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Time-Optimal Large View Visual Servoing with Dynamic Sets of SIFT

Features

Thomas Nierobisch, Johannes Krettek, Umar Khan and Frank Hoffmann

Abstract— This paper presents a novel approach to large
view visual servoing in the context of object manipulation. In
many scenarios the features extracted in the reference pose
are only perceivable across a limited region of the work space.
The limited visibility of features necessitates the introduction
of additional intermediate reference views of the object and
requires path planning in view space. In our scheme visual
control is based on decoupled moments of SIFT-features, which
are generic in the sense that the control operates with a dynamic
set of feature correspondences rather than a static set of
geometric features. The additional flexibility of dynamic feature
sets enables flexible path planning in the image space and online
selection of optimal reference views during servoing to the goal
view. The time to convergence to the goal view is estimated
by a neural network based on the residual feature error and
the quality of the SIFT feature distribution. The transition
among reference views occurs on the basis of this estimated cost
which is evaluated online based on the current set of visible
features. The dynamic switching scheme achieves robust and
nearly time-optimal convergence of the visual control across
the entire task space. The effectiveness and robustness of the
scheme is confirmed in an experimental evaluation in a virtual
reality simulation and on a real robot arm with a eye-in-hand
configuration.

I. INTRODUCTION

Vision is expected to play a progressively more important

role in service robotic applications in particular in the context

of manipulation of daily life objects. Image based visual

servoing solely relies on 2D image information for the

alignment of the end-effector with an object of unknown

pose [1]. The desired pose for grasping is demonstrated to

the robot and a set of reference features is extracted from

the image. Subsequent approaches of the robot and camera to

the goal pose are accomplished by regulating the image error

between the current and reference features without explicit

geometric reconstruction of the object pose.

Optimal motion control for visual servoing to a static

reference view has been discussed in [2], [3] and is based on

the decoupling of the translational and rotational degrees of

freedom achieved by a partial pose estimate using either the

homography or the fundamental constraint. Both approaches

require the online estimation of the homography or funda-

mental matrix in the servo loop, with at least four or eight

feature point correspondences. The method in [2], [3] focuses

on the optimal control with respect to a fixed set of features,

whereas our approach addresses the issue of large view

visual servoing with extraction and matching of dynamic
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sets of SIFT features. The view space is partitioned by an

entire set of intermediate, partially overlapping reference

views of the object. The authors in [4] integrate a path

planner in the image space with a visual controller based

on potential fields in order to obtain visual navigation for

large displacements. The work in [5] extends these concepts

by qualitive visual servoing based on objective functions that

capture the progression along the path, the feature visibility

and camera orientation. This paper provides a contribution

to optimal path planning in the image space considering

the residual feature error in conjunction with the quality

of the feature distributions in alternative reference views.

The additional flexibility of dynamic feature sets provides

the basis for adaptive online switching among reference

views while navigating towards the goal view. [6] describes

a method for automatic selection of optimal image features

for visual servoing in terms of robustness, uniqueness and

completeness. Additional performance criteria concern the

systems observability, controllability and sensitivity. Our vi-

sual features are generic moments computed over a dynamic

set of point features. Maximum robustness and observability

of the statistical moments is achieved by aggregation over all

extracted and matched features. Our objective is to estimate

the quality of feature sets from alternative reference views

online based on similar criteria as [6]. Optimal reference

view selection relies on an estimate of the time to conver-

gence of residual errors. This estimate is provided by a neural

network that is trained with feature errors and distributions

as input to predict the time to convergence. The proposed

scheme is model-free in so far that it does not depend on

a geometric object model or reconstruction of the object or

camera pose, which means that navigation and control is

entirely performed in the image space.

The paper is organized as follows: Section II provides the

definition of decoupled visual features based on weighted

moments of SIFT features used for visual servoing in 6 DOF,

followed by a stability analysis motivated by the feature

distribution in the image space. Due to the limited visibility

of SIFT features across different views it is necessary to

introduce intermediate reference views. The time optimal

reference selection to accomplish large view visual servoing

is introduced in III as well as the navigation in the image

space. Section IV demonstrates the experimental results

on a sphere and a semi cylinder setup and analyzes the

convergence behavior of alternative switching strategies. The

paper concludes with a summary and outlook on future work

in section V.



II. VISUAL SERVOING WITH SIFT FEATURES

A. Decoupled visual features

Scale invariant feature transformations (SIFT) introduced

by Lowe [7] occur frequently in textured objects and are

invariant to changes in scale, orientation, illumination and

affine transformations. They are uniquely identifiable and

robustly matched across different views of the same object.

These properties render them particularly suitable for model

free image based visual servoing.

Our scheme is motivated by the work of [8], which relies

on image moments rather than points features to overcome

the shortcomings of visual servoing schemes. SIFT features

for visual servoing applications were first introduced by [9],

in which the authors focus on the robust feature selection and

explicitly reconstruct the object pose based on the epipolar

geometry. A novel image-based controller that augments

conventional point features by the additional attributes scale

and keypoint orientation of SIFT features is presented in

[10]. This work is improved by establishing a one-to-one

correspondence between feature and camera motion based on

weighted moments that eliminates or at least minimizes the

undesired couplings [11]. A set of reference SIFT features is

automatically extracted from an image of the object captured

in the demonstrated reference pose. The automatic feature

selection detailed in [10] identifies a subset of robust and

non-ambiguous features for the ultimate visual servoing of

the robot to the reference pose.

The visual servoing in 6 DOF relies on six associated

statistical moments computed over the location, scale and

orientation of the SIFT features. Notice, that the term feature

has a dual meaning as it refers to the point like SIFT

features as well as the visual features aggregated over a

set of matched SIFT features subject to control. A single

SIFT-feature Fi contains four attributes, namely its pixel

coordinates ui and vi, its canonical orientation φi and its scale

σi. The scale changes inversely proportional to the distance

between the camera and the object. The orientation φi is

consistent with the camera rotation about its optical axis.

Scale and orientation are ideal for the control of the distance

to the object and the rotation around the optical axis as they

prove widely independent of translations and rotations along

the other axes. The rotation and translation along the cameras

optical axis are captured by the moments

fγ =
∑

n
i=1

φi

n
, fz =

∑
n
i=1

σi

n
(1)

which correspond to the mean orientation and scale of

detected SIFT-features. The translations along x- and y-

axis are regulated with respect to the geometric centroid of

the point features. The geometric centroid is susceptible to

translations along the z-axis causing an undesired coupling

with this motion. The decoupling of the centroid from the z-

motion is achieved by dynamically weighting the individual

point features. The moments

fx =
n

∑
i=1

wiui, fy =
n

∑
i=1

wivi (2)

correspond to the weighted mean of the matched SIFT

feature locations and capture translations along the x- and y-

axis respectively [11]. The 6 DOF visual control is completed

by the moments

fα =
n−1

∑
i=1

n

∑
j=i+1

(−v̂i − v̂ j) ·
∥

∥~p j −~pi

∥

∥

∑
n
k=1 ∑

n
l=k+1

‖~pk −~pl‖
(3)

associated with rotations along the x- and y- axis. The

moments fα and fβ detect the perspective distortions of lines

connecting pairs of SIFT features caused by rotations.

The term
∥

∥~p j −~pi

∥

∥ denotes the length of the line connec-

ting the two pixels. This length is multiplied by the weight

factor (−v̂i − v̂ j). Its sign indicates whether the line is

above or below the u-scan-line through the cameras principal

point. The absolute magnitude of the weight increases with

the vertical distance from the image center. The moment

represents the equivalent effect of dilations and compressions

of lines caused by rotations along the y-axis. The moment

fβ is defined in an analog manner to fα , by interchanging

the u and v components.

B. Local stability analysis

The local stability of the visual control loop requires that

the feature error has a unique minimum at the reference pose.

Even though a single SIFT feature suffices in principle for

coupled 4 DOF visual servoing, the computation of weighted

centroids requires at least two non-coincident point features

for decoupled 4 DOF visual servoing. Visual servoing in 6

DOF depends on at least three non-colinear SIFT features.

Convergence of the control to the reference pose is achieved

under the assumption of continuous visibility and perceptibi-

lity of this minimum number of correspondences. As stated

in [6], three feature points which ideally form a large-area

triangle enclosing the origin are optimal for visual control.

Three features are minimal as the distortion in features fα

and fβ is observed relative to the average length between the

points. However, not all configurations of three feature points

are suitable for control. Stable visual control of the rotations

requires that the three features are widespread and that the

formed triangle encloses the origin. A too small separation

of the three point features causes a change of sign in the

moments fα and fβ resulting in an unstable control. Fig. 1

illustrates this phenomenon as it shows the point distributions

for five triangular sets of different separation. The right part

of figure depicts the corresponding variation of the moment

fα for the five sets with respect to rotation about the x-

axis. In case of the widespread feature set the feature error

fα has a unique root at the origin. However, the feature set

closest to the origin induces two roots of fα with non-zero

rotational error to the left and right of the origin. These

additional roots cause the visual control to converge to an

equilibrium state that differs from the reference pose. Figure

2 shows the development of the feature-moment fx during a

lateral movement for a randomly chosen subset of features.

The feature-configurations showed in the upper left resp.

lower right corner of the figure demonstrate the effect of

an extreme feature-occlusion on the calculated moment. The
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configurations that are used for all other displayed moment-

developments represent feature-occlusions with a randomly

changing distribution in the image-plane as well as in the

number of features. The camera is laterally displaced by

-40 cm to 40 cm while the features at a distance of 75

cm are projected onto a normalized image-plane. The figure

demonstrates the impact of SIFT-feature occlusions on the

visual moment. The two envelopes marked by triangles and

rectangles correspond to the extreme, but highly unlikely sce-

nario in which all features in either the left or right half-plane

are occluded resulting in a highly asymmetric configuration.

The dotted lines correspond to random feature occlusions. In

all cases the unique equilibrium point is globally stable. In

case of the two extreme distributions the weighted feature

moment does not evolve monotonically with the lateral

displacement, due to the effect of skewed weights which

increase in absolute magnitude with the asymmetry of the

feature distribution. Even though this phenomenon effects

the rate of convergence global stability is still guaranteed.
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Fig. 2. Feature distribution in the image plane and its impact on the rotation
moments

In contrast to [6] our approach does not select the subset

of optimal features online, but rather utilizes all available

features matched between the current and the reference view

in order to maximize robustness and accuracy. The general

definition of visual features in terms of statistical moments

renders the scheme robust with respect to occlusion or partial

loss of perceptibility of features. Notice, that the reference

features are recomputed online with respect to the subset of

matched features. Typically, the number of matched features

varies between 5 to 40 features, depending on the camera

pose and the amount of useful texture in the current image.

The visibility of individual SIFT features is limited by the

cameras field of view, occlusion through the object and

changes in perspective. Therefore, large view visual servoing

requires multiple reference images in order for the camera

to navigate across the entire view hemisphere. Intermediate

reference images are captured across the entire work space

in x-, y- and z-direction. It is assumed that the object always

remains in view of the camera, which naturally restricts the

orientation of the camera along the x- and y-axis. Our point

of departure is a set of overlapping intermediate reference

views with partially shared SIFT features among neighboring

images. The objective of our work is to generate a time

optimal and robust visual control across the entire task space

by proper switching among neighboring reference images.

For that purpose, the cost of the current view is compared

with respect to all overlapping reference images, and the

control switches to the reference image with minimal cost.

A crucial step is to estimate the cost in terms of the time to

reach the reference pose from the feature error and geometric

configuration of features. Based on the estimated cost the

optimal path is determined by shortest path graph search.

III. TIME-OPTIMAL REFERENCE IMAGE

SELECTION

For large view visual servoing intermediate views are

defined to navigate across the entire view hemisphere. It

becomes desirable to switch between intermediate views in a

stable, robust and time-optimal manner. The cost in terms of

number of control cycles to converge from the current view

to the reference image is estimated in order to compute the

optimal path. Crucial for this purpose is the proper definition

of performance criteria for approximation of the cost function

and the analysis of their correlation with the cost. In our case,

an artificial neural network learns the relationship between

the control criteria and the costs in a supervised manner.

The training data is obtained from observations of the actual

number of control cycles required for transitions between

neighboring reference views.

A. Control criteria

1) Feature error: The overall feature error

f (I)={∆ fx, ∆ fy, ∆ fz, ∆ fα , ∆ fβ , ∆ fγ}

constitutes the most significant performance criterion for the

estimation of the cost.

A single feature error alone does not provide a good

estimate of cost, because the actual time until convergence

depends on the feature error with the slowest task space

motion, usually associated with the translational degrees of

freedom. The rotational errors are bounded by the visibility

constraint and are usually stabilized within a few control

steps. Each element of f (I) is normalized to the interval [0,1]



according to its maximum range. The total feature error is

the sum of normalized errors.

f̂ (I) =
6

∑
i=1

∣

∣ f̂i(I)
∣

∣ (4)

The feature error already attributes to a substantial amount

of variation in the cost, nevertheless the cost estimate is

improved by inclusion of additional criteria that capture the

quality and robustness of visual control.

2) Number of correspondences: The robustness and the

control performance increase significantly if more than the

minimal number of correspondences is established. The red-

undancy of multiple features reduces the noise level and con-

tributes to the beneficial widespread dispersion of features in

the image space. A small number of features might cause a

compact distribution of point features, which as shown earlier

causes poor or even unstable control in the image space. The

number of matched features also provides an estimate of the

geometric distance of the current view to the reference pose.

Distant poses only share a subset of mutually visible features,

whereas the number of correspondences naturally increases

with the proximity of both viewpoints. The criterion C(I) = n

is defined as the absolute number of feature correspondences

between the current and the reference view. The criterion

Cn(I) =







0 n < nmin
n

nmax
nmin < n < nmax

1 nmax < n

(5)

normalizes C(I) as it requires a minimal number of features

nmin and saturates at the upper limit nmax = 40, at which em-

pirically no further improvement of the control performance

is observed. The parameter nmax is independent of the object

and not crucial for approximate cost estimation. The absolute

number of visible features alone is not a unique indicator of

the expected cost as it also depends on the distribution of

these features defined in terms of their entropy and variance

around the centroid.

3) Entropy: Entropy measures the order or disorder in a

distribution. The image is partitioned into N = 10 vertical and

horizontal equally spaced columns and rows. The entropy

along the two axes is calculated as

Eu(I) = −
N

∑
i=1

Hu(i) · logN (Hu(i)) (6)

Ev(I) = −
N

∑
i=1

Hv(i) · logN (Hv(i)) (7)

in which Hu(i) and Hv(i) denote the relative frequency of

SIFT features in the ith column respectively row.

The entropy assumes a value in the interval [0,1], in

which a high entropy indicates a uniform distribution. A low

entropy reveals an inhomogeneous distribution, which harms

the robustness and speed of convergence of visual servoing.

4) Centroid location: The visual features fα and fβ

require a distribution uniformly centered around the principal

point in order to capture the distortion of line segments. The

deviation of the feature centroid from the origin is expressed

by

|ū| =
n

∑
i=1

| ui−u0

n
| |v̄| =

n

∑
i=1

| vi−v0

n
| (8)

in which low values represent desirable feature distributions.

5) Variance of the feature distribution: The variance of

the feature positions provides an additional estimate of

the quality of the feature distribution. A low variance in

particular in conjunction with a dislocated centroid reflects a

feature distribution that is suboptimal for visual control and

delays the convergence to the reference image. The variances

are computed as

σu =
n

∑
i=1

(ui − ū)2

n
, σv =

n

∑
i=1

(vi − v̄)2

n
(9)

Notice, that entropy reflects the geometric homogeneity of

the feature set, whereas variance captures its width.

B. Correlation between performance criteria and time to

convergence

Control experiments from 150 initial positions randomly

distributed over the task space are recorded in order to eva-

luate the correlation between the performance indicators and

the time to convergence. Each control step of the individual

runs constitutes a training sample for supervisory learning

of the neural network. A control run is considered as suc-

cessfully converged to the reference image if all image errors

are reduced to within 10% of their average initial value. The

correlation between the performance criteria and the actual

time to convergence provides insight into the influence and

relevance of the individual indicators. The linear dependency

between two stochastic variables is computed according to

Pearson’s correlation coefficient:

rXY =

n

∑
i=1

(xi − x̄)·(yi − ȳ)

√

n

∑
i=1

(xi − x̄)2 ·

√

n

∑
i=1

(yi − ȳ)2

, (10)

which assumes values in the interval [−1,1]. Large absolute

values indicate strong correlation between the two quantities.

Table I specifies the correlations between the performance

indicators and the cost in terms of time to convergence.

TABLE I

PEARSON CORRELATION BETWEEN PERFORMANCE FEATURE ERROR

RESP. CRITERIA AND TIME TO CONVERGENCE

∆ fx ∆ fy ∆ fz ∆ fα ∆ fβ ∆ fγ f̂

rXY 0,30 0,14 0,17 0,14 0,13 0,13 0,63

C(I) Cn(I) Eu(I) Ev(I) |ū| |v̄| σu σv

rXY -0,66 -0,72 -0,66 -0,72 0,44 0,32 -0,64 -0,62

The individual feature errors are only slightly correlated

with the cost, whereas the normalized summed feature error

f̂ is indeed a proper indicator for the distance to the

reference pose. Notice, that the relative number of matched

features Cn(I) correlates even more with the cost than the



summed absolute errors f̂ . The scalar summed error contains

less information than the entire error vector f (I). This is

explicable, as the feature errors related to the translational

degrees of freedom converge at a slower rate.

In order to predict the time to convergence two neural

networks with different input features are trained with the

data acquired during the 150 experimental runs. The multi-

layer perceptrons are composed of 16 neurons in the hidden

layer and are trained with the standard back-propagation

algorithm. The first network only uses the six-dimensional

feature error f (I) as input, whereas the second network

in addition has access to the performance criteria c(I) =
{Cn(I),Eu(I),Ev(i), ū, v̄,σu,σv}. Figure 3 depicts the relation

between the estimated costs on the x-axis and the true costs

for the full input network. It also shows the linear regression

for the partially and fully informed network. The neural

network only trained with the feature error f (I) achieves

a correlation between estimated and true cost of 0.75. This

correlation is substantially improved by incorporation of the

additional performance criteria to a degree of 0.96. The

improvement in prediction accuracy of the fully informed

network error compared to the pure feature error based

network is confirmed by the reduced training and test set

error shown in table III-B. This demonstrates that a distance

metric in the image space to the goal view, has a significantly

lower correlation with the costs than f (I) in conjunction

with the image distribution indicators C(I). This observation

confirms the convergence analysis in section II-B, namely

that the distribution of the SIFT-feature crucially effects the

control performance.
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C. Navigation in the image space

Our approach neither requires a geometric model of the

object nor is it aware of the spatial relationship between

the reference views. nor performs path planning in the task

TABLE II

TRAINING AND TEST SET ERROR FOR NEURAL NETWORK TRAINED WITH

FEATURE ERROR f (I) ONLY AND WITH FEATURE ERROR AND

PERFORMANCE CRITERIA f (I),c(I)

RMSE train RMSE test correlation

f (I) 0.0149 0.0297 0.75

f (I),c(I) 0.0072 0.0092 0.96

space. The optimal path is planned online in the image-

space rather than in the task space. For that purpose each

reference-view (RV) represents a node in an undirected

graph, in which edges define neighborhood relationships

between overlapping views. The cost of an edge connecting

two views reflects the transition time between the views

expressed in terms of number of iterations to converge

from the initial view to the neighboring view. The graph

supports the global initial path planning from the start view

to the desired goal view, but it also forms the basis for the

decision when to switch to the next reference view. The cost

estimation within the path planning consists of two major

steps, an off-line computation of graph costs between the

reference view and and an online computation of the cost

from the current view to the overlapping reference views.

The planner switches between reference view based on a

comparison of the accumulated costs of currently feasible

reference views.

Goal-View (GV)

RV 1
RV 2

RV 3

RV 4

Current View (CV)

Costs CV-RV3

Costs CV-RV4

Costs

RV1-GV
Costs

RV2-GV

Costs

RV4-RV3

Costs

RV3-RV2
Costs

RV1-RV3

No correspondig

Features

Fig. 4. Reference-, Goal- and Current View represented by a Graph

1) Initial path-planning and cost-estimation: The initial

cost estimation is based upon the graph constructed from the

complete set of reference-views which form its nodes. The

number of matching features is computed for every possible



pair of reference views. An edge is generated between

two overlapping views if they share five or more common

features. The cost of an edge is estimated by evaluating

the set of corresponding features with the neural network

described in the previous section. The optimal path from

every reference-view to the goal-view is calculated with the

well-known Dijkstra-Algorithm [12] for finding the shortest

path in a weighted graph. This calculation is part of the teach-

in-process in which reference views are captured across the

work space and is performed off-line in advance.

2) Current cost estimation and choice of optimal current

reference-view: The features extracted from the current view

(CV) are continuously compared to those of overlapping

reference views in order to identify the optimal current refe-

rence view online during control. For the potential reference

views the time to convergence is estimated in the same way

as for the initial generation of the graph. The total costs for

reaching a specific reference view plus the already estimated

cost for the shortest path from that node to the goal view are

compared among all feasible views. The node with minimal

cost is selected as the next reference view to be included

into the shortest path to the goal. The view evaluation is

only performed every fifth control-cycle in order to reduce

the amount of online computations.

Fig. 4 depicts a section of a graph generated from a set of

images with four intermediate reference views RV1, . . . ,RV4,

a goal view GV and the current view CV . The images

associated with a view are diagrammed by rectangles, the

hatched areas represent the overlap between neighboring

images which contain common SIFT features. The cost of the

transition from the current view to the two feasible reference

views RV3 and RV4 depends on the number and quality of

common features in the gray areas. The current view has

no connection to the reference views RV1 and RV2 as the

subset of common features is empty, as indicated by the

dotted line. A hysteresis in the switching scheme avoids the

risk of the visual controller getting trapped in a limit cycle

around the optimal switching point due to uncertainties in

the cost estimate or fluctuations in the matched features.

The initially estimated costs of the optimal path from the

current view to the goal are weighted by the number of

intermediate nodes from the candidate reference views to the

goal node. That way, switching to a reference view which

node is closer to the goal node becomes more attractive,

whereas the reverse switching to a more distant node is

suppressed even if its estimated cost seems more attractive.

A transition to a lower cost reference view is only initiated

if its superiority is confirmed in two consecutive iterations,

thereby gaining additional robustness with respect to cyclic

switching.

IV. EXPERIMENTAL RESULTS

This section presents an evaluation of the proposed sche-

me in visual servoing experiments within a virtual reality

environment and on a real 5 DOF robotic arm with an

eye-in-hand configuration. In both experimental setups the

performance of the cost estimation based switching scheme

is compared with two alternative methods. The first method,

in contrast to our scheme, assumes that the geometric di-

stance in task space between reference views is known. It

switches to the reference view closest to the goal pose, once

the minimal number of visual features is perceived. This

switching strategy ignores the perceptability and quality of

the set of matched feature and is from a control point of

view not sufficiently robust. Nevertheless for the purpose

of comparison it provides an upper performance limit. The

second method computes an optimal static path that connects

the start to the goal node based on the static costs. It is

not opportunistic as it does not reestimate the costs online,

or replans if other reference views not originally included

in the plan suddenly appear more attractive. It switches to

the next view outlined in the plan upon convergence of

the feature error to a current reference view. This method

although suboptimal is robust from a control point of view,

but could still be improved by relaxing the convergence

criterion without sacrificing robustness.

A. Navigation across a sphere

A virtual-reality simulation of a free moving camera

allows the verification of the large view visual servoing

scheme without being constrained by the robot kinematics

or workspace. The camera navigates in 6 DOF around a

sphere textured with a schematic map of the globe. The

reference views are equidistantly located along longitudes

and latitudes. The task is to guide the camera visually from

the north to the south pole. Fig. 5 depicts the distribution of

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

110

120

Iterations

C
u

rr
e

n
t 

R
e

fe
re

n
c
e

-V
ie

w

50 100 150 200 250 300 350 400

-150

-100

-50

0

50

100

150

Y

Z

Optimal Reference View Sequence

Fixed Convergence RV Sequence

Distace-Based RV Sequence

Reference-Views

Start-Position

Goal-View Position

Fig. 5. Alignment of reference-views an comparison of chosen sequences
from pole to pole on a sphere

reference-views together with the path pursued by the three

methods under comparison. Even though the camera is initi-

ally located above the north pole, all schemes immediately

transit to an initial reference view that is already closer to

the goal. The distance based method picks a different great

circle route than the other two schemes as it ignores the issue

of feature quality. A better rationale is to select the great

circle route which guarantees perceptibility of a sufficient

number of features for stable traverse to the south pole.

We term this effect the Pacific-problem, as for our globe

example, the equal-distant path either moving over America

or Africa contains more features due to the texture and

text on the continents than crossing the Pacific with sparse

features. The right part of fig. 5 compares the sequence
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Fig. 6. Pole to pole trajectories of the compared methods

and progression of reference views followed by the three

alternative methods. Fig. 6 shows the evolution of the task

space error in terms of translation and rotation. The number

of iterations until convergence is approximately the same for

the optimal image-based and the distance based navigation

method. For the former the goal pose is reached within 300

iterations, for the later in about 290 iterations, whereas the

static scheme with complete convergence takes about 560

iterations.

B. Navigation across a semi cylinder

The scheme is also evaluated in an experiment on a 5DOF

Katana robot with an eye-in-hand camera configuration.

As the workspace of the manipulator is rather limited, the

camera navigates across the inner surface of a semi cylinder

with a circumference of 1.8m and a height of 0.4m. The

inside of the semi cylinder is textured with a panoramic photo

of our campus shown in fig. 7. This cylindric configuration

is optimal with respect to the workspace of the robot as it

allows a maximal number of sufficiently distinct reference

views. The reference views form a 15×6 grid, horizontally

separated by 10 °, vertically by 5cm. The kinematics of the

specific robot limit the camera motion to 5 DOF. At the start

pose the camera points at the upper left part of the image and

the goal is located in the lower right corner of the cylinder.

As shown in Fig. 8, all methods follow at large a similar

view-sequence. The only significant deviation occurs halfway

through the path in a region which mostly contains sky and

Fig. 7. Experimental setup for visual servoing in 5 DOF on a semi cylinder

ground and therefore few distinctive features. The optimal

switching scheme takes a small vertical detour in order to

exploit the higher concentration of features in the textured

band between sky and ground. The number of iterations
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until final convergence is about 300 for the optimal method,

400 for the distance-based approach and 600 for the fixed-

convergence-method. The difference in time to convergence

results from the fact, that the two other methods require a

much longer time to traverse the region of sparse features

as the visual control tends to become unstable due to the

poorer quality of feature distributions. This observation is

confirmed by an analysis of the evolution of the relative task

space error with respect to the intermediate reference views

shown in fig. 9. The upper graph depicts the progression of

task space error and switching sequence for the proposed

scheme the lower graph for the static scheme. The static

scheme wastes iterations in phases at which the feature error

is already low but not yet fully converged. The optimal cost

based scheme avoids delayed transition to the next reference

view, as it already switches for substantially larger residual

errors without compromising the stability of the control. The

sample rate of the visual control loop is approximately 4

Hz, limited the computational effort for feature extraction

(160 ms), online path planning and matching (70 ms) and

computation of visual features and differential kinematics (30

ms). The time for feature extraction is proportional to the size
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Fig. 9. Relative task-space error for fixed-convergence and optimal method

of the image and the average number of detected features.

The time for extraction of as single feature on a 1.8Ghz P4-

System at a camera resolution of 320 ∗ 240 is about 1ms.

The time for the matching-process grows with the square of

the number of features, but even for hundred features the

computational effort of matching is small compared to that

of feature extraction.

V. CONCLUSION

This paper presents a novel approach for optimal large

view visual servoing based on decoupled moments of SIFT-

features. The workspace is partitioned into a set of overlap-

ping reference views in order to navigate visually from start

to the goal pose. The switching between reference views

occurs on the basis of the estimated time to convergence

taken the quality of matched features into account. The cost

of reference views is evaluated online throughout progression

to the goal view, such that the scheme opportunistically se-

lects the reference view that is optimal in the current context.

The computational demands of SIFT feature extraction, path

planning and time-optimal reference selection enable real

time visual control at a frame rate of 4 Hz. The experimental

results in virtual reality and on the real robot demonstrate

that the approach minimizes the time to convergence without

sacrificing the robustness and thereby stability of the visual

control.

Future work is concerned with the transfer of the large

view visual servoing with SIFT features from the domain of

manipulation to navigation of mobile robots in unstructured

environments. In this context our research focuses on the

development of an heuristic switching scheme for large

visual servoing, that is independent of the object and does

not require an offline exploration of the view space for prior

cost estimation. An appropriate feature metric captures the

distance in view space of a SIFT feature in the current view

to the reference view based on the number of intermediate

views (degree of separation) and the similarity of keypoint

descriptors. Based on the SIFT feature distance metric the

heuristic selects reference view with the subset of matched

features that is closest to the goal view.
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