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Abstract

In the common polynomial regression model of degree m we consider the problem of

determining the D- and D1-optimal designs subject to certain constraints for the D1-

e�ciencies in the models of degree m� j;m� j + 1 ; : : : ;m+ k (m > j � 0; k � 0 given).

We present a complete solution of these problems, which on the one hand allow a fast

computation of the constrained optimal designs and on the other hand give an answer to

the question of the existence of a design satisfying all constraints. Our approach is based

on a combination of general equivalence theory with the theory of canonical moments. In

the case of equal bounds for the D1-e�ciencies the constrained optimal designs can be
found explicitly by an application of recent results for associated orthogonal polynomials.

AMS Subject classi�cation: 62K05, 33C45
Keywords and Phrases: Constrained optimal designs, polynomial regression, D- andD1-optimal
designs, associated orthogonal polynomials

1 Introduction

In �tting a parametric regression model there are usually several objectives which should be
addressed by the design of the experiment. Model adequacy could be a serious problem [see e.g.
Box and Draper (1959)] and usually designs are desirable which are on the one hand e�cient for
discriminating between several competing models and have on the other hand good properties
for the estimation of the parameters in the identi�ed model. Multiple objectives cannot be
easily characterized by standard optimality criteria as proposed in Kiefer (1974).
There are essentially two ways for the construction of design criteria which incorporate di�erent
purposes of the experimenter. One approach is the construction of a new optimality criterion
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by averaging several competitive design criteria. This is called a compound (or weighted)
optimal design problem [see L�auter (1974), Cook and Nachtsheim (1982) or Dette (1990)].
Alternatively one could try to maximize one primary optimality criterion subject to constraints
for speci�c minimum e�ciencies of other criteria. This is called a constrained optimal design
problem [see Stigler (1971), Studden (1982b), Lee (1988 a,b)]. Cook and Wong (1994) showed
the equivalence between compound and constrained optimal designs in the case of two design
criteria [see also Dette (1995a) and Clyde and Chaloner (1996) for more general formulations
of these results]. Roughly speaking, a solution of a compound optimal design problem is also a
solution of the constrained optimal design problem, if the constraints are de�ned appropriately.
Conversely, an appropriate de�nition of the weights yields always optimality of a constrained
optimal design with respect to the compound criterion [see Dette (1995a)].
Although these results are interesting from a theoretical point of view they are not too useful
for determining constrained optimal designs in practice. In most cases these designs have to
be found numerically, and the corresponding algorithms only work with a few constraints. A
particular di�culty in such calculations is the determination of a starting design, because the
question of the existence of at least one design satisfying all constraints has in general no
clear answer. Moreover, to the knowledge of the authors no explicit solutions are available
for constrained optimal design problems with more than one constraint. One reason for these
di�culties is that the corresponding equivalence theorems contain certain Lagrange multipliers
which in general are not uniquely determined [see e.g. Pukelsheim (1993), Section 11.19 and
11.20].
It is the purpose of the present paper to provide additional insight in the complicated structure
of these problems by deriving explicit solutions for two constrained optimal design problems
which appear in polynomial regression models. Our �rst criterion (called constrained D1-D1-
criterion) is motivated by the identi�cation of the appropriate degree of the polynomial. Here
the constrained optimal design maximizes the power of the test for the highest coe�cient in a
model of degree m subject to the constraints that the design yields e�cient tests for the highest
coe�cients in the models of degreem�j;m�j+1; : : : ; m�1; m+1; : : : ; m+k (m > j � 0; k � 0
given). Similary, our second criterion (termed constrained D-D1-criterion) determines the D-
optimal design for the model of degree m in the class of all designs which guarantee given
e�ciencies for testing the highest coe�cients in the models of degree m�j;m�j+1; : : : ; m+k�
1; m+k: Our approach is based on a combination of general equivalence theory [see Pukelsheim
(1993)] with the theory of canonical moments which was introduced by Skibinsky (1967) and
applied by Studden (1980, 1982a, 1982b, 1989) for determining optimal designs in polynomial
regression models. This enables us to identify the Lagrange multipliers in the corresponding
equivalence theorem explicitly and to characterize the constrained optimal design by a system of
(nonlinear) equations for its canonical moments. Moreover, for special choices of the constraints
(e.g. equal constraints for all e�ciencies) the corresponding designs can be characterized by
linear combinations of associated ultraspherical polynomials [see Grosjean (1986) or Lasser
(1994)].
The paper will be organized as follows. In Section 2 we introduce the constrained optimality
criteria in the context of polynomial regression models. The D1-D1-constrained optimal design
problem is solved in Section 3, while Section 4 states the corresponding results for the D-D1-
constrained optimality criterion. Finally, some of the more technical proofs are deferred to the
appendix in Section 5.
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2 Two constrained design criteria for polynomial regres-

sion models

Consider the common polynomial regression of degree m

Y = #Tmfm(x) + " =
mX
j=0

#m;jx
j + "(2.1)

where " is a random error with mean 0 and constant variance, fm(x) = (1 ; x; : : : ; xm)T denotes
the vector of regression functions, #m = ( #m;0; : : : ; #m;m)

T is the vector of parameters and the
explanatory variable is taken from a compact interval, say X : For an approximate design �;
which is a probability measure with �nite support on the design space X ; the Fisher information
matrix for the parameter #m can be expressed as

Mm(�) =

Z
X

fm(x)f
T
m(x)d�(x):(2.2)

An optimal design maximizes an appropriate information function of the Fisher information
matrix Mm(�) [see Pukelsheim (1993)] and there are numerous criteria which can be used for
the construction of e�cient designs. In this paper we will concentrate on the D-criterion

�m(�) := jMm(�)j1=(m+1) ! max
�

(2.3)

and the D1-criterion

	m(�) := ( eTmM
�1
m (�)em)

�1 =
jMm(�)j
jMm�1(�)j ! max

�
(2.4)

where em = (0 ; : : : ;0; 1)T 2 R
m+1 denotes the (m + 1)th unit vector. A D-optimal design

minimizes the volume of the ellipsoid of concentration for the unknown parameter #m 2 R
m+1

while a D1-optimal design maximizes the power of the test for the hypothesis H0 : #m;m = 0
in the polynomial regression of degree m: The D- and D1-optimal designs for the polynomial
regression model of degree m have been explicitly found by Hoel (1958) [see also Guest (1958)]
and Kiefer and Wolfowitz (1959), respectively.
Note that the two optimality criteria in (2.3) and (2.4) require the speci�cation of a ,,correct"
degree of the regression. In practice this is rarely available and a design for a degree m model
will typically be used to test the terms in the model for signi�cance or to test the lack of
�t of higher and lower order polynomials. If, for example, the experimenter has some prior
information that a polynomial of degree m adequately describes the data but wants to use
his design to test for polynomials of degree m � j;m � j + 1 ; : : : ; m+ k � 1; m + k for given
j; k 2 N0 ; j < m; the following two constrained optimality criteria might be appropriate

maximize 	m(�) subject to(2.5)

e�D1

l (�) � cl for l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k

maximize �m(�) subject to(2.6)

e�D1

l (�) � cl for l = m� j; : : : ; m + k:

3



Here e�D1

l (�) denotes the e�ciency of the design � for testing the highest coe�cient in the
polynomial regression of degree l; that is

e�D1

l (�) =
	l(�)

max
�

	l(�)
;(2.7)

and cm�j; : : : ; cm+k 2 (0; 1) denote given numbers specifying the guaranteed e�ciencies of the
design � for testing the highest coe�cients in the models of degree m � j; : : : ; m + k: The
criterion (2.5) could be used if the primary interest of the experiment is the identi�cation of
the appropriate degree of the regression and there is some preference for the model of degree
m � 1 or m: Similary the constrained optimality criterion (2.6) is useful, if a model of degree
m seems to be appropriate but there is a possibility of a higher or lower order regression. In
this case the maximization of the determinant in (2.6) will yield a good design for estimating
the parameters in the model of degree m which has reasonable e�ciencies for testing the lack
of �t of the polynomials of degree m� j; : : : ; m+ k:
It follows from standard arguments in design theory that for the polynomial regression model
the constrained optimization problems (2.5) and (2.6) are not changed under an a�ne trans-
formation of the design space X and we may assume without loss of generality X = [ �1;1]:
Moreover, the strict concavity of the criteria in (2.3) and (2.4) implies that a constrained
optimal design [with respect to (2.5) or (2.6)] on a symmetric design space must be symmetric.
A further important tool for determining optimal designs for polynomial regression is the the-
ory of canonical moments which was introduced by Skibinsky (1967) and applied by Studden
(1980, 1982a, 1982b) in this context [see also Lau (1983, 1988), Skibinsky (1986) and the re-
cent monograph of Dette and Studden (1997)]. Roughly speaking every probability measure
on the interval [�1; 1] is uniquely determined by a sequence (p1; p2; : : :) whose elements vary
independently in the interval [0; 1]: For a given probability measure on the interval [�1; 1] the
element pj of the corresponding sequence is called the jth canonical moment of �: If j is the
�rst index for which pj 2 f 0;1g; then the sequence of canonical moments terminates at pj; the
measure is supported at a �nite number of points and can be determined by evaluating certain
orthogonal polynomials [see Skibinsky (1986) or Lau (1988)]. Moreover, a measure � on the
interval [�1; 1] is symmetric if and only if all canonical moments of odd order are equal 1/2
and for a symmetric measure we obtain for the determinant of the information matrix

jMm(�)j =
mY
j=1

(q2j�2p2j)
m�j+1:(2.8)

This gives for the element in the position (m + 1 ; m+ 1) of the matrix M�1
m (�)

(eTmM
�1
m (�)em)

�1 =
mY
j=1

q2j�2p2j;(2.9)

where p2; p4; : : : denote the canonical moments (of even order) of the design � and qj = 1 �
pj (j � 1): Observing these identities we can easily identify the canonical moments of the
D1-optimal design in the polynomial regression model of degree m; i.e.

pj =
1

2
; j = 1 ; : : : ;2m� 1; p2m = 1 ;
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which implies for the D1-e�ciency of a symmetric design �

e�D1

m (�) = 22m�2

mY
i=1

q2i�2p2i:(2.10)

Similary, the D-optimal design in the polynomial regression of degree m is determined by its
canonical moments

p2l =
m� l + 1

2(m� l) + 1
; p2l�1 =

1

2
; l = 1 ; : : : ; m(2.11)

where the canonical moments of even order are obtained by maximizing (2.8) and the canonical
moments of odd order are all equal to 1=2 by the symmetry of the D-optimal design.
It will be demonstrated in Section 3 and 4 that the constrained optimal designs (with respect
to the criteria (2.5) and (2.6) can be described explicitly by a system of (nonlinear) equations
for their canonical moments. In other words, the solution of this system yields the canonical
moments of the constrained optimal design and the identi�cation of the measure corresponding
to the ,,optimal\ canonical moments can then be performed by standard methods [see Dette
and Studden (1997), Section 3].

3 D1-D1-constrained optimal designs

An important tool for the veri�cation of optimality and the numerical construction of opti-
mal designs are equivalence theorems [see Kiefer (1974)]. In the context of constrained optimal
design criteria these characterizations contain several Lagrange multipliers which are not neces-
sarily uniquely determined. Although these unknown quantities in the characterizing inequality
make a direct application of the equivalence theorem impossible, we will nevertheless use this
type of characterization as one main ingredient for the solution of the constrained optimal
design problem (2.5).

Theorem 3.1. A design � is a solution of the constrained optimal design problem (2.5) if and
only if � satis�es the constraints and there exist nonnegative numbers �l (l = m � j; : : : ; m �
1; m+ 1 ; : : : ; m+ k), �m+k > 0, with

�l e�
D1

l (�) = �lcl(3.1)

l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k

�m = 1�
m�1X

l=m�j

�l �
m+kX

l=m+1

�l � 0(3.2)

such that the inequality
m+kX

l=m�j

�l
(eTl M

�1
l (�)fl(x))

2

eTl M
�1
l (�)el

� 1(3.3)

holds for all x 2 X = [ �1;1]:
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Proof. Note that cm+k > 0 implies jMm+k(�)j > 0 for any design satisfying the constraints in
(2.5). If there exists a design � with

e�D1

l (�) > cl l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k(3.4)

the assertion of the theorem is a direct consequence of a general equivalence theorem for con-
strained optimal designs [see Pukelsheim (1993), Section 11.19 and 11.20]. In this case we have
additionally �m > 0:
In the remaining case any design which satis�es the constraints in (2.5) (now with at least one
equality) also maximizes

minfe�
D1

l (�)

cl
j l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ kg

in the class of all designs (such that jMm+k(�)j 6 = 0) with optimal value equal to one. Now the re-
sults of Dette (1995b) [Theorem 2.1 in this paper with n = m+k, #2l = fmax�(e

T
l M

�1
l (�)el)

�1clg�1
if l = m � j; : : : ; m � 1; m + 1 ; : : : ; m+ k; #l = 0 if l = 1 ; : : : ; m� j � 1; m ] show that there
is exactly one design maximizing the minimum of weighted D1-e�ciencies which is obviously
optimal with respect to the constrained criterion (2.5) and satis�es (3.1) - (3.3) with �m = 0 :
2

Theorem 3.2. The solution of the constrained optimal design problem (2.5) is unique. A design
�� is a solution of the constrained optimal design problem (2.5) if and only if its canonical
moments of odd order are given by p2j�1 = 1

2
(j = 1 ; : : : ; m+ k); p2m+2k = 1 ;and the

canonical moments (p2; : : : ; p2m+2k�2) of even order are the solution of the system of equations

p2l =
1

2
;(3.5)

l = 1 ; : : : ; m� j � 1

p2l = max
n cl

22(l�m+j)
Ql�1

i=m�j p2i(1� p2i)
;
1

2

o
;(3.6)

l = m� j; : : : ; m� 1;

p2l = max
n
1� cm+k

22(m+k�l)cl
Qm+k�1

i=l+1 p2i(1� p2i)
;
1

2

o
;(3.7)

l = m+ k � 1; m+ k � 2; : : :m+ 1 ;

p2m =
1

2
+

s
1

4
� cm+k

22(j+k)
Qm+k�1

l=m�j;l 6=m p2l(1� p2l)
if k > 0:(3.8)

Proof. By the discussion of Section 2 the constrained optimal design must be symmetric and
we obtain p2j�1 = 1 =2; j = 1 ; : : : ; m+ k: By Theorem 3.1 of this paper and Theorem 6.3.2 in
Dette and Studden (1997) (for p = 0) a design �� is a solution of the constrained optimal design
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problem (2.5) if and only if there exists a prior (�1; : : : ; �m+k) for the class of polynomials of
degree 1; 2; : : : ; m+ k with (�l � 0;

Pm+k
l=1 �l = 1 ; �m+k > 0)

�l = 0 l = 1 ; : : : ; m� j � 1(3.9)

�le�
D1

l (��) = �lcl l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k ;(3.10)

such that �� maximizes the geometric mean

m+kY
l=1

(e�D1

l (�))�l

over the class of all designs with jMm+k(�)j 6 = 0 :Now Theorem 6.2.3 in Dette and Studden
(1997) implies p2m+2k = 1 and Theorem 6.2.6 in the same reference expresses the weights �l in
terms of the canonical moments of the optimal design ��; that is

�l =
l�1Y
j=1

q2j
p2j

(1� q2l
p2l

) l = 1 ; : : : ; m+ k(3.11)

(note that by symmetry all canonical moments of odd order are equal 1=2): From (3.9) and
(3.11) we thus obtain (3.5), i.e. p2l = 1 =2;l = 1 ; : : : ; m� j � 1: Now (2.10) gives

e�D1

m�j(�
�) = 22m�2j�2

m�jY
i=1

q2i�2p2i = p2m�2j

and using (3.10) for l = m � j yields for the canonical moment of order 2m � 2j either
p2m�2j = 1 =2 (equivalently�m�j = 0) or p2m�2j = cm�j: Observing the inequalities e�

D1

m�j(�
�) �

cm�j; �m�j � 0 gives

p2m�2j = maxfcm�j;
1

2
g =: �

(note that p2m�2jq2m�2j appears in all e�ciencies in the models of degree l > m � j and
consequently increasing p2m�2j in the interval [�; 1

2
] will yield smaller e�ciencies in the models

of higher degree).
In the next step we obtain for l = m� j + 1

e�D1

m�j+1(�
�) = 22(m�j)

m�j+1Y
i=1

q2i�2p2i = 22q2m�2jp2m�2jp2m�2j+2

which implies (by the same reasoning)

p2m�2j+2 = maxf cm�j+1

22q2m�2jp2m�2j
;
1

2
g:

Repeating these arguments for l = m� j; : : : ; m� 1 yields the canonical moments in (3.6). For
a proof of the identity (3.7) we note that �m+k > 0 implies (by an application of (3.10) for
l = m+ k)
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e�D1

m+k(�
�) = cm+k:(3.12)

A further application of (3.10) (for l = m + k � 1) and (2.10) now yields

�m+k�1

4q2m+2k�2
=

�m+k�1e�
D1

m+k�1(�
�)

e�D1

m+k(�
�)

= �m+k�1
cm+k�1

cm+k

which can be solved with respect to p2m+2k�2: This yields either p2m+2k�2 = 1
2
(equivalently

�m+k�1 = 0) or p2m+2k�2 = 1 � cm+k=(2
2cm+k�1): Observing �m+k�1 � 0 and that the maxi-

mization of p2m+2k�2 makes e�D1

m+k�1(�
�) as large as possible (without a�ecting the e�ciencies

in the models of degree yields l � m+ k � 2) yields

p2m+2k�2 = maxf1� cm+k

22cm+k�1
;
1

2
g:

Repeating these steps for l = m + k � 2; : : : ; m + 1 gives the identities in (3.7). Finally,
if k > 0 (3.12) is a quadratic equation with respect to p2m; where p2m should be as large
as possible [because e�D1

m (�) has to be maximized]. This implies (3.8) and proves that the
canonical moments (of even order) of the solution of the constrained optimal design problem
satisfy the equations (3.5) { (3.8). Conversely, these arguments also show that a design with
canonical moments speci�ed in Theorem 3.2 satis�es the conditions (3.1) { (3.3) of Theorem
3.1, which is equivalent to its optimality with respect to the constrained optimality criterion
(2.5). This proves the main part of the assertion of Theorem 3.2.
The remaining statement regarding the uniqueness is shown as follows. It follows from the
previous discussion for any optimal design p2m+2k = 1 :This implies [observing (3.10) and (3.11)]
e�D1

m+k(�) = cm+k for any design � which is optimal with respect to the constrained optimality

criterion (2.5). Assume that �(1) and �(2) were optimal designs with respect to the criterion

(2.5) with corresponding canonical moments p
(1)
j ; p

(2)
j ; respectively (p

(1)
2m+2k = p

(2)
2m+2k = 1) ;then

the concavity of the function

log e�D1

l (�) =
l�1X
j=1

log p2j(1� p2j) + log p2l + (2 l� 2) log 2

(l = 1 ; : : : ; m+ k � 1) and the strict concavity of the function

log e�D1

m+k(�) =
m+k�1X
j=1

log p2j(1� p2j) + (2m+ 2 k� 2) log 2

on the cube (0; 1)m+k�1 imply that the design �� corresponding to the canonical moment p�j =

(p
(1)
j + p

(2)
j )=2 is also optimal with respect to the constrained optimality criterion (2.5) and

additionally satis�es e�D1

m+k(�
�) > cm+k: But this contradicts p

�
2m+2k = 1 (which implies ��

m+k >
0) and (3.10) proving the uniqueness of the solution of the constrained optimal design problem.
2

Note that Theorem 3.2 also answers the question of the existence of designs satisfying all
constraints in (2.5). The solution of the constrained optimal design problem is either unique or
there does not exist any design satisfying all constraints. In the �rst case all canonical moments
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p2m�2j ; : : : ; p2m+2k�2 speci�ed by (3.6), (3.7) and (3.8) are located in the interval (0; 1): If there
exists no design satisfying all constraints in (2.5) either the equations (3.6) de�ne a quantity
outside the interval (0; 1) or p2m de�ned in (3.8) is not real. In this case the quantities pj de�ned
in Theorem 3.2 are no canonical moments (as introduced in Section 2) and do not correspond
to a design on the interval [�1; 1]: Consequently there is no solution of the constrained optimal
design problem (2.5). We will illustrate both situations in the following example.

Example 3.3. Consider the case m = 2 ; k= 1 ; j= 1 ;where the constrained optimal design
problem (2.5) simpli�es to

maximize e�D1

2 (�) subject to(3.13)

e�D1

1 (�) � c1

e�D1

3 (�) � c3:

In other words we are interested in a good design for testing the coe�cient of the quadratic
term in a polynomial of degree 2 with guaranteed e�ciencies for testing the highest coe�cient
in the linear and cubic model. From Theorem 3.2 we obtain p2j�1 = 1 =2 j = 1 ;2; 3; p6 = 1
and

p2 = maxf1
2
; c1g

p4 =

8>><
>>:

1
2
(1 +

p
1� c3) if c1 � 1

2

1
2
(1 +

q
1� c3

4c1(1�c1)
) if c1 >

1
2

(note that the equation (3.7) does not appear in this case). If c1 � 1=2 there always exists a
solution �� of the constrained optimal design problem (3.13) with e�ciencies

e�D1

1 (��) =
1

2
; e�D1

2 (��) =
1

2
(1 +

p
1� c3); e�

D1

3 (��) = c3:

If c1 > 1=2 the constrained optimal design problem (3.13) is solvable if and only if the bounds
for the e�ciencies satisfy

c3 � 4c1(1� c1):

In this case the constrained D1-D1-optimal design �� yields the D1-e�ciencies

e�D1

1 (��) = c1; e�D1

2 (��) = 2 c1(1� c1)
�
1 +

r
1� c3

4c1(1� c1)

�
; e�D1

3 (��) = c3:

In all cases the constrained optimal design puts masses � = p2p4=(2(1 � p2q4)) at the points
�1 and 1 and masses 1=2 � � at the points �pp2q4 and

p
p2q4; respectively [see Dette and

Studden (1997), p. 106].

In the remaining part of this section we will concentrate on the special but very important case
that all constraints for the e�ciencies in (2.5) are equal. The following result is obtained by an
application of Theorem 3.2.
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Corollary 3.4. A solution of the constrained optimal design problem (2.5) with cl = c 2
(0; 1); l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k exists if and only if

0 < c � j + k + 1

2(j + k)
in the case k > 0.(3.14)

0 < c <
j + 1

2j
in the case k = 0 .

The canonical moments of the constrained optimal design are given by p2j�1 = 1
2

(j =
1; : : : ; m+ k); p2m+2k = 1 and

p2l =
1

2
(3.15)

l = 1 ; : : : ; m� j � 1

p2l =
m + k � l + 2

2(m+ k � l + 1)
(3.16)

l = m+ 1 ; : : : ; m+ k � 1

p2l =

8>>><
>>>:

1

2

(2c� 1)(l �m+ j)� 2c

(2c� 1)(l �m + j + 1)� 2c
if c >

1

2

1

2
if c � 1

2

(3.17)

l = m� j; : : : ; m� 1

p2m =

8>>>>><
>>>>>:

1

2
+
1

2

s
j + k + 1� 2(j + k)c

(k + 1)(j + 1� 2jc)
if c >

1

2

1

2
+
1

2

r
1� 2ck

k + 1
if c � 1

2
:

(3.18)

Proof. The equation in (3.15) coincides with (3.5). In the case of equal bounds for the
e�ciencies cl = c; l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k; the recursive relation (3.7) simpli�es
to p2m+2k = 1

p2l = 1� 1

4p2l+2
l = m + k � 1; m+ k � 2; : : : ; m+ 1(3.19)

which gives (3.16), by induction. If c � 1
2
a further induction and (3.6) show

p2l =
1

2
l = m� j; : : : ; m� 1(3.20)

and we obtain from (3.8), (3.16) and (3.20)

p2m =
1

2
+
1

2

r
1� 2ck

k + 1

10



which coincides with (3.18) for c � 1=2: In this case the constrained optimal design problem is
solvable and the canonical moments of the optimal design are speci�ed by (3.15) - (3.18) (for
c � 1

2
):

For c > 1
2
it follows that (3.15) and (3.16) are still valid by the same reasoning as given in the

case c � 1
2
: For a proof of the equations in (3.17) in the case c > 1

2
we show by induction that

a solution of (3.6) in the interval (0; 1) necessarily satis�es

p2m�2j+2t =
1

2

(2c� 1)t� 2c

(2c� 1)(t+ 1)� 2c
;

1

2
< c <

t+ 2

2t+ 2
t = 0 ; : : : ; j� 1:(3.21)

Obviously (3.6) reduces to (3.21) for t = 0 if c > 1
2
: In order to prove the step from t ! t + 1

we note that

m�j+tY
l=m�j

p2lq2l =
1

4t+1

tY
l=0

(2c� 1)l � 2c

(2c� 1)(l + 1)� 2c
� (2c� 1)(l + 2)� 2c

(2c� 1)(l + 1)� 2c
(3.22)

=
1

4t+1
2c((2c� 1)(t+ 2)� 2c)

(2c� 1)(t+ 1)� 2c

and (3.6) yields for l = m� j + t + 1; t � j � 2

p2m�2j+2t+2 = max
n1
2

(2c� 1)(t+ 1)� 2c

(2c� 1)(t+ 2)� 2c
;
1

2

o
=

1

2

(2c� 1)(t+ 1)� 2c

(2c� 1)(t+ 2)� 2c
(3.23)

where the last identity follows from c > 1
2
and c < t+2

2t+2
(by the induction hypothesis). Finally,

p2m�2l+2t+2 < 1 yields this inequality for t + 1 ; i.e. c < t+3
2t+4

; which proves (3.21) for all
t = 0 ; : : : ; j� 1: Note that (3.21) implies

c <
j + 1

2j
(3.24)

as a necessary condition for the existence of a solution of the constrained optimal design prob-
lem. The remaining part of the proof is obtained by the calculation of p2m using formula (3.8)
in Theorem 3.3. Observing (3.16) and (3.22) for t = j � 1 gives

p2m =
1

2
+
1

2

s
1� k

k + 1

(2c� 1)j � 2c

(2c� 1)(j + 1)� 2c
=

1

2
+
1

2

s
j + k + 1� 2c(j + k)

(k + 1)(j + 1� 2cj)

where the argument of the squareroot is nonnegative if and only if

c � k + j + 1

2(k + j)

[here we use the inequality in (3.21) for t = j � 1; which implies j + 1 > 2cj]:
2

Our next results describe the solution of the constrained optimal design problem (2.5) with
equal e�ciencies more explicitly by identifying the support points and weights of the de-
sign corresponding to the canonical moments given in Corollary 3.4. The proof involves some

11



more sophisticated results about canonical moments and is therefore deferred to the appendix.
Throughout this paper

Uk(x) =
sin((k + 1) arccos x)

sin(arccos x)

denotes the kth Chebyshev polynomial of the second kind [see e.g. Chihara (1978)] and

C
(�)
j (x; �) denotes the jth associated ultraspherical polynomial with parameters � and � de�ned

by the recursive relations

C
(�)
�1 (x; �) = 0 ; C

(�)
0 (x; �) = 1 ;

(3.25)

(n+ � + 1) C
(�)
n+1(x; �) = 2( n+ � + �)xC(�)

n (x; �)� (n + � + 2 �� 1)C
(�)
n�1(x; �);

(n � 0) [see Grosjean (1986) or Lasser (1994)]

Theorem 3.5.
(a) Let �� denote the solution of the constrained optimal design problem (2.5) with equal e�-
ciencies cl = c 2 (0; 1) l = m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k; where k > 0 and

0 < c � j + k + 1

2(j + k)
:

�� is supported at the m + k + 1 zeros x0; x1; : : : ; xm+k of the polynomial (x2 � 1)Qm+k�1(x);
where

Qm+k�1(x) =
hn

xU 0
k(x)� p2mU

0
k�1(x)

o
Um�1(x)� q2mU

0
k(x)Um�2(x)

i
(3.26)

if j = 0 or j > 0 and c � 1
2
; and

Qm+k�1(x) =

� �
xU 0

k(x)� p2mU
0
k�1(x)

� �
Um�j�1(x)C

(2)
j (x; �j)� Um�j�2(x)C

(2)
j�1(x; �j)

�

�p2m�2q2m
q2m�2

U 0
k(x)

�
Um�j�1(x)C

(2)
j�1(x; �j�1)� Um�j�2(x)C

(2)
j�2(x; �j�1)

� �
(3.27)

if j > 0 and c > 1
2
: Here the parameter �j is given by

�j =
(j + 2)� 2c(j + 1)

2c� 1
= �j�1 � 1(3.28)

and p2m�2; p2m are de�ned in (3.17) and (3.18), respectively. The weights of the constrained
optimal design �� at the support points are obtained by the formula

��(fxjg) = Pm+k(xj)
d
dx
f(x2 � 1)Qm+k�1(x)gjx=xj

j = 0 ; : : : ; m+ k(3.29)

where the polynomial Pm+k(x) is de�ned by

Pm+k(x) = k
hn

xUk(x)� k + 1

k
q2mUk�1(x)

o
Um�1(x)� p2mUk(x)Um�2(x)

i
(3.30)

12



if j = 0 or j > 0 and c � 1
2
; and by

Pm+k(x) =
k

j + 1� 2cj

hn
xUk(x)� k + 1

k
q2mUk�1(x)

on
Um�j�1(x)Uj(x)� 2cUm�j�2(x)Uj�1(x)

o
2q2m�2p2mUk(x)

n
Um�j�1(x)Uj�1(x)� 2cUm�j�2(x)Uj�2(x)

oi
(3.31)

if j > 0 and c > 1
2
:

(b) Let �� denote the solution of the constrained optimal design problem (2.5) with k = 0 and
equal e�ciencies cl = c 2 (0; 1); l = m� j; : : : ; m� 1; where

0 < c <
j + 1

2j
:

�� is supported at the m + 1 zeros x0 < x1 < : : : < xm of the polynomial (x2 � 1)Um�1(x) if
j = 0 or j > 0 and c � 1

2
; and at the zeros of the polynomial

(x2 � 1)
h
Um�j�1(x)C

(2)
j (x; �j)� Um�j�2(x)C

(2)
j�1(x; �j)

i
if j > 0 and c > 1

2
: The weights of �� at the support points are given by ��(f�1g) = 1 =(2m)

and ��(fxlg) = 1 =m(l = 1 ; : : : ; m� 1) if j = 0 or j > 0 and c � 1
2
; and are obtained by the

formula (3.29) with k = 0 where the polynomial Pm(x) is de�ned by

Pm(x) =
1

2(j + 1� 2cj)

�
Um�j�1(x)

�
Uj+1(x) +

2(j+1)c�(j+2)
j�2(j�1)c

Uj�1(x)
�
� 2cUm�j�2(x)Uj(x)

�

if j > 0 and c > 1
2
:

Example 3.6. Consider the case m = 2 ; j= 1 ; k= 1 ;which corresponds to the D1-optimal
design problem in a quadratic regression with guaranteed e�ciencies for testing the highest
coe�cients in the cubic and linear regression. By Theorem 3.5(a) a solution of the constrained
optimal design problem exists if and only if c � 75%: In this case the support points of the
constrained D1-D1-optimal design are the zeros of the polynomial (x2 � 1)Q2(x); where

Q2(x) =

(
4x2 � 2q4 if c � 1

2
2

1�c
fx2 � cq4g if 1

2
< c � 3

4

and

p4 =

(
1
2
(1 +

p
1� c) if c � 1

2

1
2
(1 + 1

2

q
3�4c
1�c

) if 1
2
< c � 3

4

Here we used that U�1(x) = 0 ; U0(x) = 1 ; U1(x) = 2 x; C
(2)
1 (x; �1) = 2( �1 + 2) x=(�1 + 1) =

x=(1� c): Similary, we have

P3(x) =

(
2x(2x2 � 1� q4) if c � 1

2
2x
1�c

(x2 � 1 + p4c) if 1
2
< c � 3

4

13



and Theorem 3.5(a) shows that for c � 50% the D1-D1-constrained optimal design puts masses

p4
2(1 + p4)

and
1

2(1 + p4)

at the point �1 and �p(1� p4)=2 where p4 =
1
2
(1 +

p
1� c): On the other hand, if 50% �

c � 75%; the constrained D1-D1-optimal design puts masses

cp4
2(1� cq4)

and
1� c

2(1� cq4)

at the points �1 and �pcq4; respectively, where

p4 =
1

2
(1 +

1

2

r
3� 4c

1� c
):

We �nally note that for c = 75% the constrained D1-D1-optimal design has masses 3=10 and
1=5 at the points �1 and �p3=8; respectively.

Remark 3.7. It is worthwhile to mention that Theorem 3.5 also contains the solution of
the classical D1-optimal design problem, which can be seen by looking at the limit c ! 0 in
Theorem 3.5(a). If c! 0 we have from (3.18) p2m ! 1 and the polynomials in Theorem 3.5(a)
reduce to

Pm+k(x) = kUk(x)[xUm�1(x)� Um�2(x)]

Qm+k�1(x) = [ xU0k(x)� U 0
k�1(x)]Um�1(x) = kUk(x)Um�1(x)

where the last equality follows by induction and the recursive relation of the Chebyshev poly-
nomials of the second kind. Transferring Theorem 3.5 to the limiting case c = 0 shows that
the zeros of the polynomial (x2 � 1)Uk(x)Um�1(x) determine the support points of the design
�� maximizing (2.5) with cl = 0 ( l= m� j; : : : ; m� 1; m+ 1 ; : : : ; m+ k) and that the masses
are given in (3.29). Now a straightforward calculation shows that ��(fxjg) = 0 whenever
Uk(xj) = 0 :For the remaining support points x0; : : : ; xm (satisfying (x2 � 1)Um�1(x) = 0) we
obtain

��(fxjg) = xjUm�1(xj)� Um�2(xj)

2xjUm�1(xj) + ( x2j � 1)U 0
m�1(xj)

which gives

��(fxjg) =
(

1
2m

if x2j = 1
1
m

if Um�1(xj) = 0
:

Here we used the identities

Um(1) = (�1)mUm(�1) = m+ 1

and
(x2 � 1)U 0

m�1(x) = ( m� 1)xUm�1(x)�mUm�2(x)

which follows from the trigonometric representation Um�1(x) = sin(m arccos x)= sin(arccos x)
for the Chebyshev polynomial of the second kind. By the result of Kiefer and Wolfowitz (1959)
the design �� is the D1-optimal design for the polynomial regression model of degree m:

14



4 D-D1-constrained optimal designs

In this section we describe the solution of the constrained optimal design problem (2.6) which
maximizes the D-optimality criterion for the model of degree m with guaranteed e�ciencies
for testing the highest coe�cients in the models of degree m� j;m� j +1 ; : : : ; m+ k (j; k � 0
given). The arguments are essentially the same as in the D1-D1-case (but substantially more
complicated) and for this reason we only state the main results here. For a detailed discussion
and a complete proof we refer to Franke (2000). Our �rst theorem characterizes the solution
of the D-D1-optimal design problem by a system of nonlinear equations.

Theorem 4.1.

(a) In the case m� j � 2 a solution �� of the constrained D-D1-optimal design problem (2.6)
exists if and only if there exists a solution (p2; : : : ; p2m+2k�2; p2m+2k) 2 [1

2
; 1)m+k�1 � f 1gof the

system of equations

p2l = max
n
1� cm+k

22(m+k�l)cl
Qm+k�1

i=l+1 p2i(1� p2i)
;
1

2

o
;(4.1)

(l = m+ k � 1; m+ k � 2; : : : ; m+ 1)

p2(m�j�1�l) =
(2l + 1) p2(m�j�1) � l

4lp2(m�j�1) � 2l + 1
;(4.2)

(l = 1 ; : : : ; m� j � 2)

p2l = max
n 2�2(l�1)clQl�1

i=1 p2i(1� p2i)
;
h
2� 2p2(m�j�1) � 1

1� p2(m�j�1)

l�1Y
i=m�j

p2i
1� p2i

i�1o
;(4.3)

(l = m� j; : : : ; m );

cm+k = 22m+2k�2
m+kY
i=1

q2i�2p2i(4.4)

(in the case k = 0 the equation (4.4) has to be omitted). Moreover, there exists at most one
solution of (4.1) { (4.4) in [1

2
; 1)m+k�1 � f 1g, which de�nes the canonical moments of even

order of the constrained D-D1-optimal design, while all canonical moments of odd order of this
design are equal to 1

2
:

(b) In the case m� j = 1 a solution of the D-D1-constrained optimal design problem exists if
and only if there exists a minimal integer n 2 f 1; : : : ; m gsuch that the system of equations

p2l = max
n
1� cm+k

22(m+k�l)cl
Qm+k�1

i=l+1 p2i(1� p2i)
;
1

2

o
;(4.5)

(l = m+ k � 1; m+ k � 2; : : : ; m+ 1)

cl = 22l�2
lY

i=1

q2i�2p2i(4.6)
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l = 1 ; : : : ; n� 1

p2l = max
n 2�2(l�1)clQl�1

i=1 p2i(1� p2i)
;
h
2� 2p2n � 1

1� p2n

l�1Y
i=n+1

p2i
1� p2i

i�1o
;(4.7)

(l = n+ 1 ; : : : ; m;)

cm+k = 22m+2k�2
m+kY
i=1

q2i�2p2i(4.8)

has a solution (p2; : : : ; p2m+2k) 2 [1
2
; 1)m+k�1 � f 1g (in the case k = 0 the equation (4.8) has to

be omitted), such that

cn � 22n�2
nY

i=1

q2i�2p2i(4.9)

In the case of existence the solution of (4.5) - (4.8) is unique and gives the canonical moments
of even order of the constrained D-D1-optimal design. The canonical moments of odd order of
this design are equal to 1

2
:

Note that Theorem 4.1 formally de�nes one equation for p2m�2j�2 [in case (a)] or p2n [in case
(b)]. More precisely, consider the situation for m � j � 2, where p2m+2k�2; : : : ; p2m+2 are
determined by (4.1). Now (4.2) and (4.3) express p2; : : : ; p2m�2j�4, p2m�2j; : : : ; p2m in terms
of p2m�2j�2 and (4.4) reduces to an equation with one unknown variable. A similar reasoning
applies in case (b), where we obtain for each n 2 f 1; : : : ; m gan equation for p2n.
We will conclude this section by a discussion of the case of equal and maximal bounds in the
constraints (2.6), that is cl = c 2 (0; 1); l = m� j; : : : ; m + k: It can be shown by similar but
tedious arguments as given in Section 3 [see Franke (2000)] that a solution of the constrained
optimal design problem (2.6) with equal bounds for the e�ciencies exists if and only if

c � j + k + 2

2(j + k + 1)
:

The case of equality is of particular interest and discussed in the following Theorem.

Theorem 4.2. The solution �� of the constrained optimal design problem (2.6) with equal
e�ciencies

cl =
j + k + 2

2(j + k + 1)
l = m� j; : : : ; m+ k

exists and is supported at the m + k + 1 zeros of the polynomial

Hm+k+1(x) = ( j+ k)Tk+m+1(x) + Um�j�1(x)Tj+k+2(x)� Uk+m�1(x)(4.10)

where Tl(x) and Ul(x) denote the Chebyshev polynomial of the �rst and second kind, respectively.
The masses at the support points are given by

��(fxig) = (j + k + 1) Um+k(xi)� Uj+k(xi)Um�j�2(xi)
d
dx
Hm+k+1(x) jx=xi

(4.11)

(i = 0 ; : : : ; m+ k):
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Example 4.3. Consider a cubic regression, i.e. m = 3 ;and assume that the experimenter is
interested in estimating the parameters in this model but wants to have some possibility for
checking the polynomials of degree 4; 3; 2: In this case the criterion (2.6) with m = 3 ; k= j = 1
is appropriate and a solution of the constrained optimal design criterion exists if and only if
c � 2

3
: We have from Szeg�o (1975)

T5(x) = 16 x5 � 20x3 + 5 x

T4(x) = 8 x4 � 8x2 + 1

U1(x) = 2 x

U3(x) = 8 x3 � 4x

which gives for the polynomials in (4.10)

H5(x) = 48 x5 � 64x3 + 16 x:

Consequently, the constrained optimal design �� with respect to the criterion (2.6) (with cl =
2=3; l = 2 ;3; 4) is supported at the points

�1;� 1p
3
; 0;

1p
3
; 1

with masses
3

16
;
3

16
;
1

4
;
3

16
;
3

16
respectively. The D1-e�ciencies of this design are

e�D1

1 (��) = 50%; e�D1

l (��) = 66 :67% l = 2 ;3; 4

while the D-e�ciency for estimating the parameters in the cubic model is given by

e�D3 (�
�) = 90 :75%:

A natural competitor is the D1-optimal design �D1

4 for the polynomial regression of degree 4
which puts masses

1

8
;
1

4
;
1

4
;
1

4
;
1

8
at the points

�1;� 1p
2
; 0;

1p
2
; 1;

respectively. This design has D1-e�ciencies

e�D1

4 (�D1

4 ) = 1; e�D1

l (�D1

4 ) = 50% l = 1 ;2; 3

and D-e�ciency
e�D3 (�

D1

4 ) = 78 :59%

for the cubic model.

Acknowledgements. The authors are grateful to I. Gottschlich who typed most of this paper
with considerable technical expertise. The �nancial support of the Deutsche Forschungsge-
meinschaft (SFB 475, Reduction fo complexity in multivariate data structures) is gratefully
acknowledged.

17



5 Appendix: Proof of Theorem 3.5.

We will only give a proof for the more complicated case (a) k > 0. The remaining part (b) is
treated exactly in the same way and left to the reader. By Corollary 2.2.4 and Theorem 3.4.1
of Dette and Studden (1997) the measure �� de�ned by the canonical moments of Corollary 3.4
has �nite support fx0; : : : ; xm+kg and its Stieltjes transform is given by

S(z) =

Z 1

�1

d��(x)

z � x
=

m+kX
j=0

��(fxjg)
z � xj

=
Pm+k(z; q)

(z2 � 1) �Qm+k�1(z; p)

where Pm+k(z; q) and �Qm+k�1(z; p) are the support polynomials of the sequences

q1; q2; : : : ; q2m+2k�1; 0;

p1; p2; : : : ; p2m+2k�1; 1;

respectively [and the canonical moments are de�ned in (3.15) - (3.18)]. This implies that the
support points of �� are given by the zeros of the polynomial (z2� 1) �Qm+k�1(z; p) and that the
weights can be obtained as

��(fxig) = Pm+k(xi; q)
d
dx
f(z2 � 1) �Qm+k�1(z; p)gjz=xi

i = 0 ; : : : ; m+ k:(5.1)

Therefore it remains to show that �Qm+k�1(x; p) is proportional to the polynomial Qm+k�1(x)
de�ned in (3.26) and (3.27) [corresponding to the case c � 1

2
or c > 1

2
, respectively] and that

the right hand side of (5.1) coincides with (3.29), (3.30) and (3.31). For the calculation of the
polynomial �Qm+k�1(x; p) we use Theorem 4.4.2 in Dette and Studden (1997) and obtain

�Qm+k�1(x; p) = Gk(x)Hm�1(x)� p2m�2q2mGk�1(x)Hm�2(x)(5.2)

where Gk(x) and Hm�1(x) are the supporting polynomials (with leading coe�cient equal to
one) of the sequences

1

2
; p2m;

1

2
; : : : ;

1

2
; p2m+2k�2;

1

2
; 1;(5.3)

1

2
; p2;

1

2
; : : : ;

1

2
; p2m�2;

1

2
; 1;(5.4)

respectively. For the calculation of these polynomials we distinguish two cases:

� (i) support points in the case c � 1
2
and j > 0 or j = 0 : In this case we obtain from

Corollary 4.3.3 in Dette and Studden (1997)

Hm�1(x) =
1

2m�1
Um�1(x); Hm�2(x) =

1

2m�2
Um�2(x)(5.5)

where Um�1(x) denotes the Chebyshev polynomial of the second kind. Theorem 2.5.1 and
Corollary 2.3.6 in the same reference show that Gk(x) is also the supporting polynomial
of the sequence

1

2
; ~p2;

1

2
; : : : ;

1

2
; ~p2k;

1

2
; 1
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with ~p2j = q2m+2k�2j and that Gk(x) can be calculated recursively by G0(x) = 1 ; G1(x) =
x

Gj+1(x) = xGj�1(x)� ~p2j ~q2j+2Gj�1(x)(5.6)

= xGj�1(x)� q2m+2k�2jp2m+2k�2j�2Gj�1(x)

(j = 1 ; : : : ; k� 1). Observing (3.16) this gives for j = 1 ; : : : ; k� 2

Gj+1(x) = xGj�1(x)� 1

4

j(j + 3)

(j + 1)(j + 2)
Gj�2(x);

which implies

Gj(x) =
1

(j + 1)2j
C

(2)
j (x) j = 0 ; : : : ; k� 1

where C
(�)
j (x) = C

(�)
j (x; 0) denotes the j-th ultrasperical polynomial de�ned in (3.25)

and we used the recursive relation for the monic ultraspherical polynomials [see Chihara

(1978)]. Observing that U 0
n(x) = 2 C

(2)
n�1(x) [see Szeg�o (1975)] it now follows that

Gk�1(x) =
1

k2k
� U 0

k(x); Gk(x) =
1

k2k
fxU 0

k(x)� p2mU
0
k�1(x)g(5.7)

and (5.2), (5.5) imply for the polynomial �Qm+k�1(x; p) in the case j = 0 or c � 1
2
; j > 0 :

�Qm+k�1(x; p) =
1

k2m+k�1

h �
xU 0

k(x)� p2mU
0
k�1(x)

�
Um�1(x)� q2mU

0
k(x)Um�2(x)

i
(5.8)

This proves the assertion regarding the support points in the case j = 0 or j > 0 and
c � 1

2
:

� (ii) support points in the case j > 0; c > 1
2
: In this case we have to apply Theorem

4.4.2 in Dette and Studden (1997) twice. More precisely, we have for the polynomial
Hm�1(x) in (5.2)

Hm�1(x) = ~Gj(x) ~Hm�j�1(x)� p2m�2j�2q2m�2j
~Gj�1(x) ~Hm�j�2(x)(5.9)

where ~Hm�j�1(x) and ~Gj(x) are the supporting polynomials of the sequences

1

2
; p2;

1

2
; : : : ;

1

2
; p2m�2j�2;

1

2
; 1;(5.10)

1

2
; p2m�2j;

1

2
; : : : ;

1

2
; p2m�2;

1

2
; 1;(5.11)

respectively, and the canonical moments are de�ned in (3.15) and (3.17) respectively.
Now the same arguments as used in the derivation of (5.5) yield

~Hl(x) =
1

2l
Ul(x) l = m� j � 2; m� j � 1:(5.12)

By Theorem 2.5.1 and Corollary 2.3.6 in Dette and Studden (1997) we �nd that ~Gj(x)
can be obtained recursively as ~G0(x) = 1 ;~G1(x) = x

~Gi+1(x) = x ~Gi(x)� p2m�2i�2q2m�2i
~Gi�1(x)

= x ~Gi(x)� 1

4

(2c� 1)(j � i + 2)� 2c

(2c� 1)(j � i + 1)� 2c

(2c� 1)(j � i� 1)� 2c

(2c� 1)(j � i)� 2c
~Gi�1(x)
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(i = 1 ; : : : ; j� 1): Comparing this recurrence relation with the corresponding recursive
relation for the monic version of the associated ultraspherical polynomials de�ned by
(3.25) yields

~Gi(x) =
(�j + 1)

2i(�j + i + 1)
C

(2)
i (x; �j); i = 0 ; : : : ; j;(5.13)

where �j is de�ned in (3.28). Combining this result with (5.9) and (5.12) shows

Hm�1(x) =
(�j + 1)

2m�1(�j + j + 1)

n
Um�j�1(x)C

(2)
j (x; �j)

� 2(1� c)
(�j + j + 1)

�j + j
Um�j�2(x)C

(2)
j�1(x; �j)

o

=
j + 1� 2jc

2m�1

n
Um�j�1(x)C

(2)
j (x; �j)� Um�j�2(x)C

(2)
j�1(x; �j)

o
and a similar argument gives

Hm�2(x) =
j � 2c(j � 1)

2m�2

n
Um�j�1(x)C

(2)
j�1(x; �j�1)� Um�j�2(x)C

(2)
j�2(x; �j�1)

o
:

Finally, formula (5.2), (5.7) and (5.12) yield for the supporting polynomial of the sequence

1

2
; p2;

1

2
; : : : ;

1

2
; p2m+2k�2;

1

2
; 1

in the case c > 1
2
; j > 0 :

�Qm+k�1(x; p) =
(j+1�2cj)
k�2k+m�1

n
[xU 0

k(x)� p2mU
0
k�1(x)](5.14)

[Um�1�j(x)C
(2)
j (x; �j)� Um�j�2(x)C

(2)
j�1(x; �j)]

�q2m (2c�1)(j�1)�2c
(2c�1)j�1

U 0
k(x)[Um�j�1(x)C

(2)
j�1(x; �j�1)� Um�j�2(x)C

(2)
j�2(x; �j�1)]

o
which yields the assertion regarding the support points in the case c > 1

2
; j > 0:

In order to complete the proof of Theorem 3.5(a) we have to �nd the polynomial Pm+k(x; q) in
the numerator of (5.1) which supports the sequence

1

2
; q2;

1

2
; : : : ;

1

2
; q2m+2k�2;

1

2
; 0:

A similar argument as given in the proof of Theorem 4.4.2 in Dette and Studden (1997) shows
that

Pm+k(x; q) = �Gk+1(x) �Hm�1(x)� q2m�2p2m �Gk(x) �Hm�2(x)(5.15)

where �Hm�1(x) and �Gk+1(x) are the supporting polynomials of the sequences

1

2
; q2;

1

2
; : : : ;

1

2
; q2m�2;

1

2
; 1;(5.16)

1

2
; q2m;

1

2
; : : : ;

1

2
; q2m+2k�2;

1

2
; 0;
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respectively. Moreover, these polynomials are also the supporting polynomials of the reversed
sequences

1

2
; p2m�2;

1

2
; : : : ;

1

2
; p2;

1

2
; 1;

1

2
; q2m+2k�2;

1

2
; : : : ;

1

2
; q2m;

1

2
; 0;(5.17)

[see Studden (1982a)]. Using Corollary 2.3.6 in Dette and Studden (1997) we obtain for the
polynomial supporting the sequence (5.17) the recursive relation �G0(x) = 1 ;�G1(x) = x

�Gi+1(x) = x �Gi(x)� p2m+2k�2i+2q2m+2k�2i
�Gi�1(x)

=

8>>><
>>>:

x �Gi(x)� 1

4
�Gi�1(x) if 1 � i � k � 1

x �Gk(x)� k + 1

2k
q2m �Gk�1(x) if i = k

which yields �Gi(x) =
1
2i
Ui(x)(1 � i � k)

�Gk+1(x) =
1

2k
[xUk(x)� k + 1

k
q2mUk�1(x)]:(5.18)

For the calculation of the polynomials �Hm�1(x) and �Hm�2(x) we have to distinguish the di�erent
cases for c 2 (0; 1):

� (iii) weights in the case c � 1
2
and j > 0 or j = 0 :We obtain from Corollary 3.4

and Corollary 4.4.3 in Dette and Studden (1997) for the supporting polynomials of the
sequence (5.16)

�Hl(x) =
1

2l
Ul(x) l = m� 1; m� 2(5.19)

and (5.15), (5.18), (5.19) give

Pm+k(x; q) =
1

2m+k�1

n
[xUk(x)� k + 1

k
q2mUk�1(x)]Um�1(x)� p2mUk(x)Um�2(x)

o
(5.20)

if c � 1
2
or j = 0 :

� (iv) weights in the case c > 1
2
and j > 0: We apply again Theorem 4.4.2 in Dette

and Studden (1997) and obtain for the polynomial supporting the sequence in (5.16)

�Hm�1(x) = Ĝm�j�1(x)Ĥj(x)� q2m�2j�2p2m�2jĜm�j�2(x)Ĥj�1(x)(5.21)

where Ĝm�j�1(x) and Ĥj(x) are the supporting polynomials of the sequences

1

2
; q2;

1

2
; : : : ;

1

2
; q2m�2j�2;

1

2
; 1;

1

2
; q2m�2j;

1

2
; : : : ;

1

2
; q2m�2;

1

2
; 1;
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respectively. Observing (3.15), (3.17) (for c > 1
2
) and Corollary 2.3.6 in Dette and Studden

(1997) gives

Ĝl(x) =
1

2l
Ul(x) l = m� j � 2; m� j � 1(5.22)

Ĥl(x) =
1

2l
Ul(x) l = j; j � 1(5.23)

and it follows from (5.21) in the case c > 1
2

�Hm�1(x) =
1

2m�1
[Um�j�1(x)Uj(x)� 2cUm�j�2(x)Uj�1(x)]:(5.24)

A similar argument yields

�Hm�2(x) =
1

2m�2
[Um�j�1(x)Uj�1(x)� 2cUm�j�2(x)Uj�2(x)](5.25)

and we have from (5.18), (5.24), (5.25) and (5.15) in the case c > 1
2
and j > 0

Pm+k(x; q) =
1

2m+k�1

n
[xUk(x)� k + 1

k
q2mUk�1(x)][Um�j�1(x)Uj(x)

� 2cUm�j�2(x)Uj�1(x)](5.26)

� 2q2m�2p2mUk(x)[Um�j�1(x)Uj�1(x)� 2cUm�j�2(x)Uj�2(x)]
o
:

The assertion of the Theorem now follows from the representation of the weights in (5.1) and
the representation of the polynomials �Qm+k�1(x; p), Pm+k(x; q) in (5.8), (5.20) (in the case
c � 1

2
or j = 0) and (5.14), (5.26) (in the case c > 1

2
): 2
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