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Abstract

In response to the call for carbon neutrality, the global energy industry will usher in tremendous
changes in all aspects. As a necessity of modern industry, traditional automobiles have pro-
duced huge fossil energy emissions. Electric vehicles (EVs), wiffiehing significant poten-

tial in improvingthe ecofriendly environmengccelerating the construction of carbon neutral-

ity, become a good alternative to traditional fossil energy vehigkethe ambitious plans of
medium and longerm EV penetration ratproposetby variouscountries, E\Mcharging stations

need to be able to providg/ users with more convenient, efficieahd economical charging
services Appropriately arranging the location and capacity of charging stations can actively
guide users' g¢husiasm for the use of EVs and significantly stimulate the enthusiasm for in-
vestment in the construction of EV charging statiohgplying effective charging energy
scheduling strategidsased orthe built charging stations can make full use of the flexibility of

the EV batteries to achieve the purpose of reducing charging losses and even supporting the
power grid system.

This dissertation focuses time investigation ofhe planning and operatioof the EV charging
station Various real constraints in actual operation are discussed and modeled inTtetail.

main contributions are described as follows:

() An EV charging station planning strategy,
satsfaction, is proposed in thdissertation The whole German motorway information and an
hourly-based resolution traffic flow are collected, and the existing service areas on motorways
are presented as potential locations for charging infrastructure §#ogdce areas are clustered

into a group and the optimal charging station placing locations in this group are calculated. The
charging station construction costs, EV drivers waiting costs as well as the EV inconvenient
driving costs are defined. By codsring the different typeof costs mentioned above syntheti-
cally, aplanning method that can satisfy the charging demand while reducing the construction
cost is proposed. In addition, three different planning scenarios to meet different planning re-
quirements have been proposed. The established optimization problem is aimegel non

linear (MINLP) problem and an improved approach baseti®genetic algorithm is proposed

to solve this problenParallel computing can be adopted which can improve tlvingospeed.

Results verify the efficacy of the proposed method

(i) An optimal charging scheduling method by responding to thedirused (TOU) electric-



ity price is proposed. First, the uncontrolled charging model to fully charge EVs as fast as pos-
sible is established. Then, an optimal charging scheduling model by considering the limited
number of chargers is proposed to both reduce the charging cost and guarantee the charging
demand of each EV. The proposed model is formulated as a bilevel progra(BfRjngodel.

The charger index and available charging duration for each EV are determihedipper

level, while the charging power of each EV at each time slot is determined at the lower level.
After that, a solving approach is introduced for the proposed BP model. The efficacy and per-

formance of the proposed charging scheduling meghederified by simulation results.

(i) A datadriven intelligent EV charging scheduling algorithm is proposedigdissertation

by scheduling in response to the thofeuse (TOU) electricity price, the limitation of charging
facilities, and detailed charger epating process is also considered. First, based on the neural
network algorithm, a charging demand forecasting method is introduced to establish the charg-
ing task ofthecharging station. Then, according to the established task, an optimization model
thatconsiders the charging costs, battery degradaimhuser dissatisfaction comprehensively

is proposed. The proposed model is formulated asxadinteger nonlinear programming
problem, and a corresponding approach for solving the model is also prdposdigl, the real

time operation process of the proposed scheduling method in the actual charging station is pre-
sented. By comparing with the existing methods, better effectiveness and performance of the
proposed scheduling method are verified by sinutatesults.

(iv) A collaborative optimal routing and scheduling (CORS) method is proposed, proaiding
optimal route to charging stations and designing optimized charging scheduling schemes for
each EV. In the order of reporting, whenever an EV reptrishiarging demand, a CORS op-
timization model is built and solved so that a specific charging scheme is designed for that EV.
Then, the TN and DN status is updated to guide the subsequent EVs operating. The proposed
CORS integrates the retiine state ofte TN and DN, and effects positive benefits in helping

EVs to avoid traffic congestion, improving the utilization level of charging facilities and en-
hancingthecharging economy. The combined distributed biased min consensus algorithm and
generalized bendg decomposition algorithm are adopted to solve the complex nonlinear opti-
mization problem. Through comparing with the existing methods, better effectiveness is veri-

fied by simulation results.



Kurzfassung

Als Reaktion auf die Forderung nach Kohlenstoftreditat wird die globale Energiewirtschaft

in allen Bereichen gewaltige Veranderungen herbeifiihren. Als eine Notwendigkeit der moder-
nen Industrie haben herkdmmliche Automobile enorme Emissionen fossiler Energie erzeugt.
Elektrofahrzeuge (EVSs), die ein ethliches Potenzial zur Verbesserung der umweltfreundli-
chen Umgebung bieten und den Aufbau der Kohlenstoffneutralitdt beschleunigen, sind eine
gute Alternative zu herkémmlichen Fahrzeugen mit fossiler Energie. Angesichts der ehrgeizi-
gen Plane verschiedenginder zur mittelund langfristigen Verbreitung von Elektrofahrzeu-

gen mussen die Ladestationen in der Lage sein, den Nutzern von Elektrofahrzeugen komfor-
table, effiziente und wirtschaftliche Ladedienste anzubieten. Eine geeignete Anordnung der
Standorte nd Kapazitaten von Ladestationen kann die Begeisterung der Nutzer fir die Nutzung
von E-Fahrzeugen aktiv steuern und die Bereitschaft fur Investitionen in den Bau von Ladesta-
tionen deutlich erhéhen. Die Anwendung effizienter Strategien zur Planung demkeagie

auf der Grundlage der errichteten Ladestationen kann die Flexibilitat dBaf&fien voll aus-

nutzen, um die Ladeverluste zu reduzieren und sogar das Stromnetz zu untersttitzen.

Diese Dissertation konzentriert sich auf die Untersuchung der Plamehdes Betriebs von
EV-Ladestationen. Verschiedene reale Randbedingungen im tatsachlichen Betrieb werden dis-

kutiert und detailliert modelliert. Die wichtigsten Beitrage werden im Folgenden beschrieben:

() In dieser Arbeit wird eine Strategie zur Planwog ELadestationen vorgeschlagen, die die
Baukosten und die Zufriedenheit der Fahrer berlcksichtigt. Die gesamte deutsche Autobahnin-
formation und ein sttindlich aufgel6ster Verkehrsfluss werden gesammelt, und die bestehenden
Raststatten auf Autobahnen wendals potentielle Standorte fur Ladeinfrastruktur dargestellt.
Nahe gelegene Raststatten werden zu einer Gruppe zusammengefasst und die optimalen Stand-
orte fur Ladestationen in dieser Gruppe werden berechnet. Die Kosten fiir den Bau von La-
destationen, di&Vartekosten fur die ENFahrer und die Kosten fur unbequemes Fahren werden
definiert. Durch die synthetische Berlcksichtigung der verschiedenen oben genannten Kosten-
arten wird eine Planungsmethode vorgeschlagen, die den Ladebedarf befriedigen und gleich-
zeitig die Baukosten reduzieren kann. Dartber hinaus wurden drei verschiedene Planungssze-
narien vorgeschlagen, um unterschiedliche Planungsanforderungen zu erftillen. Das ermittelte
Optimierungsproblem ist ein gemisealinzzahliges nichtlineares Problem (MINLBhd zur

Lésung dieses Problems wird ein verbesserter Ansatz auf der Grundlage des genetischen Algo-



rithmus vorgeschlagen. Durch den Einsatz von Parallelrechnern kann die Losungsgeschwindig-
keit erh6ht werden. Die Ergebnisse bestatigen die Wirksamkeibdgeschlagenen Methode.

(i) Es wird eine Methode zur optimalen Ladeplanung vorgeschlagen, die auf den Strompreis
der Nutzungszeit (TOU) reagiert. Zunachst wird ein unkontrolliertes Lademodell erstellt, um
die EFahrzeuge so schnell wie méglich vollstandigzuladen. Dann wird ein optimales La-
deplanungsmodell vorgeschlagen, das die begrenzte Anzahl von Ladegeréaten bertcksichtigt,
um sowohl die Ladekosten zu reduzieren als auch den Ladebedarf jedészEugs zu ge-
wabhrleisten. Das vorgeschlagene Modelldnars bilevel programming (BP) Modell formuliert.

Der Ladeindex und die verfigbare Ladedauer fur jedes Fahrzeug werden auf der oberen Ebene
bestimmt, wahrend die Ladeleistung jedes Fahrzeugs in jedem Zeitfenster auf der unteren
Ebene festgelegt wird. Darfawird ein Losungsansatz fur das vorgeschlagen&iBéell vor-

gestellt. Die Wirksamkeit und Leistungsfahigkeit der vorgeschlagenen Ladeplanungsmethode

wird durch Simulationsergebnisse verifiziert.

(iii) In dieser Dissertation wird ein datengesteudritglligenter EV\Ladeplanungsalgorithmus
vorgeschlagen, bei dem die Planung als Reaktion auf dendfidse (TOU)}Strompreis, die
Begrenzung der Ladeeinrichtungen und den detaillierten Betriebsablauf des Ladegerats bertck-
sichtigt wird. Zunéchst wird aufed Grundlage des Algorithmus eines neuronalen Netzes eine
Methode zur Vorhersage des Ladebedarfs eingefuhrt, um die Ladeaufgabe der Ladestation fest-
zulegen. Dann wird entsprechend der festgelegten Aufgabe ein Optimierungsmodell vorge-
schlagen, das die Ladesten, den Batterieabbau und die Unzufriedenheit der Nutzer umfassend
bertcksichtigt. Das vorgeschlagene Modell wird als gemigahzzahliges nichtlineares Pro-
grammierproblem formuliert und ein entsprechender Ansatz zur Lésung des Modells wird
ebenfalls wrgeschlagen. Schliel3lich wird der EchtAgdétriebsprozess der vorgeschlagenen
Planungsmethode in einer tatsachlichen Ladestation vorgestellt. Durch den Vergleich mit den
bestehenden Methoden werden die bessere Effektivitat und Leistung der vorgesohPdgene

nungsmethode durch Simulationsergebnisse verifiziert.

(iv) Es wird eine kollaborative, optimale Routingnd Planungsmethode (CORS) vorgeschla-
gen, die eine optimale Route zu den Ladestationen bereitstellt und optimierte Ladeplanungs-
schemata fur jedeSV entwickelt. Wenn ein EV seinen Ladebedarf meldet, wird ein GORS
Optimierungsmodell erstellt und geldst, so dass ein spezifisches Ladeschema fur dieses EV
entworfen wird. Dann wird der TNund DN-Status aktualisiert, um den Betrieb der nachfol-

genden EVzu steuern. Das vorgeschlagene CORS integriert den Ee8tagits von TN und



DN und hat positive Auswirkungen, indem es EVs hilft, Verkehrsstaus zu vermeiden, den Aus-
lastungsgrad von Ladeeinrichtungen zu verbessern und die Wirtschaftlichkeit des Ladens zu
erhohen. Der kombinierte Distributed Biased Min €ensus Algorithmus und der Generali-

zed Benders Decomposition Algorithmus werden eingesetzt, um das komplexe nichtlineare Op-
timierungsproblem zu I6sen. Durch den Vergleich mit den bestehenden Methodlelieviies-

sere Wirksamkeit durch Simulationsergebnisse bestétigt.






Nomencl|l ature asnd Abbreviati on

Abbreviations

EV Electric vehicle

IEA International Energy Agency

TOU Time-of-used

MINLP Mixed-integer nodinear problem

TN Transportation network

DN Distribution network

TDN Traffic-distribution coordination

DICS Datadriven intelligent EV charging scheduling
CORS Collaborative optimal routing and scheduling
DBMC Distributed biased min consensus

GBD Generalized bendedecomposition

STM Spatiotemporal mode

V2G Vehicle-to-grid

DG Distributed generation

SOC State of charge

LIB Li-ion Battery

DRL Deep reinforcement learning

MCS Monte Carlo Simulation

OPF Optimal power flow

GA Genetic algorithm

BP Bilevel programming

ICS Idle chargers searching

EPS EV power supplement

UCS Uncontrolled charging scheduling

WCAS Optimal charging without chargers assignment scheduling
POCS Proposed optimal charging scheduling algorithm
LSTM Long shoriterm memory

CFO Convectional forecastingptimization

FCFS First come first serve scheduling

SWR Scheduling with real data

SWP Scheduling without prediction



NROS
ORUS
NRUS

Nearby routing with optimal scheduling
Optimal routing with uncontrolled scheduling
Nearby routing with uncontrolled scheddi

Indices and Sets

k/WK
g\
tT
SW
WA(K)
M

m

Ms
n/WF
N

.
VEC,
VEC
Pcn
Pehim,t)
Pev
Pev(ib
ad

Ofk,m)

Indexand sebf acandidate service aretuster

Indexand sebf acandidate service area

Indexand sebf time slot

Index and sedf service areas

Set of service areas in cluster

Number ofchargers

Indexof charger

Number of chargers in charging stat®n
Numberandsetof EVs

Number of charging EVs in one optimization duration
Total numberof time slot

Set ofcharginginformation ofn-th EV

Set ofsortedEVs

Matrix of charging power of each charger in every time slot
Charging power oim-th charger at time slat

Matrix of charging power of each EV in every time slot
Chargingpower ofi-th EV at time slot

Matrix of the chargers assignment

Binary coefftients which is equal to 1 if thieth EV charge at thexth charger,
otherwise, zero

Arrival time of EV n

Departurgime of EV n

Time of EVn startcharging

Time of EVn endcharging

Minimum time required to fully charge of EV
Requiredenergyof EV n

Maximumpowerper time slot provided by one charger
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1 Introduction

1.1 Background and Motivation

The depletion of fossil energy and the change of clinsatiegent issuefor countries around

the world.Electric vehiclesgVs), which offer significant potential in improving sustainability
and ecofriendly environmeribecome a good alternative to traditional fossil energy vehicles.
Ambitious EV development plans have been drawn ugolomtriesand corresponding policies

to promote EV deployment are designédde European Union (EU) will aim to have at least

30 million zereemission vehicles on its roads by 2030, as it seeks to steer countries away from
fossil fuetbased transporChina plando achieve about 20% of the total sale&WUt by 2025

By 2035, pure EVs will become the mainstream of newly sold vehicles, and public vehicles
will be fully electrified. The International Energy Agency (IEA)] has establishethe Sus-
tainable Development Scenario trajectory that will require putting 230 million EVs on the
worl doés r onmidhocclpies 1Z.8938ddthe total amount of vehidlée annual num-

ber and proportion of sold electric vehiclegshown in Figure 1.1
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Figure 11 The annual number and proportion of sold electric vehicles.

With the increase in the number of EVs, the demand for supporting charging facilities is also



increasing.Generally speaking, the types of chargersdavealed into fast chargingharges

and slow chargingharges corresponding to DC chargers and AC chargers respectiMety

AC chargeris simple to use and instalivhich can be directly connected to tjréd without
special transformatiomhe power othe AC charger is relatively small, a single pile is mostly
3.5kW and 7kW. A single charge often takes several hours to fully cl@ogstructingagn AC
charger, as a cheaper method, is suitable for spreading the scale of charging stations at the initial
stage of investment to ensure the basic charging needs of EVisamsver, the slow charging
speed is one of the main reasons for extinguishing the enthusiasm of potential EV lbuyers.
contrast, the DC chargers are more access to 380V power supplgngéhpbwer supply cur-
rent and short charging time. 6680% of the battery power can be fully charged withirBR0
minutes by DC chargerblowever,DC fast charging has high requirements on the power grid

and more complex harmonic suppression devicehesmvestment cost is relatively high.

The lack of charging facilities has betre main obstacle to the widespread use of EX[s
More than 67%f respondentagree thatight nowlack of charging facilitiesand 54%of re-
spadents claim that long charging time is one of the main barriers to EV ad[#jtiblowever,
from the perspective of charging operation compaii®smain source of income is charging
service fees, which is difficult to offsthe construction investment and maintenance dosts
utilization rate is currently the biggest obstacle to profitability irBWecharging field, accord-
ing to the report if4], in China 2019the average daily usage tinod a single charger is only
0.93 hours, which means the usage rate is only 31%frefore, both the user side and the

operator side put forward requirements for reasonable plaanohgizingof charging stations

Charging station pla/an important rolen providing charging services to EVAs discussed

above chargers in a charging station have a lot of idle time, meanindgarking time oén

EV is generallymuch longer than the required time to fully chaitgebatterieq5, 6]. Many

countries, such as Germany, have introduced-tifnese (TOU) electricity pricing mechanisms

to increase market competition, thereby encouraging the consumption of renewable energy and
increasing systerflexibility. Chi nads power mar ket is also ref
the charging demand of EVs has obvious sequential characteristics, the optimal scheduling
method that considers tA®U electricity price has been widely adopted to promotedtsd t

utility for the charging operator markg¢® and minimize the total charging cost and the energy

cost from the substatids].

Meanwhile,with the spread of the scale of charging stationscktaging power oEVs will

bring a significant impact on thgwergrid. On the one handue tothecharging of EVsthere



is asudden increase in load which results in voltage instalditythe other handiarge charg-

ing power can significantly changfee power demand on the load side and bring new challenges
to the power flow regulation of the power gig]. In addition,the increase in the charging
demand ofEV users will also change the flow of the transportation nékwloappropriate
charging statiomouting strategies will cause congestion in dense areas of charging stations.
Meanwhile when users have charging demarad®asonable selection of charging stations for
them can also effectively alleviate traffic cong@st reduce the charging waiting time and im-

prove the efficiency of charging facilities

As countries actively promote the development of the EV industry, the scale of EVs will trigger
a huge change in the existing power grid and transportation nestvadture Corresponding
technical guarantees for the larggale application of EVs are required in the era of rapid de-
velopment.The main motivation to carry out this research ifotmulate easonably charging
station sizing and planning schemes arglgteoptimal scheduling methods with fully activat-

ing charging flexibility, which will help to improve thezonomimperation of the transportation

and powenetwork increase the profitability of charging stations andouragé¢he confidence

of EV users.
1.2 Challenges andResearchQuestions

The research in this article focuses on how to appropriately plan the size and location of charg-
ing stations and use limited charging facilities to design reasonable and feasible charging power
scheduling schemeg&specally, there are following problems which am®rthy of more in
depth investigation
(1) Problem of how to optimigd plan the charging systeminto the motorwayProposing
appropriate charging station planning stragsgs currently one of the important means
to activate the enthusiasm of EVs. It can not only effectively reduce the investment cost
of charging stations, but also provide users with charging guarantees and higher service
guality. At present, there are maplanning schemes for urban scenes|éggresearch
work focuses omotorway charging statioplanning.The anxiety ofcruising ranges
one ofthe most common problestiaced byEV users.To ensure economy and user
satisfaction, the charginglanningprodem needs to be considered from the construc-
tion cost, the average waiting time for charging, and the convenience of finding a charg-
ing station.In addition, the established model is usually a mixeelger nodinear

(MINLP) problem which should be solvéyy a specific algorithm.



(2) Problem of how tdormulate charging scheduling strategy with limited charging facil-
ities. Charging scheduling is an attractive research direction that can utilize the flexibil-
ity characteristics brought by that the staying tiiE\s in a charging station is usually
longer than the required charging tinh@ck of charging facilities is still a significant
barrierto theelectrification of the logistic system. How to effectively schedule the EV
charging power to reduce treharging station operating cost when the number of
chargers was limited becomes an important iddoaiever,manyof the current sched-
uling research works ignore the characteristics of limited charging station facilities, or
some works simply the numberafargerdo the capacity limit of the charging station,
which meangt is impossible to know how each EV connects to a specific charger. Thus,
it is necessary to propose a scheduling method to assign specific chargers to each indi-
vidual EV while adoptingpower scheduling.

(3) Problem of how testablishscheduling algorithm in consideration of traffic uncertainty
In the time dimension, charging scheduling is to allocate the corresponding power to
the EV staying in the charging station at different times. élaw#, in the actual sched-
uling, the uncertainty of subsequent charging demand will affect the current scheduling
performanceTherefore, the prediction of subsequent charging demand is necessary to
improve the efficiency of schedulingt present, there va@ been studies to develop
scheduling strategies around the uncertainty of future charging demand. However, some
of the existing works simfled the demand scenarios to keep the problem computa-
tionally tractabld10, 11] some[12] neglect the flexibility of the scheduling charging
power and battery degradation, asmime[13] [14] regard the power demand of the
charged EV as a whotbat ignoring the traffic flow information of each individual EV.

To improve the operating profit, it is essential to propose scheduling schemesrthat
sider both the charging demand uncertainty and the operating of limited charging facil-
ities in suchform of charging stations.

(4) Problem of how t@perate thgpower distribution and traffic networks collaboratively
The increasing of EVs alleviates the faced environmental problems but brings chal-
lenges to the optimal operation of transportation network @rd distribution network
(DN). The charging power scheduling schemes of the charging station for the electrical
part can only be formulated according to the actual number and type of EVs arriving at
the station. Similarly, in the navigation of the chaggEV in the traffic part, it is nec-
essary to refer to the traffic congestion situation on the driving path and whether the

charging station has idle charging faciliti¢#dowever, the most of existing research



works consider EV charging station assignnaerd navigation services in the TN sep-
arately from charging station power scheduling services in the DN, which leads to the
fact that the obtained optimal operation strategies cannot be realized in the actual exe-
cution processTherefore,in order to cope th the increasingly complex TN and DN
interactive system, it is necessary to propose a joint operation method that can ensure

the economic operation of charging stations and avoid traffic congestion.
1.3 Objectivesof the Dissertation

Theoverallobjective ofthe dissertation is tpropose the optimalanning and operatiometh-
odsof electric vehicle charging statisto improve the flexibility and economy of electric ve-
hicle charging applicationSpecifically, the objectives of the dissertation include hyaime

following aspects:

(1) Designthe charging station sizing and placing strategy on motorway® designed
planning method needs to combine the specific situation of the motorway and the driv-
ing behaviorsof EV users on the motatay and design a chargirggation planning
method that is economical and considers the user experience.

(2) Achieveoptimal EV charging scheduling considering the limited number of chargers
In order to ensure that tl&/s'chargingdemand can be satisfieth the case of limited
chagers the proposed algorithiarequired to provide the specific service EVs for each
charger.Corresponding power scheduling should be implementedsponsdo the
TOU price to achieve the operating economy.

(3) Realize a datalriven charging station schelilng schemeThe proposed method should
be able to establish a future charging demand model based on historical détenand
design a corresponding scheduling plan based on the predicteddfati@isdsothe lim-
itations of charging facilitieshould notbe ignoredMeanwhile historical datashould
also be updated over tim®e,realize reattime updaing scheduling operatian

(4) Proposethe collaborativeEV routing and charging scheduling strate@yne proposed
method should consider the status of theafld DN comprehensively, formulate the
chargingassignment andavigation route for all EVs according to their actual charging
demand, and then, develagpecific charging scheduling plan for each individual EV

based on the charging station assignmenttsesu
1.4 Outlines of the Dissertation

By considering the practical problems that may be faced in the planning and optimal operation



of EV charging stations, this dissertation designs different planning and operation schemes in
response to the problems raisbdwe and the research goals formulafée: content and struc-

ture of the dissertation ademonstrated ifigurel.1 andorganized as follows:

In Chapter 2the status of art about investigations on EV charging staigsosummarizedit

mainly reviews the@esearch carried out in recent years from three aspects: the review of charg-
ing station planning and routing approaches, the optimized openatides from the perspec-

tive of charging station operatoend the coordinated operation of the chargitatjon consid-

ering transportation and distribution networks interaction.

In Chapter 3a charging station planning method based on the existing service areas is proposed.
An EV charging station planning model for motorways, which is based on the existing service
area and does not require additional motorway retrofit costs, is proposed.eBengive con-
sideration of the construction cost of charging stations, the waiting time for charging, and the
inconvenient driving cost. The proposed planning method can reduce the total cost as much as
possible while guarantee the distribution densityhairging stations and the number of charg-

ing facilities in charging statiorthatcan meet the EV drivérequirements. An improved ge-

netic algorithm is designed to solve the proposed MINLP optimization problem. Three different
planning scenarios: orientan to minimize social cost, orientation to minimize charging station
operating and orientation to minimize charging station construction, are defined to meet the

different planning requirements.

Chapter 3

Planning of EV
Charging Station

Chapter 1 Chapter 2 Chapter 5 Chapter 7
Introduction State of Research EV Scheduling Conclusions with
and Technology with Data Future Works

Chapter4 Forecasting

Optimal EV
Charging
Scheduling

Chapter 6

Iy EV_ Chargi ng
operating with TN-
DN Interaction

Figure 12 Structure of the dissertation.
In Chapte#, consideringhelimited number of chargeran optimal charging power scheduling

method based on TOU electricity price is proposed. Firstly, the uncontrolled charging schedul-

ing model is designed foully charging EVs as fast as possible. There is no coordination among



charging EVs, and no charging power optimization scheduling is implemented. Then, consid-
ering the limited chargers assignment scheme, an EV optimal charging scheduling model to
minimizethe total charging cost is proposed. The established mod8&Rsvedel, which can

not only guarantee the EVsd charging demand
also reduce the charging cost by optimal scheduling the charging power. The upper level mainly
decides the charger index and available changangpd of EVs. The lower level solves the EVs
charging power within their available charging period by responding to the TOU electricity
price. Then, as the upper level is a mixed nonlinear integer programtivlitever level is a

linear program, a compmd solving algorithm is designed to get the detailed optimal EVs
charging scheduling solutions. Through performance verification, the proposed algorithm can
find the solution within an acceptable time. Finally, the proposed optimal charging scheduling
metodis compared with the uncontrolled charging scheduling method and a commonly used
charging power scheduling method. According to the results, the proposed method can provide
a detailed andfficientEV charging scheme, which can minimize the chargirsg while guar-

anteeing the EM&charging demand when considering the limited number of chargers.

In Chapterb, a datadriven intelligent EV charging scheduling (DICS) algorithm is proposed

to guarantee different EV users charging requirements and impmeadiging station profit.

First, an EV charging demand forecasting method basdtdeomeural network algorithm is
proposed. For considering the special needs of limited charging facilities, the forecasting pro-
cess predicts both the numbef subsequentehicles and their respective energy requirements,
which is calledestimatedEV information. The establishezstimatednformation contains the
specific charging demand information of each predicted EV and can be used to guide the sched-
uling optimization pocess. Second, the charging scheduling model considering the limited
charging facilities is designed. The optimization model contains both reastinthtedeV

and comprehensively minimizes charging cost, battery degradatidncharging incomplete

rate The total charging cost for the charging operators is reduced while the charging require-
ments and reducing the battery degradation are assured. Then the corresponding solving tech-
nique based othe heuristic algorithm is introduced. And the solved resstiow how to flex-

ibly use the limited chargers to connect the appropriate EVs and provide corresponding charg-
ing power. After that, the resime charging scheduling system operation process is introduced.
Since the traffic flow in the station is changimgime series, the forecasting results of subse-

guent EVs and the charging scheduling scheme for current EVs will be updated at each time



slot, and the current traffic information will be adopted for keep training to improve the predic-
tion accuracy. Find}, the proposed datdriven intelligent EV charging schedulirgcompared

with the existing methods and the advantages of the proposed method are verified.

In Chapter6, a collaborative optimal routing and scheduling (CORS) method is proposed. The
propogd algorithm arranges specific navigation and charging schemes for each EV in turn ac-
cording to the order in which the EVs report charging requirements. The proposed CORS
method can not only assign and route charging stations for EVs but also optinsicieditieling

of charging power based on the assigned charging stations. An optimization mockehs$idt

ersEV driving cost, electricity purchase cpahd battery degradation cost is proposed to find
the routing and scheduling scheme with the least corapsgre cost. The charging facilities
limitation in a charging station is also consideréd.solve this complex optimization mode,

we split the optimization model inthe upper layer and lower layer optimization. The upper
layer mainly decides the chargistation assignment process includdegermininghe charg-

ing station and planng the driving path. Meanwhilghe lower layer solves the coordinate
charging scheduling scheme for the EV with the charging station assignment results from the
upper layer. The modified distributed biased min consensus (DBMC) and generalized benders

decomposition (GBD) methods areroduced as the solver.

Finally, Chapter 7 summarizes the whole research in the dissertation, points out the remaining

problems in the research process, and sorts out and looks forward to the next research content.



2 State of Research and Technology

Extensive research works have been carried out aroundgtimal planning and operation of
EV charging stationd.ikewise, the increase in Edsageover the past ten years has generated
interest in the topics afonstruction cost and profithe convenience of @rging, charging
economy, user satisfaction, battery energy managesgterithis chaptedemonstrates an over-
view of problems and challenges in the expansion of EV charging stations and highkghts

mainstreanapproachefor charging statiompplications
2.1 Review of Charging Station Planningand Routing Approaches

The planning of charging stations is an unavoidable issue for$aede promotion of EV ap-
plications.Lack of charging facilitieandunreasonable charging statinavigation stratgies
are[2] main reason® obstructhe widespread use BVs. This section introduces two aspects:
station planning and routing.

2.1.1Sizing and Planning Approaches

In the early investigations of EV charging station planniraged on thgas station to integrat-

ing public charging infrastructure into a city is one of imgor views[15]. Meanwhile, plan-

ning methods for gas stations have gradually been moving towards a standardization and legal-
ization direction[16]. However,researchers realized thedmbining charging infrastructure

with the conventional gas stations may not be appropriate as the relatively long charging pro-
cess will saturate the limited space of tfas stationsand therefore put forward new require-
ments for the realization of transportation electrificafibn]. At present, the main planning
methods can be divided into two different ways: planning approaches mainigezacanven-

ience and construction cosésmd planning approaches consider the interaction of transportation

and distribution grids.
1 Planning approaches mainly consider convenience and construction costs

As a mobile energy demand used by people, the E\gttpload is influenced by human daily
mobility that determines the EV travel distance within a day, EV charging locations, and the
time charging start3.he research ifiL8] and[19] simulated the EV driving patterns according

to the data from national driving patterns and demographics. However, these studies did not

consider the fundamental principles of transportation syst&ses popular tool, MarkoZhain



is often used to simulathe EV©Hmobility [20] and formulate optimal charging station capacity
sizing[21] and locationf22] schemesThe development of information technoloi@ggilitates
theapplication of OD analysis for analyzing traffic flow characteristic§23, 24] A spatio-
temporal model (STM) was developed to model the mobilig\¢ both spatially and tempo-
rally. Based on this spatial infornnat, anEV charging modelig method based on OD analysis
was proposedn [25]. For public transportation electrified vehicles, themarging facilities
planning principle is choosing suitable locations in their fixed drivinge.The EV charging
station placement for urban public bus systems is propoge@é]irBased on the driving path

of the bus, a dynamic wireless charging metincal smart city is proposed jA7].

In the process of construction of charging stations, not only the traffic information should be
considered, but also the construction difficulty and construction cost of the location should be
taken into accountsing real geographic informatiof28] compared the information in the

city including land rent, charging facility construction and maintenance costs, station electrifi-
cation component costs, and grid energy loss in detail. And developed a charging station plan-
ning method that balances the overall cost of station construction and the convenience of EV
users.Meanwhilethe capacity setting of the charging station is also a research direction that
cannot be ignore&ince the charging time of EVs is much longer tienenergy replenishment
speed of fuel vehicles, the charging stations with small capacity will increase the waiting time
of EV users. In contrast, an excessively large charging station capacity will increase the idle
time of the charger, waste construnticosts, and make it difficult for the charging station op-
erators to be profitabl@he charging station model based on queuing thi&jycan well re-

flect the flowof EVs entering and leaving the station, so it is appliethéocharging station
planning process by researchi@@]. The M/M/s queuing theory is adopted [ib6] to simulate

the queuing process of EVs in the charging statiorth@fieeway

In order to improvehelow utilization of charging facilities iEV charging stations, researchers
have turned their attention to the construction of charging statiofi81]na single charger
multiple pats (SCMP) charging station planning approashproposedin this structure, a
chargerhas multiple cablesonnected talifferent parkingports, andby controlling the cable
switches, the charger can be selected to serve EVs in different paokimdPlannng charging
stations with this structurean effectively reduce the construction cost of charging stations
while reducing the idle time of a single charger and improving profitability. In addition, this

method can effectivelyeducethe increased costs caed by the transformation of the power
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grid. To avoidthe chargingpower of the chargingowerexceedinghe capacityof the trans-
formerwhen too many chargers work simultaneopalyharging station for electric taxis in
ShenzhenChinaadoptedhe SCMPstructure[32]. On this basis[33] proposed thenultiple
charges multiple portsMCMP charging station planning method, which further improves the

flexibility of the chargingstation.
1 Planningapproaches considering the interaction of transportation and distribution grids

To improve the charging speed, chargers with higher charging power are applied to charging
stations. With the largscale construction of charging stations, reseaschave sirted to re-

alize the impact of the charging system on the existing §adget al[34] evaluade actual EV
charging behavior differentbrands and models from EV users and charging stations usage at
the University of Califonia, Los Angeles for more than one ydar[35], a queuing analysis
based method for modeling the-B4&harging load profile of an EV charging station is presented,
and corresponding statisticimpact on the distribution systeoperatoris given.The stug
results illustratehat the large static charging load of EVs significantly changed the peak and
valley periods of the gricReliability is one of the pivotal operating parameters of theilistr

tion network whose degradation will result in customer dissatisfaction. Thus, the reliability of
IEEE 33 bus test system with installed charging stations is discud8&]. inhe power quality
impact of charging stati@on distribution networks is discussed[B8V], results show thaiud-

denly increasing charging load will bring harmonic problems to the \gf&hget al[38] sum-
marize the trends, standards, issaesl mitigation measures of the impact of charging station

onthepower grid, and theformulatean overview.

The papersliscussed above afi@m the transportation perspective, whigmores power sys-

tem constraintsThus,the planning results may neeshdjustment according to the practical
power system conditiongxisting work usually aims to site charging stations in power systems
to satisfy power system economic or security operation constraints, while minimizing the in-
vestment costs for the chargistations and corresponding power grid upgra8esvo-step
screening method is developeg[39] to locate charging stations in a distribution network and

a modified primaldual interior-point algorithmis proposed taetermine sizingln [40], the
optimal sizing and siting of an EV charging station with vehiotgrid (V2G) capabilities in
distribution networksrestudied.However, the transportation constraints and the results may
need eadjustment according to the practical transportation conditions, which have been ignored

by these paper€n this basis[41] presents an EVYastcharging station siting and sizing ap-
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proach considering transportation and pon&tworksinteraction. The influences of EV pop-
ulation, power system security operation constraints, and EV range are an@lgneret al

[42] integrate the interests of traffic networks into distribution network and charging station
joint planning model to mitigate negative impacts on traffic conditions caused by installing
FCSs.The designedhulti-objective joint planning model can minimizetbohe planning costs

and unbalanced traffic flows, which can be solved Imgw bilayer Benders decomposition

algorithm.

The urgent demand for alternative fossil energy has increased the development of renewable
energy. Meanwhile, with the improvementpafwer grd intelligence, theres moreintegration

of renewable energy sources in the forndistributed generations (DGs) as controllable com-
ponents in the distribution networkhe distribution system has a more vulnerable structure
compared tdhe transmission systenit, is necessary to combine the intermittent and random
characteristics dDGs andhehighload power otharging facilitiesIn [43], a multiobjective
optimization problem was developed to obtain themalisiting and sizing of charging stations
and renewable energy sources in distribution netwadmnkigl4], the uncertain output power of
the charging station due to its stochastic charging and discharging schedule is cofsidered
optimal siting and sizing of distributed generators in distribution systernemprehensive
optimization model for the sizing and siting of different renewable rescbased DG units,

EV charging stations, and energy storage systems within thiodigtn systemarepresented

by [45]. The proposed optimization model is formulated asa@nédorder conic programming
problem, considering also the timarying nature of DG generation and load consumpfibe.
ecofriendly remote hybrid microgrids concept is proposeddid] and a correspondingint

planningapproachof smart B/ charging stations and D@&sdesigned.

2.1.2Routing and Navigation Approaches

Proper selection dEV paths will be helpful to improving the travel efficiency of EV users and
alleviate their difficulties in charging during peak houksiecentralized policy was studied in
[47] to assign EVs to a network of FCSs with the goal of miming the queueing time. How-
ever, this approach did not considlee personalized needs of users in different aspects, which
limits the usefulness and expansion of this strateggrder to effectively shunt the charging
demand at peak hours,personafied fastcharging navigation strategy basedtbe mutual
effect of dynamic queuing is proposed [@]. A multi-criterion charging queuing model is
established to facilitate personalized navigation that can achieve ordedynghand personal

benefit.Moreover,to solve the problem of insufficient computing power caused by excessive
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traffic flow during peak hourd,iu et al propose a simplified algorithm j49] to relieve the
computing burden ithenavigation under timelifferentiated pricing. As there are randomness
and uncertainty in traffic networks, the deviation between the simplified deterministic model
and the actual traffic network may leadawerdischarging of batteries or even driving out of
power halfway. In order to improve the accuracy of navigatianet al extendtheir previous
deterministic charging navigation to an online navigation system based on stochastic traffic

network models and onkninformation[50].

From the perspective of individuBNVs, Researcherwill also formulate navigation strategies
to reduce battery consumptidfor public transportation systems with fixed routes, their navi-
gation strategieare often centered on minimizing driving costs, improving lifetime life, and
driving safety. For examplg 1] and[52] have designed dispatch routing approaches for airport
shuttlesthatoperate on electribatteries each having a fixed scheduRrivate EV users need

to reasonably arrange the navigation path of the charging stEgBjnjses heuristic control
strategy to optimize energy consumption for gitemue and speedh [54], an optimization
problem to enable the driver to select the appropriate drive modesdogyminimizationis
proposed, thé&ip informationis adopted and optimal path planning is atdegratedThe pro-

posed algorithm isvaluaté on areal vehicle which shows significargnergysavings.

Since the traffic flow of the transportation network and the operating conditions of the power
systems are timearying, it is important teonsidethegrid influence whemmplemening reat

time charging navigation for EV driver§o relieve the traffic and power line congestioas,
novel navigation approach is proposed to search the charging station with the lowest overall
objective, which consists both of thene consumption and the financial c§85]. In [56], a
dedicated traffic user equilibrium model is proposed to describe the sttddyistribution of
traffic flows comprised of gasoline vehicles dBds. The network equilibrium through itera-
tively solving the traffic assignment problem and the optimalgy flow problem is identified.

By simultaneously considering the dynamic user equilibriuthetfransportation network and

the alternating current dynamic optimal power flowtlod distribution networkthe traffic-
distribution coordination (TDC) TDC nal is proposed ifb7] to minimize the travel cost of

thetransportation network and the energy service cost of distribution network.
2.2 Review of Charging Station Operating Schemes

In the foreseeable future, charging statiofislve connected tbothtransportation and power

networks on a large scale, and the large charging load characteristics make charging stations a
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type of load that cannot be ignoré&h the one hand, for tHastcharging stations or chargers,

such as specific charging stations on the motorwhgsharging load is not adjustable, because
users who apply fast charging want to complete the charging as quickly as possible. On the
other hand, EV users without urgent charging requiremsuath agparkingEVs, only need to
complete the charging within the parkitighe, which provides an application scenario for
charging stations to participate in power scheduling and improve overall flexibiig/section
introduces the works froneconomiebasedscheduling, battery managemdratsed scheduling

and demandncertaintybased scheduling.
2.2.1EconomicBased SchedulingApproaches

The economics of charging is one of thestimportant indicators to measure the pros and cons

of charging schemes. As mentioredgbve many charging station operators are currently oper-
atingwith low profits[4]. Appropriatecharging scheduling strategcan significantly improve

the charging economy andcrease the enthusiasm of operat@=sntralized charging and de-
centralized charging are currently the two mainstream scheduling perspgsivés central-

ized charging control, the optimization of EV charge scheduling is done centrally at the aggre-
gator aftercollecting information abouhe power requirement of the EVs. EVs can only com-
municate their electrical parameters such as maximum battery capacity, SOC, and charge rate
to the aggregator. In contrast, in decentralized charging control, each EV issehwiipsome
computing capability, and the decision to charge or not is taken by each EV in collaboration
with the aggregator. Each EV communicategsnergy requirements to the aggregator and uses
part of this information collected at the aggregatorecide on an optimal scheduléhe merits

and demerits of centralized and decentralized scheduling methods are shown inITable 2.

Table 21 Comparison ofCentralizedandDecentralizedscheduling Approaches

Categories Merits Demerits

Able to calculate the optimal schedule as 1 At the expense of user privacy
the information is available to it 1 Computationally intractable it
1 Reduced power fluctuations general folalarge number of EVs

Centralized schedul T
ing methods

. 1 Good scalability 1 lack of complete information &
Decentralized sched .
: 1 Protect personal privacy any EV makes the charge sche
uling methods . ;
1 easy toachieve ule suboptimal

1 Centralized charging scheduling

A charging algorithm based dhe prediction of the energy prices during the charging period
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is proposed by59], where the charging stations are informed abouttie& pricing infor-

mation through wireless communication. During the charging process;nbadst neighbor
classification algorithm is applied to predict the price signals of the grid. If the predicted price
is greater than a threshold, charging is delayed until it determines a suitable time of charging
for the vehicleQuanet al[60] proposed serving EV parking lot users by utilizing a centralized
charging controller that considered the size of the battery. pdekmain goal of the above-
mentioned study was to minimize the peak loads on the grid and satisfy driver expectations
Wu et al[61] proposed centralized charge scheduling and load dispatch algorithms that aggre-
gators can useotminimize their energy cosf minimum-cost load scheduling algorithm is
designed, which determines the purchase of energy in thahdsd market based on the fore-
cast electricity price and PEV power demands. The same algorithm is applicable for inggotiat

bilateral contractsThe impact of a combined PEV load over the distribution grid is also studied.

The above investigations use centralized scheduling approachesowlyileonsidering the
static situations. To fill the gap, the follovg works also us centralized control butonsider

some mobility aspects of the EM#ile forming a charge schedufortomme and EEharkawi

[62] explored the problem of maximizing the profit of the aggregator that bids for ancillary
services (regulation and spinning reserves) while facilitating the charging of EV batteries. An
optimal bidding strategy is formulated, which selects the optimal clgapgint and the capac-

ities of each ancillary service to be sold. Mobility aspects considered include EV driving statis-
tics for the whole day, which is used to derive the expected availability times for EVs and travel
distances, which, in turn, are usedselect the daily charging profilm [63], the scheduling
problemis formulated tonaximizethe timeaveraged expected social welfare, which is a func-
tion of the total customer utility, the electricity cost associated ENtttharging, and the pen-

alty for not meetindeVs' charging requests. The decisimaking problem is formulated as an
infinite-horizon dynamic programming problem that considers the stochastic arrival process of
the PHEVs that evolves like a Markov chaime uncertainty in renewable generation, and the
inexact forecast of grid loads.

1 Decentralized charging scheduling

Ma et al [64] proposed a decentralized charge scheduling algorithm for a large number of EVs
using the Nash certainty equivalence methodology. The grid operator broadcasts the expected
nonPEV base demand among the PEV agents, and each PEV agent proposes a charging pla

based on this initial forecast to minimize its charging dastifi et al [65] present a game
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theoretic decentralized EV charging schedule for minimizing the customers' payments, maxim-
izing the grid efficiency, and providinthe maximum potential capacity for ancillary services.

The proposed mechanism is quite general, takes into account the battery characteristics and
degradation costs of the vehicles, provides atreed dynamic pricing model, and supports the
vehicleto-grid and modulated charging protocoks.time-dependent optimal power flow
charging problens studied66] that optimizes the operation of the power grid and the charging
activity of EVs. The objective is to reduce the chagginst and the total power generation cost.
They also consider the uncertainty arising out of the future -predastic load, and a near
optimal distributed online algorithm is developed for that. The authors proved that this problem
is convex with respeco the total electricity demand, and the solution to the scheduling problem

fills the demand valley optimally.

Similarly, investigations considering mobility with decentralized scheduling approaches are
carried onln [67], a decentralized EV chging algorithm in response to TQwlice in a regu-

lated market remains constant for a long time. The chargeawgmbedded TOU price mod-

ule formulates an optimized charging scheme to minimize the charging cost. By using the rela-
tion between the acceptable charging poweahefEV battery and the SOC, a heuristic algo-
rithm is presented to reduce the charging cost. To address mobility, the diversity in arrival time
of EVs is considered in the muldV caseHuttereret al.[68] proposed a mukagent policy
optimization where each EV (agent) acts in response to dynamic conditions in its environment
according to a given strategy. Evolutionary computation has been used for optimizing EVs'
charging behavior sih that EVs' energy demand is satisfied and secure power grid operation
is guaranteed using renewable power. The driving profiles of EVs (locations, time of arrival,

and stay time at each location) and uncertainties in intermittent supply are considered.
2.2.2Battery managementbased schedulingApproaches

As the core part of the energy storage of electric vehicles, the battery has the characteristics that
the energy replenishment time is significantly longer than that of fuel vehicles and the storage
efficiencydecreases significantly over time. How to effectively improve battery efficiency, im-
prove vehicle endurance, and extend service life has become a problem that cannot be ignored
in the charging scheduling proceks-ion Battery (LIB) has been widely apgdl as the power

supply for EVs.

In order to study the degradation characteristics of the battery, the evaluation methods can be

mainly divided into three classes: experimental methods, niEdeld methods, and data
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driven methodg$69]. As the name implies, the experimental method is to analyze the aging
behavior of the battery through a large number of experimeintsted by the discharge rate

or special experimental equipment, the application scenarios of the experimethiad rzue
limited [70]. The modelbased methods are introduced to realize online and reliable monitoring
of battery degradatiorror instancea LiFePO4 lithiumion battery degradation model equiva-
lent to money cost is formulad in[71], and the corresponding experimental is implemented to
verify the resultsThe datadriven methods describe battery internal degradation evolution
through the abundant pretest data and some machine learning algosiithost expert
knowledge on aging mechanisms. Compared to roastd methods, the dataven ap-
proaches show great advantages: 1) they havadeatftability, modefree nature, and the abil-

ity to learn from historical data; 2) Deep reinforcement leayDRL) can learn a good control
policy, even under a very complex environment by using deep neural net@adet.al.[72]
address the modeling by using a meilleé (DRL method to optimize the battery energy arbi-
trage consglering an accurate battery degradation model.

The intelligent charging scheduling system capable of estimating and minimizing these effects
can potentially extend the battery life and reduce battery degradation. Therefore, to achieve the
best operating mode, it is crucial for the system to devaogffective charging scheduling
scheme to minimize the battery degradation cost ashgceethe system peak power lo&d

[73], theexperimentamodeling methodareadopted to analyzéne impact on battery degra-
dation oftheaverage state of charg&nd the grid power supporting method is proposed based
on the controlled scheduling chargiriRelzeret al. [74] present a scheduling approatiat
considers the naelinear dependencies of battery agingnfrvarious operation parameters along
with TOU prices and price forecasts for computing optimal charging/dispatching schedules.
The methodology is applied to pridata obtained from four different electricity markets. The
investigation partly confirms esting profitability concerns but further shows that explicit con-
sideration of battery degradation can yield profitable outcoiies.EV charging scheduling
problem of a parandcharge system with the objective to minimize the EV battery charging
degradatin cost while satisfying the battery charging characteristic is stud[@8]inin addi-

tion, as a new form of EV energy replenishment, substation swapping has a better flexibility
margin than plugn charging in terms of chging scheduling. An optimal scheduling method

of battery charging station serving EVs based on battery swapping is propofs&i]. byhe
charging rate of each charging bay is controlidnile the schedulingoroblemis formulaedas

a mixedinteger program with quadratic battery degradation @gjeneralized bendede-
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composition algorithm is then developed to solve the problem efficiently.
2.2.3Demand uncertainty-based schedulingApproaches

In addition to the issues discussdxbve, the uncertainty of future charging demand is also one
of the important factors affecting the scheduling effect. In the time dimension, charging sched-
uling is to allocate the corresponding power to the EV staying in the charging station at different
times.However, for charging stations for private EV users without a fixed timetable, the ran-
domness of EV charging demand in the future time will increase the compaexitineffi-
ciencyof scheduling strategy formulatioRor instance, in order to ensufte completion of
charging requirements, a management system was desigf¥a( ia determine the charging
order by considering the departure timelis brings more calculations because of the con-

stantly updated charging ategy, and the margin of EV dwell time is not fully utilized.

In response to the above problemkhavanRezaiet al [78] presentan approach that realizes
demand response programs by developmgnergy management system for incorporating ag-
gregatedeVs. The arrival time and energy requirements of EVs are also consideaesto-
chastic mannein [79], throughthe provision of V2G programs during outage events, the role
of parking lots in improving the reliability of renewaldased distribution systems is investi-
gated. The random charging habit€df users in parking lots are simulatealsed on real data

In [11], an optimal energy management strategy for EV paykatg considering peak load
reductionbased demand response programns lliltin stochastic programming framework.
The uncertaitehavior of EVs, such as arrival and déyae times andthe stochasticity of the
remaining stat®f-energy of EVsare taken into accoutd maximize the load factor during the
daily operation of an EV parking ldturthermore, Pflaurat al [10] proposedan EV charging
station scheduling strategy considering the highly uncertain load characteristic. Byhasing
randomized algorithm arstatistic occupancy model of the charging statiba,quality of ser-
vice can bgyuarantee@nd less information of EVsersis required.

The demangbrofile of traffic flow and charging have a strong time sequetintes,the research
worksbegan to discuss the prediction of charging demand and the design of scheduling schemes
in stagesZhanget al [41] desigreda two-stage stochastic optimization is developed to mini-
mize the expected annual costs for providing charging services in different scenarios and further
verify this two-stage optimization algorithm if83]. In contrast to the twstage stochastic
model,A charge scheduling model considering multiple possible stages is prop¢3epTihe

proposed multstage model is more consistent with the real situation of a pddkitigat the
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requests are realized at different times. In the finite time honizoan divide time into appro-
priate equalength timeslots that allow for recourse decisions at multiple stages of the charging
scheduleNevertheless, it takes several roto obtain a higlguality solution, which isneffi-

cientin practical applications.

The rise of artificial intelligence algorithms helps improve the efficiency of such demand fore-
casting that cannot be modeled by formufaseuralnetworkbased approador forecasting

travel behavior to improve the scheduling efficiency is proposgglilinin this study, the cor-
relation among arrival time, departure timaad trip lengtharealso considered. The forecasted

EV travel behaviois then compared with Monte Carlo Simulation (MCS) which is the main
benchmarking method in this fieldnd results depicted the robustness of the proposed meth-
odology Based on deep reinforcement learniWgnet al [13] proposed a redalme EV charg-

ing scheduling without establishing the detail optimization moides. proposed approach can
adaptively learn the transition probability and does not require any system model information.
But the charging demand constraint&ds, which can make sure the EVs can be fully charged
upon departure, have been ignored. Therefore, a constrained Markov Decision Process EV
charging scheduling approach based on safe deep reinforcement learning is propb4ed by

The aim is to find a constrained charging/discharging scheduling strategy to minimize the
charging cost as well as guarantee the EV can be fully charged. The proposed approach does
not require any domain knowledge about randomness. It directlysléamenerate the con-
strained optimal charging/discharging schedules with a deep neural nekavkver, the
methods mentioned above all use a centralized forecasting method, which regards the power
demand of the charged EV as a whole, ignoring the a¢ridéfw information of each individual

EV. Therefore, those prediction and scheduling methods cannot be applied to the charging sta-

tions with limited chargers that can be flexibly scheduled.

2.3Review of Scheduling Approaches Considering the Transportation and

Distribution Networks Interaction

The charging station dEVs is an integral part of the actual transportation network, and the
electrical system also needs to be integrated into the actual distribution n@8Joflerefore,

the charging demands of EV users reflect in tla@sportatiorand power network are the
changesn traffic and power flowAccording to this, by formulating reasonable chargitrgt-
egies such as allocating idle charging facilities accordmgaffic conditions, pricing charging

prices according to geographic locations, adjusting charging powesponséo grid status,
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and using charging facilities to maintain power quality, etc., the operating efficiency of both
transportation and distriftion network can be improvethis section introduces the application
of V2G technique, coordinated operation of charging stations and renewable energy, sources

and scheduling approaches with alleviating traffic congestion.
2.3.1Application of V2G Technique

Vehicle-to-Grid (V2G) is a power scheduling process that allows thet&\fgect power to or
draw power from the gridvhich was introduced byv. Kempton in 199782]. This concept
utilizes the stored energy of the vehicldutill the demand othegrid during peak hosrand
enhance the power quality of the grid winereded

1 Energycompensation

Peakshaving and vallefilling of the distribution networkare someof the main application
aspects of V2G technology. [83], a home energy management system integrating vebicle

grid (V2G) capability for predetermined scenarios is proposed. The proposed system aims to
address the demand response schemes, bottimegbricing and emergencgdd curtailment,

V2G mode of operatiorn order to assign reatorld randomness to the EVs' availability in the
households and their charging requirements, Rassak[84] providea general demarshap-

ing problemapplicable for limit order bids to a dahead energy market. With the proposed
distributed demand response algorithm, the peak is reshaped towards 0% penetration of EV
without affecting the users' convenienéesimilar approach is proposed [i85] to stimulate

the potential role oEVs as distributed energy storage units to minimize peak demand in the
power distribution system.

EV charging at public places such as large parking coraglekarging stations, offissand
aparment parking can be clustered through an aggregator. It acts as a centralized system oper-
ator who controls the charging and scheduling of each86Y The aggregator can cluster a

large fleet of Eé to increase their capacity payment, which depends on the capacity of the
connected load. During peak houtsgaggregator can maximize the revenue with energy pay-
ment for providing the reserve and regulation servidggregatinglargescale charging sta-

tions can help reduce electricity prices during the bidding process in the electricity Wattket.

the objective of minimizing charging costs while satisfying the PEVS' flexible deraarag-
gregator biddin@pproachnto the dayahead electricity markes discussed ifi87]. A classi-

fication scheme is proposed[88] to minimize the total cost of energy trading with different

energy entities. In this scheme, EVs are classified into differeneslaggh different pricing,
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charging rats allotted power, and charging tisiéAggregator maximizes its profit by opti-
mally charging each class of EVs based on the strategy suitable for that class while saving on

the energy purchased from the power grid.
1 Power flow operating

Due to the access of highargingpower EV charging stations, tpewer flow in the distribu-

tion networkhas been greatly changé&ttonomic dispatch may result in unacceptable flows or
voltages in the network hus, optimal power flowOPH is a good solution fothis problem

that carminimize the total generation cost. Both equality and inequality constraints are consid-
ered in OPFAccording to the investigations frof89], the scheduling problem for the EV
charging can be augmented into the OPF problem to obtain a jointi@®ging (dynamic)
optimization. A solution to this highly nonconvex problem optimizes the network performance
by minimizing the generation and charging costs while satisfying the rietploysical and
inelasticload constraints. 1{00], a hierarchical system model to jointly optimize power flow
routing and V2G scheduling for providing regulation senaceproposedBy adoptingthe
semidefinite programmingelaxation, the original nedeterministic polynomiatime hard
(NP-hard) problem is transformed into a convex probl€he proposedscheduling algorithm

can flatten the power fluctuations at the buses with EVs attaalediate grid stability issise

andreduce the system power loss in a great manner while providing voltage regulation.

The assessment of EV charging scenarios based on demographical data is disd@4$ed in
and three different charge strategies are designgédhanmpacts of EVs charging on the dis-
tribution systemareassessd using standard load flow calculations. Results show that imple-
mentation of the loss minimization strategies improves the lifetime and efficiency of distribu-
tion system equipmentonsideing distribution system constraints such as transformer rating,
current rating of lines, voltage drognd phase unbalancen optimal scheduling problem is
formulated in[92]. Using the proposed optimal charging method, igicentages of EV up-

take can be sustained in existing networks without requiring any further network upgrades,

leading to more efficient use of existing assets and savings for the consumer.
1 Power quality

The introduction of the smart grid concaptreases the number of controllable components in
the power system, and at the same time brings more complex power quality\gseleson-
nected to charging stations, E¥an be equivalent to energy storage elementtesacan be

used to help alleviateower quality problems/oltage fluctuations are a common problem in
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distribution networksBrennaet al [93] aim to provide a possible solution to some common
and dangerous power quality problems and voltage sags, congitheriarge diffusion of elec-

tric vehicles.Deep energy and power analysis to evaluate the feasibility of the vl

(V2G) function to compensate fpower qualitydisturbancesverepresentedviohamedet al

[94] presenian attempt to use the V2G connected system to play an effective role in the regu-
lation of the voltage and power tife power system and to demonstrate its positive effect on
the system frequencin [95], presents anpiimized bidirectional V2G operation, based on a
fleet of EVs connected to a distributed power system, through a network of charging stations.
The system is able to perform dalgead scheduling of EV charging/discharging to reduce EV
ownership charging ctsthrough participating in voltage regulation services. By resipgnd

to reattime EV usage data, the optimizing method that the use of EVs to support voltage regu-
lation is designedEV aggregators camtegrate the scattered EVs and play the role of VR
sources with a high response speed and low dasaddress the challeegof stochastic EV
mobility, various distribution network topology, and the competition mechahisnet al. [96]
proposed discounted stochastic multiplayer game approach to analyze the competition among
EV aggregatorsThus, the impact of distribution network topology on the voltage regulate ef-
ficiency is investigated. The randomness of EV numbers is considered whenipyatieEV
aggregatorsavailablevoltage regulateapacity so that the tendency for tB¥ aggregatorso

follow the optimal strategies can be modeled accurately.

Frequency adjustment is also a V2G application direction that is currently widely used to e
hance power qualityn [97], a decentralized V2G control method is proposed for EVs to par-
ticipate in primary frequency control considering charging demands from EV customers. When
an EV customer wants to maintain tiesidual state of charge (SOC) of the EV battery, a V2G
control strategy is performed to maintain the battery energy around the residual SOC along with
adaptive frequency droop contrBly using EVs for frequency control in an isolated small smart
power sytem, a load frequency control V2G scheme is presen{@8]iiThe modepredictive

control method (MPC) is used as a robust area controller to solve the problems of load change
and system uncertaintie&.load frequency contt method for conventional power plants, bat-

tery energy storage systemg/< and heat pump water heatsrproposed ifi99], which pro-

vides an alternative toattery energy storage systerith the integration of EVs artteatpump

water heatersvhile suppressing the frequency fluctuation from the integratiorermgwable
energy sourcehenet al [100] designeda hierarchical game framework, which includes a

grid operator, an EV aggregator, and EWst canprovide V2G regulation services. In this
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framework, both noitooperative ganseand cooperative gammare studied to coordinate the
aggregator and EVs farovide V2G regulation serviceBy using the cooperative game ap-
proach, the social welfare of EVs and the EV aggregator can be further improved to the global
optimum and the V2G regulation services can also obtainaptemnal performance, though

with smallcommunication overhead.

2.3.2Coordinated operation of charging stations and other renewable energy

sources

In recent years, the penetration rate of renewable energy sources (RESSs) in the power system
has increased rapid[jt01]. Therefore, when formulating @ordinatée chargingscheduling
strategythe interaction witlRESshas becomereissuethat cannot be ignorewhen RESs are
integrated with the power grid, their variable generation could cause frequency fluctuation in
the pwer grid, which destabilizes the power system and gives rise to the power quality and
power fluctuation issud86]. To address this issue, a fuzzy controller is usgd0g] for the

control of EVcharging in order for the frequency control of a deregulated grid. By modeling
the RESs part and considering ihiermittent characteristicsmart deregulated grid frequency
control in presence of renewable energy resources by EVs charging comtesigaed An
autonomous distributed V2G control scheme can provide a distributed spinning reserve for un-
expected frequency fluctuations caused by the RES®t@tg103] proposed an autonomous
distributed V2G control schema.grid-connected electric vehicle supplies a distributed spin-
ning reserve according to the frequency deviation at theiplteyminal, which is a signal of
supply and demand imbalance in the power ghid.optimization model for V2G dynamic
regulation ofthe EVs connected to the distribution network with RESs is proposd®4i

The proposed model uses V2G to smooth out the power fluctuation from RES penetration and

minimizes the operation cost.

Uncoordinated charging of EVs leads to congestion in distribution feeders when the penetration
of EVs is reasonably highn order to relieve the uncoordinated charging of plugVs, a
Congestion management system in a distribution system with RE®senfed if105]. The

large proliferation of PEVs has been significantly creasingnpact on the transportation and
power sector in recent time&ppropriate stochastic models are introduce{i78] to capture

the volatility and intermittency of renewable sourc@sveral outage management schemes on
the basis of bankruptcy proble@re proposed to fairly distribute the available resources among
different microgrids/sections, once a failure ocdarthe systemThe results suggest thide
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realization of V2G programs offered by EV parking lots, accompanied by apprapuiatge
management schemesn significantly enhance the reliability of supply in modern distribution
networks.Wanget al [106] study an approach to smoothing the fluctuations of laogde

wind power by using vehicleo-grid systemsEnergy management and optimization syséem
designed and modeled. By using the wavelet packet decomposition ntbendarget grid
connected wind power, the required electric vehicle (EV) power, and supercapacitor power are
determined. The energy management model for EVs is then developed by introducing a knap-

sack problem that can evaluate the needs of an EV fleet.

Smat-houseswhich contain different generation resources, storage deaiocgs controllable

load, is going to be the next step in théstributedenergy resources frameworRue to the
current development &V technology and its commercialization, théegration of the EV in

the optimal management of residential energy systems will become a real need in the medium
term.In [107], anoptimization model is proposed to manage a residential microgrid including
a charging spot wita V2G system and renewable energy souiides.model is executed one
dayahead and generates a schedule for all components of the microgrid desigined man-

aging strategies show daily costs savings of nearly B§%6onsidering the advantages ttiat
charging demand of EVs can be fully or at leastiplly supplied by the local RESs help
reducetheir impacts on the power gridanget al [108] investigated the important problem to
coordinate EV charging with thedally generated wind power of multiple buildings, which
incorporates the random driving requirements of EVs among different buildihgsdea of

model predictive control is introduced to tackle the uncertainties of the problem and an iterative
EV-basedlecentralized charging algorithi;m developed to improve scalability.

2.3.3Scheduling Approaches with Alleviating Traffic Congestion

As discussed in the last sectidhe conservationatesearctfor transportation networkT(N)
operatonma i nl y f o c uate dharging nakigdasod-or mstance, irf109], rapid
charging navigation of EVs based on rale power systems and traffic data is proposed. But
this investigation only considered tfastcharging stations which are equivalent to uncontrol-
lable load components. The abilitychargestations as controllable components to support grid
dispatching is not been taken into account, and the flexibility of charging stations in smart grids
is not keen fully activatedHowever, due to the application of charging scheduling technology,
people realize that thEN and distribution network (DN) coordinated operatdiect boththe
efficiencyof charging station schedulirmsnd TN traffic flow situationOn this basis, Taet al

[110], based on a hierarchical game approach is proppsesknted an integrated EV charging
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transportation operation framework, which takes into consideration the impacts from both the
power system and transportation system. The proposed framework links the power system with
thetransportation system through the charging navigation of massivelt\énefits the two
systems by attracting EVs to charge atghk hours and saving the time of EV owners with
reakttime navigationBy considering théifferentiated services in an EV public charging station
network,Moradipariet al [111] considered a charging network operator that owns a network
of EV public charging stations and wishes to offer a menu of differentiated service options for
access to its stations. The priority level and energy request amount are lsstéitfenentiated
service menu, and then the charging network operator directly assigns EV to a statian with
low traffic path. This allows higher priority users to experience lower wait times at stations and
allows the charging network operator to digechanage demand, exerting a higher level of

control that can be used to manage the effect of EV on the grid and control station wait times.

The operating methods mentioned above are mainly emgt®ntralized algorithms, which

may not be computationallgfficient whenconfrontedwith large and complex systemBo
address this issue, S#tial [55] proposed distributed navigation approach to search the charg-
ing station with the lowest overall objective, which consists both of the time consumption and
the financialchargingcost. The operating is performed with reahe data, demonstrating the
adaptivenessef the proposed distributed approach to changes of the transportation network to-
pology and power system operating conditibon[112], a decentralized optimization frame-
work was proposed to analyze the impact of wirelessgaigaron TN and DN, and the user
equilibrium traffic assignment and the dalyead electricity market operation were simultane-
ously consideredl'he coordination between electricity and transportation networks would help
mitigate congestion in the electricibgtwork by routing the traffic flow in the transportation
network. The presented formulation leverages decentralized optimization to address the eco-
nomic dispatch in the electricity network as well as the traffic assignment in the transportation
network.Similarly, the equilibrium model integrating the stochastic user equilibrium and direct
current optimal power flow was developedii3]to study the interaction between traffic flow

and TOU pricesSunet al [57] proposed a trafficlistributioncoordinatiormodel to minimize

the travel cost of TN and the energy service cost of DN, which simultaneously considers the
economic operation of DN by alternating current dynamic optiraalep flow and the traffic

flow assignment of TN by EVs dynamic user equilibrium, respectively.
2.4 Summary

This chapter focuses on the research on location planning of charging facilities, charging power
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scheduling traffic network congestion mitigation, andardinated operation with the power
grid thatresearcherbave carried out in order to cope with laggaleEV applicationsSince
largescale EV applications will profoundly change the exgtimaffic behavior and power sys-

tem state, the research on ijiag facilities is comprehensive work.

Generally speaking, for th@anningof charging stationgheinvestmentost is usually the first
consideration, and the convenience of charging for users and the profitability of operators are
considerechs the main evaluation criteria. In the updated research, the planning of charging
facilities will further refer to the impact on the power distribution system and the application of
subsequely coordinaed schedulingwith the planned charging statioqspviding EV users

with appropriate charging stationuting services can effectively activate the enthusiasm of
using EVs, and to a certain extent alleviate the problems of traffic congestion and long queue
time caused by EV chargingherefore, the chging routineinvestigationsare usuallyassign-

ing charging stationso EVsas even as possible, and avoid congested traffic sections when
providingpathnavigation In recent years, theutingstrategy of charging stations that consider

the interaction b&veen the power grid and the transportation networkalsasgradually be-

come a research hotspot.

Looking to the more lonterm future, as countries around the world strongly support the EV
industry, the coverage rate of charging stations will definitelpbfull as the current gasoline
stations, or even be highdihe user's demand for the cruising range of EVs will force manu-
facturers to continuously increase the battery capacity, resulting in huge demand for charging
energy.How to reasonably scheduyirsuch a huge energy demand will also be a challenge to
the future intelligent power systeffihe current research can be divided into two directions
from the level of a single charging station and the level of coordinated operation of the entire
systemFrom the perspective of a single charging station, profitability, or charging cost, is the
most important indicato herefore, research works in this aegamainly focused on power
scheduling schemes in response to fluctuations in TOU electricity priggler research will
discuss in depth the previous demand game process between users and operators, so as to pro-

vide equilibrium charging schemes.

In contrast, if investigations are carrieatfrom the perspective tlheentire system, more nen
negligible factors have emerge8tate of power gird is taken into account in some existing
worksTherefore, the impact of charging stations on the power grid is studied, and countermeas-
ures based on reasonable charging and discharging of EV batteries are ptogapport the

grid frequency and voltage, ortespond to grid demand including other typ€loads Further
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research works pointed out that there will be a large number of renewable witbrgyntrol-

lable components the futureintelligent power sgtem. Therefore, the coordinated charging
station scheduling strategy based on improving the consumption level and utilization efficiency
of new energyarealso one of the hot topics of current reseahtladdition, as the charging
station is an importammomponentor the coupling power system and the transportation network,
exploring the coordinated operation of the power grid and the transportation network is also a
key research direction at present and in the future. It mainly focuses on improvowgthik
transportation network operation efficienegducing the unnecessary loss of electric vehicles,
improving the stability and economy of grid operation, emggicharging demand, and redig
charging costsWhat's more, the integrated energy inggrooupling more networks, such as

the heat network, is also a more complex research field. And the security, economy, and effi-

ciency of the network are topics that cannot be circumventde: EV charging scheduling
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3 Planning Strategy Considering Multiple Factors for

Electric Vehicle Charging Stations along Motorways

One of the main reasons obstructing the widespread use of electric vehicles is the lack of charg-
ing facilities. In addition, the rapidly increasing number of charging facilities angadgnt to

a load from the grid side, which will change the power flow of the existing power system and
bring significant challenges to the power quality as well as overall grid stability. Intensive re-
search has been carried out to study the optimaligaisiy of charging stations, their impact

on the power gridand corresponding energy management stratdgesever, the situation

for planning the charging stations on motorways is different. The charging stations on motor-
ways are designed to satisfy tleag-distance travel of EVs. Besides the insufficient number

of charging stations, another reason that su
replenishment speed of EVs is far more than the traditional fuel veliolebe actual motor-

way, there are already many service areas where drivers anea@lto park their vehicles.

Corstructing charging stations on existing service areas is more efficient.

Therefore, in this chapter, a charging station planning method based on the existo® serv
areas is proposed. Because this method is based on the existing service area on the real motor-
ways, additional motorway retrofit costs are not required. Comprehensive consideration of the
construction cost of charging stations, the waiting time forgthg, and the inconvenient driv-

ing cost. The proposed planning method can reduce the total cost as much as possible while
guarantee the distribution density of charging stations and the number of charging facilities in
charging stationthatcan meet th&V drivers requirements. Because the established medel

a mixedinteger nodinear problem, a corresponding improved solving technique based on the
genetic algorithm is designed@ihree different planning scenarios: orientation to minimize so-

cial cost, oientation to minimize charging station operatiagd orientation to minimize charg-

ing station construction, are defined to meet the different planning require@ueshthe effec-
tiveness of the proposed method is verified by simulation

3.1 Motorway Service Area Modeling Methodology

Based on publicly available data from Open Street NtBp4], the first step is to obtain location

information for all German service stations located near motorways, which represent potential
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locations for charging infrastructure.
3.1.1EV Charging Characteristics

Traffic data from the "Bundesanstalt fur StraRenwesen" (BA35] will then be assigned to

these locations so that it is possible to estimate the tempot@irpat the traffic volume near

each service area. Basedthe binomial distribution, time series of the charging demand (in
vehicles per hour) for each service area are generated, which form the basis for subsequent

optimization. The binomial distributiois described as:

X ~B(NVE,p,) (3.1)

To make statements about the charging demand occurring at the potential charging location, it
is necessary to know the relevant parameters of the vehicles wanting to charge. These include
in particular the (maximum) charging power, the capacity of thetyaibgether with the start

and end values of the SOC. Basedlmtypes and quantities of EVs registered in Germany in
2019[116] and the batteries parameters of the correspondingEV$ the relatonship among
charging power, battery capacignd travel distance of EVs is generated by exponential fitting

and linear fitting

In most cases, if there is any free charger, the EVs start charging as soon as they arrive at the
charging station. The charg timeT.. is calculated by:

T = (soG - sog)*cap
° hP

c

(3.2)

where /1 is the charging efficiency®. is the charging power which depends on the battery
capacity;SOG andSOG represent the start state of charge (SOC) and end state of charge SOC.
It is defined thaBOGI [0.05, 0.25] anOGI [0.7, 0.9] are following the normal distribution.

Each vehiclebs condition is generated by the

In order b evaluate the overload level, the line overloading canitieer defined as follows:

\éSOQ - N(”Z,Sz)
i SOG ~N(m,s,)

If the generated battery capacity SOC is not within the rated ran§©@Gfand SOG, the

(3.3)

batterySOG andSOG are regenerated based on normal distribution until they are within [0.05,
0.25] and [0.7, 0.9] respectively.
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3.1.2Clustering of the Candidate Service Areas

The existing service areas on the motorway are the candidate points fogpleeicharging
station. Define the set of all service area$\&8 The information o&-th service area is con-
tained inW*, as described:

"e'V\IBA:{V\IfA’Z VVSA}

| .

,'V\/jA:{Ions,Iats,ys,Ms} "WEAT WAA

wherelons andlatsrepresent the longitude and latitudetfs-th service aregs donate whether

(3.4)

the service area installed charging statidgis the number of chargein s-th service area’he
purpose of clustering in thchaptelis to aggregate the closer serviceas into one cluster and

select the optimal one or several service areas as the charging station location. The distance

card

matrix Dg. contains the distance between each service area, as described:

e 3 d
e
Dit'=¢g 4 6 4

A~ cand candp
sl 3 dss H

| ey enid

(3.5)

In General, a motorway is long and contains plenty of service areas. However, the current cruis-
ing range of electric vehicles is limited, so it is unnecessary to optimize the service area that is
too far away. Because the dlécvehicle cannot reach far awagm thecharging station when

it has charging demand. Therefore, the cluster boundary is defined to ensure that when the EV

has charging demand, it can use the remaining power to reach the charging station:

R. =SOG™3 E_3 Cap (3.6)
whereR: is the cluster boundarOC™ represents the maximum battery start charge $C;
is the energgonsumptiorof electric vehicles.

As illustrated inFigure 31, the clustering process starts from the first serviceiaatthe mo-
torway, and then the distandg™ between and the nearest service ajés compared. I€*"
¢Rc, service areaandj are classed into the same clugterhen, continuea search the follow-
ing nodes until the distance between adjacent service areas is greater than the cluster boundary
R.. Therefore, the output s&A° contains different clusteringnd setD®" contains the dis-
tance matrix between service areas in déferclustersLet skbe the number of service asea
cluk

in clusterk. D4« IS a matrixthatcontains the distance between each candidate service area of

clusterk. &I D is the distance between service draad;j in clusterk.
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Denk=DZMFi, fii]

f=f+i
No @ yes| Output the resting areas clusters:
Cclu:{CcIu,l,é , Cclu,k}
DCIU:{ D(Sle:é]S-Lé 3 Dgl(g‘lék

End

Figure 31. Serviceareastlustering process.
3.2Charging Station Planning Model

The basic points for planning charging stations are their size and location. The larger size charg-
ing stations contaimorechargerswhich can serve more EVs at the same time but increase the
construction cost. Thus, a motorway charging station planning model that considers the con-
struction cost, waiting cost and EVs inconvenient driving cost is proposed. Because aayotorw

is long and contains plenty of service areas as the candidate points for chargers, it is unnecessary
to optimize the service areas that are far away from each other. In addition, optimizing all can-
didate service areas at the same time increased theat@lc time. Therefore, the subsequent

optimization is performed in units of one cluster.
3.2.1Station Cost Components

Station Construction CostThis cost includes the fixed cost for constructing the fxegitime
construction cosEs: (including all the cost for construnga charging station, such as the ma-
terial costs and land rent) and the cost for extra cha@yer#t is assumed, that the fixed costs

of building new charging stations are the same on every possible locatios chdpter Be-

cause the number of EVs having charging demand changes over time, the waiting cost and the
inconvenient driving cost are based on time variatiehg be the index of the candidate service

areawhere can install the charging statidme fixed part of the construction cost is eimae
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consumption, thus, converter it into hourly values while considering isyife,Ct,, (gi C4

is described as:

cgt yg(Cft+mngt)

IS p—T e B

where Vs and Vs are the cost for the fixed oftiene construction forcharging statios and
charges, ir is the cost ofcapital;| is thelife-cycle of thechargingstation;y, is binary decision
variable in clustek, which is equal to 1 if service argdnas charging station, otherwise, zero;
m is integer decision variable in clustemeanghe number of chargers in charging station

It is assumed that all charging stations and charging piles are the sas)emMyipehe same
service life and consiction cost. From equatio.7), it can be found that the otiene charg-

ing station construction co$t is equivalent to the cost per hour according to the interest rate
and c ha ryle Sisifarlylthe bnéime charger construction cost is also converter into
the cost per hour. Moreover, the more chargetkercharging station the high#ére construc-

tion cost. In addition, the construction cost is zero wiiinservice area indtanone charging

station ¢ is zero).

EVs inconvenient driving CostThis part is adopted to define the other pathefatisfaction
degree of drivers. Driving | onger distances
satisfaction, so thmconvenient driving cost is taken into account. The motorway-dsréc-

tional and cannot turn around during driving, therefore, charging station planning in different
directions is independent. The optimization results based on these two directioniepend-

ent. Define one of the driving directions of thtorwayas directionA and the opposite as
directionB. Thus if a charging station is installed in the service area in one direction, the service
area in another direction will aldmvecharging fadities. The EVs inconvenient driving cost

Cha: (gl C9N of one charging statiogin timet is determined by:
Cg gt = (1_ ylg() ep c(NVEgAkdn/:Tﬁ g+ NVEE kdrilrl: g) (38)
NVE';t =NV A”t" + NV B"t" (3.9)
From equation3.8), the inconvenient driving cost includes both direction conditibh4z
andNVE; represent the number of vehicles withargingdemand agy driving along direction
A andB; d;;, andd;; are the distance from the service agesithout charging station to the
nearest service area with charging station alwitly directionA and directiorB respectively.
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The relationship between the number of velsitlaveling in different directions is expressed
by equation 3.9).

It can be found that when no charging facilities are construcigthiiservice area, EVs having
charging demand at this service area need to continue driving in direk@onkB to read the
nearest service areas with charging facilities. Therefore, the inconvenient driving cost is a part
of the cost in service areas where charging equipment is not installed. Meanwhile, the service
area with charging facilities will not contain the intioent driving cost. As illustrated in equa-

tion (3.8), the incontinent driving cost is based on the energy required to drive to the nearest
charging station, the longer the driving distance, the more inconvénédhiving cost. Simi-

larly, more EVs causehigher inconvenient driving cost.

Assume that when EVs have charging demand, drivers always choose the nearest charging sta-
tion. The distances frorthe g-th service area to the nearest service area installed charging

equipment alongvith directionA (d:,) and along directioB (d,) are computed by:

ax _ EMIn(dft) T G j<iyg =0

min,g — | (310)
950 e =1
émin(d™*) ,jl G™*,j>i,y*=0
S (311)
' |'O A =1
ey“i G™* y* =10 ]
Yoo B Ya Th g gtk (3.12)
k noik k —
iYy I G Y = Oy
éGinsk 8 Gnoi,k = SAcIu,k
(3.13)

\:,Ginsk 1 Gnoi,k :A
where SA®K represents the set of the service areas in clis®fs* and G"'X is the set of

service areas installed charging stations and without charging stations inlgluster

According to equation3(10) and 8.11), when theay-th service area already installed charging
equipmenty; =1), the minimum distance from two direct®are zero. When no charging fa-
cilities areinstalled in theg-th service areay{ =1), search the nearest charging station from the
set G"SK (service areas containing charging facilities). The service areas without charging
equipment (belong to s&™"¥ are not in the searching process. Considering that vehicles can-
not turn around on the motorway, only the service area along the dir@ctig)ns searched,
indicated as node numbjeti (j>i). Equation 8.12) shows that the division of the €% and

G"'kis based on whether or not charging facilities are installed, and equafi8héxpreses
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the relationship between the set including charging facil@iés‘and set not including charg-
ing facilities Gk,

Direction A 3/ @ Charging station

A

Direcion B O No charging station

Figure 32. Charging selection diagram.

An example of how the drivers select charging stati®shown in Figre3.2. Poins1, 2, 3, 4

and 5 are the candidate service areas where losdti@ghand 5 are chosen for the installation
of charging stations. Due thecandidate point 2 has no charging station, the EVs with charging
demand at point Bas to drive to point 1 (directiof8) or point 4 (directiord) for charging.

Therefore, the number &Vs charging at charging statigrin time slott is computed by:

EVCE, =y ENVES + (‘51[(1- y< JoRENEVAK ]+
Isk - (3.14)
éK MMNEVML‘ " gl SAx

y

h=g+1
As expressed in equatio8.14), thenumberof EVs chosa to charge at charging statian
consist of EVs having charging demand#ih charging station, EVs along directidrindent-
ing to be charged gtth charging statiorand EVs along directioB indenting to be charged at
g-th charging station. Wheré and &, are the coefficients that determine whether the cars
have charging demand at candidate servicetaf@éaving to directionA and directiorB) chose
to charge at charging statigrin clusterk. d; andd; are calculated as:
A AAK — cluk — JAk
§2§k;; :j?ﬂ STEQ "gi SAm*ffﬂ QALK

min,g
édB =1 ,dCIUK dBk . .
\I ?Bh_ %:Lk r;lr;g ugl SAClu'k," h| SAcIu,k

min,g

(3.15)

For the equation3(15), the first term means theumberof EVs having charging demand at
charging statiom; the second term represents all the EVs planning to charge at servigp area

in directionA; similarly, the third term donates all the EVs planning to charge at servicg area
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in directionB. Equation 8.15 expresses that when theh service area is the nearest charging
station, EVs having charging demanddh service area, where no chaigiequipment is in-

stalled, select to charge@th service area.

EVs Waiting CostWai t i ng cost is an indicator of dri
with charging demand changes over time, so the waiting cost is calculated based on hourly
resolution. For calculating the waiting cost of one charging station, the queuing theory model

is adopted?29]. It is assumed that each charger that providesharging service for EVs is

working independently. Thus, the charging mes at a specific charging station belongs to a

standard M/M/C# /a queuing problem. Define:

/ =EVC},, m=1/T" (3.16)
The number of E¥intent to charge at this charging stati@V(C,) is calculated byquation
(3.14). Thus, the waiting tim&,, (gi C®¥ is calculated by:

rog =1/ mmy (317
| 1
k-1 oy s, A g
134/ @ / Q%
P = ea u 3.18
en o Nl %8 (s; Q u ( )
U
/ (mk/,ik ) k /
ngt_Ll:]gt —= kg ’tng R+— (3.19
m mg!(l- rg’t) m
Lk
Toge == (3.20)
Chrot = YoLeg:Cn (321)

Equation 8.18) calculates the probability of charging station e while the equation3(19
computes the queue lendth, of g-th charging station at time slbtTherefore, the theoretical
waiting time ofg-th charging station at time slbis calculated byquation 8.20), which is one
of the indicators to judge the satisfaction of EV drivers. Afterwtirel satisfaction degree of
waiting time is conveddto the economic cost, as described in equata2l). C is the time
cost per hour for each EV usera charging station through the sury&y8, 16] therefore, the
longer the waiting time, the higher the waiting time cost. Furthermore, as the eq@atR)n (
described, without charging facilities the total waiting costs of a candidate servieeeaisa

zera
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3.2.20ptimization Model

Because the traffic flow is changing significantly over time, the number of vehicles arriving at
each candidate service ares pour is calculated based on hourly resolutoayear traffic
data. The objective is to minimize the total cost associated while supplying the charge demand,

as illustrated in3.22).

W sk T
Objective: minC,,, =4 & & (C,, +C,, +C"..)

c,g.t w,g,t d,g.t
k=1g=1t=1

(3.22)

The decision variables are the binary varialglgsr the charging station location and the pos-

itive integer variablest, for the number of chargers. Decision variables should follow:

(3.23)

If no charging station ibuilt-in service area, the number of chargers should be zero. In con-

trast, the charger number cannot be zero when charging stations are built in this service area.
éem=0 ,y*=0
i ﬁi 2 i_l (3.24)
i My Yo =

A cluster covers a wide range, in order to ensure the charging demands, at least one charging

station should be placed in one cluster:
sk
ays21 (3.25)
g

The waiting time of charging statignn timet should follow:

TX . CT (3.26)

wgt ¥ lwmax
In addition, according to the queuing theory, the charging facility utilizatichanfging station
should satisfy:

ri =TIR@EVCE, /ml <1 (3.27)
Besides, it should be ensured that when EVs have charging requietheinremaining elec-
tricity can reach the nearest charging station. dif&nce that the remaining energy can reach

is calculated by:

R, =SOG"3 E,3 Cag™" (3.28)
Therefore, the distance from the service areas without charging station to the closest charging
station shouldollow:

‘.e.(l' ylg;)3 drﬁi’rl:,g ¢ Rlim
:'(1' yg)?’ dring ¢ Rim

min,g

(3.29)
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3.2.3Solution Technique

In order to solve the MINLP optimization model mentioned above, an improved genetic algo-
rithm is proposed. The objective function is composed of {haeis: station construction cost,
EVs waiting costand EVs inconvenient driving cost. It can be found that once the decision
variabley* (y*={y%, ¥5, € ¥£}) in clusterk are determined, the inconvenient driving ca&ts

will not be affectedy the number of chargers in charging statiqm). Meanwhile, the sum-
mation of station construction cost$,, and EVs waiting cost€;,. has a direct relationship
with the number of chargers in the charging statiqimt). Increasing the number off is
proportional to construction costs while inversely proportional to waiting cost. Therefore, the
function ofC;,, + C},,; andnt has a minimum value.

Cost h(mg)
A Initial value A

Minimum value

Initial value B

Chargers number r;wg

Figure 33. Example for searching the optimal chargers number

An example of searching the optinmd] with fixed y* is shown in Figre 3.3. Set the initial
value of tham to be the minimum value that satisfies the tenable condition of (27) The initial
value is defined asy;,.

Sio =@ EVCy, g (3.30

wheredT;*"xEVC: Orepresents the smallest integer greater TH&f<EVG).. The relationship
betweerCs,, + C,: andmy is defined as:

Ck

w,g,t

Let m, = mi¢+1, comparéd(nt,,) andh(n,,). If h(m,)>h(n,), then continue to maksg; = n,,
+1 and compare the next grouphgit;,) andh(n,,). Until h(m,)< h(ng,..,), M, is the optimal

solution to minimize the summation of construction costs and EVs waiting costs. In another

+C¥ . =h(m) (3.31)

case, whem(m )< h(nt ), the initial value stas fromtheinitial value B (the right side of the

minimum value). However, at this time, timtial value B is the minimum value that ensures
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the chargers number satisfied the constrd@i7(), thus the initial value B is the optimal solu-

tion in this condition. It should be noticed that ttemstraint(3.26) should be satisfied at the
same timeCalculating the waiting time according ®X2) with the optimal solutiont;,, if the
constraint(3.26) cannot be tenable, the number of chargers needs to be increased to satisfy the

waiting time constraint3.26).

Start
Y
—| Generate new population: y*

Y | — ootimal |
Search optimal chargers |1 | Initialize: 20 \
number based on current y* [T | ¢=6T™"xEVCLOp=0 chargers |
\ number |
v } il calculation |
Fitness calculation < | R} ) \
based on (3.20) | Mgps1=Mgptl |« }
\
A 4 } \
Record best | \
individual | }
| p=p+1 |
S ‘ |
Selection, crossover | |
and mutation } }
\
| |
—“- p=p+ 1 }
\ |
\ \
\ |
\ |
\ |
\ |
\ I

Output
Output ;
results m'[mf é , m{]
Y
End

Figure3.4. The flowchart of the MINLP solution technique.

The genetic algorithm (GA) is adopted to find the optimal locaticih@€tharging statiory;.

The detailed flowchart of the solution process is showFigare 34. The bhary variabley, is

the individual inside the population of the GA. Once a new populatighisfcreated, search

the optimal number of chargem§ based on current. After that, the fitness values (objective
function) of this population are callated by the obtaingd andm, and the best individual in

this generation is recorded. Then through the selection, crossoeemutation process, the
new generation of is obtained, continue to screen out the best individuals in the new genera-
tion. Continue the loop until terminateselect the best individual from all generations as the
solution. In thischapter the service areas in a motorway are clusteredkigi@ups, and the
calculation process and results of each group are independent of each otheéhelgarg]lel
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computation can be used to shorten the solving time significantly.

3.3 Case Studyof the Charging Station Planning Method

3.3.1Test System and Simulation Paameters

Thetest system in thishapteris the German motorway network. The test system includes 163
motorways and 84 of them have candidate service ar€hs.car flow data based on hourly
resolutionis collected fronf115], and assigned to the nearest resting areas. Figure 3.5 shows
the comparison ahe number of vehicles passitige service area per hour and the number of
vehicles having charging demand at this service area per hour. In addition, the parameters for

the EVmodeling and charging station planning in ttliepterare presented in TabBl

3500 - - - 12
——Number of vehicle passing the resting area

Il Number of vehicle having the charging demand

3000 10
ﬁ 2500 - -z
3 g
2 2000 g
o 16 e,
_a.é 1500 \ ii
Z 1000 - :T

500 2
0 0
0 20 40 60 80 100 120 140 160 180
Time(hour)
Figure 35. Number of vehicles passing through the service area
Table 31 Main Parameters
Parameter Value Unit Pamameter Value Unit
m 0.15 - Ciy 62,000[28] U
Sy 0.15 - Csyt 27,600[28] U
m 0.8 - ir 0.1 -
S3 0.15 - p 30 years
h 0.9 - Ch 2[16] U/ hot
Po 0.002 - Cep 0.29 G/ hot
Tw,max 0.5 hour Ec 7128] km/kWh

In order to meet different development policies and different planning demands, three different

charging station planning scenarios are defined inctapter

Scenario 1:Minimizing the total social cosThismeans considering the optimization of station

construction cost, EVs waiting coand EVs inconvenient driving cost.
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Scenario 2:Minimizing the cost in the charging station. In this scenario, the optimization pro-
ces only minimizes the summation of construction costs and EVs waiting costs (the left part

and middle part of the objective function).
Scenario 3:0nly consider the construction costs of charging stations.

The objective function under different scenariol @hange, but it should be notetéhat con-
strairts should be satisfied in any scenario.

3.3.2Planning and Sizing Resul

The planning results of charging stations undeenariodl, 2 and 3 are shown iRigure 3.6

(@), (b) and (c), respectively. Larger rounds represent more installed chargers at that charging
station. It can be found, that because under scenario 1, the convenience of charging is consid-
ered, more charging stations are planned, but the number of chargeesviims area is gener-

ally lower than in the other two scenarios. In scenario 3, since the objective is to minimize the
construction costs, the size of charging stations will be increased. Increasing the size of a charg-
ing station will be more economicalath building more charging stations, thus the number of
charging stations under scenario 3 is the relatively least and the scale of a charging station under
scenario 3 is relatively the largest. The number and scale of charging stations in scenario 2 are
between scenario 1 and scenario 3.

—Highway Resting areas
e Charging stationsunder scenario1l e Charging stations under scenario2 @ Charging stations under scenario 3

Figure 36. The chargingstationplanning results under three scenaf@msscenario 1 (b) sce-
nario 2 (c) scenario 3

To illustrate the detailed planning result, the geographical distribution figure of one specific
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cluster including 20 service areas is showhigure3.7. The total number of charging stations

under scenario 1 is more than under scenarios 2 and 3. Furthermore, the specific cost result of
each scenario is shown in TaBI. It can be found thaheinconvenientriving cost of service

areas with charging fdities is zero, while consiiction cost and waiting cost are the dominant

cost. The opposite is true forrgiee areas withoud charging station.
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Figure 37. TheDetailed planning results undéree scenarios of a specific service area cluster
(a) position of the selected cluster (b) charging stations under scenario 1 (c) charging stations

under scenario 2 (d) charging stations under scenario 3

In order b reflect the advantages of the proposezthod, a control scenario was adtiethe
discussion. The control scenario adopts the planning method propd44@,ii6]suggesting
that all service areas are considered as charging Staimhthe number of chgers of single
charging stations is calculated independeiiihe overalkostdistributiondiagramof the whole
German motorway under three scenarios is showfigare 3.8, where the effectiveness of

different scenarios optimization is prov€bviously,the proposed method can reduce not only
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the construction cost but also the total social cost. That is because the method proposed in this
chapterconsiders the coordination between different charging stations so that one charging sta-
tion is able toserve EVs in multiple adjacent service areas with charging demand, with no need
to install charging stations at every service area. Meanwhile, it is guaranteed that the majority
of EV usersare able taeach a charging station because the distance betWwearharging
stations remains in the distanoenstraint Comparing the cost, the total cost under scenario 1

is the least, which corresponds to the optimization objective of minimizing the total social cost.
The total social cost under scenario 2 is redtdy smaller than scenario 3 but larger than
scenario 1, while the summation of charging station construction cost and EVs waiting cost is
the least. Since the objective is set to minimize the construction cost in scenario 3, the
construction cost shown Figure3.8 under scenario 3 is the least, but the total social cost under

this scenario is the largest.

T T T
EConstmction Cost [l Waiting Cost (@] Driving Cost

Control Scenario

Scenario 3

Scenario 2

Scenario 1

1 1 L 1

0 40000 80000 120000 160000 200000
Cost(€/hour)

Figure 38. Thedifferent types of coss under three different scenarios

Table 32 Detailed cost oflifferentservice areas

) ) ) Control Sce-
Scenariol  Scenario2  Scenario 3 ]
nario
Number of Chargr 4989 4855 4335 5633
Number of Charging Station 768 696 695 1274
Proportion of charging stations installed 60.28% 54.63% 54.55% 100%
Averagenumber of chargers per charging sta 6.49 6.97 6.23 4.42

The total number of service areas participating in the charging station planning algorithm is
1274. Table 3.3lustratestheinstallation ratio of charging stations and charging poles in dif-
ferent scenarios. It can be found that because all the mentioned cost factors are comprehensively

considered in scenario 1, it has the largest number of charging stations and chargers of the
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proposed three scenarios. In contrast, in scenario 2, the number of chargers per charging station

i s

t he |

argest,

because

t he mai

n

purpose

reducing the waiting time. In Scenario 3, the main objeds to reduce construction costs

of

while ensuring that the waiting time and the remaining cruise range are within the constraints.

Therefore, the number of charging stations and chargers planned in Scenario 3 is the smallest.

In the control scenario, altholigll the service areas are equipped with charging stations, the

number of chargers per charging station is smaller than in the other three scenarios, which

means the number of EVs served by each charging station and the utilizatietonses.

Table 33 Detailed cost of different service areas

Ser- Dis- Scenario 1 Scenario 2 Scenario 3 Control Scenario
vice tance Ciot Cugt Chat . Cigt Cla Cig Ciot Cugt  Ciae Ceot  Cugr  Cage
area(km)%nt(u/(u/(u/y;m’(u/(u/(u/y;nt(u/(u/(u/y;"ﬁ(u/(u/(u/
1 0 |00 O 0 10790 1 3 465 473 0 |0 0O O 0 3425|1 3 46.6 425 O
2 4891 7 821 1327 O 1 5 643 897 0 (00 O 0 2319|1 3 46.6 424 O
3 99400 O 0 1090, 0 0O O 0 10900 0 O 0 1200|1 3 46.6 423 O
4 15511 3 465 459 O 0 0 O 0 234|1 1111762886 O 1 4 554 849 O
5 16601 5 643 87.8 O 1 1111762112 0 |0 O O 0 234 |1 4 554 856 O
6 22960 0 O 0 13490 0 O 0 13490 0 O 0O 1580|1 4 554 847 O
7 29280 0 O 0O 1068 0 0O O 0 27210 0 O 0 798 |1 4 554 854 O
8 33030 0 O 0 2710 0 O 0 35.46|1 10 108.7274.8 O 1 4 554 707 O
9 3426/1 9 998 1718 O 0 0 O 0 33610 0 O 0 273 |1 4 554 705 O
10 40.730 0 O 0 1395 0 0 O 0 19390 0 O 0 1666|1 4 554 699 O
11 455210 0 O 0 2305 0 0 O 0 14430 0 O 0O 4299|1 4 554 71.7 O
12 49730 0 O 0 8,520 1 13135.4129157 0 |0 O O 0 3095|1 4 554 701 O
13 52.24/1 10 108.7 202.2 0 0 0 O 0 856|0 0 O 0 2253|1 4 554 711 O
14 58840 0 O 0 1105 0 0O O 0 2496/ 1 1111763023 O 1 4 554 716 O
15 62.07|1 1313542669 0 0 0 O 0 13950 0 O 0 11.09|1 4 554 718 O
16 66.1210 0 O 0 1385 1 13135412669t 0 |1 8 91.0 2539 O 1 4 554 701 O
17 67280 0 O 0 1776/ 0 0O O 0 3930 0 O 0 393 |1 4 554 710 O
18 72990 0 O 0 1055 1 4 55477006 0 |0 O O 0 23.14|1 4 554 700 O
19 76.13/ 1 10 108.7 200.7 O 1 7 8212137.11 0 |0 0O O 0O 1690|1 3 46.6 4383 0
20 81.0990 0 O 0 1691 0 0 O 0 16911 6 73.2 1544 O 1 3 466 424 O
Total cost | - 645.91108.2164.2 637.0 1114 225.2 ) 508.31274.2 266.5 1065.11333. 0
1918.5 1976.2 2049.1 2398.7

Notice: Distance means the distance from the first service area to this servicg:ar&i,, andC;,, represent the average c

struction cost, EVs waiting cost, and EVs driving cost per hour, respectively.
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Figure 39. Relationship between charging demand and number of chargers under (a) scenario

1 (b)scenario 2 (c) scenario 3 (d) control scenario
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The relationship between the charging demand and the number of clohdespecific clus-

teris shown inFigure 3.9 and the detailed cost of different service areas in Table 3.3. When
there is no charginfacility in the service area, the number of EVs at nearby charging stations
will increase. Charging stations with more EVs tend to have more chargers installed. Thus,
comparedvith the control scenario, the proposed three scenarios can not only redoge-the

struction cost but also decrease the waiting cost.
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Figure 310. Monte Carlo simulation result$he RCD distribution histogram under (a) sce-

nario 1 (b) scenario 2 (c) scenario 3

The Monte Carlo analysis method is adopted to evathatsatisfactions of EV drivers. The
planning results should ensure that EVs witlargingdemand can reach the nearest charging
station, thus, the remaining cruising distarRe) with the remaininggOC after EVs arrived

at the nearest charging station is defined as:

Fiem = Raat - dmin (3322)
wheredmin is the distance to the nearebargingstation andRvat is the distance that the remain-

ing battery energy can reach, where:

R, = SOC" G (ap (3.33)
Therefore, if theRem is smaller than O, theehiclecannot reach the nearest charging station.
The Monte Carlo method is adopted to simulate the veRiglevith charging demand in Ger-
many for one year. Randomly generated EV information such as battery capacity, charging time,

and remaining battery capacwhen having charging demaisiused. The results are shown
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in Figure3.10. It can be found that most of the EVs with charging demand can reach the charg-
ing station under all three scenarios. Since scenario 1 takes into account the driving loss of EVS,

the largest number of vehicles can meet their charging requirements.

In addition, the long charging time is one of the main obstdoléise diffusion of electric

vehicles. Thus, the Monte Carlo simulation is also adopted to simulate the waiting time of eac
EV. Similarly, each EVO0s information is gen
scribed in Section II. The waiting time of each EV is calculated by subtracting the time of arrival
from the time at which the charging process starts. When thedahargers, the first arriv-

ing vehicle is charged first. The time interval between the previous vehicle finishing charging
andthe next vehicle stamg charging is simplified to 0. Thus, if there are idle chargers when

an EV arrives, the waiting time dfis EV is O.
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Figure 311. Monte Carlosimulationresults: The waiting time of each EV irthe charging

station under (a) scenario 1 (b) scenario 2 (c) scenario 3

The waiting time of each EMinderdifferent scenarios is shown Figure 511 respectively.

The maximum allowed average waiting tifigmaxin thischapteiis set to 30 minutes, as shown

in Table3.1 Obviously, most of the EVs under all three scenarios can keep their waiting time
below 3 minutes. Comparing Fige 3.10 and Figire3.11, it can be found that under scenario

1, the majority of EVs can not only reach the nearest charging station with their remaining

power when they have charging demand, but they also spend less time wdhmgharging
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station. For scenario 2, because the planning only considers the construction cost and the wait-
ing cost, fewer charging stations astablishegwhich prevents relatively more vehicles from
reaching the nearest charging station with theiraieing power. However, the waiting times

in this model are still within reasonable limi@n thecontrary, more than 97%f vehicles can

reach the charging station under scenario 3, but the waiting time for each vehicle is the relatively
largest. Therefi@, three different scenarios have their own advantages and disadvantages. Ac-

cording to the demand and policy of car charging, different planning schemes can be.selected
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Figure 312. The hourlynumberof vehicles, average waiting time, idle rate of chargers and

charging power of a charging station under scenario 1

Scenario 1:

Advantagesmost of thevehiclescan reach the nearest charging station and the waiting time is

relatively low.

Disadwantage theconstructiorcost is the highest.

Scenario 2;

Advantagesthe waiting time foEVsis low and the construction cost is lower than scenario 1.

Disadvantagerelatively more vehicles could not reach the charging station.
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Scenario 3:

Advantags: the construction cost is relatively lowest meanwhile most of the vehicles can reach

the nearest charging station.

Disadvantagethe waiting time of thevehiclesis significantly higher than in the other two

scenarios and is more likely to exceed 30 r@su

Furthermore, the internal characteristics of charging stations are also discussedhaptes

One example is shown in kigg 3.12. The selected example has 13 chargers. It can be found
that the more vehicles arrive, the more likely the EVs bawait for charging. At some points,

even if a vehicle arrives, the waiting time is still 0. That is because some chargers are idle and
the vehicles can be charged directly without waiting. The idle rate reveals the utilization of
chargers, in Figre 3.12 the idle rate is often zero while the average waiting time is still very
short. Thus, the number of installed chargers is reasonable, meaning that the construction cost
is saved while the charging demand is satisfied. In most of the peak hours whe&Vsany
arrive, the chargers are fully utilized while the waiting time EVs is not long. The charging
power is calculated based on the EVs battery capacities, chargin@ticheharging power as
described in Section Il. The charging power profiles can be isupesed to the MILES model

[120] to describe the impact of highway charging stations on the power system.
3.4Summary

In this chapteran EV charging station planning strategy for motorways is proposed. The site
of the charging stens is selected from the existing service areas on the motorways, and the
size of charging stations is computed based on the number of EVs with charging demand. The
influence of multiple factors on placing charging stationthemotorway are considerewdm-
prehensively. The proposed method can reduce the social cost as much as possible while satis-
fying the charging demand of the majority of EVs. In addition, an improved genetic algorithm

is proposed to solve the established MINLP model. Because theatnplacing points in this
chapterare divided into many clusterhe parallel computation can be used, which greatly
improves the speed tie solution. Furthermore, in order to satisfy the different planning re-
quirements, three different scenarios preposed. Considering the advantages and disad-
vantages of different scenarios, suitable scenarios for planning can be selected according to

existing policies and development needs.

48



4 Optimal EV Charging Scheduling strategy with a Lim-

ited Number of Charging facilities

Lack of charging facilities is still a significant barrtertheelectrification of the logistic system.
However, a contradictory fact is that the high vacancy rateeatharger is also one of the main
problems at presenthis is because the charging demand characteristics of EVs have obvious
timing characteristics, so there is insufficient charging equipment during the peak period of the
traffic flow, and the phenonmen of idleness during the low traffic flow periddow to effec-

tively schedule the electric vehicle (EV) charging power to reduce the charging station operat-

ing cost when the number of chargers was limited becomes an important issue.

Consideringthe limited number of chargers, an optimal charging power scheduling method
based on TOU electricity price is proposed. Firstly, the uncontrolled charging scheduling model
is designed for fully charging EVs as fast as possible. There is no coordination dracngg

EVs, and no charging power optimization scheduling is implemented. Then, considering the
limited chargers assignment scheme, an EV optimal charging scheduling model to minimize
the total charging cost is proposed. The established model is a pilegeamming (BP) model,
which can not only guarantee the EVsO06 chargi
chargers, but also reduce the charging cost by optimal scheduling the charging power. The up-
per level mainly decides the charger index anglalblle charging period of EVs. The lower

level solves the EVs charging power within their available charging period by responding to
the TOU electricity price. Then, as the upper level is a mixed nonlinear integer program while
thelower level is a lineaprogram, a compound solving algorithm is designed to get the detailed
optimal EVs charging scheduling solutiof$irough performance verification, the proposed
algorithm can find the solution within an acceptable tifeally, the proposed optimal charg-

ing scheduling method compared with the uncontrolled charging scheduling method and a
commonly used charging power scheduling method. According to the results, the proposed
method can provide a detailed aefficient EV charging scheme, which can minimithe
charging cost while guaranteeing the Bdsarging demand when considering the limited num-

ber of chargers.
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4.1 Overall System Model

The proposed optimal charging scheduling strategy is for logistics transportation with EVSs.
Therefore, in order to meehd requirement of logistics transportation, the requested energy,
arrival time and departure time of EVs areauked to know. When an EV aresat the charging
station, itis required to fill up all thequiredoower before its departure time. Due tolthmted
number of charging facilities, when there are large among of EVs having charging requsrement

at the same time, the subsequentdavinotstart charging until the previous EVs finish.

EV Charger Requested

m IJ charging

time
. EV available
charging time
Charger

Charger
idletime

. EV Waiting time

L N

|J T
EV4

. [ L 03 [ ,
I T i

Figure 41. Charging station operating model

As shown in Figre 41, while EV4 arrives atthe charging station at;, both chargarand

charges are utilized and will finish their work at> andts, respectively. Thus, its available
charging time is frontz to t4 at charger, and the available charging time is frdgto ts at

charges. Moreover, the TOU electricity price in each hour is also different. Therefore, how to
schedule the EVs charging power to reduce the charging cost and meet their energy require-

merts is the optimization probleto be solved.
4.1.1Electric Vehicle Model

Considering theealisticscenariosthe arrival rate and departure rate are the-tiegendent

data that the EVs distribute goodghedaytime and back tihecharging station at night. Thus,

we set one whole day (24 hours, from the first day 12:00 to the next day 12:00) as one period.
Then divide it intoTl time slos equallyand lett (t= 1, TRdonatét-th time slos (an hour

is onetime slot). The arrividime, departure timeand required energy of each EV are required

information for optimal schedulingvhich is:

wE ={t2,t0, B} (434

wheret? andt; represent the arrival amtkparturgime of EVn; E;* means the required energy
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of EV n. Each arrival EV is sequentially indexed. Considering the realistic logistic transmission
scenarios, the number of charging EVs per hour and the required power to each EV are different.
The arrival time follows Poissonstribution[121, 122]with the average rate @f. The proba-
bility for N EVs arriving at the charging station during time slistgiven by:
/, N

P{N}= % (42)
Meanwhile, the departure time follows th@ncatednormal distribution [123, 7] N(/ 1,/m),
where/ 1 is the mean of the departure time ands the standard deviation. The required charg-
ing energy isleterminedy the initial battery state of charge (SC&")and the requested SOC
S*®4. According to the realistic transportation, the initial SOC and requested SOC are following
the normadistribution[123] N(/ 2,/72) andN(/ 3,/m) respectively. Wheré; and/ 2 are the mean
of theS" andS®, /7 andm are the deviations. Consequently, the required energy for each EV

IS computed by:

B =(§7- S @ap (43)
Considering the fact that the vehicle type of a logistics company is unitossupposed that
all thetypes of EVs and chargers are the same and ehahgemprovidesthe samemount of

energy in a certain time slot.

The maximum power that a charger can provide witimatime slot is defined aBmax Dt is
the time intervalWhenan EV charging withPmax the charging time for this EV is the shortest.

Thus, the minimum required time to fully charge is described as:

t" = gy @ (44)

Remark 1:considering the realistic operation of the charging station, it is assumed that when
EVs need not queue for charging, all EVs can complete charging within their dwell time at the

charging station. Thus, the charging informatiom-tti EV should satisfyt; T t; 2 t.".

Remark 2the index of EMwill be sorted according to the time of arrival. EVs arriving earlier
will be charged first. When serval EVs have the same arrivalttinttee EV with earlier depar-

ture timet; has more urgent charging demand, thus, has higher charging priority. In addition,
for EVs with the same arrival timand departure timg, EVs with more energy requirement

E-* will be charged first. The sorted set of EVs according to the atube® is defined as:

WE ={WE,2 \WE,2 \WE} (4.5)
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4.1.2Uncontrolled Charging Station Operation Model

In thischapter, each single time stas an hourln realisticuncontrolledscenariosEVs tend
to finishchargingas fast as possible. So, an EVIwiimediately start charging with the maxi-

mum charging power once a charger was idle.

Accordng to Remark 2theindexorder inWF is the sequence of EVs into the charging station
the charging process is shown in algorithm 1. Defined the outpugofithm4.1 is the charger

power matrixPch and the EV power matriRey, as described in:

é,F)Ch(il.,l) 3 PCh(l,T)g

Pase 4 6 4 46)
Spch(M,l) 3 I:)Ch(M,T)H
gpev(l,l) 3 Pev(l,T)g

Pu=e 4 6 4 (4.7)
gpeV(N ,1) 3 I:)EV(N ,T) B

Pch (MST) isthe charger charging power matrix wh&ssm,n means the charging power pro-
vided by them-th charger at time slat Similarly, Pev (N°T) isthe EV charging power matrix

wherePevp,ty means the charging power of thh EV at time slot.

Algorithm 4.1: Uncontrolled charging model

1: Start Algorithm 18: end while
2: Input: VEC, M, N, T, Pmax 19: end for
3: Initialization: Pcy=zerosM,T] (M3T null matrix); 20: return: Pep, Pev

Pe=zerosN,T] (N3T null matrix) 21:end Procedure
4: Procedure EPSPey, Pch, M, T, Pmay)
5. for every EVn=1:N 22:Procedure|CS(Pch, M, T)
6 (Tear, /)= 1ICS(Pcn, M, T) 23:  Initialize: Tea=T

. . 24.  for every chargem=1:M
req
7 while d'is not emptyand E; % >0 and o5 for every time slot=1T
d :
Tear ¢ tn 26: if Pch(m,t) < Pmax then
8: if Prax- Pny 1y € E*/Dt then 27: When them-th charger is idI€T=t
- 28: jump to 31

9: R 7, = Frax 29: end if

) — _ 30: end for
10: FZev(n,Tear) ~ Pmax I:)ch(/,Tear) + Rav(n,Tea,) 31: if Tea>CTnthen
11: EC9zE®_(pP - P Dt 32: Tea=CTn

_ " " ( max et 'Te“")) 33: Record the earliest idle chargerm
12: else 34: end if
13: Py =Py TEX/DE 35: end for

. — req 36: return: Tear /
14: Pevn,,) = En /Dt + Pevn,.) 37:end Procedure
15: Erd = 38:0utput: Peh, Pey

! 39:End Algorithm

16: end if
17 Tear = Tear +1
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In the uncontrolled charging model, EVs always select the earliest idle charger to charge. For
example, a EV arrives at the charging station while one charger is idle and the o#iners
utilized; this EV will select the idle onenlanother case, as shown in Figdrk, thelastEV4

arrives while all the two chargers are not idle. Because chdngishes the charging earlier,

EV4 will queue in charger

Remark 3:If the EV n hascompletedcharging at chargan at time slott, and the charging
power provided by the chargerat this time slot i®chm,t=Peve,y, the maximum allowed charg-

ing power for the next EY who charged at the same chargeat the same time sldtis:

Pev(j,t):PmaxI Pevm,t)-

Remark 4The under charging EVs will not stop charging until their energy requirements are

satisfied or their departure timersached

The uncontrolled charging model includes procedures: idle chargers searching (ICS) pro-
cedure and EV poer supplement (EPS) procedure. The ICS finds the earliest idle clarger
and its idle timéelear according to the current charging station st&ts The EPS procedure
supplies energy to each EV. For each EV, it will queue at the earliest idle changerstart
charging afteflear. The output of algorithm 1 is the EVs charging power m&apand chargers
charging power matrich. Thus, the charging characteristics of one charging station under the

uncontrolled charging model can be obtained.

4.2 Optimal Charging Scheduling with Limited Charging Facilities

Minimizing the chargingostby optimal charging scheduling can effectively reduce the cost
of logistics transportatiomwith EVs. By considering the TOU electricity price, shifting the
charging peak it the valley TOU price can reduce the charging cost significantly.

Limited by thenumberof chargers, the optimal charging process needs to assign chargers to
each EV, arrange feasible charging durations for each EV and determine the charging power of
eachEV. Therefore, thighapterdecomposes the optimization problem into a BP model. In the
upper | evel, accor di ngedpower Eatls BV ishssigneddaspe-i me an
cific charger, and then its start charging time and end charging timetanaohed. In the lower

level, with the fixed start charging time and end charging time, the charging power of each EV

is optimized to minimize the charging cost by responding to the TOU price.
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4.2.1Lower Level Model

The lower level model idesignedo optimiz the charging power based on the TOU electricity
price when the charging duration of each EV is determined. Défereth EV start charging
time ast; and the end charging time @s

Thelower levelmodelis designed as:

N T

mln a a I:)ev(n,t)eprice(t) (48)
Pevn) n=1 t=1
subject to
b )
aDF, .y =B "l N (4.9a)
t=ts
Puny =0, " t1 I_t,f,tr?J," ni N (4.9b)
Pono ¢ P "t T, I N (4.9¢)
B S —_ €
Pev(n,tﬁ) * Pev(j,tf) ¢ P if & =1, (4.9d)

In the objective function4(8), eprice(t) donates the electricity price at time doPevqy) IS the
decision variablehat representshe charging power of E\h at time slott. Constraint(4.9a)
expresses that each EV should be fully charged with the required dfgrgythin its start
charging time; and end charging tim&(Remark 4. Constraint(4.9b) represemtthat then-th

EV cannot be charged while the time is early than its start charging; ton&ater than its end
charging timet;. Constraint(4.9c) means the power provided per time slot cannot exceed the
maximum allowed lsarging powePmax In constraint(4.9d), in a certain time slot,ubsequent
EVscan be charged with the remaining energy if the charging power of the previous EV at the
same time slot has not reached the maximum allowed charging PesRemark 3. It can

be found that once the charging duratipandt; are fixed, the lower level model becomes a

linear optimization problem.
4.2.2Upper Level Model

Due to thdimited number of chargers, thehargerassignment process needs to take into ac-
count. Deine the chargers assignment maifgV °N), and its inside elements are described

as:
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_ @l if EVnchargingin chargerm g
= ) (

| oy | U 4.10
%0 otherwise ") (4.10)

(mn)

DefineC, as the index of charger selectedreth EV, Ly as the position in the charging queue
of n-th EV, as described:

{éCn =m Jf Gl =1
IILn = éld(m,j) A Oy =1 @

Therefore, it isnecessaryo assign each EV to reasonably choose the charger to achieve the
purpose of reducing costs. In addition, the start and end charging time should be optimized

when the charger assignment is determined.

As shownin Figure 42, suppose three EVs are assigned to charge at one specific charger, and
they have their own arrival and departure times. The first veBilds still in the charging

station when the second vehi@l¥j arrives, thus there is an overlap time between the two EVs.
Because one charger can only sexrgingle EV at once, the switch tinfg“" betweerEV, and

EV, should be set. Switch time is the time when the previMuginished charging and the next

EV, started charging, whetg""= t;=t’. The end charging time &V, is set as; and this EV

can charge duringt, t7]. Similarly, EV, needs to wait foEV, to complete charging before
starting charging, and the available charging duratidB\bfs [t;, t']. The end charging time

of vehiclen is equal to the start charging time BY,. For the third arrivinggV;, it has no

overlapping dwell time with thprevious vehicle, so the available charging duratiotf j$].

a d
tp EV, tr t|n
! switch | |
time 4|_>Ov_erlap | td
t:jwtch '|<_Jl.m§_>! E\/J J'
) |
a t2 d
tj t]s !‘_\'I' EVr tE
No O\TerlaEJ' |

Figure 42. Example othetime limit

Selectinga reasonableharger and deciding the suitable start charging and end charging time
isto reduce the charging cost as much as possiblanatieematical program of the upper level

model is:

Nt M

mln a a a azm,n) I:)ev(n,t)eprice(t) (412)

S ;e
G ot n=1 =48 m=1
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subject to

M
adm,tl ;"nlN (4.13a)
m=1
€2ty L
Ite¢td’ nl N (4.13b)
I *n n
t¢t® "ni N (4.13c)

éreti et et if C =C &L, +1=L, &t’ ¢ty
180 =t
=t

,otherwise (4.13d)

t-t22t™  "ni N (4.13e)
In order toreducethe total charging costhé objective 4.12) is to set the charger selection
elementdmy), start charging tim&, and end charging timé& as the decision variabl€on-
straint(4.13a) expresses that all the vehscédould be assigned to one and only one charger
for charging. Thus, in each column of matabat least and only one element iCbnsidering
the realistic situation of the charging procdsgs can onlybe charged while dwelling in the
charging station. Therefore, the start charging time and end charging time shouldtisatisfy
constraint(4.13b). Constraim(4.13c) means the end charging time is later than the start charg-
ing time. The start charging time of the subseqp#mEV cannot be earlier than the end charg-
ing time of the previous-th EV if bothn-th EV andj-th EV charged are at tharse charger.
Thus,constraint(4.13d) expresses the time restriction setting when two EVs had overlap dwell
time in the charging station. In one case, the start charging time of the subsgtuéty is
equal to the end charging time of the previodbk EV when satisfied: 1) bothth EV andj-th
EV charge at the same chargé#£C;); 2) thej-th EV queues just behind theh EV (Ln+1=L));
3) the departure time of the previaush EV is later than the arrival time of the subseqgent
th EV ("< t7). Otherwise, the start and end charging times of an EV are set as its arrival and
departure timgrespectively.The sufficiency charging time is the necessary condition for the

fulfill charging, as described iconstraint(4.13e).
4.2.3Solving Algorithm for the Established Bilevel problem

Since the decision variables in the upper level model are discontinuous integers, and the deci-
sion variables andt;are even th@ariableindex of the lower level model, which makes the

BP problem very difficult to solvel'he definition oft, andt; is to make the charging power in
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the lower model satisfy the constraid9@). In fact, it is negligible to first know when an EV
starts and finished charging. We only neecmsure that each EV meets the corresponding
charging demand within its dwell time and will not replenish energy duhiegon-dwell time.

Then according tRemark 3compute the start and end charging time of EVs. Thus, we convert

the problem from solvin@evqt) into solvingPchm,yy The convertetbwer level model is:

gnln G a a ch( mt) pr|ce(t) (4-14)
ch(m) m=1t=1
subjectto
Prmg € Prax o th T,"mi M (4.153)
G Pnmy =0 " T [t3,t71," nl N," mi M (4.15b)
td
a DRy =Er if d,,y =1" ni N,"mi M (4.150)
t=t2
ey
1 a- ch(m,t) ¢ Pnreq
1tt; , 'j(m,n):t'(m,j):l& L,+1=L,,;" ml M (4.15d)
a ch(myt) ¢ Pjreq

t=td
In the convertedbwer level, decision variables are transferred from the charging power of EV
Pevp,y to the charging power of chardeynm,, where satisfP; , ( m, B,’;‘( (ﬁm Py P),. The real
meaning is the charging power of one charger is the summatadintioé EV power charged in
this chargerConstrain{4.15a) is the charging power limitedpnstrain{4.15b) represents EVs
cannot be charged when not in the dwell time, emktraint(4.15c) expresses EVs should
finish charging during their dwell tim€onstraint4.15d) determines the charging duration of
EVs with overlapping dwell time. The charging power cannot exceed the required energy of
the previousi-th EV when the arrival time of the subsequiettit EV t} has not reached. Simi-
larly, the charging power cannot exceed the required energy of the subgeitjueEn when
the departure time of the previonsh EV t; is already reached.

As decision variables ithelower level modehreconverted, the convertegper level model

only needs to consider the chargers assignment nzésxdecision variables:
N T M

mln F a a a d(mn Pch(mt pr|ce(t) (4-16)

%) i=nt=1m=1
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subjectto

(m.n)

M , ,
Ad,,t1 .,"ni N,"mi M (4.17)
m=1

By the abovamodification thedecision variables in the upper level problem are reduced from

to, to, and dmp) to only dmp). Meanwhile, the lower level problem is a linear problem once the
decision variables ithe upper level problenarefixed. Although this BP problem is stidin

NP-hard problem, the converted model has greatly reduced the search range compared to the
previous modelCurrently,theheuristic algorithm is one of the mainstream methods for solving

such NPhard problera[124, 7] Since the decision variableg,nar e i n binary, we
to proceedvith the encoding and decoding steps when using genetic algorithms. Thus, the ge-
netic algorithm with specific improvements is used to solve this problem. Since the generated
matrix dmay conduct to one charger serving for too many EVs, whiakesthe lower level

model unsolvable, we need to quickly determine whether the lower level model can be solved

with the generatedmatrix.

Theorem l1define that the dwell time & EVs overlaps when charging at tkemechargem.
Suppose the index 8fEVsisn= 1, K., Thedwell time overlap mean$;<t3) & ¢é @&

< t% ). Define condition:

E:

——'D:

st <t¢) 28 ot <t )] (4.18)
y

b - w)oe,, <4 E=

n=1

F : problem 4.14)(4.15) isnot solvable.

E is necessary and sufficient condition Foy which isEg F . The conditionE can be used to

quickly judge whether the lower level modekeverable.

Proof 1:Firstly, theproofEt+ F is true. According to conditio, due to the dwell time of the
previous E\$ and subsequent EVs overlap, we can get:
t¢ te t

a Pch(m,t) +3 +a Pch(m,t) =a Pch(m,t) (4.19)

t=t? t=tg t=t?

According toconstraint(4.16¢) andE, we have:

d

tK K
A DR, ¢t - )P, <& E (4.20)
n=1

t=t?

To make the problem solvable, all constraints must be satisfied. But combiri®y &nd
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(4.20),constrain{4.15d) cannot be established, which means the problem is not sobalte,

IS true.
Then,theproofFt E is true.We canprove -Et -F is true. Thus, according teE, we have:

e X
\l,(tlc(j - tla)Pmax 2 a Er:eq
| n=1

(¢ <t¢)es aftd < tg_l)g (4.21)
y

Combinng (4.16b), @.20), and @.22), we have:

d

ty K
a I:)ch(m,t) ¢ a Er:eq ¢ (tg - tfl)F)max (422)

t=t n=1
ThereforeMPchim,nto make theonstraint(4.15d) established. Then, since we htiwet; ,, the

relationship can be obtained by combingapstraint(4.15d):

é tna+1 tg
o n . _=req
% Pch(m,t) ¢ta Pch(m,t) _En
1 t:tg n i
y Sl K (4.23)

n+l

A _req
Pch(m,t) ¢ a Pch(m,t) _En+l

t=ty t=th

t=t?

where the 4.23) means EM is charged less power iff [t3..] than in [, t;] and EVn+1 is

charged less power iti [ t;..] than in [.,, t5.,]. Both EVnand EVn+1 are charged at the same
charger and EVi+1 is subsequemd EV n. Thereforeconstrain{4.15d) is satisfied. Obviously,
constrain{4.15c) is easy to establish, so all constisaof the problem4.14)-(4.15) aresatisfied,

which means-F is true whenE. Therefore, the statemela F is true

The solvingalgorithmflow chart ofthe proposed BP problem is described-igure 43. Fol-

lowing constraini(4.17) to generat@as the individual and input it into the lower level model.
Then verify whether the problem.{4)(4.15) is solvable under each fix@dollowing Theo-

rem 1 The ®lvable problem will takedas a known parameter and solve the linear problem
with decision variableBenmy The wunsol vable situation will
upper level. If there are solvable individuals, the minimum charging&o§each individual,
outputted fromthelower level, will be their fitness values, and the individuals with sméller
values are more likely to reproduce offspring. Record the individual with the sntalesie

at this generation. Then individuals who aresabl produce offspring, generat@ew popula-

tion through crossover and mutation, and then repeat the above steps. Until the predetermined
generation is reached, stop the calculation and output the best individual as the result. Then

output the bestharges assignment matrigand its corresponding charging power malix
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If all individuals in the population are unsolvable, output the best solution recorded before. If
no best solution been recorded, then the number of EVs exceeds the service ddichafg-

ing station.

START Input: M, T, Y, €yice /

Upper Level )
Generate new population
Individual fitness \eraie new pop Lower Level
based on G < || Individuals: U (M*N)
Constrains: (4.17) i Fixed: i (M*N) |
y
Record the best ¥
fitnessindividual U Finding the optimal >
and corresponding | |L>| solution for each (.I?;fgs '1)
Per, G individual & (M*N)
_ A 4
Selectéon, (t:;)_ssover Solve linear problem
and mutation Objective: (4.14)
Constrains: (4.17) Constrains: (4.15a)-

(4.150)

Any best individua
recorded?

- Reurn Py, G |

N

Output best solution: Output:
P, G, U Error, too much EVs | &

I |
END

T

Return: Break |<—

Figure 43. Algorithm flow chart

Algorithm 4.2 EV charging power calculating algorithm

1: Start Algorithm 21: Pty = Eem/DX

2: Input: Pep, @ VEC, M, N, T, Prax _ e creq

3: Initialization:  Pe=zerosN,T] (NST null matrix), 22: B =E"- Een
ICVn=[ ] 23: else

4: ProcedurelCVn calculation 24: P =P

5. for every chargem=1:M er:m r:h(m't)

6: for every EVn=1L:N 25: BT =Ef - DRy

7 if dmn=1then 26: end if

8: ICVr=[ICVm, n] 27: else

9: end if . —

10: end for 28 Facio = B/DX

11: endfor 29: Eem = DRy - Ef°

12:  return: ICVn 30: n=n+1

13:end Procedure 31: endif

14:Procedure Pey calculation 32: end for

15: for every chargem=1:M 33:  endfor

16: n=1 _ 34:  return: Pey

17: for every time slot=1.T 35-end Procedure

18: J=1CVmn) 36:0utput: Pey

19: if E°?>0 then 37:End Algorithm
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20: if E.,, >0 then

Combiningthe optimal charger assignment matadband charger power matriX.,, the EV

power matrixPey, Which shows thepecific charging power of each EV at each time slot, can
be obtained. Thdetailed procedure for calculatifgyis given in Algorithm4.2. DefinelCVn

as the vector that contaitise index of charging EV at chargem. ICV ) represents théth
element in vectolCVm. According toRemark 4one charger can only serve the subsequent EV
when the previous EV finished charging, so the charging power of one charger will be allocated
in accordance witkhe charging sequence and required power of BB¥scombining chargers
assignment matrixdand EV power matrixPey, The specific charging scheme, such as each
individual EV charging at which charger and the specific charging power at each time slot, can

be obtained.

4.3 Performance Evaluationof the Proposed Optimal Charging Scheduling
Method

Since thegenetic algorithm is adopted in the proposed optimal charging scheduling algorithm,
the performance of the proposed algorithm is discugsedescribed above, by establishing

the BP model, we can greatly reduce the search range of the genetic algogtehawk in

Figure 44, directly using the normal genetic algorithm to find the results need to searath both
andPch at the same timeyherePch belongs to positive natural numbers. That means the calcu-
lation time will be long and the results whléfar away from the optimal solutio®By adopting

the solving method proposed by tlisapter the searching range is reduced to only sedrch

The value range dPh is a real number greater than 0, and the rangéisfonly selected
between 0 and 1, so thetaal possible types of chromosonaereduced from infinity to a

finite number. On this basis, when considering constraint (4.17), the possible types of chromo-
somes will be much fewer. Because the searching range is been reduced significantly, the com-

puting speed and accuracy will be increased.

Monte Carloanalysiss adopted to find the average generation for getting the best fithess value
and the average calculating time unddifferent number of chargel8 andadifferent number
of EVsN. Set theN to a fixed value 15, calculate the average required generation to obtain the
optimal solution and the average calculation time under diffédei@imilarly, Set theM to a
fixed value 6, calculate the average required generation to obtain the optiniahsahd the

average calculation time under differ&htThe results and parameters of the genetic algorithm
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are shown in Table 4.1. It can be seen that when the number of chargers increases, the calcula-
tion time will also increase. This is caused by tiease in chromosome length (Increase the
number of rows of. Similarly, when the number of EVs increases, the calculation time will
increase. But when the number of EVs exceeds the serving capacity, the calculation time will
decrease. This is becausearding toTheoremil, we can quickly determine whether the lower

level model has a solution, which can reduce the calculating time. According to the performance
test, we can consider that the parameters setting of the genetic algorithm is reasonable, and

can find the optimal solution in an acceptable time.

(Traditional searchi ng)
Ury — Umnm  Pe@y - Penmn
_________ 1
| © 0 >0 .. >0 |GAsearching
1 1 . | range
| eowm  eR)
(@

C Modified searching )
Uiy . Umm Optima  Peay ... Penmn
o ol S T
| 1 1| h >0 >0 |
Cepw |, = em
—— Foreech — — — — -
Upper level GA  fived U* Lower level
searching range linear searching

(b)

Figure 44. Searching range of (a) traditional genetic algorithm (b) modified genetic algorithm

Table 41 Performance of the POCS

M/N  Average generation of best fitness valu Average calculating time
4/15 25 0.081s
6/15 3.8 0.088
8/15 4.1 0.10%
10/15 4.5 0.116s
N/M  Average generation of best fithess valu Average calculating time
15/6 31 0.084s
20/6 39 0.088
25/6 4.7 0.106s
30/6 4.4 0.095

Population size50, Generations: 20,
Crossover rate: 50%, Mutation rate: 5%

In order todemonstratéheperformancef our proposed optimal charging scheduling algorithm
(POCS), the uncontrolled charging scheduling (UCS), and the most widely adopted optimal

charging without chargers assignment scheduling (WC#8)taken for comparisonsne
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charging station for the ¢pstics EVs is considered as a case stiithe WCAS method is the

most common scheduling method when considering the charging station capacity limitations.
However this method ignores the specific assignment of chargereach individual EV,

which means it cannot figure out the chargers assignment naaffixus, in thischaptey we

call it without chargers assignment scheduling (WCAS). The objective function of WCAS in
thischapterfor comparison is (4.8) in owhaperand the constraints are based on the model in
[125]. In addition,in order to prove the universality of the proposed metMmhte Carlo sim-
ulation is adoptetb verify the efficiency The serviceability under different charg method

is compared, the impact of the number of EVs on the charging cost under different charging
method is analyzed, and the economized charging cost rate of the POCS method is compared
with the UCS method.

4.3.1Case Study

The numberof chargers isVI=6, all EVs and chargers are the same $yaed the maximum
charging power per hour provided by each chargexis=20kW/h. The battery capacity of the

EV is set a<ap=100kWh. The optimization time slbis set as one hour while the total time
slot numbelT in an optimization duration is set as 24 hours. Because EVs usually transport
cargo during the daytime and return to the logistic center at night, the optimization duration
startsfrom one day 12:00 to the next day 12:00. In total 100 EVs were charded ohays.

The time of used electricity price is following the Germany electricity spot pi&&3. Both

the number of EVs st@yg in the charging station at each time slot and the TOU price are shown

in Figure4.5.
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Figure4.5. TOU electricity price and number of EVs dwelling at charging station

The heatmap ogbowerprovided by each charger at different times is showiguare 46. It
can be found that the detailed charging process about htveleager provides energy to each
EV is been established by the proposed algorithm. The charging powerR®@8&is more

dispersed in the heatmap. In tR®CSmethod, the chargers are always avoiding to supply
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energy when the electricity price wasa pek value. In contrast, by adopting the UCS, EVs
start charging as soon as they find the idle charger, thus, the economics of EVs energy supply
in this caseis much lower than after scheduling optimization. In addition, the POCS can find
out the exact chiger index of each specific E¥jgure 47 shows the charger selection of each

EV in a topical day where the deep color means this EV was charging at the specific charger.

Electricity price Euro/MWh

175
A T VT EREE D e

Uncontrolled charging Scheduling

Charger 1
Charger 2 |||
Charger 3 | |||
Charger 4
Charger 5
Charger 6

Charger 1
Charger 2 |||
Charger 3

Charger 4
Charger 5
Charger 6

12:00
24:00
12:00

Figure 46. Heatmapf the energyrovidedby each charger at different times.
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Charger 2

Charger 3

Charger 4

Charger 5
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5 10 15 20 25 30
Index of EVs

Figure 47. Selection of chargers in a topical day.
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Figure 48. The cumulative charging cost undifferent charging methods.

Figure 48 expresseshe cumulative charging cost under three different charging methods. It
can be found fronkigure 47 that the cosvf adopting WCAS is the least because it simulates

an ideal scene and ignores the specti@rger assignment scheme for each individual EV. With
the help of the POCS, the charging cost is reduced significantly compared with the UCS, and
the result is very close to the ideal WCAS condition. Meanwhile, a specific chargers assignment
matrix dcanrot be given in the ideal WCAS scenario, so we believe that the POCS can not only

reduce charging cost but also provide a more realistic charging operation scheme.

4.3.2Monte Carlo Analysis onService Ability of the Charging Station under
Different Scheduling Approach

In the realistic operation of the charging station, it is necessary to ensure all EVs are fully
charged. However, the number of chargers is limited and each EV requires a specific time for
chargng, sothe ability to provide charging services per day of a charging station is limited by
the number of chargers. Because the power requirement is stochastic, the serviceability of the
charging station is discussed by the Monte Carlo analysis. The pgtiiom duratiorT is set as

24 hours from 12:00 to the next day 12:00. Generate one\8Etvath a certain number of EV

N by following normal distribution, as described in Section Il. And then, input the generated
EVs setWF to the optimal charging schelihg model and the uncontrolled charging model. If

all EVs are fully charged, increase the numbeX,aind then generate anotherd&tandrepeat

the above steps continuously. Once not all EVs are fully charged, record duagthe ser-
viceability. By repeating the above process 500 times, the boxplot of the serviceability under
different charger numbsgrs shown inFigure 49.
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Figure 49. Thedistributionof serviceability after Monte Carlo analysis

Obviously, as the number of chargers increases, the number of EVs that can be charged per day
also increases. In addition, the serviceability under the POCS is very close to the serviceability
under the UCS and/CAS, which means the proposed charging scheduling method can guar-

antee the maximum number of EVs to complete charging.

4.3.3Monte Carlo Analysis on Charging Cost under DifferentScheduling
Approach

The chargingcostunder two charging methods with the increase of charging EVs is also ana-
lyzed by Monte Carlo simulation. For a certain numbeX,afenerate a set ¥, then input it

to the optimized charging scheduling and the uncontrolled charging model to caloaildife t
ferent charging costs. Repeat this process 500 times, then the cleagiggf the current num-

ber ofN under thee two different charging methodsecomputed.

The simulation results are shownRigure 410. The yellow dotted line and green ddttme
represent the price range of POCS and UCS, respectively. Meanivhildue line and point

mark the mean charging cost under PO&8%l the red line and point mark the mean charging
cost under UCS. The mean cost under WCAS is drawnthathblack ddted line. Four scenar-

ios with a different number of chargers are simulated. Evidently, regardless of the number of
chargers, charging with the POCS can reduce the charging cost significantly than the UCS
method. Similar to the result Figure 48, the cat under POCS is very close to the result under
theideal WCAS conditioa
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Figure 410. Charging cost under different charging methaith the increase of charging
vehicles (a) charger numb=4 (b) charger numbén=6 (c) charger numb&n=8 (d) charger
numberM=10

4.3.4Efficiency of the proposed optimal charging scheduling algorithm
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Figure 411. Reduced charging cost when adopting POCS compared to UCS (a) charger num-
berM=4 (b) charger numbén=6 (c) charger numbén=8 (d) charger numbaén=10

By adopting the POCS, the reduced charging costparedwith the UCS cost is shown in
Figure 411. It can be found that when the number of EVs is not large, the optimal charging
costis close to the UCS cost because the number of charging EVs that can be rescheduled is

small. In contrast, when the number of EVs arrives at a certain number, the optimization is more
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obvious. However, when the number of charging EVs continues to incteaseptimized

charging cost and uncontrolled charging cost will become closer. This is because the number

of EVs is c¢close to the charging stationbés se
charged before departure, theraifew extra megins for charging scheduling optimization.

Through the analysis of tlegficiencyof the proposed charging scheduling method, the number

of chargersn the charging station can be installed according to the actual number of EVs op-

erating every day.
4.4 Summary

Considering the limited number of chargeéh® charging process of a charging statiamasl-

eled. An uncontrolled charging scheduling process is designed to reflect the working way of
each charger when no extra optimization method is implemented. dimeptimal charging
scheduling method is proposed by reasonably arranging the charging time and chargers for each
EV.Byscheduling the charging powerrespondingion EVs
the TOU electricity price, the proposed method can reduce the charging cost as much as possi-
ble while ensuring that all EVs are fully charged. Besides, we analyzed the serviceability of the
charging station with the limited chargers and comgdhe economized charging cost uraer
different number of charging vehicles aadifferent number of chargers. The POCS method

is compared with the UCS method and the WCAS method. Through extensive simuitations,
has been shown that with the proposg@timal charging scheduling algorithrthe charging

station can not only schedule the charging process efficeent but also providea more de-

tailed optimal charging scheme.
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5 Data-driven Intelligent EV Charging Operating Consid-

ering the Charging Demand Forecasting

In thelastchapter, the scheduling schemes of limited charging facititiediscussedCoordi-

nated charging scheduling can improve the operating economics of charging stations, promote
the utilization rate otharging facilities and reduce the required amount of chaigevgever,

the limitation of the proposed scheduling method in the last chapter is obVmapply the
scheduling method in the last chapter, the future charging demand of each EV is redugted,
means itis only suitable fora parking lot with a fixed charging timetable, such as electric bus
charging and electric logistics truck charging. Besides that, the battery degradation characteris-

tics that affect user satisfaction are also not censitl

To tackle this issue, a datliven intelligent EV charging scheduling algorithm is proposed in
this chapter, by scheduling in response to the-tifrgse (TOU) electricity price, the limitation

of charging facilitiesand detailed charger operatipgpcess is also considered. The EV charg-

ing demand forecasting process is proposed inntluge versatile chapteAn EV charging
demand forecasting method basedagreural network algorithm is proposed. The forecasting
process predicts the subsequento$etharging EVs including the number of subsequent EVs
and their respective dwell period and energy requirements. The charging scheduling optimiza-
tion model considering the limited charging facilities is proposed. The object of the optimiza-
tion model is ® minimize the overall cost. The equilibrium between station operators and EV
usergs obtained. The total charging cost for the charging operators is reduced while the charg-
ing requirements and reducing the battery degradation are assured. Combinihgrgivegc
demand forecasting method and the scheduling optimization model, thenealharging
scheduling system operation process is introduced. By considering the real and estimated EVs
in the optimization model, the more accurate guidance for theeahpogver allocation at the
current moment can be obtained. Detailed power scheduling and charger operatingeproces
for each individual EV are provided. The proposed DICS approach can provide the scheme of
how to flexible use the limited chargers to coctribe appropriate EVs and provide correspond-

ing charging power.
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5.1 The Charging Station Model and the Necessarily of Forecasting

As discusse@bove, coordinating charging stations for EVs can help improve the overall charg-

ing economy and reduce the constiaticost of charging stations. Therefore, the mulitpte

multiple charging station type designed[&3] is applied for charging scheduling designing.

The proposed DICS method in tleisaptelis mainly for operating a single charging station and

can be applied to places suitable for optimized charging scheduling, such as work locations,
commercial centers, and residential areas. Theldetad intelligent charging scheduling sys-

tem model is shan in Figure 51. When an EV intends to charge at the charging station, the
system will report its required charging information, including arrival time, departureainde

energy requirement. Since the performance of the power scheduling-gdeperdenand the
information of the subsequent EVs is unknown, we apply the information of historical arrived
EVs to predict the future charging demand. W
the intelligent charging scheduling procedure is contrdiiethe charging scheduling system

(CSS). Each EV parks in the charging area and connects to the charging network. The charging
network is the multipleharger multipleport charging system, each charger is allowed to serve
multiple parking spaces and ed€EN is allowed to be charged by multiple chargers, but one
charger can only charge one EV at a t[8%®. By considering the TOU price, battery degrada-

tion characteristicicand usersd satisfact i ocae,objetthad ea€hSS c o
charger and adjusts the power dispatch from each charger. All the charging activities are auto-

matically switched.

Traffic Flow TOU
Forecasting -III !GPI’ICE
A4
- Charging ® A
| Charging Scheduling |eH O Y%
nformation Report 0 © Satisfaction
v » =
: Energy Requirement Scheduling ——————
Arriva |7 | ¥ _S_Cfle[ng 4 ’ Battery
( .J'F_/ 1:\ \\L4 Degradation
Q q [
\@': :
. | :
Depature L" S L | . Limited
. : i
P L R
HIE S I |
{oEoEﬁ | I
|

Figure 51. Model of thedatabased intelligent chargirgcheduling system

Figure 52 gives a toy example about the advantage of scheduling considering the EV infor-
mation forecasting in the case of limited charging facilities. Assume that the maximum power

that a charger can provide in a time sloPis=4, andonly one charger is available in the
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charging station that can only serve one EV at the same tirRggure 52 (a), the current time

slot is 1, the EWM with 10 units of energy demand arrives at time slot 1 and will leave at time
slot 5. When no sulegiuent EVs are considered for scheduling the optimal charging scheme is
to charge 2, 4, 4 units of power at time slots 1, 4, WorBecause this charging scheme can
ensure useW, completes its charging demand before leaving, and the TOU priceeasitts

1, 4,5 are lower than other times. From timessldb 2, the scheduling process in total provides

2 unitsof energy to\ to avoid the high TOU price. However, whiiretime slot comes to 3,

an actual EMWM with 6 units of energy demand arrived and will leave at time slot 5, shown in
Figure 52 (b). From time sl@t3 to 5, it can only provide a maximum of 12 units of energy,
while W, andW have a total of 14 units of energy demand at this time, sdérging demand
cannot be fully guaranteed. In addition, the charging station has to provide charging power at

time slot 3 when the TOU price is the highest, which further reduces the charging economy.
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Figure 52. Toy example for the scheduling (a) without EV information forecasting at time slot
1 (b) without EV information forecasting at time slot 3 (c) with EV information forecasting at

time slot 1 (d) with EV information forecasting at time slot 3
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In other casg illustratedin Figure 52 (c), assume at time slot 1, it is predicted thaM&Wvith

7 units of energy demand will arrive at time slot 4 and leave at time slot 5. Then the optimal
charging scheme is to chargé 4, 4, 1, 1 unit of engy at time slots 1, 2, 3, 4 and charge the
predicatedM; 3, 4 units of energy at time slots 4, 5. Similarly, whisgtime slot comes to 3,

the actual EMWM with 6 units of energy demand arrived, showrFigure 52 (d). Since the
charging margin hasgen taken into account by forecasting, 8 units of energy had been charged
to W, in advance at tinel and 2. Therefore, after the actMdl arrived, bothW; andW can

get sufficient energy supply at the lower TOU price period, tims 4land 5.

In the caseof limited charging facilities, we not only need to predict the amount of energy
demand in the subsequent moments but also need to predict the number of EVs and allocate the
energy demand to them. Even if the forecasting process cannot piecampletely accurate
follow-up EV data, the scheduling with subsequent can still provide a certain margin for the
charger and bring significant improvement ithe economy and user satisfaction. Of course,

the more accurate the forecast is, the nefiieiency would be improved.
5.1.1Electric Vehicle Charging Demand Information

In arealisticsituation the charging demand in a charging station is-ii@eendedwhich that
means at different tinsethe number of EVs in the charging station is differené diival time
and departure time of theth EV aret} andt], wheret} <t. E; represents the required energy
of n-th EV. The required charging energydsterminedoy the initial battery state of charge
(SOC)S!" and the requested SC&* where both of them are following the Gaussian distribu-
tion [123]. Consequently, the required energy for each EV is computed by:

B = (S S Jcan (5.1)
whereCam is thebatterycapacityof n-th EV. Pmaxis the maximum power that a charger can
provide within one time slot. It is assumed that the charging demand of all cars will not exceed
the maximum power that can be obtained during the dwell time, which jéati$ E;*/Pmax
The arrival timedeparture timgand required energy of each EV are required information for
optimal schedulingwhich can be regarded asJaer, defined as:

WE ={t,t¢ B} (5.2)
EVs staying in the charging station for a certain period can be regarded as a chasgiofg
the charging station. Define tiasksetWF ={W,, €W, éWL}, whereN denotes the number

of users in one task,is the index otheuser.
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The TOUelectricity price at different time slots is definedegse(t), wheret is the index of

time slot. Therefore, the electricity purchase cost for the charging operator is:

G(Rﬂ) = eprice(t) Pn,t (53)

wherePn: denoteghecharged power of EWi at time slott.
5.1.2Battery degradation characteristic

From the perspective of users, EV users expect to complete the charging requirements within
the dwell time while increasing the battery life. Thus, the battery degradation model is estab-
lished. The LiFeP® lithium-ion battery, which has more thermal and chemical stability, has
been widely used in a variety of EV&]. A degradation cost model for LiFePO4 battery cells

is developed ii71], whichcan be expressed as:

a(P,)=a (P, /Can,)’ +h P, /Cap, +¢ (5.4)

where parameteis, by andc: arerelatedto the battery characteristics:

a, =10°tC_, b, /(DV,,,)
b =10%C, /(b, - bV...) (5.5)
c:t = tDC::eIIVnom/( bl * bSVnom+ bSVvim + bYVv:f)m)

whereCeerl is the price($/Wh) of batterycell capacity;Vhom denotes the cell voltag®, is the

number of composed identical celg;i= 1, é, 7 are t he flarft ameter s
5.2 Data-Driven EV Charging Demand Forecasting based on LSTM

In the actual scene, the charging demand information of EVs that wikarrithe future is
unknown. However, the information of the subsequent EVs will affect the scheduling efficiency.
Thus, it is essential to forecast the subsequent charging demand for improving scheduling effi-

ciency, reducing charging costs, and increasilge r s 6 sati sfacti on.
5.2.1Long short-term memory (LSTM) network Application

Data Preprocessingin order to improve the performance of intelligent charging scheduling,
detailed EV information (including arrival time, departure tiraed required energy) is re-
guired to be predicted. From the perspective of the charging station operator, it is easy to record
the number of vehicles arriving and departing at different times, as well as the energy demand
data of the respective EVs. DefiNg andN; are the number of EVs arriving and departing at
time slott. N; denotes the number of EVs dwellingtla¢ charging station at time slatLety:

denotes the expected total energy demand at timg stbtch is computed as:
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