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Symbols and Abbreviations

Symbol Explanation

R Set of real numbers.
N Set of integer numbers.
C Set of complex numbers.
∂xf(x) Partial derivative of the scalar function f(x)

with respect to the scalar x.
∂xf(x) Gradient of the multivariable scalar function f(x)

with respect to the vector x.
(∂x)2f(x) Laplace operator on the multivariable scalar function f(x)

with respect to x.
ψ(x) Scalar wave function on the configuration space x.
|ψ〉 Quantum state.
|ψ] Classical state that does not allow for superpositions.
̺ Density matrix.
̺therm Thermal density matrix.
ϕ(x) Vector-valued wavefunction on the configuration space x.
~ h/(2π).
1 Identity operator.
〈a, b〉 Scalar product of the vectors a and b.
ex, ey, ez Unit vectors along the x, y, z-axis.

(x, y, z)t Transposed of vector (x, y, z): (x, y, z)t =




x
y
z


 .

σ = (σx,σy,σz) Pauli matrices.
‖U‖ Norm of the unitary transformation U .
〈M〉 Expectation value of the measurement operator M .
〈M〉U Expectation value of the measurement operator M when

the initial state was transformed according to the unitary
transformation U .

E(̺) Quantum operation on the quantum state ̺.



iv Symbols and Abbreviations

ǫ Error
(̺)ij Entry in the ith row and the jth column of the matrix ̺.

γ Gyromagnetic ratio.
ωrf Frequency of a radiofrequency field.

ω
(i)
0 , ω

(i)
1 Lamor frequencies of the ith nucleus.

ωij , ν(i, j) Frequency emitted in a transition from the ith to the jth energy
state.

(π)
H
y − (π)

H
x NMR pulse sequence: Apply a π pulse along the y-axis

and then along the x-axis on the hydrogen nucleus.
[n00, . . . , njj ] Matrix that only has diagonal elements, namely n00 in

the upper left, njj in the lower right.
ℑ(z) Imaginary part of the complex number z.
I Index set.
|x| Number of bits in the binary string x.
i⊕K Coset of the set K.
|I| Number of elements of the set I.
Σ Alphabet, e.g. binary alphabet: Σ = {0, 1}.
Σn Set of all words of length n over the alphabet Σ.
Σ∗ Set of all words over the alphabet Σ.
⊕ Logical XOR operation (addition modulo two).
∨ Logical AND operation.
∧ Logical OR operation.
¬ Logical NOT operation.
O(g) Upper bound is proportional to function g.
Ω(g) Lower bound is proportional to function g.
Θ(g) Asymptotic bound is the function g.
|a| Absolute value of variable a.
tr{A} Trace of the operator A.
A ⊗ B Tensor product of the operators A and B.
A⊗n A ⊗ · · · ⊗ A︸ ︷︷ ︸

n times
B Magnetic field vector.
BPP Bounded-error probability in polynomial time.
BQP Quantum pendant to the complexity class BPP.
BUPQC Bounded-error uniform polynomial quantum circuit.
c Vacuum speed of light.
cn Number of elementary gates of the circuit Cn.
Cn Uniform Boolean circuit on n input bits.
CNOT CNOT operator.
d(A,B) Distance between operator A and B.
DDT Deterministic decision tree.
deg(f) Degree of the polynomial that represents the Boolean function f .

d̃eg(f) Minimum degree among all polynomials that
approximate the Boolean function f .

D(f) Deterministic decision tree complexity.
DTM Deterministic Turing machine.
E Energy.
E(n), En Energy of an quantum system in its nth stationary state.



v

EPR Einstein-Podolsky-Rosen.
EQP Quantum pendant to the complexity class P.
EUPQC Exact uniform polynomial quantum circuit.
FID Free induction decay.
GP Genetic Programming.
h Planck’s constant.
H Hamilton function.
H Hamilton operator or Hadamard operation.
H Hilbert space.
H Hamilton operator.
H.c. Hermitic conjugated.
ı

√
−1.

i Binary decomposition of the integer i.
i · j Inner product of the binary strings i and j modulo 2.

I
(A)
α αth component of the spin operator of nucleus A.
J Scalar coupling constant.
k Boltzmann’s constant.
K Subset of I: K ⊂ I.
L Lagrangian, or Language: A language L is a subset of Σ∗

L Lagrangian operator.
m Mass or an integer.
M Measurement operator.
N Number of states of an n-qubit system: N = 2n.
n Number of qubits if not stated otherwise.
n Unit vector.
NMR Nuclear magnetic resonance.
NMR-QC Liquid state NMR quantum computer.
NP Nondeterministic polynomial time complexity.
O Oracle operator.
P Polynomial time complexity.
p, prob Probability.
P (n1, n2) Correlation function.
PDT Probabilistic decision tree.
poly(x) Polynomial over variable x.
POVM Positive operator-valued measure.
PSPACE Polynomial space complexity.
PTM Probabilistic Turing machine.
Q2(f) Double bounded error quantum decision tree complexity.
QE(f) Exact quantum decision tree complexity.
QA Quantum algorithm.
QC Quantum circuit.
QDT Quantum decision tree.
QTM Quantum Turing machine.
R2(f) Probabilistic decision tree complexity.
Rx(α), Ry(α), Rz(α) One-qubit rotations.
Rzz(α) Two-qubit rotation.
rf Radiofrequency
sFID Signal of the free induction decay.
S(Ω) Fourier transformed of sFID: S(Ω) =

∫
Ω
sFIDe

ıΩ dΩ.



vi Symbols and Abbreviations

t Time.
T Temperature.
TM Turing machine.
ui Square integrable function.
U Unitary transformation.

U
(ij)
CNOT CNOT operation with i the control and j the target

qubit.
U t Transposed unitary operation U : (U)t

ij = (U)ji.
U+ Adjoint of the unitary transformation U+ = (U t)∗.
U(x) Potential energy.
X Blackbox.
x Vector or binary string.
x Negation of the binary variable x ∈ {0, 1}.
x, p Classical kinematic variables.
x,p Quantum physical kinematic operators.
z∗ Complex conjugate of the complex variable z ∈ C.
ZUPQC Zero-error uniform polynomial quantum circuit.
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1 Introduction

During the last decade physicists could oversee the rise of increased efforts in in-
vestigating foundational problems of non-relativistic quantum physics. Heisenberg’s
original approach to account for quantum phenomena was to ascribe them to the
finiteness of Planck’s constant from which it follows that an observation inevitably
disturbs the system under investigation [Hei27]. Till today this kind of reasoning can
be found in many textbooks.

This approach still left open the possibility that there are elements of the physical
reality underlying quantum phenomena. It was realized several decades ago that
such “hidden variable theories” contradict the predictions of quantum physics [KS67,
Bel87, Mer93]. Nevertheless, experimental evidence has been achieved only recently
that quantum physics indeed provide a complete description of the physical world
that cannot be completed by reverting to classical physics via hidden variables that
are to restore causality and locality to it [WJS+98, ZWJA05].

Furthermore, it was realized very soon [Sch35] that the wave function can be in-
terpreted as a catalog of informations and that physical phenomena are somehow
defined by the questions one asks [Boh49]. Nonetheless, it took until recently that
theoreticians began to recast quantum physics in terms of information theory that
provides a fundamentally new language for studying the relationship between classical
and quantum physics [Zei99a, BZ05].

As well as physicists benefit from information theory, computer scientists benefit
from quantum physics: The concept of using quantum physical devices to perform
computation has received much attention among computer scientists due to the cel-
ebrated factoring algorithm proposed by Shor [Sho94]. This algorithm provides an
exponential speed-up in comparison to all known classical factoring algorithms. Un-
fortunately, increased efforts following this promising outcome did not result in any
further comparably impressive developments. More recent results have cooled ex-
pectations which proved to be too optimistic and it still remains unclear whether
quantum computers will provide an alternative superior to classical computation
[BV97, BBBV97, BBC+01].

But even modest speed-ups of quantum algorithms (QAs) as compared to classical
algorithms might provide further insight into the fundamental differences between
classical and quantum physics that can be helpful in estimating the computational
benefit of quantum computers.

Unfortunately, the design and development of QAs is a very cumbersome task
mainly due to the non-intuitive character of quantum physics. Therefore, it is rea-
sonable to investigate automated algorithm design techniques in the development of
new QAs. The usage of Genetic Programming (GP) in performing this task was
pioneered by Williams et al. [WG98] and Spector et al. [SBBS99]. Ever since sev-
eral related strategies using GP to aid the development of QAs have been proposed
and investigated by several authors (e.g., [Rub01, LB03a, MCS04]). Nevertheless, to
our knowledge these approaches were only successful in designing quantum circuits
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[SBBS99, BBS00, Rub01, MCS04] or optimizing known QAs [LB03a].
The aim of this thesis is to demonstrate that GP also provides a beneficial tool in

designing new “better-than-classical” QAs. This goal is supported by the formerly
unknown better-than-classical QAs developed by us that will be presented in Chap.
5 and that were published recently [SSB05, SSB].

Most QAs are naturally stated using the so called blackbox model of computation.
Therefore we restricted our GP system to evolve quantum decision trees that provide
the appropriate devices to keep track of the different results returned by blackbox
queries. Nearly every problem can be cast as a decision problem, hence we confined
our investigations to this class of problems.

Moreover, the blackbox model of computation provides the only model for which the
benefit of quantum computation over classical computation is established. Shor’s al-
gorithm [Sho94], for example, reduces the problem of integer factoring to the blackbox
problem of order-finding, which is known as being only solved efficiently on quantum
computers [Cle99].1

This thesis is organized as follows: Chapter 2 provides the mathematical notions
and tools of quantum physics and quantum computation used throughout this thesis.
It also provides a criterion to distinguish classical from quantum systems. In the end
of this chapter we will introduce the main principles of liquid state NMR quantum
computers (NMR-QC). The parity algorithms that we developed, were implemented
on this device as will be discussed in Sec. 5.3.5. Chapter 3 serves to introduce the main
concepts of computability, algorithms and circuits. It also puts the blackbox model
of computation into perspective and presents the concept of quantum circuits used
by us to represent quantum decision trees. After a short introduction to optimization
algorithms our GP system will be discussed in Chap. 4. Finally we will present the
QAs developed by us with the help of GP in Chap. 5. There we also will demonstrate
the experimental results of implementing the parity algorithm on an NMR-QC.

1 It may still be possible that integer factoring can be reduced to a problem also efficiently solvable
on classical computers.



2 Quantum Physics

In this chapter we will introduce the mathematical formalism of quantum physics
used throughout this thesis. Despite its impressive success in describing physical phe-
nomena several authors emphasize that quantum physics still lacks for a foundational
principle [Zei99a, Fuc03]. Recently, A. Zeilinger proposed the principle of a “finite
information content” of quantum systems that demystifies such controverse topics like
the measurement process [Zei99a]. The full impact of this foundational principle is
still a topic of current research [BZ05].

Unfortunately, many textbooks [NC00, Bal98, Per95, CTDL96] introduce quantum
physics by means of a set of axioms or postulates that are justified by some selected
experiments. Duhem criticized such an approach to be questionable from an episte-
mological point of view [Duh91]. Therefore, we have chosen to motivate the axioms
that will be stated in Sec. 2.4 by their historical origin. Nevertheless, this historical
oriented approach that will be presented in Sec. 2.1 through Sec. 2.3 can only serve
as a heuristic justification.

In Sec. 2.5 we will introduce spinors and Dirac’s notation [Dir39] that will be
used throughout this thesis. To clarify the differences between classical and quantum
physics we will present Bell’s inequalities [Bel87] in Sec. 2.6. These inequalities can be
used to derive a condition that allows to distinguish classical from quantum systems.
Sec. 2.7 generalizes the concept of pure quantum states to mixed quantum states
that are necessary to treat NMR-QCs that will finally be presented in Sec. 2.8. In
Sec. 2.7 we also will explain why projective measurements and unitary operators are
sufficient to treat the dynamics of any quantum computer.

2.1 The Concept of Quanta

The development of quantum physics started with Planck’s theoretical derivation
[Pla00b] of an interpolated formula [Pla00a] proposed by him to account for the new
experimental results on blackbody radiation [RK00]. In this derivation he considered
charged linear oscillators that interact with an electromagnetic field. In order to
derive his formula he assumed that these oscillators exchange energy E with the
electromagnetic field by discrete amounts E = hν. Here ν denotes the frequency
of the electromagnetic field and h denotes the Planck constant. This assumption
is in thorough contrast to classical physics where the energy exchange is described
by a continuous process. As stated by Pais [Pai79] the only justification for this
renunciation of a continuous energy transfer was that it let to the desired answer,
namely Planck’s formula.

The physical relevance of Planck’s ad hoc hypothesis was not realized for several
years. As noted by Pais [Pai79] Einstein’s struggle to understand the physical con-
cepts underlying Planck’s derivation led him to his light-quantum hypothesis [Ein05].
Nevertheless, according to Jammer [Jam66] it was Einstein’s successful application
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of the concept of quanta to inconsistencies in the classical molecular kinetic theory
that endowed Planck’s ad hoc hypothesis with physical significance [Ein07a, Ein07b].
In these articles Einstein used the quantization of harmonic oscillators to explain
the temperature dependency of the specific heat of bulks. He also showed that the
Dulong-Petit rule is reached in the high temperature limit. Einstein’s light-quantum
hypothesis, on the other hand, was a matter of controversy as it contradicted too
much the well established undulatory character of light.

The next successful application of Planck’s concept of energy quanta was given
by Bohr who used them to explain the line spectra of atoms [Boh13]. To do so
he combined the concept of energy quanta with Rutherford’s atom model [Rut11] in
order to calculate the frequencies emitted or absorbed when the atom passes from one
stationary state to another. Bohr’s research resulted in an expression for Rydberg’s
constant of hydrogen that was well confirmed by the experimental data. Bohr’s
investigation of line spectra also led him to formulate the so called correspondence
principle [Boh23] that provided a method to quantize a physical system by replacing
the differential quotients in its classical description by difference quotients and the
quantization rule dΦ/dn = h. Here Φ =

∮
p dx denotes the action integral, p the

kinematic impulse and x the trajectory of the electron in it’s nth stationary state.1

2.2 Periodic Phenomena and Matrix Mechanics

According to Waerden [Wae68] the research that finally led to quantum physics may
be described as systematic guessing, guided by Bohr’s principle of correspondence.
Unfortunately, systems with several electrons couldn’t be treated satisfactorily using
this principle. This apparent difficulty led Heisenberg to abandon the classical concept

1 The derivation of this quantization rule is illustrated in [SW93]: To explain the spectra emitted by
an atom Bohr identified the radiation frequency ν(n, n−1), emitted in the transition from the nth
stationary state to the (n− 1)st stationary state, with the frequency νclass to be expected from
the classical theory of radiation for n ≫ 1. Bohr postulated that the frequency of the emitted
light depends on the energy difference of the corresponding stationary states E(n) and E(n−α):
ν(n, n−α) = [E(n) −E(n− α)] ·h−1. He also showed (see §3 in [Boh13]) that ν(n, n−α) equals
ανclass for α≪ n.

Using these results one obtains a transformation rule from the classical regime to the quantum
regime that replaces differential quotients with difference quotients:

ν(n, n− α) = ανclass =
1

h
· [E(n) −E(n− α)]

| {z }

quantum

≈ α ·
1

h
·
dE(n)

dn
| {z }

classical

for α≪ n.

This identification returns the condition νclass = h−1 · dE(n)/dn that results in the following
quantization rule:

dΦ

dn
= h with Φ =

I

p dx and p =
p

2m(E − U(x)).

Here we used that νclass can also be calculated via:

1

νclass
=

I

dt =

I
m

p
dx =

dΦ

dE
,

m denotes the mass of the electron, E it’s total and U(x) it’s potential energy. The last equal-
ity follows due to the definition of the action variable Φ and the kinematic impulse p above.
Comparing both expressions for νclass returns the quantization rule presented above, namely
dΦ/dn = h.
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of trajectories x(t) used to describe the dynamics of electrons [Hei25]. As stated by
Jammer [Jam66] Heisenberg hoped to circumvent the tedious guessing work that
had to be repeated for each particular quantum-theoretic problem by integrating
the correspondence principle in the very mathematical scheme for a new theory of
mechanics. Due to the difficulties in assuming classical trajectories he proposed a
scheme that replaced the kinematic variables x(t) and p(t) with quantum pendants
x(t) and p(t) that were based only on observable magnitudes of the atom’s spectra,
namely frequency and intensity [Hei25].2

This idea of Heisenberg was extended by Born et al. to the first conceptual frame-
work of quantum physics which was able to treat periodic phenomena [BJ25, BHJ25]:
Defining the quantum version of a classical kinematic variable a(t) by a Hermitian
matrix a(t):3

a(t) → (a(t))nm = a(n,m)e2πıν(n,m)t with a(n,m) ∈ C and ν(n,m) ∈ R,
(2.1)

any well ordered classical function g(x, p) that is given by a power series over the
kinematic variables x and p can be transformed into its quantum version by replacing
x and p by their quantum pendants x and p.4 Ordinary addition is replaced by matrix
addition and ordinary multiplication by matrix multiplication:

g(x, p) → (g(x,p))nm = g(n,m)e2πıν(n,m)t.

Born et al. showed that Hamilton’s principle
∫ t1

t0
Ldt = extremal translates into

extremalizing the trace tr{L}. Here L denotes the quantum pendant of the classical
Lagrangian L defined by L = pq̇ −H(pq), with H denoting the Hamilton function.
The trace tr{A} of an operator A is the sum over its diagonal elements.

2 The main ideas are presented in [Hei25, FP02, AMS04] and can be summarized as follows: When
the electron’s periodic motion x(t) is expanded by the Fourier series x(t) =

P

α xα · eıαωt it is
possible to associate, by means of the correspondence principle, the terms αω with the frequency
ω(n, n − α) emitted by the transition of the electron from the nth to the (n − α)th state. The
coefficients xα are related to the intensities of the radiation emitted by this transition. This can
be seen by calculating the power P ∼ (d̈(t))2 emitted by the oscillating dipole d(t) = −e · x(t).
One gets P =

P

α P (n, n − α) with P (n, n − α) ∼ |x(n, n − α)|2. Here we replaced xα by the
notation x(n, n−α). Thus, Heisenberg concluded that the quantum mechanical pendant x(t) to
the classical trajectory x(t) is given by the set {x(n, n−α) eıω(n,n−α)·t}. From the decomposition
of x(t) into a Fourier series he also derived a multiplication rule for the kinematic variables x(t)
and y(t) which turned out to be the rule of matrix multiplication. To conclude this kind of
reasoning he finally had to introduce the quantization rule into his new formalism. Born et al.

showed that the quantization rule derived by Heisenberg can be replaced by Eq. (2.3) [BJ25].
3 As demonstrated in footnote 2 the representation of a quantum theoretical variable a(t) by a

matrix was suggested by Heisenberg due to the fact that the frequencies ν(n,m) and coefficients
a(n,m) in the Fourier expansion of a classical periodic variable an(t) =

P

m a(n,m)e2πıν(n,m)t

can be interpreted in terms of observable quantities. As an(t) has to be real the conditions
a(n,m) = a∗(m, n) and ν(n,m) = −ν(m,n) have to be fulfilled. Thus, it follows that a, as
defined in Eq.(2.1), has to be Hermitian.

4 The matrices x and p do not commute. For g(x,p) to be Hermitian the function g(x, p) has to
be transformed into a well ordered function so that the succession of x’s and p’s is symmetric:

g(x, p) = xp2 → g(x) =
xp2 + p2x

2
.

This well ordered function can be transformed into its quantum pendant g(x, p) that now is
Hermitian by construction.
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The authors derived the canonical equations of motion:5

ṗ = −∂H

∂x
, ẋ =

∂H

∂p
. (2.2)

Then they demonstrated that Bohr’s quantization rule dΦ/dn = h translates into:

x(t) · p(t) − p(t) · x(t) =
~

ı
1, with ~ =

h

2π
, (2.3)

here 1 denotes the identity matrix.
It follows that a quantum theoretical problem is solved when the solutions of the

canonical equations of motion in Eq. (2.2) fulfill the quantization condition of Eq.
(2.3).

Finally the authors showed that this problem is equivalent to the eigenvalue prob-
lem: (

U−1HU
)
nm

= E(n)δnm, (2.4)

where U denotes a transformation that leaves Eq. (2.3) invariant.

2.3 Quantization and Sturm-Liouville Eigenvalue

Problems

The following remark of E.U. Condon [Con62] is well suited to illustrate the close
relationship of Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics that
will be discussed thereafter:

“[...] Hilbert was having a great laugh on Born and Heisenberg and the
Göttingen theoretical physicists because when they first discovered matrix
mechanics they were having, of course, the same kind of trouble that ev-
erybody else had in trying to solve problems and to manipulate and really
do things with matrices. So they went to Hilbert for help, and Hilbert said
the only times that he had ever had anything to do with matrices was when
they came up as a sort of by-product of the eigenvalues of the boundary-
value problem of a differential equation. So if you look for the differential
equation which has these matrices you can probably do more with that.
They had thought it was a goofy idea and that Hilbert did not know what
he was talking about, so he was having a lot of fun pointing out to them
that they could have discovered Schrödinger’s wave mechanics six months
earlier if they had paid a little more attention to him.”

Schrödinger derived his equation from a completely different point of view than
Heisenberg [Sch26a, Sch26b]. He further showed that the eigenvalue problem in Eq.

5 The time derivative of (a)nm = a(n,m)e2πıν(n,m)t is defined by (ȧ)nm = 2πıν(n,m) (a)nm. The
derivative ∂ag(a) is defined by:

∂g(a)

∂a
= lim
α→0

g(a + α1) − g(a)

α
.
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(2.4) is equivalent to solve his Sturm-Liouville eigenvalue problem nowadays known
as Schrödinger’s equation [Sch26c]:

Hψ(x) = −Eψ(x). (2.5)

Here H denotes the operator one gets by replacing the classical kinematic variables x
and p in the well ordered Hamilton function H(x, p) by the operators x = x and p =
−ı~∂x; ψ(x) denotes a single valued square integrable function over the configuration
space.

The problem to calculate the energy En of the electron’s nth stationary state now
translates into the pure mathematical problem to find the eigenfunctions un of the
following eigenvalue problem:

Hun(x) = −Enun(x). (2.6)

With Schrödinger’s approach Heisenberg’s quantization rule is automatically fulfilled.
A scalar product 〈ui, uj〉 between two square integrable functions ui and uj can be

defined by:

〈ui(x), uj(x)〉 =

∫

x

u∗i (x)uj(x) dx.

It is well known from the Sturm-Liouville theory that a Hermitian operator H of the
eigenvalue problem Hui = λiui has real eigenvalues λi and orthogonal eigenfunctions
ui [Jän01].6 If H is a linear operator of second order then the set of eigenfunctions
is also complete [Wei]. In this case any square integrable function ψ can be written
as a linear combination over the eigenfunctions ui of H :

ψ(x) =
∑

i

ciui(x) with ci = 〈ψ, ui〉. (2.7)

As x and p are Hermitian operators the operator H(x,p) also is Hermitian when
it is well ordered in x and p. The eigenfunctions ui can be normalized, therefore
it is possible to find a set of eigenfunctions that fulfill the orthonormality condition
defined by 〈ui, uj〉 = δij . Due to Eq. (2.6) the eigenvalues Ei can be calculated by:

Ei = 〈ui,Hui〉. (2.8)

Despite the non-intuitive character of Schrödinger’s equation it provides the ad-
vantage to also describe non-periodic phenomena. Also, it is possible to treat non-
stationary phenomena by replacing the energy term E in Eq. (2.5) by E → −ı~∂t as
proposed by Schrödinger [Sch26d]:

Hψ(x, t) = ı~∂tψ(x, t). (2.9)

Schrödinger’s attempts to attribute a physical significance to his wave function ψ
did not return satisfactory results. They were replaced by the statistical interpretation
proposed by Born [Bor26]. He interpreted the absolute square |ψ|2 of Schrödinger’s

6 An operator H is called Hermitian if it fulfills the following condition [Jän01]:

〈ui,Huj〉 = 〈Hui, uj〉.
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wave function to represent a probability density. This proposal was based on Born’s
results he had obtained by investigating scattering processes. Thus, the expectation
value 〈x〉 of the particle position x is calculated by:

〈x〉(t) =

∫

x

x|ψ(x, t)|2 dx =

∫

x

ψ∗(x, t)xψ(x, t) dx = 〈ψ,xψ〉.

It follows that the expectation value 〈p〉 of the particle’s impulse p can be calculated
by [Deh00]:

〈p〉(t) = m
d〈x〉(t)
dt

=

∫

x

mx (ψ∗(x, t)∂tψ(x, t) + (∂tψ
∗(x, t))ψ(x, t)) dx

=

∫

x

ψ∗(x, t) (−ı~∂x)ψ(x, t) dx = 〈ψ,pψ〉.

The last but one equation follows from inserting Schrödinger’s equation for the terms
∂tψ and from using that ψ is square integrable.

These results show that the expectation value 〈g〉 of any well ordered function
g(x, p) that can be written as a series expansion over x and p is calculated via:

〈g〉 = 〈ψ, g(x,p)ψ〉.
Replacing g by the Hamiltonian H and using Eq. (2.7) and Eq. (2.8) one gets:

〈H〉 = 〈ψ,Hψ〉 =
∑

i,j

c∗i cj〈ui,Huj〉 =
∑

i

c∗i ciEi =
∑

i

piEi.

We introduced pi to denote the probability that a measurement returns the eigenvalue
Ei.

2.3.1 Composite Systems

Consider a composite physical system S(AB) described by the Hamiltonian H(AB):

H(AB)(x1, x2, p1, p2) = H(A)(x1, p1) +H(B)(x2, p2) + V (x1, x2),

where H(A) describes the Hamiltonian of subsystem S(A), H(B) the Hamiltonian of
subsystem S(B) and V an interaction between these two subsystems. If the corre-
sponding Schrödinger equation is separable then the completeness of the individual

system’s eigenfunctions u
(A)
i and u

(B)
i that are defined by:

H(A)u
(A)
i = E

(A)
i u

(A)
i and H(B)u

(B)
i = E

(B)
i u

(B)
i ,

effects that any solution of H(AB)ψ(AB)(x1, x2) = E(AB)ψ(AB)(x1, x2) can be written
as:

ψ(AB)(x1, x2) =
∑

l

clu
(AB)
l (x1, x2) =

∑

l,i,j

c̃liju
(A)
i (x1) · u(B)

j (x2), cl, c̃lij ∈ C.

Therefore, the vector space of the system’s eigenfunctions u
(AB)
l is spanned by the

tensor product, denoted by ⊗, of the subsystem’s eigenfunctions u
(A)
i and u

(B)
j :

u
(AB)
l (x1, x2) =

∑

i,j

cliju
(A)
i (x1) ⊗ u

(B)
j (x2) =

∑

i,j

cliju
(A)
i (x1) · u(B)

j (x2), clij ∈ C.
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2.4 Axiomatic Approach to Quantum Physics

The last results suggest the following mathematical structure of quantum physics that
is usually stated in the form of axioms (see for example [CTDL96]):

1. Any physical state is represented by a wavefunction ψ that can be decomposed
into a superposition ψ =

∑
i ciui over the eigenstates ui of a Hermitian operator

A.7 This operator, also called observable, is associated with a measurable prop-
erty, e.g. the energy E, of the physical system. The probability pi to measure
the eigenvalue ai of A is pi = c∗i ci. The vector space spanned by the eigenvec-
tors ui forms an inner product space. It is complete with respect to the norm
defined by the scalar product (inner product). Such spaces are called Hilbert
spaces.

2. The time evolution of the physical state ψ is governed by Schrödinger’s equation.

3. Quantum states of the composite system SAB that consists of the subsystems
SA and SB are vectors of the Hilbert space HAB which is the tensor product of
the individual subsystems’ Hilbert spaces HA and HB: HAB = HA ⊗HB .

Systems that are prepared into the eigenstate ui of the observable A return the
same measurement result ai. Because non-commuting Hermitian operators A and B

do not share the same set of eigenfunctions, measurements of the observable B will
not return a unique value.

If one insists on the wavefunction ψ to provide a complete description of the physical
phenomenon then a measurement, in order to have an operational meaning, has to
describe a procedure that prepares the system: Once a non-destructive measurement
of the observable B returns the measurement result bi, all following measurements
of B also have to return this value.8 Hence, additional to the quantum state’s time
evolution postulated by Axiom 2, one introduces a collapse process:

4. A quantum state ψ described by a superposition over the eigenstates ui of the
Hermitian operator A:

ψ =
∑

i

ciui with ui : Aui = aiui and ci ∈ C, ai ∈ R,

is mapped to the state:

ψ = vj with vj : B vj = bjvj and bj ∈ R,

upon measurement of the observable’s B eigenvalue bj. Such a measurement
projects the state ψ to vj . Measurements of this character are called projective
measurements.

7 A Sturm-Liouville eigenvalue problem has an infinite dimensional Hilbert space. Additional to
hermiticity one demands that the Liouville operator is of second order. Otherwise, the space
spanned by the eigenvectors might not be complete [Jän01]. For finite dimensional vector spaces
hermiticity of an operator is sufficient to provide a complete set of eigenvectors [Fis89].

8 Here we assume that the time interval between two successive measurements is short enough so
that the time evolution does not noticeably change the state.
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2.5 Spinors and Dirac’s Notation

Born’s probability interpretation led to severe conceptual problems in the interpreta-
tion of quantum physics that were initially raised by Einstein [Boh49]. His concerns
where motivated by a thought experiment where particles are diffracted at a single
slit. The detection of such particles on the detection screen is a spatially confined
process whereas in quantum physics the particle is described by a spatially extended
wavefunction. Born’s probability interpretation, according to Einstein, implies an
instantaneous collapse of the wavefunction that prevents the wavefunction to act si-
multaneously on two different points of the detection screen.

According to Einstein such a collapse contradicts the conception of locality as the
information that causes the detection at a single point has to be distributed through-
out the wavefront instantaneously which contradicts relativity.

Here the different conceptions of reality in classical physics on the one hand and
quantum physics on the other become apparent. On one side the proponents of
quantum physics insist that the wave function provides a complete description of
the physical phenomenon and that it makes no sense to attribute a position to a
particle until it hits the detection screen. On the other side, motivated by the classical
conception of reality, Einstein tried to show that the quantum physical description
provided by Schrödinger’s equation and Born’s probability interpretation does not
offer a complete description of the physical phenomena. One of the most influential
contributions of Einstein to settle the question of completeness of quantum physics
is the so called EPR paper [EPR35] that indicates a way to address these questions
experimentally as elaborated by Bell [Bel87] (see Sec. 2.6).

EPR’s and Bell’s argument utilizes states of a compound system that consists of
two spatially separated subsystems. These states are of a special form called entan-
gled. Due to the prominent status of entanglement in quantum computation we will
present a short characterization of such states. Before doing so we have to introduce,
additional to the external states ψ(x), internal spinor states of spin-1/2 particles.
External as well as internal states form vector spaces. We also introduce Dirac’s no-
tation that provides the same representation of quantum states irrespective of being
external or internal. Spin-1/2 particles constitute a prototype for two-state systems
that represent an appropriate quantum version of classical bits. Furthermore, spin-
1/2 particles will be of interest when we present NMR-QCs in Sec. 2.8. There the
molecule’s spin-1/2 nuclei serve as quantum bits also called qubits.

From now on, the underscore in v denotes that v is a vector. The bold font in v

indicates that v is an operator. Hence, v denotes a vector of operators.
The coupling of a free spin-1/2 particle to the electromagnetic field is described by

Pauli’s equation:

−
(

~2

2m
∂x

2 +
e~

2mc
σ ·B

)
· ϕ(x, t) = ı~∂tϕ(x, t), (2.10)

where B denotes the magnetic field vector, e the particle’s charge, x the particle’s
position, ∂x the gradient operator and ∂x

2 the Laplace operator ∂2
x + ∂2

y + ∂2
z .9 The

9 As Schrödinger’s equation is not invariant under Lorentz transformation one replaces it with
Klein-Gordon’s equation:

−~
2∂2
t ψ =

`
−~

2c2∂x
2 +m2c4

´
ψ,
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Pauli matrices σx, σy, σz and the identity operator 1 are given by:

σx =

(
0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)
.

The state ϕ has the two components ϕ1 and ϕ2, both are single valued square inte-

grable functions:10

ϕ =

(
ϕ1

ϕ2

)
.

Analogous to the external states ψ the internal states, described by the solutions ϕ
of Pauli’s equation, form a vector space. Furthermore, it is possible to define a scalar
product 〈ζ, ϕ〉 for two solutions ϕ and ζ via:

〈ζ, ϕ〉 = (ζ∗1 , ζ
∗
2 ) ·

(
ϕ1

ϕ2

)
= ζ∗1ϕ1 + ζ∗2ϕ2.

Due to this common vector space structure of external and internal quantum states
Dirac introduced an alternative notation to facilitate calculations [Dir39]. Applying
this notation the wavefunction ψ is denoted by |ψ〉. By introducing the dual 〈ψ| of
the vector |ψ〉 the scalar product of the two states |φ〉 and |ψ〉 is denoted by 〈φ|ψ〉.
According to Born’s probability interpretation the absolute square |ψ|2 = 〈ψ|ψ〉 of
the wavefunction |ψ〉 must be normalized to one: |ψ|2 = 1.

The dyadic product |ψ〉〈φ| denotes a linear operator that maps |ψ〉 onto |φ〉 via the
operation:

|ψ〉〈φ| · |ψ〉 = |ψ〉 · 〈φ|ψ〉.

Using Dirac’s notation Schrödinger’s equation now looks as follows:

H |ψ〉 = ı~∂t|ψ〉. (2.11)

that follows from the relativistic energy-impulse dependency E2 = p2c2 + m2c4 applying the
canonical quantization:

p→
~

ı
∂x, E → ı~∂t.

According to Axiom 3 a measurement causes a collapse of the wavefunction. Thus, the occurrence
of a second time derivative in the Klein-Gordon equation gives rise to problems as the two initial
values ψ(0) and ψ̇(0) cannot be provided by a measurement. To circumvent this problem Dirac
proposed the following equation [Dir39]:

ı~∂tψ =

„
~c

ı
α∂x + βmc2

«

ψ,

also called Dirac equation. As the wave function ψ also has to fulfill the Klein-Gordon equation
the coefficients α and β have to be matrices of rank of at least 4. Hence, the wavefunction ψ has
4 components the last two of which are attributed to the anti-particle:

α =

„„
0 σx

σx 0

«

,

„
0 σy

σy 0

«

,

„
0 σz

σz 0

««t

, β =

„
1 0
0 −1

«

.

To describe the coupling of the particle to the electromagnetic field the kinematic impulse p
is replaced by the canonical impulse p − (e/c)A, where A denotes the vector potential of the
electromagnetic field. The non-relativistic case of Dirac’s equation is Pauli’s equation [Sch05].

10 For the sake of readability we do not explicitly display time and position dependency of the state
ϕ(x, t) from now on.
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Due to linearity of Schrödinger’s equation the time evolution of the state |ψ〉 can
be described by a linear operator U(t):

|ψ(t)〉 = U(t)|ψ(0)〉.

If the Hamiltonian H is time independent then the integration of Schrödinger’s
equation Eq. (2.11) returns:

U(t) = e−
ı
~

Ht. (2.12)

Born’s probability interpretation of |ψ(t)|2 = 〈ψ(t)|ψ(t)〉 demands the linear oper-
ators U to be unitary as only unitary transformations preserve the norm [Hir01]:11

‖ |ψ(t)〉 ‖ = ‖U(t)|ψ(0)〉 ‖ = ‖ |ψ(0)〉 ‖ with ‖ψ‖ =
√
〈ψ|ψ〉.

The dynamics of a system that consists of the two non-interacting spin-1/2 particles
A and B is described by:

HA|ψ〉 + HB|ψ〉 = ı~∂t|ψ〉. (2.13)

It can be solved by the tensor product |ψA〉 ⊗ |ψB〉 of the subsystems solutions |ψA〉
and |ψB〉 with:

HA|ψA〉 = ı~∂t|ψA〉,
and

HB|ψB〉 = ı~∂t|ψB〉.
The tensor product of the vectors |ψA〉 and |ψB〉:

|ψA〉 = αA|0〉 + βA|1〉 =

(
αA

βA

)
and |ψB〉 = αB |0〉 + βB|1〉 =

(
αB

βB

)
,

now looks as follows:

|ψ〉 = |ψAψB〉 = |ψA〉|ψB〉 = |ψA〉 ⊗ |ψB〉 =

(
αA

βA

)
⊗
(
αB

βB

)
=




αAαB

αAβB

βAαB

βAβB




= αAαB |00〉 + αAβB|01〉 + βAαB|10〉 + βAβB|11〉.

Above we introduced |0〉 and |1〉 to denote the two orthonormal states of a two-
state system, also called computational basis in the context of quantum information
processing.

The string 10 in the state |10〉 above can be interpreted as the binary representation
of the integer 2. From now on we use |2〉 to denote the state |10〉. Thus, the state
|ψAψB〉 can be written as:

|ψAψB〉 =
3∑

i=0

ci|i〉,

with c0 = αAαB, c1 = αAβB, c2 = βAαB and c3 = βAβB.
According to Axiom 3 any state of the Hilbert space HAB spanned by |0〉, |1〉, |2〉

and |3〉 provides a valid solution of Eq. (2.13). This gives rise to so called entangled
states that will be discussed in the next section.
11 A unitary operator U is characterized by the condition U−1 = U+ where U+ denotes the adjoint

of U: (U+)ij = (Uji)∗.
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2.6 Entanglement, Hidden Variables and Bell’s

Inequalities

If one simulates quantum computers on classical computers then one is faced with
the problem that the dimension d of the Hilbert space Hd grows exponentially in the
number n of qubits:

H2n = H2 ⊗H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
n times

.

Here H2 denotes the two-dimensional state space of a single qubit. Therefore, one
might be tempted to search for another description of an n-qubit state that reduces
the simulation effort.

Another problem is to decide whether a QA really is quantum. One needs a criteria
to decide if a QA cannot be implemented as efficiently on a system already describable
in terms of classical physics.

Such questions are closely related to “hidden variable theories” and Bell’s theorem
as will be shown below [Bel87].

Consider for example the following quantum state |ψ〉 of a two-qubit system that
cannot be written as a tensor product of the individual qubits’ states:

|ψ〉 =
1√
2

(|01〉 − |10〉) 6= (α1|0〉 + β1|1〉) ⊗ (α0|0〉 + β0|1〉) with α0, α1, β0, β1 ∈ C.

Such states are called entangled. Due to the measurement postulate (Axiom 4 in Sec.
2.4) a measurement on one qubit immediately determines the measurement result on
the other.

From now on we assume that the two entangled qubits are realized by the spins’
z-components of two spin-1/2 particles. As mentioned before, the measurement of the
z-component of one spin immediately determines the result of a corresponding mea-
surement on the second spin. This correlation in the measurement results suggests
that the qubits’ spins were already determined in the very beginning of the whole
experiment. Nevertheless, according to quantum physics, the wave function |ψ〉 pro-
vides a complete description of the system and must not be extended. As shown by
Bell [Bel87] this problem is closely related to the EPR paradox [EPR35] where an
argument was presented that quantum physics had to be supplemented by additional
variables to restore causality and locality.

In hidden variable theories correlations between spin measurements are also possible
due to the finiteness of Planck’s constant. A measurement of one particle’s spin alters
the whole system and thus affects the measurement result for the other. One has to
separate the two particles by a sufficiently large spatial distance. According to the
locality assumption a measurement on one particle cannot instantaneously influence
the measurement on the other. Now correlations in the measurement results cannot be
explained by a mutual classical influence anymore. The assumptions underlying Bell’s
hidden variables model can therefore be paraphrased by the term “local realism”.

All classical physical theories like relativity theory, electromagnetism etc. are real-
istic theories. Due to the success of relativity theory physicists now also believe that
localism is an essential property of the physical world. Hence, the results obtained
by Bell’s considerations provide us with a criteria to check whether a QA indeed is
quantum.
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In Fig. 2.1 the scenario of two spin-1/2 particles described above is shown. The
measurement device on the left side (particle 1) is aligned along axis n1, the measure-
ment device on the right side (particle 2) along n2. Quantum physics predicts that a
measurement of the observable σ ·ni, with i ∈ {0, 1}, returns ±1. Therefore, the result
A(n1) of measuring σ ·n1 is represented in a hidden variable theory by A(n1, λ) = ±1
where λ denotes the hidden variable. The same holds for the measurement result
B(n2) which now is determined by B(n2, λ) = ±1. Provided with the measurement
results A(n1) and B(n2) one calculates the correlation function P (n1, n2):

P (n1, n2) = lim
N→∞

1

N

N∑

i=1

Ai(n1)Bi(n2),

here N denotes the number of measurements. A quantum physical treatment returns:

P quant(n1, n2) = 〈ψ|σ · n1 ⊗ σ · n2|ψ〉.

The hidden variables treatment returns:

P class(n1, n2) =

∫
Aλ(n1)Bλ(n2)̺(λ) dλ.

Here ̺(λ) denotes the probability distribution of the hidden variable λ. As shown by
Bell one finally gets [Bel87]:

|P class(n1, n2) − P class(n1, n3)| − P class(n2, n3) − 1 ≤ 0,

which is known as Bell’s inequality. Bell demonstrated that there are directions n1,
n2 and n3 with:

|P quant(n1, n2) − P quant(n1, n3)| − P quant(n2, n3) − 1 =
1

2
.

Hence, quantum physics and hidden variable theories differ in their predictions.
Therefore, the question whether quantum physics is to be supplemented by hidden
variables can be treated experimentally. Such experiments were performed and, de-
spite the fact that some loopholes still remain open, contradict the predictions of
hidden variable theories based on local realism (see references in [ZWJA05, Zei99b]).

Another version of Bell’s inequalities often used in the literature are the so called
CHSH inequalities [CHSH69]:

|P class(n1, n3) + P class(n1, n4) + P class(n2, n3) − P class(n2, n4)| ≤ 2,

here measurements on each particle can be chosen between two arbitrary dichotomic
observables, namely n1 · σ or n2 · σ on particle 1 and n3 · σ or n4 · σ on particle
2. The Gisin theorem states that any non-product state of two particles violates a
CHSH inequality [Gis91]. Zukowski et al. generalized Bell’s inequalities to an arbi-
trary number of qubits [ZB02]. Analogous to the CHSH inequalities, measurements
on each particle can be chosen between two arbitrary dichotomic variables. Unfortu-
nately, the Gisin theorem cannot be generalized to these N -particle Bell inequalities as
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Figure 2.1: Thought experiment to test Bell’s inequalities by measuring the spins’ com-
ponents of electrons along the axis n1, n2, respectively. Along any arbitrary axis a spin’s
component can only have two possible values denoted by plus and minus. The source creates
an entangled pair of electrons, the electrons fly apart in opposite directions.

there exist non-product states that do not violate any of these inequalities [ZBLW02].
Nevertheless, these inequalities are satisfied by any product state.12

These results show that any product state can be described classically. The param-
eter space of product states grows linearly in the number of qubits. The experimental
results for correlation functions on 2 and 3 qubits indicate that a linear growth of the
parameter space is not sufficient to account for the occurring non-classical correla-
tions [WJS+98, PBD+00]. Therefore, the exponential growth of the parameter space
in the number of qubits seems to be a necessary condition to ensure quantumness.

2.7 Mixed States, POVMs and Quantum Operations

Imagine an experimentator whose apparatus prepares a quantum system to be in the
state |ψi〉 ∈ H with probability pi. The expectation value 〈A〉 of the observable A is
calculated via:

〈A〉 =
∑

i

pi〈ψi|A|ψi〉 =
∑

i

pi tr {|ψi〉〈ψi|A} = tr

{(
∑

i

pi|ψi〉〈ψi|
)

A

}

= tr {̺A} , with ̺ =
∑

i

pi|ψi〉〈ψi|, (2.14)

12 From any state that violates any of these inequalities pure state entanglement is distillable
[ASW02]. Distillibility denotes a procedure where two separated observers can prepare n en-
tangled states from m ≥ n quantum states by only local operations and classical communication.
Pure entangled states cannot be distilled from pure product states. Hence, a pure product state
satisfies the N-particle Bell inequalities.
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here we used the equivalence between the trace tr{|ψi〉〈ψi|A} of the dyadic product
|ψi〉〈ψi| times the observable A and the expectation value 〈ψi|A|ψi〉 of the observable
A. The operator ̺ is usually called density matrix and has the following properties
[NC00]:

1. Trace condition I: tr{̺} = 1

2. Trace condition II: tr{̺2} ≤ 1, with equality if ̺ = |ψ〉〈ψ|, where |ψ〉 ∈ H.

3. Positivity condition: 〈ψ|̺|ψ〉 ≥ 0 for any state |ψ〉 ∈ H. From this condition it
follows that ̺ also is Hermitian and thus diagonalizable with real eigenvalues.

The density matrix ̺ describes quantum systems from which one only knows the
probability pi of the system to be in the state |ψi〉. Therefore, it provides a more
general description of a quantum system than the description based on pure states
|ψi〉 ∈ H alone. Trace condition II provides a criterion that can be used to check if
a quantum system, described by the density matrix ̺, is in a pure state. If not then
the quantum state is called a mixed state.

Now that any quantum system can be represented by a positive operator ̺ the set
of possible transformations which describe the dynamics of the system (time evolu-
tion/measurement) has to be extended. This dynamics is characterized by so called
quantum operations E(̺) that map the initial state ̺ to the final state ˆ̺ = E(̺).
Any quantum operation E

A(̺A) on system SA must be a completely positive map
[NC00, Aud05]. This means that (1) every positive operator ̺A of the system SA

is mapped to another positive operator ˆ̺A = E
A(̺A) of system SA and (2) if one

introduces an extra system SB then the quantum operation E
A ⊗ 1B(̺AB) maps

any positive operator ̺AB of the combined system SAB to another positive opera-
tor of the combined system. One also demands that E

A is a linear operation. It is
well known that for any quantum operation E

A on system SA there exists a unitary
transformation UAB on an extended system SAB so that any state ̺A of system SA

transforms according to the quantum operation E
A on system SA alone [Aud05].

Up to now we only considered projective measurements that are non-destructive by
definition (see Axiom 3 in Sec. 2.4). Nevertheless, experiments where particles are
diffracted at a single slit and are finally detected on a detection screen are not captured
by projective measurements. After the detection the particles are not accessible for
any further measurements. To adequately describe such scenarios one uses the concept
of POVM (positive operator-valued measure) measurements [NC00, Aud05]. Know-
ing the set {mi}, with mi ∈ R, of possible measurement results and the corresponding
probabilities pi it is possible to assign a linear operator Emi to each measurement
result mi. Due to pi = tr{̺Emi} and 0 ≤ pi ≤ 1 the operators Emi must be positive.
Because of

∑
pi = 1 and the linearity of the trace operation one gets

∑
i Emi = 1.

It is well known that for any POVM measurement on system SA there exist unitary
transformations UAB on an extended system SAB and projective measurements on
system SB so that system SA is measured according to the POVM formalism [Aud05].

The scheme for realizing a POVM measurement described in the last sentence nicely
reflects the physical events that occur when a particle in the single slit experiment
described above hits the detection screen. Not the particle is measured but the photon
that is emitted when the particle hits the screen. So it becomes apparent that any
description of such a measurement process has to consider the emitted photon as well.
This is exactly what the POVM formalism provides.
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The most general dynamics of a quantum system SA can be represented by unitary
transformations UAB on an extended system SAB and projective measurements on
system SB. Hence, it is sufficient to only simulate unitary transformations and pro-
jective measurements in order to adequately simulate quantum computers on classical
computers.

2.8 Liquid State NMR Quantum Computers

Up to now NMR-QCs provide the only possibility to realize QAs on several qubits,
e.g. Shor’s algorithm for seven qubits was implemented on an NMR-QC [VSB+01].
As the parity algorithm found by our GP system was implemented on a two-qubit
NMR-QC we will present the theory of NMR-QCs by means of a two-qubit system.

In Fig. 2.2 a sample with a macroscopic number of 13C-labeled chloroform molecules
is placed into a strong uniform magnetic field B0, conventionally taken to define the
ez-axis:

B0 = B0ez .

Perpendicular to this constant magnetic field a coil is oriented along the ex-axis.
This coil allows to create a small oscillating magnetic field B1 that can rapidly be
switched on and off [Sli90]:

B1(t) =
B1

2


(cos (ωrf t)ex − sin (ωrf t)ey) + (cos (ωrf t)ex + sin (ωrf t)ey)︸ ︷︷ ︸

negligible


 . (2.15)

The Hamiltonian that describes the two spin-1/2 nuclei 13C and 1H of a single
chloroform molecule follows from Pauli’s equation Eq. (2.10):

H(t) = H0 + Hrf(t). (2.16)

Here H0 denotes the time independent Hamiltonian of the system with the radiofre-
quency (rf) field switched off:

H0 = −ω(H)
0 I(H)

z − ω
(C)
0 I(C)

z + 2πJ I(H)
z I(C)

z . (2.17)

Above we introduced I
(H)
α = 1/2(σα ⊗ 1) with α ∈ {x, y, z} to denote the spin

operator of the hydrogen nucleus and I
(C)
α = 1/2(1⊗σα) to denote the spin operator

of the carbon nucleus. Therefore, 2πJ I
(H)
z I

(C)
z is equal to (π/2)J σz ⊗ σz .

The term Hrf denotes the time dependent part of the Hamiltonian due to the
rf-field:

Hrf(t) = −ω(H)
1 ·

(
cos (ωrf t)I

(H)
x − sin (ωrf t)I

(H)
y

)

−ω(C)
1 ·

(
cos (ωrf t)I

(C)
x − sin (ωrf t)I

(C)
y

)
. (2.18)

We introduced the two constants ω0, ω1 that are defined by ω0 = γ · B0 and
ω1 = γ · B1/2, where γ is the gyromagnetic ratio of the considered nuclei. The
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Figure 2.2: Schematic diagram of an NMR-QC.

term 2πJ I
(H)
z I

(C)
z follows from the scalar coupling between the spin of the hydrogen

nucleus and that of the carbon nucleus [Hor95]. For chloroform one gets J=215 Hz.
The time independent part H0 of the Hamiltonian in Eq. (2.16) is diagonal in

the computational basis which is defined by the eigenstates of the I
(H)
z and I

(C)
z

operators:

H0 =




E0 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E3


 ,

with

E0 = (−ω(H)
0 − ω

(C)
0 + πJ)/2, E1 = (−ω(H)

0 + ω
(C)
0 − πJ)/2,

E2 = (ω
(H)
0 − ω

(C)
0 − πJ)/2, E3 = (ω

(H)
0 + ω

(C)
0 + πJ)/2.

(2.19)

2.8.1 Controllable Unitary Operations

To get rid of the explicit time dependence in the Schrödinger equation:

ı~∂t|ψ(t)〉 = H(t)|ψ(t)〉,

we use the following formula [Sor89]:

e−ıϕBAeıϕB = A cos (ϕ) − ı [B,A] sin (ϕ),

which holds for [B, [B,A]] = A, where [A,B] = AB − BA. The operators A and

B denote spin operators I
(H)
α , I

(C)
β and products thereof, with α, β ∈ {x, y, z}. Due

to this formula the Hamiltonian in Eq. (2.16) can be written in the form:

H = − ω
(H)
0 I(H)

z − ω
(C)
0 I(C)

z + 2πJ I(H)
z I(C)

z

− ω
(H)
1

(
eıωrf tI(H)

z I(H)
x e−ıωrf tI(H)

z

)
− ω

(C)
1

(
eıωrf tI(C)

z I(C)
x e−ıωrf tI(C)

z

)
.
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The explicit time dependence of the Hamiltonian vanishes if one uses the following
substitution to solve the Schrödinger equation:

|ψ(t)〉 = eıωrf tI(H)
z eıωrf tI(C)

z |ϕ(t)〉.

This transformation is equivalent to a change of the frame of reference from the static
laboratory frame to a rotating frame that rotates around the ez-axis with frequency
ωrf [Sli90]. From now on we integrate Planck’s constant into the Hamiltonian H .
One thus gets:

ı∂t|ϕ(t)〉 = H ′|ϕ(t)〉,
with:

H ′ =
(
−ω(H)

0 + ωrf

)
I(H)

z +
(
−ω(C)

0 + ωrf

)
I(C)

z +2πJ I(H)
z I(C)

z −ω(H)
1 I(H)

x −ω(C)
1 I(C)

x .

Due to |−ω(H)
0 +ω

(C)
0 | ≫ ω

(H)
1 the term proportional to ω

(H)
1 can be neglected when

ωrf equals ω
(C)
0 . Because of ω

(C)
1 ≫ J one also can neglect the spin-spin coupling.

For ωrf = ω
(C)
0 one gets:

ı∂t|ϕ(t)〉 =
(
(−ω(H)

0 + ω
(C)
0 )I(H)

z − ω
(C)
1 I(C)

x

)
|ϕ(t)〉.

Now the system’s time evolution is described by:

U(t) = e−ı(ω
(H)
0 −ω

(C)
0 )I(H)

z t · eıω
(C)
1 I(C)

x t.

The spin of the carbon nucleus evolves according to the unitary matrix U ′(t):

U ′(t) = eıω
(C)
1 I(C)

x t = R(C)
x (−ω(C)

1 t) = eı(ω
(C)
1 /2)t 1⊗σx . (2.20)

If one shifts the phase of the rf-field in Eq. (2.15) by an amount of +90◦ then the
spin of the carbon nucleus evolves according to the unitary matrix U ′(t):

U ′(t) = eıω
(C)
1 I(C)

y t = R(C)
y (−ω(C)

1 t) = eı(ω
(C)
1 /2)t1⊗σy . (2.21)

Due the results presented above and Eq. (3.11) of Sec. 3.3 any unitary operation
on a single qubit can be realized by appropriately chosen phase shifts and frequencies
of the rf-field. According to Sec. 3.3 any unitary operation on n qubits can be
decomposed into unitary operations on single qubits and a unitary operation on two
qubits called CNOT:

U
(HC)
CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Here we used U
(HC)
CNOT to denote that the hydrogen’s spin provides the control and

the carbon’s spin the target qubit: U
(HC)
CNOT |a〉|b〉 = |a〉|b⊕ a〉 with a, b ∈ {0, 1} and ⊕

the XOR operation. The leftmost qubit is the spin of the hydrogen nuclei. Thus, the
spin state of the carbon nuclei is flipped only when the hydrogen’s spin is in state |1〉.



20 2 Quantum Physics

This gate can be realized up to a global phase shift by rf-pulses and periods of free
evolution where the system evolves due to the time independent Hamiltonian H0:

ı∂t|ψ(t)〉 = H0|ψ(t)〉.

Substituting |ψ(t)〉 by |ϕ(t)〉 according to:

|ψ(t)〉 = eıω
(H)
0 tI(H)

z eıω
(C)
0 tI(C)

z |ϕ(t)〉,

which is equivalent to change the frame of reference to the doubly rotating frame with

frequencies ω
(H)
0 and ω

(C)
0 , one gets:

ı∂t|ϕ(t)〉 = 2πJ I(H)
z I(C)

z |ϕ(t)〉.

In the doubly rotating frame the time evolution caused by the time independent
Hamiltonian H0 is described by the unitary matrix U(t):

U(t) = e−ı2πJI(H)
z I(C)

z t = R(HC)
zz (2πJt) = e−ı π

2 Jt σz⊗σz . (2.22)

Using R
(i)
x (φ), R

(i)
y (φ) and R

(ij)
zz (φ), defined in Eq. (2.20) - Eq. (2.22), with i, j ∈

{H,C} one gets, up to a global phase shift:

U
(HC)
CNOT ∼ R(C)

y (
π

2
) · R(C)

−x (
π

2
) · R(C)

−y (
π

2
) · R(H)

x (
π

2
) · R(H)

−y (
π

2
) · R(HC)

zz (π) · R(H)
y (

π

2
).

(2.23)
Any one-qubit and CNOT operation can be realized on the NMR-QC. It follows

that any unitary two-qubit operation can be realized (see Sec. 3.3). This result can
also be generalized to an arbitrary number of qubits. Nevertheless, for an n-qubit
system it is necessary to get rid of unwanted spin-spin interactions which can be done
using refocusing pulses [JK99]. In the calculations above we often switched the frame
of reference which, in the experiment, corresponds to a phase shift in the measured
signal.

In the NMR literature the rf-pulses are usually denoted by the following symbols:

(θ)
(C)
±x = R

(C)
±x (θ), (θ)

(C)
±y = R

(C)
±y (θ), (θ)

(H)
±x = R

(H)
±x (θ),

(θ)
(H)
±y = R

(H)
±y (θ), (θ)(HC) = R

(HC)
zz (θ), θ ∈ R+

(2.24)

Pulse sequences are read from the left to the right. The pulse sequence to implement

the U
(HC)
CNOT gate in Eq. (2.23) reads:

U
(HC)
CNOT ≡

(
π
2

)(H)

y
− (π)

(HC) −
(

π
2

)(H)

−y
−
(

π
2

)(H)

x
−
(

π
2

)(C)

−y
−
(

π
2

)(C)

−x
−
(

π
2

)(C)

y
.

2.8.2 The Thermal Density Matrix

Dipole-dipole interactions between intra- and intermolecular spins are averaged out
due to rapid tumbling of the molecules in the macroscopic sample at room temperature
[Lev01]. Therefore, these interactions can be neglected.
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The probability pi of the two spin-1/2 system to be in the energy eigenstate |i〉
with H0|i〉 = Ei|i〉 is given by Boltzmann’s distribution:

pi =
e−βEi

∑
j pj

.

Here β = 1/kT with k the Boltzmann constant and T the temperature.
The whole ensemble of chloroform molecules subjected to a constant magnetic field

is described by the density matrix ̺therm:

̺therm =
∑

i

pi|i〉〈i| =
∑

i

e−βEi

∑
j e

−βEj
|i〉〈i| =

e−βH0

tr{e−βH0} .

In the high temperature approximation one obtains:

̺therm =
e−βH0

tr{e−βH0} ≈ 1

4
(1 − βH0) .

Due to ω
(H)
0 , ω

(C)
0 ≫ 2πJ one can neglect the spin-spin coupling:

̺therm ≈ 1

4

(
1 + βω

(H)
0 I(H)

z + βω
(C)
0 I(C)

z

)
. (2.25)

2.8.3 The Measurement

With the rf-field switched off the time dependence |ψ(t)〉 of a single two spin-1/2
system is described by:

|ψ(t)〉 =
∑

l

cl(t)|l〉 = e−ıH0t
∑

l

cl(0)|l〉 =
∑

l

e−ıEltcl(0)|l〉, with l ∈ {0, 1, 2, 3}.

The energies El are specified in Eq. (2.19). The time evolution of the density matrix
̺(t) of a single system in the pure state |ψ(t)〉 can be calculated via:

̺(t) = |ψ(t)〉〈ψ(t)| =
∑

l,m=0

cl(0)c∗m(0)e−ıωlmt|l〉〈m| with ωlm = El − Em.

The time evolution of the density matrix element (̺(t))lm is described by:

(̺(t))lm = e−ıωlmt(̺(0))lm.

Due to the definition of the general density matrix in Eq. (2.14) this equation also
holds for mixed states. For pure states one gets:

(̺(t))lm = cl(t)c
∗
m(t).

The voltage sFID(t) generated in the coil oriented along ex is proportional to the
time derivative of the NMR sample’s magnetization along the ex-axis:

sFID(t) ∼ ∂t〈I(H)
x + I(C)

x 〉(t) = tr {(∂t̺(t))
(
I(H)

x + I(C)
x

)
}.
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As ̺ is a Hermitian operator (̺)lm is equal to (̺)∗ml. From the definition of ωlm

above it follows that ωlm is equal to −ωml. One gets:

sFID(t) ∼ ω01 · ℑ{(̺(0))01 · e−ıω01t} − ω02 · ℑ{(̺(0))02 · e−ıω02t}
−ω13 · ℑ{(̺(0))13 · e−ıω13t} − ω23 · ℑ{(̺(0))23 · e−ıω23t},

with

ω01 = −ω(C)
0 + πJ, ω02 = −ω(H)

0 + πJ

ω13 = −ω(H)
0 − πJ, ω23 = −ω(C)

0 − πJ.

We used ℑ(z) to denote the imaginary part of a complex number z. Relaxation effects
are not considered in this calculation hence one multiplies each addend in sFID by a
factor exp (−λt), with λ ∈ R. The thermal density matrix ̺therm in Eq. (2.25) has
no outer-diagonal elements therefore one has to apply a Ry(π/2) pulse to both spins
in order to measure any signal:

U̺thermU+ ≈ 1

4

(
1 + βω

(H)
0 I(H)

x + βω
(C)
0 I(C)

x

)
,

with U defined by:
U = R(H)

y (π/2)R(C)
y (π/2).

This returns (̺(0))01 = (̺(0))23 = ω
(C)
0 /2 and (̺(0))02 = (̺(0))13 = ω

(H)
0 /2.

In order to visualize the individual components of the measured signal sFID(t) one
calculates the Fourier transform S(Ω) of sFID(t):

S(Ω) =

∫ ∞

0

sFID(t)e−ıΩt dt.

The spectrum S(Ω) of the signal sFID(t):

sFID(t) =
∑

l

al · sl(t) with sl(t) = e−(ıωl+λl)t and al, ωl, λl ∈ R,

is of the form [Lev01]:

S(Ω) =
∑

al




λl

λ2
l + (Ω − ωl)2︸ ︷︷ ︸

absorption Lorentzian

−ı · (Ω − ωl)

λ2
l + (Ω − ωl)2︸ ︷︷ ︸

dispersion Lorentzian


 .

Applying Ry(π/2) pulses to both spins of the thermally equilibrated system in Fig.
2.2 results in the spectrum shown in Fig. 2.3.

2.8.4 Pseudo-Pure States and Temporal Averaging

Usually, a quantum computation starts with a pure state of the form |ψinit〉 = |0〉. In
Sec. 2.8.2 we showed that the initial state of an NMR-QC is described by the thermal
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Figure 2.3: Schematic diagram of the real part of the NMR spectrum as it would be
obtained after applying a readout pulse (Ry(π/2)-pulse) to the equilibrated NMR sample of
Fig. 2.2.

density matrix ̺therm. Nevertheless, it is possible to perform a quantum computation
as the thermal density matrix can be transformed into a state of the form:

̺ = (1 − ǫ)
1

N
+ ǫ|0〉〈0|,

also called pseudo-pure state, where N = 2n denotes the dimension of the Hilbert
space of an n-qubit system. A computation represented by the unitary transformation
U maps this density matrix to:

U̺U+ = (1 − ǫ)
1

N
+ ǫU |0〉〈0|U+.

A readout pulse Ry(π/2) leaves the term proportional to 1 unchanged. This term does
not contribute to the magnetization along the ex-axis. Therefore, the whole signal is
only caused by the last term. Unfortunately, the factor ǫ decreases exponentially with
the number n of qubits and thus renders the usage of pseudo-pure states ineffective
for large n [WGC97].

In our experiment we used a method called temporal averaging to create a pseudo-
pure state [KCL98]. Here we illustrate this approach for the two-qubit system of Fig.
2.2. As shown in Sec. 2.8.2 the thermal state of our system is:

̺therm ≈ 2−2[1 − H0] ≈ 2−2[1 + ω
(A)
0 I(A)

z + ω
(X)
0 I(X)

z ] =

0

B
B
@

n00

n01

n10

n11

1

C
C
A
,

with n00, n01, n10, n11 ∈ R. Since this matrix only consists of diagonal elements we
will abbreviate it by [n00,n01,n10,n11]. A pseudo-pure state of the form:

̺ = (n01 + n10 + n11)[1, 1, 1, 1] + (3n00 − (n01 + n10 + n11)) [1, 0, 0, 0],
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is equivalent to the sum of three diagonal density matrices:

[n00, n01, n10, n11] + [n00, n11, n01, n10] + [n00, n10, n11, n01]

= (n01 + n10 + n11)[1, 1, 1, 1] + (3n00 − (n01 + n10 + n11)) [1, 0, 0, 0]. (2.26)

The first addend on the left is the equilibrium density matrix ̺therm and the last two
addends on the left can be created by applying CNOT operations to ̺therm in the
following manner:

[n00, n11, n01, n10] = U
(CH)
CNOT · U (HC)

CNOT · [n00, n01, n10, n11] · U (HC)
CNOT

+
· U (CH)

CNOT

+
,

[n00, n10, n11, n01] = U
(HC)
CNOT · U (CH)

CNOT · [n00, n01, n10, n11] · U (CH)
CNOT

+
· U (HC)

CNOT

+
.

(2.27)

An NMR-experiment is mathematically described by linear operations. Hence, an
initial state like the one on the right side of Eq. (2.26) is equivalent to the sum of the
spectra of three different experiments, each of which is performed on one of the three
initial states similar to those on the left side of Eq. (2.26).
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One major problem one is faced with in the investigation of QAs is the fact that
almost all QAs of interest like the Deutsch-Jozsa (DJ) algorithm [DJ92], Simon’s
algorithm [Sim94], Grover’s algorithm [Gro96] or order-finding1 are naturally stated
using the so called blackbox model of computation [BBC+01]. The application range
of this model is very restricted in comparison to the usual model of computation,
namely Turing’s machine. Despite some proofs of an exponential speed-up of QAs
for blackbox problems like Simon’s problem (see Sec. 3.4.2) or order finding [Cle99]
it remains unclear if quantum computation is superior to classical computation (see
Sec. 3.1.4).

The aim of this chapter is to provide the main concepts of computability and
computational complexity in order to put the blackbox model of computation in
perspective. This model will be used to discuss the QAs evolved with the help of GP
in Chap. 5.

We will start with a general introduction to computation in Sec. 3.1. Thereafter we
will present deterministic computation in Sec. 3.1.1, probabilistic computation in Sec.
3.1.2, and quantum computation in Sec. 3.1.3. Unless stated otherwise the definitions
and concepts are taken from the textbooks of Gruska [Gru00] and Hirvensalo [Hir01].

The concept of computational complexity will be presented in Sec. 3.1.4. The
definitions of the classical complexity classes are taken from [Vöc02]. In Sec. 3.1.5
we will discuss relativized complexity classes. They can be used to demonstrate that
quantum computation indeed provides some benefits over classical computation. This
section will also introduce the concept of oracles, or analogous blackboxes, that gives
rise to the blackbox model of computation that will be presented in Sec. 3.2.

The latter model of computation uses decision trees to keep track of the differ-
ent results returned by oracle queries. Quantum decision trees can be defined by a
sequence of oracle calls alternating with unitary matrices [BdW02]. These matrices
can be decomposed into one- and two-qubit operations. Therefore, we will introduce
the concept of quantum circuits in Sec. 3.3. Finally, Sec. 3.4 will present the DJ
algorithm and Simon’s algorithm.

3.1 Turing Machines and Computational Complexity

Classes

The concept of computability is closely related to the Turing machine (TM). Turing’s
main concern in introducing this machine was on computable numbers [Tur36]. He
also mentions that his computing machine can easily be extended to define computable

1 Shor’s algorithm [Sho94] reduces the factoring problem of integers to the problem of order-finding
[NC00]. This reduction can be done efficiently on classical computers. Shor’s algorithm thus
exploits the ability of quantum computers to efficiently solve the order-finding problem.
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functions, computable predicates, and so forth. Therefore, the TM can be used to
formalize the notion computable.

His investigation was motivated by an outstanding problem in the foundations of
mathematics called decision problem [Hod02] which was posed by David Hilbert. He
worked on a formalistic approach on the foundations of mathematics also known as
Hilbert’s program [Zac03]. The decision problem is to show that there exists a definite
method to decide with a finite number of elementary steps whether a mathematical
proposition is provable or not.

The main difficulty in solving this problem was to find a general definition of notions
usually used in Hilbert’s program like “definite method” or “procedure”. To solve this
problem Turing tried to identify a minimal set of requirements and procedures needed
by a person to perform a computation (see §9 in [Tur36]). He obtained the following
list of essential conditions:

• A computation is done by writing certain symbols on paper which is divided
into squares like a child’s arithmetic book. Without loss of generality this two-
dimensional paper can be represented by a one-dimensional one - i.e., a tape
divided into squares.

• The number of symbols that may be printed is finite.

• The behavior of the person at any moment of the computation is determined
by the symbols he currently observes and his corresponding “state of mind”.

• The number of these states of mind is taken to be finite.

• The operations of the computing person can be split up into simple elementary
operations so that no more than one symbol is altered per operation.

• The person can move from one square of the tape to a neighboring one at each
elementary operation.

This informal description provides the main ideas necessary to formalize the notion
of computability. In the next section we demonstrate how this can be done. There
we will define the deterministic TM (DTM).

Devices that implement Turing’s list of essential conditions are said to operate by
finite means [Tur36]. This indicates that only a finite subsystem of the device is
changed at every timestep. Moreover, the actions of the device are specified by a
finite number of rules that depend on the state of a finite subsystem.

3.1.1 The Deterministic Turing Machine

A DTM consists of a sufficiently long tape2, a read-write head and a finite state
machine (see Fig. 3.1). The tape is divided into an infinite number of cells. Each of
these cells can either be blank or contain a symbol σ from a finite set Σ also called
alphabet. The read-write head can access only one cell per time-step. It is controlled
by a finite state machine whose actual state s is an element of a finite set S of possible
states. Dependent on the symbol σ and the actual state s, the TM enters the new

2 Usually the tape is considered to be of infinite length. Nevertheless, only a finite number of tape
cells is allowed to contain symbols relevant to the computation.
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state s′ ∈ S. Then it replaces the symbol σ by σ′ ∈ Σ and moves the read-write
head to a neighboring cell. The direction of this move is determined by the variable
d ∈ {R,L}: For d=L the head moves to the left, for d=R it moves to the right. The
time evolution of the DTM is described by the transition function δDTM:

δDTM : S × Σ → S × Σ × {R,L}.

In the process of computation the DTM goes through a sequence of configurations.
Each configuration c = (s1, w1σ, σ1w2) provides a global description of the machine.
It is determined by the symbols σ, σ1 ∈ Σ written on the tape, the actual state s1 ∈ S
of the finite state machine and the actual position of the read-write head. The read-
write head currently reads the symbol σ1. The symbols w1 and w2 denote words
over the alphabet Σ. Usually one writes w1, w2 ∈ Σ∗ where Σ∗ denotes the set of all
possible words: If Σ = {0, 1} then Σ∗ = {0, 1, 01, 10, 11, 100, . . .}.

The transition between configurations is completely determined by the transition
function δDTM. If δDTM(s1, σ1) = (s2, σ2, d) then the configuration c = (s1, w1σ, σ1w2)
can be transformed to:

c′ = (s2, w1, σσ2w2) if d = L.

c′ = (s2, w1σσ2, w2) if d = R.

The transition function depends only on the actual state of the finite state machine
and the current symbol read by the read-write head. Therefore the DTM operates by
finite means as demanded in the end of the last section.

00000 1 1111

read/write
head

finite state
machine

actual state: s ∈ S

data tape

Figure 3.1: A DTM is described by the triplet M= (S,Σ, δ). S is a finite set of states,
Σ = {0, 1} is a finite set of symbols. The transition function δDTM : S×Σ → S ×Σ×{R,L}
maps a configuration of the machine to the next one.

The DTM starts in the initial state sinit ∈ S with the read-write head at the first
symbol of the input w ∈ Σ∗. Starting in the initial configuration cinit = (sinit, ǫ, w)
where ǫ denotes a blank region on the tape, the machine halts3 in the configuration
cfinal = (sfinal, w1, w2). The result of the computation is the word w1w2 ∈ Σ∗. If the

3 If one considers reversible TMs then the concept of a halting state has to be replaced by an “end
of computation” flag. This flag ensures reversibility of the whole computation process, because
a reversible non-trivial computation cannot have successive configurations that are equal.
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DTM solves a decision problem then a single output symbol σfinal ∈ Σ is sufficient:
σfinal = 0 when the DTM rejects the input w, σfinal = 1 when the DTM accepts the
input w.

The DTM seems to provide a sufficient model of computation. This conjecture is
stated by the so-called Church-Turing thesis [NC00]:

The class of functions computable by a DTM corresponds to the class of func-
tions which would naturally be regarded as being computable by an algorithm.

One extension of the TM is due to a result of Solovay and Strassen who presented
a new kind of algorithms for testing if a number is prime [SS77]. Their algorithm uses
coin flips to help the search for counter-examples of primality. In order to cover such
algorithms, Turing’s original approach has been generalized to the probabilistic TM
(PTM).

3.1.2 The Probabilistic Turing Machine

A PTM is a deterministic one augmented with the ability of an unbiased coin flip at
each time step. Dependent on the outcome of this coin flip a deterministic transition
function δDTM dictates the actual action of the machine. In Fig. 3.2 the coin flips
are replaced by an additional tape that contains random bits. At each time step the
machine reads a random bit from the additional tape and moves the corresponding
read head to the neighboring right cell. One does not know the random bits in
advance. Therefore, the behavior of the PTM is described by a transition function
δPTM that assigns a probability p ∈ [0, 1] to the transition of a configuration (s, σ) ∈
S × Σ to a configuration (s′, σ′) ∈ S′ × Σ′, with S = S′ and Σ = Σ′:

δPTM : S × Σ × S′ × Σ′ × {R,L} → p with p ∈ R and p ∈ [0, 1]. (3.1)

The whole computation can be represented by a tree like the one in Fig. 3.4. Its
nodes denote configurations and its edges assign transition probabilities. A single
branch of this configuration tree corresponds to a single computation of the PTM.
The total probability to end up in a particular final state is given by the product of
the probabilities assigned to each edge on the path from the initial configuration to
the final configuration. If several paths end up in the same final configuration then
these probabilities have to be summed up.

The time evolution of the PTM can be described by stochastic matrices whose
rows and columns are indexed by configurations. Each entry of the matrix assigns a
transition probability from one configuration to another as demanded by Eq. (3.1).
The stochastic matrix P :

P =
1

2




0
1 1
1 1

1 1
1 1

0


 with: 0 =

(
0 0
0 0

)
,

transforms an initial state |c1], represented by the vector (1, 0, 0, 0)t, to P |c1] =
1/2 |c3] + 1/2 |c4], represented by (0, 0, 1/2, 1/2)t.

We use |ci] to denote the physical state that represents the configuration ci. This
notation is used to indicate that the corresponding physical system does not allow for
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Figure 3.2: A PTM is a DTM whose transition function δDTM also depends on random
bits read form an additional tape.

superpositions between different states. Therefore, the state 1/2 |c3] + 1/2 |c4] shows
that the physical system is in the state |c3] or |c4] with a probability of 1/2 each.

The configuration of a PTM at time t is calculated via:

|ψ(t)] = PtPt−1 · · ·P1|c1] = p1(t) |c1] + p2(t) |c2] + · · · + pm(t) |cm]. (3.2)

Here m denotes the number of configurations and t the number of elementary com-
putational steps. We used Pt, . . . ,P1 to denote stochastic matrices. Because a TM
has to work by finite means not all possible stochastic matrices represent valid TMs!

The next extension of TMs is due to Deutsch who developed a computation model
based on quantum physics [Deu85]. He gave the first example of a problem that could
be solved more adequately by this model than by any of the former approaches.4

The definition of the quantum TM (QTM) that will be presented in the next section
is based on the work of Bernstein et al. who revised Deutsch’s original approach
[BV97].

3.1.3 The Quantum Turing Machine

A QTM is defined analogous to the DTM with the finite state machine, the tape,
and the read-write head replaced by quantum systems. Due to the fact that the time
evolution of a quantum system is described by unitary matrices Ui the transition
function δQTM now looks like:

δQTM : S × Σ × S′ × Σ′ × {R,L} → α with α ∈ C and |α|2 ∈ [0, 1].

Analogous to the time evolution of a PTM given by Eq. (3.2) the time evolution
of a QTM is described by:

|ψ(t)〉 = UtUt−1 . . .U1|c1〉 = α1(t)|c1〉 + α2(t)|c2〉 + · · · + αm(t)|cm〉.
4 The answer of Deutsch’s algorithm to this problem is not obtained with certainty in a given time.

Although his algorithm is sometimes faster than any classical algorithm it does not provide any
speed-up on average.
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Here we use Dirac’s notation |ci〉 to denote the quantum state that represents the ith
configuration of the QTM. It can be decomposed in the following manner:

|c〉 = |i〉|m〉|s〉; i,m, s ∈ N.

From now on we assume that the elementary computational states are represented
by qubits, hence the configuration of the QTM is encoded binary. In what follows
we use i, m and s to denote the binary decomposition of the integers i, m and s.
Therefore, the state |ψ〉 is denoted by |ψ〉 = |i〉|m〉|s〉. This indicates that the actual
position of the read-write head accesses the i-th entry mi of the memory (tape)
m ∈ {0, 1}∗. The actual state of the finite state machine is given by the binary
representation s of s ∈ S. The position i of the read-write head is increased by ±1
at each time step. In addition to the read-write operations the QTM can apply any
one-qubit operation to the memory entry at the actual position i of the read-write
head.

The usage of physical systems governed by the rules of quantum physics allows to
exploit new resources like superpositions and interference in the course of a compu-
tation. This is illustrated in Fig. 3.3.
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Figure 3.3: The experimental setup in part a illustrates the effects of superpositions and
interference: Only the configuration |c6〉 is measured. The corresponding configuration tree
is shown in part b. The mirrors can be ignored because their effects in their respective arms
balance out.

The first transition function of the computation performed by the experiment in
Fig. 3.3a is represented by the unitary matrix U1 which describes the effect of the
first beamsplitter. The mirrors can be ignored because their effects in their respective
arms balance out. The final transition function (final beamsplitter) is represented by
U2:

U1 =

0

@

0 Ũ1 0

Ũ1 0 0

0 0 1

1

A , U2 =

0

@

1 0 0

0 0 Ũ1

0 Ũ1 0

1

A . (3.3)
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The unitary matrix Ũ1, the identity operator 1 and the zero operator 0 are defined
by:5

Ũ1 =
1√
2

(
1 ı
ı 1

)
, 1 =

(
1 0
0 1

)
, 0 =

(
0 0
0 0

)
.

The time evolution of the quantum system in Fig. 3.3a is described by U2U1|c1〉
with |c1〉 = (1, 0, 0, 0, 0, 0)t. The corresponding configuration tree is shown in Fig.
3.3b.

To calculate the total probability of ending up in a certain final quantum state one
has to multiply the probability amplitudes assigned to each edge on the path from
the root node to the final node. If several paths lead to the same quantum state
then one has to sum up the corresponding probability amplitudes. The measurement
probability of this quantum state is obtained by calculating the squared norm of the
final probability amplitude.

Applying these rules to the configuration tree of the experiment demonstrates the
effect of interference: Paths leading to the same final state may cancel out each other.
In this example the probability to measure the configuration |c6〉 = (0, 0, 0, 0, 0, 1)t is
equal to one.

If one considers the efficiency of a computation (see Sec. 3.1.4) then the usage
of interference raises the hope to efficiently solve problems that were believed to be
computationally hard in the classical approach on computability.

This can be illustrated by the concept of configuration trees. As will be stated in
Sec. 3.1.4 a problem is efficiently solvable if at least more than one half of all possible
paths of the configuration tree lead to an accepting configuration. If only a few paths
lead to an accepting configuration then a problem is said to be computationally hard.
This is due to the fact that the number of paths of a PTM grows exponentially with
the number of time steps. A hard problem requires to test exponentially many paths
on average in order to find an accepting one.

With the concept of QTMs it might be possible to boost the probability of finding
an accepting path by causing destructive interference between the exponentially many
rejecting ones.6

3.1.4 Computational Complexity

The main interest of Turing in introducing his computing machine was the investiga-
tion of computability. Therefore, he didn’t account for the amount of time or memory
needed by this machine. Nevertheless, considerations of these requirements became
important in the investigation of “real-world” algorithms.

Hartmanis et al. introduced the idea of measuring the time and the space needed
by the TM as a function of the length |x| of the input x ∈ Σ∗ [HS65]:

• Time is measured by the number of elementary steps before the TM halts.

• Space is measured by the number of different character locations touched by
the read-write head during a computation.

5 A nice derivation of the form of the unitary matrix Ũ1 can be found in [HGP02].
6 This is only possible if the different computational paths have the same length and if each path

does not leave around any garbage information. Paths with different length and different residual
information would not interfere anymore. Further information about such requirements and the
corresponding solutions can be found in Bernstein et al. [BV97].
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J. Edmonds emphasized that the concept of polynomial time provides a good for-
malization of efficient computation because a wide range of tractable problems is
computable in polynomial time [Edm65]. The concept of polynomial time indicates
that the time t of the computation is upper bounded by a polynomial in the length
|x| of the input x: t(|x|) = poly(|x|).7

These considerations led to the definition of the computational complexity class P
of efficiently solvable problems.

Before we give the formal definition of this complexity class in Tab. 3.1 we have to
introduce the concept of a formal language L: A language L ⊂ Σ∗ is a subset of all
words over the alphabet Σ that possess a certain property, e.g., the set of all binary
strings that represent a prime number is a language L ⊂ {0, 1}∗.

Complexity Class P

A language L belongs to the complexity class P if there exists a DTM M so
that for any input x ∈ Σ∗ one of the following two conditions holds:

i) x ∈ L ⇒ M accepts x in polynomial time t = poly(|x|).

ii) x /∈ L ⇒ M rejects x in polynomial time t = poly(|x|).

Table 3.1: Definition of the complexity class P.

For each language L ∈ P there exists a DTM that decides in polynomial time if a
word x ∈ Σ∗ belongs to L or not.

The restriction on decision problems in the definition of complexity classes is not
problematic as nearly every problem can be cast as a decision problem.

In the late 1970s it was realized that the complexity class P was too narrow to em-
brace all problems that are efficiently solvable. Especially the randomized algorithm
to check primality of an integer proposed by Solovay et al. showed that probabilistic
behavior has to be taken into account [SS77]. Therefore, one introduced additional
complexity classes like BPP (boundend-error probability in polynomial time). The
definition of this complexity class can be found in Tab. 3.2.

Fig. 3.4 illustrates the concept of this complexity class. The definition of the
complexity class BPP states that more than half of all possible random strings y
finally lead to an accepting configuration. If the PTM requires t time steps to solve
a problem then there are 2t possible paths.

The error can be made arbitrary small by repeating a probabilistic algorithm several
times. The answer given most often is taken for granted. The probability that this
answer is wrong decreases exponentially in the algorithm’s error ǫ and the number of
repetitions [NC00].

Besides the computational complexity classes P and BPP of efficiently solvable
problems many other problems resisted to be solvable in polynomial time. These

7 Upper bounds are indicated by the O-notation: One writes f = O(g) for two functions f and g if
there are constants c > 0 and n0 ∈ N so that f(n) ≤ c · g(n) for n ≥ n0. A lower bound f = Ω(g)
denotes that there are constants c > 0 and n0 ∈ N so that f(n) ≥ c · g(n) for n ≥ n0. If f = O(g)
and f = Ω(g) one writes f = Θ(g).
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Complexity Class BPP

Let ǫ be a constant so that 0 ≤ ǫ < 1/2. A language L belongs to complexity
class BPP if there exists a PTM M so that for any input x ∈ Σ∗ and y a
string of random bits one of the following two conditions holds:

i) x ∈ L ⇒ the probability that M accepts (x, y) after t = poly(|x|) time
steps is greater or equal to 1 − ǫ.

ii) x /∈ L ⇒ the probability that M accepts (x, y) after t = poly(|x|) time
steps is less or equal to ǫ.

Table 3.2: Definition of the complexity class BPP.

problems are largely optimization problems like the “traveling salesman problem”
[FH02]. It was believed that there are no efficient algorithms that solve these algo-
rithms. The theory of NP-completeness provided evidence in this belief.

The complexity class NP is defined in Tab. 3.3. If L∈NP then the configuration tree
has only a small number of accepting paths. A language A is said to be NP-complete
when A ∈ NP and when all other languages L ∈ NP can be transformed to A by a
polynomial time TM.

Complexity Class NP

A language L belongs to complexity class NP if there exists a PTM M so
that for any input x ∈ Σ∗ and y a string of random bits one of the following
two conditions holds:

i) x ∈ L ⇒ ∃y ∈ Σ∗ so that M accepts (x, y) after t = poly(|x|) time
steps.

ii) x /∈ L ⇒ ∀y ∈ Σ∗ M does not accept (x, y) after t = poly(|x|) time
steps.

Table 3.3: Definition of the complexity class NP.

A proof of NP-completeness has come to signify the intractability of a problem
[FH02]. In this case one usually tries other ways to solve the problem, e.g., approx-
imation algorithms. Nevertheless, it is still not known whether problems in NP are
really more difficult to solve than those in P [Gru00].

The quantum analogon to the classical complexity classes can be defined by replac-
ing the classical TMs in the definitions above by QTMs. Bernstein et al. introduced
the notation EQP to denote the quantum analogon to the classical complexity class P
and the notation BQP to denote the quantum analogon to BPP [BV97]. Additionally,
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they proved the following relations:8

P ⊆ EQP ⊆ BQP ⊆ PSPACE, BPP ⊆ BQP ⊆ PSPACE. (3.4)

In classical complexity theory the following inclusions are known [Gru00]:

P ⊆ NP ⊆ PSPACE. (3.5)

It is still an open problem whether the inclusions in Eq. (3.5) are proper [Gru00].
Therefore, there is no possibility to give a mathematical proof whether BPP 6=BQP

unless one solves the major open problem P
?
=PSPACE of complexity theory. Hence,

one does not know if QTMs are more powerful than their classical pendants.

|c0]

|c1] |c2]

111 0

p = 1
2p = 1

2p = 1
2p = 1

2

p = 1
2p = 1

2

Figure 3.4: Configuration tree of a PTM: Each node represents an actual configuration
|ci]. Solid lines correspond to paths that lead to an accepting configuration.

3.1.5 Relativized Computational Complexity Classes

The result of Deutsch et al. [DJ92] was used by Berthiaume et al. to show that there
exists an oracle relative to which a QA can solve a problem more efficiently than any
classical deterministic algorithm [BB92, BB94]. To explore further what this means
we have to introduce the concept of the oracle TM (OTM) [BB94, BGS75].

An OTM is a TM that has access to an oracle. The TM writes the oracle’s input
to an oracle tape. Then the oracle is executed within a single time step. It writes the
corresponding output onto its tape. The output of the oracle is used by the TM for
further calculations.

The name oracle has its origin in the fact that its internal functionality is assumed
to be inaccessible.

If a TM accepts languages L of the complexity class B (L ∈ B), then the complexity
class of languages accepted by the corresponding OTM whose oracle accepts languages
L’ with L’ ∈ X, is called BX. Such complexity classes are called relativised complexity
classes [BGS75].

Berthiaume et al. demonstrated that the result of Deutsch et al. [DJ92] can be used
to construct oracles X so that PX ⊂ EQPX [BB92]. Relations between relativised
complexity classes can be used to gain more insight into the relation between the
corresponding unrelativised complexity classes [Gru00].

8 The classical complexity class PSPACE denotes all formal languages L that are accepted by a
classical TM that requires polynomial space (space = poly(|x|) for x ∈ L) and an arbitrary
amount of time.
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3.2 The Blackbox Model of Computation

As noted in the end of Sec. 3.1.4 it is difficult to decide whether the inclusions of
Eq. (3.4) are proper. It is reasonable to investigate simpler models of computation
because a better understanding of such easier models might ease the investigation of
the original ones. The decision tree is perhaps the simplest model of computation
[BdW02].

3.2.1 Decision Trees

In this model of computation one is given a blackbox X = (x0, x1, . . . , xN−1) con-
taining N Boolean variables xi with i ∈ {0, 1, . . . , N − 1}. In the most simplest form
a query asks for the value of the variable xi. On input i the box returns the cor-
responding value xi. The goal is to calculate a property of the blackbox X which
is represented by the Boolean function f(X) using as few queries as possible. This
number of queries is called decision tree complexity. The name decision tree is due
to the fact that the algorithm is adaptive. This indicates that the kth query may
depend on the outcome of the k−1 previous queries. The algorithm can be described
by a binary tree (see Fig. 3.5).

One is only interested in the number of blackbox queries and not in the amount
of additional processing between them. Also, the costs of a blackbox query are not
considered. Therefore, such a query is related to the oracle call of a OTM, which is
taken to be executed within a single time-step. Indeed, blackbox calls are also called
oracle calls.

Analogous to Sec. 3.1.1 - 3.1.3 one defines deterministic decision trees, randomized
decision trees and quantum decision trees. We now state the definitions and results
of Buhrman et al. [BdW02].

A deterministic decision tree (see Fig. 3.5) is a rooted binary tree. Each node
of this tree is labeled with a variable xi. Let the root node be labeled with x0. If
the corresponding query returns 0 one has to recursively evaluate the left subtree,
otherwise the right subtree. The output of the tree is the binary value (0 or 1) of the
leaf that is finally reached. One says that the decision tree computes the property f
when its output is equal to f(X) for all X ∈ {0, 1}N . The depth of the tree is the
worst-case number of calls necessary to reach the final leaf. There are many trees
computing the same property f . Therefore, one defines the decision tree complexity
D(f) to be the depth of an optimal (minimal-depth) decision tree that computes f .

A randomized decision tree is a deterministic one modified by additional nodes
that, dependent on the outcome of a coin flip, call the left or right subtree. Now the
input X ∈ {0, 1}N no longer determines with certainty which leaf of the tree is finally
reached. The complexity R2(f) is the worst-case number of queries for the worst-case
outcome of coin flips of a minimal-depth probabilistic decision tree. The outcome on
input X equals f(X) with a probability of at least 1 − ǫ, with 0 ≤ ǫ < 1/2.

A quantum decision tree (QDT) can be described by the unitary transformation A

[BdW02]:

A = UT · O · UT−1 · O · UT−2 . . .O · U2 · O · U1. (3.6)

Here Ui is a fixed unitary transformation that does not depend on the input X ∈
{0, 1}N . The gate O denotes an oracle call.
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Figure 3.5: Deterministic decision tree that computes a property called parity of the
blackbox X = (x0, x1). The parity can be represented by the Boolean function f(X) =
x0 ⊕ x1.

The general form of the quantum state |ψ〉 of a QDT is |ψ〉 = |i〉|b〉|h〉|a〉. The
leftmost register stores the index i of the variable xi that is to be queried next. The
register |b〉 with b ∈ {0, 1} stores the output |b ⊕ xi〉 of the query. |h〉 with h ∈ N is
used to store the actual path (history) of the computation. The quantum state |a〉,
with a ∈ {0, 1}, represents the result of the computation.

To see how this works we start with the initial state |ψ0〉 = |0〉|0〉|0〉|0〉. Let the
first unitary operation U1 map this state to the state |i〉|0〉|0〉|0〉. Applying the oracle
gate O to this state returns |i〉|xi〉|0〉|0〉. The next unitary operation U1 maps this
state to |j〉|0〉|hi,xi

〉|0〉. The history hi,xi
encodes the query i and the corresponding

outcome xi. Then the oracle is called for the value xj and so on. Finally the answer
of the algorithm is encoded into the rightmost qubit.

A QDT is not a tree anymore, nevertheless it can be used to simulate classical
decision trees [BdW02]. Any T-query deterministic decision tree as well as any T-
query randomized decision tree can be simulated by a T-query QDT with the same
error probability.

The number of oracle calls is used to define the complexity of the QDT. If the QDT
exactly computes the property f(X) for all X ∈ {0, 1}N then the QDT complexity is
denoted by QE(f), here the index E stands for “exact”. If the error in computing f(X)
is double bounded then the QDT complexity is denoted by Q2(f).9 For blackboxes
X ∈ {0, 1}N one gets [BBC+01]:

Q2(f) ≤ R2(f) ≤ D(f) ≤ N, Q2(f) ≤ QE(f) ≤ D(f) ≤ N.

3.2.2 Quantum Lower Bounds by Polynomials

To ease the investigation of the computational power of decision trees other measures
for the complexity of Boolean properties f(X) have been studied. One of these
measures is the degree of approximating polynomials. This approach allows to derive
lower bounds on the number of oracle calls for total Boolean functions [BBC+01].

Total Boolean functions f(X) are defined on all inputs X ∈ {0, 1}N which is in
contrast to partial Boolean functions that are only defined for subsets of blackboxes
X ∈ {0, 1}N .

Now we define the representing polynomial of a Boolean function f :

9 An error ǫ is called double bounded when the outcome on input X equals f(X) with a probability
of at least 1 − ǫ with 0 ≤ ǫ < 1/2.
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• A polynomial poly : RN → R represents f when poly(X) = f(X) for all X ∈
{0, 1}N . This polynomial is unique.

The representing polynomial is a multilinear polynomial because x2
i equals xi for

xi ∈ {0, 1}. The degree deg(f) of f denotes the degree of the multilinear polynomial
that represents f .

• A polynomial poly : RN → R approximates f when |poly(X) − f(X)| ≤ ǫ for
all X ∈ {0, 1}N and 0 ≤ ǫ < 1/2.

The approximating degree d̃eg(f) is the minimum degree among all polynomials that
approximate f .

Now we state an important result proven by Beals et al. [BBC+01]:

Q2(f) ≥ d̃eg(f)/2, QE(f) ≥ deg(f)/2. (3.7)

Proof:

Let the QDT start with the initial state |0〉|0〉|0〉 and apply a unitary operation
U0 to it:

U0|0〉|0〉|0〉 = α|i〉|0〉|z〉 + β|i〉|1〉|z〉.
For the sake of the argument we concatenated the history register and the output
register into a single register. The oracle gate O maps |i〉|b〉|z〉 to |i〉|b⊕ xi〉|z〉.
One gets:

O (α|i〉|0〉|z〉 + β|i〉|1〉|z〉) =

[(1 − xi)α+ xiβ]︸ ︷︷ ︸
α′(xi)

|i〉|0〉|z〉 + [(1 − xi)β + xiα]︸ ︷︷ ︸
β′(xi)

|i〉|1〉|z〉. (3.8)

After the first oracle query the probability amplitudes of the corresponding
states are described by polynomials of degree 1 over the variable xi. The uni-
tary transformation U1 maps |i〉 to |j〉, α′(xi) to α′′(xi) and β′(xi) to β′′(xi).
α′′(xi) and β′′(xi) are linear combinations of α′(xi) and β′(xi) and thus remain
to be polynomials of degree 1. Now one applies the oracle gate again. Analogous
to Eq. (3.8) with α and β replaced by α′′(xi) and β′′(xi) as well as |i〉 replaced
by |j〉 one obtains a polynomial over xj and xi of degree ≤ 2. Repeating this
procedure for T queries one is left with a polynomial of degree ≤ T. Calcula-
tion of the measurement probability using these probability amplitudes returns
polynomials of degree ≤ 2T. Hence, T oracle queries are sufficient to compute
an approximating polynomial of degree 2T as stated by Eq. (3.7) �

The degree of representing and approximating polynomials can also be used to
estimate the decision tree complexity of classical decision trees. Using the lower
bounds for classical decision trees one gets [BBC+01]:

• If a QDT computes a total Boolean function f with bounded-error probability
by making T oracle calls then there is a classical deterministic decision tree that
computes f exactly making at most O(T 6) queries.
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• If a QDT computes a total Boolean function f exactly by making T oracle calls
then there exists a classical deterministic decision tree that computes f exactly
making at most O(T 4) queries.

We have evolved algorithms to solve the parity-problem, therefore we now present
the corresponding tight bounds (see Eq. (3.9)) proven by Beals et al. [BBC+01].

In the parity problem one has to decide if the blackbox X ∈ {0, 1}N contains an
even or an odd number of 1s. The parity ofX can be represented by the total Boolean
function f(X) = xN−1 ⊕ xN−2 ⊕ · · · ⊕ x0. One gets:10

QE(f) = Q0(f) = Q2(f) = N/2. (3.9)

The results stated in this section show that QAs do at most provide polynomial
speed-ups in the computation of total Boolean functions. Indeed, QAs that show
an exponential speed-up are those with a certain promise on the oracles like in DJ’s
problem [DJ92]. There the promise on the blackboxes is very restrictive. Therefore,
even a probabilistic classical algorithm can efficiently solve this problem.

The results on the quantum speed-up in computing total Boolean functions is disap-
pointing. But the considerations above are only based on worst-case scenarios. In this
context one also speaks of the worst-case query complexity of algorithms. In “real life”
it is also interesting to consider the average-case query complexity where algorithms
are allowed to use different numbers of blackbox calls for different blackboxes.

The average-case quantum query complexity of total Boolean functions was inves-
tigated by Ambainis et al. whose results show that there are problems on which
QAs provide an exponential speed-up [AdW01]. Therefore, the number of worst-
case inputs X ∈ {0, 1}N for QDTs can be exponentially smaller than the number of
worst-case inputs for probabilistic decision trees.

The authors further showed that any QDT that solves the parity problem would
still require at least Ω(N) oracle calls on average. Hence, even in the average-case
scenario no more than a linear quantum speed-up is possible in solving the parity
problem.

3.3 Circuit Model of Computation

In this section we will introduce the circuit model of computation following the lines
of Hirvensalo [Hir01]. Although this model is not computational equivalent to the
TM it is frequently used in the study of QAs.

Any Boolean function f : {0, 1}n → {0, 1} can be decomposed into a set of ele-
mentary logical operations. This can be seen by employing the disjunctive normal
form: A Boolean function f(xn−1, xn−2, . . . , x0) of the Boolean variables xi ∈ {0, 1}
is decomposed into a disjunction of clauses each of which is a conjunction of some
Boolean variables xi or negations thereof. The term disjunction denotes the logical
operation OR abbreviated by “∨”, the term conjunction denotes the logical opera-
tion AND abbreviated by “∧”. Together with the negation symbol “¬” the Boolean

10 Here we used Q0(f) to denote an additional complexity measure of a QDT not stated yet: Imagine
that the QDT is allowed to answer inconclusive with a probability of at most 1/2. If it does not
answer inconclusive the answer has to be right with certainty. The complexity measure Q0(f)
denotes the number of oracle queries of such a QDT.
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function f(x1, x0) defined by f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 1 and f(1, 1) = 0 is
represented by:11

f(x1, x0) = (¬x0 ∧ x1) ∨ (x0 ∧ ¬x1). (3.10)

Each of the elementary logical gates (∨,∧,¬) only applies to a small subset of
inputs. Additionally, the rules that specify the actions of the logical gates are given
finitely. This can be seen by their corresponding truth tables (see Tab. 3.4). A
physical system that implements such a decomposition operates by finite means and
therefore provides an alternative approach to computability.

∨(a, b) a b
0 0 0
1 0 1
1 1 0
1 1 1

∧(a, b) a b
0 0 0
0 0 1
0 1 0
1 1 1

⊕(a, b) a b
0 0 0
1 0 1
1 1 0
0 1 1

¬a a
1 0
0 1

Table 3.4: Truth tables for some elementary logical operations.

The decomposition of a Boolean function can be represented by a Boolean circuit
(see Fig. 3.6). This is an acyclic, directed graph whose nodes are labeled either with
the input variables, the output variables, or the elementary logical gates (∨,∧,¬).
The arrows of the graph that connect the nodes are called wires.

¬

¬ ∧

∧

∨ f(x0, x1)

x0

x1

Figure 3.6: Boolean Circuit that computes the Boolean function f(x1, x0) = (¬x0 ∧ x1) ∨
(x0 ∧ ¬x1). The nodes represent either input variables, output variables or the elementary
logical gates (∨,∧,¬).

As mentioned above any Boolean function f whose truth table is known can be
decomposed into elementary logical operations. Therefore, it can be represented by
a Boolean circuit. Usually one does not know the truth table in advance, thus one
is interested in an algorithm that, on input n, returns the circuit Cn that calculates
the Boolean function fn. Here we used fn to denote that the number of arguments is
restricted to n bits.

11 This representation of f is constructed by taking those assignments a1, a0 that fulfill f(a1, a0) = 1
to build clauses ci(x1, x0) so that ci(a1, a0) = 1. As stated above a clause has to be a conjunction
of the variables xi or ¬xi. A clause that fulfills c1(0, 1) = 1 is given by c1(x1, x0) = ¬x1 ∧ x0.
A clause that fulfills c2(1, 0) = 1 is given by c2(x1, x0) = x1 ∧ ¬x0. The disjunction c1 ∨ c2
represents the Boolean function f(x1, x0) defined above. Using this kind of construction any
Boolean function can be decomposed into elementary logical gates.
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A circuit family is an infinite sequence C0, C1,...,Cn,... of individual Boolean circuits
Cn. A family of Boolean circuits computes f . Hence, it can be used to recognize a
language L ⊂ {0, 1}∗.

The number cn of elementary gates required by the Boolean circuit Cn provides
a measure of its efficiency. This number of elementary gates is called the size of a
circuit.

A family of Boolean circuits Cn whose design is generated by a TM in polynomial
time t = O ( poly (cn) ) is called a uniform circuit family.

As stated by I. Wegener a TM with running time t(n) can be simulated by a uniform
circuit Cn of size O ( t(n) · log (t(n)) ) [Weg03]. Thus, any language L with L ∈ P has
circuits of polynomial size. Nevertheless, not all languages recognized by polynomial
size circuits are in P [Pap94]:

• A language L has uniform polynomial size circuits if and only if L ∈ P. All
languages L ∈ BPP have polynomial size circuits but these circuits have not to
be uniform!

The concept of Boolean circuits can easily be extended to functions f : {0, 1}n →
{0, 1}m by using m functions each of which computes a single bit.

The logical gates ∨ and ∧ are irreversible operations. It is well known that these
logical gates can be efficiently simulated by a reversible logical gate known as Toffoli
gate T which is defined by [NC00]:

T(a, b, c) = (a, b, c⊕ a · b) with a, b, c ∈ {0, 1}.

This gate can be realized on quantum physical devices. Therefore, every function that
is computable by a Boolean circuit can be computed by a quantum circuit (QC).

In the quantum regime the Toffoli gate is not the most elementary gate. Any arbi-
trary unitary transformation can be decomposed in unitary gates acting on one and
two qubits [NC00]. With the Euler-decomposition any arbitrary one-qubit operation
U can be decomposed by:

U = eıαRx(β)Ry(γ)Rx(δ), α, β, γ, δ ∈ R. (3.11)

In contrast to classical logical operations quantum gates depend on continuous
parameters α ∈ R. These parameters have to be discretized, hence one only can
approximate unitary operations. Any unitary operation on one qubit can be approxi-
mated arbitrarily close by a discrete set of the gates Rx(2·αi), Ry(2·αi) and Rz(2·αi)
[NC00]. The discrete value αi is calculated by αi = i · 2π

ξ with i ∈ {0, 1, . . . ξ − 1}. ξ
is chosen dependent on the desired accuracy of the approximation.

Additional to this complete set of elementary one-qubit gates we introduce the
Hadamard gate H because it is frequently used in the quantum computation litera-
ture:

H =
1√
2

(
1 1
1 −1

)
.

A single discrete two-qubit operation called CNOT -gate together with the discrete
set of one-qubit gates from above is sufficient to provide a complete set of unitary
operations. This set of quantum gates is capable of approximating any arbitrary
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unitary operation up to the desired accuracy [NC00]. The CNOT -gate is defined by
its action on a two-qubit state:

CNOT |x〉|y〉 = |x〉|y ⊕ x〉 with x, y ∈ {0, 1}. (3.12)

It is also possible to define a classical CNOT operation for the Boolean inputs (x, y)
by CNOT(x, y) = (x, y⊕ x). This operation can be used to perform copy operations:
CNOT(x, 0) = (x, x). But this interpretation does not hold in the quantum regime
where the no-cloning theorem does not allow for copying an arbitrary quantum state
unless it is one of the two computational basis states |0〉 or |1〉 [NC00].

A QC can be represented by a directed acyclic graph whose nodes are labeled by
quantum operations. Due to reversibility and the no-cloning theorem any elementary
gate has as many inputs as outputs. Using the convention that such a graph is to
be read from the left to the right, the arrows used in the representation of Boolean
circuits can be replaced by straight lines.

The complexity of QCs is the number of elementary quantum gates necessary to
approximate a unitary matrix. How many elementary quantum gates are necessary
on average to approximate an arbitrary unitary 2n × 2n matrix of an n-qubit system
up to an error ǫ?12 Nielsen and Chuang show that the average number m of such

elementary quantum gates is lower bounded by m = Ω
(

2n log (1/ǫ)
log (n)

)
[NC00].

A similar argument holds for classical Boolean circuits: The average number of
elementary classical logical gates needed to realize a Boolean function with n input
bits is lower bounded by Ω (2n/n) [Sha49].

These results show that the representation of a Boolean function by a Boolean
circuit or a QC is generically hard.

Nishimura et al. define uniform QC families Q0, Q1, . . . , Qn, . . . to be circuit fami-
lies whose design is returned by a DTM in polynomial time t = O( poly(qn) ), where
qn denotes the size of the QC Qn [NO02]. Then they define the following complexity
classes of languages recognizable by uniform QC families: EUPQC (exact uniform
polynomial quantum circuit), ZUPQC (zerro-error uniform polynomial quantum
circuit) and BUPQC (bounded-error uniform polynomial quantum circuit). They
prove:

EUPQC ⊂ ZUPQC ⊂ BUPQC.

They further prove that languages that are efficiently recognizable by Monte Carlo
type uniform QC families are also efficiently recognized by Monte Carlo type QTMs,
and vice versa:13

BQP = BUPQC.

Before we present some blackbox QAs we have to add the oracle gate to the set
of elementary gates. The internal workings of the oracle gates is not of interest and
it is assumed that the oracle gate performs its operation in a single time step. The
QDT defined in Eq. (3.6) can be realized by a QC whose gates Ui but the oracle gate
are decomposed into elementary quantum gates. This makes it possible to compare

12 The error ǫ(U,V ) of a unitary matrix V in approximating the unitary matrix U is defined by
ǫ(U,V ) ≡ max|ψ〉 ||(U − V ) · |ψ〉||.

13 The term Monte Carlo type denotes computation devices that recognize languages with a bounded
error probability. With this notation the classical complexity class BPP introduced in Sec. 3.1.4
is the set of languages that are recognized by Monte Carlo type TMs.
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different blackbox QAs not only with regard to their query complexity but also to
their size.

3.4 Quantum Algorithms

The blackbox model of computation (see Sec. 3.2) provides a natural description of a
large class of QAs [BBC+01]. The problem proposed by Deutsch (see Tab. 3.5) can
be expressed adequately using this approach [Deu85].

Deutsch’s Problem

One is given a blackbox X = (x0, x1) of two Boolean variables x0 and x1. On
input i ∈ {0, 1} the blackbox returns the corresponding value xi. Calculate
the Boolean function f(X) = x0 ⊕ x1 of X using as few blackbox queries as
possible.

Table 3.5: Definition of Deutsch’s Problem

In Deutsch’s problem one calculates the parity of the blackbox X = (x0, x1). A
QC can do this with less oracle calls than any classical circuit (see Sec. 3.2.2).

Fig. 3.7a depicts how a physical experiment is used to solve the parity problem for a
blackbox X . Given are two tubes, each of which can be modified so that an incoming
light either suffers a phase shift of π or not. Therefore, each tube represents a Boolean
variable xi ∈ {0, 1}. Two tubes represent a blackboxX = (x0, x1). Deutsch’s problem
can now be modeled by assigning the value 1 to a tube that performs a phase shift to
the incoming light beam and the value 0 to a tube that does not alter the light beam.

To calculate the parity using the classical approach to computation (no superposi-
tions allowed over queries) one has to query each tube independently by a light beam
in order to see whether a phase shift occurs. If both beams are altered, or if no beam
is altered at all, then parity is equal to 0, otherwise parity is equal to 1. Hence, one
needs two calls to solve the parity problem.

Fig. 3.7b shows how the parity problem can be solved by only one oracle call. The
blackbox is called by sending a light beam. Now a single beam is sufficient to solve
the parity problem. The beam is split into a superposition of two light beams each of
which is used to query a single blackbox element. The final beam splitter joins both
beams and therefore detector 1 measures the photon if and only if the parity of the
blackbox is 0.14 The speed-up in the number of oracle calls is due to the appropriate
usage of superpositions and interference.

In describing the functionality of this experiment we didn’t require quantum physi-
cal concepts. If one uses a unary encoding of computational states then this speed-up
can also be explained in terms of classical physics.

In both experiments the two different paths of the light beam(s) are used to encode
the value i ∈ {0, 1}. Therefore, one speaks of a unary encoding. This approach

14 If two light beams show a phase difference of π then they interfere destructively. Then the detector
does not measure anything.
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Figure 3.7: This figure shows the two approaches a and b to call the blackbox X = (x0, x1).
The blackbox is represented by two tubes (gray area). Each tube can be modified so that
an incoming light beam either suffers a phase shift of π or not.

requires 128 paths to encode i ∈ {0, . . . , 127}. It is better to use binary encoding
with two internal states of the light beam, e.g., the polarization. Binary encoding
reduces the number of different light paths necessary to encode i ∈ {0, . . . , 127} to
ln2(128) = 7 paths.

S. Lloyd notes that a unary encoding is inefficient since it requires exponentially
more resources than usage of a binary encoding would [Llo00].

Binary encoding and superpositions usually lead to entanglement which is a genuine
quantum phenomenon (see Sec. 2.6): Consider a blackbox call represented by an
oracle gate O whose action onto the state |i〉 = |i1i0〉, with i1, i0 ∈ {0, 1}, is described
by:15

O|i〉 = (−1)xi |i〉 with i ∈ {0, 1, 2, 3}.

Let the blackbox X = (x0, x1, x2, x3) = (0, 1, 0, 0) be called by the following product
state |ψ〉:

|ψ〉 =
1

2
(|0〉 + |1〉) ⊗ (|0〉 + |1〉) =

1

2
(|00〉+ |01〉 + |10〉 + |11〉) .

15 To motivate this definition of the oracle gate consider the effect of the blackbox call in Fig. 3.7b.
In its classical as well as in its quantum mechanical treatment the light beam is described by a
sine wave. A tube thus inverts the sine wave if it shifts its phase by π. If one uses |0〉 (|1〉) to
denote the light beam in the lower (upper) path of the interferometer the effect of a tube that
shifts the phase is described by |0〉 → −|0〉 (|1〉 → −|1〉).
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After executing the blackbox call the resulting state looks like:

O|ψ〉 =
1

2
(|00〉 − |01〉 + |10〉 + |11〉) 6= (α1|0〉 + β1|1〉) ⊗ (α0|0〉 + β0|1〉), (3.13)

with α1, α0, β1, β0 ∈ C. The resulting state is not decomposable into a tensor product.
It is an entangled state and hence only realizable by a quantum system.

There may be problems whose blackboxes can be represented by oracle gates that do
not map unentangled states to entangled ones. Indeed, D. Meyer [Mey00] proposes a
QA that performs a “sophisticated” database search using such non-entangling oracle
gates. Any conventional classical algorithm that uses the same oracle needs n queries.
Meyer’s QA solves the problem by only one oracle query.

In the next two sections we will present some QAs that are related to the algorithms
we evolved using GP. We only evolved algorithms for decision problems, therefore we
will restrict our discussion to this class of algorithms.

3.4.1 The Deutsch-Jozsa Problem

The DJ problem defined in Tab. 3.6 was the first one that showed an exponential
gap in the number of oracle calls needed by an exact QA and those needed by any
exact classical deterministic algorithm [DJ92]. Deutsch et al. emphasize that this
problem could also be efficiently solved by a classical probabilistic algorithm [DJ92].
Simon’s problem was the first one with an exponential gap in the number of oracle
calls required by his QA and those required by any classical algorithms [Sim94]. This
problem will be discussed in Sec. 3.4.2.

We now present a modified form of the DJ QA proposed by Cleve et al. [CEMM97].
This QA only requires one oracle call. The original DJ QA needs two calls. Another
modification of the DJ QA is due to Collins et al. whose version does not require any
ancillary qubits [CKH98].

The DJ problem

One is given a blackbox X = (x0, x1, . . . , xN−1) of N Boolean variables xi

so that on input i ∈ I with I = {0, 1 . . . , N − 1} the blackbox returns the
corresponding value xi. One is promised that either the blackbox X belongs
to set A of blackboxes with f(X) = 0 or to setB of blackboxes with f(X) = 1:

i) X ∈ A ⇔ ∀i ∈ I : xi = c with c ∈ {0, 1}

ii) X ∈ B ⇔ xi = 0 for exactly one half of all i ∈ I

Decide which set X belongs to.

Table 3.6: Definition of the DJ problem.

The property of a blackbox has to be a partial Boolean function if a QA should
provide an exponential speed-up in the number of oracle calls (see Sec. 3.2). Indeed,
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this is the case with DJ’s problem. The QA that solves this problem is only slightly
faster than a classical probabilistic algorithm. Hence, a promise on the blackbox does
not necessarily imply that a QA solves this problem exponentially faster than any
classical algorithm.

Any deterministic decision tree would need at most N/2 + 1 queries to answer the
DJ problem: If N/2 different queries return the same answer then it is still possible
that the blackbox belongs to set B. The probability that such a worst-case occurs
is exponentially small. Therefore, a probabilistic decision tree can solve this problem
efficiently:

Proof:

A probabilistic decision tree needs at least two oracle calls to solve the problem:
The probability that two randomly chosen queries return the same value for a
blackbox X ∈ B is 1/2 for N ≫ 1. �

A QA can solve this problem by only one oracle call:

Proof:

One starts in the initial state |ψ0〉 = |0〉 of the n-qubit query register . This
register is used to address the N = 2n different elements xi of the blackbox. By
applying a Hadamard gate H to each of the n qubits one gets a superposition
over all query states:

|ψ1〉 = H⊗n|ψ0〉 =
1√
2n

2n−1∑

i=0

|i〉.

The oracle gate O is defined by:

O|i〉 = (−1)xi|i〉.
It is queried by this superposed state. One gets:

|ψ2〉 = O|ψ1〉 =
1√
2n

2n−1∑

i=0

(−1)xi |i〉.

Once again a Hadamard gate is applied to each qubit. Because of:

H⊗n|i〉 =
1√
2n

∑

j

(−1)i·j|j〉, (3.14)

where i · j is the bitwise inner product of i and j modulo 2, one gets:

|ψ3〉 = H⊗n|ψ2〉 =
1

2n

∑

j

∑

i

(−1)i·j+xi |j〉.

It is sufficient to calculate the probability amplitude a0 of state |0〉:

a0 =

(
1

2n

2n−1∑

i=0

(−1)xi

)
=

{
±1 if X ∈ A

0 if X ∈ B
.

A measurement of the final n-qubit state reveals exactly if X ∈ A or X ∈ B. �
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H⊗n H⊗n

|ψ3〉

n qubits measurementO|0〉

Figure 3.8: Schematic diagram of the QA that solves the DJ problem. This algorithm
distinguishes between blackboxes X ∈ A and blackboxes X ∈ B by mapping the initial state
|ψ0〉 = |0〉 to the final state |ψ3〉 = |0〉 if X ∈ A, otherwise the state |0〉 has a probability
amplitude of zero.

3.4.2 Simon’s Problem

Simon’s QA was the first QA that solved a problem exponentially faster than any
classical algorithm [Sim94]. Drawing on this algorithm Shor developed his polynomial-
time QAs for discrete logarithm and integer factoring [Sho94].

As well as DJ’s problem Simon’s problem can be stated using the blackbox model
of computation. Up to now we only considered blackboxes X = (x0, x1, . . . , xN−1) ∈
{0, 1}N with Boolean variables xi ∈ {0, 1}. To state Simon’s problem we have to
consider variables xi ∈ {0, 1}m. For the n-qubit query i with i ∈ {0, 1}n the blackbox
returns the m-bit integer xi. Simons’ problem is defined in Tab. 3.7.

Simon’s Problem

One is given a blackbox X = (x0, x1, . . . , xN−1) of N = 2n variables xi ∈
{0, 1}m with m ∈ N so that on input i ∈ I with I = {0, 1, . . .N − 1} the
blackbox returns the integer xi. We are promised that either the blackbox
X belongs to set A of blackboxes with f(X) = 0 or to set B of blackboxes
with f(X) = 1:

i) X ∈ A ⇔ (∀i 6= j with i, j ∈ I : xi = xj ⇔ j = i⊕ s with s ∈ I)

ii) X ∈ B ⇔
(
∀i, j ∈ I : xi = xj ⇔ j = i⊕ 0 = i

)

Decide which set X belongs to. If X ∈ A then determine s.

Table 3.7: Definition of Simon’s problem.

Before we present Simon’s QA we will prove that any classical probabilistic algo-
rithm that queries the oracle no more than 2n/4 times cannot correctly guess whether
X ∈ A or X ∈ B with a probability greater than (1/2) + 2−n/2. The following argu-
ments are analogous to those presented by Simon [Sim94]:

Proof:
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A classical algorithm solves this problem when it finds two values i, j ∈ I so
that xi = xj . The probability that this happens will be denoted by δ. Using this
definition the probability that a classical algorithm guesses correctly is given by
1/2 + δ. To calculate δ one first has to determine the number of pairs (xi, xj)
that can be tested by k oracle queries. With two oracle queries only a single pair
is tested (ξ = 1). With the next oracle query two additional pairs are tested

(ξ = 2) and so on. Hence,
∑k−1

ξ=1 ξ = (k−1)k/2 pairs can be tested by k queries.
We used the variable ξ to denote the new pairs that can be tested by each
additional oracle query. To each tested pair (xi, xj) corresponds an integers s
so that i = j ⊕ s. With k queries at most (k − 1)k/2 different values for s are
tested. If after k queries no pair (xi, xj) with xi = xj was found then there are
2n − (k − 1)k/2 untested values left for s. Now we calculate the probability pk

that after k−1 unsuccessful queries the k-th query tests the right value s: After
k − 1 unsuccessful queries there are still 2n − (k − 2)(k − 1)/2 untested values
s. The k-th query tests ξ = k − 1 new pairs out of these 2n − (k − 2)(k − 1)/2
candidates. One gets:

pk =
k − 1

2n − (k − 2)(k − 1)/2
.

The total probability δ to find a pair (xi, xj) with xi = xj by k = 2n/4 queries
is the sum over all conditional probabilities pk. For legibility we introduce the
constant µ = 2n/4:

δ =

µ∑

k=2

pk =

µ∑

k=2

(
k − 1

2n − (k − 1)(k − 2)/2

)
≤

µ∑

k=1

(
k

2n − (µ− 1)(µ− 2)/2

)

≤
µ∑

k=1

k

µ4 − µ2
=
µ(µ− 1)/2

µ4 − µ2
≤ 1

µ2
= 2−n/2.

Therefore, no classical algorithm can decide if X ∈ A or X ∈ B with a success
probability greater than 1/2 + 2−n/2 by 2n/4 oracle queries. �

Simon solved this problem by O(n) repetitions of a QA (see Fig. 3.9) that calls the
blackbox only once [Sim94]:

Proof:

The blackbox returns m-bit integers on n-bit queries. Therefore, the oracle-gate
acts on a query register of n qubits and an output register of m qubits:

O|i〉|b〉 = |i〉|b ⊕ xi〉.

In Fig. 3.9 the QA starts with the initial state |ψ0〉 = |0〉|0〉. By applying a
Hadamard gate to each of the n qubits of the query register one gets:

|ψ1〉 =
(
H⊗n|0〉

)
⊗ |0〉 =

1√
2n

2n−1∑

i=0

|i〉|0〉.
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Applying the oracle gate to this superposition returns:

|ψ2〉 = O|ψ1〉 =
1√
2n

2n−1∑

i=0

|i〉|xi〉.

Hadamard gates are performed on each of the n qubits of the input register:

|ψ3〉 =
(
H⊗n ⊗ 1⊗m

)
|ψ2〉 =

1√
2

2n−1∑

i=0

(
H⊗n|i〉

)
|xi〉 =

1

2n

2n−1∑

i=0

2n−1∑

j=0

(−1)i·j |j〉|xi〉.

The right side of the equation above follows because of Eq. (3.14).

If X ∈ B then all values xi are different. Therefore, the input register is in a
superposition over the 2n states |j〉. An n-qubit measurement returns one of
these states with a probability of 1/2n. For X ∈ A one can rewrite |ψ3〉:

|ψ3〉 =
1

2n−1

∑

i

2n−1∑

j=0

[
(−1)i·j + (−1)(i⊕s)·j

]
|j〉|xi〉.

In this equation one sums over all indices i with different values of xi. The
condition (−1)i·j +(−1)(i⊕s)·j 6= 0 is equivalent to the condition i ·j = (i⊕s) ·j.
This is equivalent to s · j = 0. One gets:

|ψ3〉 =
1

2n−2

∑

i

∑

j: j·s=0

(−1)i·j|j〉|xi〉.

One sums over indices j that fulfill j · s = 0. Measuring the input register hence
returns a value j so that j · s = 0. By at least n repetitions of Simon’s quantum
algorithm one receives n linearly independent strings j. These strings are used
to calculate the binary string s. For X ∈ A one gets the binary string s one
is interested in. For X ∈ B the string s will be random. One can distinguish
between X ∈ A and X ∈ B by querying the oracle for the value x0 and xs. If
x0 = xs then X ∈ A, else X ∈ B. �

Simon’s problem can be solved by O(n) repetitions of the QA. Each repetition calls
the blackbox only once. Therefore, the problem can be solved by O(n) oracle calls.
Any classical algorithm requires an exponential number of oracle calls. Thus, there is
an exponential gap in the number of calls needed by a QA and those needed by any
classical algorithm.

3.4.3 Additional Remarks on Quantum Algorithms

Simon’s problem can be solved efficiently by a QA because of its internal algebraic
structure: One is promised that either all of the N elements of the blackbox have
distinct values or that the N elements have N/2 distinct values. Two elements xi and
xj are equal if and only if j = i⊕ s.

A similar problem without such an internal algebraic structure is known under the
name collision problem. Analogous to Simon’s problem one is promised that either all
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H⊗nH⊗n
query register

|ψ3〉

O

n qubits

m qubits

measurement
|0〉

|0〉

Figure 3.9: Schematic diagram of the QA that solves Simon’s problem. This algorithm
distinguishes between blackboxes X ∈ A and blackboxes X ∈ B by mapping the initial state
|0〉 of the query register to a superposition over the states |j〉 with s · j = 0 if X ∈ A. For
X ∈ B one gets a superposition over all states j ∈ I.

of the N elements of the blackbox have distinct values or that the N elements have
N/2 distinct values. In the latter case always two elements are equal. One has to
decide which one of these two promises holds for a blackbox X .

Any QA that solves the collision problem needs at least Ω( 3
q
N
2
) blackbox queries

whereas a classical algorithm needs Θ( 2
q
N
2
) queries [Shi92]. This indicates that a

promise on the blackboxes is not sufficient to get an exponential quantum speed-up.
There exists a class of problems, known as hidden subgroup problems, whose internal

structure allows for such a speed-up. Simon’s problem is a special case of the hidden
subgroup problem. Shor’s factoring QA as well as his discrete logarithm QA exploit
an internal hidden subgroup structure, too (see [NC00]).
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4 Genetic Programming and How to

Evolve Quantum Algorithms

The last chapter introduced the framework necessary to speak about computability,
algorithms and circuits. Nevertheless, often it is a tedious task to find a circuit
or algorithm that solves a posed problem. If it is possible to quantify the success
of a candidate circuit/algorithm then it may be advantageous to use an automatic
programming technique that “breeds” potential solutions by using general principles
from genetics and evolutionary biology.

The automated programming technique used in this thesis to develop QCs and
QAs is called GP. An overview of GP can be found in the book of Banzhaf et al.
[BNKF98].

The usage of GP to aid the development of QCs was pioneered by Williams et al.
who used this approach to decompose a given quantum transformation into a sequence
of elementary quantum gates [WG98]. Spector et al. presented a GP system that
is able to develop QCs without knowing the quantum transformation in advance
[SBBS99]. Ever since several related strategies using GP to aid the development of
QCs/QAs have been proposed and investigated by several authors [Rub01, LB03a,
MCS04, Spe04].

Most of these approaches focused on the evolution of QCs like the two-bit and/or
problem [BBS00, SK06], teleportation circuits [Rub01], circuits solving two-qubit in-
stances of DJ’s and Grover’s problem [SBBS99, Spe04] or circuits to find the maxi-
mum of a permutation function [MCS04]. Some of these approaches were also used
to develop scalable QCs (uniform circuit families) for problems like the majority-on
problem [SBBS99], 1-SAT problems [LB03a] or finding the maximum of permutation
functions [MCS04].

For the majority-on problem no better-than-classical algorithm was found. The
algorithm found for the 1-SAT problem made it possible to optimize Hogg’s QA with
respect to non-oracle gate operations required. Unfortunately, the algorithm found
to solve the maximum-finding problem only boosts the probability to measure the
correct value by a factor of two in comparison to a classical algorithm that samples
the function at random. Therefore, this QA is ineffective because the number of
sample points grows exponentially in the number of bits.

In this chapter we will show how GP can be incorporated to provide a useful tool in
designing formerly unknown better-than-classical QAs. These QAs will be presented
in Chap. 5.

4.1 Genetic Programming and Evolutionary Algorithms

One can consider GP to be a search method that seeks an optimal program in the
search space spanned by computer programs. Each program can be rated by a fitness
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value that reflects the program’s adequacy to solve a problem. If it is also possible
to define a neighborhood in the space spanned by the programs then one obtains a
fitness landscape (see Fig 4.1) by assigning a fitness value to each program.

Figure 4.1: This schematic fitness landscape illustrates the main idea of evolutionary
algorithms: A population of local search processes scans the fitness landscape. Information
gained by these processes is shared by crossover in order to create new local search processes.

Fitness landscapes provide a helpful visualization to compare GP with other search
methods:
An exhaustive search tests each point of the fitness landscape. Such a method becomes
impractical for huge search spaces where a method called hill climbing is more appro-
priate [SR95]. Here some neighboring points of the actual one are tested. The point
with the better fitness value becomes the actual one. This method is only successful
for landscapes without local optima. To circumvent the possibility of getting stuck in
such a local optima it is necessary to also allow a neighboring point of lower fitness to
become the actual one. This is provided by the Metropolis algorithm [MRR+53]. If
the frequency of downhill steps is altered during the search process then one speaks
of simulated annealing [Kir83].

Apart from GP all search methods presented above visit only one point at each time
step. Therefore one runs such algorithms several times in order to gain confidence
that a solution found indeed is a good solution. Unfortunately, such iterative runs
do not share any topological information of the fitness landscape acquired in former
runs. This drawback is tackled by population based search algorithms. They provide
mechanisms to share informations gathered by the individuals. If the mechanism
of information sharing mimics the biological process responsible for the evolution of



4.2 Setting up the GP System 53

species then one speaks of evolutionary algorithms.
Among the most well-known evolutionary algorithms are genetic algorithms [Hol73],

evolution strategies [Rec73, BS02] and GP [Koz92, BNKF98, LP02]. The former two
methods are parameter optimization techniques. Genetic algorithms represent these
parameters by binary strings, evolution strategies by real-valued vectors.

The search methods we compared GP with are mainly used to solve optimization
problems. GP is a modeling system that improves programs automatically through
experience. In order to clarify the conceptual differences between optimization and
modeling problems we adopt the system analyst’s perspective used in the book of
Eiben and Smith [ES03]:

A system consists of three components: the inputs, the outputs and an internal
model that maps inputs to outputs. If one seeks the inputs for a system whose internal
model and outputs are known then one speaks of optimization problems. One famous
example is the “traveling salesman problem”: One optimizes the sequence of towns
that are to be visited in order to minimize the length of the tour across these towns.
If, on the other hand, only the inputs and the outputs are known then one speaks of
a modeling problem: One is interested in the internal model of the system. This is
exactly what GP is used for in this thesis: Consider for example the development of
the parity algorithm described in Sec. 5.3.2. The known inputs are the blackboxes
X , the outputs are their parities f(X). We are interested in the QC that calculates
f(X) from the input X .

4.2 Setting up the GP System

Now we will present the GP system used by us to develop the QAs that will be
discussed Chap. 5.

In Sec. 4.2.1 we will describe how QCs are represented by our GP system. Before
we will introduce our fitness functions in Sec. 4.4 we will make some preliminary
notes about mutation and local search in the context of quantum computation in Sec.
4.2.2. Then we will present our oracle gates in Sec. 4.3. Because we evolved QCs
for single issue quantum computers as well as for ensemble quantum computers the
section about fitness functions is divided into two parts. A detailed example of an
evolutionary run of our GP system can be found in Sec. C.

4.2.1 Representation of Quantum Decision Trees in the GP System

A computation of a blackbox’s property can be visualized by a decision tree. Ac-
cording to Buhrman et al. a QDT is defined by a sequence of oracle gates O that
represent blackbox calls, alternating with unitary transformations Ui [BdW02]:

A = UT · O · UT−1 · O . . .U2 · O · U1.

The sequence denoted by the unitary transformation A is applied to the initial state
|ψinit〉 = |0〉. Measuring the readout-qubit of the final state |ψfinal〉 = A|ψinit〉 returns
a binary value. If this binary value equals f(X) for all blackboxes then one says that
the QDT computes the property f(X) of the blackbox encoded by the oracle gate O.

It is adequate to represent QDTs by QCs. In order to do that one needs a complete
set of one-qubit and two-qubit gates. Additionally, one needs the set of oracle gates
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O representing the blackboxes X . The measurement of a single read-out qubit is
sufficient to decide the property f(X) of a blackbox X .

Nevertheless, algorithms like the DJ algorithm answer the problem by a measure-
ment of all qubits (see Sec. 3.4.1). This procedure makes it possible to dispense with
the additional read-out qubit and additional quantum operations necessary to encode
the answer into this read-out qubit. Now the answer to the posed problem cannot be
obtained any more by measuring the state of a single read-out qubit.

The QA has to return different measurement results for those blackboxes X that
differ in their property f(X). We decided to perform all possible measurements on
the final state |ψfinal〉 in order to check if one of these measurements returns different
results for blackboxes X that differ in their property f(X). If the state |ψinit〉 is
encoded by n qubits then we perform all n single-qubit projective measurements,
all n(n − 1) two-qubit projective measurements and so on.1 Here we only consider
projective measurements that project onto computational basis states.

Analogous to Spector et al. we have chosen a linear genome to represent QCs in
our GP system (see Fig. 4.2) [SBBS99].

A quantum gate is specified by several parameters like rotation angles, control-
qubits, etc. Therefore, one has to decide where these additional data are to be stored
and how they are to be manipulated by the evolutionary process. The most natural
method is to consider a quantum gate and these additional parameters as a unit. The
evolutionary process only modifies the unit as a whole.

O

H

H

O

genotype

phenotype

|0>

|0>

OH [1]H [0] CNOT
[0 1] O H [0] (linear genome)

Measurement in the
computational basis

CNOT−gate

(QC)

H

Figure 4.2: In our GP system a QC is represented by a linear list (linear genome) of the
quantum gates used by the algorithm. The sequence of the quantum gates is obtained by
reading this linear list from the left to the right. H [1] denotes a Hadamard gate H that is
applied to qubit 1. CNOT [0 1] denotes a CNOT gate with qubit 0 the control and qubit
1 the target qubit.

1 This corresponds to a total of 2n measurements. This is done to evaluate the QC and therefore
has no influence on the scalability of the QC.



4.2 Setting up the GP System 55

4.2.1.1 Genetic Operators

Our GP system uses a generational approach: After each time step a new population
of individuals is generated from the old one. To generate new individuals one uses so
called genetic operators - i.e., mutations, recombination and reproduction. To achieve
this one adopts mechanisms that mirror the mutation and recombination processes
assumed to be the main ingredients in the evolutionary development of species in
nature. The concepts of molecular biology that describe recombination and mutation
processes on the molecular level suggest how mutation and recombination can be
incorporated into the GP system:

• A mutation alters a functional unit of the linear genome - i.e., a quantum gate
has to be deleted, inserted or exchanged with another quantum gate (see Fig.
4.3).

• The recombination is realized by a crossover process. In each of the two parent
individuals a sublist is chosen at random. These two sublists are exchanged
between the parents (see Fig. 4.4).

• We have chosen to copy the best individual of each generation unaltered to the
new generation. This process is called reproduction and the main reason in
doing so is not to loose the best solution found so far.

In each generation we generated some individuals at random in order to compare the
efficiency of the evolutionary process with the efficiency of an exhaustive search.

Shrink\Grow Mutation Swap Mutation Shrink2 Mutation

Figure 4.3: This figure shows the four different mutations used by our GP system. The
shrink mutation and the grow mutation are shown in the leftmost graphic: A shrink mutation
chooses a quantum gate at random and deletes it. A grow mutation inserts a quantum gate at
a random position in the genome. The next graphic shows a swap mutation: A quantum gate
is replaced by another quantum gate. The rightmost graphic shows an additional mutation
process that makes it possible to concatenate two, not necessarily neighboring, quantum
gates.

4.2.1.2 Tournament Selection

The individuals that are to be altered by genetic operators were chosen by a tourna-
ment selection: Dependent of a mutation or crossover to occur the best or the two
best individuals are selected from a subset of all individuals. The size of this subset
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Parent1

Parent2

Child1

Child2

Figure 4.4: This figure shows a recombination process: A connected sublist in each indi-
vidual is chosen at random. Then these two sublists are exchanged between the individuals.
The different gray scales are used to indicate the origin of the quantum gates.

influences the selection pressure - i.e., the bigger the subset the larger the selection
pressure.

4.2.2 Genetic Operators and Local Search

In the beginning of this chapter we introduced the concept of fitness landscapes to
compare GP with other search methods. The main problem in introducing this con-
cept is that it is not obvious how the neighborhood of a GP individual should be
defined.

One possibility is to define those individuals to be neighbors that can be transformed
into each other by a single application of a genetic operator. This definition is useful
when no further information about the structure of the problem is known. If one
evolves QCs then such a definition of the neighborhood is misleading: It does not
respect the metric of the Hilbert space of QCs.

In the next two paragraphs we will show how a norm and thus a distance measure
can be defined on the set of QCs. We will use this measure to calculate the step-
length of the genetic operators used by our GP system. Finally we will show that
this distance measure provides an upper bound for the maximal difference between
the measurement results of two QCs.

4.2.2.1 Distance Measure for Genetic Operators

Any quantum computation can be represented by unitary transformations (see Sec.
2.7). The set of unitary operators forms a vector space. An inner product between
two unitary operators U and V can be defined by [NC00]:

〈U ,V 〉 ≡ tr{U+V }. (4.1)

Now it is possible to define the norm ‖U‖ of the unitary operator U :

‖U‖ ≡
√
〈U ,U〉. (4.2)
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The norm makes it possible to introduce a step-length of genetic operators: Let U

denote a QC that is transformed by a grow mutation to another QC denoted by V .
This grow mutation inserts the additional quantum gate A. It is sufficient to consider
three cases:

1. The genetic operator maps U to V = AU .

2. The genetic operator maps U to V = UA.

3. The genetic operator maps U = U1U2 to V = U1AU2.

The calculations are the same for all three cases, hence we only consider the last
one. At first we define the distance d(U ,V ) between two unitary operators U and V

by:

d(U ,V ) = ‖U − V ‖.

We get:

d(U ,V ) = ‖U1U2 − U1AU2‖ =

√
tr{2 · 1− U+

2 AU2 − U+
2 A+U2}

=
√

tr{2 · 1− A − A+}.

The last equation follows due to the invariance of the trace under cyclic permutations
of its arguments (tr{AU} = tr{UA}).

Now we can calculate the step-length of the genetic operators:

A = Rx(α) = exp
(
−ıα2 σx

)

A = Ry(α) = exp
(
−ıα2 σy

)
}

⇒ d(U ,V ) ≈ α
2 · ‖1‖ if α≪ 1,

A = H ⇒ d(U ,V ) =
√

2 · ‖1‖,
A = CNOT ⇒ d(U ,V ) = 1 · ‖1‖.

Here we only considered grow mutations that insert an additional quantum gate A.

The calculations are also valid for shrink mutations as justified by the following
argument: Let the sequence U1 · A · U2 of unitary operators denote a QC. A shrink
mutation that deletes A is equivalent to a grow mutation that inserts the inverse A−1

next to A.

A swap mutation or crossover can be described by a combined shrink and grow
mutation, hence it is covered by our calculations.

The distance d(U ,V ) of two unitary operators U and V provides an upper bound
for the difference 1/2 · |〈M〉U − 〈M〉V |/‖M‖ between the expectation value 〈M〉V
and 〈M〉U . We introduced the notation 〈M〉U to abbreviate the term 〈ψU+|M|Uψ〉.
Now we give a proof of this upper bound which, in its main steps, resembles the proof
given in [NC00] for a similar inequality:

Proof:

We start by noting that the QC described by the unitary operation U maps the
initial state ̺ to U̺U+, that described by V maps ̺ to V ̺V +. The norm
‖M‖ of the Hermitian operator M can be defined analogous to Eq. (4.2).
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Because the expectation value 〈M〉U is calculated via 〈M〉U = tr{U̺U+} the
difference |〈M〉U − 〈M〉V | between the measurement results is given by:

|〈M〉U − 〈M〉V | = |tr{U+MU̺} − tr{V +MV ̺}|
= |tr{U+M (U − V )̺} + tr{(U − V )

+
MV ̺}|

≤ |tr{̺U+M (U − V )}| + |tr{(U − V )
+

MV ̺}|
= |〈M+U̺

+
, (U − V )〉| + |〈(U − V ),MV ̺)〉|

≤ ‖MU+̺‖ · ‖U − V ‖ + ‖U − V ‖ · ‖MV ̺‖

Here we used the definition of the inner product < A,B > of two operators
A and B stated in Eq. (4.1). The last line follows from Cauchy-Schwarz’s
inequality. Before we proceed we show that the norm ‖MU+̺‖ does no depend
on the unitary operator U+:

‖MU+̺‖ =

√
tr
{
(MU+̺)+ (MU+̺)

}
=
√
tr{M2 (U+̺2U)}

=

√
tr{M2 (U+̺U)

2} =

√
〈M2, (U+̺U)

2〉

≤
√
‖M2‖ · ‖ (U+̺U)

2 ‖ ≤ ‖M‖ · ‖̺‖

The last inequality follows because of ‖̺2‖ ≤ ‖̺‖2. This inequality holds for
any Hermitian operator ̺:

‖̺2‖ =
√
tr{̺4} =

√∑

i

(̺)4ii ≤

√√√√
(
∑

i

(̺)2ii

)4

= ‖̺‖2

According to these results one gets:

|〈M〉U − 〈M〉V | ≤ 2 · ‖U − V ‖ · ‖M‖ · ‖̺‖ ≤ 2 · ‖U − V ‖ · ‖M‖.

The last line follows because of ‖̺‖ ≤ 1 (see Sec. 2.7). �

According to the last result the distance between two QCs is a measure for the
maximal difference in the corresponding measurement results. The fitness function is
calculated using these measurement results. It is desirable to design a fitness function
that is continuous in the step-length of the genetic operators. Such a fitness function
would allow for local searches. The design of a fitness function that partly fulfills this
requirements is described in Sec. 4.4.

It is possible to allow for local search if the set of mutation operators is chosen
carefully. In our case this is done by adjusting the parameter α. The operators
Rx(α), Ry(α) and CNOT form a complete set. Therefore, it is possible to evolve
each QC by only small mutations.2 A search that is only based on small mutations
is inefficient, therefore we used a discrete set of parameters α ∈ [−π/2, π/2[ with
sufficiently small subdivisions.

2 The CNOT gate does not depend on a continuous parameter. The step length of a mutation
that inserts a CNOT gate is fixed and cannot be adjusted. Therefore, we sometimes used
the adjustable two-qubit gate Rzz(α) = exp

`
−ıα

4
σz ⊗ σz

´
. Together with the one-qubit gates

Rx(α) and Ry(α) these gates provide a complete set of unitary operations [KG00].
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4.3 Oracle Gates

In order to see if a QC correctly calculates the property f(X) of the blackbox X
one has to check this circuit for all blackboxes. The blackboxes are encoded into a
quantum system via the oracle gates O. Thus, these gates provide the fitness cases
the QC is to be tested with. It is possible that the number of blackboxes that are to be
tested grows super-exponentially: The DJ problem presented in Sec. 3.4.1 provides
an illustrative example: For a one-qubit query register one has to test 2 constant
blackboxes X1 = (0, 0), X2 = (1, 1) with f(X1,2) = 0 and 2 balanced blackboxes
X3 = (0, 1), X4 = (1, 0) with f(X3,4) = 1. For a two-qubit query register one has to
test 2 constant and 6 balanced blackboxes. For an n-qubit query register one has to
test 2 constant and N !/[(N/2)!]2 balanced blackboxes, with N = 2n. Using Stirling’s
formula one gets N !/[(N/2)!]2 ∼ 2N/N1/2 for N ≫ 1.

This example shows that not only the effort to simulate a quantum system grows
exponentially with the number of qubits, but also the number of oracles that are to
be tested increases quickly. This renders an investigation of QCs with many qubits
impractical. One should therefore strive to reduce the number of oracles to be tested.

We could run the GP system on a subset of all oracles. This approach is hampered
by the fact that the proportion of “hard” blackboxes to the number of “not-hard”
blackboxes can decrease exponentially in the number of query qubits.3 Hence, it
is likely that a randomly chosen subset does not anymore represent the problem to
be solved. This result indicates that in general the investigation of QAs cannot be
simplified by running the GP system on a small subset of fitness cases as long as the
size of this subset does not increase exponentially in the number of query qubits.

Another possibility is to use an alternative encoding of the blackbox values into a
quantum state that enables a reduction in the number of oracles to be tested.

The DJ problem for a single query qubit can be used to illustrate this procedure.
Here the constant blackboxes X1, X2 with f(X1,2) = 0 are to be distinguished from
the balanced blackboxes X3, X4 with f(X3,4) = 1.

If one employs the usual definition of the oracle gate [NC00]:

O|i〉|0〉 = |i〉|xi〉, i ∈ N, xi ∈ {0, 1}, (4.3)

one has to test each of the four different oracles. Because the DJ problem can also
be solved using the following oracle gate [CKH98]:

O|i〉 = (−1)xi |i〉, (4.4)

it is possible to find a QC that solves this problem by only testing two oracles.
With the latter definition we get the same oracle, up to a global phase shift, for

the two constant blackboxes: O1,2 = ±1. For the two balanced blackboxes one gets:

3 The term “hard” denotes blackboxes whose property can only be calculated by a number of oracle
calls that grows exponentially in the number of query qubits. Ambainis et al. [AdW01] presented
a blackbox problem whose average-case query complexity on a quantum computer is exponentially
smaller (in the number of qubits) than the average-case query complexity on a classical computer.
The worst-case query complexity of a QA that computes a total Boolean function is polynomially
related to the worst-case query complexity of a classical algorithm that computes such a function
(see Sec. 3.2.2). This result applies to the problem investigated by Ambainis et al. Therefore,
the worst-case query complexity of quantum computers can be exponentially higher than their
average-case query complexity!
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O3,4 = ±σx. Because global phase shifts are not measurable it is not necessary to test
all 4 different oracles but only the oracles O1 = 1 and O3 = σx. A further advantage
of this method is that one needs no additional output register. This would be the
case for the oracle definition in Eq. (4.3).

It depends on the property f(X) one is interested in whether an encoding of the
blackbox entry xi into the phase (−1)xi is possible. If, for instance, one wants to
calculate the property f(X1) = 0 and f(X2) = 1 with X1 = (0, 0) and X2 = (1, 1)
then it is impossible to encode the blackbox entries into phase shifts. Both cases
become indistinguishable for a quantum system because they only differ by a global
phase shift. To see whether an encoding into a local phase shift via Eq. (4.4) is
possible one has to check if for every pair of blackboxes X = (x0, x1, . . . , xn) and
X̄ = (x̄0, x̄1, . . . , x̄n) the condition f(X) = f(X̄) holds. Here x̄k denotes the negation
of the binary variable xk.

Up to now we only considered blackboxes X whose entries were binary values.
In Simon’s problem [Sim94] one investigates blackboxes X = (x0, x1, ..., xN−1) with
xi ∈ {0, 1, ..., l−1} and l ∈ N. If one applies the approach of Eq. (4.3) then one needs
an output register size of log2(l) qubits. Both, in simulation and experiment, only
a few qubits are realizable up to now. Therefore, this approach is not feasible. One
possibility to reduce the number of qubits is to encode the values xi ∈ {0, 1, ..., l− 1}
into complex phase shifts:

O|i〉 = (ξ)xi |i〉, ξ = e2πı/l. (4.5)

One also can use a combined approach where the blackbox entries xi ∈ {0, 1, ..., l}
with l ∈ N are encoded partially into a phase shift and partially into an output register:

In this case we represent the blackbox entry xi by the decomposition x
(phase)
i xi

(xor).

The part x
(phase)
i is to be encoded into a phase shift. The part xi

(xor) is to be encoded
into an output register.

Consider, for example, blackbox entries xi ∈ {0, . . . , 15}. With two output qubits
one can only encode 4 different values. Therefore, one needs another 4 different
phase shifts to unambiguously encode xi. The value xi = 13 would be decomposed

into x
(phase)
i = 3 and xi

(xor) = 01. This decomposition follows from the binary

representation of 13: 1101. The two rightmost bits are the assignment for xi
(xor),

the integer represented by the two leftmost qubits is the value of the phase shift. In
general the oracle gate is defined by:

O|i〉|b〉 = (ξ)x
(phase)
i |i〉|b⊕ xi

(xor)〉, (4.6)

with i ∈ {0, 1, ..., N − 1} and b, xi ∈ {0, 1}m.
In Sec. 5.2 we will present a QA that was evolved using such a kind of oracle gates.

4.4 Fitness Functions

The definition of the fitness function is the most sensitive part in setting up the GP
system. Here one has to make assumptions that might turn out to be ill-suited for
evolving QCs. As shown in Sec. 4.2.2.1 the mathematical structure of quantum
physics allows to define a metric on the space of QCs. This enables us to assign a
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step-length to genetic operators. Small mutations, according to this measure, lead
to small changes in the expectation values. The fitness function depends on these
expectation values, hence it is desirable that it is continuous in the step-length of the
genetic operators. All of our QCs were evolved using a fitness function that did not
fully obey this condition.

4.4.1 Fitness Function for Single Issue Quantum Computers

The problems treated by our GP system were the parity problem and a special case
of the hidden subgroup problem. Nevertheless, we will motivate the fitness function
of our GP system by means of the DJ problem (see Sec. 3.4.1).

The DJ problem for 4 blackbox elements is to distinguish between the constant
blackboxes X1 = (0, 0, 0, 0), X2 = (1, 1, 1, 1) with f(X1,2) = 0 and the balanced
blackboxes:

X3 = (0, 0, 1, 1), X4 = (1, 1, 0, 0), X5 = (0, 1, 0, 1),
X6 = (1, 0, 1, 0), X7 = (0, 1, 1, 0), X8 = (1, 0, 0, 1),

with f(X3,4,5,6,7,8) = 1. According to Collins et al. this problem can be solved by
encoding the blackbox entries into phase shifts via the oracle gates defined by Eq.
(4.4) [CKH98]. Thus, fitness depends on the measurement results for the 4 blackboxes
X1 = (0, 0, 0, 0), X3 = (0, 0, 1, 1), X5 = (0, 1, 0, 1) and X7 = (0, 1, 1, 0). The oracle
gates of the remaining blackboxes differ from the oracle gates O1, O3, O5 and O7

that represent the four blackboxes mentioned above by a global phase shift (see also
Sec. 4.3).

Tab. 4.1 shows measurement probabilities for a QC applied to the input state
|ψinit〉 = |00〉. How well does this circuit decide between constant and balanced
blackboxes?

prob(|00〉) prob(|01〉) prob(|10〉) prob(|11〉)
X = (0, 0, 0, 0) 0.8 0.05 0.05 0.1
X = (0, 0, 1, 1) 0.15 0.25 0.25 0.35
X = (0, 1, 0, 1) 0.1 0.15 0.15 0.6
X = (0, 1, 1, 0) 0.1 0.5 0.3 0.1

Table 4.1: Measurement probabilities for a hypothetical QC. prob(|i1i0〉) denotes the prob-
ability of measuring quantum state |i1i0〉 after applying the QC to |00〉.

We consider a quantum state |i1i0〉 to be measurable with a sufficient probability
if prob(|i1i0〉) > 1/N . Here N = 2n is the number of different quantum states for n
qubits and prob(|i1i0〉) the probability to measure state |i1i0〉. A binary variable bi1i0

indicates whether the quantum state |i1i0〉 fulfills this condition (see Tab. 4.2).
One has to check if there are indices i1 and i0 so that bi1i0 is equal to 1 for constant

as well as balanced blackboxes. In this case the QC is not able to distinguish between
both types of blackboxes. Otherwise, we consider the circuit a promising candidate
for solving the problem.

According to Tab. 4.2 only the constant blackbox is mapped to state |ψfinal〉 =
|00〉 with a probability greater than 1/4. Therefore, the QC is able to distinguish
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b00 b01 b10 b11

X = (0, 0, 0, 0) 1 0 0 0
X = (0, 0, 1, 1) 0 0 0 1
X = (0, 1, 0, 1) 0 0 0 1
X = (0, 1, 1, 0) 0 1 1 0

Table 4.2: This table is obtained from Tab. 4.1 by setting the binary value bi1i0 = 1 if
prob(|i1i0〉) > 1/4, otherwise bi1i0 = 0.

between constant and balanced blackboxes. However, Tab. 4.1 shows that sometimes
a balanced blackbox is also classified as being constant. It is better, therefore, to have
the fitness function depend on at least two parameters.

The first parameter of the fitness function is called clash and quantifies how often
it is not possible to distinguish between constant and balanced blackboxes. Another
parameter, worst error, denotes the highest probability of a misclassification. In
the example above we have worst error = 0.2, the error probability that a constant
function is classified to be balanced. Further parameters are avg error to denote the
average error, oracles to denote the number of oracle gates and length to denote
the total number of quantum gates.

Similar to the approach used by Spector et al. these parameters were used to create
a lexicographic fitness function represented by a vector of the form [SBBS99, Spe04]:

f =




clash

worst error

avg error

oracles

length



.

The position of the parameters in this vector represents their priority, decreasing from
top to bottom.

Unfortunately, the component clash is not continuous in the step-length of the
genetic operators. When clash is equal to 0 the parameter worst error becomes
significant which is continuous in the step-length of the genetic operators.

Our fitness function is to be contrasted with that of Spector et al. who measure
the state of a single qubit [SBBS99, Spe04]. The advantage of our approach is that
an evolved QC that solves the DJ problem has the possibility to resemble the original
one. Therefore, we do not need additional quantum gates necessary to solve the
problem by the measurement of a single read-out qubit. Such additional quantum
gates would make it difficult to extract the functionality and thus the scalability of a
QC.

4.4.2 Fitness Function for Ensemble Quantum Computers

An NMR-QC realizes qubits by the spin states of the molecule’s spin-1/2 nuclei.
Such a quantum computer performs its computations on an ensemble of molecules,

hence the fitness function has to be derived from the expectation values 〈I(i)
x 〉 of the

measurement operator I
(i)
x .
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Consider for example a two-qubit system. According to Sec. 2.8.2 the initial state
is described by:

̺th ∼ 1

4

(
ω0I

(0)
z + ω1I

(1)
z

)
. (4.7)

In contrast to Eq. (2.25) we skipped the term proportional to the identity matrix as

it does not contribute to the expectation values 〈I(i)
x 〉.

The measurement of the i-th spin’s magnetization along the x-axis is calculated by:

〈I(i)
x 〉 = tr{I(i)

x ̺}. (4.8)

All combinations of measuring the spins’ magnetization are performed in order to
check if one of these returns different results for blackboxes X that differ in their
property f(X). In our example one calculates 〈M〉 for M = I

(0)
x , M = I

(1)
x and

M = I
(0)
x + I

(1)
x .

We divided the interval [−|〈M〉|, . . . , |〈M〉| ] of possible measurement results into
several disjoint sub-intervals.4 This makes it possible to quantify the success of a
promising circuit: If the measurement results for both types of blackboxes belong to
different sub-intervals then we consider the circuit a promising candidate for solving
the problem.

To decide how well this circuit can distinguish between both types of blackboxes
we calculated the minimal distance between the corresponding measurement results.
The variable min dist denotes this minimal distance whereas the variable avg dist

denotes the average distance.
The fitness function is represented by the vector:

f =




clash

−min dist

−avg dist

oracles

length



.

We used a lexicographic ordering of the vector components with clash the most
significant one. An optimal algorithm would have minimal values in all components
of its fitness function.5

Unfortunately, the component clash is not continuous in the step-length of the
genetic operators. When clash is equal to 0 the parameter min distance becomes
significant. This parameter is continuous in the step-length of the genetic operators.

4 With the operator norm ||M|| =
p

tr{M+M} and Cauchy-Schwarz’s inequality one gets |〈M〉| ≤
‖M‖ · ‖̺th‖. Thus, the interval of possible measurement results can easily be calculated.

5 The variables min distance and avg distance are to be maximized. Therefore, we used their
negative values in the definition of the fitness function to remain consistent with the condition
that an optimal fitness function has minimal values in all of its components.
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5 Evolved Quantum Algorithms

In this chapter we will present QAs that were developed with the help of the GP
system introduced in the last chapter.

At first we will discuss a QA that solves a modification of the DJ problem. A
literature research revealed that this algorithm was already proposed by Chi et al.
[CKL01]. Nevertheless, we will present this algorithm because it serves as a proof of
principle that oracle gates which encode blackbox entries into complex phase shifts
can successfully be implemented by our GP system.

The problem we will present in Sec. 5.2 is another modification of the DJ problem.
The GP system returned a probabilistic quantum circuit that was slightly better than
any classical circuit. Unfortunately, the scaling properties were not identifiable.

With the hybrid oracle gates defined in Eq. (4.6) the GP system returned ex-
act better-than-classical quantum circuits. It was possible to discover the problem’s
structure and the QA to solve it. In Sec. 5.2 we will demonstrate that this problem
is a special case of the hidden subgroup problem. Our QA solves this special case
exactly and needs less oracle calls than QAs known to us.

Finally, we will present formerly unknown better-than-classical QAs that solve the
parity problem in Sec. 5.3. At first we will discuss an algorithm that solves this
problem on a single issue quantum computer. It is optimal in terms of additional
gate operations required. This algorithm calls the oracle N/2 times and thus meets
the lower bound of oracle calls established by Beals et al. and Farhi et al. [FGGS98,
BBC+01] (see Sec. 3.2.2).

We also used this problem to test an extended version of our GP system which
is able to simulate ensemble quantum computers. These tests returned a QA that
solves the parity problem on the thermal state of an NMR-QC. It requires less oracle
calls then the single issue QA. Further runs of the GP system for ensemble quantum
computers indicated that the number of oracle calls can be reduced further provided
the signal-to-noise ratio is sufficiently high. Investigations on this topic revealed that
there exists a whole series of QAs for ensemble quantum computers that solve the
parity problem with less oracle calls than the known lower bounds. This series of QAs
will be presented in Sec. 5.3.4.

In Sec. 5.3.6 we will discuss the strictness of the lower bounds for the parity problem
proven by Beals et al. [BBC+01].

5.1 A Quantum Algorithm that Solves a Modification

of DJ’s Problem

We started our investigation with a generalization of DJ’s problem. This problem
was examined to test oracle gates that encode non-binary blackbox elements xi ∈
{0, 1, ..., l− 1}, with l ∈ N, into phase shifts.
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We wanted the GP system to find a QC that distinguishes between blackboxes
X ∈ A with A = {(a, a, a, a)} and blackboxes X ∈ B with B = {(a, b, c, d)} for
a 6= b 6= c 6= d and a, b, c, d ∈ {0, 1, 2, 3}. The set of blackboxes is a genuine subset
of all possible blackboxes ((A ∪B) ⊂ {0, 1, 2, 3}4). Therefore, the property f(X),
with f(X) = 0 when X ∈ A and f(X) = 1 when X ∈ B, is a partial Boolean
function. Hence, the lower bounds that were presented in Sec. 3.2.2 do not hold for
this problem.

For two query qubits the oracle gate O defined by Eq. (4.5) is of the form:

O|i〉 = exp
(
ı
π

2

)xi

|i〉 = (ı)xi |i〉. (5.1)

From now on we use OX to denote the oracle gate that represents the blackbox X :

O(0,1,2,3) =




(ı)0 0 0 0
0 (ı)1 0 0
0 0 (ı)2 0
0 0 0 (ı)3


 =




1 0 0 0
0 ı 0 0
0 0 −1 0
0 0 0 −ı


 .

All constant blackboxes X ∈ A differ by a global phase shift:

O(0,0,0,0) = 1, O(1,1,1,1) = ı · 1,
O(2,2,2,2) = −1 · 1, O(3,3,3,3) = −ı · 1.

Quantum states with different global phase factors cannot be distinguished. Hence,
these blackboxes can be realized by the identity operator 1: Only X = (0, 0, 0, 0) has
to be implemented. A similar result is obtained for the blackboxes X ∈ B. Here, it
is sufficient to only test 6 out of 24 blackboxes:

X = (3, 2, 1, 0), X = (2, 3, 0, 1), X = (3, 1, 2, 0),
X = (0, 2, 1, 3), X = (1, 0, 2, 3), X = (0, 1, 3, 2).

The total number of fitness cases can be reduced by a factor of 4 if one encodes the
blackbox entries into phase shifts. Thus, the evaluation of a QC by the GP system
is reduced by a factor 4 × 4 in comparison to the usual approach that stores the
answer of a blackbox query in an additional two-qubit output register. The second
factor 4 is due to the increased costs necessary to simulate a quantum system with
two additional qubits. This result indicates that a clever encoding of the blackboxes
by oracle gates considerably speeds up the time necessary to evaluate a QC.

The oracle gates that represent blackboxes X ∈ B can be divided in two classes,
those that can be decomposed into a tensor product of two one-qubit gates and
those that can’t. Consider, for example, the oracle gate that represents the blackbox
X = (3, 2, 1, 0):

O(3,2,1,0) ≡




−ı 0 0 0
0 −1 0 0
0 0 ı 0
0 0 0 1


 =

(
a 0
0 b

)
⊗
(
c 0
0 d

)
,

with a = −b, c = ıd and b, d = 1. The oracle gate that represents X = (1, 0, 2, 3)
cannot be decomposed in such a manner. Hence, the problem investigated here has
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entangling oracle gates. The DJ problem for two query qubits can be solved without
entangling transformations [CKH98].

The QC presented in Tab. 5.1 was evolved on the GP system using the parameters
shown in Tab. 5.2.

HAD [1]

HAD [0]

ORACLE

HAD [1]

HAD [0]

Table 5.1: QC found by the GP system in the 9th generation. See Fig. 5.1 for the graph
representation of this circuit. The bracketed parameters denote the qubits the Hadamard
gates are applied to. The oracle gate is applied to both qubits by definition.

Population size 500

No. of generations 200

Tournament size 8

Crossover probability 0.05

Creation probability 0.05

Mutation probability 0.90

Swap mutation probability 0.30 × 0.9

Grow mutation probability 0.30 × 0.9

Shrink mutation probability 0.20 × 0.9

Shrink2 mutation probability 0.20 × 0.9

No. of rotation angles 128

Max. no. of gates 200

Max. no. of oracle gates 5

Gate set H , CNOT , Rx(2 · θl), Ry(2 · θl), O

Table 5.2: Parameters of the GP system that evolved the QC depicted in Fig. 5.1. The
rotation angle θl is specified by the integer l ∈ {0, 1, ..., 127} via θl = −π + (l + 1) · 2π

128
.

As indicated in Fig. 5.1 the circuit starts with the initial state |ψinit〉 = |0〉. A
superposition over all possible input states is created by applying Hadamard gates to
each qubit. After a single oracle call the Hadamard gates are applied once more to
each qubit:

|ψfin〉 = H⊗2 O H⊗2|0〉 =
1

4

3∑

i=0

3∑

j=0

(ı)xi(−1)i·j|j〉.

The last term follows due to Eq. (3.14). The probability prob (|0〉〈0|) to measure the
state |0〉 is:

prob (|0〉〈0|) =

∣∣∣∣∣
1

4

∑

i

(ı)
xi

∣∣∣∣∣

2

=

{
1 if X ∈ A
0 if X ∈ B

.
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Therefore, the problem can be solved by a single oracle call and a measurement of
the two query qubits.

H

H

H

H

O

|0〉

|0〉

Figure 5.1: This exact QC distinguishes between blackboxesX ∈ B and X ∈ A by mapping
the initial state |0〉 to |0〉 when X ∈ A. If X ∈ B then the initial state is mapped to any
state different from |0〉.

This circuit can be generalized to an arbitrary number of qubits:

Proof:

The problem is to distinguish between blackboxes X ∈ A whose entries are all
equal and blackboxes X ∈ B whose entries are all different.

To solve this problem one starts with the initial n-qubit state |ψinit〉 = |0〉 by
applying Hadamard gates to each qubit. After a single oracle call, Hadamard
operations are applied once more to each qubit:

|ψfin〉 = H⊗n O H⊗n|0〉 =
1

2n

2n−1∑

i=0

2n−1∑

j=0

(
eı 2π

2n

)xi

(−1)i·j |j〉.

Here we used the definition of the complex phase ξ in Eq. (4.5) and that a
blackbox queried by n qubits contains 2n elements. The probability to measure
the state |0〉 is:

prob (|0〉〈0|) =

∣∣∣∣∣
1

2n

2n−1∑

i=0

(
eı 2π

2n

)xi

∣∣∣∣∣

2

=

{
1 if X ∈ A
0 if X ∈ B

.

It follows that the problem can be solved by a single oracle call. �

The problem can easily be solved on a classical computer:

Proof:

To distinguish between blackboxes X ∈ A and X ∈ B one has to query the
blackbox only twice. If both queries return the same answer then X ∈ A,
otherwise X ∈ B. �

Therefore, this problem is not as interesting. Also, it can be solved by DJ’s QA:

Proof:
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Consider the rightmost bit in the binary decomposition of the blackbox entries:
For a blackbox X ∈ A this bit will have the same value for all entries. For a
blackbox X ∈ B one half of these entries will have the value 0, the remaining
half the value 1. The problem can be solved by the DJ algorithm whose oracle
gate encodes only this rightmost bit of a blackbox element. �

The above problem was already investigated and solved by Chi et al. [CKL01]. We
modified it to see if the GP system is still able to find QCs that solve this new one.

5.2 A Special Case of the Hidden Subgroup Problem

The first instance of the problem we consider in this section is to distinguish between
blackboxes X ∈ A and X ∈ B with

A = {(a, a, a, a)} and B = {(a, a, b, b), (a, b, a, b), (a, b, b, a)}, (5.2)

here a 6= b and a, b ∈ {0, 1, 2, 3}.

5.2.1 A Probabilistic Quantum Circuit

We began our investigation using the oracle gates defined in Eq. (5.1). The QC of
lowest error probability, returned by the GP system, was only slightly better than
any classical probabilistic circuit. This QC was found with an old version of our GP
system: Apart from the Hadamard gate H , only rotation gates R(θl) and CNOT -
gates were implemented:

R(θl) =

(
cos (θl) sin (θl)
− sin (θl) cos (θl)

)
.

A hand-improved version of the best circuit found is shown in Fig. 5.2:

R17

R28R28

R11 R37 R14

R56R15

H HH

H

OO

|0〉

|0〉

Figure 5.2: Probabilistic QC that is able to distinguish blackboxes X ∈ A from blackboxes
X ∈ B with two oracle calls. Rl denotes a rotation gate whose rotation angle θl is specified
by the integer l ∈ {0, 1, ..., 63} via θl = −π + (l + 1) · 2π

64
.

In order to calculate the error probability of the QC one has to calculate the max-
imal misclassification probability for all blackboxes X ∈ A ∪B:

i) X ∈ A⇒ the probability that the QC answers X ∈ A is 0.908.

ii) X ∈ B ⇒ the probability that the QC answers X ∈ B is 0.892.
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Now we consider a classical circuit that has to solve this problem with only two
oracle calls: If two distinct blackbox elements have the same value the circuit infers
that the blackbox X belongs to set A. Therefore, a blackbox X ∈ A will always be
correctly classified. Nevertheless, also some blackboxes X ∈ B will be classified to
belong to set A. The probability that this happens is 1/3. For a classical circuit one
gets:

i) X ∈ A⇒ the probability that a classical circuit answers X ∈ A is 1.0.

ii) X ∈ B ⇒ the probability that a classical circuit answers X ∈ B is 2/3.

If the blackboxes X are taken equiprobable from the sets A and B then the mis-
classification rate of a QC is 0.1; the misclassification rate of a classical circuit is 0.16.
Hence, the QC is slightly better than any classical circuit.

Unfortunately, the scaling properties of this QC were not identifiable. In the next
section we demonstrate that another set of oracle gates led to QCs whose scaling
properties were apparent.

5.2.2 An Exact Quantum Circuit

A blackbox X ∈ A ∪ B with A and B defined in Eq. (5.2) returns the values xi ∈
{0, 1, 2, 3} if queried. The next oracle definition provides the only way to encode the
blackbox elements into phase shifts and an output register according to Eq. (4.6):

O|i〉|b〉 = (−1)x
(phase)
i |i〉|b⊕ x

(xor)
i 〉. (5.3)

Here the blackbox entries xi are decomposed into the two binary values x
(phase)
i

and x
(xor)
i . Consider, for example, the blackbox X = (0, 3, 0, 3): Decomposing the

blackbox entries into two binary values returns the alternative representation X̃ =
(00, 11, 00, 11):

x
(phase)
0 x

(xor)
0 = 00, x

(phase)
1 x

(xor)
1 = 11,

x
(phase)
2 x

(xor)
2 = 00, x

(phase)
3 x

(xor)
3 = 11.

The oracle gate O(0,3,0,3) has the following form:

O(0,3,0,3) =

0

B
B
B
B
B
B
B
B
B
B
@

1 0
0 1

0 −1
−1 0

1 0
0 1

0 −1
−1 0

1

C
C
C
C
C
C
C
C
C
C
A

.

This approach requires an additional output qubit. Hence, the circuit needs three
instead of two qubits. Nevertheless, this still is an advantage compared with the four
qubits necessary for the standard encoding defined in Eq. (4.3).

It is possible to reduce the number of blackboxes that are to be tested. With
the oracle defined in Eq. (5.3) the blackbox X = (0, 0, 1, 1) and the blackbox Y =
(2, 2, 3, 3) are indistinguishable up to a global phase shift: It is sufficient to only test
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X . Therefore, one has to test 2 instead of 4 blackboxes of set A and 18 instead of 36
blackboxes of set B. In comparison to the standard encoding the evaluation of a QC
is reduced by the factor 2 × 2.

The shortest QC found by the GP system during 60 runs is the one shown in Tab.
5.3. Its graph representation can be found in Fig. 5.3. The parameters of the GP
system are shown in Tab. 5.4.

In contrast to the probabilistic QC presented above, this circuit is an exact one
whose structure shows much more regularity.

H [1]

H [2]

ORACLE

CNOT [2 1]

Ry [0 95]

CNOT [1 2]

ORACLE

H [2]

H [1]

Table 5.3: QC found by the GP system in a total of 60 runs. It was found in the 166th
generation of the first run. Ry [0 95] denotes that the one-qubit gate Ry(2 · θl) is applied
to qubit 0. The angle θl is defined by: θl = −π + (l + 1) · 2π

128
. One gets: θ95 = π/2.

Population size 500

Max. no. of generations 5000

Tournament size 8

Crossover probability 0.05

Creation probability 0.05

Mutation probability 0.90

Swap mutation probability 0.30 × 0.9

Grow mutation probability 0.30 × 0.9

Shrink mutation probability 0.20 × 0.9

Shrink2 mutation probability 0.20 × 0.9

No. of rotation angles 128

Max. no. of gates 100

Max. no. of oracle gates 4

Gate set CNOT , Rx(2 · θl), Ry(2 · θl), H , O

Table 5.4: Parameters of the GP system that evolved the linear genome in Tab. 5.3. The
angle θl is defined by: θl = −π + (l + 1) · 2π

128
.

5.2.3 An Exact Quantum Algorithm

We are interested in developing QAs and not only QCs. Therefore, we tried to find
the next problem instance for blackboxes with 8 elements. If the GP system returns
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Figure 5.3: This circuit distinguishes between blackboxes X ∈ A and X ∈ B by mapping
the initial state |ψinit〉 = |00〉 of the query register to the final state |ψfin〉 = |00〉 if X ∈ A,
otherwise the state |00〉 of the query register has a probability amplitude of zero. The gate
σy is realized by Ry(π): σy = ıRy(π).

a QC that solves this instance then it might be possible that an investigation of both
circuits returns a scaling scheme.

Hence, the task is two-fold: On one hand we have to find the general structure
of the problem so that the GP system returns QCs for its smallest instances. On
the other hand we have to derive the general scaling mechanism by means of these
circuits. This scaling mechanism provides a procedure to construct a uniform circuit
family and thus the QA.

The elements xi of blackboxes X ∈ B defined in Eq. (5.2) meet the condition:

i = j ⊕ s ⇔ xi = xj , i, j, s ∈ {0, 1, 2, 3}. (5.4)

For the next problem instance we decided to modify this to:

i = j ⊕ s ⇒ xi = xj , i, j, s ∈ {0, 1, . . . , 6, 7}.

This modification implies that xi = xj even if i 6= j ⊕ s. Nevertheless, for i, j, s ∈
{0, 1, 2, 3} this modification is equal to the condition stated by Eq. (5.4). We used the
values of blackboxes X ∈ B with 4 elements to assign values to blackboxes X ′ ∈ B′

with 8 elements as indicated in Fig. 5.4. Therefore, the next instance of the problem

X’=  (0,0,1,1,1,1,0,0)

X =  ( 0,   1,   1,   0 )

Figure 5.4: The assignment of the blackbox X ∈ B is used to determine the elements
of X ′ ∈ B′. In this example the elements of a blackbox with 8 elements are defined by:
i = j ⊕ 001 ⇒ xi = xj . For X = (0, 1, 0, 1) one gets X ′ = (0, 0, 1, 1, 0, 0, 1, 1).
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is to distinguish between blackboxes X ′ ∈ A′ and X ′ ∈ B′:

A′ = {(a, a, a, a, a, a, a, a)} and B′ =





(a, a, a, a, b, b, b, b), (a, b, a, b, a, b, a, b),
(a, a, b, b, a, a, b, b), (a, a, b, b, b, b, a, a),
(a, b, a, b, b, a, b, a), (a, b, b, a, a, b, b, a),
(a, b, b, a, b, a, a, b)




,

(5.5)
here a 6= b and a, b ∈ {0, 1, 2, 3}.

On a total of 60 runs the shortest exact QC was found in the 423rd generation of
the third run. This QC is shown in Fig. 5.5. The settings of the GP system were
identical to those shown in Tab. 5.4.
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Figure 5.5: This QC distinguishes between blackboxes X ′ ∈ A′ and X ′ ∈ B′ by mapping
the initial state |ψinit〉 = |000〉 of the query register to the final state |ψfin〉 = |000〉 if
X ′ ∈ A′, otherwise the state |000〉 of the query register has a probability amplitude of zero.

The construction scheme used above results in the following condition for blackbox
elements xi to be equal:

[
(j = i⊕ s) or (j = i⊕ s′) or (j = i⊕ s⊕ s′)

]
⇔ xi = xj ,

with i, j, s, s′ ∈ I where I = {0, 1, 2, 3, 4, 5, 6, 7} is the set of indices and s 6= s′.
Together with the zero element 0 the elements s, s′ and s ⊕ s′ form the group K =
{0, s, s′, s ⊕ s′} with ⊕ as group multiplication operation. Thus, the condition for
elements xi and xj to be equal reads:

j ∈ i⊕K ⇔ xi = xj ,

where i⊕K := {i⊕ k : k ∈ K} denotes the coset of K. Hence, xi = xj if and only if
i and j are elements of the same coset. Using this concept, elements xi of blackboxes
X ′ ∈ A′ can be defined by:

xi = xj ⇔ j ∈ i⊕K with K = I.

With this notation the two problems investigated are instances of a special case of
the hidden subgroup problem defined in Tab. 5.5.

We demonstrate in Tab. 5.6 how this definition covers the problem instance defined
in Eq. (5.5).
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A special case of the hidden subgroup problem

One is given the finite Abelian group I = {0, 1}n of indices that has |I| =
N = 2n elements. Also one is given the subgroup K ⊂ I. The group
multiplication operation is the bitwise XOR operation (⊕). Additionally one
is given a blackbox X = (x0, x1, . . . , xN−1) with xi ∈ H , H = {0, 1, 2, 3} and
i ∈ I. One is promised that either X ∈ A or X ∈ B. The two sets A and B
are defined by:

X ∈ A ⇔ there exists only the subgroup K = I so that:
∀i 6= j with i, j ∈ I : xi = xj ⇔ j ∈ i⊕K.

X ∈ B ⇔
there exists a subgroup K ⊂ I with |K| = |I|/2
so that:
∀i 6= j with i, j ∈ I : xi = xj ⇔ j ∈ i⊕K.

Decide which set X belongs to.

Table 5.5: Definition of our special case of the hidden subgroup problem.

Inspection of the QCs returned by the GP system on these two problem instances
reveals a common functionality that is captured by the QA shown in Fig. 5.6. In
what follows we will prove that this QA indeed solves this special case of the hidden
subgroup problem:

Proof:

In this proof the state |0〉|0〉 describes the initial (n+1)-qubit state: |0〉 denotes
the initial state of the n-qubit query register and |0〉 denotes the initial state of
the single ancillary qubit (0th qubit).

The quantum gate CNOTl,m denotes a CNOT gate as defined in Eq. (3.12).
The lth qubit is the control and the mth qubit is the target qubit. The sequence
of CNOT gates is abbreviated by Σ:

Σ = CNOT1,nCNOT2,1 · · ·CNOTn−1,n−2CNOTn,n−1. (5.6)

We use the notation:

Σ|i〉 = |i⊕ ξ(i)〉 =: |σ(i)〉,

where ξ(i) is uniquely determined by i. Hence, σ(i) permutes the indices i ∈
{0, 1}N .

Up to a global phase shift the effect of the one-qubit gate σy is described by:

σy|b〉 = (−1)b|b̄〉, with b ∈ {0, 1}.
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The oracle gate is defined in Eq. (5.3), the n-qubit Hadamard gate is defined
in Eq. (3.14).

Provided with these definitions we calculate the final quantum state obtained
after applying the QA of Fig. 5.6 to the initial state |0〉|0〉: After the first n
Hadamard gates the initial state is mapped to:

|ψ〉 =
1√
2n

(
2n−1∑

i=0

|i〉
)
|0〉.

Applying the first oracle to this state returns:

|ψ〉 =
1√
2n

(
2n−1∑

i=0

(−1)x
(phase)
i |i〉|x(xor)

i 〉
)
.

The sequence of CNOT gates leaves us with:

|ψ〉 =
1√
2n

(
2n−1∑

i=0

(−1)x
(phase)
i |σ(i)〉|x(xor)

i 〉
)
,

which, up to a global phase, is mapped by the σy gate to:

|ψ〉 =
1√
2n

(
2n−1∑

i=0

(−1)x
(phase)
i |σ(i)〉(−1)x

(xor)
i |x̄(xor)

i 〉
)

.

Once again the oracle gate is applied:

|ψe〉 =
1√
2n

(
2n−1∑

i=0

(−1)
x
(phase)
i ⊕x

(phase)

σ(i) |σ(i)〉(−1)x
(xor)
i |x̄(xor)

i ⊕ x
(xor)
σ(i) 〉

)
.

(5.7)
For blackboxes X ∈ A one gets, up to a global phase shift:

|ψe〉 =

(
1√
2n

2n−1∑

i=0

|σ(i)〉
)
|1〉 =

(
1√
2n

2n−1∑

i=0

|i〉
)
|1〉.

The last equation follows because σ(i) simply permutes the inputs i. After the
final Hadamard gates one gets, up to a global phase shift, the final state |ψf 〉:

|ψf 〉 = |0〉|1〉.

Thus, if X ∈ A then the query register is in the state |0〉.
If X ∈ B then one half of the blackbox’s elements have a different value than the
other half. Therefore, one has to distinguish two possibilities for the permutation
σ(i): Either xi = xσ(i) or xi 6= xσ(i). In the latter case one gets the following
three possibilities:

a)

xi 6= xσ(i) ⇔
(
x

(phase)
i 6= x

(phase)
σ(i) and x

(xor)
i 6= x

(xor)
σ(i)

)
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b)

xi 6= xσ(i) ⇔
(
x

(phase)
i = x

(phase)
σ(i) and x

(xor)
i 6= x

(xor)
σ(i)

)

c)

xi 6= xσ(i) ⇔
(
x

(phase)
i 6= x

(phase)
σ(i) and x

(xor)
i = x

(xor)
σ(i)

)

Therefore, the sum over indices i in Eq. (5.7) is split into a sum over indices i
with xi = xσ(i) and indices i with xi 6= xσ(i). One gets:

a)

|ψe〉 =
1√
2n

2

4

0

@
X

i:xi=xσ(i)

(−1)x
(xor)
i |σ(i)〉

1

A |1〉 −

0

@
X

i:xi 6=xσ(i)

(−1)x
(xor)
i |σ(i)〉

1

A |0〉

3

5

b)

|ψe〉 =
1√
2n

2

4

0

@
X

i:xi=xσ(i)

(−1)x
(xor)
i |σ(i)〉

1

A |1〉 +

0

@
X

i:xi 6=xσ(i)

(−1)x
(xor)
i |σ(i)〉

1

A |0〉

3

5

c)

|ψe〉 =
1√
2n

0

@
X

i:xi=xσ(i)

(−1)x
(xor)
i |σ(i)〉 −

X

i:xi 6=xσ(i)

(−1)x
(xor)
i |σ(i)〉

1

A |1〉

In all three cases we have to show that in each sum there are as many states of

phase (−1)x
(xor)
i = −1 as states of phase (−1)x

(xor)
i = 1. If this is the case then

the final Hadamard operations map such a superposition to a new one where
the zero-state |0〉 of the query register vanishes.1 Hence, blackboxes X ∈ B
become distinguishable from blackboxes X ∈ A.

Now we discuss the different cases separately:

a,b) In both cases the superposition |ψe〉 is split into states |i〉 with xi = xσ(i)

and states |j〉 with xj 6= xσ(j). We will show that the part of the superpo-
sition that contains states |j〉 with xj 6= xσ(j) has as many states of phase

(−1)x
(xor)
j = 1 as states of phase (−1)x

(xor)
j = 0. This is also true for the

remaining part of the superposition over states |i〉 with xi = xσ(i) due to
the definition of blackboxes X ∈ B.

Let us consider indices j with xj 6= xσ(j): If one assumes that the number

of indices j with x
(xor)
j = 0 is not equal to the number of indices j with

x
(xor)
j = 1 then, after permuting the indices via σ, the total number of

indices l with x
(xor)
l = 0 and indices k with x

(xor)
k = 1 changes. This is not

possible as σ only permutes the indices. Hence, for x
(xor)
j 6= xxor

σ(j) one has

as many states with x
(xor)
j = 0 as states x

(xor)
j = 1.

1 The state |ψ〉 = |i〉 is mapped by any Hadamard gate to |ψ〉 = |0〉 ± . . . ; the state |ψ〉 = −|j〉 is
mapped by any Hadamard gate to |ψ〉 = −|0〉± . . . . Applying a Hadamard gate to |ψ〉 = |i〉− |j〉
therefore returns a superposition where the zero-state |0〉 vanishes. This holds true for any
superposition over as many states of phase +1 as −1.
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c) The phases of the states in the superposition |ψe〉 are determined by the

values x
(xor)
i . By the definition of case c) we know that x

(xor)
i = const.

Therefore, one only has to show that the number of indices i with xi =
xσ(i) equals the number of indices xi 6= xσ(i): The Σ-gate performs XOR-
operations σ(i) = i ⊕ ξ(i). As ξ(i) is uniquely determined by i, the Σ-
operation tests all ξ(i) ∈ {0, 1}n. Blackbox elements of blackboxes X ∈ B
are characterized by the condition xi = xj with j = i⊕ s for one half of all
s ∈ {0, 1}n. Hence, the number of indices i with xi = xσ(i) is equal to the
number of indices j with xj 6= xσ(j). �

Subgroup Cosets Conditions for the blackbox elements xi

x0 = x1 = x2 = x3 = a
K0 I

x4 = x5 = x6 = x7 = a; a ∈ H
x0 = x1 = x2 = x3 = a

K1 {0, 1, 2, 3}, {4, 5, 6, 7}
x4 = x5 = x6 = x7 = b; a 6= b; a, b ∈ H
x0 = x1 = x4 = x5 = a

K2 {0, 1, 4, 5}, {2, 3, 6, 7}
x2 = x3 = x6 = x7 = b; a 6= b; a, b ∈ H
x0 = x1 = x6 = x7 = a

K3 {0, 1, 6, 7}, {2, 3, 4, 5}
x2 = x3 = x4 = x5 = b; a 6= b; a, b ∈ H
x0 = x2 = x4 = x6 = a

K4 {0, 2, 4, 6}, {1, 3, 5, 7}
x1 = x3 = x5 = x7 = b; a 6= b; a, b ∈ H
x0 = x2 = x5 = x7 = a

K5 {0, 2, 5, 7}, {1, 3, 4, 6}
x1 = x3 = x4 = x6 = b; a 6= b; a, b ∈ H
x0 = x3 = x4 = x7 = a

K6 {0, 3, 4, 7}, {1, 2, 5, 6}
x1 = x2 = x5 = x6 = b; a 6= b; a, b ∈ H
x0 = x3 = x5 = x6 = a

K7 {0, 3, 5, 6}, {1, 2, 4, 7}
x1 = x2 = x4 = x7 = b; a 6= b; a, b ∈ H

Table 5.6: Second instance of our hidden subgroup problem: I = {0, 1, 2, 3, 4, 5, 6, 7}, H =
{0, 1, 2, 3}, K0 = I, K1 = {0, 1, 2, 3}, K2 = {0, 1, 4, 5}, K3 = {0, 1, 6, 7}, K4 = {0, 2, 4, 6},
K5 = {0, 2, 5, 7}, K6 = {0, 3, 4, 7} and K7 = {0, 3, 5, 6}.

5.2.3.1 Comparison with other algorithms

Our QA solves this special case of the hidden subgroup problem with only two oracle
calls. If |I| = 2n then any exact classical algorithm needs at most n + 1 blackbox
calls.2 A probabilistic classical algorithm can solve this problem using k > 1 calls

2 The definition of the problem shows that a deterministic classical algorithm has to choose a
subgroup K ⊂ I with |K| = |I|/2. Then the algorithm has to calculate a coset g ⊕ 〈K〉 of the
generators 〈K〉 of K. The elements k ∈ g ⊕ 〈K〉 of this coset plus the neutral element 0 are used
to query the blackbox for the elements xk. If all elements are equal then the blackbox can still
belong to set B, thus an additional element of a different coset has to be tested. If this query also
returns the same answer then the blackbox belongs to set A, otherwise to B. With |I| = 2n one
has k = log2(|K|) = log2(2n−1) = n − 1 generators, hence one has to call the blackbox (n + 1)
times in the worst case.
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Figure 5.6: Generalized circuit for (n + 1) qubits. The upper n qubits encode
i ∈ {0, 1, . . . , 2n − 1}. Σ abbreviates the gate sequence CNOT1,nCNOT2,1 · · ·
CNOTn−1,n−2CNOTn,n−1. CNOTl,m denotes a CNOT gate with l the control and
m the target qubit. This circuit distinguishes between blackboxes X ∈ A and X ∈ B by
mapping the initial n-qubit state |ψinit〉 = |0 . . . 0〉 of the query register to the final state
|ψfin〉 = |0 . . . 0〉 if X ∈ A. Otherwise the state |0 . . . 0〉 of the n-qubit query register has a
probability amplitude of zero.

with an error probability of 2−k+1 if |I| ≫ 1.3 Simon’s QA can be generalized to
a broader class of problems called Simon’s hidden subgroup problems [BH97]. The
corresponding generalized QA is a probabilistic one and can also be used to solve the
problem presented here. Its error probability decreases with 2−k+1 in the number k
of repetitions of this algorithm. Because this generalized algorithm calls the oracle
only once, k repetitions of the algorithm correspond to k oracle calls. There exists an
exact algorithm that solves Simon’s hidden subgroup problem [BH97]. In our case it
has to call the oracle three times.

It follows that the QA found with the help of the GP system is faster than any
classical algorithm as well as any QA known to us.

5.2.4 Conclusion

The results stated above indicate that GP provides a useful tool to find new QAs.
This conclusion is further supported by the results we are to discuss in the next
section. There we will present formerly unknown QAs to solve the parity problem.

There are several possibilities to translate a problem to a blackbox problem. If
we want to distinguish the set A = {2, 2, 2, 2} from the set B = {1, 2, 2, 1} then the
blackboxes X1 = (2, 2, 2, 2) with f(X1) = 0 and X2 = (1, 2, 2, 1) with f(X2) = 1
provide a valid representation of this problem.

Alternatively, the set A can be represented by the blackboxes X1,0 = (0, 0, 0, 0) and
X1,1 = (1, 1, 1, 1), the set B by the blackboxesX2,0 = (1, 0, 0, 1) andX2,1 = (0, 1, 1, 0).
Here we used the binary decomposition of the elements to create the corresponding
blackboxes, e.g., X2,0 contains the rightmost digit of each element of B. Now the
problem can be solved by two runs of the DJ algorithm (see Sec. 3.4.1). In the first
run one queries the blackboxX1,0 (X2,0), in the second run one queries the blackboxes

3 A blackbox that belongs to set B contains as many elements xi = a as elements xj = b where
a 6= b and i 6= j. Therefore, the probability that k different calls return the same answer decreases
with 2k−1 for |I| >> 1.
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X1,1 (X2,1). If the DJ algorithm returns the answer “constant” in both cases then
one knows that the set was A, otherwise B.

The latter approach requires some preprocessing to encode a single set by two
blackboxes. These costs have to be taken into account to make a fair comparison
between the two approaches presented here. Also, the latter blackbox problem does
not fit in the blackbox model of computation introduced in Sec. 3.2.

5.3 The Parity Problem

The GP system was used to evolve QCs for two instances of the parity problem on
single issue quantum computers as well as on ensemble quantum computers. In both
cases we were able to derive formerly unknown QAs by means of theses QCs.

Sec. 5.3.1 formulates the parity problem. In Sec. 5.3.2 we will discuss the basic
algorithm for single issue quantum computers. In Sec. 5.3.3 we will show that this
algorithm can also be implemented on ensemble quantum computers. Sec. 5.3.4
presents the circuits returned by the GP system for ensemble quantum computers
which allow for a further reduction in the number of oracle calls. Sec. 5.3.5 contains
the experimental implementation on an NMR-QC and Sec. 5.3.6 draws conclusions.

5.3.1 Preliminaries

When the parity problem is formulated as a blackbox problem the desired property
can be written as the Boolean function:

f(X) = x0 ⊕ x1 · · · ⊕ xN−1. (5.8)

The first task of the GP system was to find a QC that is able to distinguish black-
boxes X ∈ A with f(X) = 0:

A = {(a, a, a, a), (a, a, b, b), (a, b, a, b), (a, b, b, a)},

from blackboxes X ∈ B with f(X) = 1:

B = {(a, a, a, b), (a, a, b, a), (a, b, a, a), (b, a, a, a)},

for a 6= b and a, b ∈ {0, 1}.
The next problem was to find a QC that distinguishes blackboxes X ∈ A with

f(X) = 0:

A =

{
(a, a, a, a, a, a, a, a), (a, a, a, a, a, a, b, b), (a, a, a, a, a, b, b, a), . . .
(a, a, a, a, b, b, b, b), (a, a, a, b, b, b, b, a), (a, a, a, b, b, b, a, b), . . .

}
,

from blackboxes X ∈ B with f(X) = 1:

B =

{
(a, a, a, a, a, a, a, b), (a, a, a, a, a, a, b, a), (a, a, a, a, a, b, a, a), . . .
(a, a, a, a, a, b, b, b), (a, a, a, a, b, b, b, a), (a, a, a, a, b, b, a, b), . . .

}
,

for a 6= b and a, b ∈ {0, 1}. Each of the sets A and B contains 64 elements.
The two QCs found by the GP system are shown in Fig. 5.7. They were sufficient to

extract the scaling mechanism for an arbitrary number of qubits. The corresponding
QA will be presented in the next section.
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Figure 5.7: QCs found by the GP system for n=2 qubits (a) and n=3 qubits (b).

5.3.2 An Optimal Exact Quantum Algorithm

From now on we assume that the blackboxes, whose parity we want to calculate,
contains N elements. Therefore, the corresponding oracle gate acts on N possible
inputs i which are encoded into n ≥ log2N qubits. If N is not a power of 2, the
blackbox is extended with zeros, hence N = 2n.

The gates used by the algorithm are the Hadamard operation H , the NOT-operation
σx and the n-qubit oracle gate O. The formal definition of O can be found in Eq.
(4.4).

In the simplest case of a one-qubit quantum register (N = 2, n = 1), which is
equivalent to Deutsch’s problem [Deu85], the parity of the string can be determined
with a single oracle call: With the qubit initialized in the |0〉 state, we apply an oracle
gate bracketed by two Hadamard gates. The resulting state of the quantum register
is:

|ψfinal〉 = HOH |0〉 = HO
1√
2
(|0〉 + |1〉) = H

1√
2
((−1)x0 |0〉 + (−1)x1|1〉)

= f(X)|1〉 + (1 − f(X))|0〉,

up to a global phase factor. Readout of the qubit shows the parity of X : even
parity (f(X) = 0) results in a final state |ψfinal〉 = |0〉 while odd parity results in
|ψfinal〉 = |1〉. The speedup by a factor of two, compared to the classical algorithm,
results from the fact that the superposition determines whether the two bits are equal
or opposite but does not differentiate between, e.g., the strings “00” and “11”.

Now we prove that the QCs in Fig. 5.7 can be generalized to an arbitrary number
of qubits.
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Proof:

To generalize the QCs to strings of arbitrary length N we write the quantum
register as:

|ψ〉 = |ξ〉 ⊗ |χ〉, (5.9)

where |χ〉 contains the single qubit that is used for readout, while |ξ〉 consists of
the n− 1 remaining qubits. All n qubits are first initialized into the |0〉 state; a
Hadamard gate is then applied to the readout-qubit to create the superposition
state:

|ψ1〉 = |0 · · · 0〉 ⊗ (H |0〉) =
1√
2
(|00 · · · 0〉 + |00 · · ·1〉).

If an oracle gate is applied to this state then it shifts the phase of each of the two
components by π depending on the bit at position 0 or N/2 in X , respectively,
being set. To take the other bits into account, we use repeated oracle calls with
different inputs i. Since O does not modify the input vector |ξ〉, apart from the
overall phase factor, we can generate the other inputs by subsequently flipping
individual qubits. Fig. 5.7 summarizes the resulting algorithm for n = 2 and
n = 3 qubits. In the n = 2 case the |ξ〉 component subsequently takes the values
0 and 1, in the n = 3 case it goes through 00 → 10 → 11 → 01 → 00. The last
step can be omitted but will be assumed here for the convenience of making the
final state independent of the sequence of single qubit flips.

We summarize this sequence ofN oracle calls alternating with σx equal to NOT

operations with the unitary operator Uc. Since its component operations O and
σx are self-inverse and commute with each other one gets Uc = U−1

c = U+
c .

After this sequence of operations the state of the quantum register is:

|ψ1〉 = UcH
(0)|00...0〉 =

1√
2
[(−1)x0⊕x2···⊕xN−2|00...0〉

+ (−1)x1⊕x3···⊕xN−1 |00...1〉].

The final Hadamard gate on the readout-qubit transforms this state into:

|ψfinal〉 = H(0)|ψ1〉 =

{
|00 · · · 0〉 if f(X) = 0
|00 · · · 1〉 if f(X) = 1

.

Hence, the state of the readout-qubit codes the parity f(X) of the string X . �

The number of calls of the oracle gate (N/2) required by this algorithm coincides
with the known lower bound [BBC+01, FGGS98]. Our algorithm is therefore optimal
with respect to the number of oracle gates required, but also with respect to the
number of additional gates, which are single qubit gates, independent of the size of
the quantum register: If any of the NOT gates were omitted then two oracle gates
would become adjacent to each other. According to Eq. (4.4) the oracle is its own
inverse, so they could be eliminated from the algorithm thereby violating the lower
bound.

Our algorithm requires the measurement of a single qubit, in contrast to the N/2
measurements used by the algorithm proposed by Beals et al. [BBC+01] and to the
n measurements required by the algorithm of Farhi et al. [FGGS98].

In the next section we show that this parity algorithm can also be applied to
ensemble quantum computers.
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5.3.3 Application to an Ensemble Quantum Computer

To be able to discuss the operation of the algorithm on pure and mixed states within
the same formal framework, we describe the state of the quantum register with a
density operator. In most implementations, like in NMR-QCs, the initial state is the
thermal state (see Sec 2.8.2):

̺th ≈ 1

N
(1− H) ≈ 1

N

(
1−

n−1∑

i=0

ωiI
(i)
z

)
,

where we have set ~/kBT = 1 and invoked the high-temperature approximation. Here
H denotes the Hamiltonian of the spin system, ωi is the Larmor frequency of the ith

spin (qubit) and I
(i)
z the corresponding spin operator.

Now we prove that the QA for single issue quantum computers of the last section
also works for ensemble quantum computers:

Proof:

The initial Hadamard gate on the readout-qubit turns this state into:

̺ =
1

N

(
1− ω0I

(0)
x −

n−1∑

i=1

ωiI
(i)
z

)
. (5.10)

The unity operator is time independent and does not contribute to any observ-
able signal. The third term, which contains the thermal polarization of most
of the spins, also does not contribute. We only need to consider the second

term ∝ I
(0)
x . To compute the effect of the oracle gate on this term, we use the

following decomposition:

I(0)
x =

1

2

N/2−1∑

ξ=0

(|ξ〉〈ξ| ⊗ |0〉〈1| +H.c.),

where ξ stands for the binary representation of the integers ξ. The oracle gate
turns this into:

OI(0)
x O =

1

2

N/2−1∑

ξ=0

(−1)x2ξ⊕x2ξ+1(|ξ〉〈ξ| ⊗ |0〉〈1| +H.c.). (5.11)

Like in the single-instance case, we cycle the system through all possible oracle
inputs by applying the sequence Uc of oracle gates and bit-flip operations σx.
Each term in the above sum then acquires the same phase factor:

UcI
(0)
x Uc =

1

2
(−1)f(X)

N/2−1∑

ξ=0

(
|ξ〉〈ξ| ⊗ |0〉〈1| +H.c.

)
= (−1)f(X)I(0)

x .

By measuring the sign of the resulting spin-polarization of the readout-qubit we
can directly determine the parity of the string in a single measurement. �
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To our surprise the GP system returned QCs for ensemble quantum computers
that need fewer oracle calls then the algorithm presented here and thus beat the
lower bounds established by Beals et al. [BBC+01]. Investigation of the two QCs
presented in Fig. 5.8 made it possible to derive the functionality and thus the scaling
mechanism. The corresponding QA and its functionality is the topic of the next
section.

_
2
π( )

y

_
2
π( )

y

σx

qubit

qubit

qubit

1

0

2

O O

qubit

qubit0

1

O
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b

Figure 5.8: Mixed state parity circuits found by the GP system for n = 2 (a) and n = 3 (b)

qubits. The (π/2)y-gate corresponds to the rotation Ry(
π
2
) = e−i(π/4)σy = 1/

√
2 (1 − iσy).

The measurement gate symbolizes a measurement of the magnetization along the x-axis.

5.3.4 Speed-up for Ensemble Quantum Computers

The determination of the parity requires at least N/2 oracle calls on a single issue
quantum computer. Nevertheless, a modified algorithm to be run on an ideal and
noiseless ensemble quantum computer can determine the parity by a single oracle
call.

This can be seen by calculating the expectation value of the observable I
(0)
x for the

state Eq. (5.11) of the quantum register after the first call of the oracle gate:

tr[I(0)
x OI(0)

x O] =
1

2

N/2−1∑

ξ=0

(−1)x2ξ⊕x2ξ+1.

For even parity the sum can reach extremal values of ±N/2, for odd parity they
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are ±(N/2 − 2). The measured values are:

〈I(0)
x 〉f(X)=0 =

rω0

2N
for r ∈ {−N

2
,−N

2
+ 4, · · · N

2
} .

〈I(0)
x 〉f(X)=1 =

sω0

2N
for s ∈ {−N

2
+ 2, · · · N

2
− 2} . (5.12)

A single call to the oracle gate thus allows one to determine the parity by measuring

the expectation value of I
(0)
x , provided the resolution of this measurement is high

enough to distinguish between neighboring values.
This separation between neighboring values decreases with the length N of the

string - i.e., exponentially with the number of qubits. The scheme is therefore not
scalable for large systems. But even if the separation becomes too small to be resolved
by the measurement, it remains possible to generate an exponential speedup over the
single issue quantum computer at the cost of a correspondingly higher demand on the
precision of the readout.

The two cases that we have considered so far, using N/2 and a single oracle call,
respectively, can be considered extreme cases of a series of algorithms that require
2n−k−1 calls of the oracle gate. This corresponds to a speedup by 2k compared to the
single issue quantum computer as will be shown below.

Proof:

We subdivide the address register (5.9) into three parts:

|ψ〉 = |µ〉 ⊗ |ν〉 ⊗ |χ〉,

where |χ〉 is again the single readout-qubit, while |ξ〉 = |µ〉 ⊗ |ν〉 represents the
remaining n − 1 qubits. If the number of qubits in |ν〉 is k, |µ〉 contains only
n− k − 1 qubits.

We now restrict the number of oracle calls to all possible combinations of the
qubits in |µ〉 - i.e., 2n−k−1. The relevant term:

I(0)
x =

1

2

2n−k−1−1∑

µ=0

2k−1∑

ν=0

(
|µν0〉〈µν1| +H.c.

)
,

in the density operator (5.10) is then transformed into:

UcI
(0)
x Uc =

1

2

2k−1∑

ν=0

[(
2n−k−1−1∏

µ=0

(−1)xµν0⊕xµν1

)
×

2n−k−1−1∑

µ=0

(
|µν0〉〈µν1| +H.c.

)
]
,

where Uc = U−1
c represents the sequence of 2n−k−1 oracle and NOT gates.

Calculating the expectation value for this state, in analogy to Eq. (5.12), we
find:

tr[I(0)
x UcI

(0)
x Uc] = 2n−k−2

2k−1∑

ν=0

(
2n−k−1−1∏

µ=0

(−1)xµν0⊕xµν1

)
.
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Similar to the results from the single oracle call, the expectation value for I
(0)
x

depends on the parity f(X):

〈I(0)
x 〉f(X)=0 = rω02

−k−2 for r ∈ {−2k,−2k + 4, · · · 2k}.
〈I(0)

x 〉f(X)=1 = sω02
−k−2 for s ∈ {−2k + 2, · · · 2k − 2}.

Expectation values indicating opposite parities are thus separated by:

|〈I(0)
x 〉f(X)=0 − 〈I(0)

x 〉f(X)=1| ≥ ω02
−k−1.

The minimal separation therefore decreases exponentially with the number k of
omitted address qubits, or linearly with the number of oracle calls saved. �

The algorithm proposed by X. Miao shows a similar exponential decrease in the
difference of the signal strength necessary to decide the parity problem [Mia01]. In
contrast to Miao’s approach we do not require non-unitary quantum operations. Since
our algorithm works directly with the thermal mixed state the signal strength suf-
fers no exponential decrease if the number of qubits increases; this is similar to the
modified DJ algorithm proposed by Myers et al. [MFGM01].

Recently, Arvind et al. criticized the ensemble version of the DJ algorithm proposed
by Myers et al. to simply make use of the massive classical parallelism an ensemble
computer provides [AC03]. They show that the ensemble:

̺init =
1

2n

2n−1∑

i=0

|i〉〈i| ⊗ |0〉〈0|,

of an n+ 1 qubit system, with the first n query qubits in a fully mixed state and the
readout-qubit in a pure state, can easily be used to explain the functionality of the
algorithm proposed by Myers et al. [MFGM01].

Proof:

A standard oracle maps ̺init to:

̺fin =
1

2n

2n−1∑

i=0

|i〉〈i| ⊗ |xi〉〈xi|.

The information of the blackbox is contained in the readout-qubit whose reduced
density matrix is:

̺out =
1

2n

2n−1∑

i=0

|xi〉〈xi|.

Measurement of σz returns:

〈σz〉 =

{
±1 if X ∈ A

0 if X ∈ B
.

The definition of the sets A and B for the DJ problem can be found in Sec.
3.4.1. Arvind et al. showed that this mechanism can be mimicked easily by a
classical ensemble [AC03]. �
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This kind of criticism does not hold for our ensemble QA because it also works for
an ensemble of pure states ̺:

̺ = H⊗n|0...0〉〈0...0|H⊗n =
1

N

N−1∑

i,j=0

|i〉〈j|.

Our ensemble QA exploits the ability of ensemble quantum computers to distinguish
non-orthogonal states. This will be discussed in more detail in Sec 5.3.6.

5.3.5 Experimental Implementation

We implemented the two-qubit version (n = 2, N = 4) of the exact parity algorithm
as well as the reduced ensemble algorithm with k = 1 on an NMR-QC, using the spins
of the 1H and 13C nuclei in a carbon-13 labeled chloroform molecule (CHCl3) whose
Hamiltonian is of the form (see Sec. 2.8.2):

H = −ω(H)
0 I(H)

z − ω
(C)
0 I(C)

z + 2πJ I(H)
z I(C)

z .

Here ω
(H)
0 and ω

(C)
0 denote the Larmor frequencies of the nuclear spins and J the

strength of the scalar coupling between them.

We use a resonant rotating frame, where ω
(H)
0 = ω

(C)
0 = 0. All experiments were

performed at room temperature on a home-built NMR spectrometer with a 1H oper-
ating frequency of 360 MHz.

The exact version of the parity algorithm, which needs two oracle calls, was im-
plemented as shown in Fig. 5.7a. The first Hadamard gate H was replaced by the
pseudo-Hadamard operation h which corresponds to a (π/2)y rotation of the corre-
sponding qubit around the ey-axis. The final Hadamard gate h−1 then cancels with
the readout pulse that would otherwise be required to convert the final state into

observable I
(C)
x magnetization. The readout (of transverse magnetization) therefore

starts immediately after the last oracle gate. As an additional simplification we omit-
ted the last bit reversal of the second qubit, which does not affect the readout-qubit.

The σx-operation (NOT-gate) was realized by a (π)x-pulse. The oracle gate O that
represents the black-box X = (x0, x1, x2, x3) has the matrix representation:

O =




(−1)x0

(−1)x1

(−1)x2

(−1)x3


 .

The oracle gate for X = (0, 0, 0, 1) can be realized by the pulse-sequence τ −
(π/2)C

−z − (π/2)H
−z. Here τ = 1/(2J) denotes the time of a free evolution period

where the system evolves under the scalar spin-spin coupling. With J = 215 Hz one
gets τ = 2.326 ms.

The (θ)±z rotations cannot be implemented directly by radio frequency pulses.
They were realized by the composite pulse-sandwich (π/2)x−(θ)±y−(π/2)−x [FFL81].

Similar sequences were determined for the other 15 oracle gates (see Appendix B).
The resulting oracle gates are pairwise equivalent, modulo an overall phase factor, for
strings with inverted bit values. As an example, compare the matrix representations
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for X = (0, 0, 0, 0) and X = (1, 1, 1, 1), which correspond to ±1. Clearly, the overall
phase factor does not affect the measured result. This ambiguity of the oracle gates
is not critical for our application since the corresponding string pairs always have the
same parity.

The pseudo-pure state necessary for the pure state algorithm was realized via tem-
poral averaging [KCL98] - i.e., by adding up the spectra of three experiments in which
the populations of the states |01〉, |10〉 and |11〉 were cyclically permuted (see Sec.
2.8.4).

The free induction signals of the carbon nuclei measured at the end of each parity
algorithm was Fourier transformed and displayed in Fig. 5.10 for all possible strings
with N = 4.

The uppermost trace shows, as a reference, the spectrum obtained by applying
a readout pulse directly to the thermal equilibrium state. The two resonance lines
correspond to the two spin orientations of the second (1H) spin, which are almost
equally populated in thermal equilibrium. The other traces represent the Fourier
transformed free induction signals measured after applying the parity algorithm for
the strings indicated to the pseudo-pure state |00〉.

According to the theoretical result we expect the sign of the 13C signal to represent
the parity of the string. This agrees with the experimental observation where the
signal for the even parity strings is positive while the signal for the odd parity strings
is negative.

In the pure state algorithm the second qubit is always in a definite state: |0〉 in
the algorithm discussed in Sec. 5.3.2, |1〉 if the final NOT operation is omitted.
Accordingly, only one of the two 13C resonance lines has a non-vanishing amplitude.

As discussed in Sec. 5.3.3 the algorithm can also be applied to mixed states, thus
eliminating the need to prepare a pseudo-pure state and avoiding the corresponding
reduction of signal strength. We do not discuss the corresponding measurements here
but proceed directly to the reduced version where the number of oracle calls is reduced
to one (k=1). Fig. 5.9 shows the required sequence of gate operations.

O

C

H

13

1

h

Figure 5.9: Ensemble QC for two qubits that uses a single call of the oracle gate.

Instead of the general Hadamard gate H we again use the pseudo-Hadamard gate
h - i.e., a (π/2)y pulse. The oracle gate is the same as in the pure state case.

For the results of the reduced mixed state algorithm we only present the measure-

ment results of 〈I(0)
x 〉 at t = 0 - i.e., immediately after the end of the oracle gate.

The results shown in Tab. 5.7 are ±(3.46 ± 0.36) for the even parity strings and
±(0.24 ± 0.07) for odd parity strings in good agreement with the theoretical predic-
tions of Eq. (5.12).
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Figure 5.10: Experimental results for the pure state QC shown in Fig. 5.7. The uppermost
trace shows the real part of the carbon spectrum after a readout pulse applied to the system
in thermal equilibrium. The remaining spectra show the real part of the carbon spectrum
after completion of the exact parity algorithm on the effectively pure initial state |00〉. The
frequency is relative to 90.533504 MHz.
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f(X) = 0 〈I(0)
x 〉(t = 0) f(X) = 1 〈I(0)

x 〉(t = 0)

X = (0, 0, 0, 0) 3.84 X = (0, 0, 0, 1) -0.29
X = (0, 0, 1, 1) -3.29 X = (0, 0, 1, 0) 0.18
X = (0, 1, 0, 1) 3.77 X = (0, 1, 0, 0) -0.32
X = (0, 1, 1, 0) -2.95 X = (1, 0, 0, 0) 0.16

Table 5.7: Experimental results of 〈I(0)
x 〉 for the ensemble QC of Figure 5.9. The numerical

values are in arbitrary units.

5.3.6 Conclusion

We have introduced a family of QAs that solve the parity problem with an optimal
number of quantum gate operations. It uses the blackbox scheme introduced by Beals
et al. to represent the binary strings as oracle gates [BBC+01]. In agreement with
the lower bound established by Beals et al. our algorithm uses N/2 calls of the oracle
gate, a factor of two less than the best classical algorithms. This reduction, compared
to the classical case, can be attributed to quantum parallelism since the input state
to the oracle gate is a superposition of two basis states.

A further reduction of the number of oracle calls is possible when an ensemble
quantum computer is used instead of a single issue quantum computer. In this case
the number of calls can be reduced by a factor 2k < N at the expense of a smaller
separation between the measurement values that indicate even/odd parity. This ad-
ditional speed-up requires parallel operation of many nominally identical quantum
systems since a single system cannot provide the result in a single run.

The reduction of the number of oracle calls below the lower bound of N/2 is linked
to the fact that ensemble quantum computers are able to distinguish non-orthogonal
states as mentioned by Dorai et al. [DAK01]. Such non-orthogonal states are the
result of probabilistic QAs.

To demonstrate the probabilistic nature of the ensemble algorithm we modify the
ensemble QC in Fig. 5.8a. For convenience we add an additional qubit, a controlled-
σx gate and two Hadamard gates. This makes it possible to replace the measurement
of the magnetization by a projective measurement in the computational basis (see
Fig. 5.11).

The ensemble QC in Fig. 5.8a returns 〈I(0)
x 〉 = ±max for blackboxes X with

f(X) = 0. Accordingly, on the single issue quantum computer in Fig. 5.11, the
additional qubit either is in the state |0〉 or in the state |1〉. For blackboxes X with

f(X) = 1 the ensemble QC returns 〈I(0)
x 〉 = 0. In this case, on the single issue

quantum computer, the additional qubit is in the state 1/
√

2 (|0〉 ± |1〉).
Hence, a single run of the QC on a single issue quantum computer does not reveal

any useful information. Nevertheless, if several runs return different measurement
results then one knows that f(X) = 1. If, on the other hand, l ∈ N runs return equal
results then one has an error probability of 2−l+1 in claiming that f(X) = 0.

The QC in Fig. 5.11 provides a useful probabilistic QC despite the fact that a
single run does not better than guessing. This is in contrast to classical probabilistic
algorithms. There one only considers those algorithms to be useful that have an error
probability less then 1/2 (see Sec. 3.1.4). Our QC is not covered by this class of
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H

H

O

H H

σx
|0>

|0>

|0>

Figure 5.11: Modified instance of the ensemble QC in Fig. 5.8a.

probabilistic algorithms because its error probability is exactly 1/2.



6 Discussion and Outlook

The successful development of two formerly unknown QAs presented in Chap. 5
demonstrates the usefulness of evolutionary methods in generating new QAs.

One might be tempted to consider these results to be irrelevant for real-world
problems as our GP system is only able to evolve blackbox quantum algorithms.
Indeed, the blackbox model of computation is a much more restricted model than
that introduced by Turing. Nevertheless, it has to be emphasized that QAs that solve
real-world problems like integer factoring are based on the possibility to reduce the
factoring problem to the problem of order-finding that is most naturally stated in the
blackbox model of computation. Using the blackbox model it is also possible to show
that there is an exponential gap in the query complexity of quantum as compared to
classical algorithms. Thus, the somewhat artificial character of such problems does
by no means indicate that they have no relevance. This substantiates our opinion
that the investigation of blackbox algorithms is valuable, particularly with regard to
the fact that within this model classical and QAs can be easily compared.

We restricted our investigations to the blackbox model of computation where the
Boolean property f(X) of a blackbox X is to be computed with a minimal number
of blackbox (oracle) calls. Our GP system only allows to evolve QDTs that, after
a sequence of oracle and quantum gates, reveal the property of the blackbox by a
final measurement (see Sec. 4.2). This is similar to the approach used by Beals et
al. in proving lower bounds for the parity problem [BBC+01]. Surprisingly, the GP
system returned QCs that beat this lower bound on ensemble quantum computers.
The error probability of these QCs on a single issue quantum computer is 1/2 (see
Sec. 5.3.6). Nevertheless, running such a circuit several times on the same initial state
makes it possible to solve the parity problem with an error probability that decreases
exponentially in the number of repetitions.

This result indicates that the confinement to QDTs as defined in Eq. (3.6) that
reveal the property of a blackbox by a final measurement does not fully explore the
possibilities of quantum computation. Speaking about final measurements we do not
mean intermediate measurements used to conditionally control subsequent quantum
gates. Such measurements can always be replaced by unitary quantum operations.
Therefore, they are covered by the definition of the QDT [NC00]. QAs like Simon’s
algorithm use several independent runs of a QA to collect measurement results for
a further classical treatment. At the current stage our GP system wouldn’t be able
to evolve such hybrid algorithms. As far as we know such algorithms haven’t been
investigated by other authors [SBBS99, LB03b, Spe04] who use GP to design QAs,
either. Hence, one has to elaborate in what respect the GP system has to be extended
in order to evolve hybrid algorithms.

Also, it is worthwhile not only to consider worst-case query complexities but also
average-case query complexities. This can be achieved by implementing controlled
oracle gates that weren’t used in the investigations presented here.

We emphasize that the most sensible part of setting up a GP system to aid the
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development of QAs is designing the fitness function. The requirement we consider
to be the most important is the continuity of the fitness function in the step-length
of genetic operators as discussed in Sec. 4.4. The fitness function used by us only
partly fulfills this condition, nevertheless, the results obtained are very promising.
Therefore, designing a fitness function that hampers the search process as less as
possible seems to be essential.

GP provides a valuable tool to develop new QAs when small problem instances are
sufficient to derive the general scaling mechanism. This is a bold assumption as it is
possible that some QAs become more efficient compared to classical ones only for large
problem instances. According to the results presented in Sec. 4.3, GP will not be of
any help in such cases. Nevertheless, it is quite probable that the set of algorithms is
wide enough to provide plenty of algorithms that remain to be discovered using GP.



A Parity Algorithms

We present the two QAs suggested by Beals et al. [BBC+01] and Farhi et al.
[FGGS98] to solve the parity problem. In Sec. 5.3.2 these two QAs were compared
to the QA developed by us with the help of GP.

Applying the blackbox model of computation the parity problem reads like follows:

Parity Problem

One is given a blackbox X = (x0, x1, . . . , xN−1) of N Boolean variables xi

such that on input i ∈ I with I = {0, 1 . . .N − 1} the blackbox returns the
corresponding value of xi. One has to decide if X ∈ A (f(X) = 0) or X ∈ B
(f(X) = 1):

i) X ∈ A ⇔ The number of values xi = 1 is even.

ii) X ∈ B ⇔ The number of values xi = 1 is odd.

The Boolean function f(X) that represents the parity of a blackbox X can be
calculated by f(X) = xN−1 ⊕ · · · ⊕ x1 ⊕ x0. Note that the function f(X) is total,
which means that this property is defined for all blackboxes X . Thus, as mentioned
in Sec. 3.2.2, the quantum speed-up is at most polynomial. For the parity problem
it is even known that QAs, exact as well as probabilistic, cannot achieve a speed-up
of more than a factor of 2. Now we present two QAs that reach this lower bound.

A.1 Parity Algorithm proposed by Beals

The QA proposed by Beals et al. [BBC+01] makes use of the fact that the XOR
operation (denoted by ⊕) on two Boolean variables xl and xm of X can be calculated
by a QA with only one oracle call [CEMM97].1 To see how this speed-up comes
about one starts in the superposition |ψ0〉 = 1√

2
(|l〉 + |m〉). Using the definition of

the oracle gate in Eq. (3.4.1) one gets:

O|ψ0〉 =
1√
2

((−1)
xl |l〉 + (−1)

xm |m〉) =
(−1)xl

√
2

[
|l〉 + (−1)

xl⊕xm |m〉
]
.

As global phases cannot be measured one can ignore the factor (−1)
xl on the right

side of the last equation. Nevertheless, local phases can be detected and therefore a
measurement would distinguish xl ⊕ xm = 0 from xl ⊕ xm = 1.

1 It is to be emphasized that, as mentioned in [BBC+01], the XOR-operation and its negation are
the only two of all 16 connectives on 2 variables where quantum computers provide a speed-up
over classical computations.
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Knowing that on a quantum computer it is possible to compute the XOR-operation
twice as fast as with a classical algorithm makes it obvious that the parity of the
blackbox X can be calculated by N/2 oracle calls. The procedure proposed by Beals
et al. calculates the parity of each of theN/2 pairs (x0, x1), (x2, x3), . . . , (xN−2, xN−1)
separately [BBC+01]. This can be done with N/2 oracle calls by the procedure shown
above. Thus one obtains a list of N/2 binary values representing the parity of each
of these pairs. Now one calculates the parity of this list to obtain the parity of the
blackbox X . The final step can be done without any further oracle calls. Thus, one
has to perform N/2 measurements to solve this problem.

The algorithm we present next solves this problem with N/2 oracle calls and a
single n-qubit measurement.

A.2 Parity Algorithm proposed by Farhi

The QA proposed by Farhi et al. [FGGS98] starts with the initial n-qubit state
|ψ0〉 = |0〉 and creates a superposition over all N = 2n states by applying a Hadamard
gate to each of the n qubits:

|ψ1〉 = H⊗|ψ0〉 =
1√
2n

2n−1∑

i=0

|i〉.

Now Farhi et al. define the unitary operation V :2

V |i〉 = |i+ 1〉 for i = 0, . . . , N/2 − 2 , V |N/2 − 1〉 = |0〉,
V |i〉 = |i+ 1〉 for i = N/2, . . . , N − 2 , V |N − 1〉 = |N/2〉.

Using this gate the next state |ψ2〉 is obtained by N/2 repetitions of the gate sequence
V · O, here O denotes the oracle gate as defined in Eq. (3.4.1). One gets:

|ψ2〉 = V O · V O · · ·V O
| {z }

N/2-times

|ψ1〉

=
1√
N

2

4(−1)x0⊕x1⊕···⊕xN/2−1

0

@

N/2−1
X

i=0

|i〉

1

A + (−1)xN/2⊕xN/2+1⊕···⊕xN−1

0

@

N−1X

i=N/2

|i〉

1

A

3

5

=
1√
N

(−1)x0⊕x1⊕···⊕xN/2−1

2

4

N/2−1
X

i=0

|i〉 + (−1)x0⊕x1⊕···⊕xN−1

0

@

N−1X

i=N/2

|i〉

1

A

3

5 .

As global phases cannot be measured the measurement result depends on the local
phase (−1)x0⊕x1⊕···⊕xN−1 = (−1)f(X). Applying a Hadamard gate on each of the n
qubits leaves us with two possibilities: for f(X) = 0 the state |ψ2〉 is mapped to |0〉,
for f(x) = 1 the state |ψ2〉 is mapped to a superposition where the state |0〉 vanishes.
Thus, an n-qubit measurement reveals the parity f(X) of the blackbox X .

2 The authors do not mention how efficient V can be decomposed into elementary quantum gates.
A straightforward decomposition of V without introducing any ancillary qubits needs O(n4) one-
and two-qubit operations.
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According to the definition of the oracle gate in Eq. (4.4) the blackboxX = (0, 1, 0, 1),
abbreviated by 0101, has the form:

0101 ∼ O =




1
−1

1
−1




As global phase shifts are not measurable this oracle gate can also be used to represent
the blackbox X = (1, 0, 1, 0). Thus, one only has to implement oracles representing
the blackboxes X = (0, 0, 0, 0), X = (0, 0, 1, 1), X = (0, 1, 0, 1), X = (0, 1, 1, 0),
X = (0, 0, 0, 1), X = (0, 0, 1, 0), X = (0, 1, 0, 0) and X = (1, 0, 0, 0):

0011 ∼

0

B
B
@

1
1

−1
−1

1

C
C
A

∼
“

e−ı
π
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Now all oracle gates are decomposed into NMR pulse sequences. As the gates
(

π
2

)
z
,(

π
2

)
−z

, (π)z and (π)−z cannot be implemented directly on an NMR-QC one can use
the following decompositions to realize these gates:

(π)z = (π)x − (π)y

(π)−z = (π)−x − (π)y(π
2

)
z

=
(π

2

)
x
−
(π

2

)
y
−
(π

2

)
−x(π

2

)
−z

=
(π

2

)
x
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(π

2

)
−y

−
(π

2

)
−x

(B.2)

B.1 Pulse Sequences
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y

B.2 Parity Algorithm for a Single 2-Qubit Quantum

System

The first Hadamard gate of the algorithm in the upper part of Fig. 5.7 can be replaced
by Ry(π/2) = e−ıπ/4σy = 1√

2
(1− ıσy), the final Hadamard gate can be replaced by

Ry(−π/2) = 1√
2

(1 + ıσy).

Ry( π
2 )

σx

OO

|0〉

|0〉

Readout

Figure B.1: Modified version of the parity QC for a single two-qubit quantum system. The
last pseudo-Hadamard gate cancels out the Ry(

π
2
)-readout pulse.

B.3 The Experiment

• Create one of the three initial states as shown in equation (2.27):
[n00, n01, n10, n11]
[n00, n11, n01, n10] : (CNOTAX) (CNOTXA)
[n00, n10, n11, n01] : (CNOTXA) (CNOTAX)

• Now perform the pseudo-Hadamard gate Ry(π/2) to spin X.

• Perform one of the oracle gates.

• Apply the NOT -operation σx to spin A.

• Perform the same oracle gate again.

• Readout of spin X.

• Repeat this procedure two times for all of the different initial states from above
and sum up the spectra.
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C Evolution of the Parity QC

In this chapter we will examine how the GP system evolves the two-qubit parity QC
presented in Fig. 5.7 (a). The parameters of the GP system are shown in Tab. C.1.

Population size 10

No. of generations 1000

Tournament size 4

Crossover probability 0.05

Creation probability 0.05

Mutation probability 0.90

Swap mutation probability 0.30 × 0.9

Grow mutation probability 0.30 × 0.9

Shrink mutation probability 0.20 × 0.9

Shrink2 mutation probability 0.20 × 0.9

No. of rotation angles 128

Min. no. of gates 5

Max. no. of gates 100

Max. no. of oracle gates 16

Gate set H , CNOT , Rx(2 · θl), Ry(2 · θl), O

Table C.1: Parameters of the GP system that evolved the QC depicted in Fig. 5.7 (a).
The rotation angle θl is specified by the integer l ∈ {0, 1, ..., 127} via θl = −π+ (l+ 1) · 2π

128
.

In order to illustrate the evolutionary process we have chosen a population of only
ten individuals. The individuals of the initial population and the corresponding fitness
values are shown in Tab. C.2. It follows that individual 3 is the fittest one. The initial
population is created completely at random.

The flowchart in Fig. C.1 illustrates the different stages of the evolutionary process
in the GP system: A new generation is created from the initial one by tournament
selection. Due to the parameter in Tab. C.1 each tournament set consists of four
individuals. These individuals are chosen at random. According to the mutation and
crossover probabilities in Tab. C.1 the GP system decides whether a mutation or
crossover occurs. The new individuals that are generated by these genetic operators
are inserted into the new population. The best individual of the current population
is copied unaltered to the new population (reproduction). This procedure is repeated
until the new population consists of ten individuals. Then the fitness values are
calculated. When the fitness of one of these new individuals meets the termination
condition the whole process is stopped and the GP system designates this individual.
Otherwise, a new population is created from the current one by mutations, crossovers
and reproduction. This process is repeated until an individual meets the termination
criterion.
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Figure C.1: This flowchart illustrates the different stages of the evolutionary process in
the GP system. The size of the population does not change during an evolutionary run.

Tab. C.3 presents some data of the best individual of each generation found by
the GP system. The corresponding gate sequence is listed in Tab. C.4. Only those
generations are shown whose best individual has a higher fitness than the ones of
former generations. The gray scales in Tab. C.4 serve to illustrate the relationship
between the best individuals of each generation.

The statistics illustrated in the graphs of Fig. C.2 to Fig. C.5 indicate that this
example run is a typical run of the GP system. In order to generate these statistics
we performed 100 independent runs. The results are visualized via quartiles.1

The graph in Fig. C.2 shows the length of the best individual found in each genera-

1 In order to find a quartile all values of a random variable are arranged from the lowest to the
highest value. This sorted set is divided into four equal parts so that each part represents 1/4th
of all values. The first quartile cuts off the lowest 1/4th of all values, the second quartile (median)
cuts of the lower half and the third quartile cuts of the lower 3/4th of all values.
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tion. Fig. C.3 presents the corresponding values of the fitness variable worst error,
and Fig. C.4 shows the number of oracle gates. Also, each figure displays the values
of the example run.

The results that were presented in this chapter show that the number of oracle
gates changes during an evolutionary run of the GP system. Also, the GP system
changes the measurement qubits as can be seen in Fig. C.5. Hence, it is not necessary
to fix the measurement qubits and the number of oracles in the beginning of each run.

Additional Remarks: Finally we have to make some remarks on the values of
avg error and worst error shown in Tab. C.2, Tab. C.3 and Fig. C.3: According
to the definition of the fitness function in Sec. 4.4 we only calculate avg error and
worst error when the value of hits is equal to zero. Also, according to this descrip-
tion a value of worst error that is bigger than 0.5 makes no sense. Nevertheless, the
values presented in Tab. C.2, Tab. C.3 and Fig. C.3 are calculated even though hits

is not zero. In such a case the values of worst error and avg error do not represent
error probabilities. Anyhow, these values can be used in the evaluation of the fitness.
The values of avg error presented in Tab. C.2 and Tab. C.3 represent the sum of all
errors. This makes no difference for the fitness function and can be computed faster.
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Figure C.2: This graph shows the length distribution (first, second and third quartiles) of
the best individual in generation n for 100 independent runs of the GP system. Horizontal
black bars denote the median. The lower, upper end of the boxes indicates the first, third
quartile, respectively. Black dots denote the corresponding values of the example run.
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Figure C.3: This graph shows the worst error distribution (first, second and third quar-
tiles) of the best individual in generation n for 100 independent runs of the GP system.
Horizontal black bars denote the median. The lower, upper end of the boxes indicates the
first, third quartile, respectively. Black dots denote the corresponding values of the example
run.
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Figure C.4: This graph shows the distribution (first, second and third quartiles) of the
number of oracle gates of the best individual in generation n for 100 independent runs of the
GP system. Horizontal black bars denote the median. The lower, upper end of the boxes
indicates the first, third quartile, respectively. Black dots denote the corresponding values
of the example run.
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Individual 0 Individual 1 Individual 2 Individual 3
NOOP

CNOT[1 0]

Ry[0 117]

Ry[0 99]

END

CNOT[1 0]

Ry[0 61]

Ry[0 13]

CNOT[1 0]

Rx[0 84]

END

CNOT[1 0]

CNOT[0 1]

CNOT[1 0]

Rx[1 31]

HAD[1]

HAD[1]

END

Rx[0 127]

ORACLE

Rx[0 21]

CNOT[1 0]

HAD[0]

ORACLE

Rx[0 2]

END

Fitness

invalid
(no oracles)

Fitness

invalid
(no oracles)

Fitness

invalid
(no oracles)

Fitness

hits: 8
a err: 14.07
w err: 0.62

Individual 4 Individual 5 Individual 6 Individual 7
ORACLE

ORACLE

CNOT[1 0]

NOOP

CNOT[0 1]

NOOP

Rx[0 1]

CNOT[1 0]

END

HAD[1]

NOOP

HAD[0]

CNOT[0 1]

HAD[0]

Ry[1 52]

Ry[0 60]

NOOP

Rx[1 62]

END

ORACLE

NOOP

NOOP

ORACLE

Rx[1 112]

ORACLE

Ry[1 112]

CNOT[1 0]

NOOP

Rx[1 3]

END

CNOT[0 1]

Ry[0 114]

HAD[0]

ORACLE

NOOP

CNOT[1 0]

CNOT[1 0]

Ry[0 21]

ORACLE

CNOT[0 1]

NOOP[0 1]

END

Fitness

hits: 16
a err: 16
w err: 1

Fitness

invalid
(no oracles)

Fitness

hits: 16
a err: 16
w err: 0.5044

Fitness

hits: 16
a err: 14.07
w err: 0.8865

Individual 8 Individual 9
Ry[0 89]

ORACLE

CNOT[1 0]

NOOP

Ry[0 108]

HAD[0]

ORACLE

CNOT[1 0]

ORACLE

Ry[1 80]

Rx[1 1]

CNOT[1 0]

END

NOOP

Rx[0 26]

Rx[1 110]

NOOP

Ry[1 120]

Ry[1 25]

ORACLE

Ry[1 39]

Ry[0 13]

Ry[1 66]

ORACLE

HAD[1]

HAD[1]

END

Fitness

hits: 16
a err: 14.71
w err: 0.5363

Fitness

hits: 8
a err: 15.34
w err: 0.5148

Table C.2: This table lists the 10 individuals of our starting population. These individuals
are generated at random. The gate sequence is to be read from the bottom to the top. H[1]
denotes a Hadamard gate H that is applied to qubit 1. CNOT[0 1] denotes a CNOT gate
with qubit 0 the control and qubit 1 the target qubit. Ry[0 117] denotes that the one-qubit
gate Ry(2 · θl) is applied to qubit 0. The angle θl is defined by: θl = −π+ (l+ 1) · 2π

128
. One

gets: θ117 = 54π/64. NOOP denotes an identity operation and does nothing. END denotes the
end of the gate sequence. The fitness values hits, avg error and worst error are shown at
the end of each gate sequence.
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Lgth #Gates #Ind #Gen. Op. Fitness
gen bst O N P bst mut crs hits err werr msr
0 8 2 0 1 3 0 0 8 14.07 0.621 0
1 11 2 2 4 7 1 0 8 9.348 0.916 0
3 10 2 2 3 7 2 0 8 9.348 0.916 0
6 9 1 2 3 7 3 0 8 9.348 0.916 0
7 10 1 2 3 7 4 0 8 9.348 0.846 0
9 11 2 2 4 7 5 1 8 8 1 0
15 10 2 1 3 7 11 1 8 8 0.778 0
16 9 2 1 2 7 12 1 8 8 0.778 0
19 13 3 1 3 7 15 1 8 5.946 0.44 0 1
22 13 4 1 3 7 16 1 8 5.916 0.443 0 1
23 16 3 1 5 7 16 2 8 5.916 0.443 0 1
24 15 2 1 5 7 17 2 8 5.916 0.443 0 1
25 14 2 1 5 7 18 2 8 5.639 0.409 0 1
27 15 3 1 4 7 20 2 0 7.002 0.162 0 1
29 14 3 1 3 7 21 2 0 7.002 0.162 0 1
30 16 3 1 4 7 22 2 0 6.082 0.216 0 1
33 15 3 1 3 7 23 2 0 6.082 0.216 0 1
34 14 3 1 2 7 24 2 0 6.082 0.216 0 1
41 13 2 1 2 7 25 2 0 6.082 0.216 0 1
44 15 2 2 2 7 27 2 0 1.657 0.127 0 1
51 14 2 2 2 7 28 2 0 1.657 0.127 0 1
52 13 2 1 2 7 29 2 0 1.657 0.127 0 1
76 12 2 0 2 7 30 2 0 1.657 0.127 0 1
79 12 2 0 3 7 30 3 0 0.836 0.027 0 1
84 11 2 0 2 7 31 3 0 0.836 0.027 0 1
87 11 2 1 2 7 32 3 0 0.836 0.021 0 1
106 11 2 0 2 7 33 3 0 0.836 0.021 0 1
109 12 2 0 2 7 34 3 0 0.836 0.016 0 1
128 12 2 0 2 7 35 3 0 0.154 0.01 1
133 11 2 0 2 7 36 3 0 0.154 0.009 0 1
162 11 2 0 2 7 38 3 0 0.078 0.01 0 1
189 10 2 0 1 7 44 4 0 0.078 0.01 0 1
191 11 3 0 1 7 45 4 0 0.002 0 0 1
193 10 3 0 0 7 47 4 0 0.002 0 0 1
289 8 2 0 0 7 50 4 0 0 0 1
295 7 2 0 0 7 51 4 0 0 0 1
307 6 2 0 0 7 52 4 0 0 0 1

Table C.3: This table is to be read from the top to the bottom and illustrates the evo-
lutionary process. The leftmost column shows the current generation. For each generation
some values of the best individual are shown in the corresponding row. Lgth denotes the
length this individual. O, N and P denote the number of its ORACLE, NOOP and CNOT gates,
respectively. bst is the ID of the best individual. mut and crs denote the total number of
mutation and crossover operations, respectively, that were applied to this individual. hits,
err and werr denote the fitness values hits, avg error and worst error. msr denotes the
qubits that are to be measured.
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Gen Gate Sequence of Individual 7
0 C[0 1] O R2 C[1 0] C[1 0] O H[0] R4 C[0 1]
1 C[0 1] O R2 C[1 0] C[1 0] O H[0] C[0 1]
3 C[0 1] O R2 C[1 0] O H[0] C[0 1]
6 C[0 1] R2 C[1 0] O H[0] C[0 1]
7 R1 C[0 1] R2 C[1 0] O H[0] C[0 1]
9 C[0 1] O H[0] C[1 0] C[1 0] O H[0] C[0 1]
15 C[0 1] R2 C[1 0] H[0] O H[0] O C[0 1]
16 C[0 1] R2 C[1 0] H[0] O H[0] O
19 C[0 1] H[0] C[1 0] H[0] C[1 0] O H[0] O R5 R11 O
22 C[0 1] H[0] C[1 0] H[0] C[1 0] O H[0] O O R11 O
23 C[0 1] H[0] C[1 0] H[0] C[1 0] O H[0] H[0] C[0 1] H[0] C[1 0] O R11 O
24 C[0 1] H[0] C[1 0] H[0] C[1 0] O H[0] H[0] C[0 1] H[0] C[1 0] R11 O
25 C[0 1] H[0] C[1 0] H[0] C[1 0] O H[0] C[0 1] H[0] C[1 0] R11 O
27 C[0 1] H[0] C[1 0] C[1 0] O H[0] H[0] C[0 1] H[0] R8 O R11 O
29 H[0] C[0 1] C[1 0] O H[0] H[0] C[0 1] H[0] R8 O R11 O
30 C[0 1] H[0] C[0 1] C[1 0] O H[0] H[0] C[0 1] H[0] R8 O R11 R6 O
33 C[0 1] H[0] C[0 1] C[1 0] O H[0] H[0] H[0] R8 O R11 R6 O
34 H[0] C[0 1] C[1 0] O H[0] H[0] H[0] R8 O R11 R6 O
41 H[0] C[0 1] C[1 0] O H[0] H[0] H[0] R8 O R11 R6
44 H[0] C[0 1] C[1 0] O H[0] H[0] H[0] R8 O R9 R11 R6
51 H[0] C[0 1] C[1 0] O H[0] H[0] H[0] R8 O R10 R6
79 H[0] C[0 1] C[1 0] O C[0 1] R6 H[0] R8 O R10 R6
84 H[0] C[0 1] C[1 0] O R6 H[0] R8 O R10 R6
87 H[0] C[0 1] C[1 0] O R6 H[0] R8 O R10
106 H[0] C[0 1] C[1 0] O R6 H[0] R8 O R10 R12
109 H[0] C[0 1] C[1 0] R3 O R6 H[0] R8 O R10 R12
128 H[0] C[0 1] C[1 0] R3 O R6 H[0] R8 O H[1] R12
133 H[0] C[0 1] C[1 0] O R6 H[0] R8 O H[1] R12
162 H[0] C[0 1] C[1 0] O R6 H[0] R8 O H[1] R13
189 C[0 1] H[1] O R6 H[0] R8 O H[1] R13
191 C[0 1] H[1] O R6 H[0] R8 O H[1] O R13
193 H[1] O R6 H[0] R8 O H[1] O R13
289 H[1] O R7 R8 O H[1] R13
295 H[1] O R7 R8 O H[1]
307 H[1] O R14 O H[1]

Table C.4: This table illustrates the evolutionary process. The leftmost column shows the current generation. The gate sequence of individual
7 (best individual, except in generation 0) is shown in the corresponding row. This gate sequence is to be read from left to right. NOOP and END

operations are not shown. The fitness and other values of this gate sequence are presented in Tab. C.3. Gray scales are intended to guide the
eye. H:HAD, C:CNOT, O:ORACLE, R1:Ry[0 37], R2:Ry[0 21], R3:Rx[0 120], R4:Ry[0 114], R5:Rx[1 1], R6:Ry[0 58], R7:Ry[0 86], R8:Ry[0
8], R9:Ry[1 83], R10:Ry[1 12], R11:Ry[1 120], R12:Rx[0 58], R13:Ry[0 33], R14:Ry[0 31].
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Figure C.5: This graphs shows the probability that the GP system changes the measure-
ment qubits in the nth generation.
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[Hei27] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik. Z. Phys., 43:172, 1927. 1

[HGP02] C.H. Holbrow, E. Galvez, and M.E. Parks. Photon Quantum Mechanics
and Beam Splitters. Am. J. Phys., 70:260, 2002. 31

[Hir01] M. Hirvensalo. Quantum Computing. Natural Computing Series.
Springer, Berlin, 2001. 12, 25, 38

[Hod02] A. Hodges. Alan Turing. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Summer 2002. Available from:
http://plato.stanford.edu/archives/sum2002/entries/turing/. 26

[Hol73] J.H. Holland. Genetic Algorithms and the Optimal Allocation of Trials.
SIAM J. Comput., 2:88, 1973. 53

[Hor95] P.J. Hore. Nuclear Magnetic Resonance. Oxford University Press, 1995.
18

[HS65] J. Hartmanis and R. Stearns. On the Computational Complexity of Al-
gorithms. Transactions of the American Mathematical Society, 117:285,
1965. 31

http://people.cs.uchicago.edu/~fortnow/papers/history.pdf
http://plato.stanford.edu/archives/sum2002/entries/turing/


Bibliography 113

[IEE94] IEEE, editor. Proceedings of the 35th Annual IEEE Symp. on Foundations
of Computer Science (FOCS), Silver Spring, MD, USA, Nov. 1994. IEEE
Computer Society Press. 115

[Jam66] M. Jammer. The Conceptual Development of Quantum Mechanics.
McGraw-Hill, 1966. 3, 5

[JK99] J.A. Jones and E. Knill. Efficient Refocusing of One-Spin and Two-Spin
Interactions for NMR Quantum Computation. J. Magn. Reson., 141:322,
1999. 20

[Jän01] K. Jänich. Analysis für Physiker und Ingenieure. Springer, Berlin, 2001.
7, 9

[KCL98] E. Knill, I. Chuang, and R. Laflamme. Effective Pure States for Bulk
Quantum Computation. Phys. Rev. A, 57:3348, 1998. 23, 87

[KG00] N. Khaneja and S. Glaser. Cartan Decomposition of SU(2n), Construc-
tive Controllability of Spin Systems and Universal Quantum Computing.
2000. LANL e-preprint quant-ph/0010100. 58

[Kir83] S. Kirkpatrick. Optimization by Simulated Annealing. Science, 220:671,
1983. 52

[Koz92] J.R. Koza. Genetic Programming: On the Programming of Computers by
Natural Selection. MIT Press, Cambridge, MA, USA, 1992. 53

[KS67] S. Kochen and E. Specker. The Problem of Hidden Variables in Quantum
Mechanics. J. Math. Mech., 17:59, 1967. 1

[LB03a] A. Leier and W. Banzhaf. Evolving Hogg’s Quantum Algorithm using
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[Pla00a] M. Planck. Über eine Verbesserung der Wienschen Spektralgleichung.
Verhandl. Dtsch. Phys. Ges., 2:202, 1900. 3

[Pla00b] M. Planck. Zur Theorie des Gesetzes der Energieverteilung im Normal-
spectrum. Verhandl. Dtsch. Phys. Ges., 2:237, 1900. 3



Bibliography 115

[Rec73] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Fromman-Hozlboog Verlag,
Stuttgart, 1973. 53

[RK00] H. Rubens and F. Kurlbaum. Sitzungsber.Preuss.Akad.Wiss.Phys.-
Math.Kl., page 929, 1900. 3

[Rub01] B.I.P. Rubinstein. Evolving quantum circuits using genetic programming.
In IEEE, editor, Proceedings of the 2001 Congress on Evolutionary Com-
putation, page 114, Silver Spring, MD, USA, May 2001. IEEE Computer
Society Press. The first version of this paper already appeared in 1999.
1, 2, 51

[Rut11] E. Rutherford. The Scattering of α and β Particles by Matter and the
Structure of the Atom. Phil. Mag., 21:669, 1911. 4

[SBBS99] L. Spector, H. Barnum, H.J. Bernstein, and N. Swamy. Quantum Com-
puting Applications of Genetic Programming. In Advances in Genetic
Programming, volume 3, page 135, 1999. 1, 2, 51, 54, 62, 91

[Sch26a] E. Schrödinger. Quantisierung als Eigenwertproblem (Erste Mitteilung).
Ann. Phys., 79:361, 1926. 6

[Sch26b] E. Schrödinger. Quantisierung als Eigenwertproblem (Zweite Mitteilung).
Ann. Phys., 79:489, 1926. 6
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