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On Median Quantifiers-
Helmut Thiele

We denote the set of all real numbersr withO<r <1 by [0,10] Let i be afunction with
0,10k [0,10- 0,10

The starting point of the present paper is the following well-known theorem [1, 2] charac-
terizing so-called median functions.

Theorem 1

If 1. Or0O9(r,s0 [0,10- min(r,s) < u(r,s) < max(r,s))
2. U ismonotone, commutative, associative and continuous

then there exists exactly one c O [0, 1such that for every r,s O [0, 1[)]
1. if c<min(r,s) then u(r,s) = min(r,s)
2. if max(r,s) < ¢ then u(r,s) = max(r,s)

3. if min(r,s) < ¢ < max(r,s) then u(r,s) =c.

The aim of the present paper is to generalize this theorem to fuzzy quantifiers.
First, we have to introduce the following notations and definitions.

Let U beanon-empty set called universe. A fuzzy set F onU isamapping
F:U - 0,10

i.e wedo not distinguish between afuzzy set F and its membership function pg. By U, @,
and C; we denote the universal, the empty, and a constant fuzzy set on U, respectively, for
every x 0 U defined by

U(X) =t 1

B(X) =ger O

Cr(¥) =qet 1
wherer isafixed real number from [0, 101

In the following we shall very often use the notation F X := rCwhere F 0 F(U), x O U, and
r O [0, 10 For every y 0 U we define this notation as follows
r ify=x

(F&:”-—)l(y) =def {F(y) ifin

In the field of two-valued logic A. MosTowsk| has introduced the concept of a genera
quantifier [3]. Following this approach by a general fuzzy quantifier Q on U [4-7] we un-
derstand a mapping of the form

Q:FU) - 0,10
For formulating the following lemma 2 and theorem 3 we shall use the specia fuzzy quan-
tifiers ALL and EX defined for arbitrary F O F(U) by
ALL(F) =ge INF{F()[x DU}
and EX(F) =gef SUp{F(X)|xOU}.

Furthermore, for arbitrary genera fuzzy quantifiers Q on U we define:
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Definition 1
1. Qissaidto be monotoneon F(U)
=4ef OFOG(F,GOJFU)OF OG - Q(F) £ Q(G))
2. Qissaidto be strongly associative onU and F(U)
x,yOU OFGOJFWU)
- QF Xx:=Q(G)N=Q(Gl :=Q(F X:=G(y)OD
3. Qissaidto be weakly continuous with respect toU
=4ef FOr every fixed x O U the functions ¢ and s, for every r (1 [0, 100defined by
O(r) =ges QU X:=r0)
Y(r) =ger Q(C; X:=00)

=gef UXUYUF aG

are continuouson [0, 1[]
4. Q issaidto be weakly commutative with respect toU
=gt OXOy(x,y OU - QU X:=00=Q(U y:=00)
Lemma?2
If 1. OF (F OFU) - ALL(F) < Q(F) < EX(F))
2. Q ismonotone on F(U)
3. Qisstrongly associative onU and F(U)
4. Q isweakly continuous with respect toU
then
1. DXOF x OUOF O0FU)0QU X :=00< F(X) — Q(F) <F(x)
2. OxOF (xOU OF OF(U)OF(x) < QU Xx:= 00 - F(x) < Q(F))
Proof
Casel cardU = 1.
In this case we assume
1) U = {x}.
Obvioudly, for arbitrary F 0 F(U) we get
2 ALL(F) = EX(F) =F(x),
hence by assumption 1 of lemma 2
(©) Q(F) =F(x),
i.e incase 1lemma 2 holdstrivially.
Case?2 cardU = 2.
ad 1 For arbitrary x OU and F O F(U) we have to prove

(4) Q(F) <F(¥).

We assume

(5) QU X:=00 < F(X).

Because of U X := 1= U and ALL(U) = 1 by assumption 1 of lemma 2 we have
(6) QUx:=10=1,

hence

(7) QU X:=00<F(x) < QU x:=10),



i.e. for thefunction ¢ defined on [0, 1[for the fixed x DU by
¢(r) =gt QU:=r  (r 00,10
we have
(8) pQ)<F()=¢(2).
Now, by assumption 4 of lemma 2, thefunction ¢ is continuouson [0, 1] hence
by the intermediate value theorem we obtain

9 Cs(s U [0, 1¢(s) = F (%)),

i.e

(20) (s M, 1MQU X :=s=F(X)).
Because of

(1) F=F:=F(X0O

by (10) we get

12) F=FX:=QUX:=s)j
consequently,

(13) Q(F) = Q(F X:= Q(U X:= sjIj.
Obviously, we have

(14) Or(r 00,10- FX:=r0UX:=rD,
hencefor r =g QU X :=s[)

(15) Fx:= QU X:=s)D U X:=QU X:=s)J

consequently by assumption 2 of lemma 2, i.e. by the monotonicity of Q on
F),

(16) QFX:=QU X:=sD0< QU X:=Q(U X :=s00.

Now, we apply thestrong associativity of QonU and on F(U), i. e. assumption 3
of lemma2, to

an QU x:=Q(U x:=s00.
by putting

(18) F =gt U and G =4 U X:= 5]
Hence we obtain

(19)

QUI:=QU x:=sh=Q(U X:=sNily :=Q(U IXx:= (U x:=sO(y) 0.
Because in case 2 we assumed that cardU = 2, we can supposethat y # x, hence
we get

(20) Ux:=sh(y) =1,
consequently

(21) U:=UX:=sii(y)lrFUXx:=1=U,
hence

(22) QUX:=URI:=sOy)D=QU)=1
Furthermore, because of y # x we get

(23) Ux=90y:=1[FUX:=9]

hence by (10), (22), and (23) we obtain
(24) Q(Ux:=sJly:=QU x:=(U X:=sj(y)0=Q(U X:=s0ly:=10)
=QUX:=s=F(X).
By combining (13), (16), (19), and (24) we obtain (4), i.e.
Q(F)=F(X).



ad 2 For arbitrary x OU and F O F(U) we have to prove

(25) F(X) < Q(F).
We assume
(26) F(x) < QU X := 01,
hence we have
(27) 0<F(x) <Q(U x:=00).
Because of
(28) Cox:=0k0
and
(29) UX:=0=C x:=00
we obtain
(30) Q(Cox:=001=Q(#)
< EX(0)
=0
<F®X)
<QUx:=00
=QC x:=00

Now, we consider the function (¢ defined on [0, 1[for the fixed x O U by
Y(r) =gt QG X:=00  (r OM0,10.

By (30) we have

(31) P(0) < F(x) =< ().

By assumption 4 of lemma 2, the function ¢ is continuous on [0, 1[] hence by
the intermediate val ue theorem we get

(32 Cs(s 0 0, 1M y(s) = F(x)),

i.e

(33 (5(s0 0, 1MQ(CsX := 001 = F(X)).
We put

(34) G =ger CsX:=00J

hence by (11) we obtain

(35) Q(F) = Q(F Xx:=Q(G)D.
Now, we have

(36) FX:=QG)MOx:=Q(G)0

hence by assumption 2 of lemma 2, i.e. by the monotonicity of Q on U and
F),

(37) QFX:=Q(G)0z QA x:=Q(G)0,
hence by (35) and (37)
(38) Q(F) 2 Q0 x:=Q(G)0.

Now, by the associativity of Q on U and on F(U) for F =g« @ and
G =gef CsX:=00we obtainfory =x

(39) QP x:=QG)0=Q(GX:=Q(# Ix:= G(X) L.



By (34), i. e. by definition of G, we have

(40) G(X) = (CsX:=00(x) =0.

Furthermore, we get

(41) 0 X:=G(X)= 0 X:= 00,

hence

(42) Qx:=G(x)0J=Q@X:=00=Q(#)=0,

thus

(43) GX:=Q@X:=G(X)J=G:=00
=(GCsx:=00x:=00
=CsX:=00

hence by (33) and (43)

(44) Q(Gx:=Q(@X:=G(x)00= Q(Csx:=00

=F(X).

By (38), (39), and (44) we obtain

(45) Q(F) =2 F (),

i.e (25) holds.

Theorem 3

If 1. OF (F 0F(U) - ALL(F) < Q(F) < EX(F))

2. Q ismonotone on F(U)

3. Qisstrongly associative onU and F(U)

4. Q isweakly continuousonU and F(U)

5. Q isweakly commutativeonU, i. e

OxOy(x,yOU - QUX:=00=QU [y:=00)

then there exists exactly one c O [0, 10such that for every F 00 F(U),

1. c<ALL(F) - Q(F) =ALL(F)

2. EX(F)<c - Q(F) =EX(F)

3 ALL(F)<c< EX(F) - Q(F)=c.

Proof
In order to provethe existence of c wefix an Xy 0 U and define c O [0, 1[by

1) C=def QU Do :=00.

Because of assumption 5 we have

2 OxOyx,yOU - QU X:=00=QU [y :=00),
hence ¢ does not depend on the chosen xg O U.

ad 1 Weassume

©) c< ALL(F).
By the definition of ALL and (2) we get
4 Ox(xOU - QU X:=00<F(X),



hence by assertion 1 of lemma 2,

(5) OxxOU - Q(F)<F(X),
thus by definition of ALL,

(6) Q(F) = ALL(F),
hence by assumption 1,

(7 Q(F) = ALL(F).

ad 2 We assume

8 EX(F) <c.
By (2) and the definition of EX we get

(9 Ox(xOU - F(XY) <QU x:=00),
hence by conclusion 2 of lemma 2

(20) OxxOU - F(X) <Q(F)),
thus by definition of EX

(11) EX(F) < Q(F),

hence by assumption 1,

(12) Q(F) = EX(F).

ad 3 By assumption we have
(13) ALL(F) < c< EX(F),
hence by definition of ALL and of EX
(14) thereexistsan xp JU and ayp 0 U such that F(xg) < c< F(yo).
Now, we define afuzzy set F' onU asfollows:

(15) F'(9) = {E(X) TEwse.
Then we get

(16) Ox(xOU - F' ) <FXOF'(X) <0).
Hence from (16) we get

(17) Q(F") = Q(F)

and

(18) EX(F)<c

From (18) by assumption 2 of the theorem we obtain

(19) Q(F") =EX(F').
Furthermore, by (14) and (15) we have

(20) F'(yo) =c,

hence by (18)

(21) EX(F') =c,

thushby (17), (19), and (21)

(22) c<Q(F).

Furthermore, we define asecond fuzzy set F'* onU asfollows:
(23) F'"(X) =def {E(X) :; Egg i i



Then we get

(24) OxxOU - F)<F"(X)Oc<F"(X).
From (24) by monotonicity of Q we obtain

(25) Q(F) = Q(F"),
furthermore, by definition of ALL

(26) C<ALL(F™).
From (26) by assumption 1 of the theorem we obtain
(27) Q(F'") = ALL(F").
Furthermore, by (14) and (23) we have

(28) F"(x0) =c,
hence by (26)

(29) ALL(F") =c,
thushby (25), (27), and (29)

(30) Q(F)=c,
hence by (22) and (30)

(31) Q(F)=c.

In order to prove the uniqueness of ¢ we can assume that cardU = 2 because the case of
cardU = listrivia. Now assume we havec,c' O [0, 10which fulfill the conclusion of theo-
rem 3. Without loss of generality we can assumethat c<c'. Then wefix Xo 0 U and define
afuzzy set F for arbitrary x 0 U by

(32 F(9 =us {g, oing
Then we get

(33) c=ALL(F)
and

(34) EX(F)=c.

By conclusion 1 for ¢ and conclusion 2 for ¢’ we get
(35) Q(F)=ALL(F)=c
and

(36) Q(F) =EX(F)=c,
hence

(37) c=c.

Remark Thestrong associativity of aquantifier Q includesacertain version of commuta-
tivity of Q, but not its“full” commutativity. Thisfact will discussed in detail inan extended
version of this paper.
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