Schwiegelshohn, Chris2017-10-052017-10-052017http://hdl.handle.net/2003/3610910.17877/DE290R-18125Gegenstand dieser Arbeit sind algorithmische Methoden der modernen Datenanalyse. Dabei werden vorwiegend zwei übergeordnete Themen behandelt: Datenstromalgorithmen mit Kompressionseigenschaften und Approximationsalgorithmen für Clusteringverfahren. Datenstromalgorithmen verarbeiten einen Datensatz sequentiell und haben das Ziel, Eigenschaften des Datensatzes (approximativ) zu bestimmen, ohne dabei den gesamten Datensatz abzuspeichern. Unter Clustering versteht man die Partitionierung eines Datensatzes in verschiedene Gruppen. Das erste dargestellte Problem betrifft Matching in Graphen. Hier besteht der Datensatz aus einer Folge von Einfüge- und Löschoperationen von Kanten. Die Aufgabe besteht darin, die Größe des so genannten Maximum Matchings so genau wie möglich zu bestimmen. Es wird ein Algorithmus vorgestellt, der, unter der Annahme, dass das Matching höchstens die Größe k hat, die exakte Größe bestimmt und dabei k² Speichereinheiten benötigt. Dieser Algorithmus lässt sich weiterhin verwenden um eine konstante Approximation der Matchinggröße in planaren Graphen zu bestimmen. Des Weiteren werden untere Schranken für den benötigten Speicherplatz bestimmt und eine Reduktion von gewichtetem Matching zu ungewichteten Matching durchgeführt. Anschließend werden Datenstromalgorithmen für die Nachbarschaftssuche betrachtet, wobei die Aufgabe darin besteht, für n gegebene Mengen die Paare mit hoher Ähnlichkeit in nahezu Linearzeit zu finden. Dabei ist der Jaccard Index |A ∩ B|/|A U B| das Ähnlichkeitsmaß für zwei Mengen A und B. In der Arbeit wird eine Datenstruktur beschrieben, die dies erstmalig in dynamischen Datenströmen mit geringem Speicherplatzverbrauch leistet. Dabei werden Zufallszahlen mit nur 2-facher Unabhängigkeit verwendet, was eine sehr effiziente Implementierung ermöglicht. Das dritte Problem befindet sich an der Schnittstelle zwischen den beiden Themen dieser Arbeit und betrifft das k-center Clustering Problem in Datenströmen mit einem Zeitfenster. Die Aufgabe besteht darin k Zentren zu finden, sodass die maximale Distanz unter allen Punkten zu dem jeweils nächsten Zentrum minimiert wird. Ergebnis sind ein 6-Approximationalgorithmus für ein beliebiges k und ein optimaler 4-Approximationsalgorithmus für k = 2. Die entwickelten Techniken lassen sich ebenfalls auf das Durchmesserproblem anwenden und ermöglichen für dieses Problem einen optimalen Algorithmus. Danach werden Clusteringprobleme bezüglich der Jaccard Distanz analysiert. Dabei sind wieder eine Menge N von Teilmengen aus einer Grundgesamtheit U sind und die Aufgabe besteht darin eine Teilmenge $C$ zu finden, die max 1-|X ∩ C|/|X U C| minimiert. Es wird gezeigt, dass zwar eine exakte Lösung des Problems NP-schwer ist, es aber gleichzeitig eine PTAS gibt. Abschließend wird die weit verbreitete lokale Suchheuristik für k-median und k-means Clustering untersucht. Obwohl es im Allgemeinen schwer ist, diese Probleme exakt oder auch nur approximativ zu lösen, gelten sie in der Praxis als relativ gut handhabbar, was andeutet, dass die Härteresultate auf pathologischen Eingaben beruhen. Auf Grund dieser Diskrepanz gab es in der Vergangenheit praxisrelevante Datensätze zu charakterisieren. Für drei der wichtigsten Charakterisierungen wird das Verhalten einer lokalen Suchheuristik untersucht mit dem Ergebnis, dass die lokale Suchheuristik in diesen Fällen optimale oder fast optimale Cluster ermittelt.enAlgorithmenDatenanalyse004On algorithms for large-scale graph and clustering problemsdoctoral thesisApproximationsalgorithmusClusterverfahren