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ABSTRACT 
 

Prediction of protein secondary structures is one of the oldest problems in Bioinformatics. 
Although several different methods have been proposed to tackle this problem, none of these 
methods are perfect. Recently, it is proposed that addition of other structural information like 
accessible surface area of residues or prior information about protein structural class can sig-
nificantly improve the prediction of secondary structures. In this work, we propose that con-
tact number information can be considered as another useful source of information for im-
provement of secondary structure prediction. Since contact number, i. e. the number of other 
amino acid residues in the structural neighbourhood of a certain residue, depends on the sec-
ondary structure of the residue, we conjectured that contact number data can improve secon-
dary structure prediction. We used two closely related neural networks to predict secondary 
structures. The only difference in the neural networks was that one of them was also provided 
with residue contact numbers as an additional input. Results suggested that addition of contact 
number information can result in a small, but significant improvement in prediction of secon-
dary structures in proteins. Our results suggest that residue contact numbers can be used as a 
rich source of information for improvement of protein secondary structure prediction. 
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INTRODUCTION 
One of the oldest problems in bioinfor-

matics is to accurately predict the structure 
of proteins from their amino acid se-
quences. At the end of the 50’s and the be-
ginning of the 60’s, it was suggested that 
protein sequence can uniquely determine 
the three dimensional structure of a protein 
(Anfinsen and Haber, 1960; Anfinsen et al., 
1961; Sela et al., 1957; White, 1961). If this 
is true, all the information needed for pro-
tein structure prediction is already present 
in protein sequence. At least, protein secon-
dary structure (2S), which is almost stable 
regardless of protein flexibility and mo-
tions, must be predictable. Since the exist-

ing protein 3D structures contain some in-
accuracies, there is a theoretical limit for 
accuracy of protein structure prediction 
methods (Huang and Wang, 2002), which is 
estimated to be 88 % (Rost, 2003), or 
maybe up to 90-95 % (Pollastri et al., 
2007).  

Although the problem of protein 2S 
prediction is extensively studied (Floudas et 
al., 2006), the accuracy of state-of-the-art 
methods is still far below the theoretical 
limit (Dor and Zhou, 2007; Liu et al., 2008; 
Montgomerie et al., 2006; Reyaz-Ahmed 
and Zhang, 2008). This might be due to the 
fact that sequence alone does not provide 
(directly) all the necessary information for 
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2S formation. For example, amino acid 
propensities for different secondary struc-
tures depend on different factors, like: the 
organisms from which the proteins are se-
lected (Marashi et al., 2007), protein struc-
tural class (Costantini et al., 2006), and 
relative solvent accessibility of the residues 
(Cohen et al., 1993; Han and Baker, 1996; 
Kabsch and Sander, 1984; Minor and Kim, 
1996; Sudarsanam, 1998; Zhong and John-
son, 1992). Structural class (Costantini et 
al., 2007; Yüksektepea et al., 2008) and 
relative solvent accessibility (Adamczak et 
al., 2005; Macdonald and Johnson, 2001; 
Momen-Roknabadi et al., 2008; Zhu and 
Blundell, 1996) have already been used for 
improving 2S prediction in proteins. 

In this work, we present the novel idea 
of incorporating contact number (CN) in-
formation for 2S prediction. The idea 
comes from the fact that residues within 
regular secondary structures in proteins 
have distinct contact numbers compared to 
other residues in proteins. Therefore, it may 
be possible to exploit this additional infor-
mation to help secondary structure predic-
tion. Since residue contact number is also a 
predictable quantity, it might be possible in 
future to use predicted CN data to empower 
2S prediction algorithms. 
 

 

 
 

Table 1: List PDB chains used in this study 

1A12A 1G8KA 1J1NA 1N97A 1QOPB 1UG6A 1Y4WA 2B0JA 2DQ6A 2I49A 
1B43A 1G9GA 1J4AA 1NC5A 1QW9A 1UH4A 1Y7BA 2B0TA 2DSJA 2I4LA 
1BS0A 1GDEA 1JFBA 1NE9A 1QZ9A 1UM0A 1Y7TA 2B3FA 2DVTA 2I5NC 
1BUPA 1GK9B 1JIXA 1NOFA 1R17A 1URSA 1YDYA 2B5WA 2E7ZA 2INCA 
1C1DA 1GNLA 1JNRA 1NR0A 1R6DA 1UVJA 1YFQA 2BF6A 2EX0A 2IVFA 
1C3PA 1GOTB 1JQ5A 1NSZA 1R6XA 1UWKA 1YHLA 2BIBA 2EZ2A 2IW1A 
1C96A 1GP6A 1JU3A 1NTHA 1R89A 1V0EA 1YHTA 2BJFA 2EZ9A 2IXSA 
1CB8A 1GPUA 1JX6A 1NUYA 1RA0A 1V33A 1YIIA 2BJKA 2F2HA 2J1NA 
1CCWB 1GQ8A 1K7WA 1O0SA 1RGZA 1V54A 1YJSA 2BJQA 2FBAA 2J6LA 
1CHMA 1GQIA 1K92A 1O7JA 1RI6A 1V5VA 1YKDA 2BMOA 2FE8A 2JDID 
1CIPA 1GU7A 1KA1A 1ODMA 1RJDA 1V6SA 1YRCA 2BO4A 2FF4A 2JE8A 
1CVRA 1GUQA 1KMJA 1OFLA 1RK6A 1VEFA 1YT3A 2BWRA 2FGQX 2JEPA 
1CZAN 1GWEA 1KMOA 1OK7A 1RWHA 1VFLA 1YU0A 2C0HA 2FMPA 2NVOA 
1D0CA 1GXMA 1KOLA 1ON3A 1RYIA 1VYRA 1ZAIA 2C1VA 2FNUA 2NX9A 
1D5TA 1H16A 1KWFA 1ONRA 1S1DA 1W23A 1ZB1A 2C31A 2FQXA 2O0JA 
1DLJA 1H2WA 1KWGA 1OWLA 1S3EA 1W4XA 1ZCJA 2C5AA 2G50A 2O36A 
1DPGA 1H6LA 1L7AA 1OX0A 1S95A 1W78A 1ZHXA 2C78A 2G5FA 2O4VA 
1DQAA 1HBNB 1LC5A 1OXXK 1SU8A 1W99A 1ZJAA 2C81A 2G8JA 2O5VA 
1DS1A 1HDHA 1LFWA 1OYGA 1SVMA 1WDPA 1ZJCA 2C82A 2GDQA 2O9CA 
1DUVG 1HM9A 1LWDA 1OZ2A 1SYYA 1WMWA 1ZPDA 2CF5A 2GF3A 2OB3A 
1E6UA 1HNJA 1LZLA 1P1JA 1T1UA 1WTJA 1ZSQA 2CN3A 2GJLA 2OITA 
1EEXA 1HS6A 1M15A 1P1MA 1T2DA 1WVFA 1ZXXA 2CXNA 2GL5A 2OKTA 
1ELUA 1HT6A 1M1NB 1PFVA 1T4BA 1WY2A 1ZZ1A 2CZCA 2GZ1A 2OQYA 
1EU8A 1HX6A 1MTPA 1PO5A 1TBFA 1X1NA 1ZZGA 2D0OA 2H6FB 2OSXA 
1EZWA 1HYOA 1MTYD 1Q16A 1TKIA 1X54A 2ACVA 2D29A 2H88A 2OX0A 
1F20A 1HZ4A 1MUWA 1Q6ZA 1TXGA 1XFKA 2AEUA 2D3NA 2H9AA 2P02A 
1FN9A 1I1QA 1MXRA 1Q7ZA 1U09A 1XO0A 2AHFA 2D54A 2HC9A 2P0WA 
1FP2A 1I24A 1N40A 1QF5A 1U5UA 1XPMA 2AKZA 2D73A 2HDWA 2P1MB 
1FS7A 1IB2A 1N4WA 1QHDA 1U6ZA 1XSZA 2AQJA 2DE3A 2HEKA 2P3ZA 
1G5AA 1IO1A 1N62B 1QLMA 1U8VA 1XUUA 2AXQA 2DG1A 2HHVA 2UXYA 
1G6SA 1IOMA 1N8KA 1QMGA 1UA4A 1Y1PA 2AZ4A 2DGKA 2HZLA 3THIA 
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MATERIALS AND METHODS 
Dataset 

A list of protein chains with mutual se-
quence identity less than 25 % and struc-
tural resolution smaller than 3 Å was taken 
from the Protein Data Bank, followed by a 
sequence culling procedure by PISCES 
(Wang and Dunbrack Jr., 2003, 2005). 
Chains with unknown structure regions 
were removed. The final dataset contained 
310 protein chains with a total of 132 676 
residues. The list of these proteins can be 
found in Table 1. 
 
Secondary structure assignment 

For each protein structure, secondary 
structures of its residues were assigned by 
DSSP (Kabsch and Sander, 1983). Since 
eight possible secondary structures are as-
signed by DSSP, we grouped them into the 
three states by converting [ G, H, I ] to H 
(i. e. helices), [ B, E ] to E (i. e. extended 
structures), and other structures (including 
T and S) to C (i. e. coils).  
 
Calculating contact numbers 

If Cα’s of two residues are closer than 6 
Å in space, we assumed the two residues to 
be in contact. Contact number of a residue 
is equal to the number of all other residues 
in the same chain that are in contact with 
this residue. 
 
Neural networks, their inputs and their 
architectures 

Following typical machine learning pro-
tocols, the classifiers discussed in this work 
assume that each residue is represented by a 
vector in a certain feature space defined by 
a set of attributes. These attributes include 
20 values from the Position Specific Scor-
ing Matrix (PSSM). PSSM is obtained from 
PSI-BLAST (Altschul et al., 1997) with 
three iterations of searching against non-
redundant sequence database 
(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.g
z). In addition, one parameter is used for 
describing the nonexistence of amino acids 
for some positions of the window centred at 
the edges of the sequence. In this method, 

we assume that the local structural envi-
ronment and evolutionary context of each 
residue is characterized by a sliding win-
dow of 13-residue, with the residue of in-
terest at position 7. The window of length 
13 proved to be sufficient in our tests to 
achieve accuracies essentially identical to 
those with longer windows. Moreover, a 
longer window would imply a larger num-
ber of parameters to be optimized, increas-
ing the risk of overfitting. Thus, we have a 
vector of 21 parameters for each residue 
and the total number of attributes for each 
input pattern in the method is 13*21=273. 
In other words, length of every input vector 
for training the neural networks is 273. 

In this work, in order to show the im-
pact of addition of CN on 2S prediction 
accuracy, two separate predictors consisting 
of two-level neural networks (i. e. a total of 
four neural networks) are used. In the first 
predictor, prediction was done merely based 
on the secondary structure patterns and 
multiple alignments of sequences, while in 
the second one, CN information was also 
used. In both predictors, following Rost and 
Sander classical protocol (Rost and Sander, 
1993; Adamczak et al., 2005; Jones, 1999), 
our method for secondary structure predic-
tion consists of two levels. The initial “se-
quence to structure” prediction uses infor-
mation derived from the amino acid se-
quence and input vectors in the feature 
space (described in the previous section), 
while the final “structure to structure” pre-
diction is based on the outcome of the first 
level prediction and allows us to correlate 
better predictions for neighbouring resi-
dues. 

The first level is the same in both pre-
dictors, and consists of 25 small NNs. In the 
first step, we divided our protein dataset 
into 25 subsets. Therefore, each subset con-
tained 12 distinct protein chains (except one 
subset, which contained 22 chains) and 
more than 5000 input patterns. In the next 
step, for each subset, a neural network was 
designed and then trained by the corre-
sponding input patterns, which means that 
each of these NNs is trained by about 1/25 
of the whole training set. All these networks 
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are four-layer feed-forward NNs, with 273 
input neurons, 100 neurons in the first hid-
den layer, 50 neurons in the second hidden 
layer, 10 neurons in the third hidden layer, 
and 3 neurons in the output layer. The latter 
three neurons correspond to the three struc-
tural states, i. e. H, E and C. Quick back 
propagation algorithm was used in training 
these networks. 

In the next step, the training of second 
level in both models was done by 25-fold 
cross validation. Briefly, in each iteration 
the following tasks were performed. First, 
one subset (and its corresponding NN) was 
chosen from the dataset. Afterwards, all of 
the remaining 24 datasets were used as the 
input for all of the remaining NNs in first 
level. Thus, each of the NNs resulted in 
three values for H, E and C. Subsequently, 
the average values of H, E and C were 
computed. For training the second level, a 
feed forward network was used, with Quick 
back propagation algorithm. In case of not 
using CN information, the network had 
three input neurons (i. e. for average H, E 
and C), 10 neurons in the hidden layer, and 
3 neurons in the output layer. In case of 
using CN data, an additional neuron in the 
input layer was added, while the hidden and 
the output layers are similar. The values of 
the final three outputs of the second level 
present the criteria for deciding about the 
secondary structure of the residues. At the 
end of each iteration, the chosen subset is 
used as a “test set”, to determine the accu-
racy of the predictor.  

Altogether, each iteration results in the 
prediction of 2S of residues in one test set. 
Since a 25-fold cross validation is per-
formed, finally we obtain 25 values as the 
performance values of the simple NN, and 
25 corresponding values as the performance 
of the NN trained by addition of CNs. 
 
Measuring the performance of prediction 

The prediction quality was evaluated by 
three state percent accuracy (Q3), which 
can be computed as: 

1003 ×
++

=
tot

CEH

N
NNNQ  

where HN , EN  and CN  is the number of 
correctly predicted residues in helices, ex-
tended structures and coils, respectively. 

totN  is the total number of residues in the 
corresponding subset of the dataset. 
 
Statistical analysis 

In our study, we performed 25-fold 
cross-validation. This means that for each 
of the 25 subsets, one performance value is 
obtained when CN information is used for 
training, and another performance value 
(for the same dataset) is obtained when CN 
information is not used. Therefore, for 
comparing the performance of the methods 
when CN information is used vs. not used, 
paired t-test can be applied. We used R-
package (http://www.r-project.org/) to per-
form the statistical analysis. 

 
RESULTS AND DISCUSSION 

The purpose of this work is to see if ad-
dition of contact number information can 
improve protein secondary structure predic-
tion. Therefore, two closely predictors con-
sisting of two-level neural networks were 
designed: the first predictor is a typical one, 
designed for prediction of 2S merely based 
on the protein sequence, while the second 
predictor has one additional input node for 
Contact Number of the residues. During the 
training procedure, the first predictor is 
trained with sequence and its corresponding 
2S, while the second predictor is trained by 
sequence, 2S and additionally CN. 

In order to compare the predictive 
power of the two predictors, we performed 
a 25-fold cross validation test (see Meth-
ods). Briefly, the whole protein dataset is 
split into 25 subsets. In each iteration, the 
two predictors were independently trained 
by 24 datasets and then the 2S of the pro-
teins in the remaining subset was predicted 
by the trained predictors.  

Table 2 summarizes the results of this 
study. Apparently, in all cases a small im-
provement can be observed. Additionally, 
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this improvement in prediction is statisti-
cally significant (P<10-8 in paired t-test). 
This means that CN information can sig-
nificantly improve the prediction of protein 
2S. 

Figure 1 illustrates the distribution of 
Q3 scores when CN information is used or 
not used for training the predictors. The 
evident shift in the accuracy of prediction 
performance proves that addition of CN 
information can help the neural network 
based predictor to better learn the 2S pat-
terns of proteins. 

Table 2: A comparison between performances 
of the neural network for prediction of protein 
secondary structure when contact number (CN) 
information is used or not used for training the 
networks. 
 

Subset With CN Without CN
1 68.588 68.089
2 70.491 69.259
3 70.905 70.714
4 72.285 71.554
5 72.332 71.692
6 72.374 71.968
7 72.451 72.231
8 73.266 72.491
9 73.586 72.958

10 73.601 73.033
11 73.740 73.151
12 73.876 73.191
13 73.935 73.250
14 74.063 73.484
15 74.191 73.560
16 74.261 73.703
17 74.362 73.768
18 74.558 73.820
19 75.030 73.834
20 75.263 74.537
21 75.453 74.667
22 75.498 75.177
23 75.935 75.273
24 75.966 75.368
25 76.731 76.200
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Figure 1: Comparison of the performance of the designed NNs for prediction of protein secondary 
structure, when contact number information is used (○) or not used (+). In each case, the proportion of 
the 25 datasets that have a certain performance, Q3, is shown. 
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In order to show the reproducibility of 
the results, the experiment was repeated 
five times after randomly shuffling the pro-
teins in the subsets. In all cases, the predic-
tion was improved significantly by the addi-
tion of CN information (P-values ranged 
from 10-3 to 10-8 in paired t-test). This 
shows that improvement of 2S prediction 
after addition of CN is robust and it will not 
be influenced by changing the protein train-
ing set. 
 

CONCLUSION 
Previous studies have been shown that 

additional structural information can help in 
the improvement of current protein struc-
ture prediction methods. Here, using neural 
networks based predictors it is shown that 
contact number can also be used as a rich 
source of information for improvement of 
secondary structure prediction. It might be 
possible to use a combination of contact 
numbers, accessible surface areas, protein 
structural classes, and other probable struc-
tural data to improve the prediction of sec-
ondary structures in proteins. Finally, this 
work suggests a demand for high-quality 
contact number prediction algorithms, 
which can provide the CN information in 
the real-world version of the problem with 
no information about the actual values of 
CN. 
 

ABBREVIATIONS 
2S: Secondary Structure; CN: Contact 

Number; NN: Neural Network 
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