Burghardt, Bernd2004-12-062004-12-061999-08-17http://hdl.handle.net/2003/237510.17877/DE290R-15396In der Arbeit wird ein neues numerisches Verfahren zur Lösung der Schrödinger - Gleichung vorgestellt. Für einen gegebenen Anfangszustand soll die zeitliche Entwicklung unter einem Hamilton - Operator mittels eines deterministischen Verfahrens berechnet werden. Hierfür wird eine Funktionalintegraldarstellung über kohärente Zustände benutzt. Die Funktionalintegralformulierung bedient sich einer verallgemeinerten Trotter - Formel und der Aufspaltung des Hamilton - Operators in einen harmonischen und einen anharmonischen Anteil. Die Umsetzung in ein numerisches Verfahren erfolgt über ein Vektor - Matrix - Multiplikations - Schema. Anhand von eindimensionalen Systemen (Morse - Potential, Doppelmuldenpotential) wird demonstriert, dass das Verfahren sowohl für zeitunabhängige als auch für zeitabhängige Hamilton - Operatoren in der Lage ist, über lange Zeiten stabile Ergebnisse zu liefern. Insbesondere konnte das von Großmann et al. (Phys. Rev. Lett., 67:516-519, 1991) an der periodisch getriebenen Doppelmulde entdeckte Phänomen des unterdrückten Tunnelns reproduziert werden. Dieses Problem beinhaltet drei verschiedene Zeitskalen, deren größte die kleinste um fünf Größenordnungen übertrifft.deUniversität Dortmund530Numerische Auswertung von Funktionalintegralen über kohärente Zuständedoctoral thesisurn:nbn:de:hbz:290-2003/2375-5