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On Median Quantifiers∗

Helmut Thiele

We denote the set of all real numbers r with 0 ≤ r ≤ 1 by 〈0,1〉. Let µ be a function with

µ : 〈0,1〉 × 〈0,1〉 → 〈0,1〉 .

The starting point of the present paper is the following well-known theorem [1, 2] charac-
terizing so-called median functions.

Theorem 1
If 1. ∀r∀s(r, s ∈ 〈0,1〉 → min(r, s) ≤ µ(r, s) ≤ max(r, s))

2. µ is monotone, commutative, associative and continuous

then there exists exactly one c ∈ 〈0,1〉 such that for every r, s ∈ 〈0,1〉,

1. if c ≤ min(r, s) then µ(r, s) = min(r, s)

2. if max(r, s) ≤ c then µ(r, s) = max(r, s)

3. if min(r, s) < c < max(r, s) then µ(r, s) = c.

The aim of the present paper is to generalize this theorem to fuzzy quantifiers.

First, we have to introduce the following notations and definitions.

Let U be a non-empty set called universe. A fuzzy set F on U is a mapping

F : U → 〈0,1〉 ,

i. e. we do not distinguish between a fuzzy set F and its membership function µF . By U, ;,
and Cr we denote the universal, the empty, and a constant fuzzy set on U , respectively, for
every x ∈ U defined by

U(x) =def 1

;(x) =def 0

Cr(x) =def r

where r is a fixed real number from 〈0,1〉.

In the following we shall very often use the notation F 〈x := r〉 where F ∈ F(U), x ∈ U , and
r ∈ 〈0,1〉. For every y ∈ U we define this notation as follows

aF 〈x := r〉f(y) =def
R
S
T
r if y = x
F(y) if y ≠ x

In the field of two-valued logic A. MOSTOWSKI has introduced the concept of a general
quantifier [3]. Following this approach by a general fuzzy quantifier Q on U [4–7] we un-
derstand a mapping of the form

Q : F(U) → 〈0,1〉 .

For formulating the following lemma 2 and theorem 3 we shall use the special fuzzy quan-
tifiers ALL and EX defined for arbitrary F ∈ F(U) by

ALL(F) =def InfkF(x) x ∈ Up
and EX(F) =def SupkF(x) x ∈ Up .

Furthermore, for arbitrary general fuzzy quantifiers Q on U we define:

∗Long version of a paper originally published in Linz ’97 — Enriched Lattice Structures for Many-Valued and
Fuzzy Logics, Bildungszentrum St. Magdalena, Linz, Austria, Feb 25–Mar 1, 1997 (Abstracts), pages 71–74
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Definition 1
1. Q is said to be monotone on F(U)

=def ∀F∀G aF,G ∈ F(U) ∧ F ⊆ G → Q(F) ≤ Q(G)f
2. Q is said to be strongly associative on U and F(U)

=def ∀x∀y∀F∀G
F
G
H
x,y ∈ U ∧ F,G ∈ F(U)
→ Q(F 〈x := Q(G)〉) = Q(G 〈y := Q(F 〈x := G(y)〉)〉)

I
J
K

3. Q is said to be weakly continuous with respect to U
=def For every fixed x ∈ U the functions ϕ and ψ , for every r ∈ 〈0,1〉 defined by

ϕ(r) =def Q aU 〈x := r〉f
ψ(r) =def Q aCr 〈x := 0〉f

are continuous on 〈0,1〉.

4. Q is said to be weakly commutative with respect to U
=def ∀x∀y ax,y ∈ U → Q(U 〈x := 0〉) = Q(U 〈y := 0〉)f

Lemma 2
If 1. ∀F aF ∈ F(U) → ALL(F) ≤ Q(F) ≤ EX(F)f

2. Q is monotone on F(U)

3. Q is strongly associative on U and F(U)

4. Q is weakly continuous with respect to U

then

1. ∀x∀F ax ∈ U ∧ F ∈ F(U) ∧ Q aU 〈x := 0〉f ≤ F(x) → Q(F) ≤ F(x)f
2. ∀x∀F ax ∈ U ∧ F ∈ F(U) ∧ F(x) ≤ Q aU 〈x := 0〉f → F(x) ≤ Q(F)f

Proof
Case 1 cardU = 1.

In this case we assume

U = kxp.(1)

Obviously, for arbitrary F ∈ F(U) we get

ALL(F) = EX(F) = F(x),(2)

hence by assumption 1 of lemma 2

Q(F) = F(x),(3)

i. e. in case 1 lemma 2 holds trivially.

Case 2 cardU ≥ 2.

ad 1 For arbitrary x ∈ U and F ∈ F(U) we have to prove

Q(F) ≤ F(x).(4)

We assume

Q(U 〈x := 0〉) ≤ F(x).(5)

Because of U 〈x := 1〉 = U and ALL(U) = 1 by assumption 1 of lemma 2 we have

Q(U 〈x := 1〉) = 1,(6)

hence

Q(U 〈x := 0〉) ≤ F(x) ≤ Q(U 〈x := 1〉),(7)
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i. e. for the function ϕ defined on 〈0,1〉 for the fixed x ∈ U by

ϕ(r) =def Q(U 〈x := r〉) (r ∈ 〈0,1〉)
we have

ϕ(0) ≤ F(x) ≤ ϕ(1).(8)

Now, by assumption 4 of lemma 2, the function ϕ is continuous on 〈0,1〉, hence
by the intermediate value theorem we obtain

∃s as ∈ 〈0,1〉 ∧ ϕ(s) = F(x)f ,(9)

i. e.

∃s as ∈ 〈0,1〉 ∧ Q(U 〈x := s〉) = F(x)f .(10)

Because of

F = F 〈x := F(x)〉(11)

by (10) we get

F = F 〈x := Q(U 〈x := s〉)〉 ,(12)

consequently,

Q(F) = Q aF 〈x := Q(U 〈x := s〉)〉f .(13)

Obviously, we have

∀r ar ∈ 〈0,1〉 → F 〈x := r〉 ⊆ U 〈x := r〉f ,(14)

hence for r =def Q(U 〈x := s〉)
F 〈x := Q(U 〈x := s〉)〉 ⊆ U 〈x := Q(U 〈x := s〉)〉 ,(15)

consequently by assumption 2 of lemma 2, i. e. by the monotonicity of Q on
F(U),

Q aF 〈x := Q(U 〈x := s〉)〉f ≤ Q aU 〈x := Q(U 〈x := s〉)〉f .(16)

Now, we apply the strong associativity of Q onU and on F(U), i. e. assumption 3
of lemma 2, to

Q aU 〈x := Q(U 〈x := s〉)〉f .(17)

by putting

F =def U and G =def U 〈x := s〉 .(18)

Hence we obtain

Q aU 〈x := Q(U 〈x := s〉)〉f = Q aaU 〈x := s〉f 〈y := Q aU 〈x := aU 〈x := s〉f(y)〉f〉f .
(19)

Because in case 2 we assumed that cardU ≥ 2, we can suppose that y ≠ x, hence
we get

aU 〈x := s〉f (y) = 1,(20)

consequently

U 〈x := aU 〈x := s〉f (y)〉 = U 〈x := 1〉 = U,(21)

hence

Q aU 〈x := aU 〈x := s〉f (y)〉f = Q(U) = 1.(22)

Furthermore, because of y ≠ x we get

aU 〈x := s〉f〈y := 1〉 = U 〈x := s〉 ,(23)

hence by (10), (22), and (23) we obtain

Q aaU 〈x := s〉f 〈y := Q aU 〈x := aU 〈x := s〉f (y)〉f〉f = Q aaU 〈x := s〉f 〈y := 1〉f(24)

= Q aU 〈x := s〉f = F(x).

By combining (13), (16), (19), and (24) we obtain (4), i. e.

Q(F) ≤ F(x).
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ad 2 For arbitrary x ∈ U and F ∈ F(U) we have to prove

F(x) ≤ Q(F).(25)

We assume

F(x) ≤ Q(U 〈x := 0〉),(26)

hence we have

0 ≤ F(x) ≤ Q(U 〈x := 0〉).(27)

Because of

C0 〈x := 0〉 = ;(28)

and

U 〈x := 0〉 = C1 〈x := 0〉(29)

we obtain

Q aC0 〈x := 0〉f = Q(;)(30)

≤ EX(;)

= 0

≤ F(x)

≤ Q aU 〈x := 0〉f
= Q aC1 〈x := 0〉f

Now, we consider the function ψ defined on 〈0,1〉 for the fixed x ∈ U by

ψ(r) =def Q(Cr 〈x := 0〉) (r ∈ 〈0,1〉).

By (30) we have

ψ(0) ≤ F(x) ≤ ψ(1).(31)

By assumption 4 of lemma 2, the function ψ is continuous on 〈0,1〉, hence by
the intermediate value theorem we get

∃s as ∈ 〈0,1〉 ∧ ψ(s) = F(x)f ,(32)

i. e.

∃s as ∈ 〈0,1〉∧ Q(Cs 〈x := 0〉) = F(x)f .(33)

We put

G =def Cs 〈x := 0〉 ,(34)

hence by (11) we obtain

Q(F) = Q aF 〈x := Q(G)〉f .(35)

Now, we have

F 〈x := Q(G)〉 ⊇ ;〈x := Q(G)〉 ,(36)

hence by assumption 2 of lemma 2, i. e. by the monotonicity of Q on U and
F(U),

Q aF 〈x := Q(G)〉f ≥ Q b;〈x := Q(G)〉g ,(37)

hence by (35) and (37)

Q(F) ≥ Q b;〈x := Q(G)〉g .(38)

Now, by the associativity of Q on U and on F(U) for F =def ; and
G =def Cs 〈x := 0〉 we obtain for y = x

Q b; 〈x := Q(G)〉g = Q bG 〈x := Q b;〈x := G(x)〉g〉g .(39)
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By (34), i. e. by definition of G, we have

G(x) = aCs 〈x := 0〉f (x) = 0.(40)

Furthermore, we get

; 〈x := G(x)〉 = ; 〈x := 0〉 = ;,(41)

hence

Q b;〈x := G(x)〉g = Q b; 〈x := 0〉g = Q b;g = 0,(42)

thus

G 〈x := Q b;〈x := G(x)〉g〉 = G 〈x := 0〉(43)

= aCs 〈x := 0〉f〈x := 0〉
= Cs 〈x := 0〉 ,

hence by (33) and (43)

Q bG 〈x := Q b; 〈x := G(x)〉g〉g = Q aCs 〈x := 0〉f(44)

= F(x).

By (38), (39), and (44) we obtain

Q(F) ≥ F(x),(45)

i. e. (25) holds.

�

Theorem 3
If 1. ∀F aF ∈ F(U) → ALL(F) ≤ Q(F) ≤ EX(F)f

2. Q is monotone on F(U)

3. Q is strongly associative on U and F(U)

4. Q is weakly continuous on U and F(U)

5. Q is weakly commutative on U , i. e.

∀x∀y ax,y ∈ U → Q aU 〈x := 0〉f = Q aU 〈y := 0〉ff

then there exists exactly one c ∈ 〈0,1〉 such that for every F ∈ F(U),

1. c ≤ ALL(F) → Q(F) = ALL(F)

2. EX(F) ≤ c → Q(F) = EX(F)

3. ALL(F) < c < EX(F) → Q(F) = c.

Proof
In order to prove the existence of c we fix an x0 ∈ U and define c ∈ 〈0,1〉 by

c =def Q aU 〈x0 := 0〉f .(1)

Because of assumption 5 we have

∀x∀y ax,y ∈ U → Q aU 〈x := 0〉f = Q aU 〈y := 0〉ff ,(2)

hence c does not depend on the chosen x0 ∈ U .

ad 1 We assume

c ≤ ALL(F).(3)

By the definition of ALL and (2) we get

∀x ax ∈ U → Q aU 〈x := 0〉f ≤ F(x)f ,(4)
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hence by assertion 1 of lemma 2,

∀x ax ∈ U → Q(F) ≤ F(x)f ,(5)

thus by definition of ALL,

Q(F) ≤ ALL(F),(6)

hence by assumption 1,

Q(F) = ALL(F).(7)

ad 2 We assume

EX(F) ≤ c.(8)

By (2) and the definition of EX we get

∀x ax ∈ U → F(x) ≤ Q aU 〈x := 0〉ff ,(9)

hence by conclusion 2 of lemma 2

∀x ax ∈ U → F(x) ≤ Q(F)f ,(10)

thus by definition of EX,

EX(F) ≤ Q(F),(11)

hence by assumption 1,

Q(F) = EX(F).(12)

ad 3 By assumption we have

ALL(F) < c < EX(F),(13)

hence by definition of ALL and of EX

there exists an x0 ∈ U and a y0 ∈ U such that F(x0) < c < F(y0).(14)

Now, we define a fuzzy set F ′ on U as follows:

F ′(x) =def
R
S
T
F(x) if F(x) ≤ c
c if F(x) > c

.(15)

Then we get

∀x ax ∈ U → F ′(x) ≤ F(x) ∧ F ′(x) ≤ cf .(16)

Hence from (16) we get

Q(F′) ≤ Q(F)(17)

and

EX(F ′) ≤ c.(18)

From (18) by assumption 2 of the theorem we obtain

Q(F ′) = EX(F ′).(19)

Furthermore, by (14) and (15) we have

F ′(y0) = c,(20)

hence by (18)

EX(F ′) = c,(21)

thus by (17), (19), and (21)

c ≤ Q(F).(22)

Furthermore, we define a second fuzzy set F ′′ on U as follows:

F ′′(x) =def
R
S
T
F(x) if F(x) ≥ c
c if F(x) < c

.(23)
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Then we get

∀x ax ∈ U → F(x) ≤ F ′′(x) ∧ c ≤ F ′′(x)f .(24)

From (24) by monotonicity of Q we obtain

Q(F) ≤ Q(F ′′),(25)

furthermore, by definition of ALL

c ≤ ALL(F′′).(26)

From (26) by assumption 1 of the theorem we obtain

Q(F ′′) = ALL(F ′′).(27)

Furthermore, by (14) and (23) we have

F ′′(x0) = c,(28)

hence by (26)

ALL(F′′) = c,(29)

thus by (25), (27), and (29)

Q(F) ≤ c,(30)

hence by (22) and (30)

Q(F) = c.(31)

In order to prove the uniqueness of c we can assume that cardU ≥ 2 because the case of
cardU = 1 is trivial. Now assume we have c,c′ ∈ 〈0,1〉 which fulfill the conclusion of theo-
rem 3. Without loss of generality we can assume that c ≤ c′. Then we fix x0 ∈ U and define
a fuzzy set F for arbitrary x ∈ U by

F(x) =def
R
S
T
c if x = x0
c′ if x ≠ x0

.(32)

Then we get

c = ALL(F)(33)

and

EX(F) = c′.(34)

By conclusion 1 for c and conclusion 2 for c′ we get

Q(F) = ALL(F) = c(35)

and

Q(F) = EX(F) = c′,(36)

hence

c = c′.(37)

�

Remark The strong associativity of a quantifier Q includes a certain version of commuta-
tivity of Q, but not its “full” commutativity. This fact will discussed in detail in an extended
version of this paper.
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