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1 Introduction

Modelling and controlling of a thermal spraying process is an active field of research.

To measure coating properties is very time-consuming and expensive as the layer

has to be destroyed. Hence it is desirable to predict coating properties on the basis

of process parameters or particle properties which can be measured online. Direct

statistical modeling of the coating properties by means of process parameter settings

is the common way to study the relationship between parameter settings and coat-

ing properties, as in Tillmann et al. (2010a). Rehage et al. (2012) find that identical

parameter settings can result in different properties of in-flight particles depending

on non-controllable day effects. Therefore, it can be expected that the coating prop-

erties also differ. Several questions arise which are investigated in this contribution.

How reliable is the prediction of coating properties from process parameter settings?

Can the prediction be substantially improved by including particle properties? Is it

maybe even better to predict the coating properties only on the basis of in-flight par-

ticles? Basically, these questions relate to different strategies towards the derivation

of a statistical prediction model for coating properties from planned experiments.

First of all, a common direct model between process parameters and coating prop-

erties can be built. Next, we call a prediction strategy composite which is composed

of separate models between process parameters and particle properties on one hand

and particle and coating properties on the other hand. Here the models for the

second relationship are based on particle properties predicted by the first model.

Furthermore we take also a model between observed particle properties and coating

properties into account, later denoted as indirect strategy. Finally, we consider a

combination of the direct and indirect strategy which we call hybrid strategy. Here,

a model is built between process parameters plus selected particle properties and

coating properties.

The experimental set-up for the analyzed High velocity oxygen fuel spraying

(HVOF) process is described in Section 2. In Section 3 the different modeling

strategies are introduced in more detail. Section 4 introduces an additional day

adjustment for the composite strategy. The resulting models and corresponding

diagnostics together with verification experiments are presented in Section 5. A

discussion and outlook follows in Section 6. All calculations are done in R (see R
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Core Development Team (2011)).

2 Experimental set-up

Experiments were conducted using a Wokajet 400 HVOF spray gun from Sulzer and

an agglomerated and sintered WC-12Co powder of type WOKA 3102 from Sulzer

Metco. Details on the method of in-flight analysis can be found in Rehage et al.

(2012).

For metallographic analysis of the WC-Co layers produced in the experiments, the

coated specimens were cut and polished. Porosity and layer thickness were deter-

mined using a light optical microscope type Axiophot and image processing software

Axiovision 4.6 from Zeiss. The hardness was investigated by a micro hardness tester

type Leco M400. The roughness was measured by a tracing stylus instrument of

type Hommel T-1000 according to DIN 4760. Layer thickness, roughness, porosity

and hardness were tested five times each, taking the arithmetic mean and standard

deviation as results.

Based on results from previous experiments (Tillmann et al. (2010b)) four con-

trollable process parameters, namely kerosene, lambda as the fuel/oxygen ratio,

stand-off-distance and feeder disc velocity, are varied in the experimental design.

The particle properties in-flight measured are temperature, velocity, flame intensity

and flame width. Coating properties are given by porosity, hardness, thickness and

deposition rate. Table 1 shows all considered variables together with short names.

The analysis of this article refers to the results of an orthogonally blocked central

process parameters X particles in-flight coating properties Z
properties Y

Kerosene (K) Temperature (Te) Porosity (Po)
Lambda (L) Velocity (Ve) Hardness (Ha)
Stand-off Distance (SOD) Flame width (Wi) Thickness (Th)
Feeder Disc Velocity (FDV) Flame intensity (In) Depositon rate (Dr)

Table 1: Controllable and measured variables in the spray process

composite design (CCD) with 30 runs in total. It was not possible to conduct the

full design on one day because the coating process is very time consuming. There-

fore we performed the design in two orthogonal blocks on two successive days. The
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first block consists of a full factorial design plus 4 central points with 20 runs in

total. The remaining 10 runs (star points plus 2 central points) were conducted on

the second day. The experimental design together with the values of the process

parameters is given in Appendix 7.2.

3 Strategies for prediction of coating properties

In this section we introduce four different strategies for prediction of coating prop-

erties in more detail. We make use of generalized linear models (McCullagh and

Nelder, 1989) which consist of a distributional assumption for the response variable

Y coming from the exponential family and of a structural component

g(E(Y )) = f(x)Tβ,

or to be more precise

g(E(Y |x)) = f(x)Tβ,

where g is an appropriate link function, f(x) a vector of regressors and β a vector

of unknown coefficients, commonly estimated by the maximum likelihood method.

As distributional assumption we consider either gamma or Gaussian distributions

of the response variables. The gamma distribution is preferred over the default

Gaussian distribution of classical linear models as the skewness and positivity of the

considered measurements is better captured. We build models separately for particle

and coating properties by means of four different strategies, which we call direct,

indirect, composite and hybrid strategy. Figure 1 illustrates these strategies, which

are next discussed in more detail. Generally, let xnew = (x1new, . . . , x
4
new) be a new

process parameter setting and ynew = (y1new, . . . , y
4
new) the corresponding particle

properties.

3.1 Direct Strategy

The direct strategy models the relationship between process parameter and coat-

ing properties directly.We use a separate generalized linear model for each coating
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Figure 1: Prediction strategies

property with structural component

g(E(Z|X)) = f(X)Tβ

where g is a suitable link function for the coating property Z, f(X) is the vector

of regressors, e.g. including main effects, two-way interactions and squared effects

of the process parameters and β is the corresponding coefficient vector. Based on

estimates β̂ of β, the outcome of Z can be predicted as

Ẑ = g(−1f(xnew)
T β̂)

for any process parameter setting xnew.

3.2 Indirect strategy

The indirect strategy uses only the particle properties for the prediction of coating

properties. Here, we build generalized linear models for the relationships between

particle properties Y = (Y1, . . . , Y4) and coating property Z,

g(E(Z|Y )) = f(Y )T δ.
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Prediction is based only on values of the particle properties and on estimates δ̂ of δ

Ẑ = g−1(f(ynew)
T δ̂).

3.3 Hybrid strategy

The hybrid model is a combination of the direct and indirect strategy as follows

g(E(Z|X, Y )) = f1(Y )T δ + f2(X)T δ∗.

Here, f2(X) is a regressor vector depending on process parameters X and f1(Y ) is

a regressor vector depending on particle properties Y.

The hybrid strategy leads to predictions based on both xnew and ynew and esti-

mates δ̂ and δ̂∗,

Ẑ = g−1(f1(ynew)
T δ̂ + f1(xnew)

T δ̂∗).

3.4 Composite strategy

The composite strategy models coating properties on the basis of expected particle

properties and therefore it is a composition of the models between process param-

eters and particle properties on the one hand and particle properties and coating

properties on the other hand.

The model between particle properties and coating properties is assumed to follow

g(E(Z|E(Y |X))) = f(E(Y |X))T · δ.

with

E(Y |X) = (E(Yi|X))i=1,...,4 = (gYi (fi(X)Tβi)
−1)i=1,...,4.

Denoted by ŷnew be the predicted particle properties for a process parameter set-

ting xnew. Then prediction of a coating property is conducted based on ŷnew =

(gYi (fi(xnew)
T β̂i)

−1)i=1,...,4 with estimates β̂i, i = 1, . . . , 4, and an estimate δ̂ as fol-
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lows

Ẑ = g−1(f(ŷnew)
T · δ̂).

3.5 Comments on the four strategies

The direct strategy is so far commonly used and also employed in Tillmann et al.

(2010a) for a thermal spraying process. It predicts coating properties merely on

the basis of process parameters. Therefore, non-controllable factors, which can be

observed in the particle properties, are not reflected by the prediction. On different

days identical coating properties are predicted for fixed parameter settings although

it can be expected that the coating is affected by non-controllable effects.

In order to take also non-controllable factors into account, the hybrid strategy

can be applied which includes process parameters as well as the particle properties

which vary among different days. The hybrid strategy is expected to produce better

predictions than the direct model and to reflect the variation due to day effects more

reliable.

Additionally, it is examined in the following if predicting the coating properties

only on the basis of the measured particle properties might even be good enough,

refering to the indirect strategy. By predicting the coating properties through the

connection of models, as in the composite strategy, it is possible to adjust the first

models for particle properties on a different day with the aid of a few initial experi-

ments which is described in the next section in more detail.

4 Composite Strategy with day effect and

prediction on another day

In this section we explain the application of the composite strategy with respect to

the day effect adjustment in more detail. Due to technical reason the experiments

to which the introduced strategies are to be applied in Section 5, could not be run

in one day. Hence, we have the problem of possible day effects within the data. We

therefore go back to models derived for the relationship between process parameters

and particle properties in flight in Rehage et al. (2012) and apply the introduced day
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adjustment. Let Xday1 be the subset of the CCD X for day 1 with n1=20 settings

and Xday2 be the subset of X for day 2 with n2=10 settings. Furthermore, let X i
day1

refer to i-th setting on day 1 and Xj
day2 correspond to the j-th setting on day 2.

Day adjustment

We denote the models from Rehage et al. (2012) as follows

hi(E(Yi)) = f ∗(X)T δ̂∗i , i = 1, . . . , 4,

with hi the chosen link function for the i-th particle in-flight property Yi, f ∗(X) the

vector of regressors and δ̂∗i the estimated vector of coefficients.

A day adjustment is achieved by estimating additional effects δday1 for day 1 and

δday2 for day 2 in the following way.

day 1: hi(E(Yi)) = f ∗(X)T δ̂∗i + δday1, i = 1, . . . , 4

day 2: hi(E(Yi)) = f ∗(X)T δ̂∗i + δday2, i = 1, . . . , 4

After estimating the values δday1 and δday2 by the maximum likelihood method, we

use the above models in order to get vectors of predicted values

Ŷi =



h−1
i (f ∗(X1

day1)
T δ̂∗i + δ̂day1)

...

h−1
i (f ∗(Xn1

day1)
T δ̂∗i + δ̂day1)

h−1
i (f ∗(X1

day2)
T δ̂∗i + δ̂day2))
...

h−1
i (f ∗(Xn2

day2)
T δ̂∗i + δ̂day2))


for the particle properties Yi, i = 1, . . . , 4.

Afterwards we build generalized linear models for the relationships between particle

properties and coating properties based on the matrix of predicted particle properties

Ŷ = (Ŷ1, . . . , Ŷ4)
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as follows

gi(E(Zi|Ŷ )) = f(Ŷ )T δ̂i, i = 1, . . . , 4.

with again gi a suitable link function for coating property Zi and δi the vector of

unknown coefficients.

Prediction on a new day

In order to predict coating properties for a setting xnew on a new day the adjustment

of the models for the particle properties as described above needs to be repeated by

estimating a new additional effect δnewday. This additional effect is estimated on the

basis of measured particle properties resulting from an initial design on the actual

experimental day. Then the vector of predicted particle properties

Ŷnew = (h−1
1 (f(xnew)

T δ̂∗1 + δ̂newday), . . . , h
−1
4 (f(xnew)

T δ̂∗4 + δ̂newday))

is again used for prediction by plugging Ŷnew as follows

Ẑi = g−1
i (f(Ŷnew)

T δ̂i), i = 1, . . . , 4.

5 Results

In this section we present the generalized linear models built from the observed data

set for the different prediction strategies. Afterwards we compare the goodness-of-fit

of the different models as well as their ability to predict desired coating properties

on the basis of verification experiments.

5.1 Model selection

First of all, to build a generalized linear model we need to choose an appropriate

link function and to make an assumption on the distribution of the response. Here,

we consider the gamma and Gaussian distribution. Furthermore we choose log,

inverse and identity as link candidates. In this way the usual linear model with

Gaussian distribution assumption plus natural link identity is included. Furthermore
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Distribution Link deposition rate Porosity Hardness Thickness

Gaussian
log 179.36 141.66 378.09 323.86

inverse 181.57 143.45 376.80 319.11
identity 177.24 133.11 379.33 329.09

Gamma
log 179.25 132.75 378.12 322.13

inverse 182.18 142.51 376.92 319.97
identity 176.52 130.86 375.59 323.54

Table 2: Link and distribution selection based on BIC

we have strictly positive responses and therefore gamma is a reasonable alternative

distribution assumption and the natural inverse link for the gamma distribution

is also included. The log link ensures that the predicted response will always be

positive, thus it is reasonable to take also this link into account.

We build separate generalized linear models for each coating property with parti-

cle properties as covariates for all combinations of link functions and distributions.

We start with maximal models including main, interaction and quadratic effects

for the composite, indirect and direct strategy. Afterwards we conduct a combina-

tion of backward and forward selection. The initial model for the hybrid strategy

contains the regressor vector from the selected direct model filled up with remain-

ing main effects and main effects together with interactions of particle properties.

Subsequently, a backward and forward selection is performed on the hybrid model.

Finally, we compare the selected models by the BIC (see Schwarz (1978)) criterion.

The results are listed in Table 2. Due to a larger penalty, the BIC criterion leads to

models with less effects than the AIC criterion and is therefore easier interpretable.

For example, the hybrid model for thickness selected by means of the AIC criterion

is

E(Dr) = 79.2− 24.5 · Ve+ 7.7 · Te+ 15.1 ·Wi− 4.0 · In+ 2.4 ·K

− 2.2 · FDV+ 1.0 · FDV2 − 14.9 · Ve ·Wi+ 8.8 · Ve · In

+ 14.1 · Te ·Wi− 4.9 · Te · In.
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The selected model based on the BIC criterion has three less effects and reduces to

E(Dr) = 73.5− 17.7 · Ve+ 1.4 · Te+ 17.3 ·Wi− 8.3 · In− 1.4 · FDV

− 11.1 · Ve ·Wi+ 7.2 · Ve · In+ 3.4 · Te ·Wi.

The model selected by AIC will lead to a only slightly better goodness-of-fit but with

the drawback of worse prediction ability. Therefore we choose the link functions and

distribution assumptions by the BIC criterion, resulting in the gamma distribution

with identity link for porosity, deposition rate and hardness and Gaussian distribu-

tion plus identity link for and thickness.

The hybrid model takes the process parameters and particle properties into ac-

count. In order to be able to compare the effects of the covariates on the response,

we transform the particle properties to the same scale as the coded process param-

eters. Table 3 summarizes the coded particle properties together with the process

parameters. After this precalculation step we apply our modeling strategies. The

Coded values
-2 -1 0 1 2

Kerosene level (K) 15 17.5 20 22.5 25
Lambda (L) 1 1.075 1.15 1.225 1.3

Stand-off distance (D) 200 225 250 275 300
Feeder disc velocity (FDV ) 5 7.5 10 12.5 15

Velocity 375 487.5 600 712.5 825
Temperature 1300 1400 1500 1600 1700
Flame Width 5 8.75 12.5 16.25 20

Intensity 10 15 20 25 30

Table 3: Coded process parameters and particle properties

resulting models can be found in section 7.2 of the appendix. The direct models

contain only main effects of process parameters except for thickness where also four

interactions are included.

For the composite strategy the model for porosity contains all main effects plus

three interactions and for hardness the main effect Te and Wi. However, the model

for thickness depends on all main effects. It contains three interactions and one

quadratic effect. Furthermore, the model for deposition rate contains only the main

effect Te. For the indirect strategy, the model for porosity contains all main effects

plus one quadratic effect and two interactions. The model for hardness depends also
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on Wi and Ve whereas the sign of the effect Te is the same as for composite strategy.

The model for thickness depends on all main effects together with some interactions

for composite strategy whereas the model from indirect strategy contains also two

quadratic effects.

5.2 Comparison with respect to goodness of fit
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Figure 2: Residual plots for coating properties, fitted vs. residuals

In this section we investigate the goodness of fit of the selected models with respect
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to the four different strategies. First of all, Figure 2 shows the corresponding Pearson

residuals against the fitted values. The residual plots show the desired random

scattering of the residuals around zero.

Figure 3 displays the measured values against the fitted values for all model strate-

gies. Here the red line indicates a perfect fit and the blue lines stand for +
−10%. The

thickness is rather well predicted by every strategy. The hybrid strategy performs

best in this case. The resulting model contains most effects thus it can be assumed

that this model overfits the data and may suffer from a worse prediction ability.

Nearly all points lie in or close to the +
−10%-band. Deposition rate is fitted well for

all strategies, only a few points lie outside the +
−10%-band. Hardness could also be

modelled quite well. Here, only a few points lie outside the +
−10%-band. Porosity is

not well predicted by any of the strategies. It is known that it can’t be measured

very reliably. This is still an open engineering problem. Therefore it can be expected

that a reliable prediction will not be possible for porosity and hardness.

So far, we investigated the fit of models w.r.t. to data they have been built

from. However, prediction of new data points is more important but new data sets

are not easily available because measurements of coating properties are very time

consuming. Thus, we additionally compare the modeling strategies on the basis of

the prediction error sum of squares (PRESS)

PRESS =
n∑

i=1

(yi − ŷi,−i)
2,

where yi is the i-th observed value and ŷi,−i is the i-th fitted value on the basis of

the whole data set excluding the i-th observation. The results are summarized in

table 4. The lowest PRESS value for thickness is clearly achieved by the hybrid

strategy. Obviously, for hardness the lowest PRESS value is achieved by the hybrid

and direct strategy. The PRESS statistic for porosity takes a minimal value for

the hybrid model. The composite strategy leads to a minimal PRESS value for the

deposition rate. Therefore, we have no clear favorite. In the next section we compare

the performance of the four strategies on the basis of four new experiments.
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Figure 3: Experimental results against fitted values for coating properties

5.3 Performance with respect to new experiments

In this section, we compare the prediction performance of the four different strategies

on a different day on the basis of two experiments with replication. Table 5 contains

the corresponding parameter settings. We try to predict coating properties by means

of the models based on the CCD. The composite strategy uses the model adaption

for particle properties and is therefore expected to predict well. In order adapt the

models for the particle properties for the composite strategy, an initial fractional

factorial design with eight runs in total was conducted and particle properties were
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Hardness Porosity Deposition Thickness
Direct 313767.97 104.32 816.15 60196.20

Indirect 347405.58 104.79 898.11 55321.00
Hybrid 313767.97 75.45 1135.51 139003.24

Composite 383515.10 157.67 725.65 96541.52

Table 4: PRESS values for each particle property and each modeling strategy

A1 A2 A3 A4
Lambda -1.28 -1.28 -0.23 -0.23
Kerosene 0.51 0.51 0.48 0.48

SOD -1.15 -1.15 -1.44 -1.44
FDV -0.64 -0.64 1.24 1.24

Table 5: Parameter combinations for verification experiments

measured. On the basis of these measured particle properties the models for the

particle properties are adapted as described in section 3.

Figure 4 shows the predicted and measured values for the four coating properties.

The values itself can be found in Table 7, Appendix 7.1. The composite strategy

leads to very good predictions for porosity whereas the remaining strategies lead

to strongly underestimated prediction values. The goodness-of-fit of the models for

porosity was also poor and additionally, the porosity measurements are known to

be not reliable. Thus, the composite strategy works surprisingly good.

Concerning the coating property hardness, there is a high variation in observed

values within the parameter setting A1 and its replication A2. The assumption that

this variation can be already observed in the in-flight particle properties does not

hold. The measured particle properties, listed in table 6, do not show a noteworthy

variation within the parameter setting A1 and A2. Perhaps additional particle

properties like shape or size might expose a reason for this effect. Therefore all

observed outcome cannot be predicted well by any of the strategies. However, the

indirect strategy produces very good predictions of the hardness for A2, A3 and

A4. The composite strategy leads to a slightly better prediction for A2. It can be

observed that the direct strategy is beaten for all parameter settings here.

The hybrid strategy performs best for thickness for A3 whereas the direct strategy

is slightly better for A1 and A2. For A4 the composite strategy is best. Finally, the
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Figure 4: Comparison of new experimental results from a different day and predicted
values based on BIC

deposition rate is clearly best predicted by the composite strategy. Here, the hybrid

strategy is better for A1 only. The composite strategy leads to best predictions for

A2, A3 and A4.

To sum up, the composite strategy, the indirect strategy and the hybrid strategy

lead to better predictions than the direct strategy in almost every case. Therefore
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A1 A2 A3 A4
Te 1551.48 1556.17 1552.97 1521.02
Ve 743.19 742.81 742.60 723.82
Wi 11.24 11.27 13.95 12.67
In 19.10 19.16 22.43 20.77

Table 6: Particle properties of new experiments

it is important to include the in-flight particle properties in the models in order to

predict coating properties.

6 Discussion and Outlook

The aim of this article is to investigate if coating properties can be predicted reliably

from process parameters and if it can be improved by including in-flight particles.

Maybe it is even enough to predict the coating properties only on the basis of

the in-flight particles. These introductive questions led to four different prediction

strategies. The first strategy builds a generalized linear model between the process

parameters and coating properties. It has the drawback that it does not adjust for

any disturbances during the process which are manifested in the particle proper-

ties. Therefore, we consider a connection of models for the particle properties and

coating properties (composite strategy), a model for coating properties with particle

properties only as covariates (indirect strategy) and a model that incorporates both

process parameters and particle properties in order to predict coating properties

(hybrid strategy).

The composite strategy goes from process parameters to coating properties through

the particle properties. Here, the models for the particle properties can be adapted

for a certain day and afterwards the process parameters are used for prediction. On

the other hand, this strategy builds models between particle properties and coating

properties. Thus, it relies only on the particle properties. Finally, the hybrid strat-

egy uses both the process parameters and the particle properties in one model for

prediction of the coating properties.

The results in this article show that the particle properties have an essential

impact on the coating properties. Therefore, it is important to incorporate particle

18



properties into models for the prediction of coating properties. There is still further

research necessary to improve the indirect, composite and the hybrid strategy. The

verification experiments do not yield a clear favorite among the applied strategies

but the direct strategy is beaten in almost every case. It has to be pointed out that

more verification experiments have to be done in order to obtain more reliable results

concerning the comparisons between the different strategies. Additionally, we plan

to construct a special optimal initial design in order to adapt the models for the

particle properties on a certain day. This will probably lead to better predictions

for the hybrid and composite strategy. Further experiments have to confirm this

assumption. Lastly, we will make use of generalized functional linear models in

order to include also the time dependent behaviour of the particle properties in the

model.
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7 Appendix

7.1 Results from verification experiments

a1 a2 a3 a4

Hardness

Measured 1133.80 1387.70 1431.70 1310.2
Direct 1347.53 1347.53 1289.47 1289.47

Indirect 1315.13 1321.16 1378.21 1305.31
Hybrid 1347.53 1347.53 1289.47 1289.47

Composite 1321.79 1321.79 1382.64 1382.64

Porosity

Measured 8.71 9.32 9.52 8.33
Direct 5.96 5.96 6.01 6.01

Indirect 1.91 1.61 -0.42 3.87
Hybrid 5.93 5.79 5.12 5.68

Composite 9.02 9.02 10.37 10.37

Deposition

Measured 49.91 47.08 49.57 49.36
Direct 45.13 45.13 44.60 44.60

Indirect 51.72 51.69 53.57 55.64
Hybrid 50.73 50.83 52.34 52.72

Composite 47.86 47.86 48.54 48.54

Thickness

Measured 212.37 200.36 328.94 327.59
Direct 202.21 202.21 290.95 290.95

Indirect 249.78 251.69 394.46 317.02
Hybrid 194.76 194.78 356.59 405.72

Composite 255.19 255.19 449.37 449.37

Table 7: Results from verification experiments

7.2 Models for coating properties and data sets

Direct strategy

Porosity:

E(Po) = 6.84− 1.72 ·K

Hardness:

E(Ha) = 1241.75− 53.18 · L+ 73.94 ·K
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Thickness:

E(Th) = (0.0042 + 0.00033 · L+ 0.00044 ·K

− 0.00028 · SOD− 0.0009 · FDV+ 0.00021 · L · SOD

− 0.00037 · L · FDV+ 0.00021 ·K · SOD

− 0.0004 ·K · FDV)−1

Deposition rate:

E(Dr) = 48.43− 1.91 ·K+ 2.02 · SOD

Indirect strategy

Porosity:

E(Po) = 8.05− 2.67 · Ve− 9.05 · Te− 6.58 ·Wi

+ 6.42 ·Wi2 − 4.31 · Te ·Wi− 6.02 + 5.36 ·Wi · In

Hardness:

E(Ha) = 1240.65 + 32.16 · Ve+ 120.49 · Te+ 85.09 ·Wi

Thickness:

E(Th) = (2.14e− 03 + 1.23e− 03 · Ve− 1.97e− 03 · Te+ 6.27e− 05 ·Wi

+ 5.66e− 04 · In+ 1.24e− 03 · Ve · Te− 1.88e− 03 · Ve · In

− 1.54e− 03 · Te ·Wi+ 8.35e− 04 · Te · In)−1
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Deposition rate:

E(Dr) = 76.63− 19.28 · Ve+ 3.92 · Te+ 21.11 ·Wi− 11.95 · In

− 4.53 · Te2 − 2.73 · In2 − 13.83 · Ve ·Wi+ 5.9 · Ve · In

+ 7.78 · Te · In

Hybrid strategy

Porosity:

E(Po) = 6.26− 3.12 · Te− 1.70 ·Wi+ 2.24 · In− 1.20 · L

− 1.01 ·K+ 1.51 ·Wi · In

Hardness:

E(Ha) = 1241.75− 53.18 · L+ 73.94 ·K

Thickness:

E(Th) = (1.25e− 03 + 1.98e− 03 · Ve− 1.56e− 03 · Te− 1.33e− 03 ·Wi

+ 2.37e− 03 · In+ 3.76e− 05 · L− 8.52e− 04 · FDV− 2.00e− 04 ·K

− 1.09e− 04 · SOD+ 1.24e− 03 · Ve · Te− 7.37e− 04 · Ve · In

− 7.08e− 04 · Te · In+ 6.55e− 04 ·Wi · In− 5.25e− 04 · FDV ·K

+ 4.26e− 04 · L · SOD− 3.15e− 04 · L · FDV)−1

Deposition rate:

E(Dr) = 73.49− 17.73 · Ve+ 1.37 · Te+ 17.33 ·Wi− 8.32 · In

− 1.41 · FDV− 11.11 · Ve ·Wi+ 7.21 · Ve · In+ 3.37 · Te ·Wi
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Composite strategy

Porosity:

E(Po) = 6.96 + 1.90 · Ve− 3.94 · Te− 6.82 ·Wi+ 6.33 · In

+ 4.27 · Ve · Te+ 9.23 · Ve ·Wi− 7.83 · Ve · In

Hardness:

E(Ha) = 1286.80 + 125.50 · Te+ 99.78 ·Wi

Thickness:

E(Th) = (0.0037− 0.00041 · Ve+ 0.0017 ·Wi+ 0.0022 · In+ 0.001 · Te2

− 0.0019 · Ve ·Wi− 0.0032 · Ve · In+ 0.00078 ·Wi · In)−1

Deposition rate:

E(Dr) = 50.245− 4.558 · Te
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L K SOD FDV
1 1 -1 1 -1
2 1 1 1 1
3 -1 -1 1 -1
4 -1 -1 -1 1
5 0 0 0 0
6 0 0 0 0
7 -1 1 1 -1
8 -1 1 -1 1
9 1 1 -1 1
10 1 -1 -1 -1
11 0 0 0 0
12 -1 1 -1 -1
13 1 1 -1 -1
14 -1 1 1 1
15 1 -1 1 1
16 -1 -1 1 1
17 -1 -1 -1 -1
18 1 1 1 -1
19 0 0 0 0
20 1 -1 -1 1
21 0 0 0 0
22 0 0 -2 0
23 -2 0 0 0
24 2 0 0 0
25 0 0 0 0
26 0 0 0 -2
27 0 0 2 0
28 0 2 0 0
29 0 0 0 2
30 0 -2 0 0

Table 8: Experimental design CCD
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Te Ve Wi In
1 1525.50 685.20 15.00 7.60
2 1621.50 749.60 31.30 8.40
3 1562.40 658.90 17.80 7.50
4 1605.20 645.70 31.10 8.40
5 1606.70 695.00 24.10 7.50
6 1562.20 726.40 13.40 8.10
7 1618.00 712.00 19.70 7.60
8 1669.70 765.60 34.50 9.50
9 1629.20 786.30 30.60 7.90
10 1548.90 721.00 14.80 7.40
11 1563.00 715.80 17.80 8.70
12 1626.50 763.60 18.40 7.40
13 1598.60 791.50 17.00 7.30
14 1619.40 743.00 28.40 9.00
15 1498.10 673.50 17.30 9.20
16 1532.50 644.10 20.20 8.80
17 1565.20 678.30 15.30 7.10
18 1517.40 736.40 10.60 7.40
19 1550.20 715.70 11.50 6.80
20 1538.30 684.10 17.80 7.10
21 1448.70 710.20 19.30 11.00
22 1485.40 727.90 19.80 11.80
23 1493.70 701.30 21.20 12.60
24 1416.50 754.90 16.80 9.00
25 1480.20 742.10 19.60 11.40
26 1455.50 753.90 11.40 7.50
27 1449.40 728.80 18.20 9.90
28 1511.70 792.10 20.70 12.00
29 1492.10 720.60 23.60 14.70
30 1404.20 647.60 17.30 9.40

Table 9: Particle properties based on experimental design CCD
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Po Ha Th Dr
1 5.86 1237.21 195.61 52.00
2 3.31 1366.22 299.07 49.00
3 6.64 1203.86 370.03 46.00
4 8.29 1202.07 214.87 33.00
5 4.18 1370.45 241.63 49.00
6 4.74 1473.47 233.47 47.00
7 5.99 1543.99 171.48 46.00
8 5.53 1387.44 289.47 46.00
9 3.07 1231.79 272.17 45.00
10 8.06 1099.01 172.70 45.00
11 4.82 1412.24 238.55 48.00
12 4.91 1337.34 156.51 42.00
13 3.29 1203.66 154.59 42.00
14 6.18 1297.41 310.42 49.00
15 7.97 1019.16 332.18 52.00
16 9.46 1201.75 376.27 58.00
17 8.80 1089.53 205.25 53.00
18 3.96 1146.19 170.91 46.00
19 10.69 1151.59 210.12 40.00
20 7.24 1211.03 306.57 48.00
21 10.54 1222.67 273.36 52.00
22 9.60 1185.71 261.69 50.00
23 6.54 1348.15 296.37 59.00
24 7.48 1071.23 238.68 47.00
25 8.29 1137.02 259.42 50.00
26 10.06 1147.62 133.96 51.00
27 7.40 1308.48 267.69 53.00
28 4.01 1315.39 214.65 44.00
29 7.13 1269.48 419.91 55.00
30 11.01 1061.46 294.67 56.00

Table 10: Coating properties based on experimental design CCD
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