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ABSTRACT
Surprisingly, general search heuristics often solve combina-
torial problems quite sufficiently, although they do not out-
perform specialized algorithms. Here, the behavior of simple
randomized optimizers on the maximum clique problem on
planar graphs is investigated rigorously. The focus is on
the worst-, average-, and semi-average-case behaviors. In
semi-random planar graph models an adversary is allowed to
modify moderately a random planar graph, where a graph is
chosen uniformly at random among all planar graphs. With
regard to the heuristics particular interest is given to the in-
fluences of the following four popular strategies to overcome
local optima: local- vs. global-search, single- vs. multi-start,
small vs. large population, and elitism vs. non-elitism selec-
tion. Finally, the black-box complexities of the planar graph
models are analyzed.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory, Performance, Algorithms

1. INTRODUCTION
One of the best-known combinatorial optimization prob-

lems is to find a maximum clique in an undirected graph.
A clique is a subset of vertices, where each two vertices are
connected by an edge, and a maximal clique is a clique that
is not contained in any larger clique. Finally, a maximum
clique is a clique of largest size. The task to find a maximum
clique is of practical and theoretical importance. This prob-
lem was among the first problems proven to be NP-hard
[9]. However, on a wide range of real-world inputs a re-
markable experimental success of randomized search heuris-
tics and hybrid algorithms were reported [1]. The probably
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best-known types of the broad class of such optimizers are
randomized local searches (RLSs), evolutionary algorithms
(EAs), and Metropolis algorithms (MAs). Their variety is as
huge as their area of applications. Here, we concentrate on
the rigorous analysis of simple and general heuristics coming
up without problem-specific components.

There exist several common ways to cope with the worst-
case complexity of the maximum clique problem. One pos-
sibility is to investigate subclasses of all graphs. The prob-
ably best-known class is that of all (simple) planar graphs –
such graphs can be drawn in a plane without edges crossing.
Several linear time algorithms were developed which find a
maximum clique in a planar graph [5]. Another possibility to
cope with the worst-case complexity of the maximum clique
problem is to investigate random graphs models – such mod-
els are defined by probability distributions on all graphs. All
these models are supposed to represent real-world inputs in a
more appropriate manner than often artificial worst-case in-
stances. The two approaches can be combined easily. Thus,
beside planar graphs we investigate random planar graphs.
Let Gn denote a graph drawn uniformly at random among
all planar graphs on n vertices v1, . . . , vn. Simple expected
(w.r.t. the random input) constant time algorithms find a
maximum clique in Gn [10]. However, real-world instances
are generally not as well-formed as random ones. In order to
enrich and to robustify random input models, semi-random
input models are considered, where two main variants exists.
The first variant allows an adversary to present an arbitrary
input, but this is modified moderately at random. The sec-
ond variant presents a random input, but an adversary is
allowed to vary it within limits [6]. These models gener-
ate combinations of worst- and average-case instances and
moreover, semi-random input models are typically more ad-
equate to distinguish between näıve and more sophisticated
algorithms. We investigate three types of semi-random pla-
nar graphs. If an adversary modifies Gn by inserting or re-
moving arbitrary edges, but keeps the graph planar, the
resulting graph is denoted by G+

n and G−n respectively. If
the existence of at most εn edges of Gn is changed, for an
arbitrarily small constant ε > 0, but the graph is kept pla-
nar again, the resulting graph is denoted by G?

n. Gn consists
of random edges, while G+

n , G−n , and G?
n contain some.

To understand the heuristics’ and operators’ successes –
especially contrasting the worst-, average-, and semi-aver-
age-case behaviors –, working principles, and the considered
problems’ structure are the major motivations. Theoreti-
cally only little is known about the behavior of simple ran-
domized search heuristics on the maximum clique problem.



Since general heuristics are intended to optimize objective
functions f : S → Z such a fitness function has to be de-
signed for the clique problem. The search space S = {0, 1}n

is a canonical choice, where an element is interpreted as
characteristic vector of the graph’s vertices V in an arbi-
trary order. Using the size of the clique as function value,
if the subset represents a clique, the aim is maximization.
Using −∞ as function value, if the subset does not represent
a clique, the optimizers need to be directed to a clique; typi-
cally by an initialization with (the element representing) the
empty clique, namely the bit-string of n zeros 0n [8]. Thus,
we consider the following objective function for a graph G,
where V = {v1, . . . , vn}:

fG(x) :=

(
|x| if {vi |xi = 1, 1 ≤ i ≤ n} is a clique

−∞ if {vi |xi = 1, 1 ≤ i ≤ n} is not a clique

Here, it is |x| :=
Pn

i=1 xi for a bit-string x = x1 · · ·xn. The
objective function fG can be evaluated efficiently.

A randomized algorithm is (typically) called efficient on
a sequence f = (f1, . . . , fn, . . .) of pseudo-Boolean functions
fn : {0, 1}n → Z, n ∈ N, if the algorithm’s expected number
of function evaluations is upper bounded by a polynomial
(in n) until first an optimal element is queried. Only count-
ing the function evaluations is motivated by the observation
that these require most resources during the optimization.

At first, let us take a closer look to the probably most
simple randomized search heuristic, namely the (1+1) RLS
(Randomized Local Search), and arbitrary planar graphs.

Algorithm 1. (1+1) RLS

1. Let x := 0n.

2. Create y by flipping one bit in x chosen uniformly at
random.

3. If f(y) ≥ f(x) let x := y.

4. Goto 2.

We begin with an investigation of the planar graph G =
(V, {{v1, v2}}), where the only maximum clique is {v1, v2}.
In the first step, the (1+1) RLS creates each 1-clique with
probability 1/n. Thus, one of the 1-cliques {v3}, . . . , {vn} is
created with probability (n− 2)/n = 1− o(1). In this situ-
ation, the (1+1) RLS is getting trapped in a local optimum
since no change of a single bit leads to an element which has
at least the same function value. This results in an expected
– and even with high probability – number of infinite steps
of the (1+1) RLS on G. Since this specific planar graph G
is chosen with a positive probability by a uniform selection
among all planar graphs the (1+1) RLS needs an expected
(w.r.t. the random bits of the algorithm and the random
input) infinite number of steps on random planar graphs as
well. We observe the (1+1) RLS probable stagnates in local
optima, here. There exist several common ways to get out
of local optima. The probably best-known strategies are

• the application of a mutation operator in the algorithm
(global search),

• the occasional algorithm’s restart (multi-start strat-
egy),

• the application of a population in the algorithm (large
population), and

• the occasional algorithm’s acceptance of a worse ele-
ment (non-elitism selection).

Simple instances of optimizers applying these four strategies
and modifying the (1+1) RLS just slightly are defined and
analyzed on planar and random planar graphs in Sections 3,
4, 5, and 6 respectively. Here, we determine which choices
of the algorithms’ parameter lead to an efficient locating of
a maximum clique in planar graphs and which do not. The
focus is on the identification of the optimal parameters set-
tings and the resulting asymptotically exact number of steps
needed for optimization. In Section 7 we define and consider
the black-box complexities for finding a maximum clique in
planar and random planar graphs. In Section 8 we describe
how the investigations concerning planar and random planar
graphs can be combined for the results on the semi-random
planar graph models. Surprisingly, it will be pointed out
that the Metropolis algorithm studied in Section 6 is an
asymptotically optimal general randomized search heuristic
for all types of planar graphs. We finish with some conclu-
sions in Section 9, but we begin with some preliminaries in
Section 2.

2. PRELIMINARIES
We begin with upper bounds on the number (#) of k-

cliques in planar graphs.

Lemma 2. Let G be a planar graph on n, n ≥ 3, vertices.

k = 0 1 2 3 and 4 5 and more
#k-cliques ≤ 1 n 3n− 6 6n− 12 0

Proof. The graph G consists of the 0-clique and all n 1-
cliques. By Euler’s formula the number of 2-cliques is upper
bounded by 3n−6 for n ≥ 3 and each planar graph contains
a vertex v with degree d ≤ 5. We successively remove such a
vertex including its incident edges and observe that at most
2d 3-cliques and 4-cliques are removed, too. The number
of 3- and 4-cliques removed is upper bounded by

�
d
2

�
≤ 2d

and
�

d
3

�
≤ 2d respectively, where the inequalities hold for

d ≤ 5. Since the number of edges is upper bounded by
3n− 6, the number of 3- and 4-cliques is upper bounded by
2 · (3n − 6) = 6n − 12. By Kuratowski’s theorem there are
no cliques of size five or more in planar graphs.

We remark by Lemma 2 each planar graph consists of at
most 16n− 29 cliques.

We call V ′ ⊆ V loosely connected in G, if the number of
edges {u, v}, where u ∈ V ′ and v ∈ V \ V ′, is at most one.

Lemma 3. Let c > 0 be a small enough constant.
Pr[Gn contains < cn loosely connected 3-cliques] < e−cn

Pr[Gn contains < cn loosely connected 4-cliques] < e−cn

Proof. Since the complete graphs on three and four ver-
tices are planar, the result follows by [10, Theorem 4.1].

Throughout this paper let V3 and V4 consist of all vertices
of loosely connected 3- and 4-cliques respectively. Moreover,
let V ′

3 ⊆ V3 and V ′
4 ⊆ V4 consist of all vertices of V3 or V4

respectively which are not connected to any vertex of V \V3

and V \ V4 respectively. By definition of loosely connected
3- and 4-cliques it holds |V ′

3 | ≥ |V3|−|V3|/3 = 2|V3|/3 ≥ 2cn
and |V ′

4 | ≥ |V4| − |V4|/4 = 3|V4|/4 ≥ 3cn respectively.

3. GLOBAL SEARCH
Let us define the simple (1+1) EAp applying a mutation

operator flipping each bit with probability p in each step [3].
Obviously, it should hold 0 < p < 1.



Algorithm 4. (1+1) EAp

1. Let x := 0n.

2. Create y by flipping each bit in x independently with
probability p.

3. If f(y) ≥ f(x) let x := y.

4. Goto 2.

We observe each element is created in each step with a posi-
tive probability and the (1+1) EA1/n flips an expected num-
ber of one bit in each step – equivalently to the (1+1) RLS.

Let us investigate planar graphs.

Lemma 5. Let 0 < p ≤ 1/2 and n be large enough.

1. Let G be a planar graph. The (1+1) EAp creates a
maximum clique of G within an expected number of
O(enp(1 + np)/p6) steps.

2. There exist planar graphs G, where the (1+1) EAp

needs an expected number of Ω(enp/p6) steps to create
a maximum clique of G.

The optimal parameters for the (1+1) EAp are p = Θ(1/n),
where the expected number of steps is bounded by Θ(n6),

and the (1+1) EAp is efficient, iff p = n−O(1) and p =
O(log n)/n.

Proof. Part 1. Let C be a maximum clique of G. If the
element of the population x does not represent a maximum
clique, by Lemma 2 at least one specific mutation flipping at
most |x|+ (|C| − 1) ≤ 6 bits generates an individual which
represents a subset of size at least |C|−1 of C. Its probability
is lower bounded by p6(1 − p)n−6 = Ω(e−np · p6). In this
situation, (a) the probability to create a maximum clique is
lower bounded by p+ := p1(1−p)n−1 = Ω(e−np ·p) since one
specific 1-bit mutation generates C. And moreover, (b) the
probability to create a (|C|− 1)-clique which is not a subset
of C is upper bounded by p− := (6n− 12) · p2(1− p)n−2 =
O(e−np · p2n) by Lemma 2 and since at least two bits have
to change. Hence, the probability to perform (a) prior to
(b) is bounded by p+/(p+ + p−). In the case of a failure,
we can repeat the argumentation. An expected number of
(p+ + p−)/p+ = 1 +O(np) repetitions has to be performed.
This leads to an expected number of O(enp/p6)·O(1+np) =
O(enp(1 + np)/p6) steps, in total.

Part 2. We define the investigated planar graph G. There-
fore, let V0 := {v1, . . . , v4}, V1 := {v5, . . . , v7}, and E :=
{{v, w} | v, w ∈ V0 or v, w ∈ V1}. If the element represents
the 0-clique or a 1-clique on V \ (V0 ∪ V1), then (a) with
a probability of at least p1(1 − p)n−1 and p2(1 − p)n−2 re-
spectively, a non-empty subset of the maximal clique V1 is
created. And moreover, (b) with a probability of at most
(24 − 1) · p1(1 − p)n−1 and (24 − 1) · p2(1 − p)n−2 respec-
tively, one of the non-empty cliques on the maximum clique
V0 is generated. However, the probability to perform (a)
prior to (b) is bounded by Ω(1). In this situation, the
individual represents a clique which is a subset of V1 of
size at least one. Afterwards, the probability to create a
larger clique which is a subset of V1 prior to perform (b)
is bounded by Ω(1). Thus, with a probability of at least
Ω(1) ·Ω(1) = Ω(1) the 3-clique V1 is created prior to a non-
empty subset of V0. Afterwards, the probability is bounded
by
�
4
3

�
p6(1−p)n−6 +

�
4
4

�
p7(1−p)n−7 = O(e−np ·p6) to create

a 3-clique which is contained in a 4-clique or a 4-clique it-
self. This leads to an expected number of Ω(1) ·Ω(enp/p6) =
Ω(enp/p6) steps, in total.

Let us investigate random planar graphs.

Lemma 6. Let 0 < p ≤ 1/2 and n be large enough. The

following holds with probability 1−e−Ω(n) and in expectation
(w.r.t. the random input).

1. The (1+1) EAp creates a maximum clique of Gn within
an expected (w.r.t. the random bits of the algorithm)
number of O(enp(1 + np)/(np6)) steps.

2. The (1+1) EAp needs an expected (w.r.t. the random
bits of the algorithm) number of Ω(enp/(np6(1+np)2))
steps to create a maximum clique of Gn.

The optimal and the parameters, where the (1+1) EAp is
efficient, are the same than on planar graphs.

Proof. By Lemma 3 with a failure probability of at most
e−cn + e−cn = e−Ω(n), for a constant c > 0, the random
planar graph Gn contains at least cn loosely connected 3-
and 4-cliques. Let us assume that this holds in the following.

Part 1. Similar to Lemma 5, the probability to create one
of the at least

�
4
3

�
cn subsets of size 3 of (the loosely con-

nected) 4-cliques is lower bounded by
�
4
3

�
cn · p6(1 − p)n−6,

while no maximum 4-clique is generated. And again similar
to Lemma 5, an expected number of at most O(1+np) rep-
etitions is sufficient to create the 4-clique prior to a maximal
3-clique. This leads to an expected number of O(enp/(np6))·
O(1 + np) = O(enp(1 + np)/(np6)) steps, in total.

Part 2. If the element represents the 0-clique, (a) with a
probability of at least 2cn · p1(1 − p)n−1 a 1-cliques {v},
where v ∈ V ′

3 is created and moreover, (b) a non-empty dif-
ferent clique is created with a probability of at most (16n−
29) · p1(1 − p)n−1 by Lemma 2. Hence, the probability to
perform (a) prior to (b) is bounded by Ω(1). Afterwards, the
probability to create a 2-clique on V3 prior to (b) is bounded

by p1(1−p)n−1

p1(1−p)n−1+(16n−29)·p2(1−p)n−2 = Ω(1/(1 + np)). Finally,

the probability is also bounded by Ω(1/(1 + np)) to create
a 3-clique on V3 prior to (b). Thus, a 3-clique on V3 is
generated with probability Ω(1) · Ω(1/(1 + np)) · Ω(1/(1 +
np)) = Ω(1/(1+np)2). Afterwards, the probability is upper
bounded by (12n−24)·p6(1−p)n−6 to create a 3-clique which
is contained in a 4-clique or a 4-clique itself. This leads
to an expected number of Ω(1/(1 + np)2) · Ω(enp/(np6)) =
Ω(enp/(np6(1 + np)2)) steps, in total.

4. MULTI-START STRATEGY
Let us define the simple (1+1) RRLSt, where the (1+1) RLS

is restarted after t steps [7].

Algorithm 7. (1+1) RRLSt

1. Let x := 0n and ` := 0.

2. Create y by flipping one bit in x uniformly at random.

3. If f(y) ≥ f(x) let x := y.

4. Let ` := ` + 1. If ` = t, Goto 1. Otherwise, Goto 2.

We observe the (1+1) RRLS∞ behaves equivalently to the
(1+1) RLS and the (1+1) RRLSt is not able to create a
clique of size more than t. Hence, we disregard values t ≤ 3.

Let us investigate planar graphs.

Lemma 8. Let t ≥ 4 and n be large enough.



1. Let G be a planar graph. The (1+1) RRLSt creates
a maximum clique of G within an expected number of
O(n4 + t · n3) steps.

2. There exist planar graphs G, where the (1+1) RRLSt

needs an expected number of Ω(n4 + t · n3) steps to
create a maximum clique of G.

The optimal parameters for the (1+1) RRLSt are 4 ≤ t =
O(n), where the expected number of steps is bounded by

Θ(n4), and the (1+1) RRLSt is efficient, iff 4 ≤ t = nO(1).

Proof. Part 1. Let C be a maximum clique of G. With a

probability of at least
Q|C|−1

i=0 (|C|− i)/n = Ω(1/n3) a subset
of C of size |C| − 1 ≤ 3 is generated within the first three
steps. Afterwards, the probability that in the remaining
t− 3 steps a |C|-clique is created prior to a restart is lower
bounded by 1− (1− 1/n)t−3 since one 1-bit flip creates C.
We distinguish the cases t ≤ n (Case 1) and t > n (Case 2).
Case 1. We observe (1 − δ)d ≤ 1 − δ · d/2 for 0 ≤ d ≤ 1/δ.
Therefore, it holds 1 − (1 − 1/n)t−3 = Ω(t/n). Hence, a
phase between restarts is with probability Ω(1/n3)·Ω(t/n) =
Ω(t/n4) successful.

Case 2. We observe 1 − (1 − 1/n)t−3 ≥ 1 − e−(t−3)/n =
Ω(1). Hence, a phase between restarts is successful with
probability Ω(1/n3) · Ω(1) = Ω(1/n3).

Thus, an expected number of O(n4/t + n3) restarts is
sufficient to generate a maximum clique. This leads to an
expected number of at most t ·O(n4/t+n3) = O(n4 + t ·n3)
steps, in total.

Part 2. We define the investigated planar graph G. There-
fore, let ` := b(n− 4)/6c. Partition the vertices V in V0 :=
{v1, . . . , v4} and Vi := {v5+(i−1)`, . . . , v4+i`}, 1 ≤ i ≤ 6.
Let e1 := {v1, v2}, e2 := {v1, v3}, e3 := {v1, v4}, e4 :=
{v2, v3}, e5 := {v2, v4}, e6 := {v3, v4} and moreover, let
Ei := {{u, w}, {v, w} |w ∈ Vi, ei = {u, v}}, 1 ≤ i ≤ 6.
The graph G consists of the edges

S6
i=1 Ei ∪ {ei}. The

only maximum clique of G is V0. At the beginning of each
phase between restarts with probability 4/n a 1-clique is
generated which is a subset of V0. Hence, with probability
3/(3 + 3`) = O(1/n) a 2-clique and afterwards, with proba-
bility 2/(2 + `) = O(1/n) a 3-clique which are subsets of V0

are generated prior to a subset containing a vertex of V \V0.
Thus, after a restart with probability 4/n·O(1/n)·O(1/n) =
O(1/n3) a 3-clique on V0 is created and otherwise an element
such a restart is necessary. To the best after three steps a
3-clique on V0 is generated and within the remaining t − 3
steps a particular 1-bit flip creates V0. The probability for
this 1-bit flip is upper bounded by min{(t − 3)/n, 1}. This
leads to an expected number of Ω(n3 ·(n/t+1)) phases until
it is successful. Since the length of a phase equals t and all
excepted the last phase is not successful, this leads to an ex-
pected number of at least (Ω(n4/t+n3)−1)·t = Ω(n4+t·n3)
steps, in total.

Let us investigate random planar graphs.

Lemma 9. Let t ≥ 4 and n be large enough. The following
holds with probability 1 − e−Ω(n) and in expectation (w.r.t.
the random input).

1. The (1+1) RRLSt creates a maximum clique of Gn

within an expected (w.r.t. the random bits of the algo-
rithm) number of O(n3/t2 + t) steps.

2. The (1+1) RRLSt needs an expected (w.r.t. the ran-
dom bits of the algorithm) number of Ω(n3/t2+t) steps
to create a maximum clique of Gn.

The optimal parameters for the (1+1) RRLSt are t = Θ(n),
where the expected number of steps is bounded by Θ(n),

and the (1+1) RRLSt is efficient, iff 4 ≤ t = nO(1). We
remark t = 4 is an optimal parameter for planar graphs,
but far away from being optimal for random planar ones.

Proof. By Lemma 3 with a failure probability of at most
e−cn + e−cn = e−Ω(n), for a constant c > 0, the random
planar graph Gn contains at least cn loosely connected 3-
and 4-cliques. Let us assume that this holds in the following.

Part 1. At the beginning of a phase between restarts with
a probability of at least 3cn/n = Ω(1) a 1-clique on V ′

4 is
generated. Let C be the loosely connected 4-clique the 1-
clique is contained in. Let us partition the remaining t − 1
steps in three subphases of length (t − 1)/3 ≥ 1. Let a
subset of size ` < 4 of C be the current element. Similar to
the proof of Part 1 of Lemma 8, the probability to create in
one subphase a subset of C of size `+1 is lower bounded by
Ω(t/n), if t ≤ n, and Ω(1), if t > n. Thus, with probability
Ω(t3/n3), if t ≤ n, and Ω(1), if t > n, in each of the three
phases is successful and C is generated. Thus, an expected
number of O(n3/t3 + 1) restarts is sufficient to generate a
maximum clique. In total, this leads to an expected number
of t · O(n3/t3 + 1) = O(n3/t2 + t) steps, in total.

Part 2. We distinguish t ≤ n (Case 1) and t > n (Case 2).
Case 1. Let us lower bound the probability to create a
maximum clique in one phase. Let x(`), 0 ≤ ` ≤ 4, denote a
`-clique. We observe a 4-clique is generated by a sequence
of cliques x(0), x(1), x(2), x(3), x(4). The succeeding clique is
created with probability 1/n. The clique x(1) is created in
the first step and the others in the next t−1 steps. Moreover,
the number of such sequences is upper bounded by 4 ·3 ·2 ·1 ·
(6n−12) ≤ 144n by Lemma 2. Within t steps the probability
to generate a 4-clique is upper bounded by

144n · 1/n ·
�

t−1
3

�
· 1/n3 ≤ 144 · t3/3! · 1/n3 = t3/(24n3) .

This leads to an expected number of 24n3/t3 phases until a
4-clique is generated. Since the length of a phase equals t
and all excepted the last phase is not successful, this leads to
an expected number of at least (24n3/t3−1)·t ≥ 23n3/t3·t =
Ω(n3/t2) steps, where the inequality holds since t ≤ n.
Case 2. We have seen |V3| ≥ 3cn. Thus, with a probability
of at least 3c a 1-clique on V3 is generated initially. This
leads to an expected number of Ω(t) steps.

The proposed result follows since Ω(n3/t2 + t) = Ω(n3/t2)
for t ≤ n and Ω(n3/t2 + t) = Ω(t) for t > n.

5. LARGE POPULATION
Let us define the simple (µ+1) RLS which population con-

sists of µ elements, where after the initialization no dupli-
cates are inserted [12].

Algorithm 10. (µ+1) RLS

1. Let the population P consist of µ copies of x := 0n.

2. Choose an individual x of the population P uniformly
at random. Create y by flipping one bit in x uniformly
at random.

3. If y 6∈ P, then let z ∈ P ∪ {y} be randomly chosen
among those individuals with the worst f -value and
let the population be P ∪ {y} \ {z}.

4. Goto 2.



We observe the (µ+1) RLS, where µ = 1, behaves equiva-
lently to the (1+1) RLS on the maximum clique problem.

Let us extend the observations made for the (1+1) RLS
in the introduction to larger populations. Therefore, let us
take a closer look to the graph with the only edge {v1, v2}
again. The (µ+1) RLS, where µ ≤ n − 2, needs an infinite
expected number of steps to find the maximum clique of this
graph since with positive probability after µ steps the pop-
ulation consists of the cliques {v3}, . . . , {v2+µ}. Therefore,
it is sufficient to consider at least linear population sizes.

Let us investigate planar graphs.

Lemma 11. Let µ ≥ 16n− 29 and n be large enough.

1. Let G be a planar graph. The (µ+1) RLS creates a
maximum clique of G within an expected number of
O(µn) steps.

2. There exist planar graphs G, where the (µ+1) RLS
needs an expected number of Ω(µn) steps to create a
maximum clique of G.

The optimal parameters for the (1+1) EAp are 16n− 29 ≤
µ = O(n), where the expected number of steps is bounded
by Θ(n2), and the (1+1) EAp is efficient, iff 16n− 29 ≤ µ =

nO(1).

Proof. Part 1. We observe if a clique is created not con-
tained in the population before, then this element is also
inserted into the population and a copy of 0n is removed.
This holds since no duplicates are inserted into the popula-
tion after the initialization and by Lemma 2 the population
size is at least as large as the number of cliques in G. Let
C be a maximum clique of G. If the population contains
a proper subset of C, then with a probability of at least
1/(µn) a larger subset of C is created and inserted into the
population for sure. This leads to an expected number of at

most
P|C|−1

`=0 µn = O(µn) steps, in total.

Part 2. We define the investigated planar graph G. There-
fore, let E := {{v1, v2}}. While the maximum clique is not
found, the probability is upper bounded by 2/(µn) to create
it since the population contains at most all other cliques and
only a 1-bit flip, which has probability 1/n to be performed,
of the cliques {v1} or {v2}, which have probability 2/µ to
be selected, generates the maximum clique. This leads to
an expected number of Ω(µn) steps, in total.

We remark that after an expected number of O(µn2) steps
the population contains a copy of each clique.

Let us investigate random planar graphs.

Lemma 12. Let µ ≥ 16n−29 and n be large enough. The
following holds with probability 1−e−Ω(n) and in expectation
(w.r.t. the random input).

1. The (µ+1) RLS creates a maximum clique of Gn within
an expected (w.r.t. the random bits of the algorithm)

number of O(µn2/3) steps.

2. The (µ+1) RLS needs an expected (w.r.t. the random

bits of the algorithm) number of Ω(µn2/3) steps to cre-
ate a maximum clique of Gn.

The optimal and the parameters, where the (µ+1) RLS is
efficient, are the same than on planar graphs.

Proof. By Lemma 3 with a failure probability of at most
e−cn + e−cn = e−Ω(n), for a constant c > 0, the random

planar graph Gn contains at least cn loosely connected 3-
and 4-cliques. Let us assume that this holds in the following.

Part 1. By Lemma 2 the number of 0-cliques in the popu-
lation is always lower bounded by µ − (10n − 17) while no
4-clique is generated. Hence, with a probability of at least
µ−10n+17

µ
≥ 1/4 a 0-clique is selected for mutation. If the

population contains 0 ≤ ` < n 1-cliques, then with a proba-
bility of at least 1/4 · (n− `)/n a 1-clique is created not con-
tained in the population before. Hence, after an expected
number of 4 ·

Pn−1
`=0 n/(n− `) = O(n log n) steps the popula-

tion contains all 1-cliques. In this situation and while there
exist less than n2/3 2-cliques on V4, with a probability of at
least (4cn− n2/3)/(µn) = Ω(1/µ) a 2-clique on V4 is gener-

ated. Thus, at least n2/3 2-cliques on V4 are created within
an expected number of n2/3 · O(µ) = O(µn2/3) steps. Simi-

larly, within an expected number of O(µn2/3) further steps

at least n1/3 3-cliques on V4 are created. Finally, a maxi-
mum clique is generated within an expected number of at
most µ/n1/3 ·n = O(µn2/3) steps. This leads to an expected

number of O(n log n) +O(µn2/3) +O(µn2/3) +O(µn2/3) =

O(µn2/3) steps, in total.

Part 2. Let us lower bound the probability to create a
maximum clique in the first µn2/3/6 steps. Let x(`) and
y(`), 1 ≤ ` ≤ 4, denote `-cliques. We observe that a 4-
clique is generated either directly by a sequence of cliques
. . . , x(1), x(2), x(3), x(4) (Case 1) or indirectly by a sequence
of cliques . . . , y(2), y(3), x(2), x(3), x(4) (Case 2). The succeed-
ing clique is created with probability 1/(µn).
Case 1. Let x(1) be an element of the population. The
number of such sequences is upper bounded by 4 · 3 · 2 · 1 ·
(6n−12) ≤ 144n by Lemma 2. Hence, within µn2/3/6 steps
the probability to generate a 4-clique is upper bounded by

144n ·

 
µn2/3

6

3

!
·
�

1

µn

�3

≤ (µ3n2) · (144n)

(3! · 63) · (µ3n3)
=

1

9
.

Case 2. Let y(2) be an element of the population and let
`y(3) denote the number of 4-cliques the 3-clique y(3) has at
least one common edge with. The sum of the degrees of the
three vertices of y(3) is lower bounded by `y(3)/7. Otherwise,
by Lemma 2 the subgraph on y(3) and its adjacent vertices
consists of at most 6 · (3+`y(3)/7−1)−12 = 6`y(3)/7 < `y(3)

maximum cliques. Let us investigate all 3-cliques which have
at least one common edge with at least `1 but less than
`2 ≤ 6n maximum cliques. Since the sum of all vertices’
degrees in the graph is upper bounded by 2·(3n−6) ≤ 6n and
by Lemma 2, the number of such 3-cliques is upper bounded
by min{6n/(`1/7), 6n− 12} ≤ min{42n/`1, 6n}. Hence, the
number of sequences with an y(3), where `1 ≤ `y(3) < `2,

is upper bounded by min{42n/`1, 6n} · 3 · 2 · 2 · 1 · `2 =

min{42n/`1, 6n} ·12 ·`2. We distinguish the cases `1 = n2/3,

`2 = 6n (Case 2.a), `1 = n1/3, `2 = n2/3 (Case 2.b), and

`1 = 1, `2 = n1/3 (Case 2.c) and we consider µn2/3/6 steps.
The probability to generate a 4-clique is upper bounded by:
Case 2.a

42n

n2/3
·12·6n·

 
µn2/3

6

4

!
·
�

1

µn

�4

≤ (µ4n8/3) · (3024n4/3)

(4! · 64) · (µ4n4)
=

7

72

Case 2.b

42n

n1/3
·12·n2/3·

 
µn2/3

6

4

!
·
�

1

µn

�4

≤ (µ4n8/3) · (504n4/3)

(4! · 64) · (µ4n4)
=

7

432



Case 2.c

6n ·12 ·n1/3 ·

 
µn2/3

6

4

!
·
�

1

µn

�4

≤ (µ4n8/3) · (72n4/3)

(4! · 64) · (µ4n4)
=

1

432

Thus, with a probability of at least 1−( 1
9
+ 7

72
+ 7

432
+ 1

432
) ≥

3
4

no maximum clique is generated within µn2/3/6 steps.

This leads to an expected number of at least 3/4 ·µn2/3/6 =

Ω(µn2/3) steps, in total.

6. NON-ELITISM SELECTION
Let us define the simple MAT occasionally accepting ele-

ments with larger function values than the current one [8].

Algorithm 13. MAT

1. Let x := 0n.

2. Create y by flipping one bit in x uniformly at random.

3. With probability min{eT ·(f(y)−f(x)), 1}, let x := y.

4. Goto 2.

We observe the MA∞ behaves equivalently to the (1+1) RLS.
Moreover, the Metropolis algorithm MAT does not accept
elements which do not represent cliques. Hence, a by one
large clique is accepted with probability 1 and a by one
smaller clique is accepted with probability e−T =: 1/λ.

Let us investigate planar graphs.

Lemma 14. Let T ≥ 0 and n be large enough.

1. Let G be a planar graph. The MAT creates a maximum
clique of G within an expected number of O(n2e4T )
steps.

2. There exist planar graphs G, where the MAT needs an
expected number of Ω(n2eT ) steps to create a maximum
clique of G.

The optimal parameters for the MAT are 0 ≤ T = O(1),
where the expected number of steps is bounded by Θ(n2),
and the MAT is efficient, iff 0 ≤ T = O(log n).

Proof. Part 1. We consider the Markov chain induced
by the MAT on G. The state space is the set of all cliques
in G. If state C+ and C− are a by one larger superset and
smaller subset respectively of a state C, then the probability
of a transition from C to C+ is 1/n and 1/(λn) to C−.
All other non-loop transitions have probability 0. Thus,
the expected number of steps until a transition occurs is
upper bounded by λn. Let us consider the transition steps
only. Equivalently, we can investigate a random walk on
the following connected and undirected, but weighted graph
W . The vertices are the states and the edges EW are the
non-zero transitions of the Markov chain considered. The
weight r{v,w} for an edge {v, w} between a `- and (` + 1)-

clique is λ`. We recall the probability to transition from v to
w equals r{v,w}/

P
{v,u}∈EW

r{v,u}. Hence, W consists of at

most |EW | ≤ 1·n+2·(3n−6)+3·(6n−12)+4·(6n−12) = O(n)
edges. The maximal sum of the weights on a shortest path
between any two vertices of W is upper bounded by λ3+λ2+
λ+1+1+λ+λ2 +λ3 = O(λ3). Since the weights are lower
bounded by 1, it holds

P
{v,w}∈EW

2/r{v,w} ≤ 2 · |EW | =

O(n). By [2, Theorem 2] for any two vertices v and w the
expected number of edges traversed by a random walk on W
starting in v, reaching w, and ending upton first reaching v

again, is upper bounded by O(n) · O(λ3) = O(nλ3). Let us
add the not state changing steps. This leads to an expected
number of at most λn · O(nλ3) = O(n2λ4) steps, in total.

Part 2. We define the investigated planar graph G. There-
fore, let E := {{v1, v2}}. At least once a clique {v1} or {v2}
has to be created. If the individual represents the 0-clique,
with probability 2/n such a 1-clique is created. Otherwise,
the 1-clique {v3}, . . . , {vn} is replaced by the 0-clique within
an expected number of λn steps. This leads to an expected
number of at least λn·(n/2−1) = Ω(n2λ) steps, in total.

Let us investigate random planar graphs.

Lemma 15. Let T ≥ 0 and n be large enough. The fol-
lowing holds with probability 1 − e−Ω(n) and in expectation
(w.r.t. the random input).

1. The MAT creates a maximum clique of Gn within an
expected (w.r.t. the random bits of the algorithm) num-
ber of O(ne4T ) steps.

2. The MAT needs an expected (w.r.t. the random bits
of the algorithm) number of Ω(neT ) steps to create a
maximum clique of Gn.

The optimal and the parameters, where the MAT is efficient,
are the same than on planar graphs.

Proof. By Lemma 3 with a failure probability of at most
e−cn + e−cn = e−Ω(n), for a constant c > 0, the random
planar graph Gn contains at least cn loosely connected 3-
and 4-cliques. Let us assume that this holds in the following.

Part 1. Similar to the proof of Part 1 of Lemma 14 we
consider the Markov chain induced by the MAT on G. It
is irreducible and aperiodic for n ≥ 5. Thus, the process
is ergodic and possesses a unique stationary distribution π,
where for the state S which represents the 0-clique it holds
π(S) = 1/

P
C λ|C| by [8, page 350]. By [11, Theorem 6.2]

the expected number of steps starting in S and ending upon
the first return to S, equals 1/π(S) =

P
C λ|C| ≤ (16n−29)·

λ4 = O(nλ4) by Lemma 2. Moreover, similar to Lemma 9,
starting in S with a probability of at least 3c · 3λ/(3λ + 1) ·
2λ/(2λ + 2) · λ/(λ + 3) = Ω(1) a 4-clique is generated prior
to return to S. Thus, an expected number of O(1) returns
to S is sufficient until a 4-clique is created. This leads to an
expected number of O(1) · O(nλ4) = O(nλ4) steps, in total.

Part 2. Similar to the proof of Part 2 of Lemma 9, with
a probability of at least 2c a 1-clique on V ′

3 is created in
the first step. Afterwards, at least once a worsening has to
be accepted, which needs an expected number of at least
λn/3 steps. This leads to an expected number of at least
2c · nλ/3 = Ω(nλ) steps, in total.

7. BLACK-BOX COMPLEXITY
We have seen that the MA1 – asymptotically a most ef-

ficient heuristic investigated on the planar graph models –
needs Θ(n2) expected steps to find a maximum clique in
planar graphs and in random planar graphs it needs Θ(n)
expected steps. The question arises if any optimizer can be
asymptotically more efficient, namely let us lower bound the
expected number of steps to find a maximum clique in planar
and random planar graphs by any general search heuristic.

One characteristic of all general search heuristics is that
they gather information about the problem instance – the
problem itself is (probably) known in advance – by querying



one search point after the other to a so-called black-box. At
time t the next query xt is determined by a black-box algo-
rithm with knowledge about the whole history of the pairs
of previously queried elements and their function values.

Algorithm 16. Black-Box Algorithm
Step t ≥ 1: Depending on (x1, f(x1)), . . . , (xt−1, f(xt−1))
determine a probability distribution on {0, 1}n, choose xt

according to this distribution, query xt, and receive its func-
tion value f(xt) from the black-box.

A black-box algorithm which determines deterministically or
randomly the next query is called a deterministic or random-
ized black-box algorithm respectively. We remark the class
of randomized black-box algorithms includes the class of de-
terministic ones. Considering all (randomized) black-box
algorithms allows us to obtain general lower bound on the
complexity of a problem for search heuristics. This frame-
work was introduced by Droste, Jansen, and Wegener [4].
In contrast to investigations of a specific optimizer, it is not
meaningful to consider the black-box complexity for a single
function f . In such a scenario always an efficient black-box
algorithm exists. It just queries an optimal element of f
within the first step. Therefore, classes F of functions are
considered, whereof the particular function f ∈ F is ran-
domly chosen. Let us investigate the following (determinis-
tic) black-box algorithms BBA and BBA?.

Algorithm 17. BBA and BBA?

1. Let A1 := ∅, . . . , An := ∅, and i := 1.

2. For j := i + 1, . . . , n query {vi, vj}. If the function
value equals 2, then Ai := Ai ∪ {vj}, Aj := Aj ∪ {vi}.

?. If |Ai| = 3, then query Ai ∪ {vi}. BBA? only

3. Let i := i + 1. If i = n, then Goto 2, else Goto 4.

4. Calculate a maximum clique C (without performing
any query; for planar graphs efficiently similar to [5]
and for general graphs similar to [13]) and query C.

At step 4 no query except the one of C is needed since Ai,
1 ≤ i ≤ n, consists of all vertices adjacent to vi. Namely, if
the function value of a query {vi, vj} equals 2, then the edge
{vi, vj} exists and otherwise, the function value equals −∞
and the edge {vi, vj} does not exist. Hence, G is uncovered.

Let us investigate (planar) graphs. Therefore, let En con-
sist of all

�
n
2

�
(planar) graphs with a single edge on n vertices.

Lemma 18.

1. Let G be a (planar) graph. The BBA creates a maxi-
mum clique of G within at most

�
n
2

�
+1 = O(n2) steps.

2. Each black-box algorithm needs an expected number of
at least (

�
n
2

�
+1)/2 = Ω(n2) steps to create a maximum

clique of G ∈ En.

Proof. Part 1. The proposed result follows directly since
the BBA performs totally at most

�
n
2

�
queries in step 2 and

additionally one query in step 4.

Part 2. We observe a query of an element x leads to function
values −∞, if |x| ≥ 3, and |x|, if |x| ≤ 1. Moreover, for each
x, where |x| = 2, a single function of En leads to function
value 2, for all others it is −∞. Thus, each black-box algo-
rithm has to search for the “needle in a haystack” of size

�
n
2

�
.

By [4, Theorem 1] the expected number of queries of each
black-box algorithm is lower bounded by (

�
n
2

�
+ 1)/2.

Let us investigate random planar graphs.

Lemma 19. The following holds with probability 1−e−Ω(n)

and in expectation (w.r.t. the random input).

1. The BBA? creates a maximum clique of Gn within
O(n) steps.

2. Each black-box algorithm needs an expected (w.r.t. the
random bits of the algorithm) number of Ω(n) steps to
generate a maximum clique of Gn.

Proof. By Lemma 3 a fraction of at most e−cn planar
graphs contains less than cn loosely connected 4-cliques.

Part 1. Let us investigate all planar graphs containing at
least cn loosely connected 4-cliques. We observe for each
permutation π on 1, . . . , n and ` ≥ 0, V ′

4 equals {vi1 , . . . , vi`}
and {vπ(i1), . . . , vπ(i`)} for the same fraction of planar graphs.
Thus, having cycled the loop of step 2, ?, and 3 exactly
i < cn, c < 1, times for a fraction of at most�

n−i
3cn

�
/
�

n
3cn

�
= (n−3cn)···(n−3cn−i+1)

n···(n−i+1)
≤
�

n−3cn
n−cn

�i ≤ �1− c
�i

graphs no maximum clique is created in total in step ?. After
the loop has been cycled cn − 1 times for a fraction of at

most (1 − c)cn−1 ≤ e−c2n−1 planar graphs no maximum
clique is created. In this situation or if the planar graph
contains less than cn loosely connected 4-cliques, at most�

n
2

�
+(n−1)+1 ≤ n2 queries are performed until a maximum

clique is created. This leads to an expected number of at

most
Pcn−1

i=0 (1−c)i ·(n−i)+(e−c2n−1+e−cn)·n2 ≤ n/c+1 =
O(n) steps, in total.

Part 2. Let x1, . . . , xn/13 be an arbitrary sequence of ele-
ments queried within the first n/13 steps. We prove that
for a fraction of at least 1/2 of all planar graphs investi-
gated the function values |xi| are obtained for all elements
xi, where |xi| ≤ 1 and −∞ is obtained, where |xi| ≥ 2.
This is obviously true for |xi| ≤ 1 and |xi| ≥ 5 and all
planar graphs. Let us investigate the elements xi, where
2 ≤ |xi| ≤ 4. Again, we observe for each permutation π
on 1, . . . , n and ` ≥ 0, {vi1 , . . . , vi`} and {vπ(i1), . . . , vπ(i`)}
are `-cliques for the same fraction of planar graphs. By
Lemma 2 the fraction of planar graphs,

• where {v1, v2} represents a clique is upper bounded by
(3n− 6)/

�
n
2

�
≤ 6/n,

• where {v1, v2, v3} represents a clique is upper bounded by
(6n− 12)/

�
n
3

�
≤ 37/n2 ≤ 6/n, and

• where {v1, v2, v3, v4} represents a clique is upper bounded
by (6n− 12)/

�
n
4

�
≤ 145/n3 ≤ 6/n.

The fraction of planar graphs, where either the maximum
clique is smaller than two or a clique of size at least two
is created within the first n/13 steps, is upper bounded by
e−cn + 6/n · n/13 ≤ 1/2. We have considered all possible
sequences of elements queried. This leads to an expected
number of at least (n/13+1) ·1/2 = Ω(n) steps, in total.

8. SEMI-RANDOM PLANAR GRAPHS
As mentioned in the introduction, we investigate the semi-

random planar graphs G+
n , G−n , and G?

n, where we choose
ε = c/4, for the constant c > 0 mentioned in Lemma 3.
Here, we restrict to an optimal choice of the algorithms’
parameter on planar and random planar graphs.



Theorem 20. The bounds on the expected (w.r.t. the ran-
dom bits of the algorithm) number of steps to create a max-
imum clique of a semi-random planar graph – given in the
following table – hold with probability 1− n−d, for any con-
stant d > 0, and in expectation (w.r.t. the random part of
the input).

G+
n G−n G?

n

(1+1) EA1/n Θ(n5) Θ(n6) Θ(n5)
(1+1) RRLSn Θ(n) O(n2(log n)2) Θ(n)

Ω( n2(log n)2

(log log n)2
)

(16n+1) RLS Θ(n5/3) Θ(n2) Θ(n5/3)
MA1 Θ(n) Θ(n2) Θ(n)
black-box complex. Ω(n) Ω(n2) Ω(n)

Proof. By Lemma 3 with a failure probability of at most
e−cn + e−cn ≤ n−d/3 the random planar graph, which is
modified by an adversary afterwards, contains at least cn
loosely connected 3- and 4-cliques. Let H` be the graph de-
scribed in the proof of Part 2 of Lemma 8 on 6`+4 vertices.
Similar to [10, Proposition 4.4] the random planar graph on
n vertices contains at least one subgraph Hd1 log n/ log log n

with a failure probability of at most n−d/3, for a constant
d1 > 0 depending on d. Moreover, similar to [10, Proposi-
tion 4.5] the random planar graph on n vertices consists of
vertices with a degree of at most d2 log n only with a failure
probability of at most n−d/3, for a constant d2 > 0 depend-
ing on d. Let us assume that all this holds in the following.

Let us investigate a graph G+
n . The lower bounds follow

by Part 2 of Lemmas 6, 9, 12, 15, and 19. Since no 4-
clique is removed, it is seen easily that the upper bounds for
the (1+1) EA1/n and the (16n+1) RLS follow by Part 1 of
Lemmas 6 and 12. Hence, since at most 3n − 6 edges are
inserted in the random planar graph by an adversary, the
degree of at least cn vertices of V4 is at most 3/c, afterwards.
Thus, starting with the 0-clique the probability to generate
a 4-clique is lower bounded by Ω(1) for the (1+1) RRLSn

and the MA1. Similar to the proof of Part 1 of Lemmas 9
and 15, this leads to the proposed results.

Let us investigate a graph G−n . For the (1+1) EA1/n, the
(16n+1) RLS, the MA1, and the black-box complexity the
lower and upper bounds follow by Lemmas 5, 11, 14, and
18 since the graphs described in the proofs of Part 2 are
all producible by edge removal, if the random planar graph
consists of at least one loosely connected 3- and 4-clique. Let
us consider the (1+1) RRLSn. For the lower bound all edges
except these of one subgraph Hd1 log n/ log log n are removed.
Similar to the proof of Part 2 of Lemma 8 a 3-clique which is
a subset of the 4-clique is created with probability O(1/n) ·
O(log log n/ log n) ·O(log log n/ log n) = O( (log log n)2

n(log n)2
). This

leads to the proposed lower bound since a restart occurs
after n steps. For the upper bound we observe the maximal
degree is upper bounded by d2 log n. Similar to the proof
of Part 1 of Lemma 8 with probability Ω(1/n) ·Ω(1/ log n) ·
Ω(1/ log n)·Ω(1) = Ω( 1

n(log n)2
) a maximum clique is created.

Let us investigate a graph G?
n. The lower and upper

bounds follow by Lemmas 6, 9, 12, 15, and 19 since only
at most 2 · c/4 · n = cn/2 of cn loosely connected 3- and
4-cliques are modified by edge insertion or removal.

We remark the BBA? can be modified easily, such that it
works asymptotically optimal for all semi-random planar
graph models investigated here, too.

9. CONCLUSIONS
The optimization behavior of simple general randomized

search heuristics for the maximum clique problem on planar
and random planar graphs is considered rigorously in detail.
These investigations are combined and extended for the al-
gorithms’ analysis on semi-random planar graphs. In this
situation, the different strengths and weaknesses of four pop-
ular strategies to overcome local optima, namely local- vs.
global-search, single- vs. multi-start, small vs. large popula-
tion, and elitism vs. non-elitism are pointed out. Moreover,
we have observed that in particular the Metropolis algorithm
(with a carefully chosen fixed temperature) is an (asymp-
totically) optimal general heuristic for finding a maximum
clique in planar and random planar graphs. Therefore, the
black-box complexity for finding a maximum clique in pla-
nar and random planar graphs is determined, too. Future
research will investigate further simple randomized search
heuristics on further combinatorial optimization problems.
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