Sokolov, AndriyDavydov, OlegTurek, Stefan2017-12-042017-12-042017-112190-1767http://hdl.handle.net/2003/3623110.17877/DE290R-18245In this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ (t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models.enErgebnisberichte des Instituts für Angewandte Mathematik;579radial basis functionsfinite differencesevolving surfaceslevel setsurface PDEs610Numerical study of the RBF-FD level set based method for partial differential equations on evolving-in-time surfacespreprintRadiale BasisfunktionFinite-Differenzen-MethodePartielle Differentialgleichung