Schweizer, BenUrban, Maik2017-03-282017-03-282017-03-15http://hdl.handle.net/2003/35904http://dx.doi.org/10.17877/DE290R-17928We study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period η > 0; we study the behaviour of solutions ( E^η ,H^η ) in the limit η → 0 and derive an effective system. In geometries with a non-trivial topology, the limit system implies that certain components of the effective fields vanish. We identify the corresponding effective system and can predict, from topological properties of the meta-material, whether or not it permits the propagation of waves.enMaxwell’s equationshomogenizationdiffractionperiodic structuremeta-material610Effective Maxwell’s equations in general periodic microstructuresTextMaxwellsche GleichungenHomogenisierungsmethodeBeugungMikrostruktur