
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Analysis of the (1+1) EA for a Dynamically Bitwise
Changing OneMax

Stefan Droste

No. CI-150/03

Technical Report ISSN 1433-3325 April 2003
Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

Analysis of the (1+1) EA for a Dynamically
Bitwise Changing OneMax

Stefan Droste�

LS Informatik 2, Universität Dortmund, 44221 Dortmund, Germany
stefan.droste@udo.edu

Abstract. Although evolutionary algorithms (EAs) are often success-
fully used for the optimization of dynamically changing objective func-
tion, there are only very few theoretical results for EAs in this sce-
nario. In this paper we analyze the (1+1) EA for a dynamically chang-
ing OneMax, whose target bit string changes bitwise, i. e. possibly by
more than one bit in a step. We compute the movement rate of the
target bit string resulting in a polynomial expected first hitting time of
the (1+1) EA asymptotically exactly. This strengthens a previous result,
where the dynamically changing OneMax changed only at most one bit
at a time.

1 Introduction

Evolutionary Algorithms (EAs) optimize objective functions heuristically by fol-
lowing principles of natural evolution (see [BFM97] for an in-depth coverage).
A great variety of EAs is successfully used in practice and the experimental
knowledge about EAs is immense. In comparison, theory of EAs is still in its
beginnings. Many results are based on empirical observations, precluding gen-
eralizations. Other results, like the basic forms of the schema theorem ([Hol75])
are limited to the short-time behaviour of EAs. Such results cannot be carried
over to other dimensions of the search space, even if the objective function is
fixed. This can only be achieved by a rigorous mathematical analysis showing
how the first hitting time of the EA (or any other measure of interest) depends
on the dimension of the search space.

As there are no theoretical foundations, the EAs and objective functions rig-
orously analyzed so far are simple in comparison to those used in practice. One
of the most thoroughly examined EAs is the (1+1) EA which was analyzed by
many different researchers (e. g., see [Müh92], [Rud97], or [DJW02]). The tech-
niques developed while analyzing this simple-structured EA have led to analyses
of more complex EAs using crossover and populations (see [JW99] or [JW01]),
making it a good starting point for the analysis of dynamic EAs.

So far theoretical analyses of EAs almost completely focus on static optimiza-
tion problems, i. e. objective functions that do not change over time. Although
different kinds of EAs are successfully used for a broad range of dynamical op-
timization problems (see [Bra01] for an overview), there are only very few theo-
retical results. Most investigations are limited to experimental work or heuristic
� This research was partly supported by the Deutsche Forschungsgemeinschaft as part

of the Collaborative Research Center “Computational Intelligence” (531).

approximations. A first more theoretical approach is [SD99], where the transi-
tion probabilities of a (1+1) EA for a dynamic variant of the OneMax-problem
are numerically evaluated and compared to empirical data, but not analyzed
mathematically.

In this paper, we strengthen the first rigorous mathematical analysis of an EA
for a dynamic optimization problem presented in [Dro02]. There the standard
(1+1) EA with a mutation probability of 1/n is analyzed on a dynamic variant of
OneMax, where in every step with probability p′ exactly one uniformly chosen
bit of the target bit string changes. Hence, in contrast to the static case, the
Hamming distance of the current search point to the target bit string can increase
by one. It is shown in [Dro02] that the expected first hitting time of the (1+1) EA
is polynomial if and only if p′ is asymptotically of growth rate at most log(n)/n,
i. e. O(log(n)/n) (see [MR95] for the notation of growth rates).

Here, we look at the more interesting case of changing the target bit string by
the same type of random process as the current search point of the (1+1) EA, i. e.
each bit is flipped with probability p′. We prove that the expected first hitting
time of the (1+1) EA is with high probability super-polynomial if p′ grows faster
than log(n)/n2, i. e. p′ = ω(log(n)/n2). In the light of [Dro02] the result may not
be surprising, but its analysis is significantly more complicated, because we have
to consider a process where the Hamming distance between the current search
point and the target bit string can increase by more than one in one step. By
showing how such a process can be upper bounded by a random process where
the distance increases by at most one in one step we prove the desired result.
This bounding technique (although it should not be new, we have not found it
in the literature) may be applicable in other settings and therefore be of more
general interest.

In the next section we define the (1+1) EA for dynamic objective functions,
the dynamic variant of OneMax, and the first hitting time, our measure of
efficiency. In Sect. 3 we show that for p′ = ω(log(n)/n2) the first hitting time
of the (1+1) EA is polynomial only with super-polynomially small probability,
implying a super-polynomial expected first hitting time. In Sect. 4 we show how
stochastic processes that can move away from the target in one step by more
than one can be related to processes where this difference can only increase by
one in one step. Using this result we show that the expected first hitting time for
p′ = O(log(n)/n2) is polynomial in n. The paper ends with some conclusions.

2 The (1+1) EA and a Dynamic OneMax

The (1+1) EA is probably the most simple EA for maximizing an objective func-
tion f : {0, 1}n → R as it uses only one individual being effected by mutation
only. The commonly used mutation operator for bit strings is the bitwise mu-
tation, i. e. each bit is flipped independently with probability p ∈ [0, 1]. In most
cases p is 1/n. Selection chooses between the old bit string and the mutant, where
the mutant is only chosen if its f -value is at least as high as that of the old bit
string. This mutation-selection scheme is repeated until a stopping criterion is

fulfilled. Since we are interested in the number of steps until an optimum of f is
evaluated for the first time, we omit this stopping criterion.

If f is not static but changes over time, we model it by a family (ft : {0, 1}n →
R)t∈N0 of functions, where ft is the current objective function after t steps of
the (1+1) EA. In this situation the (1+1) EA should evaluate even the old bit
string after each step, as its fitness might have changed since the last evaluation.
So, the (1+1) EA for dynamic optimization problems is defined as follows:

Definition 1 ((1+1) EA for dynamic optimization problems).
1. Set t := 0 and choose xt ∈ {0, 1}n randomly uniformly.
2. Set x′ := xt and flip each bit of x′ with probability 1/n.
3. If ft(x′) ≥ ft(xt), set xt+1 := x′, else xt+1 := xt.
4. Set t := t+ 1 and go to step 2.

There are a number of different measures for the performance of an algorithm
for dynamic optimization, e. g. Hamming distance to the nearest optimum. Here
we concentrate on the number Tf of steps until the (1+1) EA for the first time
evaluates a point x′ where this distance is zero:

Definition 2 (First hitting time of the (1+1) EA).
Let f = (ft : {0, 1}n → R)t∈N0 be a dynamically changing objective function. The
first hitting time Tf of the (1+1) EA on f is defined as

Tf := min{t ∈ N0 | ft(xt) = max{ft(x) |x ∈ {0, 1}n}}.
One of the first functions the (1+1) EA has been analyzed for in the static

case isOneMax. Here the expected first hitting time is O(n log(n)) (see [Müh92]
for an approximate analysis and [DJW98] for a rigorous one). OneMax simply
counts the number of ones in its argument x ∈ {0, 1}n. This can also be in-
terpreted as the number of matching bits with the target bit string (1, . . . , 1).
Hence, maximizing OneMax is equivalent to minimizing the Hamming distance
to this target bit string. Using this interpretation, a dynamic OneMax-variant
where the target bit string is changed by a random process is obvious. Let
M : {0, 1}n → {0, 1}n represent this random process (formally it is a function
M : {0, 1}n × Ω → {0, 1}n, where Ω together with a function P : P(Ω) → [0, 1]
forms a probability space, but we omit these technicalities) and H(x, y) denote
the Hamming distance between bit strings x and y:

Definition 3 (OneMaxt,M).
The family (OneMaxt,M : {0, 1}n → N0)t∈N0 of functions is defined as

OneMaxt,M (x) := n−H(x, yt),

where y0 := (1, . . . , 1) and yt+1 := M(yt) for t ≥ 0.

(As the initial individual x0 is chosen uniformly at random, initializing y0

with any other bit string makes no difference.) In [Dro02] the random operator
M1 flips exactly one uniformly chosen bit with probability p′ and it is shown
that the expected first hitting time of the (1+1) EA is polynomial if and only
if p′ = O(log(n)/n). Here we look at a more natural random operator Mn by
allowing Mn to flip each bit independently with probability p′:

Definition 4 (Bitwise operator Mn).
Let p′ ∈ [0, 1]. Then the random operator Mn : {0, 1}n → {0, 1}n is defined for
all y, y′ ∈ {0, 1}n by:

P (Mn(y) = y′) := (p′)i · (1− p′)n−i if H(y, y′) = i.

The parameter p′ is called the movement rate of the target bit string as it
influences the number of steps in which the target moves and also the number
of bits that flip. In the following we will denote (OneMaxt,Mn

)t∈N0 shortly
by OneMaxD to indicate the dynamic variant of OneMax. To separate more
easily between the changes made by the mutation of the (1+1) EA and those
of the random operator Mn, we call bits flipped by mutation mutating bits and
bits changed by Mn moving bits. In the next section we show that for p′ =
ω(log(n)/n2) the (1+1) EA has a super-polynomial expected first hitting time.

3 A Super-Polynomial Lower Bound for Large Movement
Rates

In this section we assume that p′ grows asymptotically faster than log(n)/n2,
i. e. p′ = ω(log(n)/n2). We show that the probability of the (1+1) EA reaching
the optimum of OneMaxD in polynomially many steps is super-polynomially
small, i. e. at most 1/β(n), where β(n) grows faster than any polynomial in n.

First, we consider p′ = Ω(1/n1−ε) for a constant ε > 0. Then the probability
of any specific movement of the target bit string is super-polynomially small,
implying that in the last step before reaching the optimum ofOneMaxD a super-
polynomially unlikely movement of the target bit string has to happen (here we
assume that p′ ≤ 1/2 as otherwise more than half of the bits of the target would
move on average in each step, making efficient optimization impossible):

Theorem 1. Let p′ = Ω(1/n1−ε) for a constant ε ∈]0, 1[. Then the first hitting
time of the (1+1) EA on OneMaxD is exp(o(nε)) only with exponentially small
probability.

Proof. We look at an arbitrary run of the (1+1) EA that reaches the optimum
after exactly T > 0 steps. Then it is necessary that in the last step the movement
of the target bit string from yT−1 to yT leads to yT = x′. For H(yT−1, x

′) = i,
the probability of such a movement equals (p′)i · (1− p′)n−i.

If i grows linearly in n, the factor (p′)i is exp(−O(n)). If n− i grows linearly
in n, the second factor is asymptotically at most (where n− i = β(n) = Θ(n))

(
1− 1

n1−ε

)β(n)

=
(
1− nε

n

)(n/nε)·(nε/n)·β(n)

,

which is upper bounded by exp(−c · nε) for a constant c > 0. Since i or n − i
grows linearly and the probability of initializing with x0 �= y0 is exponentially
close to 1, we know that in order to reach the optimum an event with probability
at most exp(−c · nε) has to happen. �

We have to argue more carefully if p′ is not that large but still ω(log(n)/n2).
Although the proof follows the lines of the super-polynomial lower bound in
[Dro02], it must be adjusted to take into account that the target bit string can
move by more than one bit at a time step. First, we show the following lemma:

Lemma 1. Let a Bernoulli experiment with success probability p ∈]0, 1] be re-
peated independently a + b-times (a, b ∈ N). The probability that in the first a
experiments the number of successes is larger than the number of successes in
the last b experiments is at most a/b.

Proof. Let the random variables A resp. B denote the number of successes in
the first a resp. last b experiments and define Y := A/(B + 1). Then E(Y) =
pa/(pb+1) ≤ a/b. If and only if the number of successes in the first a experiments
is larger than in the last b experiments Y is at least 1. Using the Markov bound
([MR95]) we get P (Y ≥ 1) ≤ E(Y) ≤ a/b. �
Theorem 2. Let p′ = ω(log(n)/n2). Then the first hitting time of the (1+1) EA
on OneMaxD is polynomial only with super-polynomially small probability.

Proof. Because of Theorem 1 we concentrate on values of p′ with p′ ≤ 1/n6/7.
Let α(n) = min

{
n/log(n), p′ · n2/log(n)

}
be the minimum of n/log(n) and the

factor by which p′ grows faster than log(n)/n2. Then limn→∞ α(n) = ∞.
Our first assumption on the (1+1) EA is that the initial bit string contains

at most n − 2G matching bits, where G grows slightly faster than log(n), i. e.
G := log(n) · α(n)4/7. As G = o(n), Chernoff bounds ([MR95]) guarantee that
initializing with a bit string with at most n−2G matching bits has a probability
super-polynomially close to one, i. e. this event is almost sure. We show that the
(1+1) EA reaches the optimum in polynomially many steps only via a search
point whose number of matching bits is between n−2G and n−G almost surely.

Since the mutation rate of the (1+1) EA is 1/n, almost surely at most log(n)
matching bits are mutated in one step. If the movement rate p′ of the target
bit string is O(1/n), the number of moving bits of the target bit string in one
step is also at most log(n) almost surely. Hence, in one step the OneMaxD-
value of the current search point changes by at most 2 log(n) almost surely. As
G is growing asymptotically faster than log(n), it is at least 2 log(n) for n large
enough. Hence, any run of the (1+1) EA with polynomial many steps starting
with at most n− 2G matching bits reaches the optimum only via a search point
with at least n− 2G and at most n−G matching bits almost surely.

If p′ = ω(1/n), we have α(n) = n/log(n). As p′ is O(1/n6/7) by assumption,
Chernoff bounds yield that the number of moving bits in one step is at most
cn1/7 for a constant c > 1 almost surely. Since G is n4/7 · log(n)3/7 in this case,
i. e. asymptotically larger than the number of moving or mutating bits in one
step, we again know that the (1+1) EA reaches the optimum in polynomial time
only via a search point with at least n−2G and at most n−G bits almost surely.

Let It denote the current state of the (1+1) EA, i. e. the number of matching
bits of xt. The preceding argumentation shows that if state n is reached in
polynomially many steps, almost surely two points in time t1 < t2 exist, where

It1 ∈ {n−2G, . . . , n−G}, It ∈ {n−G+1, . . . , n−1} for all t ∈ {t1+1, . . . , t2−1},
and It2 = n. In the following we show that for every t = t2 − t1 ∈ N it is super-
polynomially unlikely that such a sequence It1 , . . . , It2 exists (a similar technique
is used in [RRS95]).

We exclude the possible, but very unlikely event that the (1+1) EA bridges
the gap, i. e. comes from n−G to n ones, using only few but far reaching steps.
Therefore, we show that in one step at most L := α(n)1/7 non-matching bits
flip almost surely. The probability of flipping at least L + 1 of the at most 2G
non-matching bits during one step by mutation and/or movement of the target
bit string is at most(

2G
L+ 1

)
·
(
1
n
+ p′

)L+1

≤
(
4G
n6/7

)L+1

,

which is super-polynomially small as G ≤ n4/7 log(n)3/7 and L grows with n to
infinity. Hence, we can rule out mutations increasing the number of ones by more
than L. The error introduced by this assumption has only super-polynomially
small probability if we concentrate on polynomially many steps.

Now, we upper resp. lower bound the probability p+
i resp. p−i , that the num-

ber of matching bits increases resp. decreases during one step when the current
number of matching bits is i. The number of matching bits decreases if one
matching bit moves, but no non-matching bit moves and no bit mutates. As-
suming that p′ ≤ 1/n we can lower bound p−i by (where c > 0 is a constant):

(
1− (1− p′)i

) · (1− p′)n−i ·
(
1− 1

n

)n

≥ i · p′ · c ≥ c

2
· α(n) · log(n)

n
.

If p′ is larger than 1/n, there is a constant probability that at least one of the
i matching bits, but none of the n − i non-matching bits moves, while no bit
mutates. Hence, the inequality p−i ≥ (c/2) · α(n) · (log(n)/n) is still valid for an
appropriate constant c > 0, because α(n) = n/ log(n) for all p′ ≥ 1/n.

For the upper bound p+
i we notice that a step increasing the number of

matching bits implies that the mutation resp. the movement of the target bit
string flips more non-matching bits than matching bits after the movement resp.
mutation has occurred. According to Lemma 1 both events have probability at
most (n−i+L)/(i−L) because at most Lmatching bits change during movement
resp. mutation by assumption. Consequently, p+

i ≤ 2(n − i + L)/(i− L). Since
i is at least n − 2G = n − 2 log(n)α(n)4/7 and L = o(G), we know that for all
n ≥ n0 for a constant n0 (i. e. n is large enough):

p+
i ≤ 2 · 2G+ L

n− 2G− L
≤ 2 · 3G

n− 3G
≤ 12 · α(n)

4/7 log(n)
n

.

Since it is sufficient for us that decreasing the number of matching bits is by
a factor α(n)2/7 more likely than increasing it, we lower resp. upper bound p−i
resp. p+

i for n large enough by

p̃−i :=
c

2
· α(n) log(n)

n
resp. p̃+

i :=
c

2
· α(n)

5/7 log(n)
n

.

Hence, the assumption that the probabilities of steps decreasing resp. in-
creasing the number of matching bits are exactly p̃−i resp. p̃+

i and that every
improvement leads us L bits closer to the target while every deterioration only
changes one bit, results in a “faster process” (a proof would follow the line of
Lemma 2 in the next section). Then the probability that the next mutation
changing the number of matching bits (called effective mutation) increases the
number of matching bits equals

c
2 · α(n)5/7 log(n)

n(
α(n) + α(n)5/7

) · c
2 · log(n)

n

=
α(n)5/7

α(n) + α(n)5/7
≤ α(n)−2/7.

Consequently, the expected number of increasing mutations during t effective
mutations is at most t/α(n)2/7 and we can follow the argumentation presented in
[Dro02]. Again, by assuming that the expected number of increasing mutations
is exactly t/α(n)2/7 the process can only become faster. To obtain a superpoly-
nomially small upper bound by Chernoff bounds we show that

1. the expected number of increasing mutations grows significantly faster than
log(n), i. e. t/α(n)2/7 = ω(log(n)) and

2. the number of increasing mutations necessary to reach the optimum is by a
constant factor larger than the expected number of increasing mutations.

To prove these claims we argue that t, the length of the sequence It1 , . . . , It2 ,
is at least G/L = log(n)α(n)3/7, because every increasing mutation raises the
number of matching bits by at most L = α(n)1/7. Hence, t/α(n)2/7 = ω(log(n)),
i. e. only sequences of some minimum length are candidates for It1 , . . . , It2 . The
necessary number of increasing mutations can be lower bounded as follows: if
t+ denotes the number of increasing and t− the number of decreasing mutations
of t = t+ + t− effective mutations, the number of matching bits increases by
t+ · L − t−. In order to reach the global optimum this value has to be at least
G. This is equivalent to

t+ · L− t− ≥ G ⇐⇒ t+ ≥ G+ t− t+

L
⇐⇒ t+ ≥ G+ t

L+ 1
.

For n large enough we have

G+ t

L+ 1
=
log(n)α(n)4/7 + t

α(n)1/7 + 1
≥ 2 · t

α(n)2/7
.

In other words, to reach the global optimum in t steps the number of increasing
mutations necessary is at least by a factor 2 larger than the expected number
t/α(n)2/7 of increasing mutations. Hence, using Chernoff bounds the probability
of a sequence It1 , . . . , It2 of length t with the desired properties is bounded above
by exp

(
− t

α(n)2/7 · 4
3

)
. Because t is at least α(n)3/7 log(n), this is upper bounded

by exp
(−Ω(α(n)1/7 log(n))

)
= n−Ω(α(n)1/7).

All in all, we have shown that the (1+1) EA finds the optimum ofOneMaxD

with p′ = ω(log(n)/n2) in polynomially many steps only, if a super-polynomially
unlikely event happens. �

4 A Polynomial Upper Bound for Small Movement Rates

We now show that the expected first hitting time of the (1+1) EA for OneMax
is polynomial for p′ = O(log(n)/n2). While doing this we have to analyze a
process where the distance from the target (the number of non-matching bits)
can increase in one step by more than one. The crucial idea is to show how this
process can be replaced by a slower one (i. e. how to upper bound the process),
where the distance from the target in one step increases by at most one.

In the following we describe the (1+1) EA and other processes by their tran-
sition probabilities pi,j (i, j ∈ {0, . . . , n}) of changing from a point with i match-
ing bits in one step to a point with j matching bits. As all considered processes
are Markovian, i. e. time-independent, and operating on {0, . . . , n} the transi-
tion probabilities describe them completely. Hence, we denote the process with
transition probabilities pi,j shortly by (p·,·). The random variable Ti,j denotes
the first hitting time to come from state i to state j. The names are sometimes
adapted suitably, e. g. T̃i,j denotes the first hitting time of the process (p̃·,·).

The outline of the proof is as follows: firstly, we “cut off” all transitions from
states i to states j ≥ i + 2 (we will call processes with pi,j = 0 for all i and
j ≥ i + 2 briefly ≤1-processes in the following). This ≤1-process is replaced
by one with a stronger tendency towards lower states. Finally, we replace this
process by one changing its state from i only to i− 1, i, or i+ 1 and analyze it
by standard methods.

To show that all these steps lead to processes having at least the same ex-
pected first hitting time, we need a number of lemmata:

Lemma 2. Let (p·,·) be a process. For the ≤1-process (p̃·,·) defined by

p̃i,j :=
{

pi,j if j < i or j = i+ 1,
pi,i +

∑n
j=i+2 pi,j if j = i,

we have for all i ∈ {0, . . . , n−1}, k ≥ i and all t ∈ N0: P (T̃i,n ≥ t) ≥ P (Tk,n ≥ t).

Proof. By induction over t ∈ N0: for t = 0 the statement is trivial. For the step
from t to t+ 1, we lower bound P (T̃i,n ≥ t+ 1) according to two cases:

1. k > i :
i+1∑
j=0

p̃i,j · P (T̃j,n ≥ t) ≥
i+1∑
j=0

p̃i,j · P (Tk,n ≥ t) ≥ P (Tk,n ≥ t+ 1).

2. k = i :
i−1∑
j=0

p̃i,j · P (T̃j,n ≥ t) + p̃i,i · P (T̃i,n ≥ t) + p̃i,i+1 · P (T̃i+1,n ≥ t)

≥
i−1∑
j=0

pi,j · P (Tj,n ≥ t) + pi,i · P (Ti,n ≥ t) +
n∑

j=i+2

pi,j · P (Tj,n ≥ t)

+pi,i+1 · P (Ti+1,n ≥ t) = P (Ti,n ≥ t+ 1).
�

Since E(Ti,n) =
∑∞

t=1 t · P (Ti,n = t) =
∑∞

t=1 P (Ti,n ≥ t), Lemma 2 tells
us that by “cutting off” all improvements by more than one, the expected first
hitting time does not decrease. A ≤1-process has two useful properties (for the
sake of brevity we omit the easy proofs by induction):

Lemma 3. Let (p·,·) be a ≤1-process. Then we have for all i ∈ {0, . . . , n} and
t ∈ N0: P (Ti,n ≥ t) ≥ P (Ti+1,n ≥ t) (implying E(Ti,n) ≥ E(Ti+1,n)).

Lemma 4. Let (p·,·) and (p̃·,·) be ≤1-processes. If for all i ∈ {0, . . . , n− 1} and
all j < i we have p̃i,j ≥ pi,j and p̃i,i+1 ≤ pi,i+1 then P (T̃i,n ≥ t) ≥ P (Ti,n ≥ t)
(implying E(T̃i,n) ≥ E(Ti,n)) for all i ∈ {0, . . . , n} and t ∈ N0.

In general the expected first hitting time of a ≤1-process is difficult to upper
bound as it might jump to lower states with high probability. But if this is not
too likely we can find a Markov process jumping only from i to i− 1, i, or i+ 1
(called a {−1, 0, 1}-process) having at least the same expected first hitting time.
The key idea is to interpret a number of steps of a given {−1, 0, 1}-process as a
single step of a ≤1-process. If we do not “forget” any transitions of the {−1, 0, 1}-
process we get a ≤1-process that lower bounds the original {−1, 0, 1}-process:
Lemma 5. Let (p·,·) resp. (p̃·,·) be a ≤1- resp. a {−1, 0, 1}-process where
1. ∀i ∈ {1, . . . , n− 1} : pi,0 =

∏i
k=1 p̃k,k−1,

2. ∀i ∈ {1, . . . , n− 1} : ∀j ∈ {1, . . . , i− 1} : pi,j = p̃j,j

∏i
k=j+1 p̃k,k−1,

3. ∀i ∈ {0, . . . , n− 1} : pi,i+1 = p̃i,i+1.

Then for all i ∈ {0, . . . , n− 1}: E(Ti,i+1) ≤ E(T̃i,i+1).

Proof. Assume that the current state of the process (p̃·,·) is i. Consider the next
at most i transitions of (p̃·,·). According to the following cases we split a prefix
from this sequence and consider it as a one step of the process (p·,·):

– All i transitions decrease the number of the current state by exactly one. This
event has probability

∏i
k=1 p̃k,k−1 and afterwards the process is in state 0.

– The first i − j ∈ {1, . . . , i − 1} transitions decrease the number of the cur-
rent state by exactly one, while the (i − j + 1)-th transition stays in the
current state. This event has probability p̃j,j

∏i
k=j+1 p̃k,k−1 and afterwards

the process is in state j.
– The first transition leads from state i to i + 1. This has probability p̃i,i+1

and afterwards the process is in state i+ 1.
– In all other cases, i. e. when the considered i transitions start with at least
one but at most i−1 decreasing transitions directly followed by an increasing
transition, the process is in state at most i. By assuming that the process is
exactly in state i, the expected first hitting time does not increase according
to Lemma 3, because the described process is a ≤1-process.

These cases show how the {−1, 0, 1}-process (p̃·,·) can be considered as a ≤1-
process (p·,·) with exactly the transition probabilities given above. By interpret-
ing the considered transition(s) as a single transition (observe that their number
varies according to the respective case), we get the claimed lower bound. �

Lemma 5 can hardly be applied directly as it only correlates processes where
the transition probabilities fulfill some equalities. Using Lemma 4 we can weaken
the conditions of Lemma 5 to inequalities:

Corollary 1. Let (p·,·) resp. (p̃·,·) be a ≤1-process resp. a {−1, 0, 1}-process on
{0, . . . , n}. If the following conditions hold

1. ∀i ∈ {1, . . . , n− 1} : pi,0 ≤ ∏i
k=1 p̃k,k−1,

2. ∀i ∈ {1, . . . , n− 1} : ∀j ∈ {1, . . . , i− 1} : pi,j ≤ p̃j,j

∏i
k=j+1 p̃k,k−1,

3. ∀i ∈ {0, . . . , n− 1} : pi,i+1 ≥ p̃i,i+1,

then E(Ti,n) ≤ E(T̃i,n) for all i ∈ {0, . . . , n}.
Now we can upper bound the expected first hitting time of the (1+1) EA by

repeatedly replacing the original process by simpler ones and using the preceding
results to show that the new process is not faster than the former one. As we are
interested in asymptotical results, the processes may be defined in a way that
only makes sense for n large enough (e. g. some probabilities may be negative
for small n). At the end we come up with a {−1, 0, 1}-process we can analyze
by standard methods.

Theorem 3. The expected first hitting time of the (1+1) EA on OneMaxD

with p′ = O(log(n)/n2) is polynomial.

Proof. 1. Let (p1
·,·) denote the random process exactly describing the (1+1) EA

on OneMaxD. According to Lemma 2, for the ≤1-process defined by

p2
i,j :=

{
p1

i,j if j < i or j = i+ 1,
p1

i,i +
∑n

j=i+2 p
1
i,j if j = i,

E(T 2
i,n) ≥ E(T 1

i,n) for all i ∈ {0, . . . , n}. Hence, from now on we consider the
simpler process (p2

·,·) instead of (p1
·,·).

2. The ≤1-process (p2
·,·) is replaced by the ≤1-process (p3

·,·), where for all i ∈
{0, . . . , n− 1} and k ∈ {1, . . . , i} (remember that p′ = O(log(n)/n2)):

p3
i,i−k :=

(
i

k

)
· (p′)k and p3

i,i+1 :=
n− i

n
· 2
3 exp(1)

(p3
i,i is implicitly defined as the “remaining probability” to stay in state i).

According to Lemma 4, this process (p3
·,·) does not have smaller expected

first hitting times than the process (p2
·,·), because for all i ∈ {0, . . . , n − 1}

and k ∈ {1, . . . , i}

p2
i,i−k = p1

i,i−k ≤
(
i

k

)
· (p′)k = p3

i,i−k and for n large enough

p2
i,i+1 = p1

i,i+1 ≥
(
n− i

1

)
· 1
n
·
(
1− 1

n

)n−1

· (1− p′)n ≥ p3
i,i+1

as p′ = O(log(n)/n2). Hence, from now on we consider the process (p3
·,·).

3. The {−1, 0, 1}-process (p4
·,·) is defined by (for all i ∈ {0, . . . , n− 1})

p4
i,i−1 := 2 · i · p′ and p4

i,i+1 :=
n− i

n
· 1
2 exp(1)

.

(Note that p4
i,i is only implicitly defined as 1 − p4

i,i−1 − p4
i,i+1, which is at

least 1/2 for n large enough, since p′ = O(log(n)/n2).) Corollary 1 yields
that (p4

·,·) upper bounds (p3
·,·): Condition 1 of Corollary 1 is fulfilled, since

p3
i,0 = (p′)i ≤ ∏i

k=1 2kp
′ =

∏i
k=1 p

4
k,k−1 for i ∈ {1, . . . , n− 1}.

Condition 2 holds because for all i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , i− 1}:

p3
i,j ≤ p4

j,j

i∏
k=j+1

p4
k,k−1 ⇐⇒

(
i

i− j

)
(p′)i−j ≤ p4

j,j

i∏
k=j+1

2kp′,

which is valid, since p4
j,j ≥ 1/2 for n large enough. Condition 3 follows

directly by p3
i,i+1 > p4

i,i+1 for all i < n. Now the {−1, 0, 1}-process (p4
·,·) can

be analyzed with standard methods. It is well-known (see e. g. [DJW00])
that

E(T 4
i,i+1) =

i∑
k=0

1
p4

k,k+1

·
i∏

l=k+1

p4
l,l−1

p4
l,l+1

.

Filling in our values for p4
i,j , we get the following upper bound on E(T 4

i,n)
for p′ ≤ c · log(n)/n2 (see [Dro02] for a similar calculation):

i∑
k=0

2 exp(1) · n
n− k

·
i∏

l=k+1

2 · l · c · log(n)
n2

· 2 exp(1) · n
n− l

=
i∑

k=0

2 exp(1) · n
n− k

·
(
4c exp(1) log(n)

n

)i−k

· i!
k!

· (n− i− 1)!
(n− k − 1)!

≤ 2 exp(1) · n
n− i

·
i∑

k=0

(
4c exp(1) log(n)

n

)i−k

·
(
i

k

) /(
n− k − 1
n− i− 1

)

≤ 2 exp(1) · n

n− i
·
(
1 +

4c exp(1) log(n)
n

)i

Using the estimation (1 + 1/x)x ≤ exp(1), E(T 4
i,i+1) is bounded above by:

2 exp(1) · n

n− i
· exp

(
4c log(n) exp(1)

n
· i

)
≤ 2 exp(1) · n

n− i
· n 4c exp(1)

ln(2) .

Hence, by linearity of expectation and pessimistically assuming that we ini-
tialize in (0, . . . , 0),

E(TOneMaxD) ≤ 2 exp(1) · n 4c exp(1)
ln(2) +1 ·

n∑
i=1

1
i
= O

(
n4c· exp(1)

ln(2) +1 · log(n)
)
.

�

5 Conclusions

We have analyzed the (1+1) EA on a dynamic variant of OneMax where every
bit of the target flips with probability p′. The critical growth rate of p′ where the
expected first hitting time of the (1+1) EA changes from polynomial to super-
polynomial was shown to be Θ(log(n)/n2). Besides this result, the techniques
developed may be of more general interest. They show how a Markov process
which can move away from the target by more than one in one step can be
replaced by a slower Markov process that can move away from the target by at
most one in one step (Lemma 5 resp. Corollary 1). This method might help in
the analysis of other EAs or randomized processes in general.

Acknowledgements

I thank Jens Jägersküpper, Ingo Wegener, and Carsten Witt for their valuable
advice and help while preparing this paper.

References

[BFM97] Th. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Institute of Physics Publishing, 1997.

[Bra01] J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer
Academic, 2001.

[DJW98] S. Droste, Th. Jansen, and I. Wegener. A rigorous complexity analysis of the
(1 + 1) EA for linear functions with Boolean inputs. In Proceedings of ICEC
1998, pages 499–504, 1998.

[DJW00] S. Droste, Th. Jansen, and I. Wegener. Dynamic parameter control in simple
evolutionary algorithms. In Proceedings of FOGA 2000, pages 275–294, 2000.

[DJW02] S. Droste, Th. Jansen, and I. Wegener. On the analysis of the (1 + 1) EA.
Theoretical Computer Science, (276):51–81, 2002.

[Dro02] S. Droste. Analysis of the (1+1) EA for a dynamically changing OneMax-
variant. In Proceedings of CEC 2002, pages 55–60, 2002.

[Hol75] J.H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

[JW99] Th. Jansen and I. Wegener. On the analysis of evolutionary algorithms –
a proof that crossover really can help. In Proceedings of ESA 1999, pages
184–193, 1999. LNCS 1643.

[JW01] Th. Jansen and I. Wegener. Real royal road functions – where crossover is
provably essential. In Proceedings of GECCO 2001, pages 1034–1041, 2001.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[Müh92] H. Mühlenbein. How genetic algorithms really work: I. mutation and hill-
climbing. In Proceedings of PPSN 1992, pages 15–26, 1992.

[RRS95] Y. Rabani, Y. Rabinovich, and A. Sinclair. A computational view of popula-
tion genetics. In Proceedings of STOC 1995, pages 83–92, 1995.

[Rud97] G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr.
Kovač, 1997.

[SD99] S.A. Stanhope and J.M. Daida. (1+1) GA fitness dynamics in a changing
environment. In Proceedings of the CEC 1999, pages 1851–1858, 1999.

