
Mathematical modelling of
the quality-based order

assignment problem

Te
ch

ni
ca

lR
ep

or
t Jacqueline Schmitt, Florian Hahn,

Jochen Deuse

02/2018

technische universität

dortmund



Part of the work on this technical report has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project B3.

Speaker: Prof. Dr. Katharina Morik
Address: TU Dortmund University

Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de

http://sfb876.tu-dortmund.de


1 Introduction

The increasing global competition forces companies to reduce their production costs and
increase the quality of their products at the same time. Due to individualized customer
needs, there can be numerous customer requirements to the products that need to be
ful�lled to ensure customer satisfaction. Therefore, many companies established a qual-
ity management (QM) system, which aims for continuous improvement of performance
regarding system, process, and product quality. Basic concepts and requirements for QM
systems can be found in the ISO 9000 standards series. A main principle hereby is the
customer orientation so that individualized customer needs can be considered within the
design of internal quality testing gates [4].

To ensure quality producing companies implement quality control circuits which vary in
size depending on their application area. Product-related control circuits can be quite
large because they only appear at quality gates which are mostly at the end of the value
chain. To decrease product-related control circuits and reduce the amount of value adding
to defective products, process-integrated quality monitoring needs to be established. In
this context, the application of quality prediction with machine learning algorithms is
highly promising [21]. The prediction of the anticipated �nal product quality allows to
derive control decisions quite early in the process chain.

One possible control decision is the assignment of (intermediate) products to customer
orders based on the comparison of their predicted/expected quality and customer require-
ments. Control points are established along the procution chain where control decisions
are derived based on quality prediction. If the product does not ful�l the requirements
of the currently assigned customer order, a mathemtical optimization model will provide
suggestions for reassigning the products in order to minimize selected production logistic
KPIs, e.g. delivery date deviation or average processing time.

Within this technical report we present two approaches to model the product to customer
order assignment problem (PCO-AP) mathematically as a 0,1 assignment problem (0,1-
AP) and generalized assignment problem (GAP).

The second chapter presents the mathematical modelling as well as miniature examples to
demonstrate the approach. The third chapter presents a short introduction to algorithms
for solving the assignment problem including a small example again. The fourth chapter
concludes this reports and gives an outlook to further research within this concept.
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2 Mathematical modelling of the product to cus-

tomer order assignment problem (PCO-AP)

2.1 Problem statement

Suppose that for each customer order arriving, a production order to manufacture the
desired product is placed. Customer requirements do not always directly relate to the
functionality of a product. Therefore, each customer may require a product of a speci�c,
but not uni�ed, quality. The quality of products may also vary because of various reasons,
like inhomogenous quality of raw materials or process variations. Quality predictions are
used to derive insights on the expected �nal quality along the production chain in order
derive control decisions at an early stage.

Every company measures their performance through production logistics KPIs. From a
customer point of view, delivery date deviation seems to be a key factor for customer
satisfaction.

The problem now is to determine the assignment of products to customer orders which
results in the least overall delivery date deviation.

Figure 1: Overall concept [20]
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2.2 Notation

For consistency the notation of the presented models is adapted to the problem of as-
signing products to customer orders based on their predicted �nal quality. In the most
general form, the index sets are referred to as agents and tasks [18].

Table 1 shows di�erent notations for the assignment problem found in literature (see for
example [15, 18, 19]) and how these have been adpated for the assignment problem of
products to customer orders based on their predicted quality. Detailed descriptions of
the di�erent parameters will be given at the respective point within this paper.

Table 1: Adapted notation for the assignment problem of products and customer orders

Index Original notation Adapted notation

i ∈ I Agents, individuals Customer orders

j ∈ J Tasks, jobs Products

Q = (qij) Quali�cation matrix Quality matrix

C = (cij) Cost matrix Production logistics KPI

P = (pij) Required resource Predicted quality of product j (pj)

bi > 0 Available amount of resource Required quality of order i

xij Decision variable

2.3 Model description as 0,1 assignment problem (0,1-AP)

The �rst presented modelling approach in the event of nominal quality criteria follows
the formulation of the assignment problem used by Kuhn in 1955 as a 0,1 assignment
problem [15].

(0,1-AP) Problem statement Suppose that n agents (I = 1, ..., n) are available for
n tasks (J = 1, ..., n) and that a quali�cation matrix Q = (qij) is given, where qij = 1
if agent i quali�es for task j and qij = 0 otherwise. The question of the 0,1 assignment
problem then is:

What is the largest number of tasks that can be assigned to quali�ed agents, such that
not more than one task is assigned to each agent and vice versa? [15]
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Modelling of (PCO-AP) as (0,1-AP) Within this modelling approach the quali�-
cation matrix Q = (qij) indicates whether a product j ful�lls the quality requirements of
an order i, so that qij = 1 and qij = 0 otherwise. Therefore, Q can also be referred to as
the quality matrix.

This combinatorial optimization problem can be formulated as a linear program (LP) as
follows:

(0, 1-AP ) Maximize
n∑

i=1

n∑
j=1

qijxij (1)∑
i∈I

xij = 1 f.a. j ∈ J (2)∑
j∈J

xij = 1 f.a. i ∈ I (3)

subject to xij ∈ {0, 1} f.a. i ∈ I, j ∈ J (4)

where xij = 1 if product j is assigned to customer i and xij = 0 otherwise.

Example 1 The following miniature example is constructed based on [15] with minor
adjustments to illustrate the modelling of (PCO-AP) as a 0,1 assignment problem.

Four customers (denoted by i = 1, 2, 3, 4) require four products (denoted by j = 1, 2, 3, 4).
Without loss of generality, we assume that customer orders arrive in ascending order
and that the production orders are generated with identical enumeration (When order
1 arrives, the production of product 1 is initiated, ...). In this example, the product
quality is evaluated nominally by the categorie A,B, and C, whereas A represents the
best achievable and C the minimum required quality category so that A > B > C with
> meaning "... is better than ...". The quality requirements of the customers are given
according to table 2 and the predicted quality of the products are given according to
table 3.

Table 2: Customer requirements

Customer Quality requirement

1 C

2 A

3 B

4 A

Table 3: Predicted quality of products

Product Predicted quality

1 C

2 B

3 B

4 A

A customer will accept all products that have at least his required quality. Accordingly,
a customer that requires quality A will only accept products with quality A, a customer
that requires quality B will accept products with quality A and B, and a customer that
only requires quality C will accept any of the products (with quality A, B, and C).
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Therefore,

Customer


1

2

3

4

will accept product(s)


1, 2, 3 and 4

4

2, 3 and 4

4

This information can be presented e�ectively by the quality matrix

Q =


1 1 1 1
0 0 0 1
0 1 1 1
0 0 0 1


in which rows stand for customers and columns for products. If a customer accepts a
product, the respective entry is marked by a 1 and if he does not accept the product by
a 0.

The question is now what is the largest number of customer orders that can be satis�ed
with the existing products? Thereby we need to take into account that each product
can only be assigned to one customer order and vice versa. In terms of the matrix Q
the question is what is the largest number of 1's that can be chosen from Q with no two
chosen from the same row or column?

Since this example is quite small, a feasible and even optimal assignment can be de-
rived easily without high computational e�ort. Looking at the rows and columns of Q
it becomes obvious that customers 2 and 4 will only be satis�ed if they are assigned to
product 4. Customer 3 will be satis�ed with products 2,3, and 4 and customer 1 will
accept all four products. Therefore, the largest number of customers satis�ed is 3, see
coloured 1's in examples Q1 , Q2 and Q3 .

Q1 =


1 1 1 1
0 0 0 1
0 1 1 1
0 0 0 1

 Q2 =


1 1 1 1
0 0 0 1
0 1 1 1
0 0 0 1

 Q3 =


1 1 1 1
0 0 0 1
0 1 1 1
0 0 0 1


Eventhough there are more possibilities for feasible assignments, it is impossible to im-
prove the assignment in terms of increasing the number of satis�ed customers. Therefore,
one replacement order to ful�l the remaining customer order has to be generated and the
product that cannot be assigned to any customer order has to be rejected as scrap or
bu�ered for further orders.

From the industrial application point of view there are multiple approaches on how to
determine which of the optimal solutions to choose.

From the product perspective we would reject a product with less value added rather than
a product which is (almost) �nished. Therefore, if multiple optimal solutions exist, we
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would choose the solution where the product with least value added is not assigned to a
customer order. Since we assumed that the production of the products started according
to their index, we would prefer to reject product 3 rather than product 2 because the
value added is assumed to be less due to its later start (e.g. Q2 ).

From the customer point of view, customer satisfaction is highly related to on-time de-
livery. Hence, we would try to reduce delivery date deviations. For this example, we
assume that the customer does not complain about an early delivery but will most likely
not accept a delayed delivery. Accordingly, we would try to ful�l the customer orders
that have been in the system the longest and assign a replacement order to the newest.
In this example, we would place a replacement order for customer order 4 and assign the
remaining orders to the products in any feasible way (e. g. Q3 ).

Generally, there is a variety of production lgistic KPIs that are taken into account when
deriving control decisions. To include these KPIs in the objective of the optimization a
cost matrix has to be included within the objective function which leads to the problem
formulation as a generalized assignment problem, presented in the next subsection.

2.4 Model description as generalized assignment problem

In this subsection a formulation of the assignment problem of intermediate products and
customer orders as a generalized assignment problem (GAP) appears. This formulation
of the problem is needed when quality criteria are metric (instead of nominal) and other
production logistics KPIs should be considered in the objective of the optimization.

The generalized assignment problem is a generalization of the ordinary assignment prob-
lem of linear programming in which multiple assignments of tasks to agents are limited
by some resource available to the agents [19].

(GAP) Problem statement Suppose that a set of agents I = {1, 2, ..., n} is available
for a set of tasks J = {1, 2, ..., n} and that a performance rating matrix R = (rij) is given,
where rij are positive integers for all i and j. An assignment consists of the choice of
one task j for each agent i such that no task is assigned to two di�erent agents and each
agent is assigned exactly one task. The question of the GAP therefore is:

For which assignment is the sum of the performance ratings largest? [15, 19]

Within linear programming the performance ratings rij can be displayed in matrix form.
A set of elements of a matrix are called independent if no two of them lie in the same
row or column [18]. Respectively, the aim is to choose a set of n independent elements
of the matrix R so that the sum of these elements is maximum.
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The respective formulation of the GAP as a maximaziation problem of the overall per-
formance rating is as follows:

(GAPMax) Maximize
∑
i∈I

∑
j∈J

rijxij (5)

subject to
∑
i∈I

xij = 1 f.a. j ∈ J (6)∑
j∈J

xij = 1 f.a. i ∈ I (7)

xij ∈ {0, 1} f.a. i ∈ I, f.a. j ∈ J (8)

Parenthesis: Transformation from maximization to minimization problem

Since most industrial applications focus on minimizing KPIs, like costs or processing
times, it is useful to model the assignment problem as a minimzation instead of a
maximization problem.

The maximization problem stated above can be transformed into a minimization problem.
Therefore, let r be the maximum value of all rij, so that r = maxi,j rij, and let cij = r−rij.
Accordingly, the equivalent problem is to choose a set of n independent elements of the
matrix C = (cij) such that the sum of these elements is minimum [18].
cij can be assumed to be the costs incurred if agent i is assigned to task j.

In addition to the 0,1-assignment problem, the generalized assignment problem consideres
pij to be the resource required by agent i to do task j and bi > 0 to be the amount of
resource available to agent i. Therefore, the additional condition∑

j∈J

pijxij ≤ bi f.a. i ∈ I (9)

needs to be added to the problem formulation above. The natural interpretation of the
decision variable again is

xij =

{
1 if agent i is assigned to task j,

0 otherwise.

Modelling of (PCO-AP) as (GAP) The products again represent the tasks J =
{1, 2, ..., n} and the customer orders the agents I = {1, 2, ..., n}. The costs cij can be
any production logistics KPI, e. g. processing time or delivery date deviation. This is a
major advantage compared to the (0,1-AP) approach because di�erent objectives within
the production logistics context can be considered which allows for greater applicability
and scalability of the overall concept for di�erent industrial applications.

The required resources pij that an agent i requires to perform task i can be interpreted
as the predicted quality of product j. Since the predicted quality does not depend on the
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assigned customer order i, the index i can be omitted (leading to pj). In this context, bi
can be interpreted as the required quality of customer order i. Since the quality of the
assigned product has to be greater or equal to the requirement, the "≤" constraints 9
need to be transformed into "≥" constraints. From a mathematical point of view, both
sides of the inequalitis can be multiplied by −1 to invert the relation of both sides.

Accordingly, a mathematical formulation of the generalized assignment problem is [19]:

(GAPMin) Minimize
∑
i∈I

∑
j∈J

cijxij (10)

subject to
∑
j∈J

pjxij ≥ b̃i f.a. i ∈ I (11)∑
i∈I

xij = 1 f.a. j ∈ J (12)∑
j∈J

xij = 1 f.a. i ∈ I (13)

xij ∈ {0, 1} f.a. i ∈ I, f.a. j ∈ J (14)

As one can see in constraints (11), this approach requires numerical quality information.
As in most industrial applications, nominal quality information are gained by classifying
numerical values using treshold values. This preprocessing step can be omitted and the
original measured values can be used for quality prediction and the optimisation of the
assignment instead.

The (GAP) as stated above consists of 3n+ n2 constraints and n2 decision variables. In
addition, (GAP) is NP-hard [10] and considerable research has been done to �nd e�ective
enumeration algorithms to solve problems of reasonable size to optimality (see chapter
3).

In general, as well as in this speci�c application, GAP can be reduced to a simple as-
signment problem (AP) which is a special case of GAP [19]. The advante of the AP
compared to GAP is that it can be converted into a non-NP-hard problem which can be
solved optimally within polynomial time.

When each constraint (11) of the GAP is scaled by dividing both sides of the inequality
by the right-hand side value to obtain∑

j∈J

kijxij ≤ 1 (15)

where

kij =
pj
bi
, (16)

then (AP) is a special case of (GAP) in which kij = 1 for all i ∈ I, j ∈ J [19].
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In the context of (PCO-AP), kij = 1 f. a. i, j implies that the quality requirements of all
customer orders and the quality of all products are identical. To ensure that individual
quality requirements are ful�lled by assigned products, these constraints can be included
in the calculation of the cost matrix C.

The entries of the matrix can thereby be modi�ed as follows:

c̃ij =

{
cij if quality requirement of order i is ful�lled by product j ,

M or − otherwise, depending on the selected solution algorithm.
whereas cij is the original entry of the cost matrix C, representing the contribution to the
selected KPI by the assignment of product j to order i and M is a very big number to
ensure these entries are not part of the optimal solution. Instead of M the entries could
also be left empty indicating that such an assignment is not feasible.

However, if there is no feasible solution such that the existing products are not su�cient
to ful�l all customer order requirements, a replacement order has to be generated and
one product has to be rejected. From the mathematical point of view, this requires to
add another virtual product, representing the replacement production order, and a �ctive
customer representing the rejection as scrap to the problem. Therefore, the cost matrix
C̃ is of size (n+ 1)× (n+ 1) with entries

c̃ij =


cij if quality requirement of order i is ful�lled by product j

for i, j = 1, ..., n,

M or − otherwise for i, j = 1, ..., n,

aij for i = 1, ..., n, j = n+ 1 and i = n+ 1, j = 1, ..., n

whereas there are di�erent options to de�ne suitable values for aij.

1. From the customer perspective, e.g. when minimizing delivery date deviation, the
column n + 1 holds the values ĉij which contribute to the objective function if a
customer order is ful�lled by the replacement order. Whereas the rejection of any
product as scrap (row n+ 1) is not of particular interest. Therefore,

aij =

{
ĉij for i = 1, ..., n, j = n+ 1

0 otherwise

2. From the production point of view, it might be of greater interest to reject products
with least added value or to minimize the average order processing time. In the
both cases, the product with the least progress would be rejected such that

aij =

{
ĉij for i = n+ 1, j = 1, ..., n

0 otherwise
with ĉij increasing along the production progress of the products.

3. Other values of aij highly depend on the selected objective as well as individual
preference within the optimization process.
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The simple assignment problem can accordingly be formulated as follows:

(AP ) Minimize
∑
i∈I

∑
j∈J

c̃ijxij (17)

subject to
∑
j∈J

xij = 1 f.a. i ∈ I (18)∑
i∈I

xij = 1 f.a. j ∈ J (19)

xij ∈ {0, 1} f.a. i ∈ I, f.a. j ∈ J (20)

The problem (AP) could be considered as a mixed integer programming, which is NP-
hard in general [22]. Noting that the constraint matrix is totally unimodular, the 0-1
constraints (20) can be ignored, so that the problem (AP) is reduced to a linear program-
ming, which is polynomial solvable [7] and leads to the �nal formulation of (PCO-AP)
as:

(PCO − AP ) Minimize
∑
i∈I

∑
j∈J

c̃ijxij (21)

subject to
∑
j∈J

xij = 1 f.a. i ∈ I (22)∑
i∈I

xij = 1 f.a. j ∈ J (23)

xij ≥ 0 f.a. i ∈ I, f.a. j ∈ J (24)

Example 2 In this example we will extend example 1 and model the (PCO-AP) as a
simple assignment problem. Again, the four customers (denoted by i = 1, 2, 3, 4) require
four products (denoted by j = 1, 2, 3, 4). We now assume that the quality classes A,B,
and C from example 1 had been derived through treshold values from metric measurement
data.

Table 4: Quality tresholds

Quality Class Tresholds

A Q ≥ 0,8

B 0,6 ≤ Q < 0,8

C 0,4 ≤ Q < 0,6

Scrap Q < 0,4
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Assuming the treshold classi�cation given in table 4, the original metric quality require-
ments of the customers were according to table 5 and the predicted quality of the products
was according to table 6.

Table 5: Customer requirements

Customer Quality requirement

1 0,4

2 0,8

3 0,6

4 0,9

Table 6: Predicted quality of products

Product Predicted quality

1 0,5

2 0,7

3 0,7

4 0,9

Using this quality information we construct the auxiliary matrix Q = (qij) where qij = 1
if the quality of product i ful�lls the requirements of customer j, and qij = 0 otherwise.

Q =


1 1 1 1
0 0 0 1
0 1 1 1
0 0 0 1



The objective of this example is the minimization of delivery date deviations, an impor-
tant KPI from the customer point of view as stated before. We assume that a production
order in the original assignment (without loss of generality i = j) is placed for each cus-
tomer order such that the delivery will be just on time. The calculation of the delivery
date deviations depend on the underlying production setting and will therefore be not
included in this paper. We assume the delivery date devations to be given as follows:

C =


0 10 20 30
10 0 10 20
20 10 0 10
30 20 10 0
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The cost matrix C̃ = (c̃ij) will now be constructed as follows:

cij =


cij, if qij = 1 for i, j = 1, ..., 4

− if qij = 0 for i, j = 1, ..., 4

0 for i = 1, ..., 5, j = 5

50− j · 10 for i = 5, j = 1, ..., 4

(25)

Accordingly, the cost matrix C̃ is de�ned as

C̃ =

P1 P2 P3 P4 PE


0 10 20 30 40 C1
− − − 20 30 C2
− 10 0 10 20 C3
− − − 0 10 C4
0 0 0 0 0 Scrap

The solution of the problem (PCO-AP) is an assignment of products to customer orders
with least overall delivery date deviation. In terms of the matrix C̃ the task is to �nd
5 entries, where there is no more than one entry in each row or column, such that the
sum of entries is minimum. To solve the assignment problem optimally and with least
computational e�ort, several approaches had been developed. The next chapter provides
an overview of algorithms and presents the most popular polynomial time algorithm
for solving the simple assignment problem, the Kuhn-Munkres algorithm. We will also
demonstrate the algorithm to solve this example and discuss the result from the industrial
application point of view.
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3 Algorithms for solving the assignment problem

Algorithms for solving the assignment problem are especially the Kuhn-Munkres algo-
rithm and Shortest Augmented Path approaches (see [5, 6, 8]). Other approaches can for
example be found in [2].

3.1 Kuhn-Munkres algorithm

The Kuhn-Munkres is one of the most popular polynomial time algorithms for solving
the simple assignment problem. The algorithm was developed and published in 1955
by Kuhn [15]. The algorithm is also called "Hungarian method" because it is largely
based on the ealier work of two Hungarian mathematicians in 1916 [14] and 1931 [9].
Theoretically, the Kuhn-Munkres algorithm is guaranteed to reach the global optimum
[7].

There are two versions of implementations of the algorithm - matrix and graph [7]. The
matrix formulation of the problem as presented in chapter 2 can be transferred into the
graph version without loss of generality.

From a graph theoretical point of view the assignment problem can be considered as
the maximum matching problem or bipartite graph [12]. The following paragraph will
provide some graphtheoretical de�nitions that will be needed to understand and conduct
the algorithm.

Graphtheoretical de�nitions
A bipartite graph G = (V,E) consists of two disjoint and independent sets of vertices X
and Y , so that V = X ∪ Y and X ∩ Y = ∅. Each edge in a bipartite graph connects a
vertex in X to one in Y , so that E ∈ X ×Y . The edges (x, y) between vertex x ∈ X and
a vertex y ∈ Y have a weight w(x, y).

The neighbourhood of a vertex v is the set JG(v) including all vertices sharing an edge
with v. The neighborhood of a set S is the set JG(S) which includes all vertices that share
an edge with a vertex in S.

Let l(x) be the label for each vertex in the graph, which can also be interpreted as dual
variables of the problem, where each label of a vertex corresponds to its only matching
constraint [7]. A feasible labelling is a function l : V → R that satis�es the condition
l(x) + l(y) ≥ w(x, y),∀x ∈ X, ∀y ∈ Y .
Considering a matching M(M ⊆ E), vertex y is called matched if it is a vertex in M ,
otherwise it is called free.

Let Gl denote the subgraph of G that contains all edges where l(x)+ l(y) = w(x, y). Gl is
a spanning subgraph of G that includes all vertices from G. Gl only includes those edges
from the bipartite matching which allow the vertices to be perfectly feasible [7].

Theoretically, if M∗ is a perfect matching in the equality subgraph Gl, then M∗ is a
maximum-weighted matching in G. It can be shown that there is no perfect matching
with greater weight than M∗ so that M∗ is a maximal perfect matching, and the Kuhn-
Munkres algorithm is guaranteed to reach the global optimum [7].
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The numerical time complexity of the algorithm is O(n3), with n elements in X (=tasks)
and n elements in Y (=agents).

Original Kuhn-Munkres algorithm

Input: A bipartite graph G = (V,E) and weights w(x, y)

Output: Optimal perfect matching M

Step 1: Generate initial labelling l and matching M in Gl, go to 2.

Step 2: If M perfect: STOP.

Otherwise pick free vertex u ∈ X. Set S = u, T = ∅, go to 3.

Step 3: If Jl(S) = T : update labels (forcing Jl(S) 6= T )

αl = min
s∈S,y/∈T

l(x) + l(y)− w(x, y)

l̂(v) =


l(v)− αl, v ∈ S
l(v) + αl, v ∈ T
l(v), otherwise

Go to 4.

If Jl(S) 6= T : choose y ∈ Jl(S)\T , go to 4.

Step 4: If y free: u− y is an augmenting path. Augment M and go to 2.

If y matched, assuming to z: extend the alternating tree:

S = S ∪ z, T = T ∪ y. Go to 3.

Algorithm 1: The original Kuhn-Munkres algorithm

Application of the Kuhn-Munkres algorithm to example 2 First, we have to
de�ne the example given in matrix form from the graph-theoretical point of view. The
graph consists of vertices V = C ∪ P , where C are the customer orders and P are the
products. Since an entity can whether be an order or a product but not both, the required
condition C∩P = ∅ is ful�lled. The edges (c, p) represent all feasbile assignments between
products and customer orders (all entries of C̃ that are not "−"). The weight w̃(c, p) of
the edges are the delivery date deviations as given in C̃.

Since the original formulation of the Kuhn-Munkres algorithm delivers a maximal match-
ing, we have to transform our minimization into a maximization problem. Therefore, we
transform the weights of the edges as follows:

wij = (max
i,j

w̃ij)− w̃ij (26)
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Hence, the graph representation of our example is according to �gure 2.

Figure 2: Graph with weights w(c, p)

We only plotted the edges that are feasible for our example. But as the algorithm requires
the graph to be complete, we assume all other edges to be present and weighted with
w(c, p) = 0 even if not included in �gure 2.

Now we will apply the Kuhn-Munkres algorithm to our example.

Step 1: Generate initial labelling l and matching M in Gl

First, we set l(p) = 0 for all p ∈ P . We then de�ne l(c) as the maximum value of all
edges connecting c to vertices in P . The spanning subgraph Gl includes all vertices but
only those edges where l(c) + l(p) = w(c, p) (see �gure 3).

Figure 3: Initial labelling and spanning subgraph
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We then perform an initial matching as shown in �gure 4.

Figure 4: Initial matching

Step 2: Since M is not perfect (because PE and C4 are not matched), we now pick the
free vertex C4 ∈ C and set S = {C4} and T = ∅.
Step 3: We determine Jl(S) = {P4} 6= T and choose P4 ∈ Jl(S)\T .
Step 4: Because P4 is matched to C2, we extend the alternating tree S = {C2, C4} and
set T = {P4}.
Step 3: Now it holds that Jl(S) = {P4} = T , we need to update the labels. Therefore
we determine l(c) + l(p)− w(c, p) for all c ∈ S, p /∈ T to �nd their minimum.

Table 7: Calculation of (l(c) + l(p)− w(c, p)) for all c ∈ S, p /∈ T

P1 P2 P3 PE

C2 20 20 20 10

C4 40 40 40 10

Accordingly,

αl = min
c∈S,p/∈T

l(c) + l(p)− w(c, p) = 10

and we update the labels

l̂(v) =


l(v)− 10, C2, C4

l(v) + 10, P4

l(v), all other vertices

add the edges where l(c) + l(p) = w(c, p) now holds to the subgraph and keep the former
matching (see �gure 5)
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Figure 5: Updated labels with former matching and new edges in Gl

The neighborhood of S is now Jl(S) = {P4, PE} 6= T , so that we choose PE ∈ Jl(S)\T .
Step 4: Because PE is free, we add the edge (C4, PE) to M .

Step 2: As we can see in �gure 6 the matchingM is perfect and we have therefore found
an optimal solution with an objective value of 170.

Figure 6: Perfect matching

Because we converted the costs of our original example to obtain a maximization problem,
we now need to determine the respective target value in terms of delivery date deviations.
Assigning the products to customer orders like shown in �gure 6, will result in delivery
date deviations of 40 time units (calculated by summing up the repective entries of C̃).
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3.2 Brief overview of other algorithms

Various researchers investigated the Kuhn-Munkres algorithm and presented modi�ca-
tions and improvements. Jonker et al. [13] presented three approaches TODO, READY,
and SCAN which speed up for sparse problems. Bertsekas et al. [3] investigated three
synchronous and asynchronous implementations of the Kuhn-Munkres algorithm to re-
duce computational time cost. Cui et al. [7] proposed a sparsity based (sKM) and a
parallel (pKM) Kuhn-Munkres modi�cation. While sKM greatly improves the compu-
tational performance, pKM solves the assignment problem with considerable accuracy
loss.

Eventhough, the Kuhn-Munkres is the most commonly used algorithm to solve the as-
signment problem, other approaches were investigated. Ross and Soland [19] present a
branch and bound algorithm that solves the generalized assignment problem by solving a
series of binary knapsack problems to determine the bounds. More details can be found
for example in [1, 11, 16, 17, 19, 23]

4 Conclusion and Outlook

In our current research we investigate into quality-based order assignment. This paper
presents the approach to model the problem from a mathematical point of view as a 0,1-
and as a general assignment problem. To solve the assignment problem, we selected the
Kuhn-Munkres algorithm in its original form with numerical time complexity of O(n3).

Next steps will include the coupling of quality prediction and order assignment and the
more detailed de�nition of required system interfaces to be able to integrate the concept
into industrial process control.
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