh convergence study. Ac-
cording to the realization presented here, a coarse-level resolution simulation
has been started by prescribing the required volume of the bubble. After reach-
ing steady state (relative changes in the bubble surface area decreased below
the prescribed tolerance) the coarse-level resolution result has been prolongated
to a finer resolution level and used as a start-solution for the subsequent finer
resolution simulation (see Figure 1.14). Finally, the same procedure has been
performed for the finest-level resolution simulation, as well.

Due to the fact that in the course of the prolongation of the solution from
coarser to finer level, the volume of the bubble has changed considerably, inde-
pendent simulations have been performed for the lower resolution levels (level
2 and 3) for such an initial bubble volume which has been reached by the finest
level solution (level 4) before (17.49 mm3). This way, the comparison of the
monitored quantities is related to the same bubble volume basis. The monitored
quantities have been determined from each resolution-level simulation result and
are organized into Table 1.7 together with the available other published results
[34]. These quantities are the bubble length, transportation velocity and the min-
imum film thickness in the longitudinal and diagonal directions. Other important
characteristics (see Table 1.8) of the underlying simulations are related to the
integral quantities like the bubble volume conservation and the relative surface
area deviations measured on the different resolution levels. According to the
results listed in Table 1.8 it can be seen that the coarsest level resolution results
are influenced by a relatively large mass loss (0.025% over the 10s simulation
time) which also leads to uncertainities with regards to the steady state (influ-
enced by permanent mass loss), however these effects of mass loss are massively
cured by the higher resolution level and are completely vanishing for the finest
resolution level. For this reason we believe that it is justified to speak about
mesh convergence only in case of the two higher level resolution results and the
overall high order convergence is to be expected to happen on a potentially next
resolution level which on the one hand would be already so much CPU intensive
that it did not met the aims of this publication. On the other hand the results
presented here are already in the range of standard benchmark precision require-
ments. Additionally, in Figure 1.15 we provide the comparisons of the obtained
bubble shapes in the two considered planes against the experimentally measured
reference curves and a vizualization of the arising recirculation structures in
terms of streamlines is demonstrated in Figure 1.16. Additional remark to the
performed simulations is that all three resolution level simulations have been
performed with the same 0.1 ms timestep resulting in instationary simulations
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requiring about ≈ 10, 000 timesteps and covering an ≈ 1 s real time simulation
in order to reach steady state.
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TABLE 1.7 Mesh convergence of the Taylor bubble benchmark with respect to other

available references. The benchmark quantities listed in the table are as follows: L

- Bubble length, Φd - Minimum flim thickness in the diagonal direcion, Φl - Minimum

flim thickness in the longitudinal direcion and v - bubble rise velocity.

DROPS FS3D TURBIT OpenFoam FF-L2 FF-L3 FF-L4 EXP

L [mm] 7.230 7.197 7.110 7.202 7.185 7.204 7.214 7.200

Φd [µm] 439.2 436.2 442.0 456.6 431.6 434.4 435.4 433.1

Φl [µm] 49.0 47.7 28.0 59.0 46.8 49.0 49.7 50.5

v [cm/s] 20.69 19.75 20.78 20.58 19.17 19.78 20.07 20.56

1.7.4 Reactive multiphase flow

Multiphase flow problems are usually associated with additional transport phe-
nomena (e.g. transport of species) which are however strongly dependent on
the hydrodynamics of the involved phases. Therefore, the accurate prediction
of fluid motion becomes the prerequisite for the accurate simulation of subse-
quent transport problems. In this section we provide simulation results of a
reactive Taylor-bubble flow with the aim of reaction parameter estimation on the
basis of experimentally measured results. All the here referenced experimental
measurements have been carried out by the chair of Laboratory of Equipment
Design, Department of Biochemical and Chemical Engineering at the TU Dort-
mund University. The analyzed chemical reaction system is related to a two-step
indigo-carmine redox-reaction which from a reaction engineering point of view
refers to a consecutive-competitive reaction scheme:

A + B −→ C (1.37)

A + C −→ D (1.38)

From the industrial point of view, such reaction schemes are extremely important
to be understood, since the optimal realization of underlying chemical processes
makes it possible to increase the overall yield or selectivity of the key-species
which may be especially challenging in case of C being the wanted reaction
product and D the unwanted one. Due to the following eminent properties of
microcapillaries

• high interfacial area
• high mass transfer coefficients
• possibilities of precise control and manipulation of flows

are these realization units very promising for such sensitive reaction systems.
Therefore, it is inevitable to understand the effect of the arising Taylor vortices
and the interplay of diffusion and convection on the performance of the underly-
ing chemical reaction system.
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TABLE 1.8 Mesh convergence of the Taylor bubble benchmark with respect to mass

conservation and final surface area. Specific mass loss stands for an asymptotical

mass loss of the bubble at (or close to) steady state per 100 ms real time, surface area

is the bubble surface area at (or close to) steady state, and the relative surface area

relates the difference of coarser/finer level solution bubble surface area to the finest

bubble surface area.

quantity unit FF-L2 FF-L3 FF-L4

specific mass loss [%/100 ms] 0.0025 0.00001 ≪0.00001

surface area [mm2] 41.5602 41.6256 41.6556

relative surface area [%] 0.229 0.072 -

FIGURE 1.17 Graphical representation of the computational meshes. From left to right: Coarse
level resolution mesh used for the CFD simulation, the coarse level resolution mesh without the
bubble phase, recursively extended boundary-layer coarse mesh, the level 4 resolution fine mesh
used for the transport of species problem with chemical reactions.

In the current work we have computationally analyzed the oxidation of leuco-
indigo carmine (B) to an anionic radical intermediate (C) which is further reduced
to leuco-indigo carmine (D). The injected aqueous solution of (B) with the initial
concentration of CB,t=0 = 0.30 mmol · L−1 is contacted with a periodically
generated sequence of air bubbles having a volume of V = 7.62 mm3 which are
transported in a circular cross-section capillary of diameter D = 1.6 mm. The
experimentally imposed target flowrates of the individual phases

• ÛVg = 0.8 mL · min−1 for the gas phase,
• ÛVl = 3.2 mL · min−1 for the liquid phase

were achieved in the simulation by prescribing the corresponding a) initial vol-
umetric ratio of the phases in a circular crosssectional domain of length being
equivalent to a (periodic) bubble-to-bubble distance from the experimental mea-
surements L = 3.32 mm and b) an iteratively found pressure jump condition
resulting in the required flowrate values. The corresponding simulation setup has
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FIGURE 1.18 Visualization of computational results obtained for the reactive bubble problem. On
the left side is the velocity field and on the right is the pressure distribution.

been realized in a framework of periodic boundary conditions for velocity, pres-
sure and species concentrations, however no jump condition has been used for the
species concentration quantities which is responsible for a small deviation with
respect to the real experimental setup. The computational setup reflects a system
of an infinite sequence of bubbles separated by mutually connected liquid slugs
(due to the thin liquid film between the bubble and the capillary), which initially
(at t = 0) have a spatially constant initial concentration CA,t=0 = 0.0 mmol · L−1,
CB,t=0 = 0.3 mmol · L−1, CC,t=0 = 0.0 mmol · L−1, CD,t=0 = 0.0 mmol · L−1

of all species and are assigned to a steady (and therefore constant) velocity
field. This steady state flow field is computed separately in a framework of a
decoupled multiphase flow simulation before performing the corresponding sim-
ulations of the species transport problem. According to this simplification the
time axis of the simulations may be interpreted as the spatial axis along which
a representative bubble is transported in the real experimental setup. Another
simplification introduced into the model is related to the assumption of constant
material properties which however is strongly justified due to the fact that the
chemical species are present at only very low concentrations and therefore have a
negligible influence on the otherwise constant material properties. The material
properties are listed in Table 1.9 which provides the viscosities µ, densities ρ
of the present g/l phases, the interfacial tension σ and diffusion coefficients Di

[31] of the chemical species in the liquid phase. The presence of the gas phase
was not considered in the transport equation of species (only in the preceding
multiphase flow simulation), instead a Dirichlet boundary condition according
to Henry law has been used for the Oxygen species concentration and zero flux
for all other species. The value of this equilibrium concentration according to
the experimental measurements was set to CA,Γ = 0.25 mmol · L−1.

The resulting spatially converged flow field and pressure distribution of the
flow simulations is demonstrated in Figure 1.18 which has been obtained in
an analogous way as in the previously described Taylor bubble benchmark. In
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TABLE 1.9 The set of physical properties used for the Reactive Taylor Bubble problem.

ρl ρg µl µg σ DA/l DB,C,D/l

[kg · m−3] [kg · m−3] [mPa · s] [mPa · s] [mN · m−1] [m2 · s−1] [m2 · s−1]

1000 1.2 1.12 0.018 75.0 2.0 · 10−9 0.6 · 10−9

particular, first a lower level solution was obtained which after prolongation
was then used as an initial condition of a finer level simulation. The iteratively
found pressure drop resulting in the required flowrates has been estimated as
∆P = 3.3 Pa. The such obtained velocity distribution was used in the subsequent
species transport simulations. Since the resolution requirements dictated by the
Schmidt number of the underlying scalar transport problems were relatively high
Sc = νl/DA = 330 (being νl = µl/ρl the kinematic viscosity of the liquid phase)
additional mesh manipulation procedures related to boundary layer refinement
have been implemented. According to the mentioned technique the coarse mesh
extracted from the fluid simulations has been extended by successively refined
boundary layers of elements in the normal direction to the bubble surface. The
resulting extended coarse mesh representations are displayed in Figure 1.17.
The such obtained coarse mesh has been refined in the framework of standard
geometrical multigrid techniques to resolution levels 4 and 5, respectively, so
to ensure mesh convergence of the obtained simulation results. The velocity
field obtained from the multiphase flow simulation has been interpolated via
an L2 projection onto the fine resolution meshes used by the species transport
computations. The conservation properties of the arising discrete convection
operators were fulfilled by the use of an Algebraic Flux Correction (AFC)
schemes (see [32] for details) which is a key ingredient providing high-resolution
properties to the employed FEM discretization scheme for the species transport
problems. The most valuable properties of the AFC scheme are related to

• stabilized (oscillation-free) transport of scalar quantities (exhibiting steep
gradients) by the use of the smallest amount of numerical diffusion, which is
determined in the course of a non-linear iteration loop,

• the local extrema diminishing properties according to which maxima and
minima do not grow/sink due to transportation in space.

For the transport in the space of species are responsible the reaction terms
which are also treated in an operator splitting approach. This means, after the
transportation step in space, systems of Ordinary Differential Equations (ODE)
are to be solved for each degree of freedom independently from each other, which
allows for using a substepping technique even for stiff reaction systems. Due to
robustness requirements the ODE solver of John Burkardt has been integrated
into the here used solver, which is a Fortran 90 adaptation of the original work
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of Shampine and Gordon [48]. The arising system of ODEs reads

d cA

d t
= −r1 − r2 (1.39)

d cB

d t
= −r1 (1.40)

d cC

d t
= +r1 − r2 (1.41)

d cD

d t
= +r2 (1.42)

where r1 and r2 are the reaction rates of the first and second chemical reaction,
respectively. These reaction rates are modelled as second order reactions, as
follows

r1 = k1 cA cB (1.43)

r2 = k2 cA cC (1.44)

where the constants k1 and k2 are the reaction rate constants of the first and
second reaction, respectively. The values of these constants were unknown and
had to be determined by means of a pararameter optimization process to provide
the best agreement with the experimentally measured concentration results.

The species transport simulations have been performed with a 1/1600 s
timestep size covering a total 11.0 s time interval, from which three time level
outputs (t = [3.3, 6.6, 11.0] s) have been used for comparisons with the cor-
responding experimental results. The experimentally recorded pictures have
been transformed to concentration distributions, which however were related
to concentration intensities averaged through the cylindrical fluid volume and
therefore the CFD results had to be transformed into the same representations via
an additional postprocessing step by integrating the concentration distribution of
the three monitored species (B,C,D) through the corresponding fluid volume.
The such obtained 2D representations have been used for the overall parameter
optimization process. In order to prevent a too detailed description of the op-
timisation procedure we discuss here only the results for the found parameter
values providing the closest match with the experimental references. The value
of the estimated reaction constants were k1 = k2 = 8 · 105 L mol s−1, which
are matching reasonably with the experimentally expected values of Krieger et

al. [31] (k1 = 6.3 · 105 L mol s−1 and k2 = 22.4 · 105 L mol s−1). The spatial
distribution of the species at time t = 6.6 s for the used two resolution levels
with the close up views in the vicinity of the bubble interface are demonstrated
in Figure 1.19. Here, it is visible that the steep concentration gradients are well
resolved already at the coarser resolution what ensures the spatial convergence
of the obtained results on the finest resolution level. The graphical comparison
of the results with the experimental reference results is provided in Figure 1.20.
This comparison demonstrates the found match between the dynamics of the
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FIGURE 1.19 Graphical representation of the computational convergence between refinement Level
4 and Level 5.

simulated process and the experimentally measured one, since the concentration
distributions are matching each other at all three time levels. In particular, the
prediction of the dynamics of the intermediate species C is the most crucial since
the concentration values of this species is the lowest and has the most significant
spatial distribution forming a ring shape of a thickness and radial location which
is possible to predict only with the right prediction of the overall reactive trans-
port phenomena. The right interpretation of the comparison between the two
sets of results requires a few comments concerning the experimental reference
values, namely that the pair of the experimentally investigated bubbles were not
the same, instead the camera position was fixed every time to a different position
so to record the bubbles and slugs at the different time levels. Therefore, the
centerline distance between the bubbles was not always the same but just close to
the target value. The other necessary comment is that the extraction of concen-
tration signals in the vicinity of the bubble surface and at the wall of the capillary
was affected with a larger experimental error due to light reflection effects, this
is also why the differences look to be that large in these regions between the two
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sets of results. The regions belonging to the slug core are affected with a much
lower measurement error and therefore these are the regions based on which the
parameter optimization was performed.

1.8 CONCLUSIONS

In this contribution, we have provided a compact description of state-of-the-
art numerical solvers for multiphase flow problems, namely interface tracking
and interface capturing methods. Corresponding discretization and solution
approaches which are based on Finite Element and Discrete Projection methods
for the Navier-Stokes equations, combined with corresponding numerical tools
for the interface capturing, resp., tracking approaches, lead to robust, accurate,
flexible and efficient simulation tools. Moreover, we have presented several
numerical test cases of benchmarking type which first of all help to evaluate
the quality of the underlying (single-phase) flow solvers. Subsequently, we have
described the settings for a quantitative 3D Rising Bubble benchmark which
can be used for ‘simple’ validation and evaluation of multiphase CFD codes
without the necessity of complex postprocessing operations. Finally, we also
provided numerical reference values for a ‘Taylor bubble’ setting, and we showed
simulation results of a reactive Taylor bubble flow in the framework of estimating
reaction parameters to match corresponding experimentally measured results.
All reference benchmark quantities can be downloaded fromwww.featflow.de.
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FIGURE 1.20 Comparison of the computationally predicted concentration distribution at three
different time levels with the experimental reference results.
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