Tillmanns, Christoph2004-12-062004-12-062003-11-052003-11-07http://hdl.handle.net/2003/289810.17877/DE290R-16077Data Mining ist als Anwendung von Algorithmen zur Ermittlung vonDatenmustern aus großen Datenbeständen bekannt. Diese Dissertationweitetdie in der Literatur zumeist rein technisch geführte Diskussion vonData-Mining-Verfahren auf deren betriebswirtschaftlicheAnwendungspotentiale aus. Sie untersucht die Unterstützungsmöglichkeitenbetrieblicher Entscheidungsprozesse durch Data-Mining-Verfahren.Zunächstwird ein formaler 'Baukasten' zur Entwicklung neuerData-Mining-Verfahreneingeführt, der die Gestaltungsmöglichkeiten von Data-Mining-Modelltypenund ?Suchverfahren sowie die Bewertung der Interessantheit vonökonomischenModellen umfasst. Aus der Betrachtung betriebswirtschaftlicherData-Mining-Anwendungen wird ein generelles Schema zur Unterstützung vonEntscheidungsprozessen per Data Mining abgeleitet. Der Modelltyp desEntscheidungsmodells wird genauer betrachtet und einData-Mining-Verfahrenzur Generierung von Entscheidungsmodellen entwickelt. Abschließend wirddasVerfahren an Testdaten evaluiert und auf eine Problemstellung zurSelektionvon Kunden für eine Direktmarketingaktion im Versicherungsmarktangewendet.deUniversität DortmundEntscheidungsunterstützungInteressantheitEntscheidungsmodelleSuchverfahren330Data Mining zur Unterstützung betrieblicher EntscheidungsprozesseData Mining for Supporting Operational Decision Processesdoctoral thesis