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REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Benefits and Drawbacks for the Use of
ε-Dominance in Evolutionary
Multi-Objective Optimization

Christian Horoba and Frank Neumann

No. CI-248/08

Technical Report ISSN 1433-3325 May 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technische Universität Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.





Benefits and Drawbacks for the Use of

ε-Dominance in Evolutionary

Multi-Objective Optimization

Christian Horoba∗

Fakultät für Informatik, LS 2

Technische Universität Dortmund

Dortmund, Germany

Frank Neumann

Algorithms and Complexity

Max-Planck-Institut für Informatik

Saarbrücken, Germany

May 14, 2008

Abstract

Using diversity mechanisms in evolutionary algorithms for multi-objective optimiza-

tion problems is considered as an important issue for the design of successful algorithms.

This is in particular the case for problems where the number of non-dominated feasible

objective vectors is exponential with respect to the problem size. In this case the goal

is to compute a good approximation of the Pareto front. We investigate how this goal

can be achieved by using the diversity mechanism of ε-dominance and point out where

this concept is provably helpful to obtain a good approximation of an exponentially

large Pareto front in expected polynomial time. Afterwards, we consider the drawbacks

of this approach and point out situations where the use of ε-dominance slows down the

optimization process significantly.

1 Introduction

Evolutionary algorithms (EAs) are general problem solvers which have especially shown
to be successful in the context of multi-objective optimization [2, 3, 4]. For this kind of
problems these algorithms seem to be well suited as the task in multi-objective optimiza-
tion is to search for a set of solutions instead of a single one. Due to this circumstance
multi-objective optimization is often considered as more difficult than single-objective opti-
mization. Common generalizations of classical approaches to single-objective optimization
do rarely result in successful algorithms for multi-objective optimization. A popular ap-
proach is to transfer the original multi-objective problem into a single-objective one by
considering a linear combination of the different objective functions. Using several restarts
with different weighting coefficients it is possible to generate some non-dominated solutions.

∗This author was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative
Research Center “Computational Intelligence” (SFB 531).
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However, this approach does often lead to a poor approximation of the Pareto front, since
solutions from the non-convex part of the Pareto front can not be found and an even spread
of weights does typically not lead to an even spread of solutions on the Pareto front. In con-
trast to this, multi-objective evolutionary algorithms (MOEAs) incorporating the concept
of Pareto dominance into their selection mechanism are often successful in obtaining a good
approximation of the Pareto front in a single run, since their population evolves over time
into an approximation of the Pareto front.

In the context of multi-objective optimization the runtime behavior of a simple MOEA,
called Global SEMO, has been studied. Initial studies considered investigations of artificial
pseudo-Boolean functions [15, 8, 9] as well as some classical multi-objective combinatorial
optimization problems [14, 16]. Later on, this algorithm has been used to study the question
whether multi-objective models for single-objective optimization problems can significantly
speed up the optimization process [17, 7]. Additionally, the effects of adding objectives
to a given problem have been investigated by analyzing the runtime behavior on example
functions [1].

A characteristic feature of Global SEMO is that it keeps for each discovered non-dominated
objective vector a corresponding individual in its population. Often the number of non-
dominated feasible objective vectors grows exponentially in the problem size. This is espe-
cially the case for many NP-hard multi-objective combinatorial optimization problems [6].
The class of problems with this property includes minimum spanning tree or shortest path
problems with more than one weight function on the edges. For such problems it is not pos-
sible to obtain the whole Pareto front efficiently and a common approach to deal with this
circumstance is to look for good approximations. When using MOEAs such as IBEA [19],
SPEA2 [20], or NSGA-II [5] to approximate a large Pareto front, specific diversity mecha-
nisms are applied to spread the individuals of the population over the whole Pareto front.

We study the concept of ε-dominance introduced by Laumanns et al. [13] and investigate
its impact with respect to the runtime behavior. In the mentioned approach diversity is
ensured by partitioning the objective space into boxes of appropriate size. The applied
MOEA is allowed to keep at most one individual of each box in its population. A usual
scenario is to divide the objective space into boxes such that their number is logarithmic
with respect to the number of objective vectors.

The aim of this paper is to show where the mentioned approach is provably beneficial.
Therefore, we compare a variation of Global SEMO using the concept of ε-dominance with
the original algorithm. To point out situations where this concept leads provably to a better
optimization process, we present a class of instances with an exponential number of non-
dominated feasible objective vectors. We show that using the concept of ε-dominance a good
approximation of the Pareto front is constructed efficiently while the approach not using
this concept can not achieve this goal in expected polynomial time. Later on, we present
instances where the concept of ε-dominance prevents the algorithm from constructing good
approximations of the Pareto front. For the efficient optimization of these instances it is
essential that the population contains more than one individual per box to construct other
individuals that are needed for a good approximation of the Pareto front. In contrast to
this, we prove that the approach without using the diversity mechanism constructs the whole
Pareto front in expected polynomial time.

The outline of the paper is as follows. In Section 2, we introduce the concept of ε-
dominance and the algorithms that are subject of our analyses. Situations where the men-
tioned diversity concept is provably helpful are presented in Section 3 and the drawbacks of
this approach are investigated in Section 4. Finally, we finish with some concluding remarks.
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2 Algorithms and ε-Dominance

We start with some basic notations and definitions that will be used throughout this paper.
We denote the set of all Boolean values by B and the set of all real numbers by R and
investigate the maximization of functions fitting in the shape of f : B

n → R
m. We call f

objective function, B
n decision space and R

m objective space. The elements of B
n are called

decision vectors and the elements of R
m objective vectors. Let u = (u1, . . . , um) ∈ R

m and
v = (v1, . . . , vm) ∈ R

m be two objective vectors. We define that u weakly dominates v,
denoted by u � v, precisely if ui ≥ vi for all i ∈ {1, . . . ,m}, and u dominates v, denoted
by u ≻ v, precisely if u � v and v 6� u. Let x ∈ B

n and y ∈ B
n be two decision vectors.

We are able to use the same manners of speaking and notations for decision vectors, since
the definition x � y :⇔ f(x) � f(y) transfers the concept of dominance from the objective
space to the decision space.

The set PF(f) := {u ∈ f(Bn) | ∀v ∈ f(Bn) : v 6≻ u} is called the Pareto front of f and
the set P(f) := f−1(PF(f)) = {x ∈ B

n | ∀y ∈ B
n : y 6≻ x} Pareto set of f .1 The set

{(x, f(x)) | x ∈ P(f)} constitutes the canonical solution of an optimization problem of the
considered kind. In the literature a set of the form {(x, f(x)) | x ∈ X} with X ⊆ P(f)
is also considered as a valid solution if f(X) = PF(f). This means that it is sufficient to
determine for all non-dominated objective vectors u ∈ PF(f) at least one decision vector
x ∈ B

n with f(x) = u.
The next algorithm called Global Simple Evolutionary Multi-objective Optimizer (Global

SEMO) can be considered as one of the simplest population-based EAs for multi-objective
optimization problems and has been analyzed with respect to its runtime behavior on pseudo-
Boolean functions [8, 9, 1] as well as classical combinatorial optimization problems [16, 17, 7].
Global SEMO maintains a population of variable size which serves as an archive for the
discovered non-dominated individuals as well as a pool of possible parents. The population
is initialized with a single individual which is drawn uniformly at random from the decision
space. In each generation an individual x is drawn uniformly at random from the current
population P . An offspring y is created by applying a mutation operator to x. We resort
to the global mutation operator which flips each bit of x with probability 1/n throughout
this paper. The offspring is added to the population if it is not dominated by any other
individual of P . All individuals which are weakly dominated by y are in turn deleted from
the population. The last step ensures that the population stores for each discovered non-
dominated objective vector u just the most recently created decision vector x with f(x) = u.

Algorithm 1. Global SEMO

1. Choose x ∈ B
n uniformly at random.

2. Initialize P := {x}.
3. Repeat

• Choose x ∈ P uniformly at random.

• Create an offspring y by flipping each bit of x with probability 1/n.

• Update P := (P \ {z ∈ P | y � z}) ∪ {y} if {z ∈ P | z ≻ y} = ∅.

For theoretical investigations, we count the number of rounds until a desired goal has been
achieved. The number of these rounds is called the runtime of the considered algorithm. The

1Note, that the preimage f−1(U) of a set U ⊆ R
m under a function f : B

n → R
m is also well defined if f

is not a bijection.
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expected runtime refers to the expectation of this random variable. For exact optimization
often the expected optimization time is considered which equals the expected number of
iterations until a decision vector for each objective vector of PF(f) has been included into
the population. We are mainly interested in approximations. Therefore, we are interested
in the number of rounds until a MOEA has achieved an approximation of the Pareto front
with a certain quality.

We are considering the following model to measure the quality of an approximation. Let
ε ∈ R

+ be a positive real number. We define that an objective vector u ε-dominates v,
denoted by u �ε v, precisely if (1 + ε) · ui ≥ vi for all i ∈ {1, . . . ,m}. We call a set
PFε(f) ⊆ f(Bn) an ε-approximate Pareto front of f if

∀u ∈ f(Bn) : ∃v ∈ PFε(f) : v �ε u,

and a set PF∗
ε(f) ⊆ PF(f) an ε-Pareto front of f if PF∗

ε(f) is an ε-approximate Pareto
front. The corresponding Pareto sets are naturally defined, i. e., Pε(f) := f−1(PFε(f)) and
P∗

ε (f) := f−1(PF∗
ε(f)). We point out that it is possible that there are several different

ε-approximate Pareto fronts or ε-Pareto fronts for a given objective function. We also em-
phasize that ε-Pareto fronts are of more value than ε-approximate Pareto fronts to a decision
maker, since all objective vectors of an ε-Pareto front are non-dominated with respect to
the classical concept of dominance. In the following sections, we limit our considerations
to functions where the Pareto set contains all decision vectors and therefore the distinction
between ε-approximate Pareto fronts and ε-Pareto fronts collapses.

The following algorithm, called Global Diversity Evolutionary Multi-objective Optimizer
(Global DEMOε), incorporates the concept of ε-dominance [13]. The idea is to partition the
objective space into boxes such that all objective vectors in a box ε-dominate each other.
The algorithm maintains at each time step at most one individual per box. This approach
ensures that the individuals contained in the population show some kind of diversity with
respect to their objective vectors and that the size of the population can be controlled in a
better way. These properties seem to be very important if we intend to approximate a large
Pareto front. We formalize this idea by introducing the so-called box index vector which
maps each decision vector to the index of its box. We assume a positive and normalized
objective space, i. e., fi(x) ≥ 1 for all i ∈ {1, . . . ,m} and x ∈ B

n. Let

bi(x) :=

⌊

log(fi(x))

log(1 + ε)

⌋

and denote by b(x) := (b1(x), . . . , bm(x)) the box index vector of a decision vector x.
Global DEMOε works as Global SEMO with the exceptions that it does not accept an
offspring with a dominated box index vector and that it deletes all individuals from the
population whose box index vectors are weakly dominated by the box index vector of the
offspring. This approach ensures that at most one individual per non-dominated box resides
in the population.

Algorithm 2. Global DEMOε

1. Choose x ∈ B
n uniformly at random.

2. Initialize P := {x}.
3. Repeat

• Choose x ∈ P uniformly at random.
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• Create an offspring y by flipping each bit of x with probability 1/n.

• Update P := (P \{z ∈ P | b(y) � b(z)})∪{y} if {z ∈ P | b(z) ≻ b(y)∨z ≻ y} = ∅.
Global DEMOε features two important properties. The first one is that the population

contains an ε-Pareto set of the so far sampled decision vectors. This is made precise in the
following lemma which shows that dominance with respect to the box index vector induces
ε-dominance.

Lemma 1. If b(x) � b(y) then x �ε y.

Proof. We have to show that bi(x) ≥ bi(y) implies (1+ε)·fi(x) ≥ fi(y) for all i ∈ {1, . . . ,m}.
Hence,

bi(x) � bi(y)
⇔ ⌊log(fi(x))/ log(1 + ε)⌋ � ⌊log(fi(y))/ log(1 + ε)⌋
⇒ log(fi(x))/ log(1 + ε) � log(fi(y))/ log(1 + ε) − 1
⇔ 1 + log(fi(x))/ log(1 + ε) � log(fi(y))/ log(1 + ε)
⇔ log(1 + ε) + log(fi(x)) � log(fi(y))
⇔ log((1 + ε) · fi(x)) � log(fi(y))
⇔ (1 + ε) · fi(x) � fi(y)

proves the lemma.

The second important property is that the population size can be bounded in the following
way. Denote by Fmax

i := maxx∈Bn fi(x) the largest value of the ith objective function fi

and by Fmax := maxi∈{1,...,m} Fmax
i the largest value of the objective function f . Laumanns

et al. [13] give the following upper bound on the population size.

Lemma 2. The size of the population of Global DEMOε is upper bounded by

(

log Fmax

log(1 + ε)
+ 1

)k−1

.

3 Benefits

In this section, we examine in which situations the concept of ε-dominance leads provably to
a better approximation behavior. The behavior of Global DEMOε depends on the choice of
ε. Our aim is to give a class of instances that is parameterized by ε. In particular, we present
for each fixed choice of ε > 0 an instance where Global DEMOε significantly outperforms
Global SEMO.

W. l. o. g. we assume that n is even, i. e., each decision vector consists of an even number
of bits. We denote the first half of a decision vector x = (x1, . . . , xn) by x′ = (x1, . . . ,
xn/2) and its second half by x′′ = (xn/2+1, . . . , xn). Furthermore, we denote the length of a
bit-string x by |x|, the number of its 1-bits by |x|1, the number of its 0-bits by |x|0, and its
complement by x. In addition, we define the function

BV(x) :=

|x|
∑

i=1

2|x|−i · xi

which interprets a bit-string x as the encoded natural number with respect to the binary
numeral system.
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Figure 1: Outline of the Pareto front of LFε

for ε = 1 and n = 36.
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Figure 2: Pareto front of SFε for ε = 1 and
n = 8.

To point out the benefits that can be gained when using the concept of ε-dominance we
consider the function LF (large front) defined as LFε(x) = (LFε,1(x),LFε,2(x)), where

LFε,1(x) :=

{

(1 + ε)2·|x
′|1+2−n/2·BV(x′′) if min{|x′|0, |x′|1} ≥ √

n,

(1 + ε)2·|x
′|1 otherwise,

LFε,2(x) :=

{

(1 + ε)2·|x
′|0+2−n/2·BV(x′′) if min{|x′|0, |x′|1} ≥ √

n,

(1 + ε)2·|x
′|0 otherwise.

The Pareto set includes all decision vectors, since LFε,1 and LFε,2 behave complementarily.
An outline of the Pareto front of LFε for ε = 1 and n = 36 is shown in Figure 1.

Let x and y be two decision vectors with |x′|1 = |y′|1. Then b(x) = b(y) = (2· |x′|1, 2 · |x′|0)
and therefore x �ε y and y �ε x due to Lemma 1. Hence, to achieve an ε-Pareto set it
is sufficient to obtain for each k ∈ {0, . . . , n/2} a decision vector x with |x′|1 = k. On the
other hand, let x and y be two decision vectors with |x′|1 6= |y′|1. Then either

(1 + ε) · LFε,1(x) < LFε,1(y) and (1 + ε) · LFε,2(y) < LFε,2(x)

or
(1 + ε) · LFε,2(x) < LFε,2(y) and (1 + ε) · LFε,1(y) < LFε,1(x)

and therefore x 6�ε y and y 6�ε x. Hence, to achieve an ε-Pareto set it is also necessary to
obtain a decision vector x with |x′|1 = k for each k ∈ {0, . . . , n/2}.

First, we consider Global SEMO and show that this algorithm is unable to achieve an
ε-Pareto front of LFε within a polynomial number of steps. The basic idea is to show that its
population quickly grows before it obtains decision vectors with a large or small number of
ones in the first half of the bit-string. To show this behavior we utilize the following results
on the number of Hamming neighbors for a given set of elements of the Boolean hypercube.
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The Boolean hypercube of dimension n ∈ N is defined as the undirected graph G = (V,E)
with V = B

n and E = {(v, w) ∈ V 2 | H(v, w) = 1}, where H(v, w) denotes the Hamming
distance of v = (v1, . . . , vn) ∈ B

n and w = (w1, . . . , wn) ∈ B
n, i. e., H(v, w) =

∑n
i=1 |vi−wi|.

A cut (S, T ) is a partition of the vertices V of a graph G = (V,E) into two sets S and T
and the size s(S, T ) of a cut (S, T ) is defined as the total number of edges crossing the cut,
i. e., s(S, T ) = |{(s, t) ∈ E | s ∈ S ∧ t ∈ T}|. Furthermore, we denote the number of positive
bits of the representation of a non-negative integer i according to the binary numeral system
by h(i). The following statements lower bound the size of particular cuts in the Boolean
hypercube.

Lemma 3 (Hart [11]). Let n ∈ N and k ∈ N with 0 < k ≤ 2n, then

min
{

s(S, Bn \ S) | S ⊆ B
n, |S| = k

}

= n · k − 2 ·
k−1
∑

i=0

h(i).

Lemma 4 (Hart [11]). Let r ∈ N, then

2r−1
∑

i=0

h(i) = r · 2r−1.

Lemma 3 and Lemma 4 can be used to bound the expected number of undiscovered
Hamming neighbors of a randomly chosen individual x ∈ P ⊆ B

n.

Corollary 1. Let n ∈ N, r ∈ N with 0 ≤ r ≤ n, and P ⊆ B
n with 0 < |P | ≤ 2r, choose

x ∈ P uniformly at random, and observe the random variable X measuring the number of

Hamming neighbors of x not contained in P , then

E(X) ≥ n − 2 · r.

Proof. The expected number of Hamming neighbors not contained in P is related to the size
of the cut (P, Bn \ P ), since E(X) = s(P, Bn \ P )/|P |. Let m ∈ N with 2m−1 < |P | ≤ 2m.
Due to Lemma 3 and Lemma 4

s(P, Bn \ P )

|P | ≥ n · |P | − 2 · ∑|P |−1
i=0 h(i)

|P |

≥ n − 2 · ∑2m−1
i=0 h(i)

2m−1

= n − 2 · m · 2m−1

2m−1
≥ n − 2 · r.

Using Corollary 1 we are able to show that Global SEMO needs with high probability an
exponential number of iterations to achieve an ε-Pareto set.

Theorem 1. The time until Global SEMO has achieved an ε-Pareto set of LFε is lower

bounded by 2Ω(n1/4) with probability 1 − 2−Ω(n1/4).

Proof. To find an ε-Pareto set of LFε Global SEMO has to produce for each k ∈ {0, . . . , n/2}
at least one decision vector x with |x′|1 = k . In the following, we lower bound the time
needed to produce a decision vector x with |x′|1 = n/2. To achieve this goal we follow a
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typical run of the algorithm. Whenever we upper bound the probability of the occurence of
an unlikely event with ei we work in the following under the assumption that this event has
not occured.

Due to Chernoff bounds |x′|1 > 3n/8 holds for the initial individual x with probability

e1 := 2−Ω(n).

As the probability that a mutation flips at least i bits is upper bounded by

(

n

i

)

·
(

1

n

)i

≤
(en

i

)i

·
(

1

n

)i

=
(e

i

)i

,

the probability that it flips more than n1/4 bits is at most (e/n1/4)n1/4

= 2−Ω(n1/4 log n).

Hence, the probability that one of the first 2n1/4

mutations flips more than n1/4 bits is
upper bounded by

e2 := 2n1/4 · 2−Ω(n1/4 log n) = 2−Ω(n1/4 log n).

In the following, we limit our considerations to the first 2n1/4

steps of the algorithm.
We wait until Global SEMO creates for the first time an individual x with |x′|1 ≥ n/2 −

n1/2 + n1/4. Since at most n1/4 bits flip in a mutation, also |x′|1 < n/2 − n1/2 + 2n1/4. We
call the creation of an individual x with |x′|1 > maxy∈P |y′|1 an improvement. There are at
least

n1/2 − 2n1/4 + 1

n1/4
= n1/4 − 2 + n−1/4 ≥ n1/4

2

improvements needed to reach an individual x with |x′|1 = n/2.
We divide the following part of a run in phases, where the ith phase ends when an

improvement is achieved. We show that the completion of these phases takes an exponential
number of steps with high probability. An improvement requires that an individual x with
|x′|1 + n1/4 > maxy∈P |y′|1 is chosen for mutation and at least one 0-bit in its first half is
flipped. Denote the size of the population at the beginning of the ith phase by |Pi|. As
the population contains at most n1/4 individuals x with |x′|1 + n1/4 > maxy∈P |y′|1 and
each of these individuals contains less than n1/2 0-bits in its first half, the probability of an
improvement in a step in the ith phase is upper bounded by n1/4/|Pi| ·n1/2/n ≤ 1/|Pi|. The
probability that the ith phase takes at least |Pi| steps is lower bounded by (1−1/|Pi|)|Pi|−1 ≥
1/e. Due to Chernoff bounds the probability that less than 1/2 · n1/4/2 · 1/e = n1/4/(4e)
phases take at least |Pi| steps is upper bounded by

e3 := 2−Ω(n1/4).

We call theses ℓ ≥ n1/4/(4e) phases long phases and denote their indices by i1, . . . , iℓ.
The population grows if (1) an individual x with n1/2 ≤ |x′|1 ≤ n/2−n1/2 is selected and

(2) afterwards exactly one bit in its second half is flipped such that a new individual y 6∈ P
emerges. Since the population contains at least

n/2 − n1/2 − 3n/8

n1/4
=

n3/4

8
− n1/4 ≥ n3/4

16

individuals x with 3n/8 < |x′|1 ≤ n/2 − n1/2 and at most 2n1/2 individuals x with |x′|1 <

8



n1/2 or |x′|1 > n/2 − n1/2, the first probability is lower bounded by

1 − 2n1/2

n3/4/16
= 1 − 32n−1/4 ≥ 1/2.

To lower bound the second probability we utilize the following reverse version of Markov’s
inequality which applies to bounded random variables. This version can be easily derived
from Markov’s inequality. Let X be a non-negative random variable. If there are a, b ∈ R

+
0

such that Prob(X ≤ a) = 1 and b < E(X), then Prob(X > b) ≥ (E(X) − b)/(a − b). Let
X be the random variable measuring the number of individuals y /∈ P which differ from
an uniformly at random chosen individual x ∈ P in exactly one bit in their second half.
As the population size is upper bounded by 2n/8, we can use Corollary 1 with r = n/8 to
deduce that E(X) ≥ n/2 − 2 · n/8 = n/4. Using the inequality from above with a = n/2
and b = E(X)/2, we conclude that

Prob
(

X ≥ n

8

)

≥ E(X) − E(X)/2

n/2 − E(X)/2
≥ 1

3
.

Therefore, the second probability is lower bounded by 1/3 ·n/8 ·1/n ·(1−1/n)n−1 ≥ 1/(24e).
Altogether, the probability that the population grows is lower bounded by 1/(48e). Due
to Chernoff bounds the probability that in a long phase the population grows by less than

|Pi|/(96e) ≥ |Pi|/261 individuals is upper bounded by 2−Ω(|Pi|) = 2−Ω(n3/4). The probability
that this event happens in at least one long phase is upper bounded by

e4 := ℓ · 2−Ω(n3/4) ≤ n1/2 · 2−Ω(n3/4) = 2−Ω(n3/4).

The inequalities

|Pi1 | ≥
1

16
· n3/4 and |Pij+1

| ≥ |Pij
| + 1

261
· |Pij

|.

lower bound the growth of the population in the long phases. By solving the recursive
inequalities we get

|Pij
| ≥

(

262

261

)j−1

· 1

16
· n3/4.

Since the error probabilities e1, . . . , e4 sum up to 2−Ω(n1/4), we conclude that the last long
phase takes a least

(

262

261

)n1/4/(4e)−1

· 1

16
· n3/4 = 2Ω(n1/4)

steps with probability 1 − 2−Ω(n1/4) which shows the theorem.

We emphasize that the exponentially small success probability of Global SEMO on LFε

implies that not even sequential or parallel runs of Global SEMO help to find an ε-Pareto

set of LFε in polynomial time. If we observe at most 2cn1/4

runs of Global SEMO on LFε

and grant each run at most 2c′n1/4

steps, where c > 0 and c′ > 0 are two sufficiently small
constants, then the probability that at least one run finds an ε-Pareto set of LFε is still at

most 2−Ω(n1/4).
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In the following, we show that Global DEMOε is efficient on LFε. The advantage of
Global DEMOε is that it always works with a population that is much smaller than the
population of Global SEMO.

Theorem 2. The expected time until Global DEMOε has achieved an ε-Pareto set of LFε

is O(n2 log n).

Proof. Denote the set of covered | · |1 values by A := {|x′|1 | x ∈ P} and the set of uncovered
| · |1 values by B := {0, . . . , n/2} \ A. The population P includes for each non-dominated
feasible objective vector a corresponding decision vector precisely if A = {0, . . . , n/2}.

As long as A 6= {0, . . . , n/2}, there exists an a ∈ A and a b ∈ B with b = a−1 or b = a+1.
In addition, |P | is upper bounded by

(

log Fmax

log(1 + ε)
+ 1

)k−1

<

(

log(1 + ε)2n+1

log(1 + ε)
+ 1

)2−1

= 2n + 2

due to Lemma 2. Let x ∈ P be the individual with |x′|1 = a. The probability to choose x
in the next step and flip exactly one proper bit to obtain a decision vector y with |y′|1 = b
is at least

1

|P | ·
min{b + 1, n/2 − b + 1}

en
≥ min{b, n/2 − b} + 1

3en2
.

To obtain the upper bound, we sum up over the different values that b can attain. There-
fore, the expected optimization time is upper bounded by

3en2 ·
n/2
∑

b=0

1

min{b, n/2 − b} + 1
≤ 6en2 ·

n/4+1
∑

b=1

1

b
= O(n2 log n)

which completes the proof.

4 Drawbacks

In the previous section, we have shown that the concept of ε-dominance can help to achieve
a good approximation of the Pareto set. A drawback of the mentioned approach is that it
can prevent an algorithm from proceeding from a non-dominated feasible objective vector
to another if there is a large number of such objective vectors within a single box. We
present a class of problems parameterized by ε where Global DEMOε is not efficient. In
contrast to this Global SEMO can obtain the whole Pareto front in expected polynomial
time independently of the choice of ε. Again, all decision vectors are non-dominated and
it is easy to obtain a new objective vector by flipping a single bit in at least one decision
vector of the current population. In contrast to the example class analyzed in the previous
section the number of objective vectors is polynomially bounded.

To point out the drawbacks that the use of ε-dominance might have, we consider the
two-objective function SF (small front) defined as SFε(x) = (SFε,1(x),SFε,2(x)), where

SFε,1(x) := (1 + ε)|x|1/n+⌊|x|1/n⌋,

SFε,2(x) := (1 + ε)|x|0/n+⌊|x|0/n⌋.

10



It is obvious that the Pareto set includes all decision vectors. The Pareto front of SFε is
shown in Figure 2 for ε = 1 and n = 8.

For each decision vector x 6∈ {0n, 1n} holds

(1 + ε) · SFε,1(0
n) ≥ SFε,1(x) and SFε,2(0

n) ≥ SFε,2(x)

and
SFε,1(1

n) ≥ SFε,1(x) and (1 + ε) · SFε,2(1
n) ≥ SFε,2(x).

To compute an ε-Pareto set it therefore suffices to reach a population that includes the
decision vectors 0n and 1n. These decision vectors are in turn included in each ε-Pareto set
as (1 + ε) · SFε,1(x) < SFε,1(1

n) for each x 6= 1n and (1 + ε) · SFε,2(x) < SFε,2(0
n) for each

x 6= 0n.
We show that Global DEMOε is not able to efficiently find an ε-Pareto set of SFε. To

achieve our goal we resort to a powerful theory called drift analysis which is able to deduce
properties of a sequence of random variables from its drift [10]. Drift analysis has been
introduced into the runtime analysis of evolutionary algorithms by [12]. The following
theorem is stated in [18].

Theorem 3 (Drift Theorem). Let Xt, t ≥ 0, be the random variables describing a Markov

process over a state space S and g : S → R
+
0 a function mapping each state to a non-negative

real number. Pick two real numbers a(n) and b(n) depending on a parameter n such that

0 ≤ a(n) < b(n). Let T (n) := min{t ≥ 0 | g(Xt) ≤ a}. If there are λ(n) > 0, D(n) ≥ 1, and

p(n) > 0 such that for all t ≥ 0 the conditions

1. E
(

e−λ(n)·(g(Xt+1)−g(Xt)) | a(n) < g(Xt) < b(n)
)

≤ 1 − 1/p(n),

2. E
(

e−λ(n)·(g(Xt+1)−b(n)) | b(n) ≤ g(Xt)
)

≤ D(n)

hold, then for all time bounds B(n) ≥ 0

Prob
(

T (n) ≤ B(n) | g(X0) ≥ b(n)
)

≤ eλ(n)·(a(n)−b(n)) · B(n) · D(n) · p(n).

Using Theorem 3 we are able to show that Global DEMOε needs with high probability
an exponential number of steps to achieve an ε-Pareto set.

Theorem 4. The time until Global DEMOε has achieved an ε-Pareto set of SFε is lower

bounded by 2Ω(n) with probability 1 − 2−Ω(n).

Proof. We interpret a run of Global DEMOε on SFε as a Markov process, i. e., the state
space corresponds to the set of all possible populations. Our aim is to derive a lower bound
on the runtime until a decision vector of {0n, 1n} has been obtained. To utilize Theorem 3,
we define g(Xt) := min{min{|x|1, |x|0} | x ∈ Xt} and choose a(n) := 0, b(n) := n/128,
λ(n) := λ := ln 4, D(n) := D := 214, and p(n) := p := 25. Note, that Xt contains a
single decision vector as long as g(Xt) > 0. Observe the population Xt = {x} and set
i := g(Xt) = min{|x|1, |x|0}. The probability p−j to decrease i by j, 1 ≤ j ≤ i, is at most

p−j ≤
(

i

j

)

·
(

1

n

)j

+

(

n − i

n − 2i + j

)

·
(

1

n

)n−2i+j

≤ 2 ·
(

i

j

)

·
(

1

n

)j

≤ 2 ·
(

ei

j

)j

·
(

1

n

)j

,

since it is required that at least j ones or n−2i+ j zeros flip if |x|1 ≤ n/2 or at least j zeros
or n − 2i + j ones flip if |x|1 ≥ n/2. The probability pj to increase i by j, 1 ≤ j ≤ n/2 − i,
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is at least

pj ≥
(

n − i

j

)

·
(

1

n

)j

·
(

1 − 1

n

)n−j

≥
(

n − i

j

)j

·
(

1

n

)j

· 1

e
,

since it is sufficient that exactly j zeros flip if |x|1 ≤ n/2 or exactly j ones flip if |x|1 ≥ n/2.
We show that the two statements given in Theorem 3 are satisfied.

1. If 0 < i < n/128, then p−j ≤ 2 · (e/(128j))j and pj ≥ 1/e · (127/(128j))j . Hence, for
all t ≥ 0

E
(

e−λ·(g(Xt+1)−g(Xt)) | a(n) < g(Xt) < b(n)
)

=

i
∑

j=1

p−j · eλ·j +



1 −
i

∑

j=1

p−j −
n/2−i
∑

j=1

pj



 +

n/2−i
∑

j=1

pj · e−λ·j

≤
i

∑

j=1

2 ·
(

e

128j

)j

· eln 4·j + 1 −
i

∑

j=1

2 ·
(

e

128j

)j

−
n/2−i
∑

j=1

1

e
·
(

127

128j

)j

+

n/2−i
∑

j=1

1

e
·
(

127

128j

)j

· e− ln 4·j ,

since eλ·j > 1 > e−λ·j for all j ≥ 1. The last expression can be upper bounded by

2 ·
∞
∑

j=1

( e

32

)j

+ 1 − 127

128e
+

1

e
·

∞
∑

j=1

(

127

512

)j

= 2 ·
(

1

1 − e/32
− 1

)

+ 1 − 127

128e
+

1

e
·
(

1

1 − 127/512
− 1

)

=
2e

32 − e
+ 1 − 127

128e
+

127

385e
≤ 19

100
+ 1 − 36

100
+

13

100
= 1 − 1

p
.

2. If n/128 ≤ i ≤ n/2, then p−j ≤ 2 · (e/(2j))j and pj ≥ 0. Hence, for all t ≥ 0

E
(

e−λ·(g(Xt+1)−b(n)) | b(n) ≤ g(Xt)
)

≤ E
(

e−λ·(g(Xt+1)−g(Xt)) | b(n) ≤ g(Xt)
)

=
i

∑

j=1

p−j · eλ·j +



1 −
i

∑

j=1

p−j −
n/2−i
∑

j=1

pj



 +

n/2−i
∑

j=1

pj · e−λ·j

≤
i

∑

j=1

2 ·
(

e

2j

)j

· eln 4·j + 1 −
i

∑

j=1

2 ·
(

e

2j

)j

,
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since eλ·j > 1 > e−λ·j for all j ≥ 1. The last expression can be upper bounded by

2 ·





5
∑

j=1

(

2e

j

)j

+

i
∑

j=6

(

2e

j

)j


 + 1 ≤ 2 ·





5
∑

j=0

(2e)j +

∞
∑

j=0

(e

3

)j



 + 1

= 2 ·
(

1 − (2e)6

1 − 2e
+

1

1 − e/3

)

+ 1 ≤ 214 = D.

Since n/128 ≤ |x|1 ≤ 127n/128 holds for the initial individual x ∈ B
n with probability

1−2−Ω(n) due to Chernoff bounds, an application of Theorem 3 yields that a decision vector
of {0n, 1n} has been found within B(n) := 2n/27

= 2Ω(n) steps with probability at most

eλ·(a(n)−b(n)) · B(n) · D · p = eln 4·(−n/27) · 2n/27 · 214 · 25 = 2−Ω(n).

Just recently a simplified version of Theorem 3 has been proposed [18] that leads to an
easier proof of Theorem 4.

Theorem 5 (Simplified Drift Theorem). Let Xt, t ≥ 0, be the random variables describing a

Markov process over a state space S and g : S → {0, . . . , N}, N ∈ N, a function mapping each

state to a natural number between 0 and N . Pick two real numbers a(n) and b(n) depending

on a parameter n such that 0 ≤ a(n) < b(n). Let T (n) := min{t ≥ 0 | g(Xt) ≤ a(n)} and

∆t(i) := (g(Xt+1) − g(Xt) | g(Xt) = i) for all t ≥ 0 and 0 ≤ i ≤ N . If there are constants

δ, ε, r > 0 such that for all t ≥ 0 the conditions

1. E
(

∆t(i)
)

≥ ε for all a(n) < i < b(n)

2. Prob
(

∆t(i) = −j
)

≤ 1/(1 + δ)j−r for all i > a(n) and j ≥ 1

hold, then there is a constant c∗ > 0 such that

Prob
(

T (n) ≤ 2c∗(b(n)−a(n)) | g(X0) ≥ b(n)
)

= 2−Ω(b(n)−a(n)).

Alternate proof of Theorem 4. We interpret a run of Global DEMOε on SFε as a Markov
process, i. e., the state space corresponds to the set of all possible populations. To utilize
Theorem 5, we define g(Xt) := min{min{|x|1, |x|0} | x ∈ Xt} and choose a(n) := 0, b(n) :=
n/20, ε := 3/100, δ := 1, and r := 2. We show that the two statements given in Theorem 5
are satisfied.
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1. For all t ≥ 0 and a(n) < i < b(n) holds

E (∆t(i)) =

i
∑

j=1

Prob (∆t(i) = −j) · (−j) +

n/2−i
∑

j=1

Prob (∆t(i) = j) · j

≥ −
i

∑

j=1

2 ·
(

e

20j

)j

· j +

n/2−i
∑

j=1

1

e
·
(

19

20j

)j

· j

= − e

10
·

i
∑

j=1

(

e

20j

)j−1

+
19

20e
·

n/2−i
∑

j=1

(

19

20j

)j−1

≥ − e

10
·

∞
∑

j=0

( e

20

)j

+
19

20e

= − e/10

1 − e/20
+

19

20e
≥ 3

100
= ε.

2. For all t ≥ 0, i > a(n), and j ≥ 1 holds

Prob (∆t(i) = −j) ≤ 2 ·
(

n

j

)

·
(

1

n

)j

≤ 2

j!
≤

(

1

2

)j−2

=

(

1

1 + δ

)j−r

.

Since n/20 ≤ |x|1 ≤ 19n/20 holds for the initial individual x ∈ B
n with probability

1 − 2−Ω(n) due to Chernoff bounds, an application of Theorem 5 yields that a decision
vector of {0n, 1n} has been found within 2c∗·(b(n)−a(n)) = 2Ω(n) steps with probability at
most 2−Ω(b(n)−a(n)) = 2−Ω(n).

We note that the exponentially small success probability of Global DEMOε on SFε implies
that restarts of the algorithm are not useful to significantly reduce the required time to find
an ε-Pareto set of SFε.

In contrast to the previous result, Global SEMO is able to compute the whole Pareto
front in expected polynomial time independently of the choice of ε as shown in the following
theorem.

Theorem 6. The expected time until Global SEMO has achieved an ε-Pareto set of SFε is

O(n2 log n).

Proof. Denote the set of covered | · |1 values by A := {|x|1 | x ∈ P} and the set of uncovered
| · |1 values by B := {0, . . . , n} \ A. The population P includes for each non-dominated
feasible objective vector a corresponding decision vector precisely if A = {0, . . . , n}.

As long as A 6= {0, . . . , n}, there exists an a ∈ A and a b ∈ B with b = a− 1 or b = a + 1.
In addition, |P | is upper bounded by n. Let x ∈ P be the individual with |x|1 = a. The
probability to choose x in the next step and flip exactly one proper bit to obtain a decision
vector y with |y|1 = b is at least

1

|P | ·
min{b + 1, n − b + 1}

en
≥ min{b, n − b} + 1

en2
.
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To obtain the upper bound, we sum up over the different values that b can attain. There-
fore, the expected optimization time is upper bounded by

en2 ·
n

∑

b=0

1

min{b, n − b} + 1
≤ 2en2 ·

n/2+1
∑

b=1

1

b
= O(n2 log n).

The properties of the class of functions analyzed in this section also hold for the bi-
objective model of the minimum spanning tree (MST) problem examined in [17]. In the
mentioned bi-objective model the task is to minimize the weight and the number of connected
components of a set of edges simultaneously. For Global SEMO a polynomial upper bound
has been given in [17]. In fact, it is not to hard to come up with a class of instances for the
MST problem where Global DEMOε needs with high probability an exponential number of
steps to find a minimum spanning tree.

5 Conclusions

Diversity plays an important role when using evolutionary algorithms for multi-objective
optimization. This is in particular the case when the number of feasible objectives vectors
grows exponentially in the problem size. We have investigated the concept of ε-dominance
within simple MOEAs. Our theoretical investigations point out situations where this concept
significantly helps to reduce the runtime of a MOEA until a good approximation of the
Pareto front has been achieved. We have also pointed out that the concept of ε-dominance
can be destructive for problems where the number of feasible objective vectors is small. In
this case, the investigated mechanism of diversity can slow down the optimization process
drastically.

In the future, it would be interesting to examine how the use of ε-dominance can help to
achieve good approximations for classical multi-objective combinatorial optimization prob-
lems. Many of these problems can have a Pareto front of exponential size and using the
mechanism of ε-dominance might help to reduce the runtime until a good approximation of
the Pareto set has been achieved.
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