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Abstract 

In response to the call for carbon neutrality, the global energy industry will usher in tremendous 

changes in all aspects. As a necessity of modern industry, traditional automobiles have pro-

duced huge fossil energy emissions. Electric vehicles (EVs), which offering significant poten-

tial in improving the eco-friendly environment accelerating the construction of carbon neutral-

ity, become a good alternative to traditional fossil energy vehicles. As the ambitious plans of 

medium and long-term EV penetration rate proposed by various countries, EV charging stations 

need to be able to provide EV users with more convenient, efficient, and economical charging 

services. Appropriately arranging the location and capacity of charging stations can actively 

guide users' enthusiasm for the use of EVs and significantly stimulate the enthusiasm for in-

vestment in the construction of EV charging stations. Applying effective charging energy 

scheduling strategies based on the built charging stations can make full use of the flexibility of 

the EV batteries to achieve the purpose of reducing charging losses and even supporting the 

power grid system. 

This dissertation focuses on the investigation of the planning and operation of the EV charging 

station. Various real constraints in actual operation are discussed and modeled in detail. The 

main contributions are described as follows: 

(i) An EV charging station planning strategy, considering the construction cost and driversô 

satisfaction, is proposed in this dissertation. The whole German motorway information and an 

hourly-based resolution traffic flow are collected, and the existing service areas on motorways 

are presented as potential locations for charging infrastructure. Close service areas are clustered 

into a group and the optimal charging station placing locations in this group are calculated. The 

charging station construction costs, EV drivers waiting costs as well as the EV inconvenient 

driving costs are defined. By considering the different types of costs mentioned above syntheti-

cally, a planning method that can satisfy the charging demand while reducing the construction 

cost is proposed. In addition, three different planning scenarios to meet different planning re-

quirements have been proposed. The established optimization problem is a mixed-integer non-

linear (MINLP) problem and an improved approach based on the genetic algorithm is proposed 

to solve this problem. Parallel computing can be adopted which can improve the solving speed. 

Results verify the efficacy of the proposed method. 

(ii)  An optimal charging scheduling method by responding to the time-of-used (TOU) electric-



ity price is proposed. First, the uncontrolled charging model to fully charge EVs as fast as pos-

sible is established. Then, an optimal charging scheduling model by considering the limited 

number of chargers is proposed to both reduce the charging cost and guarantee the charging 

demand of each EV. The proposed model is formulated as a bilevel programming (BP) model. 

The charger index and available charging duration for each EV are determined at the upper 

level, while the charging power of each EV at each time slot is determined at the lower level. 

After that, a solving approach is introduced for the proposed BP model. The efficacy and per-

formance of the proposed charging scheduling method are verified by simulation results. 

(iii) A data-driven intelligent EV charging scheduling algorithm is proposed in this dissertation, 

by scheduling in response to the time-of-use (TOU) electricity price, the limitation of charging 

facilities, and detailed charger operating process is also considered. First, based on the neural 

network algorithm, a charging demand forecasting method is introduced to establish the charg-

ing task of the charging station. Then, according to the established task, an optimization model 

that considers the charging costs, battery degradation, and user dissatisfaction comprehensively 

is proposed. The proposed model is formulated as a mixed-integer nonlinear programming 

problem, and a corresponding approach for solving the model is also proposed. Finally, the real-

time operation process of the proposed scheduling method in the actual charging station is pre-

sented. By comparing with the existing methods, better effectiveness and performance of the 

proposed scheduling method are verified by simulation results. 

(iv) A collaborative optimal routing and scheduling (CORS) method is proposed, providing an 

optimal route to charging stations and designing optimized charging scheduling schemes for 

each EV. In the order of reporting, whenever an EV reports its charging demand, a CORS op-

timization model is built and solved so that a specific charging scheme is designed for that EV. 

Then, the TN and DN status is updated to guide the subsequent EVs operating. The proposed 

CORS integrates the real-time state of the TN and DN, and effects positive benefits in helping 

EVs to avoid traffic congestion, improving the utilization level of charging facilities and en-

hancing the charging economy. The combined distributed biased min consensus algorithm and 

generalized benders decomposition algorithm are adopted to solve the complex nonlinear opti-

mization problem. Through comparing with the existing methods, better effectiveness is veri-

fied by simulation results.  



 

Kurzfassung 

Als Reaktion auf die Forderung nach Kohlenstoffneutralität wird die globale Energiewirtschaft 

in allen Bereichen gewaltige Veränderungen herbeiführen. Als eine Notwendigkeit der moder-

nen Industrie haben herkömmliche Automobile enorme Emissionen fossiler Energie erzeugt. 

Elektrofahrzeuge (EVs), die ein erhebliches Potenzial zur Verbesserung der umweltfreundli-

chen Umgebung bieten und den Aufbau der Kohlenstoffneutralität beschleunigen, sind eine 

gute Alternative zu herkömmlichen Fahrzeugen mit fossiler Energie. Angesichts der ehrgeizi-

gen Pläne verschiedener Länder zur mittel- und langfristigen Verbreitung von Elektrofahrzeu-

gen müssen die Ladestationen in der Lage sein, den Nutzern von Elektrofahrzeugen komfor-

table, effiziente und wirtschaftliche Ladedienste anzubieten. Eine geeignete Anordnung der 

Standorte und Kapazitäten von Ladestationen kann die Begeisterung der Nutzer für die Nutzung 

von E-Fahrzeugen aktiv steuern und die Bereitschaft für Investitionen in den Bau von Ladesta-

tionen deutlich erhöhen. Die Anwendung effizienter Strategien zur Planung der Ladeenergie 

auf der Grundlage der errichteten Ladestationen kann die Flexibilität der EV-Batterien voll aus-

nutzen, um die Ladeverluste zu reduzieren und sogar das Stromnetz zu unterstützen. 

Diese Dissertation konzentriert sich auf die Untersuchung der Planung und des Betriebs von 

EV-Ladestationen. Verschiedene reale Randbedingungen im tatsächlichen Betrieb werden dis-

kutiert und detailliert modelliert. Die wichtigsten Beiträge werden im Folgenden beschrieben: 

(i) In dieser Arbeit wird eine Strategie zur Planung von E-Ladestationen vorgeschlagen, die die 

Baukosten und die Zufriedenheit der Fahrer berücksichtigt. Die gesamte deutsche Autobahnin-

formation und ein stündlich aufgelöster Verkehrsfluss werden gesammelt, und die bestehenden 

Raststätten auf Autobahnen werden als potentielle Standorte für Ladeinfrastruktur dargestellt. 

Nahe gelegene Raststätten werden zu einer Gruppe zusammengefasst und die optimalen Stand-

orte für Ladestationen in dieser Gruppe werden berechnet. Die Kosten für den Bau von La-

destationen, die Wartekosten für die EV-Fahrer und die Kosten für unbequemes Fahren werden 

definiert. Durch die synthetische Berücksichtigung der verschiedenen oben genannten Kosten-

arten wird eine Planungsmethode vorgeschlagen, die den Ladebedarf befriedigen und gleich-

zeitig die Baukosten reduzieren kann. Darüber hinaus wurden drei verschiedene Planungssze-

narien vorgeschlagen, um unterschiedliche Planungsanforderungen zu erfüllen. Das ermittelte 

Optimierungsproblem ist ein gemischt-ganzzahliges nichtlineares Problem (MINLP), und zur 

Lösung dieses Problems wird ein verbesserter Ansatz auf der Grundlage des genetischen Algo-



rithmus vorgeschlagen. Durch den Einsatz von Parallelrechnern kann die Lösungsgeschwindig-

keit erhöht werden. Die Ergebnisse bestätigen die Wirksamkeit der vorgeschlagenen Methode. 

(ii) Es wird eine Methode zur optimalen Ladeplanung vorgeschlagen, die auf den Strompreis 

der Nutzungszeit (TOU) reagiert. Zunächst wird ein unkontrolliertes Lademodell erstellt, um 

die E-Fahrzeuge so schnell wie möglich vollständig aufzuladen. Dann wird ein optimales La-

deplanungsmodell vorgeschlagen, das die begrenzte Anzahl von Ladegeräten berücksichtigt, 

um sowohl die Ladekosten zu reduzieren als auch den Ladebedarf jedes E-Fahrzeugs zu ge-

währleisten. Das vorgeschlagene Modell wird als bilevel programming (BP) Modell formuliert. 

Der Ladeindex und die verfügbare Ladedauer für jedes Fahrzeug werden auf der oberen Ebene 

bestimmt, während die Ladeleistung jedes Fahrzeugs in jedem Zeitfenster auf der unteren 

Ebene festgelegt wird. Danach wird ein Lösungsansatz für das vorgeschlagene BP-Modell vor-

gestellt. Die Wirksamkeit und Leistungsfähigkeit der vorgeschlagenen Ladeplanungsmethode 

wird durch Simulationsergebnisse verifiziert. 

(iii) In dieser Dissertation wird ein datengesteuerter intelligenter EV-Ladeplanungsalgorithmus 

vorgeschlagen, bei dem die Planung als Reaktion auf den Time-of-Use (TOU)-Strompreis, die 

Begrenzung der Ladeeinrichtungen und den detaillierten Betriebsablauf des Ladegeräts berück-

sichtigt wird. Zunächst wird auf der Grundlage des Algorithmus eines neuronalen Netzes eine 

Methode zur Vorhersage des Ladebedarfs eingeführt, um die Ladeaufgabe der Ladestation fest-

zulegen. Dann wird entsprechend der festgelegten Aufgabe ein Optimierungsmodell vorge-

schlagen, das die Ladekosten, den Batterieabbau und die Unzufriedenheit der Nutzer umfassend 

berücksichtigt. Das vorgeschlagene Modell wird als gemischt-ganzzahliges nichtlineares Pro-

grammierproblem formuliert und ein entsprechender Ansatz zur Lösung des Modells wird 

ebenfalls vorgeschlagen. Schließlich wird der Echtzeit-Betriebsprozess der vorgeschlagenen 

Planungsmethode in einer tatsächlichen Ladestation vorgestellt. Durch den Vergleich mit den 

bestehenden Methoden werden die bessere Effektivität und Leistung der vorgeschlagenen Pla-

nungsmethode durch Simulationsergebnisse verifiziert. 

(iv) Es wird eine kollaborative, optimale Routing- und Planungsmethode (CORS) vorgeschla-

gen, die eine optimale Route zu den Ladestationen bereitstellt und optimierte Ladeplanungs-

schemata für jedes EV entwickelt. Wenn ein EV seinen Ladebedarf meldet, wird ein CORS-

Optimierungsmodell erstellt und gelöst, so dass ein spezifisches Ladeschema für dieses EV 

entworfen wird. Dann wird der TN- und DN-Status aktualisiert, um den Betrieb der nachfol-

genden EVs zu steuern. Das vorgeschlagene CORS integriert den Echtzeit-Status von TN und 



 

DN und hat positive Auswirkungen, indem es EVs hilft, Verkehrsstaus zu vermeiden, den Aus-

lastungsgrad von Ladeeinrichtungen zu verbessern und die Wirtschaftlichkeit des Ladens zu 

erhöhen. Der kombinierte Distributed Biased Min Con-Sensus Algorithmus und der Generali-

zed Benders Decomposition Algorithmus werden eingesetzt, um das komplexe nichtlineare Op-

timierungsproblem zu lösen. Durch den Vergleich mit den bestehenden Methoden wird die bes-

sere Wirksamkeit durch Simulationsergebnisse bestätigt. 
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Nomenclature and Abbreviations 

Abbreviations 

EV Electric vehicle 

IEA International Energy Agency 

TOU Time-of-used 

MINLP Mixed-integer non-linear problem 

TN Transportation network 

DN Distribution network 

TDN Traffic-distribution coordination 

DICS Data-driven intelligent EV charging scheduling 

CORS Collaborative optimal routing and scheduling 

DBMC Distributed biased min consensus 

GBD Generalized benders decomposition 

STM Spatiotemporal model 

V2G Vehicle-to-grid 

DG Distributed generation 

SOC State of charge 

LIB Li -ion Battery 

DRL Deep reinforcement learning 

MCS Monte Carlo Simulation 

OPF Optimal power flow 

GA Genetic algorithm 

BP Bilevel programming 

ICS Idle chargers searching 

EPS EV power supplement 

UCS Uncontrolled charging scheduling 

WCAS Optimal charging without chargers assignment scheduling 

POCS Proposed optimal charging scheduling algorithm 

LSTM Long short-term memory 

CFO Convectional forecasting optimization 

FCFS First come first serve scheduling 

SWR Scheduling with real data 

SWP Scheduling without prediction 



 

II  

NROS Nearby routing with optimal scheduling 

ORUS Optimal routing with uncontrolled scheduling 

NRUS Nearby routing with uncontrolled scheduling 

 

Indices and Sets 

k/Wk Index and set of a candidate service area cluster 

g/Wg Index and set of a candidate service area 

t/T Index and set of time slot 

s/Ws Index and set of service areas 

Ws(k) Set of service areas in cluster k 

M Number of chargers 

m Index of charger 

Ms Number of chargers in charging station s  

n/WE Number and set of EVs 

N Number of charging EVs in one optimization duration 

T Total number of time slot 

VECn Set of charging information of n-th EV 

VEC Set of sorted EVs 

Pch Matrix of charging power of each charger in every time slot 

Pch(m,t) Charging power of m-th charger at time slot t 

Pev Matrix of charging power of each EV in every time slot 

Pev(i,t) Charging power of i-th EV at time slot t 

d Matrix of the chargers assignment 

d(k,m) Binary coefficients, which is equal to 1 if the i-th EV charge at the m-th charger, 

otherwise, zero 

t
a 

n  Arrival time of EV n 

t
d 

n  Departure time of EV n 

t
s 

n Time of EV n start charging 

t
e 

n Time of EV n end charging 

t
full 

n  Minimum time required to fully charge of EV n 

E
req 

n  Required energy of EV n 

Pmax Maximum power per time slot provided by one charger 
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1 

1 Introduction  

1.1 Background and Motivation 

The depletion of fossil energy and the change of climate is urgent issues for countries around 

the world. Electric vehicles (EVs), which offer significant potential in improving sustainability 

and ecofriendly environment, become a good alternative to traditional fossil energy vehicles. 

Ambitious EV development plans have been drawn up by countries and corresponding policies 

to promote EV deployment are designed. The European Union (EU) will aim to have at least 

30 million zero-emission vehicles on its roads by 2030, as it seeks to steer countries away from 

fossil fuel-based transport. China plans to achieve about 20% of the total sales of EVs by 2025. 

By 2035, pure EVs will become the mainstream of newly sold vehicles, and public vehicles 

will be fully electrified. The International Energy Agency (IEA) [1] has established the Sus-

tainable Development Scenario trajectory that will require putting 230 million EVs on the 

worldôs roads by 2030, which occupies 17.3% of the total amount of vehicles. The annual num-

ber and proportion of sold electric vehicles are shown in Figure 1.1. 

 

Figure 1.1 The annual number and proportion of sold electric vehicles. 

With the increase in the number of EVs, the demand for supporting charging facilities is also 
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2 

increasing. Generally speaking, the types of chargers are divided into fast charging chargers 

and slow charging chargers corresponding to DC chargers and AC chargers respectively. The 

AC charger is simple to use and install, which can be directly connected to the grid without 

special transformation. The power of the AC charger is relatively small, a single pile is mostly 

3.5kW and 7kW. A single charge often takes several hours to fully charge. Constructing an AC 

charger, as a cheaper method, is suitable for spreading the scale of charging stations at the initial 

stage of investment to ensure the basic charging needs of EV users. However, the slow charging 

speed is one of the main reasons for extinguishing the enthusiasm of potential EV buyers. In 

contrast, the DC chargers are more access to 380V power supply with large power supply cur-

rent and short charging time. 60%-80% of the battery power can be fully charged within 20-30 

minutes by DC chargers. However, DC fast charging has high requirements on the power grid 

and more complex harmonic suppression devices, so the investment cost is relatively high. 

The lack of charging facilities has been the main obstacle to the widespread use of EVs [2]. 

More than 67% of respondents agree that right now lack of charging facilities and 54% of re-

spondents claim that long charging time is one of the main barriers to EV adoption [3]. However, 

from the perspective of charging operation companies, the main source of income is charging 

service fees, which is difficult to offset the construction investment and maintenance costs. Low 

utilization rate is currently the biggest obstacle to profitability in the EV charging field, accord-

ing to the report in [4], in China 2019, the average daily usage time of a single charger is only 

0.93 hours, which means the usage rate is only 3.9%. Therefore, both the user side and the 

operator side put forward requirements for reasonable planning and sizing of charging stations. 

Charging station plays an important role in providing charging services to EVs. As discussed 

above, chargers in a charging station have a lot of idle time, meanwhile, the parking time of an 

EV is generally much longer than the required time to fully charge its batteries [5, 6]. Many 

countries, such as Germany, have introduced time-of-use (TOU) electricity pricing mechanisms 

to increase market competition, thereby encouraging the consumption of renewable energy and 

increasing system flexibility.  Chinaôs power market is also reforming in this direction. Since 

the charging demand of EVs has obvious sequential characteristics, the optimal scheduling 

method that considers the TOU electricity price has been widely adopted to promote the total 

utility for the charging operator markets [7] and minimize the total charging cost and the energy 

cost from the substation [8]. 

Meanwhile, with the spread of the scale of charging stations, the charging power of EVs will 

bring a significant impact on the power grid. On the one hand, due to the charging of EVs, there 
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is a sudden increase in load which results in voltage instability. On the other hand, large charg-

ing power can significantly change the power demand on the load side and bring new challenges 

to the power flow regulation of the power grid [9]. In addition, the increase in the charging 

demand of EV users will also change the flow of the transportation network. Inappropriate 

charging station routing strategies will cause congestion in dense areas of charging stations. 

Meanwhile, when users have charging demands, a reasonable selection of charging stations for 

them can also effectively alleviate traffic congestion, reduce the charging waiting time and im-

prove the efficiency of charging facilities. 

As countries actively promote the development of the EV industry, the scale of EVs will trigger 

a huge change in the existing power grid and transportation network structure. Corresponding 

technical guarantees for the large-scale application of EVs are required in the era of rapid de-

velopment. The main motivation to carry out this research is to formulate reasonably charging 

station sizing and planning schemes and design optimal scheduling methods with fully activat-

ing charging flexibility, which will help to improve the economic operation of the transportation 

and power network, increase the profitability of charging stations and encourage the confidence 

of EV users.  

1.2 Challenges and Research Questions 

The research in this article focuses on how to appropriately plan the size and location of charg-

ing stations and use limited charging facilities to design reasonable and feasible charging power 

scheduling schemes. Especially, there are following problems which are worthy of more in-

depth investigation: 

(1) Problem of how to optimally plan the charging system into the motorway. Proposing 

appropriate charging station planning strategies is currently one of the important means 

to activate the enthusiasm of EVs. It can not only effectively reduce the investment cost 

of charging stations, but also provide users with charging guarantees and higher service 

quality. At present, there are many planning schemes for urban scenes, but less research 

work focuses on motorway charging station planning. The anxiety of cruising range is 

one of the most common problems faced by EV users. To ensure economy and user 

satisfaction, the charging planning problem needs to be considered from the construc-

tion cost, the average waiting time for charging, and the convenience of finding a charg-

ing station. In addition, the established model is usually a mixed-integer non-linear 

(MINLP) problem which should be solved by a specific algorithm. 
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(2) Problem of how to formulate charging scheduling strategy with limited charging facil-

ities. Charging scheduling is an attractive research direction that can utilize the flexibil-

ity characteristics brought by that the staying time of EVs in a charging station is usually 

longer than the required charging time. Lack of charging facilities is still a significant 

barrier to the electrification of the logistic system. How to effectively schedule the EV 

charging power to reduce the charging station operating cost when the number of 

chargers was limited becomes an important issue. However, many of the current sched-

uling research works ignore the characteristics of limited charging station facilities, or 

some works simply the number of chargers to the capacity limit of the charging station, 

which means it is impossible to know how each EV connects to a specific charger. Thus, 

it is necessary to propose a scheduling method to assign specific chargers to each indi-

vidual EV while adopting power scheduling. 

(3) Problem of how to establish scheduling algorithm in consideration of traffic uncertainty.  

In the time dimension, charging scheduling is to allocate the corresponding power to 

the EV staying in the charging station at different times. However, in the actual sched-

uling, the uncertainty of subsequent charging demand will affect the current scheduling 

performance. Therefore, the prediction of subsequent charging demand is necessary to 

improve the efficiency of scheduling. At present, there have been studies to develop 

scheduling strategies around the uncertainty of future charging demand. However, some 

of the existing works simplified the demand scenarios to keep the problem computa-

tionally tractable [10, 11], some [12] neglect the flexibility of the scheduling charging 

power and battery degradation, and some [13] [14] regard the power demand of the 

charged EV as a whole that ignoring the traffic flow information of each individual EV. 

To improve the operating profit, it is essential to propose scheduling schemes that con-

sider both the charging demand uncertainty and the operating of limited charging facil-

ities in such form of charging stations. 

(4) Problem of how to operate the power distribution and traffic networks collaboratively. 

The increasing of EVs alleviates the faced environmental problems but brings chal-

lenges to the optimal operation of transportation network (TN) and distribution network 

(DN). The charging power scheduling schemes of the charging station for the electrical 

part can only be formulated according to the actual number and type of EVs arriving at 

the station. Similarly, in the navigation of the charging EV in the traffic part, it is nec-

essary to refer to the traffic congestion situation on the driving path and whether the 

charging station has idle charging facilities. However, the most of existing research 
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works consider EV charging station assignment and navigation services in the TN sep-

arately from charging station power scheduling services in the DN, which leads to the 

fact that the obtained optimal operation strategies cannot be realized in the actual exe-

cution process. Therefore, in order to cope with the increasingly complex TN and DN 

interactive system, it is necessary to propose a joint operation method that can ensure 

the economic operation of charging stations and avoid traffic congestion. 

1.3 Objectives of the Dissertation 

The overall objective of the dissertation is to propose the optimal planning and operation meth-

ods of electric vehicle charging stations to improve the flexibility and economy of electric ve-

hicle charging applications. Specifically, the objectives of the dissertation include mainly the 

following aspects: 

(1) Design the charging station sizing and placing strategy on motorways. The designed 

planning method needs to combine the specific situation of the motorway and the driv-

ing behaviors of EV users on the motorway and design a charging station planning 

method that is economical and considers the user experience. 

(2) Achieve optimal EV charging scheduling considering the limited number of chargers. 

In order to ensure that the EVs' charging demands can be satisfied in the case of limited 

chargers, the proposed algorithm is required to provide the specific service EVs for each 

charger. Corresponding power scheduling should be implemented in response to the 

TOU price to achieve the operating economy. 

(3) Realize a data-driven charging station scheduling scheme. The proposed method should 

be able to establish a future charging demand model based on historical data, and then 

design a corresponding scheduling plan based on the predicted future data, also the lim-

itations of charging facilities should not be ignored. Meanwhile, historical data should 

also be updated over time, to realize real-time updating scheduling operations. 

(4) Propose the collaborative EV routing and charging scheduling strategy. The proposed 

method should consider the status of the TN and DN comprehensively, formulate the 

charging assignment and navigation route for all EVs according to their actual charging 

demand, and then, develop a specific charging scheduling plan for each individual EV 

based on the charging station assignment results. 

1.4 Outlines of the Dissertation 

By considering the practical problems that may be faced in the planning and optimal operation 
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of EV charging stations, this dissertation designs different planning and operation schemes in 

response to the problems raised above and the research goals formulated. The content and struc-

ture of the dissertation are demonstrated in Figure 1.1 and organized as follows: 

In Chapter 2, the status of art about investigations on EV charging stations is summarized. It 

mainly reviews the research carried out in recent years from three aspects: the review of charg-

ing station planning and routing approaches, the optimized operation modes from the perspec-

tive of charging station operators, and the coordinated operation of the charging station consid-

ering transportation and distribution networks interaction. 

In Chapter 3, a charging station planning method based on the existing service areas is proposed. 

An EV charging station planning model for motorways, which is based on the existing service 

area and does not require additional motorway retrofit costs, is proposed. Comprehensive con-

sideration of the construction cost of charging stations, the waiting time for charging, and the 

inconvenient driving cost. The proposed planning method can reduce the total cost as much as 

possible while guarantee the distribution density of charging stations and the number of charg-

ing facilities in charging stations that can meet the EV drivers' requirements. An improved ge-

netic algorithm is designed to solve the proposed MINLP optimization problem. Three different 

planning scenarios: orientation to minimize social cost, orientation to minimize charging station 

operating, and orientation to minimize charging station construction, are defined to meet the 

different planning requirements. 

Chapter  1

Introduction

Chapter  2

State of Research 

and Technology

Chapter  7

Conclusions with 

Future Works

Chapter  3

Planning of EV 

Charging Station

Chapter4

Optimal EV 

Charging 

Scheduling

Chapter  5

EV Scheduling 

with Data 

Forecasting

Chapter  6

EV Charging 

operating with TN-

DN Interaction

 

Figure 1.2  Structure of the dissertation. 

In Chapter 4, considering the limited number of chargers, an optimal charging power scheduling 

method based on TOU electricity price is proposed. Firstly, the uncontrolled charging schedul-

ing model is designed for fully charging EVs as fast as possible. There is no coordination among 
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charging EVs, and no charging power optimization scheduling is implemented. Then, consid-

ering the limited chargers assignment scheme, an EV optimal charging scheduling model to 

minimize the total charging cost is proposed. The established model is a BP model, which can 

not only guarantee the EVsô charging demand by reasonably assigning the limited chargers, but 

also reduce the charging cost by optimal scheduling the charging power. The upper level mainly 

decides the charger index and available charging period of EVs. The lower level solves the EVs 

charging power within their available charging period by responding to the TOU electricity 

price. Then, as the upper level is a mixed nonlinear integer program while the lower level is a 

linear program, a compound solving algorithm is designed to get the detailed optimal EVs 

charging scheduling solutions. Through performance verification, the proposed algorithm can 

find the solution within an acceptable time. Finally, the proposed optimal charging scheduling 

method is compared with the uncontrolled charging scheduling method and a commonly used 

charging power scheduling method. According to the results, the proposed method can provide 

a detailed and efficient EV charging scheme, which can minimize the charging cost while guar-

anteeing the EVsô charging demand when considering the limited number of chargers. 

In Chapter 5, a data-driven intelligent EV charging scheduling (DICS) algorithm is proposed 

to guarantee different EV users charging requirements and improve the charging station profit. 

First, an EV charging demand forecasting method based on the neural network algorithm is 

proposed. For considering the special needs of limited charging facilities, the forecasting pro-

cess predicts both the numbers of subsequent vehicles and their respective energy requirements, 

which is called estimated EV information. The established estimated information contains the 

specific charging demand information of each predicted EV and can be used to guide the sched-

uling optimization process. Second, the charging scheduling model considering the limited 

charging facilities is designed. The optimization model contains both real and estimated EV 

and comprehensively minimizes charging cost, battery degradation, and charging incomplete 

rate. The total charging cost for the charging operators is reduced while the charging require-

ments and reducing the battery degradation are assured. Then the corresponding solving tech-

nique based on the heuristic algorithm is introduced. And the solved results show how to flex-

ibly use the limited chargers to connect the appropriate EVs and provide corresponding charg-

ing power. After that, the real-time charging scheduling system operation process is introduced. 

Since the traffic flow in the station is changing in time series, the forecasting results of subse-

quent EVs and the charging scheduling scheme for current EVs will be updated at each time 
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slot, and the current traffic information will be adopted for keep training to improve the predic-

tion accuracy. Finally, the proposed data-driven intelligent EV charging scheduling is compared 

with the existing methods and the advantages of the proposed method are verified. 

In Chapter 6, a collaborative optimal routing and scheduling (CORS) method is proposed. The 

proposed algorithm arranges specific navigation and charging schemes for each EV in turn ac-

cording to the order in which the EVs report charging requirements. The proposed CORS 

method can not only assign and route charging stations for EVs but also optimize the scheduling 

of charging power based on the assigned charging stations. An optimization model that consid-

ers EV driving cost, electricity purchase cost, and battery degradation cost is proposed to find 

the routing and scheduling scheme with the least comprehensive cost. The charging facilities 

limitation in a charging station is also considered. To solve this complex optimization mode, 

we split the optimization model into the upper layer and lower layer optimization. The upper 

layer mainly decides the charging station assignment process including determining the charg-

ing station and planning the driving path. Meanwhile, the lower layer solves the coordinate 

charging scheduling scheme for the EV with the charging station assignment results from the 

upper layer. The modified distributed biased min consensus (DBMC) and generalized benders 

decomposition (GBD) methods are introduced as the solver. 

Finally, Chapter 7 summarizes the whole research in the dissertation, points out the remaining 

problems in the research process, and sorts out and looks forward to the next research content.  
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2 State of Research and Technology 

Extensive research works have been carried out around the optimal planning and operation of 

EV charging stations. Likewise, the increase in EV usage over the past ten years has generated 

interest in the topics of construction cost and profit, the convenience of charging, charging 

economy, user satisfaction, battery energy management, etc. This chapter demonstrates an over-

view of problems and challenges in the expansion of EV charging stations and highlights the 

mainstream approaches for charging station applications. 

2.1 Review of Charging Station Planning and Routing Approaches 

The planning of charging stations is an unavoidable issue for large-scale promotion of EV ap-

plications. Lack of charging facilities and unreasonable charging station navigation strategies 

are [2] main reasons to obstruct the widespread use of EVs. This section introduces two aspects: 

station planning and routing. 

2.1.1 Sizing and Planning Approaches 

In the early investigations of EV charging station planning, based on the gas station to integrat-

ing public charging infrastructure into a city is one of the major views [15]. Meanwhile, plan-

ning methods for gas stations have gradually been moving towards a standardization and legal-

ization direction [16]. However, researchers realized that combining charging infrastructure 

with the conventional gas stations may not be appropriate as the relatively long charging pro-

cess will saturate the limited space of the gas stations, and therefore put forward new require-

ments for the realization of transportation electrification [17]. At present, the main planning 

methods can be divided into two different ways: planning approaches mainly consider conven-

ience and construction costs, and planning approaches consider the interaction of transportation 

and distribution grids. 

¶ Planning approaches mainly consider convenience and construction costs 

As a mobile energy demand used by people, the EV charging load is influenced by human daily 

mobility that determines the EV travel distance within a day, EV charging locations, and the 

time charging starts. The research in [18] and [19] simulated the EV driving patterns according 

to the data from national driving patterns and demographics. However, these studies did not 

consider the fundamental principles of transportation systems. As a popular tool, Markov Chain 
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is often used to simulate the EVsô mobility [20] and formulate optimal charging station capacity 

sizing [21] and location [22] schemes. The development of information technology facilitates 

the application of OD analysis for analyzing traffic flow characteristics. In [23, 24], A spatio-

temporal model (STM) was developed to model the mobility of EVs both spatially and tempo-

rally. Based on this spatial information, an EV charging modeling method based on OD analysis 

was proposed in [25]. For public transportation electrified vehicles, their charging facilities 

planning principle is choosing suitable locations in their fixed driving route. The EV charging 

station placement for urban public bus systems is proposed in [26]. Based on the driving path 

of the bus, a dynamic wireless charging method in a smart city is proposed in [27]. 

In the process of construction of charging stations, not only the traffic information should be 

considered, but also the construction difficulty and construction cost of the location should be 

taken into account. Using real geographic information, [28] compared the information in the 

city including land rent, charging facility construction and maintenance costs, station electrifi-

cation component costs, and grid energy loss in detail. And developed a charging station plan-

ning method that balances the overall cost of station construction and the convenience of EV 

users. Meanwhile, the capacity setting of the charging station is also a research direction that 

cannot be ignored. Since the charging time of EVs is much longer than the energy replenishment 

speed of fuel vehicles, the charging stations with small capacity will increase the waiting time 

of EV users. In contrast, an excessively large charging station capacity will increase the idle 

time of the charger, waste construction costs, and make it difficult for the charging station op-

erators to be profitable. The charging station model based on queuing theory [29] can well re-

flect the flow of EVs entering and leaving the station, so it is applied to the charging station 

planning process by researchers [30]. The M/M/s queuing theory is adopted in [16] to simulate 

the queuing process of EVs in the charging stations on the freeway. 

In order to improve the low utilization of charging facilities in EV charging stations, researchers 

have turned their attention to the construction of charging stations. In [31], a single charger 

multiple ports (SCMP) charging station planning approach is proposed. In this structure, a 

charger has multiple cables connected to different parking ports, and by controlling the cable 

switches, the charger can be selected to serve EVs in different parking ports. Planning charging 

stations with this structure can effectively reduce the construction cost of charging stations 

while reducing the idle time of a single charger and improving profitability. In addition, this 

method can effectively reduce the increased costs caused by the transformation of the power 



 

11 

grid. To avoid the charging power of the charging power exceeding the capacity of the trans-

former when too many chargers work simultaneously, a charging station for electric taxis in 

Shenzhen, China adopted the SCMP structure [32]. On this basis, [33] proposed the multiple 

chargers multiple ports MCMP charging station planning method, which further improves the 

flexibility of the charging station. 

¶ Planning approaches considering the interaction of transportation and distribution grids 

To improve the charging speed, chargers with higher charging power are applied to charging 

stations. With the large-scale construction of charging stations, researchers have started to re-

alize the impact of the charging system on the existing grid. Jiang et al [34] evaluate actual EV 

charging behavior of different brands and models from EV users and charging stations usage at 

the University of California, Los Angeles for more than one year. In [35], a queuing analysis-

based method for modeling the 24-h charging load profile of an EV charging station is presented, 

and corresponding statistical impact on the distribution system operator is given. The study 

results illustrate that the large static charging load of EVs significantly changed the peak and 

valley periods of the grid. Reliability is one of the pivotal operating parameters of the distribu-

tion network whose degradation will result in customer dissatisfaction. Thus, the reliability of 

IEEE 33 bus test system with installed charging stations is discussed in [36]. The power quality 

impact of charging stations on distribution networks is discussed in [37], results show that sud-

denly increasing charging load will bring harmonic problems to the grid. Wang et al [38] sum-

marize the trends, standards, issues, and mitigation measures of the impact of charging stations 

on the power grid, and then formulate an overview. 

The papers discussed above are from the transportation perspective, which ignores power sys-

tem constraints. Thus, the planning results may need readjustment according to the practical 

power system conditions. Existing work usually aims to site charging stations in power systems 

to satisfy power system economic or security operation constraints, while minimizing the in-

vestment costs for the charging stations and corresponding power grid upgrades. A two-step 

screening method is developed by [39] to locate charging stations in a distribution network and 

a modified primal-dual interior-point algorithm is proposed to determine sizing. In [40], the 

optimal sizing and siting of an EV charging station with vehicle-to-grid (V2G) capabilities in 

distribution networks are studied. However, the transportation constraints and the results may 

need readjustment according to the practical transportation conditions, which have been ignored 

by these papers. On this basis, [41] presents an EV fast-charging station siting and sizing ap-
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proach considering transportation and power networks interaction. The influences of EV pop-

ulation, power system security operation constraints, and EV range are analyzed. Wang et al 

[42] integrate the interests of traffic networks into distribution network and charging station 

joint planning model to mitigate negative impacts on traffic conditions caused by installing 

FCSs. The designed multi-objective joint planning model can minimize both the planning costs 

and unbalanced traffic flows, which can be solved by a new bilayer Benders decomposition 

algorithm. 

The urgent demand for alternative fossil energy has increased the development of renewable 

energy. Meanwhile, with the improvement of power grid intelligence, there is more integration 

of renewable energy sources in the form of distributed generations (DGs) as controllable com-

ponents in the distribution network. The distribution system has a more vulnerable structure 

compared to the transmission system, it is necessary to combine the intermittent and random 

characteristics of DGs and the high load power of charging facilities. In [43], a multi-objective 

optimization problem was developed to obtain the optimal siting and sizing of charging stations 

and renewable energy sources in distribution networks. In [44], the uncertain output power of 

the charging station due to its stochastic charging and discharging schedule is considered for 

optimal siting and sizing of distributed generators in distribution systems. A comprehensive 

optimization model for the sizing and siting of different renewable resources-based DG units, 

EV charging stations, and energy storage systems within the distribution system are presented 

by [45]. The proposed optimization model is formulated as a second-order conic programming 

problem, considering also the time-varying nature of DG generation and load consumption. The 

eco-friendly remote hybrid microgrids concept is proposed in [46] and a corresponding joint 

planning approach of smart EV charging stations and DGs is designed.  

2.1.2 Routing and Navigation Approaches 

Proper selection of EV paths will be helpful to improving the travel efficiency of EV users and 

alleviate their difficulties in charging during peak hours. A decentralized policy was studied in 

[47] to assign EVs to a network of FCSs with the goal of minimizing the queueing time. How-

ever, this approach did not consider the personalized needs of users in different aspects, which 

limits the usefulness and expansion of this strategy. In order to effectively shunt the charging 

demand at peak hours, a personalized fast-charging navigation strategy based on the mutual 

effect of dynamic queuing is proposed by [48]. A multi-criterion charging queuing model is 

established to facilitate personalized navigation that can achieve orderly charging and personal 

benefit. Moreover, to solve the problem of insufficient computing power caused by excessive 
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traffic flow during peak hours, Liu et al propose a simplified algorithm in [49] to relieve the 

computing burden in the navigation under time-differentiated pricing. As there are randomness 

and uncertainty in traffic networks, the deviation between the simplified deterministic model 

and the actual traffic network may lead to over-discharging of batteries or even driving out of 

power halfway. In order to improve the accuracy of navigation, Liu et al extend their previous 

deterministic charging navigation to an online navigation system based on stochastic traffic 

network models and online information [50]. 

From the perspective of individual EVs, Researchers will also formulate navigation strategies 

to reduce battery consumption. For public transportation systems with fixed routes, their navi-

gation strategies are often centered on minimizing driving costs, improving lifetime life, and 

driving safety. For example, [51] and [52] have designed dispatch routing approaches for airport 

shuttles that operate on electric batteries, each having a fixed schedule. Private EV users need 

to reasonably arrange the navigation path of the charging station, [53] uses heuristic control 

strategy to optimize energy consumption for given torque and speed. In [54], an optimization 

problem to enable the driver to select the appropriate drive modes for energy minimization is 

proposed, the trip information is adopted and optimal path planning is also integrated. The pro-

posed algorithm is evaluated on a real vehicle, which shows significant energy savings. 

Since the traffic flow of the transportation network and the operating conditions of the power 

systems are time-varying, it is important to consider the grid influence when implementing real-

time charging navigation for EV drivers. To relieve the traffic and power line congestions, a 

novel navigation approach is proposed to search the charging station with the lowest overall 

objective, which consists both of the time consumption and the financial cost [55]. In [56], a 

dedicated traffic user equilibrium model is proposed to describe the steady-state distribution of 

traffic flows comprised of gasoline vehicles and EVs. The network equilibrium through itera-

tively solving the traffic assignment problem and the optimal power flow problem is identified. 

By simultaneously considering the dynamic user equilibrium of the transportation network and 

the alternating current dynamic optimal power flow of the distribution network, the traffic-

distribution coordination (TDC) TDC model is proposed in [57] to minimize the travel cost of 

the transportation network and the energy service cost of distribution network. 

2.2 Review of Charging Station Operating Schemes 

In the foreseeable future, charging stations will be connected to both transportation and power 

networks on a large scale, and the large charging load characteristics make charging stations a 
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type of load that cannot be ignored. On the one hand, for the fast-charging stations or chargers, 

such as specific charging stations on the motorways, the charging load is not adjustable, because 

users who apply fast charging want to complete the charging as quickly as possible. On the 

other hand, EV users without urgent charging requirements, such as parking EVs, only need to 

complete the charging within the parking time, which provides an application scenario for 

charging stations to participate in power scheduling and improve overall flexibility. This section 

introduces the works from: economic-based scheduling, battery management-based scheduling, 

and demand uncertainty-based scheduling. 

2.2.1 Economic-Based Scheduling Approaches 

The economics of charging is one of the most important indicators to measure the pros and cons 

of charging schemes. As mentioned above, many charging station operators are currently oper-

ating with low profits [4]. Appropriate charging scheduling strategies can significantly improve 

the charging economy and increase the enthusiasm of operators. Centralized charging and de-

centralized charging are currently the two mainstream scheduling perspectives [58]. In central-

ized charging control, the optimization of EV charge scheduling is done centrally at the aggre-

gator after collecting information about the power requirement of the EVs. EVs can only com-

municate their electrical parameters such as maximum battery capacity, SOC, and charge rate 

to the aggregator. In contrast, in decentralized charging control, each EV is equipped with some 

computing capability, and the decision to charge or not is taken by each EV in collaboration 

with the aggregator. Each EV communicates its energy requirements to the aggregator and uses 

part of this information collected at the aggregator to decide on an optimal schedule. The merits 

and demerits of centralized and decentralized scheduling methods are shown in Table 2.1. 

Table 2.1 Comparison of Centralized and Decentralized Scheduling Approaches 

Categories Merits Demerits 

Centralized schedul-

ing methods 

¶ Able to calculate the optimal schedule as all 

the information is available to it 

¶ Reduced power fluctuations 

¶ At the expense of user privacy 

¶ Computationally intractable in 

general for a large number of EVs 

Decentralized sched-

uling methods 

¶ Good scalability 

¶ Protect personal privacy 

¶ easy to achieve 

¶ lack of complete information at 

any EV makes the charge sched-

ule suboptimal 

 

¶ Centralized charging scheduling 

A charging algorithm based on the prediction of the energy prices during the charging period 



 

15 

is proposed by [59], where the charging stations are informed about real-time pricing infor-

mation through wireless communication. During the charging process, the k-nearest neighbor 

classification algorithm is applied to predict the price signals of the grid. If the predicted price 

is greater than a threshold, charging is delayed until it determines a suitable time of charging 

for the vehicle. Quan et al [60] proposed serving EV parking lot users by utilizing a centralized 

charging controller that considered the size of the battery pack. The main goal of the above-

mentioned study was to minimize the peak loads on the grid and satisfy driver expectations. 

Wu et al [61] proposed centralized charge scheduling and load dispatch algorithms that aggre-

gators can use to minimize their energy cost. A minimum-cost load scheduling algorithm is 

designed, which determines the purchase of energy in the day-ahead market based on the fore-

cast electricity price and PEV power demands. The same algorithm is applicable for negotiating 

bilateral contracts. The impact of a combined PEV load over the distribution grid is also studied. 

The above investigations use centralized scheduling approaches while only considering the 

static situations. To fill the gap, the following works also use centralized control but consider 

some mobility aspects of the EVs while forming a charge schedule. Sortomme and El-Sharkawi 

[62] explored the problem of maximizing the profit of the aggregator that bids for ancillary 

services (regulation and spinning reserves) while facilitating the charging of EV batteries. An 

optimal bidding strategy is formulated, which selects the optimal charging point and the capac-

ities of each ancillary service to be sold. Mobility aspects considered include EV driving statis-

tics for the whole day, which is used to derive the expected availability times for EVs and travel 

distances, which, in turn, are used to select the daily charging profile. In [63], the scheduling 

problem is formulated to maximize the time-averaged expected social welfare, which is a func-

tion of the total customer utility, the electricity cost associated with EV charging, and the pen-

alty for not meeting EVs' charging requests. The decision-making problem is formulated as an 

infinite-horizon dynamic programming problem that considers the stochastic arrival process of 

the PHEVs that evolves like a Markov chain, the uncertainty in renewable generation, and the 

inexact forecast of grid loads. 

¶ Decentralized charging scheduling 

Ma et al. [64] proposed a decentralized charge scheduling algorithm for a large number of EVs 

using the Nash certainty equivalence methodology. The grid operator broadcasts the expected 

non-PEV base demand among the PEV agents, and each PEV agent proposes a charging plan 

based on this initial forecast to minimize its charging cost. Latifi et al. [65] present a game-
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theoretic decentralized EV charging schedule for minimizing the customers' payments, maxim-

izing the grid efficiency, and providing the maximum potential capacity for ancillary services. 

The proposed mechanism is quite general, takes into account the battery characteristics and 

degradation costs of the vehicles, provides a real-time dynamic pricing model, and supports the 

vehicle-to-grid and modulated charging protocols. A time-dependent optimal power flow 

charging problem is studied [66] that optimizes the operation of the power grid and the charging 

activity of EVs. The objective is to reduce the charging cost and the total power generation cost. 

They also consider the uncertainty arising out of the future price-inelastic load, and a near-

optimal distributed online algorithm is developed for that. The authors proved that this problem 

is convex with respect to the total electricity demand, and the solution to the scheduling problem 

fills the demand valley optimally. 

Similarly, investigations considering mobility with decentralized scheduling approaches are 

carried on. In [67], a decentralized EV charging algorithm in response to TOU price in a regu-

lated market remains constant for a long time. The charger with an embedded TOU price mod-

ule formulates an optimized charging scheme to minimize the charging cost. By using the rela-

tion between the acceptable charging power of the EV battery and the SOC, a heuristic algo-

rithm is presented to reduce the charging cost. To address mobility, the diversity in arrival time 

of EVs is considered in the multi-EV case. Hutterer et al. [68] proposed a multi-agent policy 

optimization where each EV (agent) acts in response to dynamic conditions in its environment 

according to a given strategy. Evolutionary computation has been used for optimizing EVs' 

charging behavior such that EVs' energy demand is satisfied and secure power grid operation 

is guaranteed using renewable power. The driving profiles of EVs (locations, time of arrival, 

and stay time at each location) and uncertainties in intermittent supply are considered. 

2.2.2 Battery management-based scheduling Approaches  

As the core part of the energy storage of electric vehicles, the battery has the characteristics that 

the energy replenishment time is significantly longer than that of fuel vehicles and the storage 

efficiency decreases significantly over time. How to effectively improve battery efficiency, im-

prove vehicle endurance, and extend service life has become a problem that cannot be ignored 

in the charging scheduling process. Li -ion Battery (LIB) has been widely applied as the power 

supply for EVs.  

In order to study the degradation characteristics of the battery, the evaluation methods can be 

mainly divided into three classes: experimental methods, model-based methods, and data-
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driven methods [69]. As the name implies, the experimental method is to analyze the aging 

behavior of the battery through a large number of experiments. Limited by the discharge rate 

or special experimental equipment, the application scenarios of the experimental method are 

limited [70]. The model-based methods are introduced to realize online and reliable monitoring 

of battery degradation. For instance, a LiFePO4 lithium-ion battery degradation model equiva-

lent to money cost is formulated in [71], and the corresponding experimental is implemented to 

verify the results. The data-driven methods describe battery internal degradation evolution 

through the abundant pretest data and some machine learning algorithms without expert 

knowledge on aging mechanisms. Compared to model-based methods, the data-driven ap-

proaches show great advantages: 1) they have self-adaptability, model-free nature, and the abil-

ity to learn from historical data; 2) Deep reinforcement learning (DRL) can learn a good control 

policy, even under a very complex environment by using deep neural networks. Cao et al. [72] 

address the modeling by using a model-free (DRL method to optimize the battery energy arbi-

trage considering an accurate battery degradation model. 

The intelligent charging scheduling system capable of estimating and minimizing these effects 

can potentially extend the battery life and reduce battery degradation. Therefore, to achieve the 

best operating mode, it is crucial for the system to develop an effective charging scheduling 

scheme to minimize the battery degradation cost and reduce the system peak power load. In 

[73], the experimental modeling methods are adopted to analyze the impact on battery degra-

dation of the average state of charge. And the grid power supporting method is proposed based 

on the controlled scheduling charging. Pelzer et al. [74] present a scheduling approach that 

considers the non-linear dependencies of battery aging from various operation parameters along 

with TOU prices and price forecasts for computing optimal charging/dispatching schedules. 

The methodology is applied to price data obtained from four different electricity markets. The 

investigation partly confirms existing profitability concerns but further shows that explicit con-

sideration of battery degradation can yield profitable outcomes. The EV charging scheduling 

problem of a park-and-charge system with the objective to minimize the EV battery charging 

degradation cost while satisfying the battery charging characteristic is studied in [75]. In addi-

tion, as a new form of EV energy replenishment, substation swapping has a better flexibility 

margin than plug-in charging in terms of charging scheduling. An optimal scheduling method 

of battery charging station serving EVs based on battery swapping is proposed by [76]. The 

charging rate of each charging bay is controlled while the scheduling problem is formulated as 

a mixed-integer program with quadratic battery degradation cost. A generalized benders de-
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composition algorithm is then developed to solve the problem efficiently.  

2.2.3 Demand uncertainty-based scheduling Approaches 

In addition to the issues discussed above, the uncertainty of future charging demand is also one 

of the important factors affecting the scheduling effect. In the time dimension, charging sched-

uling is to allocate the corresponding power to the EV staying in the charging station at different 

times. However, for charging stations for private EV users without a fixed timetable, the ran-

domness of EV charging demand in the future time will increase the complexity and ineffi-

ciency of scheduling strategy formulation. For instance, in order to ensure the completion of 

charging requirements, a management system was designed in [77] to determine the charging 

order by considering the departure times. This brings more calculations because of the con-

stantly updated charging strategy, and the margin of EV dwell time is not fully utilized. 

In response to the above problems, Akhavan-Rezai et al. [78] present an approach that realizes 

demand response programs by developing an energy management system for incorporating ag-

gregated EVs. The arrival time and energy requirements of EVs are also considered in a sto-

chastic manner. In [79], through the provision of V2G programs during outage events, the role 

of parking lots in improving the reliability of renewable-based distribution systems is investi-

gated. The random charging habits of EV users in parking lots are simulated based on real data. 

In [11], an optimal energy management strategy for EV parking, lots considering peak load 

reduction-based demand response programs is a built-in stochastic programming framework. 

The uncertain behavior of EVs, such as arrival and departure times, and the stochasticity of the 

remaining state-of-energy of EVs are taken into account to maximize the load factor during the 

daily operation of an EV parking lot. Furthermore, Pflaum et al. [10] proposed an EV charging 

station scheduling strategy considering the highly uncertain load characteristic. By using the 

randomized algorithm and statistic occupancy model of the charging station, the quality of ser-

vice can be guaranteed and less information of EV users is required. 

The demand profile of traffic flow and charging have a strong time sequence, thus, the research 

works began to discuss the prediction of charging demand and the design of scheduling schemes 

in stages. Zhang et al. [41] designed a two-stage stochastic optimization is developed to mini-

mize the expected annual costs for providing charging services in different scenarios and further 

verify this two-stage optimization algorithm in [33]. In contrast to the two-stage stochastic 

model, A charge scheduling model considering multiple possible stages is proposed in [80] The 

proposed multi-stage model is more consistent with the real situation of a parking lot that the 
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requests are realized at different times. In the finite time horizon, it can divide time into appro-

priate equal-length time-slots that allow for recourse decisions at multiple stages of the charging 

schedule. Nevertheless, it takes several hours to obtain a high-quality solution, which is ineffi-

cient in practical applications. 

The rise of artificial intelligence algorithms helps improve the efficiency of such demand fore-

casting that cannot be modeled by formulas. A neural network-based approach for forecasting 

travel behavior to improve the scheduling efficiency is proposed in [81]. In this study, the cor-

relation among arrival time, departure time, and trip length are also considered. The forecasted 

EV travel behavior is then compared with Monte Carlo Simulation (MCS) which is the main 

benchmarking method in this field, and results depicted the robustness of the proposed meth-

odology. Based on deep reinforcement learning, Wan et al. [13] proposed a real-time EV charg-

ing scheduling without establishing the detail optimization model. The proposed approach can 

adaptively learn the transition probability and does not require any system model information. 

But the charging demand constraints of EVs, which can make sure the EVs can be fully charged 

upon departure, have been ignored. Therefore, a constrained Markov Decision Process EV 

charging scheduling approach based on safe deep reinforcement learning is proposed by [14]. 

The aim is to find a constrained charging/discharging scheduling strategy to minimize the 

charging cost as well as guarantee the EV can be fully charged. The proposed approach does 

not require any domain knowledge about randomness. It directly learns to generate the con-

strained optimal charging/discharging schedules with a deep neural network. However, the 

methods mentioned above all use a centralized forecasting method, which regards the power 

demand of the charged EV as a whole, ignoring the traffic flow information of each individual 

EV. Therefore, those prediction and scheduling methods cannot be applied to the charging sta-

tions with limited chargers that can be flexibly scheduled. 

2.3 Review of Scheduling Approaches Considering the Transportation and 

Distribution Networks Interaction  

The charging station of EVs is an integral part of the actual transportation network, and the 

electrical system also needs to be integrated into the actual distribution network [28]. Therefore, 

the charging demands of EV users reflect in the transportation and power network are the 

changes in traffic and power flow. According to this, by formulating reasonable charging strat-

egies, such as allocating idle charging facilities according to traffic conditions, pricing charging 

prices according to geographic locations, adjusting charging power in response to grid status, 
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and using charging facilities to maintain power quality, etc., the operating efficiency of both 

transportation and distribution network can be improved. This section introduces the application 

of V2G technique, coordinated operation of charging stations and renewable energy sources, 

and scheduling approaches with alleviating traffic congestion. 

2.3.1 Application of V2G Technique 

Vehicle-to-Grid (V2G) is a power scheduling process that allows the EVs to inject power to or 

draw power from the grid, which was introduced by W. Kempton in 1997 [82]. This concept 

utilizes the stored energy of the vehicle to fulfill the demand of the grid during peak hours and 

enhance the power quality of the grid when needed.  

¶ Energy compensation 

Peak-shaving and valley-filling of the distribution network are some of the main application 

aspects of V2G technology. In [83], a home energy management system integrating vehicle-to-

grid (V2G) capability for predetermined scenarios is proposed. The proposed system aims to 

address the demand response schemes, both real-time pricing and emergency load curtailment, 

V2G mode of operation. In order to assign real-world randomness to the EVs' availability in the 

households and their charging requirements, Rassaei et al. [84] provide a general demand-shap-

ing problem applicable for limit order bids to a day-ahead energy market. With the proposed 

distributed demand response algorithm, the peak is reshaped towards 0% penetration of EV 

without affecting the users' convenience. A similar approach is proposed in [85] to stimulate 

the potential role of EVs as distributed energy storage units to minimize peak demand in the 

power distribution system.  

EV charging at public places such as large parking complexes, charging stations, offices, and 

apartment parking can be clustered through an aggregator. It acts as a centralized system oper-

ator who controls the charging and scheduling of each EV [86]. The aggregator can cluster a 

large fleet of EVs to increase their capacity payment, which depends on the capacity of the 

connected load. During peak hours, the aggregator can maximize the revenue with energy pay-

ment for providing the reserve and regulation services. Aggregating large-scale charging sta-

tions can help reduce electricity prices during the bidding process in the electricity market. With 

the objective of minimizing charging costs while satisfying the PEVs' flexible demand, an ag-

gregator bidding approach into the day-ahead electricity market is discussed in [87]. A classi-

fication scheme is proposed in [88] to minimize the total cost of energy trading with different 

energy entities. In this scheme, EVs are classified into different classes with different pricing, 
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charging rates, allotted power, and charging times. Aggregator maximizes its profit by opti-

mally charging each class of EVs based on the strategy suitable for that class while saving on 

the energy purchased from the power grid. 

¶ Power flow operating 

Due to the access of high charging power EV charging stations, the power flow in the distribu-

tion network has been greatly changed. Economic dispatch may result in unacceptable flows or 

voltages in the network. Thus, optimal power flow (OPF) is a good solution for this problem 

that can minimize the total generation cost. Both equality and inequality constraints are consid-

ered in OPF. According to the investigations from [89], the scheduling problem for the EV 

charging can be augmented into the OPF problem to obtain a joint OPF-charging (dynamic) 

optimization. A solution to this highly nonconvex problem optimizes the network performance 

by minimizing the generation and charging costs while satisfying the network, physical and 

inelastic-load constraints. In [90], a hierarchical system model to jointly optimize power flow 

routing and V2G scheduling for providing regulation service are proposed. By adopting the 

semidefinite programming relaxation, the original non-deterministic polynomial-time hard 

(NP-hard) problem is transformed into a convex problem. The proposed scheduling algorithm 

can flatten the power fluctuations at the buses with EVs attached, alleviate grid stability issues 

and reduce the system power loss in a great manner while providing voltage regulation. 

The assessment of EV charging scenarios based on demographical data is discussed in [91], 

and three different charge strategies are designed and the impacts of EVs charging on the dis-

tribution system are assessed using standard load flow calculations. Results show that imple-

mentation of the loss minimization strategies improves the lifetime and efficiency of distribu-

tion system equipment. Considering distribution system constraints such as transformer rating, 

current rating of lines, voltage drop, and phase unbalance, an optimal scheduling problem is 

formulated in [92]. Using the proposed optimal charging method, high percentages of EV up-

take can be sustained in existing networks without requiring any further network upgrades, 

leading to more efficient use of existing assets and savings for the consumer.  

¶ Power quality 

The introduction of the smart grid concept increases the number of controllable components in 

the power system, and at the same time brings more complex power quality issues. When con-

nected to charging stations, EVs can be equivalent to energy storage elements, so they can be 

used to help alleviate power quality problems. Voltage fluctuations are a common problem in 
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distribution networks. Brenna et al. [93] aim to provide a possible solution to some common 

and dangerous power quality problems and voltage sags, considering the large diffusion of elec-

tric vehicles. Deep energy and power analysis to evaluate the feasibility of the vehicle-to-grid 

(V2G) function to compensate for power quality disturbances were presented. Mohamed et al. 

[94] present an attempt to use the V2G connected system to play an effective role in the regu-

lation of the voltage and power of the power system and to demonstrate its positive effect on 

the system frequency. In [95], presents an optimized bidirectional V2G operation, based on a 

fleet of EVs connected to a distributed power system, through a network of charging stations. 

The system is able to perform day-ahead scheduling of EV charging/discharging to reduce EV 

ownership charging costs through participating in voltage regulation services. By responding 

to real-time EV usage data, the optimizing method that the use of EVs to support voltage regu-

lation is designed. EV aggregators can integrate the scattered EVs and play the role of VR 

sources with a high response speed and low cost. To address the challenges of stochastic EV 

mobility, various distribution network topology, and the competition mechanism, Liu et al. [96] 

proposed a discounted stochastic multiplayer game approach to analyze the competition among 

EV aggregators. Thus, the impact of distribution network topology on the voltage regulate ef-

ficiency is investigated. The randomness of EV numbers is considered when predicting the EV 

aggregators' available voltage regulate capacity so that the tendency for the EV aggregators to 

follow the optimal strategies can be modeled accurately. 

Frequency adjustment is also a V2G application direction that is currently widely used to en-

hance power quality. In [97], a decentralized V2G control method is proposed for EVs to par-

ticipate in primary frequency control considering charging demands from EV customers. When 

an EV customer wants to maintain the residual state of charge (SOC) of the EV battery, a V2G 

control strategy is performed to maintain the battery energy around the residual SOC along with 

adaptive frequency droop control. By using EVs for frequency control in an isolated small smart 

power system, a load frequency control V2G scheme is presented in [98]. The model predictive 

control method (MPC) is used as a robust area controller to solve the problems of load change 

and system uncertainties. A load frequency control method for conventional power plants, bat-

tery energy storage systems, EVs, and heat pump water heaters is proposed in [99], which pro-

vides an alternative to battery energy storage system with the integration of EVs and heat pump 

water heaters while suppressing the frequency fluctuation from the integration of renewable 

energy sources. Chen et al. [100] designed a hierarchical game framework, which includes a 

grid operator, an EV aggregator, and EVs, that can provide V2G regulation services. In this 
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framework, both non-cooperative games and cooperative games are studied to coordinate the 

aggregator and EVs to provide V2G regulation services. By using the cooperative game ap-

proach, the social welfare of EVs and the EV aggregator can be further improved to the global 

optimum and the V2G regulation services can also obtain near-optimal performance, though 

with small communication overhead. 

2.3.2 Coordinated operation of charging stations and other renewable energy 

sources 

In recent years, the penetration rate of renewable energy sources (RESs) in the power system 

has increased rapidly [101]. Therefore, when formulating a coordinated charging scheduling 

strategy, the interaction with RESs has become an issue that cannot be ignored. When RESs are 

integrated with the power grid, their variable generation could cause frequency fluctuation in 

the power grid, which destabilizes the power system and gives rise to the power quality and 

power fluctuation issues [86]. To address this issue, a fuzzy controller is used in [102] for the 

control of EV charging in order for the frequency control of a deregulated grid. By modeling 

the RESs part and considering the intermittent characteristics, smart deregulated grid frequency 

control in presence of renewable energy resources by EVs charging control is designed. An 

autonomous distributed V2G control scheme can provide a distributed spinning reserve for un-

expected frequency fluctuations caused by the RESs. Ota et al. [103] proposed an autonomous 

distributed V2G control scheme. A grid-connected electric vehicle supplies a distributed spin-

ning reserve according to the frequency deviation at the plug-in terminal, which is a signal of 

supply and demand imbalance in the power grid. An optimization model for V2G dynamic 

regulation of the EVs connected to the distribution network with RESs is proposed in [104]. 

The proposed model uses V2G to smooth out the power fluctuation from RES penetration and 

minimizes the operation cost. 

Uncoordinated charging of EVs leads to congestion in distribution feeders when the penetration 

of EVs is reasonably high. In order to relieve the uncoordinated charging of plug-in EVs, a 

Congestion management system in a distribution system with RESs is presented in [105]. The 

large proliferation of PEVs has been significantly creating an impact on the transportation and 

power sector in recent times. Appropriate stochastic models are introduced in [79] to capture 

the volatility and intermittency of renewable sources. Several outage management schemes on 

the basis of bankruptcy problems are proposed to fairly distribute the available resources among 

different microgrids/sections, once a failure occurs in the system. The results suggest that the 
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realization of V2G programs offered by EV parking lots, accompanied by appropriate outage 

management schemes, can significantly enhance the reliability of supply in modern distribution 

networks. Wang et al. [106] study an approach to smoothing the fluctuations of large-scale 

wind power by using vehicle-to-grid systems. Energy management and optimization system are 

designed and modeled. By using the wavelet packet decomposition method, the target grid-

connected wind power, the required electric vehicle (EV) power, and supercapacitor power are 

determined. The energy management model for EVs is then developed by introducing a knap-

sack problem that can evaluate the needs of an EV fleet. 

Smart-houses, which contain different generation resources, storage devices, and a controllable 

load, is going to be the next step in the distributed energy resources framework. Due to the 

current development of EV technology and its commercialization, the integration of the EV in 

the optimal management of residential energy systems will become a real need in the medium 

term. In [107], an optimization model is proposed to manage a residential microgrid including 

a charging spot with a V2G system and renewable energy sources. The model is executed one 

day ahead and generates a schedule for all components of the microgrid and the designed man-

aging strategies show daily costs savings of nearly 10%. By considering the advantages that the 

charging demand of EVs can be fully or at least partially supplied by the local RESs to help 

reduce their impacts on the power grid, Yang et al. [108] investigated the important problem to 

coordinate EV charging with the locally generated wind power of multiple buildings, which 

incorporates the random driving requirements of EVs among different buildings. The idea of 

model predictive control is introduced to tackle the uncertainties of the problem and an iterative 

EV-based decentralized charging algorithm is developed to improve scalability. 

2.3.3 Scheduling Approaches with Alleviating Traffic Congestion 

As discussed in the last section, the conservational research for transportation network (TN) 

operation mainly focused on EVsô route charging navigation. For instance, in [109], rapid-

charging navigation of EVs based on real-time power systems and traffic data is proposed. But 

this investigation only considered the fast-charging stations which are equivalent to uncontrol-

lable load components. The ability to charge stations as controllable components to support grid 

dispatching is not been taken into account, and the flexibility of charging stations in smart grids 

is not been fully activated. However, due to the application of charging scheduling technology, 

people realize that the TN and distribution network (DN) coordinated operation affects both the 

efficiency of charging station scheduling and TN traffic flow situation. On this basis, Tan et al. 

[110], based on a hierarchical game approach is proposed, presented an integrated EV charging 
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transportation operation framework, which takes into consideration the impacts from both the 

power system and transportation system. The proposed framework links the power system with 

the transportation system through the charging navigation of massive EVs. It benefits the two 

systems by attracting EVs to charge at off-peak hours and saving the time of EV owners with 

real-time navigation. By considering the differentiated services in an EV public charging station 

network, Moradipari et al. [111] considered a charging network operator that owns a network 

of EV public charging stations and wishes to offer a menu of differentiated service options for 

access to its stations. The priority level and energy request amount are listed in a differentiated 

service menu, and then the charging network operator directly assigns EV to a station with a 

low traffic path. This allows higher priority users to experience lower wait times at stations and 

allows the charging network operator to directly manage demand, exerting a higher level of 

control that can be used to manage the effect of EV on the grid and control station wait times. 

The operating methods mentioned above are mainly employed centralized algorithms, which 

may not be computationally efficient when confronted with large and complex systems. To 

address this issue, Shi et al. [55] proposed a distributed navigation approach to search the charg-

ing station with the lowest overall objective, which consists both of the time consumption and 

the financial charging cost. The operating is performed with real-time data, demonstrating the 

adaptiveness of the proposed distributed approach to changes of the transportation network to-

pology and power system operating condition. In [112], a decentralized optimization frame-

work was proposed to analyze the impact of wireless charging on TN and DN, and the user 

equilibrium traffic assignment and the day-ahead electricity market operation were simultane-

ously considered. The coordination between electricity and transportation networks would help 

mitigate congestion in the electricity network by routing the traffic flow in the transportation 

network. The presented formulation leverages decentralized optimization to address the eco-

nomic dispatch in the electricity network as well as the traffic assignment in the transportation 

network. Similarly, the equilibrium model integrating the stochastic user equilibrium and direct 

current optimal power flow was developed in [113] to study the interaction between traffic flow 

and TOU prices. Sun et al. [57] proposed a traffic-distribution coordination model to minimize 

the travel cost of TN and the energy service cost of DN, which simultaneously considers the 

economic operation of DN by alternating current dynamic optimal power flow and the traffic 

flow assignment of TN by EVs dynamic user equilibrium, respectively. 

2.4 Summary 

This chapter focuses on the research on location planning of charging facilities, charging power 
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scheduling, traffic network congestion mitigation, and coordinated operation with the power 

grid that researchers have carried out in order to cope with large-scale EV applications. Since 

large-scale EV applications will profoundly change the existing traffic behavior and power sys-

tem state, the research on charging facilities is comprehensive work.  

Generally speaking, for the planning of charging stations, the investment cost is usually the first 

consideration, and the convenience of charging for users and the profitability of operators are 

considered as the main evaluation criteria. In the updated research, the planning of charging 

facilities will further refer to the impact on the power distribution system and the application of 

subsequently coordinated scheduling. With the planned charging stations, providing EV users 

with appropriate charging station routing services can effectively activate the enthusiasm of 

using EVs, and to a certain extent alleviate the problems of traffic congestion and long queue 

time caused by EV charging. Therefore, the charging routine investigations are usually assign-

ing charging stations to EVs as even as possible, and avoid congested traffic sections when 

providing path navigation. In recent years, the routing strategy of charging stations that consider 

the interaction between the power grid and the transportation network has also gradually be-

come a research hotspot. 

Looking to the more long-term future, as countries around the world strongly support the EV 

industry, the coverage rate of charging stations will definitely be as full as the current gasoline 

stations, or even be higher. The user's demand for the cruising range of EVs will force manu-

facturers to continuously increase the battery capacity, resulting in huge demand for charging 

energy. How to reasonably scheduling such a huge energy demand will also be a challenge to 

the future intelligent power system. The current research can be divided into two directions 

from the level of a single charging station and the level of coordinated operation of the entire 

system. From the perspective of a single charging station, profitability, or charging cost, is the 

most important indicator. Therefore, research works in this area are mainly focused on power 

scheduling schemes in response to fluctuations in TOU electricity prices. Further research will 

discuss in depth the previous demand game process between users and operators, so as to pro-

vide equilibrium charging schemes. 

In contrast, if investigations are carried out from the perspective of the entire system, more non-

negligible factors have emerged. State of power gird is taken into account in some existing 

works Therefore, the impact of charging stations on the power grid is studied, and countermeas-

ures based on reasonable charging and discharging of EV batteries are proposed to support the 

grid frequency and voltage, or to respond to grid demand including other types of loads. Further 
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research works pointed out that there will be a large number of renewable energy with control-

lable components in the future intelligent power system. Therefore, the coordinated charging 

station scheduling strategy based on improving the consumption level and utilization efficiency 

of new energy are also one of the hot topics of current research. In addition, as the charging 

station is an important component for the coupling power system and the transportation network, 

exploring the coordinated operation of the power grid and the transportation network is also a 

key research direction at present and in the future. It mainly focuses on improving the overall 

transportation network operation efficiency, reducing the unnecessary loss of electric vehicles, 

improving the stability and economy of grid operation, ensuring charging demand, and reducing 

charging costs. What's more, the integrated energy internet coupling more networks, such as 

the heat network, is also a more complex research field. And the security, economy, and effi-

ciency of the network are topics that cannot be circumvented in the EV charging scheduling. 
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3 Planning Strategy Considering Multiple Factors for 

Electric Vehicle Charging Stations along Motorways 

One of the main reasons obstructing the widespread use of electric vehicles is the lack of charg-

ing facilities. In addition, the rapidly increasing number of charging facilities are equivalent to 

a load from the grid side, which will change the power flow of the existing power system and 

bring significant challenges to the power quality as well as overall grid stability. Intensive re-

search has been carried out to study the optimal positioning of charging stations, their impact 

on the power grid, and corresponding energy management strategies. However, the situation 

for planning the charging stations on motorways is different. The charging stations on motor-

ways are designed to satisfy the long-distance travel of EVs. Besides the insufficient number 

of charging stations, another reason that suppresses peopleôs purchasing desire is that the energy 

replenishment speed of EVs is far more than the traditional fuel vehicles. On the actual motor-

way, there are already many service areas where drivers are allowed to park their vehicles. 

Constructing charging stations on existing service areas is more efficient. 

Therefore, in this chapter, a charging station planning method based on the existing service 

areas is proposed. Because this method is based on the existing service area on the real motor-

ways, additional motorway retrofit costs are not required. Comprehensive consideration of the 

construction cost of charging stations, the waiting time for charging, and the inconvenient driv-

ing cost. The proposed planning method can reduce the total cost as much as possible while 

guarantee the distribution density of charging stations and the number of charging facilities in 

charging stations that can meet the EV drivers' requirements. Because the established model is 

a mixed-integer non-linear problem, a corresponding improved solving technique based on the 

genetic algorithm is designed. Three different planning scenarios: orientation to minimize so-

cial cost, orientation to minimize charging station operating, and orientation to minimize charg-

ing station construction, are defined to meet the different planning requirements, and the effec-

tiveness of the proposed method is verified by simulation. 

3.1 Motorway Service Area Modeling Methodology  

Based on publicly available data from Open Street Maps [114], the first step is to obtain location 

information for all German service stations located near motorways, which represent potential 
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locations for charging infrastructure. 

3.1.1 EV Charging Characteristics 

Traffic data from the "Bundesanstalt für Straßenwesen" (BASt) [115] will then be assigned to 

these locations so that it is possible to estimate the temporal pattern of the traffic volume near 

each service area. Based on the binomial distribution, time series of the charging demand (in 

vehicles per hour) for each service area are generated, which form the basis for subsequent 

optimization. The binomial distribution is described as: 

 ( )bpNVEBX ,~  (3.1) 

To make statements about the charging demand occurring at the potential charging location, it 

is necessary to know the relevant parameters of the vehicles wanting to charge. These include 

in particular the (maximum) charging power, the capacity of the battery together with the start 

and end values of the SOC. Based on the types and quantities of EVs registered in Germany in 

2019 [116] and the batteries parameters of the corresponding EVs [117], the relationship among 

charging power, battery capacity, and travel distance of EVs is generated by exponential fitting 

and linear fitting. 

In most cases, if there is any free charger, the EVs start charging as soon as they arrive at the 

charging station. The charging time Tc. is calculated by: 
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where h is the charging efficiency; Pc is the charging power which depends on the battery 

capacity; SOCs and SOCe represent the start state of charge (SOC) and end state of charge SOC. 

It is defined that SOCsÍ [0.05, 0.25] and SOCeÍ [0.7, 0.9] are following the normal distribution. 

Each vehicleôs condition is generated by the Monte Carlo simulation method. 

In order to evaluate the overload level, the line overloading can be further defined as follows: 
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If the generated battery capacity SOC is not within the rated range of SOCs and SOCe, the 

battery SOCs and SOCe are regenerated based on normal distribution until they are within [0.05, 

0.25] and [0.7, 0.9] respectively. 
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3.1.2 Clustering of the Candidate Service Areas 

The existing service areas on the motorway are the candidate points for placing the charging 

station. Define the set of all service areas as WSA. The information of s-th service area is con-

tained in W
 SA 

s , as described: 
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where lons and lats represent the longitude and latitude of the s-th service area, ys donate whether 

the service area installed charging station, Ms is the number of chargers in s-th service area. The 

purpose of clustering in this chapter is to aggregate the closer service areas into one cluster and 

select the optimal one or several service areas as the charging station location. The distance 

matrix D
cand 

s³s  contains the distance between each service area, as described: 
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In General, a motorway is long and contains plenty of service areas. However, the current cruis-

ing range of electric vehicles is limited, so it is unnecessary to optimize the service area that is 

too far away. Because the electric vehicle cannot reach far away from the charging station when 

it has charging demand. Therefore, the cluster boundary is defined to ensure that when the EV 

has charging demand, it can use the remaining power to reach the charging station: 

 CapESOCR csc ³³= max  (3.6) 

where Rc is the cluster boundary; SOC
 max 

s  represents the maximum battery start charge SOC; Ec 

is the energy consumption of electric vehicles. 

As illustrated in Figure 3.1, the clustering process starts from the first service area i at the mo-

torway, and then the distance d
 cand 

ij  between i and the nearest service area j is compared. If d
 cand 

ij

¢Rc, service area i and j are classed into the same cluster k. Then, continue to search the follow-

ing nodes until the distance between adjacent service areas is greater than the cluster boundary 

Rc. Therefore, the output set SAclu contains different clustering, and set Dclu contains the dis-

tance matrix between service areas in different clusters. Let sk be the number of service areas 

in cluster k. D
clu,k 

sk³sk is a matrix that contains the distance between each candidate service area of 

cluster k. d
clu,k 

ij Í D
clu,k 

sk³sk is the distance between service area i and j in cluster k. 
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C
 clu,k= [f:i]

  

Figure 3.1.  Service areas clustering process.  

3.2 Charging Station Planning Model 

The basic points for planning charging stations are their size and location. The larger size charg-

ing stations contain more chargers, which can serve more EVs at the same time but increase the 

construction cost. Thus, a motorway charging station planning model that considers the con-

struction cost, waiting cost and EVs inconvenient driving cost is proposed. Because a motorway 

is long and contains plenty of service areas as the candidate points for chargers, it is unnecessary 

to optimize the service areas that are far away from each other. In addition, optimizing all can-

didate service areas at the same time increased the calculation time. Therefore, the subsequent 

optimization is performed in units of one cluster. 

3.2.1 Station Cost Components 

Station Construction Cost: This cost includes the fixed cost for constructing the fixed one-time 

construction cost Cf,t (including all the cost for constructing a charging station, such as the ma-

terial costs and land rent) and the cost for extra chargers Cs,t. It is assumed, that the fixed costs 

of building new charging stations are the same on every possible location in this chapter. Be-

cause the number of EVs having charging demand changes over time, the waiting cost and the 

inconvenient driving cost are based on time variation. Let g be the index of the candidate service 

area where can install the charging station. The fixed part of the construction cost is one-time 
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consumption, thus, converter it into hourly values while considering its life-cycle, C
k 

c,g,t (gÍCclu,k) 

is described as: 
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where Vf and Vs are the cost for the fixed one-time construction for charging stations and 

chargers; ir is the cost of capital; l is the life-cycle of the charging station; y
k 

g is binary decision 

variable in cluster k, which is equal to 1 if service area g has charging station, otherwise, zero; 

m
k 

g is integer decision variable in cluster k, means the number of chargers in charging station g. 

It is assumed that all charging stations and charging piles are the same types, with the same 

service life and construction cost. From equation (3.7), it can be found that the one-time charg-

ing station construction cost Vf is equivalent to the cost per hour according to the interest rate 

and chargersô life cycle. Similarly, the one-time charger construction cost is also converter into 

the cost per hour. Moreover, the more chargers in the charging station the higher the construc-

tion cost. In addition, the construction cost is zero when g-th service area installs none charging 

station (y
k 

g is zero).  

EVs inconvenient driving Cost: This part is adopted to define the other part of the satisfaction 

degree of drivers. Driving longer distances to find a charging station will reduce EV driversô 

satisfaction, so the inconvenient driving cost is taken into account. The motorway is bi-direc-

tional and cannot turn around during driving, therefore, charging station planning in different 

directions is independent. The optimization results based on these two directions are independ-

ent. Define one of the driving directions of the motorway as direction A and the opposite as 

direction B. Thus if a charging station is installed in the service area in one direction, the service 

area in another direction will also have charging facilities. The EVs inconvenient driving cost 

C
k 

d,g,t (gÍCclu,k) of one charging station g in time t is determined by: 
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From equation (3.8), the inconvenient driving cost includes both direction conditions, NVE
A,k 

g,t  

and NVE
B,k 

g,t  represent the number of vehicles with charging demand at g driving along direction 

A and B; d
A,k 

min,g and d
B,k 

min,i are the distance from the service area g without charging station to the 

nearest service area with charging station along with direction A and direction B respectively. 



 

33 

The relationship between the number of vehicles traveling in different directions is expressed 

by equation (3.9). 

It can be found that when no charging facilities are constructed in g-th service area, EVs having 

charging demand at this service area need to continue driving in directions A and B to reach the 

nearest service areas with charging facilities. Therefore, the inconvenient driving cost is a part 

of the cost in service areas where charging equipment is not installed. Meanwhile, the service 

area with charging facilities will not contain the incontinent driving cost. As illustrated in equa-

tion (3.8), the incontinent driving cost is based on the energy required to drive to the nearest 

charging station, the longer the driving distance, the more inconvenient the driving cost. Simi-

larly, more EVs causes higher inconvenient driving cost.  

Assume that when EVs have charging demand, drivers always choose the nearest charging sta-

tion. The distances from the g-th service area to the nearest service area installed charging 

equipment along with direction A (d
A,k 

min,g) and along direction B (d
B,k 

min,g) are computed by: 
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where SAclu,k represents the set of the service areas in cluster k; Gins,k and Gnoi,k is the set of 

service areas installed charging stations and without charging stations in cluster k; 

According to equation (3.10) and (3.11), when the g-th service area already installed charging 

equipment (y
k 

g =1), the minimum distance from two directions are zero. When no charging fa-

cilities are installed in the g-th service area (y
k 

g =1), search the nearest charging station from the 

set Gins,k (service areas containing charging facilities). The service areas without charging 

equipment (belong to set Gnoi,k) are not in the searching process. Considering that vehicles can-

not turn around on the motorway, only the service area along the direction A (B) is searched, 

indicated as node number j<i (j>i). Equation (3.12) shows that the division of the set Gins,k and 

Gnoi,k is based on whether or not charging facilities are installed, and equation (3.13) expresses 
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the relationship between the set including charging facilities Gins,k and set not including charg-

ing facilities Gnoi,k. 

1
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No charging station

Direction A
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Figure 3.2.  Charging selection diagram. 

An example of how the drivers select charging stations is shown in Figure 3.2. Points 1, 2, 3, 4, 

and 5 are the candidate service areas where locations 1, 4, and 5 are chosen for the installation 

of charging stations. Due to the candidate point 2 has no charging station, the EVs with charging 

demand at point 2 has to drive to point 1 (direction B) or point 4 (direction A) for charging. 

Therefore, the number of EVs charging at charging station g in time slot t is computed by: 
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As expressed in equation (3.14), the number of EVs chosen to charge at charging station g 

consist of EVs having charging demand at g-th charging station, EVs along direction A indent-

ing to be charged at g-th charging station, and EVs along direction B indenting to be charged at 

g-th charging station. Where dA,k 

gh  and dB,k 

gh  are the coefficients that determine whether the cars 

have charging demand at candidate service area h (driving to direction A and direction B) chose 

to charge at charging station g in cluster k. dA,k 

gh  and dB,k 

gh  are calculated as: 
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For the equation (3.15), the first term means the number of EVs having charging demand at 

charging station g; the second term represents all the EVs planning to charge at service area g 

in direction A; similarly, the third term donates all the EVs planning to charge at service area g 
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in direction B. Equation (3.15) expresses that when the g-th service area is the nearest charging 

station, EVs having charging demand at h-th service area, where no charging equipment is in-

stalled, select to charge at g-th service area. 

EVs Waiting Cost: Waiting cost is an indicator of driversô satisfaction. The number of EVs 

with charging demand changes over time, so the waiting cost is calculated based on hourly 

resolution. For calculating the waiting cost of one charging station, the queuing theory model 

is adopted [29]. It is assumed that each charger that provides the charging service for EVs is 

working independently. Thus, the charging process at a specific charging station belongs to a 

standard M/M/C/¤/¤ queuing problem. Define: 
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The number of EVs intent to charge at this charging station (EVC
 k 

g,t) is calculated by equation 

(3.14). Thus, the waiting time C
k 

w,g,t (gÍCclu,k) is calculated by: 
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Equation (3.18) calculates the probability of charging station idle P0, while the equation (3.19) 

computes the queue length L
k 

s,g,t of g-th charging station at time slot t. Therefore, the theoretical 

waiting time of g-th charging station at time slot t is calculated by equation (3.20), which is one 

of the indicators to judge the satisfaction of EV drivers. Afterward, the satisfaction degree of 

waiting time is converted to the economic cost, as described in equation (3.21). Ch is the time 

cost per hour for each EV user in a charging station through the survey [118, 16], therefore, the 

longer the waiting time, the higher the waiting time cost. Furthermore, as the equation (3.13) 

described, without charging facilities the total waiting costs of a candidate service area are also 

zero.  
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3.2.2 Optimization Model 

Because the traffic flow is changing significantly over time, the number of vehicles arriving at 

each candidate service area per hour is calculated based on hourly resolution one-year traffic 

data. The objective is to minimize the total cost associated while supplying the charge demand, 

as illustrated in (3.22). 
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The decision variables are the binary variables y
k 

g for the charging station location and the pos-

itive integer variables m
k 

g for the number of chargers. Decision variables should follow: 

 
{ }

í
ì
ë

Í

Í
+

Z
k

g

k

g

m

y 1 ,0 
 (3.23) 

If no charging station is built-in service area g, the number of chargers should be zero. In con-

trast, the charger number cannot be zero when charging stations are built in this service area. 
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A cluster covers a wide range, in order to ensure the charging demands, at least one charging 

station should be placed in one cluster: 
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The waiting time of charging station g in time t should follow: 

 w,max

k

tgw TT ¢,,  (3.26) 

In addition, according to the queuing theory, the charging facility utilization of charging station 

should satisfy: 
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Besides, it should be ensured that when EVs have charging requirements, their remaining elec-

tricity can reach the nearest charging station. The distance that the remaining energy can reach 

is calculated by: 
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Therefore, the distance from the service areas without charging station to the closest charging 

station should follow: 
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3.2.3 Solution Technique 

In order to solve the MINLP optimization model mentioned above, an improved genetic algo-

rithm is proposed. The objective function is composed of three parts: station construction cost, 

EVs waiting cost, and EVs inconvenient driving cost. It can be found that once the decision 

variable yk (yk={y
k 

1, y
k 

2,é , y
k 

g}) in cluster k  are determined, the inconvenient driving costs C
k 

d,g,t 

will not be affected by the number of chargers in charging station g (m
k 

g). Meanwhile, the sum-

mation of station construction costs C
k 

c,g,t and EVs waiting costs C
k 

w,g,t has a direct relationship 

with the number of chargers in the charging station g (m
k 

g ). Increasing the number of m
k 

g  is 

proportional to construction costs while inversely proportional to waiting cost. Therefore, the 

function of C
k 

c,g,t + C
k 

w,g,t and m
k 

g has a minimum value. 

Initial value A

Initial value B

Minimum value

Cost h(mg )k

Chargers number mg
 

Figure 3.3.  Example for searching the optimal chargers number 

An example of searching the optimal m
k 

g  with fixed yk is shown in Figure 3.3. Set the initial 

value of the m
k 

g to be the minimum value that satisfies the tenable condition of (27) The initial 

value is defined as m
k 

g,0. 
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where ổTmean 

c ×EVC
 k 

g,tỖ represents the smallest integer greater than T
mean 

c ×EVC
 k 

g,t. The relationship 

between C
k 

c,g,t + C
k 

w,g,t and m
k 

g is defined as: 
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Let m
k 

g,1 = m
k 

g,0+1, compare h(m
k 

g,0) and h(m
k 

g,1). If h(m
k 

g,0)>h(m
k 

g,1), then continue to make m
k 

g,2= m
k 

g,1

+1 and compare the next group of h(m
k 

g,1) and h(m
k 

g,2). Until h(m
k 

g,n)< h(m
k 

g,n+1), m
k 

g,n is the optimal 

solution to minimize the summation of construction costs and EVs waiting costs. In another 

case, when h(m
k 

g,0)< h(m
k 

g,1), the initial value starts from the initial value B (the right side of the 

minimum value). However, at this time, the initial value B is the minimum value that ensures 
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the chargers number satisfied the constraint (3.27), thus the initial value B is the optimal solu-

tion in this condition. It should be noticed that the constraint (3.26) should be satisfied at the 

same time. Calculating the waiting time according to (3.12) with the optimal solution m
k 

g,n, if the 

constraint (3.26) cannot be tenable, the number of chargers needs to be increased to satisfy the 

waiting time constraint (3.26).  

Initialize:

mg,0=ổTc         ×EVCg,tỖ, p=0k mean

mg,p+1=mg,p+1
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k k
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Figure 3.4.  The flowchart of the MINLP solution technique. 

The genetic algorithm (GA) is adopted to find the optimal location of the charging station y
k 

g . 

The detailed flowchart of the solution process is shown in Figure 3.4. The binary variable y
k 

g is 

the individual inside the population of the GA. Once a new population of y
k 

g is created, search 

the optimal number of chargers m
k 

g based on current y
k 

g. After that, the fitness values (objective 

function) of this population are calculated by the obtained y
k 

g and m
k 

g, and the best individual in 

this generation is recorded. Then through the selection, crossover, and mutation process, the 

new generation of yk is obtained, continue to screen out the best individuals in the new genera-

tion. Continue the loop until terminated, select the best individual from all generations as the 

solution. In this chapter, the service areas in a motorway are clustered into k groups, and the 

calculation process and results of each group are independent of each other. Thus, the parallel 
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computation can be used to shorten the solving time significantly. 

3.3 Case Study of the Charging Station Planning Method 

3.3.1 Test System and Simulation Parameters 

The test system in this chapter is the German motorway network. The test system includes 163 

motorways and 84 of them have candidate service areas. The car flow data based on hourly 

resolution is collected from [115], and assigned to the nearest resting areas. Figure 3.5 shows 

the comparison of the number of vehicles passing the service area per hour and the number of 

vehicles having charging demand at this service area per hour. In addition, the parameters for 

the EV modeling and charging station planning in this chapter are presented in Table 3.1. 

 

Figure 3.5.  Number of vehicles passing through the service area 

Table 3.1 Main Parameters 

Parameter Value Unit Parameter Value Unit 

m2 0.15 - Cf,t 62,000 [28] ú 

s2 0.15 - Cs,t 27,600 [28]  ú 

m3 0.8 - ir 0.1 - 

s3 0.15 - p 30 years 

h 0.9 - Ch 2 [16] ú/hour 

pb 0.002 - Cep 0.29 ú/hour 

Tw,max 0.5 hour Ec 7 [28]  km/kWh 

In order to meet different development policies and different planning demands, three different 

charging station planning scenarios are defined in this chapter. 

Scenario 1: Minimizing the total social cost. This means considering the optimization of station 

construction cost, EVs waiting cost, and EVs inconvenient driving cost. 
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Scenario 2: Minimizing the cost in the charging station. In this scenario, the optimization pro-

cess only minimizes the summation of construction costs and EVs waiting costs (the left part 

and middle part of the objective function). 

Scenario 3: Only consider the construction costs of charging stations. 

The objective function under different scenarios will change, but it should be noticed that con-

straints should be satisfied in any scenario. 

3.3.2 Planning and Sizing Results 

The planning results of charging stations under scenarios 1, 2, and 3 are shown in Figure 3.6 

(a), (b), and (c), respectively. Larger rounds represent more installed chargers at that charging 

station. It can be found, that because under scenario 1, the convenience of charging is consid-

ered, more charging stations are planned, but the number of chargers per service area is gener-

ally lower than in the other two scenarios. In scenario 3, since the objective is to minimize the 

construction costs, the size of charging stations will be increased. Increasing the size of a charg-

ing station will be more economical than building more charging stations, thus the number of 

charging stations under scenario 3 is the relatively least and the scale of a charging station under 

scenario 3 is relatively the largest. The number and scale of charging stations in scenario 2 are 

between scenario 1 and scenario 3. 

(a) (b) (c)

Charging stations under scenario 1 Charging stations under scenario 2 Charging stations under scenario 3

Highway Resting areas

 

Figure 3.6.  The charging station planning results under three scenarios (a) scenario 1 (b) sce-

nario 2 (c) scenario 3 

To illustrate the detailed planning result, the geographical distribution figure of one specific 
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cluster including 20 service areas is shown in Figure 3.7. The total number of charging stations 

under scenario 1 is more than under scenarios 2 and 3. Furthermore, the specific cost result of 

each scenario is shown in Table 3.2. It can be found that the inconvenient driving cost of service 

areas with charging facilities is zero, while construction cost and waiting cost are the dominant 

cost. The opposite is true for service areas without a charging station. 

(a) (b)

(c) (d)
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Figure 3.7.  The Detailed planning results under three scenarios of a specific service area cluster 

(a) position of the selected cluster (b) charging stations under scenario 1 (c) charging stations 

under scenario 2 (d) charging stations under scenario 3 

In order to reflect the advantages of the proposed method, a control scenario was added to the 

discussion. The control scenario adopts the planning method proposed in [119, 16] suggesting 

that all service areas are considered as charging stations, and the number of chargers of single 

charging stations is calculated independently. The overall cost distribution diagram of the whole 

German motorway under three scenarios is shown in Figure 3.8, where the effectiveness of 

different scenarios optimization is proved. Obviously, the proposed method can reduce not only 
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the construction cost but also the total social cost. That is because the method proposed in this 

chapter considers the coordination between different charging stations so that one charging sta-

tion is able to serve EVs in multiple adjacent service areas with charging demand, with no need 

to install charging stations at every service area. Meanwhile, it is guaranteed that the majority 

of EV users are able to reach a charging station because the distance between the charging 

stations remains in the distance constraint. Comparing the cost, the total cost under scenario 1 

is the least, which corresponds to the optimization objective of minimizing the total social cost. 

The total social cost under scenario 2 is relatively smaller than scenario 3 but larger than 

scenario 1, while the summation of charging station construction cost and EVs waiting cost is 

the least. Since the objective is set to minimize the construction cost in scenario 3, the 

construction cost shown in Figure 3.8 under scenario 3 is the least, but the total social cost under 

this scenario is the largest. 

 

Figure 3.8.  The different types of costs under three different scenarios 

Table 3.2 Detailed cost of different service areas 

 Scenario 1 Scenario 2 Scenario 3 
Control Sce-

nario 

Number of Charger 4989 4855 4335 5633 

Number of Charging Station 768 696 695 1274 

Proportion of charging stations installed 60.28% 54.63% 54.55% 100% 

Average number of chargers per charging station 6.49 6.97 6.23 4.42 

The total number of service areas participating in the charging station planning algorithm is 

1274. Table 3.3 illustrates the installation ratio of charging stations and charging poles in dif-

ferent scenarios. It can be found that because all the mentioned cost factors are comprehensively 

considered in scenario 1, it has the largest number of charging stations and chargers of the 
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proposed three scenarios. In contrast, in scenario 2, the number of chargers per charging station 

is the largest, because the main purpose of scenario 2 is to improve EV driversô satisfaction by 

reducing the waiting time. In Scenario 3, the main objective is to reduce construction costs 

while ensuring that the waiting time and the remaining cruise range are within the constraints. 

Therefore, the number of charging stations and chargers planned in Scenario 3 is the smallest. 

In the control scenario, although all the service areas are equipped with charging stations, the 

number of chargers per charging station is smaller than in the other three scenarios, which 

means the number of EVs served by each charging station and the utilization rate is lower. 

Table 3.3 Detailed cost of different service areas 

Ser-

vice 

area 

Dis-

tance 

(km) 

Scenario 1 Scenario 2 Scenario 3 Control Scenario 
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g 
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c,g,t 

(ú/h) 

C
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w,g,t 

(ú/h) 

C
k 

d,g,t 

(ú/h) 

1 0 0 0 0 0 10.79 1 3 46.5 47.3 0 0 0 0 0 34.25 1 3 46.6  42.5  0 

2 4.89 1 7 82.1 132.7 0 1 5 64.3 89.7 0 0 0 0 0 23.19 1 3 46.6  42.4  0 

3 9.94 0 0 0 0 10.90 0 0 0 0 10.90 0 0 0 0 12.00 1 3 46.6  42.3  0 

4 15.51 1 3 46.5 45.9 0 0 0 0 0 2.34 1 11 117.6 288.6 0 1 4 55.4 84.9  0 

5 16.60 1 5 64.3 87.8 0 1 11 117.6 211.2 0 0 0 0 0 2.34 1 4 55.4 85.6  0 

6 22.96 0 0 0 0 13.49 0 0 0 0 13.49 0 0 0 0 15.80 1 4 55.4 84.7  0 

7 29.28 0 0 0 0 10.68 0 0 0 0 27.21 0 0 0 0 7.98 1 4 55.4 85.4  0 

8 33.01 0 0 0 0 2.71 0 0 0 0 35.46 1 10 108.7 274.8 0 1 4 55.4 70.7  0 

9 34.26 1 9 99.8 171.8 0 0 0 0 0 33.61 0 0 0 0 2.73 1 4 55.4 70.5  0 

10 40.73 0 0 0 0 13.95 0 0 0 0 19.39 0 0 0 0 16.66 1 4 55.4 69.9  0 

11 45.52 0 0 0 0 23.05 0 0 0 0 14.43 0 0 0 0 42.99 1 4 55.4 71.7  0 

12 49.73 0 0 0 0 8.520 1 13 135.41 291.57 0 0 0 0 0 30.95 1 4 55.4 70.1  0 

13 52.24 1 10 108.7 202.2 0 0 0 0 0 8.56 0 0 0 0 22.53 1 4 55.4 71.1  0 

14 58.84 0 0 0 0 11.05 0 0 0 0 24.96 1 11 117.6 302.3 0 1 4 55.4 71.6  0 

15 62.07 1 13 135.4 266.9 0 0 0 0 0 13.95 0 0 0 0 11.09 1 4 55.4  71.8  0 

16 66.12 0 0 0 0 13.85 1 13 135.41 266.95 0 1 8 91.0 253.9 0 1 4 55.4  70.1  0 

17 67.28 0 0 0 0 17.76 0 0 0 0 3.93 0 0 0 0 3.93 1 4 55.4  71.0  0 

18 72.99 0 0 0 0 10.55 1 4 55.47 70.06 0 0 0 0 0 23.14 1 4 55.4  70.0  0 

19 76.13 1 10 108.7 200.7 0 1 7 82.12 137.11 0 0 0 0 0 16.90 1 3 46.6  43.83  0 

20 81.09 0 0 0 0 16.91 0 0 0 0 16.91 1 6 73.2 154.4 0 1 3 46.6  42.4  0 

Total cost - 
645.9 1108.3 164.2 

- 
637.0 1114 225.2 

- 
508.3 1274.2 266.5 

- 
1065.1 1333.5 0 

1918.5 1976.2 2049.1 2398.7 

Notice: Distance means the distance from the first service area to this service area; C
k 

c,g,t, C
k 

w,g,t and C
k 

d,g,t represent the average con-

struction cost, EVs waiting cost, and EVs driving cost per hour, respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.9.  Relationship between charging demand and number of chargers under (a) scenario 

1 (b) scenario 2 (c) scenario 3 (d) control scenario 
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The relationship between the charging demand and the number of chargers of one specific clus-

ter is shown in Figure 3.9 and the detailed cost of different service areas in Table 3.3. When 

there is no charging facility in the service area, the number of EVs at nearby charging stations 

will increase. Charging stations with more EVs tend to have more chargers installed. Thus, 

compared with the control scenario, the proposed three scenarios can not only reduce the con-

struction cost but also decrease the waiting cost. 

 

Figure 3.10.  Monte Carlo simulation results: The RCD distribution histogram under (a) sce-

nario 1 (b) scenario 2 (c) scenario 3 

The Monte Carlo analysis method is adopted to evaluate the satisfactions of EV drivers. The 

planning results should ensure that EVs with charging demand can reach the nearest charging 

station, thus, the remaining cruising distance (Rrem) with the remaining SOC after EVs arrived 

at the nearest charging station is defined as: 

 mindRR batrem -=  (3.322) 

where dmin is the distance to the nearest charging station and Rbat is the distance that the remain-

ing battery energy can reach, where: 

 CapESOCR c

min

sbat ÖÖ=  (3.33) 

Therefore, if the Rrem is smaller than 0, the vehicle cannot reach the nearest charging station. 

The Monte Carlo method is adopted to simulate the vehicle Rrem with charging demand in Ger-

many for one year. Randomly generated EV information such as battery capacity, charging time, 

and remaining battery capacity when having charging demand is used. The results are shown 
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in Figure 3.10. It can be found that most of the EVs with charging demand can reach the charg-

ing station under all three scenarios. Since scenario 1 takes into account the driving loss of EVs, 

the largest number of vehicles can meet their charging requirements. 

In addition, the long charging time is one of the main obstacles to the diffusion of electric 

vehicles. Thus, the Monte Carlo simulation is also adopted to simulate the waiting time of each 

EV. Similarly, each EVôs information is generated based on the EV modeling that was de-

scribed in Section II. The waiting time of each EV is calculated by subtracting the time of arrival 

from the time at which the charging process starts. When there are idle chargers, the first arriv-

ing vehicle is charged first. The time interval between the previous vehicle finishing charging 

and the next vehicle starting charging is simplified to 0. Thus, if there are idle chargers when 

an EV arrives, the waiting time of this EV is 0. 

 

Figure 3.11.  Monte Carlo simulation results: The waiting time of each EV in the charging 

station under (a) scenario 1 (b) scenario 2 (c) scenario 3 

The waiting time of each EV under different scenarios is shown in Figure 5.11 respectively. 

The maximum allowed average waiting time Tw,max in this chapter is set to 30 minutes, as shown 

in Table 3.1. Obviously, most of the EVs under all three scenarios can keep their waiting time 

below 30 minutes. Comparing Figure 3.10 and Figure 3.11, it can be found that under scenario 

1, the majority of EVs can not only reach the nearest charging station with their remaining 

power when they have charging demand, but they also spend less time waiting in the charging 
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station. For scenario 2, because the planning only considers the construction cost and the wait-

ing cost, fewer charging stations are established, which prevents relatively more vehicles from 

reaching the nearest charging station with their remaining power. However, the waiting times 

in this model are still within reasonable limits. On the contrary, more than 97% of vehicles can 

reach the charging station under scenario 3, but the waiting time for each vehicle is the relatively 

largest. Therefore, three different scenarios have their own advantages and disadvantages. Ac-

cording to the demand and policy of car charging, different planning schemes can be selected. 
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Figure 3.12.  The hourly number of vehicles, average waiting time, idle rate of chargers and 

charging power of a charging station under scenario 1.  

Scenario 1:   

Advantages: most of the vehicles can reach the nearest charging station and the waiting time is 

relatively low. 

Disadvantage: the construction cost is the highest. 

Scenario 2:   

Advantages: the waiting time for EVs is low and the construction cost is lower than scenario 1. 

Disadvantage: relatively more vehicles could not reach the charging station. 
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Scenario 3:   

Advantages: the construction cost is relatively lowest meanwhile most of the vehicles can reach 

the nearest charging station. 

Disadvantage: the waiting time of the vehicles is significantly higher than in the other two 

scenarios and is more likely to exceed 30 minutes. 

Furthermore, the internal characteristics of charging stations are also discussed in this chapter. 

One example is shown in Figure 3.12. The selected example has 13 chargers. It can be found 

that the more vehicles arrive, the more likely the EVs have to wait for charging. At some points, 

even if a vehicle arrives, the waiting time is still 0. That is because some chargers are idle and 

the vehicles can be charged directly without waiting. The idle rate reveals the utilization of 

chargers, in Figure 3.12, the idle rate is often zero while the average waiting time is still very 

short. Thus, the number of installed chargers is reasonable, meaning that the construction cost 

is saved while the charging demand is satisfied. In most of the peak hours when many EVs 

arrive, the chargers are fully utilized while the waiting time EVs is not long. The charging 

power is calculated based on the EVs battery capacities, charging time, and charging power as 

described in Section II. The charging power profiles can be superimposed to the MILES model 

[120] to describe the impact of highway charging stations on the power system. 

3.4 Summary 

In this chapter, an EV charging station planning strategy for motorways is proposed. The site 

of the charging stations is selected from the existing service areas on the motorways, and the 

size of charging stations is computed based on the number of EVs with charging demand. The 

influence of multiple factors on placing charging stations on the motorway are considered com-

prehensively. The proposed method can reduce the social cost as much as possible while satis-

fying the charging demand of the majority of EVs. In addition, an improved genetic algorithm 

is proposed to solve the established MINLP model. Because the candidate placing points in this 

chapter are divided into many clusters, the parallel computation can be used, which greatly 

improves the speed of the solution. Furthermore, in order to satisfy the different planning re-

quirements, three different scenarios are proposed. Considering the advantages and disad-

vantages of different scenarios, suitable scenarios for planning can be selected according to 

existing policies and development needs. 
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4 Optimal EV Charging Scheduling strategy with  a Lim-

ited Number of Charging facilities 

Lack of charging facilities is still a significant barrier to the electrification of the logistic system. 

However, a contradictory fact is that the high vacancy rate of the charger is also one of the main 

problems at present. This is because the charging demand characteristics of EVs have obvious 

timing characteristics, so there is insufficient charging equipment during the peak period of the 

traffic flow, and the phenomenon of idleness during the low traffic flow period. How to effec-

tively schedule the electric vehicle (EV) charging power to reduce the charging station operat-

ing cost when the number of chargers was limited becomes an important issue. 

Considering the limited number of chargers, an optimal charging power scheduling method 

based on TOU electricity price is proposed. Firstly, the uncontrolled charging scheduling model 

is designed for fully charging EVs as fast as possible. There is no coordination among charging 

EVs, and no charging power optimization scheduling is implemented. Then, considering the 

limited chargers assignment scheme, an EV optimal charging scheduling model to minimize 

the total charging cost is proposed. The established model is a bilevel programming (BP) model, 

which can not only guarantee the EVsô charging demand by reasonably assigning the limited 

chargers, but also reduce the charging cost by optimal scheduling the charging power. The up-

per level mainly decides the charger index and available charging period of EVs. The lower 

level solves the EVs charging power within their available charging period by responding to 

the TOU electricity price. Then, as the upper level is a mixed nonlinear integer program while 

the lower level is a linear program, a compound solving algorithm is designed to get the detailed 

optimal EVs charging scheduling solutions. Through performance verification, the proposed 

algorithm can find the solution within an acceptable time. Finally, the proposed optimal charg-

ing scheduling method is compared with the uncontrolled charging scheduling method and a 

commonly used charging power scheduling method. According to the results, the proposed 

method can provide a detailed and efficient EV charging scheme, which can minimize the 

charging cost while guaranteeing the EVsô charging demand when considering the limited num-

ber of chargers.  
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4.1 Overall System Model 

The proposed optimal charging scheduling strategy is for logistics transportation with EVs. 

Therefore, in order to meet the requirement of logistics transportation, the requested energy, 

arrival time, and departure time of EVs are needed to know. When an EV arrives at the charging 

station, it is required to fill up all the required power before its departure time. Due to the limited 

number of charging facilities, when there are large among of EVs having charging requirements 

at the same time, the subsequent EV cannot start charging until the previous EVs finish.  

EV Charger

T

EV1 EV2

t1 t2 t3 t4

EV4

EV3

Charger1

Charger2

Requested 

charging 

time

Charger 

idle time
EV Waiting time

EV available 

charging time

 

Figure 4.1.  Charging station operating model 

As shown in Figure 4.1, while EV4 arrives at the charging station at t1, both charger1 and 

charger2 are utilized and will finish their work at t2 and t3, respectively. Thus, its available 

charging time is from t2 to t4 at charger1, and the available charging time is from t3 to t4 at 

charger2. Moreover, the TOU electricity price in each hour is also different. Therefore, how to 

schedule the EVs charging power to reduce the charging cost and meet their energy require-

ments is the optimization problem to be solved. 

4.1.1 Electric Vehicle Model 

Considering the realistic scenarios, the arrival rate and departure rate are the time-dependent 

data that the EVs distribute goods in the daytime and back to the charging station at night. Thus, 

we set one whole day (24 hours, from the first day 12:00 to the next day 12:00) as one period. 

Then divide it into T time slots equally and let t (t= 1, 2, é, T) donate t-th time slots (an hour 

is one time slot). The arrival time, departure time, and required energy of each EV are required 

information for optimal scheduling, which is:  

 { }req

n

d

n

a

n

E

n Ett ,, =W  (4.34) 

where t
a 

n  and t
d 

n  represent the arrival and departure time of EV n; E
req 

n  means the required energy 
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of EV n. Each arrival EV is sequentially indexed. Considering the realistic logistic transmission 

scenarios, the number of charging EVs per hour and the required power to each EV are different. 

The arrival time follows Poisson distribution [121, 122] with the average rate of lt. The proba-

bility for N EVs arriving at the charging station during time slot t is given by:  

 {}
!

)(

N

e
NP

N

t
t ll

=  (4.2) 

Meanwhile, the departure time follows the truncated normal distribution [123, 7] N(l1,m1), 

where l1 is the mean of the departure time and m1 is the standard deviation. The required charg-

ing energy is determined by the initial battery state of charge (SOC) Sini and the requested SOC 

Sreq. According to the realistic transportation, the initial SOC and requested SOC are following 

the normal distribution [123] N(l2,m2) and N(l3,m3) respectively. Where l1 and l2 are the mean 

of the Sini and Sreq, m2 and m3 are the deviations. Consequently, the required energy for each EV 

is computed by: 

 CapSSE ini

n

req

n

req

n Ö-= )(  (4.3) 

Considering the fact that the vehicle type of a logistics company is uniform, it is supposed that 

all the types of EVs and chargers are the same and each charger provides the same amount of 

energy in a certain time slot.  

The maximum power that a charger can provide within one time slot is defined as Pmax, Dt is 

the time interval. When an EV charging with Pmax, the charging time for this EV is the shortest. 

Thus, the minimum required time to fully charge is described as:  

 t
P

E
t

max

req

nfull

n DÖù
ù

ø
é
é

è
=  (4.4) 

Remark 1: considering the realistic operation of the charging station, it is assumed that when 

EVs need not queue for charging, all EVs can complete charging within their dwell time at the 

charging station. Thus, the charging information of n-th EV should satisfy: t
d 

n  ī t
a 

n  ² t
full 

n .  

Remark 2: the index of EV will  be sorted according to the time of arrival. EVs arriving earlier 

will be charged first. When serval EVs have the same arrival time t
a 

n , the EV with earlier depar-

ture time t
d 

n  has more urgent charging demand, thus, has higher charging priority. In addition, 

for EVs with the same arrival time t
a 

n  and departure time t
d 

n , EVs with more energy requirement 

E
req 

n  will be charged first. The sorted set of EVs according to the above rules is defined as:  

 { }E

N

E

n

EE WWW=W  , , , ,1 22  (4.5) 



 

52 

4.1.2 Uncontrolled Charging Station Operation Model 

In this chapter, each single time slot t is an hour. In realistic uncontrolled scenarios, EVs tend 

to finish charging as fast as possible. So, an EV will immediately start charging with the maxi-

mum charging power once a charger was idle.  

According to Remark 2, the index order in WE is the sequence of EVs into the charging station, 

the charging process is shown in algorithm 1. Defined the output of Algorithm 4.1 is the charger 

power matrix Pch and the EV power matrix Pev, as described in:  
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Pch (M³T) is the charger charging power matrix where Pch(m,t) means the charging power pro-

vided by the m-th charger at time slot t. Similarly, Pev (N³T) is the EV charging power matrix 

where Pev(n,t) means the charging power of the n-th EV at time slot t.  

Algorithm 4.1: Uncontrolled charging model 

1: Start Algorithm  
2: Input:  VEC, M, N, T, Pmax 

3: Initialization:  Pch=zeros[M,T] (M³T null matrix); 

Pev=zeros[N,T] (N³T null matrix) 

4: Procedure EPS(Pev, Pch, M, T, Pmax) 

5: for every EV n=1:N 

6: (Tear, l)=  ICS(Pch, M, T) 

7: while d is not empty and 0>req

nE  and 

d

near tT ¢  

8: if  tEPP req

nTch
ear

D¢-
),(max l  then 

9: max),(
PP

earTch =
l  

10: ),(),(max),( earearear TnevTchTnev PPPP +-=
l  

11: ( )tPPEE
earTch

req

n

req

n D--=
),(max l  

12: else 

13: tEPP req

nTchTch
earear

D+=
),(),( ll  

14: ),(),( earear Tnev

req

nTnev PtEP +D=  

15: 0=req

nE  

16: end if 

17: 1+= earear TT  

18: end while 

19: end for 

20: return : Pch, Pev 

21: end Procedure 

 

22: Procedure ICS(Pch, M, T) 

23: Initialize: Tear=T 

24: for every charger m=1:M 

25: for  every time slot t=1:T 

26: if   max),(
PP

tmch <  then 

27: When the m-th charger is idle CTn=t  

28: jump to 31 

29: end if 

30: end for 

31: if  Tear>CTn then 

32: Tear=CTn 

33: Record the earliest idle charger l=m 

34: end if 

35: end for 

36: return: Tear, l 
37: end Procedure 

38: Output:  Pch, Pev 

39: End Algorithm  
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In the uncontrolled charging model, EVs always select the earliest idle charger to charge. For 

example, an EV arrives at the charging station while one charger is idle and the others are 

utilized; this EV will select the idle one. In another case, as shown in Figure 4.1, the last EV4 

arrives while all the two chargers are not idle. Because charger1 finishes the charging earlier, 

EV4 will queue in charger1. 

Remark 3: If the EV n has completed charging at charger m at time slot t, and the charging 

power provided by the charger m at this time slot is Pch(m,t)=Pev(n,t), the maximum allowed charg-

ing power for the next EV j who charged at the same charger m at the same time slot t is: 

Pev(j,t)=PmaxīPev(n,t). 

Remark 4: The under charging EVs will not stop charging until their energy requirements are 

satisfied or their departure time is reached. 

The uncontrolled charging model includes two procedures: idle chargers searching (ICS) pro-

cedure and EV power supplement (EPS) procedure. The ICS finds the earliest idle charger l 

and its idle time Tear according to the current charging station status Pch. The EPS procedure 

supplies energy to each EV. For each EV, it will queue at the earliest idle charger l and start 

charging after Tear. The output of algorithm 1 is the EVs charging power matrix Pev and chargers 

charging power matrix Pch. Thus, the charging characteristics of one charging station under the 

uncontrolled charging model can be obtained. 

4.2 Optimal  Charging Scheduling with Limited Charging Facilities 

Minimizing the charging cost by optimal charging scheduling can effectively reduce the cost 

of logistics transportation with EVs. By considering the TOU electricity price, shifting the 

charging peak into the valley TOU price can reduce the charging cost significantly. 

Limited by the number of chargers, the optimal charging process needs to assign chargers to 

each EV, arrange feasible charging durations for each EV and determine the charging power of 

each EV. Therefore, this chapter decomposes the optimization problem into a BP model. In the 

upper level, according to EVsô dwell time and requested power, each EV is assigned to a spe-

cific charger, and then its start charging time and end charging time are determined. In the lower 

level, with the fixed start charging time and end charging time, the charging power of each EV 

is optimized to minimize the charging cost by responding to the TOU price. 
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4.2.1 Lower Level Model 

The lower level model is designed to optimize the charging power based on the TOU electricity 

price when the charging duration of each EV is determined. Define the n-th EV start charging 

time as t
s 

n and the end charging time as t
e 

n. 

The lower level model is designed as: 
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In the objective function (4.8), eprice(t) donates the electricity price at time slot t. Pev(n,t) is the 

decision variable that represents the charging power of EV n at time slot t. Constraint (4.9a) 

expresses that each EV should be fully charged with the required energy E
req 

n  within its start 

charging time t
s 

n and end charging time t
e 

n(Remark 4). Constraint (4.9b) represents that the n-th 

EV cannot be charged while the time is early than its start charging time t
s 

n or later than its end 

charging time t
e 

n . Constraint (4.9c) means the power provided per time slot cannot exceed the 

maximum allowed charging power Pmax. In constraint (4.9d), in a certain time slot, subsequent 

EVs can be charged with the remaining energy if the charging power of the previous EV at the 

same time slot has not reached the maximum allowed charging power Pmax(Remark 3). It can 

be found that once the charging duration t
s 

n and t
e 

n  are fixed, the lower level model becomes a 

linear optimization problem. 

4.2.2 Upper Level Model 

Due to the limited number of chargers, the charger assignment process needs to take into ac-

count. Define the chargers assignment matrix d (M³N), and its inside elements are described 

as: 
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Define Cn as the index of charger selected for n-th EV, Ln as the position in the charging queue 

of n-th EV, as described: 
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Therefore, it is necessary to assign each EV to reasonably choose the charger to achieve the 

purpose of reducing costs. In addition, the start and end charging time should be optimized 

when the charger assignment is determined. 

As shown in Figure 4.2, suppose three EVs are assigned to charge at one specific charger, and 

they have their own arrival and departure times. The first vehicle EVn is still in the charging 

station when the second vehicle EVj arrives, thus there is an overlap time between the two EVs. 

Because one charger can only serve a single EV at once, the switch time t
switch 

n,j  between EVn and 

EVj should be set. Switch time is the time when the previous EVi finished charging and the next 

EVj started charging, where t
switch 

n,j = t
e 

n= t
s 

j . The end charging time of EVn is set as t
e 

n and this EV 

can charge during [t
a 

n , t
e 

n ]. Similarly, EVj needs to wait for EVn to complete charging before 

starting charging, and the available charging duration of EVj is [t
s 

j , t
d 

j ]. The end charging time 

of vehicle n is equal to the start charging time of EVj. For the third arriving EVr, it has no 

overlapping dwell time with the previous vehicle, so the available charging duration is [t
a 

r , t
d 

r ]. 
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Figure 4.2.  Example of the time limit  

Selecting a reasonable charger and deciding the suitable start charging and end charging time 

is to reduce the charging cost as much as possible. The mathematical program of the upper level 

model is: 
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In order to reduce the total charging cost, the objective (4.12) is to set the charger selection 

element d(m,n), start charging time t
s 

n, and end charging time t
e 

n  as the decision variable. Con-

straint (4.13a) expresses that all the vehicles should be assigned to one and only one charger 

for charging. Thus, in each column of matrix d, at least and only one element is 1. Considering 

the realistic situation of the charging process, EVs can only be charged while dwelling in the 

charging station. Therefore, the start charging time and end charging time should satisfy the 

constraint (4.13b). Constraint (4.13c) means the end charging time is later than the start charg-

ing time. The start charging time of the subsequent j-th EV cannot be earlier than the end charg-

ing time of the previous n-th EV if both n-th EV and j-th EV charged are at the same charger. 

Thus, constraint (4.13d) expresses the time restriction setting when two EVs had overlap dwell 

time in the charging station. In one case, the start charging time of the subsequent j-th EV is 

equal to the end charging time of the previous n-th EV when satisfied: 1) both n-th EV and j-th 

EV charge at the same charger (Cn=Cj); 2) the j-th EV queues just behind the n-th EV (Ln+1=Lj); 

3) the departure time of the previous n-th EV is later than the arrival time of the subsequent j-

th EV (t
a 

j < t
d 

n ). Otherwise, the start and end charging times of an EV are set as its arrival and 

departure times respectively. The sufficiency charging time is the necessary condition for the 

fulfill charging, as described in constraint (4.13e). 

4.2.3 Solving Algorithm for the Established Bilevel problem 

Since the decision variables in the upper level model are discontinuous integers, and the deci-

sion variables t
s 

n and t
e 

nare even the variable index of the lower level model, which makes the 

BP problem very difficult to solve. The definition of t
s 

n and t
e 

n is to make the charging power in 



 

57 

the lower model satisfy the constraints (4.9a). In fact, it is negligible to first know when an EV 

starts and finished charging. We only need to ensure that each EV meets the corresponding 

charging demand within its dwell time and will not replenish energy during the non-dwell time. 

Then according to Remark 3, compute the start and end charging time of EVs. Thus, we convert 

the problem from solving Pev(n,t) into solving Pch(m,t). The converted lower level model is: 
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In the converted lower level, decision variables are transferred from the charging power of EV 

Pev(n,t) to the charging power of charger Pch(m,t), where satisfy Pch(m,t)В (ŭ(m,n)P(n,t))N
n . The real 

meaning is the charging power of one charger is the summation of all the EV power charged in 

this charger. Constraint (4.15a) is the charging power limited, constraint (4.15b) represents EVs 

cannot be charged when not in the dwell time, and constraint (4.15c) expresses EVs should 

finish charging during their dwell time. Constraint (4.15d) determines the charging duration of 

EVs with overlapping dwell time. The charging power cannot exceed the required energy of 

the previous n-th EV when the arrival time of the subsequent j-th EV t
a 

j  has not reached. Simi-

larly, the charging power cannot exceed the required energy of the subsequent j-th EV when 

the departure time of the previous n-th EV t
d 

n  is already reached. 

As decision variables in the lower level model are converted, the converted upper level model 

only needs to consider the chargers assignment matrix d as decision variables: 
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By the above modification, the decision variables in the upper level problem are reduced from 

t
s 

n, t
e 

n, and d(m,n) to only d(m,n). Meanwhile, the lower level problem is a linear problem once the 

decision variables in the upper level problem are fixed. Although this BP problem is still an 

NP-hard problem, the converted model has greatly reduced the search range compared to the 

previous model. Currently, the heuristic algorithm is one of the mainstream methods for solving 

such NP-hard problems [124, 7]. Since the decision variables d(m,n) are in binary, we donôt need 

to proceed with the encoding and decoding steps when using genetic algorithms. Thus, the ge-

netic algorithm with specific improvements is used to solve this problem. Since the generated 

matrix d may conduct to one charger serving for too many EVs, which makes the lower level 

model unsolvable, we need to quickly determine whether the lower level model can be solved 

with the generated d matrix. 

Theorem 1: define that the dwell time of K EVs overlaps when charging at the same charger m. 

Suppose the index of K EVs is n=1, 2, é, K. The dwell time overlap means: (t
d 

1< t
a 

2 ) & é& (t
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< t
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F: problem (4.14)-(4.15) is not solvable.  

E is necessary and sufficient condition for F, which is EᵾF. The condition E can be used to 

quickly judge whether the lower level model is severable. 

Proof 1: Firstly, the proof EᵼF is true. According to condition E, due to the dwell time of the 

previous EVs and subsequent EVs overlap, we can get:  
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According to constraint (4.16c) and E, we have:  
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To make the problem solvable, all constraints must be satisfied. But combining (4.19) and 
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(4.20), constraint (4.15d) cannot be established, which means the problem is not solvable, EᵼF 

is true. 

Then, the proof FᵼE is true. We can prove  ¬Eᵼ¬F is true. Thus, according to ¬E, we have: 
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Combining (4.16b), (4.20), and (4.22), we have: 
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Therefore, ɱ Pch(m,t) to make the constraint (4.15d) established. Then, since we have t
d 

K< t
a 

K-1, the 

relationship can be obtained by combining constraint (4.15d): 
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where the (4.23) means EV i is charged less power in [t
a 

n , t
a 

n+1] than in [t
a 

n , t
d 

n ] and EV n+1 is 

charged less power in [t
d 

n , t
d 

n+1] than in [t
a 

n+1, t
d 

n+1]. Both EV n and EV n+1 are charged at the same 

charger and EV n+1 is subsequent to EV n. Therefore, constraint (4.15d) is satisfied. Obviously, 

constraint (4.15c) is easy to establish, so all constraints of the problem (4.14)-(4.15) are satisfied, 

which means ¬F is true when ¬E. Therefore, the statement EᵾF is true. 

The solving algorithm flow chart of the proposed BP problem is described in Figure 4.3. Fol-

lowing constraint (4.17) to generate d as the individual and input it into the lower level model. 

Then verify whether the problem (4.14)-(4.15) is solvable under each fixed d following Theo-

rem 1. The solvable problem will take d as a known parameter and solve the linear problem 

with decision variables Pch(m,t). The unsolvable situation will return ñbreakò information to the 

upper level. If there are solvable individuals, the minimum charging cost G of each individual, 

outputted from the lower level, will be their fitness values, and the individuals with smaller G 

values are more likely to reproduce offspring. Record the individual with the smallest G value 

at this generation. Then individuals who are able to produce offspring, generate a new popula-

tion through crossover and mutation, and then repeat the above steps. Until the predetermined 

generation is reached, stop the calculation and output the best individual as the result. Then 

output the best chargers assignment matrix d and its corresponding charging power matrix Pch. 
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If all individuals in the population are unsolvable, output the best solution recorded before. If 

no best solution been recorded, then the number of EVs exceeds the service ability of the charg-

ing station. 

Generate new population

Finding the optimal 

solution for each 

individual ŭ (M*N) 

Individuals: ŭ (M*N)

Constrains: (4.17)

Y

Solvable?

(Theorem 1)

Fixed: ŭ (M*N) 

Solve linear problem  
Objective: (4.14)
Constrains: (4.15a)-

(4.15d)

Return: Pch, G 

Return: Break

All break?

Any best individual 

recorded?

Individual fitness 

based on G

Record the best 

fitness individual ŭ  

and corresponding 

Pch, G

Selection, crossover 

and mutation

Terminate?

Output best solution: 

Pch, G, ŭ

Output: 

Error, too much EVs

Constrains: (4.17)

END

START Input: M, T, ÝE, eprice

N

Y

NY
N

Y

N

Lower Level

Upper Level

 

Figure 4.3.  Algorithm flow chart 

Algorithm 4.2: EV charging power calculating algorithm 

1: Start Algorithm  

2: Input:  Pch, d, VEC, M, N, T, Pmax 

3: Initialization:  Pev=zeros[N,T] (N³T null matrix), 

ICVm=[ ]  

4: Procedure ICVm calculation 

5: for  every charger m=1:M 

6: for  every EV n=1:N 

7: if  d(m,n)=1 then 

8: ICVm=[ICVm, n] 

9: end if 

10: end for  

11: end for  

12: return : ICVm 

13: end Procedure 
14: Procedure Pev calculation 

15: for  every charger m=1:M 

16: n=1 

17: for  every time slot t=1:T 

18: j= ICVm(n) 

19: if  0>req

jE  then 

21: tEP remtjev D=),(  

22: rem

req

j

req

j EEE -=  

23: else 

24: ),(),( tmchtjev PP =  

25: ),( tmch

req

j

req

j tPEE D-=  

26: end if  

27: else 

28: tEP req

jtjev D=),(  

29: 
req

jtmchrem EtPE -D= ),(  

30: n=n+1 

31: end if  

32: end for  

33: end for  

34: return : Pev 

35: end Procedure 
36: Output:  Pev 

37: End Algorithm  
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20: if  0>remE  then 

Combining the optimal charger assignment matrix d and charger power matrix Pch, the EV 

power matrix Pev, which shows the specific charging power of each EV at each time slot, can 

be obtained. The detailed procedure for calculating Pev is given in Algorithm 4.2. Define ICVm 

as the vector that contains the index of charging EV at charger m. ICVm(f) represents the f-th 

element in vector ICVm. According to Remark 4, one charger can only serve the subsequent EV 

when the previous EV finished charging, so the charging power of one charger will be allocated 

in accordance with the charging sequence and required power of EVs. By combining chargers 

assignment matrix d and EV power matrix Pev, The specific charging scheme, such as each 

individual EV charging at which charger and the specific charging power at each time slot, can 

be obtained. 

4.3 Performance Evaluation of the Proposed Optimal Charging Scheduling 

Method 

Since the genetic algorithm is adopted in the proposed optimal charging scheduling algorithm, 

the performance of the proposed algorithm is discussed. As described above, by establishing 

the BP model, we can greatly reduce the search range of the genetic algorithm. As shown in 

Figure 4.4, directly using the normal genetic algorithm to find the results need to search both d 

and Pch at the same time, where Pch belongs to positive natural numbers. That means the calcu-

lation time will be long and the results will be far away from the optimal solution. By adopting 

the solving method proposed by this chapter, the searching range is reduced to only search d. 

The value range of Pch is a real number greater than 0, and the range of d is only selected 

between 0 and 1, so the actual possible types of chromosomes are reduced from infinity to a 

finite number. On this basis, when considering constraint (4.17), the possible types of chromo-

somes will be much fewer. Because the searching range is been reduced significantly, the com-

puting speed and accuracy will be increased. 

Monte Carlo analysis is adopted to find the average generation for getting the best fitness value 

and the average calculating time under a different number of chargers M and a different number 

of EVs N. Set the N to a fixed value 15, calculate the average required generation to obtain the 

optimal solution and the average calculation time under different M. Similarly, Set the M to a 

fixed value 6, calculate the average required generation to obtain the optimal solution and the 

average calculation time under different N. The results and parameters of the genetic algorithm 
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are shown in Table 4.1. It can be seen that when the number of chargers increases, the calcula-

tion time will also increase. This is caused by the increase in chromosome length (Increase the 

number of rows of d). Similarly, when the number of EVs increases, the calculation time will 

increase. But when the number of EVs exceeds the serving capacity, the calculation time will 

decrease. This is because according to Theorem 1, we can quickly determine whether the lower 

level model has a solution, which can reduce the calculating time. According to the performance 

test, we can consider that the parameters setting of the genetic algorithm is reasonable, and it 

can find the optimal solution in an acceptable time. 
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Figure 4.4.  Searching range of (a) traditional genetic algorithm (b) modified genetic algorithm 

Table 4.1 Performance of the POCS 

M/N Average generation of best fitness value Average calculating time 

4/15 2.5 0.081s 

6/15 3.8 0.088s 

8/15 4.1 0.102s 

10/15 4.5 0.110s 

N/M Average generation of best fitness value Average calculating time 

15/6 3.1 0.084s 

20/6 3.9 0.088s 

25/6 4.7 0.105s 

30/6 4.4 0.095s 

Population size: 50, Generations: 20, 

Crossover rate: 50%, Mutation rate: 5% 

In order to demonstrate the performance of our proposed optimal charging scheduling algorithm 

(POCS), the uncontrolled charging scheduling (UCS), and the most widely adopted optimal 

charging without chargers assignment scheduling (WCAS) are taken for comparisons, one 
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charging station for the logistics EVs is considered as a case study. The WCAS method is the 

most common scheduling method when considering the charging station capacity limitations. 

However, this method ignores the specific assignment of chargers for each individual EV, 

which means it cannot figure out the chargers assignment matrix d. Thus, in this chapter, we 

call it without chargers assignment scheduling (WCAS). The objective function of WCAS in 

this chapter for comparison is (4.8) in our chapter and the constraints are based on the model in 

[125]. In addition, in order to prove the universality of the proposed method, Monte Carlo sim-

ulation is adopted to verify the efficiency. The serviceability under different charging methods 

is compared, the impact of the number of EVs on the charging cost under different charging 

methods is analyzed, and the economized charging cost rate of the POCS method is compared 

with the UCS method. 

4.3.1 Case Study 

The number of chargers is M=6, all EVs and chargers are the same types and the maximum 

charging power per hour provided by each charger is Pmax=20kW/h. The battery capacity of the 

EV is set as Cap=100kWh. The optimization time slot t is set as one hour while the total time 

slot number T in an optimization duration is set as 24 hours. Because EVs usually transport 

cargo during the daytime and return to the logistic center at night, the optimization duration 

starts from one day 12:00 to the next day 12:00. In total 100 EVs were charged in five days. 

The time of used electricity price is following the Germany electricity spot prices [126]. Both 

the number of EVs staying in the charging station at each time slot and the TOU price are shown 

in Figure 4.5.  

 

Figure 4.5.  TOU electricity price and number of EVs dwelling at charging station 

The heatmap of power provided by each charger at different times is shown in Figure 4.6. It 

can be found that the detailed charging process about how each charger provides energy to each 

EV is been established by the proposed algorithm. The charging power under POCS is more 

dispersed in the heatmap. In the POCS method, the chargers are always avoiding to supply 



 

64 

energy when the electricity price was at a peak value. In contrast, by adopting the UCS, EVs 

start charging as soon as they find the idle charger, thus, the economics of EVs energy supply, 

in this case, is much lower than after scheduling optimization. In addition, the POCS can find 

out the exact charger index of each specific EV, Figure 4.7 shows the charger selection of each 

EV in a topical day where the deep color means this EV was charging at the specific charger.  
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Figure 4.6.  Heatmap of the energy provided by each charger at different times. 
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Figure 4.7.  Selection of chargers in a topical day. 
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Figure 4.8.  The cumulative charging cost under different charging methods.  

Figure 4.8 expresses the cumulative charging cost under three different charging methods. It 

can be found from Figure 4.7 that the cost of adopting WCAS is the least because it simulates 

an ideal scene and ignores the specific charger assignment scheme for each individual EV. With 

the help of the POCS, the charging cost is reduced significantly compared with the UCS, and 

the result is very close to the ideal WCAS condition. Meanwhile, a specific chargers assignment 

matrix d cannot be given in the ideal WCAS scenario, so we believe that the POCS can not only 

reduce charging cost but also provide a more realistic charging operation scheme. 

4.3.2 Monte Carlo Analysis on Service Ability  of the Charging Station under 

Different Scheduling Approach 

In the realistic operation of the charging station, it is necessary to ensure all EVs are fully 

charged. However, the number of chargers is limited and each EV requires a specific time for 

charging, so the ability to provide charging services per day of a charging station is limited by 

the number of chargers. Because the power requirement is stochastic, the serviceability of the 

charging station is discussed by the Monte Carlo analysis. The optimization duration T is set as 

24 hours from 12:00 to the next day 12:00. Generate one set of WE with a certain number of EV 

N by following normal distribution, as described in Section II. And then, input the generated 

EVs set WE to the optimal charging scheduling model and the uncontrolled charging model. If 

all EVs are fully charged, increase the number of N, and then generate another set WE and repeat 

the above steps continuously. Once not all EVs are fully charged, record current N as the ser-

viceability. By repeating the above process 500 times, the boxplot of the serviceability under 

different charger numbers is shown in Figure 4.9. 
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Figure 4.9.  The distribution of serviceability after Monte Carlo analysis 

Obviously, as the number of chargers increases, the number of EVs that can be charged per day 

also increases. In addition, the serviceability under the POCS is very close to the serviceability 

under the UCS and WCAS, which means the proposed charging scheduling method can guar-

antee the maximum number of EVs to complete charging. 

4.3.3 Monte Carlo Analysis on Charging Cost under Different Scheduling 

Approach 

The charging cost under two charging methods with the increase of charging EVs is also ana-

lyzed by Monte Carlo simulation. For a certain number of N, generate a set of WE, then input it 

to the optimized charging scheduling and the uncontrolled charging model to calculate the dif-

ferent charging costs. Repeat this process 500 times, then the charging costs of the current num-

ber of N under these two different charging methods are computed.  

The simulation results are shown in Figure 4.10. The yellow dotted line and green dotted line 

represent the price range of POCS and UCS, respectively. Meanwhile, the blue line and point 

mark the mean charging cost under POCS, and the red line and point mark the mean charging 

cost under UCS. The mean cost under WCAS is drawn with the black dotted line. Four scenar-

ios with a different number of chargers are simulated. Evidently, regardless of the number of 

chargers, charging with the POCS can reduce the charging cost significantly than the UCS 

method. Similar to the result in Figure 4.8, the cost under POCS is very close to the result under 

the ideal WCAS conditions. 
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Figure 4.10.  Charging cost under different charging methods with the increase of charging 

vehicles (a) charger number M=4 (b) charger number M=6 (c) charger number M=8 (d) charger 

number M=10 

4.3.4 Efficiency of the proposed optimal charging scheduling algorithm 

  

Figure 4.11.  Reduced charging cost when adopting POCS compared to UCS (a) charger num-

ber M=4 (b) charger number M=6 (c) charger number M=8 (d) charger number M=10 

By adopting the POCS, the reduced charging cost compared with the UCS cost is shown in 

Figure 4.11. It can be found that when the number of EVs is not large, the optimal charging 

cost is close to the UCS cost because the number of charging EVs that can be rescheduled is 

small. In contrast, when the number of EVs arrives at a certain number, the optimization is more 
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obvious. However, when the number of charging EVs continues to increase, the optimized 

charging cost and uncontrolled charging cost will become closer. This is because the number 

of EVs is close to the charging stationôs serviceability, in order to ensure that each EV is fully 

charged before departure, there is a few extra margins for charging scheduling optimization. 

Through the analysis of the efficiency of the proposed charging scheduling method, the number 

of chargers in the charging station can be installed according to the actual number of EVs op-

erating every day. 

4.4 Summary 

Considering the limited number of chargers, the charging process of a charging station is mod-

eled. An uncontrolled charging scheduling process is designed to reflect the working way of 

each charger when no extra optimization method is implemented. Then, an optimal charging 

scheduling method is proposed by reasonably arranging the charging time and chargers for each 

EV. By scheduling the charging power within EVsô available charging time by responding to 

the TOU electricity price, the proposed method can reduce the charging cost as much as possi-

ble while ensuring that all EVs are fully charged. Besides, we analyzed the serviceability of the 

charging station with the limited chargers and compared the economized charging cost under a 

different number of charging vehicles and a different number of chargers. The POCS method 

is compared with the UCS method and the WCAS method. Through extensive simulations, it 

has been shown that with the proposed optimal charging scheduling algorithm, the charging 

station can not only schedule the charging process more efficient but also provide a more de-

tailed optimal charging scheme. 
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5 Data-driven Intelligent EV Charging Operating Consid-

ering the Charging Demand Forecasting 

In the last chapter, the scheduling schemes of limited charging facilities are discussed. Coordi-

nated charging scheduling can improve the operating economics of charging stations, promote 

the utilization rate of charging facilities and reduce the required amount of chargers. However, 

the limitation of the proposed scheduling method in the last chapter is obvious. To apply the 

scheduling method in the last chapter, the future charging demand of each EV is required, which 

means it is only suitable for a parking lot with a fixed charging timetable, such as electric bus 

charging and electric logistics truck charging. Besides that, the battery degradation characteris-

tics that affect user satisfaction are also not considered. 

To tackle this issue, a data-driven intelligent EV charging scheduling algorithm is proposed in 

this chapter, by scheduling in response to the time-of-use (TOU) electricity price, the limitation 

of charging facilities, and detailed charger operating process is also considered. The EV charg-

ing demand forecasting process is proposed in this more versatile chapter. An EV charging 

demand forecasting method based on a neural network algorithm is proposed. The forecasting 

process predicts the subsequent set of charging EVs including the number of subsequent EVs 

and their respective dwell period and energy requirements. The charging scheduling optimiza-

tion model considering the limited charging facilities is proposed. The object of the optimiza-

tion model is to minimize the overall cost. The equilibrium between station operators and EV 

users is obtained. The total charging cost for the charging operators is reduced while the charg-

ing requirements and reducing the battery degradation are assured. Combining the charging 

demand forecasting method and the scheduling optimization model, the real-time charging 

scheduling system operation process is introduced. By considering the real and estimated EVs 

in the optimization model, the more accurate guidance for the charger power allocation at the 

current moment can be obtained. Detailed power scheduling and charger operating processes 

for each individual EV are provided. The proposed DICS approach can provide the scheme of 

how to flexible use the limited chargers to connect the appropriate EVs and provide correspond-

ing charging power. 
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5.1 The Charging Station Model and the Necessarily of Forecasting 

As discussed above, coordinating charging stations for EVs can help improve the overall charg-

ing economy and reduce the construction cost of charging stations. Therefore, the multiple-to-

multiple charging station type designed in [33] is applied for charging scheduling designing. 

The proposed DICS method in this chapter is mainly for operating a single charging station and 

can be applied to places suitable for optimized charging scheduling, such as work locations, 

commercial centers, and residential areas. The data-based intelligent charging scheduling sys-

tem model is shown in Figure 5.1. When an EV intends to charge at the charging station, the 

system will report its required charging information, including arrival time, departure time, and 

energy requirement. Since the performance of the power scheduling is time-dependent and the 

information of the subsequent EVs is unknown, we apply the information of historical arrived 

EVs to predict the future charging demand. With the reported and predicted EVsô information, 

the intelligent charging scheduling procedure is controlled by the charging scheduling system 

(CSS). Each EV parks in the charging area and connects to the charging network. The charging 

network is the multiple-charger multiple-port charging system, each charger is allowed to serve 

multiple parking spaces and each EV is allowed to be charged by multiple chargers, but one 

charger can only charge one EV at a time [33]. By considering the TOU price, battery degrada-

tion characteristics, and usersô satisfaction, the CSS coordinates the service objects of each 

charger and adjusts the power dispatch from each charger. All the charging activities are auto-

matically switched. 
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Figure 5.1.  Model of the data-based intelligent charging scheduling system 

Figure 5.2 gives a toy example about the advantage of scheduling considering the EV infor-

mation forecasting in the case of limited charging facilities. Assume that the maximum power 

that a charger can provide in a time slot is Pmax=4, and only one charger is available in the 
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charging station that can only serve one EV at the same time. In Figure 5.2 (a), the current time 

slot is 1, the EV W
E 

1  with 10 units of energy demand arrives at time slot 1 and will leave at time 

slot 5. When no subsequent EVs are considered for scheduling the optimal charging scheme is 

to charge 2, 4, 4 units of power at time slots 1, 4, 5 for W
E 

1 . Because this charging scheme can 

ensure user W
E 

1  completes its charging demand before leaving, and the TOU price at time slots 

1, 4, 5 are lower than other times. From time slots 1 to 2, the scheduling process in total provides 

2 units of energy to W
E 

1  to avoid the high TOU price. However, when the time slot comes to 3, 

an actual EV W
E 

2  with 6 units of energy demand arrived and will leave at time slot 5, shown in 

Figure 5.2 (b). From time slots 3 to 5, it can only provide a maximum of 12 units of energy, 

while W
E 

1  and W
E 

2  have a total of 14 units of energy demand at this time, so the charging demand 

cannot be fully guaranteed. In addition, the charging station has to provide charging power at 

time slot 3 when the TOU price is the highest, which further reduces the charging economy. 
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Figure 5.2.  Toy example for the scheduling (a) without EV information forecasting at time slot 

1 (b) without EV information forecasting at time slot 3 (c) with EV information forecasting at 

time slot 1 (d) with EV information forecasting at time slot 3 
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In other cases, illustrated in Figure 5.2 (c), assume at time slot 1, it is predicted that EV W
E 

2  with 

7 units of energy demand will arrive at time slot 4 and leave at time slot 5. Then the optimal 

charging scheme is to charge W
E 

1  4, 4, 1, 1 unit of energy at time slots 1, 2, 3, 4 and charge the 

predicated W
E 

2  3, 4 units of energy at time slots 4, 5. Similarly, when the time slot comes to 3, 

the actual EV W
E 

2  with 6 units of energy demand arrived, shown in Figure 5.2 (d). Since the 

charging margin has been taken into account by forecasting, 8 units of energy had been charged 

to W
E 

1  in advance at times 1 and 2. Therefore, after the actual W
E 

2  arrived, both W
E 

1  and W
E 

2  can 

get sufficient energy supply at the lower TOU price period, time slots 4 and 5.  

In the case of limited charging facilities, we not only need to predict the amount of energy 

demand in the subsequent moments but also need to predict the number of EVs and allocate the 

energy demand to them. Even if the forecasting process cannot provide the completely accurate 

follow-up EV data, the scheduling with subsequent can still provide a certain margin for the 

charger and bring a significant improvement in the economy and user satisfaction. Of course, 

the more accurate the forecast is, the more efficiency would be improved. 

5.1.1 Electric Vehicle Charging Demand Information 

In a realistic situation, the charging demand in a charging station is time-depended, which that 

means at different times, the number of EVs in the charging station is different. The arrival time 

and departure time of the n-th EV are t
a 

n  and t
d 

n , where t
a 

n  < t
d 

n . E
req 

n  represents the required energy 

of n-th EV. The required charging energy is determined by the initial battery state of charge 

(SOC) S
ini 

n  and the requested SOC S
req 

n  where both of them are following the Gaussian distribu-

tion [123]. Consequently, the required energy for each EV is computed by: 

 ( ) n

ini

n

req

n

req

n CapSSE -=  (5.1) 

where Capn is the battery capacity of n-th EV. Pmax is the maximum power that a charger can 

provide within one time slot. It is assumed that the charging demand of all cars will not exceed 

the maximum power that can be obtained during the dwell time, which means t
d 

n  ī t
a 

n  ² E
req 

n /Pmax. 

The arrival time, departure time, and required energy of each EV are required information for 

optimal scheduling, which can be regarded as a User, defined as:  

 { }req

n

d

n

a

n

E

n Ett ,,=W  (5.2) 

EVs staying in the charging station for a certain period can be regarded as a charging Task of 

the charging station. Define the Task set: WE ={W
E 

1,é, W
E 

2,é, W
E 

N}, where N denotes the number 

of users in one task, n is the index of the user. 
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The TOU electricity price at different time slots is defined as eprice(t), where t is the index of 

time slot. Therefore, the electricity purchase cost for the charging operator is: 

 ( ) tnpricetn PtePG ,, )(=  (5.3) 

where Pn,t denotes the charged power of EV n at time slot t. 

5.1.2 Battery degradation characteristic 

From the perspective of users, EV users expect to complete the charging requirements within 

the dwell time while increasing the battery life. Thus, the battery degradation model is estab-

lished. The LiFePO4 lithium-ion battery, which has more thermal and chemical stability, has 

been widely used in a variety of EVs [76]. A degradation cost model for LiFePO4 battery cells 

is developed in [71], which can be expressed as: 

 ( ) tntntntnttn cCapPbCapPaPū ++= ,

2

,, )(  (5.4) 

where parameters at, bt and ct are related to the battery characteristics: 
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where Ccell is the price ($/Wh) of battery cell capacity; Vnom denotes the cell voltage; D is the 

number of composed identical cells; ɓi, i= 1,é,7 are the parameters specified in [127]. 

5.2 Data-Driven EV Charging Demand Forecasting based on LSTM 

In the actual scene, the charging demand information of EVs that will arrive in the future is 

unknown. However, the information of the subsequent EVs will affect the scheduling efficiency. 

Thus, it is essential to forecast the subsequent charging demand for improving scheduling effi-

ciency, reducing charging costs, and increasing usersô satisfaction. 

5.2.1 Long short-term memory (LSTM) network Application  

Data Preprocessing: In order to improve the performance of intelligent charging scheduling, 

detailed EV information (including arrival time, departure time, and required energy) is re-

quired to be predicted. From the perspective of the charging station operator, it is easy to record 

the number of vehicles arriving and departing at different times, as well as the energy demand 

data of the respective EVs. Define N
a 

t  and N
d 

t  are the number of EVs arriving and departing at 

time slot t. N
s 

t  denotes the number of EVs dwelling at the charging station at time slot t. Let ɣt 

denotes the expected total energy demand at time slot t, which is computed as: 


































































































