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Abstract 

 

As shown by theoretical and experimental results in this thesis, a carefully designed 

UV-IMS[PID] coupling with oa-TOFMS was successfully self set up. It offers high 

transmission, simple spectrum, high speed and it is able to record the whole mass 

spectrum quasi simultaneously. These features make it attractive to identify ions, 

fragments or ion clusters in IMS and to conduct high-throughput molecular analysis of 

large libraries for compound confirmation and purity assessment. 

By simulation with SIMION v. 7.0 it was proved that the configuration of the three  

stage differential pump system and the Einzel lens was suitable for an orthogonal 

design of an interface between atmospheric pressure and the TOFMS. The pinhole 

interface system to the UV-IMS [PID]-TOF was characterized by studying a two and a 

three stage interface. They are optimized and proved to be able to identify ions that 

has been ionized in IMS. 

This device has been proved to have unique benefits for volatile organic compounds 

analysis. The utility of the UV-IMS[PID]-TOF for high-speed and high throughput 

analysis of different groups of chemicals, including ketones, alcohols and aromatics 

were studied. The detection limits are in the range of 0.8 µg/L for acetone, 8.6 µg/L 

for ethanol and 17.2 µg/L for benzene with direct permeation sampling. The 

instrument has a dynamic range of about 3 decades for all detected compounds. A 

wide range of applications including chemical weapon simulation substances 

detection as well as fungal analysis were achieved with this device. It yields simple 

spectra that facilitate analysis. 

Compared the results of TOF spectra with UV-IMS spectra, most VOCs appearing in 

UV-IMS are monomer or protonated monomer ions. For the selected ketones from 

acetone to nonanone, the most abundant ions are protonated molecular ions and 

beginning from hexanone, the fragmentation is evident and can be detected in IMS. 

In the case of selected alcohols, not all of them have base peak corresponding to 

protonated molecule ions. Some of them such as 3-methyl-2-butanol and 2-hexanol 

the fragment ion are most abundant. These two groups of compounds all have 

obvious water adducts peaks because of high proton affinities. For aromatic 

substances the major ion is the molecular ion. 
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1. Introduction  

1.1. Ion mobility spectrometry 

Ion mobility spectrometry has been used for over 30 years since it was first 

introduced by Cohen und Karasek [1] in 1970 under the name plasma 

chromatography. It became commonly viewed as a technique for the selective 

detection of organic compounds [2,3] in the gas phase at ambient pressure. 

Separation is achieved through differences in mobility of ions under constant electric 

field and against the flow of neutral gas. Ions are formed typically by chemical 

ionizations initiated with reactant ions formed from radioactive 63Ni β-emission. But 

because the principles of ion molecule chemistry and ion behavior at ambient 

pressure were poorly understood at that time, after first enthusiasm it developed 

slowly. Between 1980 and 1990s an interest in ion mobility spectrometer (IMS) was 

renewed, great advances in technology, design and commercialization took place. 

IMS has evolved into an inexpensive and powerful technique for the sensitive 

detection of many trace compounds such as chemical warfare agents [4], drugs of 

abuse [5,6], explosives [7-11] and anesthetics [12]. IMS has some unique 

advantages as an industry and on-site process analyzer compared to different 

organic molecular-based analytical techniques with respect to size, weight, power 

consumption and information density. It is a comparably inexpensive and compact 

technique, and it is extremely sensitive to many compounds at ng/L levels. In 

addition, IMS has continuous real time monitoring capabilities. It was used to 

characterize a number of wood species [13], halogenated hydrocarbons in nitrogen 

and in air which is of high interest for industrial and environmental applications 

[14,15], organophosphorus compounds [16], nicotin [17], and ammonium [18], suphur 

hexafluoride (SF6) in insulated switchgears in high voltage substations [19,20], the 

waste gas of polymeres in semiconductive industry [21], ethanol in beer and in yeast 

fermentation [22] and fresh herbs detection [23]. IMS was applied in microbial and 

biological field too, different bacteria [24-27] were detected. Also inorganic 

substances including alkali salts [28] and other metal salts (Al, Mn, Pb, La, Sr et al.)  

[29] can be detected and separated efficiently.  

Most of the ion mobility spectrometers use radioactive material like 63Ni as ionization 

source [30-33], which is favored due to its simplicity, stability and convenience. This 

source has deficiencies in limited linear range, inflexible selectivity and regulatory 



Introduction 

 - 2 - 

requirements associated with radioactive material. In recent years non-radioactive ion 

sources are of special interest. Including UV lamps [34-36] (ionization energy as 10.6 

eV). It is a primary ionization source and consequently its linear range is not limited 

by reactant ion concentration, secondly, ion mobility spectra created via 

photoionization contain no reactant ions peak, so the complete mobility spectrum can 

be used for monitoring product ions. This feature is especially important for small ions 

with drift times near to those of the reactant ions. Corona or partial discharges [37-39] 

providing higher signal intensity than other sources, leading to a good sensitivity, 

laser ionization [40-42] and surface-ionization [43,44] are also used in recent years. 

With the development of electrospray ionization [45-47] for IMS, high molecular 

weight and non-volatile compounds could easily be analyzed, which is especially 

useful for biological mixtures. 

 

Early IMS instruments from the 1970s were desk-size units and now the miniaturized 

IMS is a palm-size analyzer with the same analytical features compared to the 

normal IMS. Although the original mini-IMS was a redesign of conventional IMS 

technology, efforts are underway in several laboratories to make IMS analyzers on 

chips. Eiceman et al. developed a novel micromachined high field asymmetric 

waveform IMS, which has a 3×1×0.2 cm3 rectangular drift tube and a planar 

electrode configuration, detection of toluene at concentration as low as 100 ng/L has 

been demonstrated [48, 49]. Another miniaturized IMS was designed in ISAS - 

Institute for Analytical Sciences and G.A.S. Gesellschaft fuer Analytische 

Sensorsysteme mbH, Dortmund, Germany, with the use of microstructure 

techniques. The total length of drift unit is 6 cm and the total gas volume inside the 

device is 0.26 cm3 [50]. 

 

1.2. Time-of-flight mass spectrometry 

Among all types of mass analyzers, the outstanding features of time-of-flight mass 

spectrometers (TOFMS) were already revealed by Willey and McLaren [51]. They 

provide fast response and high ion transmission efficiency, all the ions over the whole 

m/z range can be detected almost simultaneously, in a time of less than milliseconds 

without scanning. A second feature is that the entire mass spectrum can be recorded 

from each ion packet, their mass range is unlimited, which is the great advantage for 

the analysis of biologic macromolecules The construction of a TOF instrument is 
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comparatively straightforward and inexpensive. But progress of TOF during the first 

decades after their advent was hindered also by the fact that their resolution and 

sensitivity were inferior to those of the static instruments. This was partially due to the 

poor level of radio frequency and pulsed technology at the time. 

 

The construction of a TOF analyzer has been published in 1946 by Stephens [52]. 

The principle of TOF is quite simple: ions of different mass to charge ratio (m/z) are 

dispersed in time during their flight along a field-free drift path of known length. Soon 

increasingly useful TOF instruments were constructed [53,54] leading to their first 

commercialization by Bendix in the middle 1950s. These first generation of TOF 

instruments were designed for gas chromatography-mass spectrometry (GC-MS) 

coupling [55,56]. Their performance was poor compared to modern analysers,  but 

the specific advantage of TOF over the competing magnetic sector instruments was 

the rate of spectra per second they were able to deliver. In GC-MS the TOF analyser 

soon became superseded by linear quadrupole analysers and it took until the late 

1980s for their revival [57, 58]. 

 

During 1980s, at least two groups independently developed orthogonal acceleration 

TOFMS (oa-TOFMS), which effectively eliminates the initial kinetic energy distribution 

or, more precisely, the velocity distribution along  the TOF axis by orthogonal 

acceleration of the ions in a focused ion beam. Dawson and Guilhaus [59] introduced 

this approach to improving the mass resolution and duty cycle for a TOF with an 

electron impact (EI) ion source. Ions were collimated by an electrostatic lens system 

and injected into an ion storage area. The ion extraction and acceleration fields then 

provide space focusing to the detector in a linear TOF analyzer. The predicted 

resolving power for the device was m/∆m ≈ 3800 (FWHM). Dodonov and coworkers 

[60] coupled reflecting oa-TOFMS to an electrospray ionisation source (ESI) - an ion 

source of rapidly increasing usefulness in biomolecular analytical chemistry to 

achieve a resolving power of m/∆m ≈ 2000 (FWHM). The work of both groups was 

influential in the development of a range of commercial oa-TOFMS instruments. 

Recently, numerous other ESI-TOF instruments have been constructed [61]. 

Important developments have included collisional cooling, tandem instruments, and 

application of similar techniques to MALDI. In addition to electrospray, orthogonal 

injection has been used with other types of continuous ionization, including ions from 
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flames [62], liquid SIMS [63], a cluster ion source [64] atmospheric pressure 

ionisation [65] and inductively couple plasma [66]. 

 

1.2.1. Ionization methods 

Electron ionization (EI) is most useful for compounds below a molecular weight of 

1000 Daltons since larger molecules tend to thermally degrade during vaporization. 

While electron ionization is one of the most widely used methods of ionization in 

mass spectrometry, the principal problem associated with it include excessive 

fragmentation in the ionization source, the involatility of large molecules and thermal 

decomposition during vaporization.  

 

For macromolecules, fast atom bombardment (FAB) ionization [67] is very successful 

for the analysis of highly polar, low-volatility compounds but has the disadvantage of 

producing a large amount o fragmentation. Plasma desorption [68] and secondary 

ionization (SIMS) [69] followed. Electrospray Ionization (ESI) [70] is one of the most 

exciting ionization techniques which generates ions directly from solution (usually an 

aqueous or aqueous/organic solvent system) by creating a fine spray of highly 

charged droplets in the presence of a strong electric field (typically 3.5 kV). ESI 

allows for very sensitive analysis of small, large and labile molecules such as 

peptides, proteins, organometallics, oligosaccharides, and polymers, and it has made 

liquid chromatography mass spectrometry routine. 

 

Matrix-assisted laser desorption/ionization (MALDI) [71] has its biggest impact on the 

field of protein research. The efficient and directed energy transfer during a matrix-

assisted laser-induced desorption event provides high ion yields of the intact analyte, 

and allows the measurement of compounds with high accuracy and sub-picomole 

sensitivity. In MALDI analysis, the analyte is first co-crystallized with a large molar 

excess of a matrix compound, usually an UV-absorbing weak organic acid, after 

which pulsed UV laser radiation of this analyte-matrix mixture results in the 

vaporization of the matrix which carries the analyte with it. The matrix therefore plays 

a key role by strongly absorbing the laser light energy and causing, indirectly, the 

analyte to vaporize. The matrix also serves as a proton donor and receptor, acting to 

ionize the analyte in both positive and negative ionization modes, respectively. It is 

interesting to notice that the rediscovery of the time delayed-extraction (DE) method 
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has made substantial improvements to the MALDI TOFMS in the last ten years, mass 

resolving power more than 25000 with orthogonal extraction was reported. 

 

Atmospheric pressure chemical ionization (APCI) [72] is widely used in the 

pharmaceutical industry to analyze relatively nonpolar, semi volatile samples of less 

than 1200 Daltons and it is an especially good ionization source for liquid 

chromatography. The APCI source contains a heated vaporizer which facilitates rapid 

desolvation/vaporization of the droplets. Vaporized sample molecules are carried 

through an ion-molecule reaction region at atmospheric pressure. The ionization 

occurs through a corona discharge, creating reagent ions from the solvent vapor. 

Chemical ionization of sample molecules is very efficient at atmospheric pressure 

due to the high collision frequency. Proton transfer (protonation MH+ reactions) 

occurs in the positive mode, and either electron transfer or proton transfer (proton 

loss, [M-H]-) in the negative mode. 

 

It is undoubtedly that TOFMS is employed mainly in biophysics, biochemistry and 

biomedicine, which require analysis of large, thermally unstable molecules with 

masses reaching millions of Daltons. But due to some basic features, such as high 

transmission, relatively simple structure, high speed and its ability to record the whole 

mass spectrum quasi simultaneously, it is attractive to couple it to IMS to identify 

ions, fragments or ion clusters in IMS for a thorough understanding of an IMS 

measurement. 

 

1.3. Ion mobility spectrometry / mass spectrometry 

IMS use a Faraday plate as detector, that is, ions are detected as they strike the 

metal plate and induce a current. Faraday plate detection is simple, inexpensive and 

can be used for both positive and negative ions. Unfortunately, such detection does 

not afford qualitative information of ions other than the structure information (average  

collision cross-section). Because of this, coupling IMS with mass spectrometers has 

been tried since early in IMS development, most of the limited IMS-MS work before 

1980s was performed with the commercial instrument supplied by PCP (West Palm 

Beach, FL, USA). The instrument consists of a 63Ni IMS interfaced with a quadrupole 

mass spectrometer, the IMS equiped with two gates in drift tube. Mass identification 

of individual IMS peaks could be achieved by operating the instrument with both 
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gates continously opening, in such a mode that only ions of a desired drift time could 

pass into the mass spectrometer. The mass spectrometer would then be tuned to a 

specific mass to charge ratio (m/z) [73,74], which is a tedious task and not all the ions 

can be detected at one time. With this kind of instrument benzene [75], isomeric 

dihalogenated benzene [76], p-nitrophenol [77] and dimenhydrinate [78], illicit drugs 

[79,80], were measured and the mass identification of the ionic species associated 

with the peaks in the ion mobility spectra was achieved.  

 

In the 1990s, the coupling work continued but with self constructed instrument. Hill et 

al. designed and constructed an in- house electrospray IMS interfaced with a 

quadrupole mass spectrometer [81,82]. The instrument was used successfully for the 

study of chemical warefare agents [83,84], isomeric peptides [85,86] and illicit drug 

[87]. Recently,  time-of-flight mass spectrometers coupled to IMS was developed by 

them and phenylthiohydantoin amino acids [88] was measured. Guevremont  

combined ion mobility/time-of-flight mass spectrometry and  electrospray-generated 

proteins were investigated [89]. Later, electrospray ionization/high-field asymmetric 

waveform ion mobility spectrometry/mass spectrometry [90-92] was produced, ppt 

levels of chlorate, bromate, and iodate [93], perchlorate in water matrices and human 

urine [94,95], chlorinated and brominated haloacetic acids [96], microcystins [97], 

tryptic digest of pig hemoglobin [98],  trypic peptides [99,100], amphetamine, 

methamphetamine, and their methylenedioxy derivatives in Urine [101] were 

detected. Clemmer et al. designed an IMS-MS instrument with a quadrupole mass 

spectrometer for characterization of oligosaccharides and proteins [46,102]. Later, 

they constructed an IMS-MS instrument with a time-of-flight mass spectrometer to 

study biomolecules [103-106], where liquid chromatograph separation was used 

before IMS-TOF detection of peptides [107,108]. But their IMS is operated in 

vacuum. 

IMS-TOFMS instrument with a high-pressure matrix-assisted laser desorption 

ionization source was developed in Ionwerks (Houston, TX, USA), and 

oligonucleotide and peptide were measured [109,110]. They also designed a Fourier-

transform ion cyclotron resonance mass spectrometer - ion mobility spectrometer 

[111]. 

Although so much work has been done in IMS-MS, in these instances, interests have 

been with electrospray sources and low pressure drift tubes with applications for  
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biomolecules rather than for use in general analytical IMS. Only Hill et al. [112] used 

a traditional ionization source (radioactive nickel (Ni-63) beta emission ionization) ion 

mobility spectrometer coupled with an orthogonal reflector time-of-flight mass 

spectrometer (IMS(tof)MS) to detect chemical warfare agent (CWA) simulants 

recently. Except Syagen Technology. Inc. (Tustin, CA, USA) who has developed an 

atmospheric pressure photoionization (APPI) quadropole ion trap time-of-flight mass 

spectrometer [113], till now there is little mass spectrometry technique using a 

photoionization source at atmospheric pressure, while there have been a lot of 

photoionization IMS [114-116]. Therefore coupling UV-IMS to mass spectometer is 

crucial to understand the complex chemistry occurring in the ionization source and 

drift tube and the formation of clusters leading to uncertainties in the assignment of 

ions traversing the drift tube. The recent development of IMS with time-of-flight (TOF) 

instruments has demonstrated that the time compatibility (IMS milliseconds and 

TOFMS microseconds) of the two techniques enables rapid two-dimensional 

separations to be performed, and simplicity of TOFMS instrumentation.  

 

1.4. Objective of this work 

The aim of this work is to set up an UV-IMS-TOFMS system. The most important part 

is the interface between high vacuum and UV-IMS at atmospheric pressure, it is a set 

of compromises on ion yield and vacuum performance. Studies will be proceeded 

using pinhole and a differentially pumped interface. The UV-IMS was made in ISAS 

using a 10.6 eV UV lamp. An orthogonal extraction linear time-of-flight mass 

spectrometer will be constructed accordingly in our laboratory. The complete 

construction was set up by helping of simulation with SIMION v.7 for ion trajectories 

from the drift tube through the interface to TOF. The ability of the mass spectrometer 

to identify ions and results from models and laboratory verifications will be presented 

in detail.  

 

The UV-IMS-TOFMS is intended to be used to measure different organic groups 

which are volatile organic compounds usually detected by UV-IMS such as ketones, 

alcohols, aromatics, in order to thorough understand the IMS measurements. 

Successful interpretation of UV ion mobility spectra by using the coupling of an UV-

IMS to a TOF can be accomplisched only with the accurate instrumentation of TOF 

and interface system. The results will be proved by simulation and experiments of 
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self-build TOF and interface system.  

Additionally, real analyte including gasoline  and fungi should be tested by the UV-

IMS-TOFMS. UV-lamp in this work is 10.6 eV. There is minimal fragmentation to 

clutter the mass spectrum and predominant molecular ion signal for most 

substances. This performance feature benefits special for the analysis of mixtures 

and samples in complex matrices. 
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2. Fundamental principles 

2.1.  Ion mobility spectrometry  

2.1.1. General construction of ion mobility spectrometry  

The term ion mobility spectrometry refers to the method of characterizing chemical 

substances using gas-phase mobilities of ions in weak electric fields. A typical ion 

mobility spectrometer comprises an ionization source (conventionally ß-emitter 

sources, UV-lamp, corona discharge) associated with the ion reaction region, an ion 

drift region, where separation of the ions occur. The reaction and drift region are 

separated by a shutter grid - a Bradbury-Nielsen-shutter [117], and an ion collector - 

a Faraday plate to measure the ion current. A biased aperture grid is placed closed to 

the Faraday plate in order to increase detection efficiency and to filter out the noise 

caused by the pulse on the gate, thus to improve the signal-to-noise ratio. An 

illustration of the basic construction of an ion mobility spectrometer with reaction and 

drift region and main gas flow directions is presented in Fig. 2-1.  

Sample Gas Inlet

Gas Oultlet

Drift Gas Inlet

Detector

Drift RingsIon Shutter Aperture Grid Faraday PlateIon source

Electric Field

Reaction Region Drift Region

Fig. 2-1 Schematic diagram of the working principle of IMS 

A flow of carrier gas, normally air or nitrogen, set at 100 to 200 mL/min, entered the 

cell from the front end of the reaction region while a flow of a purified drift gas, set at 

200 to 300 mL/min entered the drift region from the back end of the drift tube. Both 

gas flows were exhausted through an exit vent in front of the ion shutter. The carrier 

gas served as a means transporting the sample molecules into the ionization source. 

Ions formed initially experience a series of ion molecular reaction in reaction region 

and then are injected into the drift region by means of a shutter grid pulse. In the drift 
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region, the ions moves through a drift gas under the influence of an external electric 

field E, in the range of 100 to 350 V/cm, at last reach the Faraday plate to be 

detected. 

 

2.1.2. Ion mobilities in gas 

Ion mobilities are characteristic of substances and can provide a means for detecting 

and identifying vapors. In an ion mobility spectrometer, ions strike Faraday plate and 

mobility spectrum or plot of detector current i (in pA or nA) vs. td (in ms) is produced. 

Consequently, the basis for selectivity in IMS is difference in drift times. For a drift 

region with a given length, Ld (cm), the drift time td of an ion is related to velocity vd ( 

cm/s), electric field E (V/cm) and ion mobility K (cm2/Vs) through equations 1 and 2 

[118, 119]: 

d

d
d t

Lv = , 2-1 

Et
L

E
v

K
d

dd

*
== . 2-2 

Therefore, while increasing the electric field strength will increase the average 

velocity of the ions. Ion mobility K is inversely proportional to the drift time td. In the 

drift tube an ion is accelerated by the field until it collides with a gas molecule and 

loses part, or all, of its acquired momentum, only to be accelerated once more and to 

collide again. So mobility is a combined property of the ion and the drift gas, this is 

known as the  Mason-Schamp equation [118]: 

K= 
Ω
+

+
απ 1 211

N 16
 Ze3

TkMm bm

, 2-3 

where Ze is the ionic charge, N is the number density of drift gas, m is the analyte ion 

mass and Mm the drift gas molecular mass, kb is the Boltzmann constant, T is 

temperature in drift tube, α is a correction term which is less than 0.02 when m>M, 

and Ω is the collision cross section of the ion. This relationship holds at the low 

electrical field. So mobility K is unique at a fixed temperature for a given combination 

of an ion and a neutral gas molecule. In a given gas, the mobility of small ions is 

largely controlled by the reduced mass, however, mobility depends on the collision 

cross section (ion structure) when ions are comparatively large. This can be 
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exemplified for amines where mobilities increase in the trend: linear < branched, 

primary < secondary < tertiary, aliphatic compounds < aromatic compounds, and 

amines < amides [120]. 

Because the ion mobility is dependent upon temperature T (in Kelvin) and pressure P 

(in kPa), it is nomalized to reduced mobility K0 using 

















=

T
T

p
pKK 0

0
0  2-4 

where p0 = 101,3 kPa and T0 = 273 K. 

 

2.1.3. UV photoionization method 

2.1.3.1. UV lamps 

In low pressure gas discharge lamps, a glow discharge excites nature resonance 

frequency of the fill gas, producing special emission lines down to short wave cut-off 

of  the window material. The gas discharge is confined to a capillary within the lamp. 

A power supply  and a series resistors power the lamp. Lamp operation occur when 

the breakdown threshold of the fill gas is exceeded, usually on the order of -1000 to -

1299 Volts DC. The series resistor limits the current of the lamp to a reasonable 

operating level. The spectral output of the lamp is determined by the fill gas and the   

transmission characteristic of  window  material. The gases used most frequently are 

xenon (8.4eV, sapphire), krypton (10 eV or 10.6 eV, MgF2), argon (11.7 eV, LiF). the 

wavelength (in meter) and the eV rating are associated through Planck’s constant 

Lm = 1.2395*10-6 / eV 2-5 

The main advantage of photoionization sources is that by choosing the appropriate 

wavelength, the species of interest can be selectively ionized, there is little 

fragmentation, as shown in Fig. 2-2, thus simplifying the mobility spectrum and data 

acquisition. In this work 10.6 eV UV-lamp (116.9 nm) was chosen because the 

ionization energy of  most  volatile organic compounds are below it and the lifetime of 

11.7 eV is because of the influence of the humidity on the transmission of LiF window 

too short. 
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Photoionization Electron ionization  

Fig. 2-2 Comparison of  photoionization threshold with that of electron ionization  

 

2.1.3.2. Photoionization process. 

When the ionization energy of molecule A is under the UV lamp output energy, the 

molecule will absorb the photo energy and emit an electron. 

 A + hν → A+ + e- (1)

the following process can take place too, at first the molecule AB will be excited (2), 

excited analytical molecule will according to equation (3) lose a electron to be 

ionized, dissociate to neutral fragment (4) or become quenched through collision with 

neutral gas molecules (5). In addition the ion can recombine with electron (6),  [121, 

122]: 

  AB + hν   → AB*   IIR −= 0
1  (2)

  AB*     → AB+ + e- *][22 ABkR =  (3)

  AB*     → A + B *][33 ABkR =  (4)

  AB* + C   → AB + C ]*][[44 CABkR =  (5)

  AB+ + e- + C → AB + C ]*][[5
−= eABkR R  (6)

Where AB is analytical molecule, AB* is excited molecule, [AB] the concentration of 

analytical molecule AB, C neutral gas molecule, [C] the concentration of C, I0 and I 

are incident and transmitted photo intensity respectively, I0-I the absorbed photo 

intensity, and k rate constant and  R reaction rate. 

The possibility for a molecule to absorb photo is dependent on the absorption cross 

section of molecule AB according to Lambert-Beer-law: 

)][exp( 0 LABsNII o −=  2-6 
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where Li is the length of the ionization room and N0 is Avogadro constant. 

The  ionization probability is expressed by the so called photoionization efficiency η: 

432

2

kkk
k

++
=η   2-7 

It is the ratio of the number of analytical molecule ion to the whole number of excited 

molecules. Recombination of the ions will be impeded by the high electric field in 

IMS,  the current i that the Faraday-plate detected in an IMS can be described: 

][0
0 ABFLsNIi iη=  2-8 

where F is the corresponding Faraday constant. Thus the current i is proportional to 

ionization efficiency, Absorption cross section and to the concentration of analytical 

molecule AB. ηs is described as photoionization cross section, it demonstrates the 

probability that a molecule will absorb photo and then be ionized. 

It should be noted that in the presence of water vapor or protic solvent, which is 

normal in IMS working conditions, the molecular ion can extract H to form MH+. This 

tend to occur if M has a high proton affinity. This does not affect quantitation 

accuracy because the sum of M+ and MH+ is constant. Polar compounds are usually 

observed as MH+, whereas nonpolar compounds usually form M+.  

 

2.2. Time-of-flight mass spectrometry  

2.2.1. Principle and instrument of linear time-of-flight mass spectrometer 

A linear time-of-flight mass spectrometer consists of an ion modulator, an ion 

accelerator, a field-free drift tube and an ion detector, as shown in Fig. 2-3.  
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Fig. 2-3 Schematic diagram of a linear time-of-flight mass spectrometer 
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Ions are stored in the modulator prior to be accelated. After a voltage pulse is applied 

to the repeller electrode, a packet of ions moves toward the detector in Z-direction 

with a kinetic energy Ke, received from the extracting and accelerating fields (E1, E2). 

If an ion was rest before acceleration, the total flight time in a linear time-of-flight 

mass spectrometer are simply given by 

Dtttt ++= 21   2-9 
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where t1, t2, tD are the flight time of the ion in the modulator, the accelerator and the 

field-free drift tube, respectively, D1 is the distance of the start position of the ion 

relative to the first grid G1, m/z is the mass-to-charge ration of  the ion, E1 is the 

extracting field strength of the modulator, E2 is the accelerating field strength, and d1, 

d2, D are the lengths of the modulator, the accelerator and the field-free drift tube 

respectively. In mass spectrometry it is conventional to measure resolving power by 

the ratio of m/∆m, in TOFMS it is convenient to work in the time domain, thus the 

resolving power can be measured in terms of t/∆t. Since the overall flight time t of a 

single-charged ion is proportional to m , according to Eq. 2-9 to Eq. 2-12, ions of 

different masses m = m0 + ∆m = m0 (1 + ∆m/ m0) experience ion flight times 

t= t0 + ∆t = t0(1 + ∆t/t0) ∝ )/1( 00 mmm ∆+  = m0 (1 + ∆m/2m0 +…) 2-13 

so that in a time-of-flight mass spectrometer the mass-to-charge resolving power Rm 

can be expressed as: 

t
t

m
mRm ∆2∆

00
==  2-14 

where m0 and t0 are the mass and flight time for a reference ion and the finite time 

interval ∆t is the full-width at half-maximum height of a spectral peak (FWHM). But to 

consider the initial conditions of the ions in a packet, Figure 2-4 illustrates the ions 

energy spread ∆Ke and their spatial spread ∆z. In a ideal case, shown in  Figure 2-4 
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A, the ions have no energy spread ∆Ke and start from the same position. Ions with 

the same mass-to-charge ratio m/z will obtain the same kinetic energy Ke, fly along 

the same flight path and arrive at the detector at the same time. In this case the mass 

resolving power of the instrument is restricted only by the data recording system. In 

the case of an initial spread of the Figure 2-4 B, the flight time error of the same ion 

due to different position can be well compensated by selecting the flight length D 

properly, which is called the first-order spatial focusing condition 

)11(2 22/3

z
d

KKaKzD
aa +

−=  2-15 

where Ka = (zE1 + d2E2)/d1E1, z is the reference start position and d1, d2, E1, E2 are the 

same as in Eq. 2-9 to Eq. 2-12. Considering two ions with the same initial velocity vz, 

(∆ke = m∆vz
2 / 2) however, in opposite directions, shown in Figure 2-4 C, one moves 

towards the repeller and is decelerated by the extraction field, E1, until it stops. It is 

then re-accelerated, returning to the starting position with its original speed but in a 

reversed direction. Subsequently, the later motion of the ion is identical to that of the 

other but delayed by the “turn-around time”. This “turn-around time”, ∆tturn, can be 

� � � � �⿺� だ� ム� ㅵ� �

zE
vm

mzE
v zz ∆2
/
∆2 t∆ turn ==  2-16 

where m/z is the ion mass-to-charge ratio and ∆vz is the initial velocity of the ion 

towards the repeller. This initial energy spread induced flight time error can not be 

compensated by any constant stationary electrical field. Figure 2-4 D demonstrates 

the common situation of ions in a modulator. 
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Fig. 2-4 Initial ion conditions in the ion modulator 
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For a linear time-of-flight mass spectrometer, the flight time error ∆t is dominated by 

the “turn-around time”, ∆tturn, for monoenergetic ions. To decrease this “turn-around 

time”, the extracting field can be increased, however, the total flight time of ions will 

be also decreased. In order to have an adequate flight time for measuring, the length 

of the drift tube should be increased. As a consequence, the mass resolving power 

can not be increased over a few hundred with acceptable system parameters. 

Although several techniques were used for the design of linear time-of-flight mass 

spectrometers, the mass resolving powers could not be increased above ~ 3000. 

 

2.2.2. Reflecting time-of-flight mass spectrometer 

The most successful energy focusing method to date has been the “reflectron”. 

Essentially an electrostatic ion mirror, this device creates one or more retarding fields 

after a drift region. These are oriented to oppose the acceleration field. Ions re-

emerge from the device with their velocities reversed. More energetic ions penetrate 

more deeply and hence take longer to be reflected. Thus the optics can be adjusted 

to bring ions of different energies to a space-time focus as shown in Fig. 2-5. Usually 

the angle of ion entry into the mirror is adjusted slightly away from 90o so that the 

ions follow a different path after being turned around. The mirror has an added 

advantage in that it increase the drift length without increasing the size of the 

instrument.  

For an ion which was at rest before acceleration, the total flight time in a reflecting 

time-of-flight mass spectrometer can be expressed by: 
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where D1 is the start position of the ion, m/z is the charge to mass ratio, E1 is the 

extracting field strength, E2 is the accelerating field strength, E3 is the field strength of 

the first stage of the reflector, E4 is the field strength of the second stage of the 

reflector, d1, d2, L, d3, d4 are the length of the ion modulator, the ion accelerator, the 

drift tube, the first stage of the reflector and the second part of the reflector 

respectively.  
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Fig. 2-5 Schematic view of a reflecting time-of-flight mass spectrometer 

 

The 1970s were highlighted by a fast spread of reflectron TOF instruments, 

particularly after the introduction of laser-based techniques of obtaining large, 

thermally unstable biomolecules. Their production on an industrial scale started in 

1980 with Leybold-Heraeus Co. (LAMMA-500, LAMMA-1000), Brucker Co. (TOF-1), 

Finnigan Mat Co. (VI-SION 2000) and others. Gridless reflectron TOF [123, 124] is 

preferred when in addition the transmission is taken into account, however the 

divergence of the ion beam in this case should be kept small. BRUCKER 

manufactured TOF-1 equipped with such a reflector for R= 10000 [125, 126] an 

obvious merit of such reflectors is not only the absence of grids but also the 

possibility of simultaneously focusing the reflected ions in angle, which increased the 

absolute sensitivity of the instrument.  

 

2.2.3. Comparison of linear and reflector TOF 

The ability of the reflector time-of-flight mass spectrometer (ReTOF) to compensate 

the initial energy spread of ions largely increase the resolving power of TOF 

instruments. But in case of metastable fragmentations, the ReTOF behaves different 

from the linear TOF. If fragmentation occurs between ion source and reflector, the 

ions were be lost by the reflector due to their change in kinetic energy. Only 

fragments still having kinetic energy close to that of the precursor are transmitted due 

to the energy tolerance of the reflector. However such ions are not detected at 

correct m/z , thereby giving rise to a ‘’tailing’’ of the signal. Ion fragmenting in transit 

from reflector to detector are treated the same way as ions in the linear TOF. Thus 

above property complicate the detection of very labile analytes in the ReTOF [127]. 

 

2.2.4. Orthogonal acceleration time-of-flight mass spectrometry  

The most departure of oa-TOFMS from other attempts to combine continuous ion 
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source with TOF is the use of a separate direction (for the TOF analysis), orthogonal 

to the ion beam axis of the ions source. In Fig. 2-6, the principle of an orthogonal 

extraction time-of-flight mass spectrometer is revealed. Initially, the repeller plate and 

the grid G1 are at ground potential, and the initial ion beam from an ion source 

outside the mass analyzer enter the ion modulator continuously in X-direction. When 

the modulator is filled with ions, a voltage pulse is applied to the repeller, and an ion 

packet is pushed into the acceleration region. This pulse should be so long that all 

ions in the package fly through the accelerator region and leave it. While the ion 

package flies through the drift tube to the ion detector, the initial DC ion beam refills 

the modulator. It is most important that the first stage is completely field-free in the 

fill-up mode. A small residual field in the fill-up region may result from penetration 

through G1 of the field between G1 and G2. Such fields may cause significant 

deflection of ion trajectories in the oa and therefore, increase the initial spatial spread 

of the ions. The residual field may be substantially removed by application of a 

relatively small positive bias potential to G1. 

 

In an orthogonal extraction system the ion beam with finite phase space from a 

source can be made wide in Z-direction and thus according to Liouville’s theory the 

ion trajectories become more parallel so that the mass resolving power is improved, 

on the other hand, in the orthogonal extraction system, a high efficiency can be 

achieved as compared to the conventional methods. In case the previous ion 

package is approaching the detector at the time when the initial ion beam has almost 

refilled the modulator, the system has the maximum transmission. Assuming that the 

initial ion velocity in X-direction is vx, the length of the modulator in X-direction is b, 

the velocity of the ion after accelerating in Z-direction is vz, the ion flight path is L, 

thus the total ion flight time 

zv
Lt =  2-18 

x

z

x

z

K
K

v
v

=  2-19 

where Kx is the initial ion energy and Kz is the ion energy after orthogonal 

acceleration. Also the mass spectrum repetition rate should be low enough to enable 

the heaviest ions of the mass Mm to fill the modulator: 
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bvf x /<  2-20 

where b is the length of the modulator in X-direction. 
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Fig. 2-6 Principle of an orthogonal extraction for time-of-flight mass spectrometer 

 

2.2.5. Microchannel plate and the time-to-digital converter 

The cascade of secondary electrons can be produced in a continuous tube, such 

detectors, known as channeltron is one of the most common means of detecting ions, 

achieving high sensitivity, which can be arranged to give gains in the range 105 – 107. 

In order to increase the sensitivity and time resolution of the ion registration, 

detectors with large active area are used. To meet the requirements of low weight, 

large active area and the high timing accuracy, the microchannel plate (MCP) [128] is 

the best choice for particle detection at this time [129, 130]. Microchannel plate is a 

channel electron multiplier array that one channel is some micrometers in diameter. 

To avoid that the ions enter the microchannels parallel to their axis, these are inclined 

by some degrees from the perpendicular to the plate’s surface. The gain of a MCP is  

103 to 104, i. e., much more lower than that of channeltron. But in stead of a single 

MCP, two MCPs are often sandwiched together in such a way that the small angles 

oppose each other (Chevron Plate) to obtain gains of 106 to 107. Occasionally, even 

three MCPs are stacked analogously (z-stack, gain up to 108).  
 

Ion counting devices are usually base on a multistop time-to-digital converter (TDC). 

These devices sense the onset of pulses (start and stop events) and store the times 
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or intervals between these events. Compared to the analog based method - 

intergrating transient recorder (ITR), it does not require a good signal peak form for a 

single ion, which is a great benefit for achieving high mass resolving powers. At 

present channel width of the TDCs were reduced to 600 ns and even 277 ps, so that 

the usual obtained MCP signals of widths of less than 1 ns could be registered. 

However, since it is difficult to extract a precise intensity information from a TDC, the 

slower ITR with 1 ns or 2 ns channels have their place in the TOF area. 

In this work, the Chevron Plate MCP was used to obtain enough signal intensity, 

while compared to normal ionization source the UV-lamp is relatively weak. A 5 ns 

channel multiscaler was good enough for small signal acquisition and a 10 ns 

resolution analog to digital card was applied for high signal acquisition. 
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3. Instrumentation 

3.1. Instrumental layout 

An overview of the oa-TOFMS with UV ionisation source and three stage pinhole 

interface setup in this work is illustrated in Fig. 3-1. It consists of three parts, firstly 

UV-ionization room, which was made in ISAS; secondly the self-built interface 

system, it is composed of three pinhole system; and thirdly the self-made linear TOF 

mass analyser. the complete TOF mass analyser is mounted horizontally on a flange 

of the main vacuum vessel. The interface system and UV ionisation source are 

stacked above a gate valve, such a construction provides for a precise mechanical 

assembly and allows to remove the complete mass analyser and interface in one 

piece from the vacuum chamber for modification.  
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Fig. 3-1 Schematic view of the home made orthogonal extraction time-of-flight mass 

spectrometer with UV- ionization source and interface 

For the purpose of increasing the strength of the ions and simplifying the 

construction, firstly only ionisation region of an UV-IMS was coupled to TOF. In order 

to operate later as a complete IMS, it was located directly at the end of the ionisation 

room a flat metal plate with a pinhole diameter 0.5 mm intended to be a Faraday 



Instrumentation 

  - 22 - 

plate. It acts as the first step of vacuum system, too. The photo of the whole system 

is shown in Fig. 3-2. 

 

3.1.1. The principle of operation. 

The sample gas is introduced into UV-IMS through a carrier gas flow of 1 L/min. The 

ions are produced by an 10.6 eV UV lamp which is operated at one atmosphere 

pressure as normal UV-IMS, then pass through a pinhole into the first vacuum stage, 

where the ions are focused with  a lens and go through sampler and skimmer. The 

ions fly through a Einzel lens to become parallel into the ion modulator of oa-TOF 

mass analyser. 

In the mass analyser, ions enter the ion modulator in X- direction. There is a Faraday 

plate at the opposite end of the ion modulator to monitor the ion current. When the 

modulator is filled with ions, the push out voltage pulses are applied to the repeller, 

while the grid 1 is always kept at ground potential. A package of ions is then 

extracted from the modulator to the accelerator. After being accelerated to an energy 

of 2000 eV between grid 1 and grid 2, the package of ions will fly through the field 

free drift tube. In order to adjust the ion trajectory two piece of deflecting plates were 

mounted on the entrance of the drift tube. A Chevron micro channel plate [128] is 

Fig. 3-2 Photo of self-made UV-IMS-TOFMS 

IMS Interface 

TOF ChamberSample
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used for the ion detection. 

The main working parameters of the instrument are shown in Table 3-1. 

Table 3-1 System parameters for instrumentation 

UV ionisation source Value / Unit 

UV-Lamp 10.6 eV 

Voltage of ionisation region 2 kV 

Carrier gas flow 1 L/min 

Interface system 

Pre-sampler 30 V 

Lens 150 V 

Sampler 104-120 V 

Skimmer  0 V 

Einzel lens 30 V 

TOFMS 

Repeller 350 V 

Repeller  offset  50.6 V 

Pulse width 1 µs 

Frequency 20 kHz 

Deflector up and down 280 / -320 V 

Grid 1 0 V 

Acceleration voltage -2 kV 

Microchannel plate  -1.75 kV 

Geometry parameters 

Pre-sampler Φ 0.5 mm 

Sampler Φ 0.25 mm 

Skimmer Φ 0.4 mm 

Repeller Φ 90 mm 

Average ion start position from grid 1 3 mm 

Acceleration length 32 mm 

Free length 480 mm 

Vacuum parameter 

In IMS 960 mbar 

First stage ~ 6 mbar 

Second stage 1.4 x 10-2 mbar 

Third stage 4.0 x 10-7 mbar 
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3.1.2. Vacuum system 
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Fig. 3-3 The vacuum system of home made TOF 

The three-staged vacuum chamber is evacuated by a differential pumping system, 

shown in Fig. 3-3. The first vacuum stage is between Ф 0.5 mm pinhole (open to 

IMS) and Φ 0.25 mm sampler (open to the second vacuum stage), where a pressure 

of ~6 mbar is retained by a rotary pump (E2M28 Edwards, 8L/s). The second vacuum 

stage is between the sampler and a Φ 0.4 mm skimmer. The third stage is the main 

vacuum chamber, which contains the TOF mass analyzer. To keep an oil-free 

vacuum for the sake of measurement, the second and the third vacuum stages are 

evacuated by a 50 L/s (Turbovac 50, Leybold-Heraeus GmbH) and two 300 L/s 

(Turbovac 360, Leybold-Heraeus GmbH ) oil-free turbo molecular pump, respectively.  

The tubo molecular pumps are backed by 4 L/s Trivac 16D (Leybold-Heraeus GmbH) 

and 8 L/s E2M28 Edwards pre-vacuum pump respectively. 

For the first step of pumping, both the pre-vacuum pumps (E2M28 Edwards and 

Trivac 16D (Leybold-Heraeus ) are switched on, and all the three vacuum stages are 

evacuated by the vane rotary pump. Once the pressure measured in second stage is 

lower than 0.1 mbar, the Turbovac 50 should be switched on. Till the vacuum reach 

to 0.01 mbar, the gate valve to mass analyzer can be opened. In mass analyzer 

when the measured pressure is lower than 0.01 mbar, the two turbo molecular 
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pumps Turbovac 360 are switched on. The vacuum will quickly evacuated to 10-5 

mbar. This process takes about 5 minutes. All the pressure are measured with 

compact full range gauge PKR 251 (Pfeiffer Vacuum GmbH, 1000 mbar to 5x10-9 

mbar). The high vacuum in TOF mass analyzer is kept  all the time and the vacuum 

in first and second stage are pumped only during measuring time. 

 

3.2. ISAS made UV-IMS 

The ISAS made UV-IMS is illustrated in Fig. 3-4. The ionization source is a 10.6 eV 

krypton discharge lamp (1). The drift tube (3) is a 12 cm long Teflon cylinder with an 

inner diameter of 15 mm, there are guard rings inserted to maintain a uniform 

electric-field gradient of 324 V/cm. Between the ionization region and drift tube there 

is a Bradbury-Nielsen [117] type shutter grid (2), where a potential difference is 

placed between two sets of thin wires positioned in parallel and very close to one 

another, thus creating a strong electric field (of about 650 V/cm) perpendicular to the 

axis of the field gradient across the drift tube. At the end there is a Faraday plate (4) 

to detect the ion current and this current will be amplified by a amplifier (6), the signal 

will then be acquired and processed with a computer. A biased aperture grid (5, not 

visible, it is inside drift tube) is placed close to the Faraday plate (about 0.5 mm). The 

bias on this aperture grid prevents the buildup of an ion charge on the collector plate, 

impart energy to the ions to increase the detection efficiency and to filter out the 

noise caused by the pulse on the gate, thus improving the signal-to-noise ratio.  

 

123 4 

6 

7 8 9

5

 

 

1 UV-lamp 

2 Shutter grid 

3 Drift tube 

4 Faraday plate 

5 Aperture grid 

6 Amplifier 

7 Drift gas inlet 

8 Sampler gas inlet 

9 Gas oulet 

Fig. 3-4  Photo of the ISAS made UV-IMS 
 

A flow of carrier gas, set to 100 to 300 mL/min enter the IMS at the side of ionization 

and reaction region (8) through a 1/8’’ Teflon tube, while a flow of a drift gas, set to 
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300 to 700 mL/min, enter the IMS from the back end of the drift tube (7). Both gas 

flows are exhausted through a exit vent (9) just in front of ionization room. The carrier 

gas served as a means of transporting the sample molecules into the ionization 

source, and after initial ionization, subsequent ion-molecule reactions took place in 

the reaction region. 

The power supply and controls of IMS were in ISAS developed and built [131]. The 

drift voltage can be adjusted through a high voltage module from 0 to 5 kV, normally 

4 kV drift voltage was used by measurement. The shutter grid pulse period is 20 or 

100 ms while the shutter grid open time can be selected between 100 µs and 1 ms. 

Normally using a 63Ni β-radiation ionization source positive as well as negative ions 

can be produced, so the polarity of drift voltage between positive and negative could 

be changed. But, in the case of UV ionization only positive ions are produced. 

Therefore only positive drift voltage is needed to operate an UV-IMS. All of the 

parameters for UV-IMS are listed in Table 3-2.  

Table 3-2 Parameters of ISAS made UV-IMS 

Parameters UV-IMS 
Ionization source 10.6eV 
Electric field 324 V/cm 
Diameter of drift tube 15 mm 
Length of ionization room 25 mm 
Length of drift tube 12 cm 
Open time of shutter grid 100 - 1000 µs 
Pulse period of shutter grid 20 ms / 100 ms 
Samplegas / Driftgas Nitrogen 5.0 (99.999%) 
Samplegas flow rate 100-300 mL/min 
Driftgas flow rate 300-700 mL/min 
Temperature 24 °C 
Pressure 101 kPa 

 

3.3. Interface system 

The interface between high vacuum and the source of ions at atmospheric pressure 

is a set of compromises on ion yield and the vacuum performance. At first, two 

skimmers system was investigated. The signal was high enough to be detected in 

TOF, but the vacuum can not reach the requirement of micro channel plate working 

conditions. So, the three pinhole system was studied in addition and finally adopted 
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to couple UV-IMS to TOFMS. 

 

3.3.1. Two stage interface 

The schematic diagram of the UV-ionization chamber with an interface comprised of 

two skimmer cones is shown in Fig. 3-5.  In the current work, acetone was chosen as 

the sample gas and flow rate was set to about 200 mL/min, the signal was taken with 

a Faraday cup which was placed directly under the second skimmer and was 

amplified using a R8240 Digital Electrometer (Advantest, Japan). The vacuum 

chamber was evaculated using one E2M28 (8 L/s) rotary vacuum pump and two 

Pfeiffer turbomolecular pump TPU 240 (230 L/s) and TPH 330 (300 L/s). For the 

whole system, the pre-vacuum was 0.7- 2 mbar, the vacuum inside TOF was 10-3- 

10-4 mbar depending on the distance between two skimmers and the dimension of 

the skimmer. 

0.7-2 mbar

Skimmer 

Connected to 
electrometer

Connected to 
different low voltage

Faraday
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Sampler
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Fig. 3-5 Schematic diagram of interface region 

 

3.3.1.1. Influence of sampler orifice diameter and voltages.   

The diameter of the second skimmer is set to 0.7 mm. When the sampler (front 

skimmer) orifice is 0.35 mm, the intensities of signal increases as the distances 

between two skimmers is changed from 8 to 4 mm as shown in Fig. 3-6.  In each 

instance, the signals increase linearly with voltage on sampler increases from 0 to 

300 V and the voltage on the skimmer was kept at 0 V (left frame). However, the 

signal decreased when the voltages on skimmer were changed from 0 V to 50 V 
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while the voltages on sampler was kept at 200 V (right frame), except when the 

distance between two skimmers was 4 mm, the signal increases significantly when 

the voltage on skimmer is increased from 0 to 2 V.  

The vacuum can be kept up in the range of 10-4 mbar when the distances between 

two skimmers between 5 to 8 mm; however, the vacuum goes to 1.2*10-3 mbar when 

the distance is optimized for signal, i.e. 4 mm. 

0 50 100 150 200 250 300 350

2

4

6

8

10

12

14

16

18

Y=9.16+0.03x

Y=5.68+0.03x

Y=3.71+0.02x

Y=2.79+0.02x

Y=1.97+0.02x

distance between two skimmers
 8mm, vacuum: 2.9*10-4 mbar
 7mm, vacuum: 3.2*10-4 mbar
 6mm, vacuum: 3.6*10-4 mbar
 5mm, vacuum: 7.7*10-4 mbar
 4mm, vacuum: 1.2*10-3 mbar

fore-vacuum: 2 mbar
UV ionization chamber 
sample: acetone
gasflow: ~ 213 mL/min
voltage on skimmer: 0 V

 

 

Si
gn

al
 / 

pA

Voltage on sampler / V  
0 10 20 30 40 50

5

10

15

20

25

30

Distance between two skimmers
 4mm vacuum: 2.9*10-4

 5mm vacuum: 3.2*10-4

 6mm vacuum: 3.6*10-4

 7mm vacuum: 7.7*10-4

 8mm vacuum: 2.9*10-4 fore-vacuum: 2 mbar
UV ionization chamber 
sample: acetone
gasflow: ~ 213 mL/min
voltage on sampler: 200 V

 

 

Si
gn

al
 / 

pA

Voltage on skimmer / V  

Fig. 3-6 Relationship of intensities of signal to voltages applied on sampler and skimmer with 

different distances between two skimmers and sampler orifice 0.35 mm  

Consequently, the signal is highest with the voltage of 300 V on the sampler and 

about 2 V on the skimmer. In consideration of the vacuum and the intensity of signal, 

the best distance was empirically determined as 5 mm. 
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Fig. 3-7  Relationship of intensities of signal to voltages applied on sampler and with different 

distances between two skimmers and sampler orifice of 0.25 mm 

In the case, that the sampler orifice is 0.25 mm, the dependence of the intensities of 

signal on the voltages on skimmers is unlike prior results (see Fig. 3-7). The signals 

reached the highest when the voltage on sampler is about 80 V and on skimmer is 

about 2 to 5 V for the distances between two skimmers of 4 to 6 mm.  For a distance 
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of 7 mm, the signal was too low, regardless of the voltages on skimmer cones. 

In summary, with consideration to the ion yield and vacuum performance, the best 

alternative is 5 mm between the two skimmers. These results demonstrated that 

simple measurements of ion yields were possible within the interface region and that 

the results were a complex mixture of geometry, vacuum and ion yield. The use of 

ion optical bench software was deemed a reasonable approach to designs for 

geometry and ion yield. 

 

3.3.1.2. Sampler made from aluminium foil as interface inlet 

In order to improve the vacuum and a orifice small as 0.25 mm is difficult to be 

produced with normal mechanical method. Instead of a skimmer cone as sampler a 

blank foil with a slit cut carefully by a razor blade as new vacuum interface inlet was 

made (Fig. 3-8). When the foil without slit using same pump system mentioned above 

after pumping overnight, the vacuum reached 6.2x10-7 mbar, with a slit on aluminium 

foil, the vacuum was 5.2x10-5 mbar. 

Skimmer 

Connected to 
electrometer

Connected to 
different low voltage

Faraday
  plate

Insulator

Sam pler-

Carrier gas
UV-lamp

Ions from IMS
To TOF

Cap
2.0KV

 

Fig. 3-8 Schematic diagram of interface system for IMS-TOF with aluminum foil as inlet 

Acetone test gas was introduced into the IMS and the signal received was recorded 

at different voltages applied on the aluminium foil and the second skimmer, the signal 

was not stable compared with skimmer cone, the signal dependence on voltages are 

shown in Fig. 3-9, the signals increase with the voltages, but when the voltage on 

second skimmer increased from 0 V to 5 V, the signal varied not much. And the 

higher the voltage, the unstabler the signal. 
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Fig. 3-9 Signal dependence on voltages on the aluminum foil and the second skimmer 

 

3.3.1.3. Influence of skimmer orifice diameter and voltages 

The pumps for TOF were strengthened, two TRIVAC-B / D16B Rotary  vane pump 

are used as fore vacuum pumps and two TURBOVAC 360 Turbomolecular pumps 

are pumping now. All the pumps are working well, but with Φ 0.25 mm orifice inlet of 

the sampler, the vacuum in TOF can only minimum reach 2.1X10-4 mbar, so a small 

orifice of skimmer is needed. A smaller second skimmer cone of Φ 0.4 mm was used 

and different distances between the sampler and skimmer were tested to obtain 

better vacuum. The signal was detected by Faraday plate at the end of modulator 

with the orthogonal extraction parts inside TOF. 

The distance between the sampler and skimmer were varied with the dimension of 

sampler of Φ 0.25 mm and skimmer of Φ 0.4 mm respectively. The vacuum and 

signal intensity were tested. As shown in Table 3-3, when the distance between the 

sampler and skimmer set to 5 mm, vacuum can be improved to 4.3 x 10-5 mbar 

instead of 2.1 x 10-4 mbar with the second skimmer diameter of Φ 0.7 mm mentioned 

before. compared to 5 mm and 6 mm interval, the signal is nearly the same and the 

vacuum is better with 6 mm. When the distance set to 7 mm, the signal intensity 

decreases to 1/3 of that with 6 mm. With consideration of vacuum performance and 

ion yield, 6 mm distance between sampler and skimmer was preferred. 
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Table 3-3  Vacuum and signal intensity with different distance between sampler (Φ 0.25 mm) 

and skimmer (Φ 0.4 mm) 

Distance between sampler and 
skimmer / mm 

*Signal  
/pA 

Vacuum in TOF 
 / mbar 

5 1.9 4.3x10-5 

6 1.8 2.5x10-5 

7 0.6 1.6x10-5 
               * no connection from sampler and skimmer to power supply, stand-by. 

 

The influence of voltages on sampler and skimmer on the intensity of signal were 

also investigated. The magnitude of signal increases with the voltage on the sampler 

going up and it reaches highest when the voltage on the skimmer set to 60-70 V, as 

demonstrated in Fig. 3-10. 
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Fig. 3-10 Influence of the voltages on the sampler and skimmer to the intensity of signal, 

sampler diameter of Φ 0.25 mm and skimmer of Φ 0.4 mm. 

In order to get vacuum in 10-6 range, a test were done with the distance between 

sampler and skimmer set to 6 mm. With the dimension of sampler of Φ 0.25 mm and 

skimmer of Φ 0.3 mm, respectively, vacuum can reach 8.2 x 10-6 mbar. The results 

are compared with those before, shown in Table 3-4. 

Table 3-4 Vacuum and signal with different dimension of the skimmer.  

Diameter of 
sampler / mm 

Diameter of 
skimmer / mm 

*Signal 
/ pA  

Vacuum in 
TOF / mbar 

0.25 0.4 1.8 2.5x10-5 

0.25 0.3 0.55 8.2x10-6 

                 * no connection from skimmers to power supply, stand-by. 
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Thus in general, the vacuum can only reach 10-6 range with diameter of sampler in Φ 

0.25 mm and diameter of skimmer in Φ 0.3 mm, respectively. The distance between 

sampler and skimmer should minimal set to 6 mm. But in this case the vacuum is still 

not desirable for TOF. With these dimensions of sampler and skimmer, if the distance 

extended to 7 mm, regardless of the voltage applied on it, no signal was detected. So 

another design with three stage was investigated. 

 

3.3.2. Three stage interface. 

Another chamber with a pinhole (pre-sampler) was designed and finished to stack on 

the sampler of TOF, so that there are three stage pumping system and the vacuum 

inside TOF can drop dramatically (Fig. 3-11). The first stage vacuum was several 

mbar to 100 mbar depending on the dimension of the pinhole, the ions produced by 

UV-lamp can be measured with this construction. Signal was detected with a 

Faraday plate set in the middle of TOF. Different sizes of the first pinhole, sampler 

and skimmer, and different distances between the sampler and skimmer were 

investigated. 
 

IMS

Skimmer

Einzel lens

UV lamp

Faraday plate
Sampler

Pre-sampler

Pump
Pump Pump

 Lens

PumpSample gas Makeup
Gas

Fig. 3-11 Measurement  set-up with 3 pinhole interface system 

At first before the metal piece with Φ 1.3 mm pinhole was selected. With this 

configuration, different distances between sampler and skimmer were investigated 

and the intensity of the signal and the vacuum were measured. Dimension of the 

sampler and skimmer was Φ 0.25 mm and Φ 0.3 mm, respectively. Results are 

shown in table 2. A extra gas was needed to compensate the gas pumped to TOF as 

shown in Fig. 3-11 the makeup gas.  

As illustrated in Table 3-5, the vacuum is two times better and the signal is nearly the 

same with the distance between sampler and skimmer set to 5 mm and 4 mm, and 
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the signals are much more stable than those with 6 mm. With this configuration, the 

voltages on the sampler and skimmer have no effect on the intensity of the signal on 

the Faraday plate. 

Table 3-5 Vacuum and signal intensity with different distances between the sampler and the 

skimmer 

Signal on /pA Distance 
/mm 

sampler skimmer Faraday Plate 

Vacuum 
1 /mbar

Vacuum 
2 /mbar 

Vacuum 3 
/mbar 

6 2 x 103 7 0.08 – 0.18 40 0.12 1.4 x 10-6 
5 2 x 103 9 0.23 40 0,16 2.3 x 10-6 
4 2 x 103 7 0.26 40 0,16 5.0 x 10-6 

 
Different dimensions of pinhole on pre-sampler were measured too, with the distance 

between sampler and skimmer set to 5 mm, dimension of the sampler and skimmer 

was 0.25 mm and 0.35 mm respectively, results are shown in Table 3-6. 

Table 3-6 Vacuum and signal intensity with different diameters of the pinhole on metal piece 

Signal  /pA Pinhole 
/mm sampler skimmer Faraday Plate 

Vacuum 
1 /mbar

Vacuum 2 
/mbar 

Vacuum 3 
/mbar 

2.0 300 13 0.22 100 0.27 4.0 x 10-6 
1.3 2 x 103 9 0.23 40 0,16 2.3 x 10-6 
0.8 1.9 x 103 4.5 0.5 15 0.065 1.1 x 10-6 
0.5 395 1.1 0.4 6 0,031 5.3 x 10-7 
0.3 - - - 4 0.01 2.8 x 10-7 

 
The influence of voltages on the sampler and skimmer were studied. It depends on 

the size of the pinhole on pre-sampler. The bigger is the pinhole, the higher voltage is 

needed to reach the highest signal, as for the Φ 0.8 mm and Φ 0.5 mm pinhole on 

pre-sampler, the signal increased with the voltage on the sampler. Seen in Fig. 3-12 

left. The voltage on the skimmer has not great influence, the signal decreased a little 

bit when the voltage increased. For example, the signal went from 0.24 pA to 0.14 pA 

when the voltage on the skimmer were 10 V and 50 V respectively. The voltage on 

the metal piece has the same affect as that on the skimmer. 
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Fig. 3-12  Influence of the voltage on the sampler to the intensity of signal with sampler 

diameter in Ф 0.25mm. (left) different diameter of pre-sampler, and Φ 0.3mm skimmer; (right) 

Φ 0.5 mm pre-sampler and Ф 0.4mm skimmer 

The skimmer diameter of 0.4 mm were investigated. with the distance between 

sampler and skimmer set to 5 mm and Φ 0.2 mm pinhole on the sampler, Φ 0.5 mm 

pinhole on the pre-sampler. The vacuum can reach 6 mbar, 0.031 mbar and 1.1x10-6 

mbar respectively, but the signal can reach maximum 0.67 pA on Faraday plate 

when the other connections are open. with lower voltage the signal can reach highest 

compared with the measurement with Φ 0.3 mm pinhole on skimmer, shown in Fig. 

3-12 right.  

Instead of the Φ 0.25 mm pinhole on sampler, Φ 0.35 mm pinhole on sampler was 

studied too, The signal with Ф 0.35 mm pinhole sampler is not better than that with Φ 

0.25 mm pinhole, it is 0.45 pA. The intensity of the signal depends on the alignment 

of the IMS and the skimmers system, so the results mentioned before may deviate 

but in this range. 

According to the results mentioned above, with the construction of 3 pinhole system, 

the vacuum can reach 10-6 mbar and signal can also be detected with different 

dimensions of pinhole, the best is with Ф 0.5 mm pinhole on metal piece, Φ 0.2 mm 

pinhole on sampler, Φ 0.4 mm pinhole on skimmer and the distance between the 

sampler and skimmer set to 5 mm. 

The whole interface system was then put orthogonal to TOF, another Faraday plate 

was set and signal of 0.17 pA can be detected with the following parameters listed 

below in Table 3-7. 
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Table 3-7 optimized parameters for the interface  

Vacuum (3 step)   6 mbar, 1.5x10-2 mbar, 4.6x10-7 mbar  

UV ionization source  2 kV 

Voltage on metal plate  114 V 

Voltage on lens  190 V 

Voltage on Sampler   130 V  

Skimmer   0 V 

Voltage on Einzel Lens  45 V  

Signal detected on Faraday Plate  0.17 pA  

Sample gas flow  1-1.2 L/min 

 

3.3.3. Einzel lens 

The Einzel lens consists of a tubular electrode that is sandwiched between two other 

tubular electrodes. The assembly was drawn based the modelling studies with 

Simion 7.0. Dimensions were: diameter, 10 mm; lens length, 12 mm for each; and 

distance between each lens, 1-2 mm. Wall thickness is 1 mm. The lens was 

assembled using three thread rod support and will be isolated by several ceramic 

sleeves. A sketch of this is shown in Fig. 3-13. 

 

Fig. 3-13 Einzel lens assemble for the IMS/TOF MS.  The lens assembly will attach to the 

vacuum flange on the extended arms of the center lens. Ceramic insulators are shown as 

clear boxes. 

In all the case, the first and the last electrode are at the same potential (tied together) 

while the central lens was set to another potential. the overall effect of the Einzel lens 

is focusing [132]. 

A retarding Einzel lens for positive ions is shown in Fig. 3-14 (end tubular electrodes 

Central part 

End part
Insulator
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are grounded and the middlel one set to positive potential). The main effect is that 

the ion velocity is drastically decreased in the first half of the lens and then drastically 

increased again in the second half. The decelerating and accelerating forces are 

indicated by small black arrows which indicate the direction of the forces on positively 

charged ions. These forces have small components perpendicular to the optical axis. 

In the first and last part of the Einzel lens, these forces are defocusing and drive the 

ions away from the optical axis, the z-axis, while in the middle region they are 

focusing and drive the ions towards the optical axis. The overall effect of these forces 

is illustrated by the hollow arrows. Since these forces away and toward the axis are 

of comparable magnitude, they are most effective in the middle region where the ions 

are slow and consequently spend most of their time. For this reason the lens shown 

overall is focusing.  

Fig. 3-14 Principle of Einzel lens illustrated by Simion plot of the electric field, the middle 

tubular electrode is set to positive potential and the end electrode grounded.  

At this point it should be mentioned also that the potential on the first and last 

electrode can also be at positive potential and the middle electrode be grounded. In 

this case it acts as two of the above mentioned lens.  

If the middle electrode is negatively charged, it will be an ‘accelerating Einzel lens’ for 

positively charged ions. In this case all arrows in Fig. 3-14 will be reversed. Thus the 

focusing forces act in the side region and defocusing forces ac in the middle region. 

Since in this case the ions move slower in the side regions, the focusing forces are 

more effective than the defocusing forces and the ‘accelerating Einzel lens’ is overall 

focusing as well. 

Experiments were carried out using Einzel lens in TOF with alluminum foil interface. 

The signal was firstly collected by a Faraday plate direct behind the Einzel lens, the 

Z

Y 
X 
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focusing effect is not so apparent, signal can maximal improved by 10%. then the 

Faraday plate was placed at the end of ion trajectory in TOF chamber before it was 

orthogonal extracted, in this case the signal was improved by 52%. So the Einzel 

lens is proved to be effective. 

 

3.4. Self-built TOF set-up  

3.4.1. Orthogonal extraction and acceleration 

The orthogonal accelerator is a high efficient device for sampling ions from an ion 

beam into a TOF mass analyzer. The ion beam enters oa at right angles to the TOF 

direction. It consists of two stages of acceleration (different electric field) which are 

defined by conducting electrode and grids. The first one is between repeller and grid 

1, while the second one is between grid 1 and grid 2, as illustrated in Fig. 3-15. All 

the acceleration rings are mechanically separated and insulated by PEEk pieces and 

electrically connected by a resistor chain. To prevent electrical field penetration, both 

sides are shielded by grids.  

1 Feedthrough    2 Repeller   3 Grid 1 
4 Acceleration rings   5 Grid 2 
 

Repeller

Grid1

Grid 2

Acceleration
 rings

-2KV

R

300V
0V2mm

6mm

3mm

1mm

Fig. 3-15 The constructure of orthogonal extraction and acceleration system 

It is necessary to note that the inner diameter of the rings with grid is 5 cm slightly 

larger than the others 4 cm. Because the ions that pass near the edges of the oa 

should not be allowed to enter the drift region as the fringing fields there may cause 

deflections that affect the time-of-flight. This design reduced the chance of ions 

passing near the fringing fields within the oa on the beam entry side. 

1

2 3 4 5 

Ion beam in 
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The choice of grid material and geometry is important. Close spaced wires create 

better separation of regions of different field strength but decrease transmission, 

particularly as the angle of incident ions on the mesh deviated from 90° as is the 

case for gride 1. The mesh is made by Buckbee-Mears St. Paul, there are 117.6 

wires per inch. The wire width is 13 µm and the hole size is 203 µm, the maximum 

transmission 88.6%. 

Once the ion beam is filled up between the repeller and the grounded grid G1, a push 

out pulse is applied to the repeller which is also used to start the timing electronics. 

The ions are then orthogonally accelerated and they are thus raised to a much higher 

kinetic energy. It was shown in Fig. 3-16. 

 

Fig. 3-16 the simulated trajectories of ions entering (left) orthogonal accelerator and sampled 

for TOFMS (downwards) 

The push-out pulse needs to be fast enough that all the ions experience acceleration 

at essentially the same time. Fig. 3-17 shows the push out pulse for the orthogonal 

acceleration TOF constructed in ISAS. The rise time is 30 ns by a 300 V pulse. It is 

most important that the first stage is completely field-free in the fill up mode. A small 

residual field in the fill up region may result from the baseline of pulse is not really 0 

V. Such fields may cause significant deflection of ion trajectories in the oa-TOF and 

therefore, increase the initial spatial spread of the ions. The residual field may be 

substantially removed by application of another relatively small positive voltage, 

shown in Fig. 3-18. 
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Fig. 3-17 The rise time of a 300 V 10 kHz pulse for the orthogonal accelerator. The insert is 

the entire pulse. 
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Fig. 3-18 Circuit of pulse switch mode on repeller 

 

3.4.2. Deflector 

As shown in Fig. 3-1, there are two parallel ion steering plates  located just after the 

orthogonal accelerator. They are the so called deflector which is used to steer the ion 

packets into a transverse trajectory [133]. This allows the tube containing the drift 

region to be at right angle to the ion source axis. It does so at the expense of 

resolving power. This is attributed to the combination of ion packet rotation and 

folding that results from the inherent inhomogeneneity of these deflection field [134]. 

A better approach is to reduce the initial energy of the ions from ion source, that is to 

use a collisional cooling device such as  RF only quadrupole or octopole.  
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3.4.3. MCP and data acquisition system. 

To achieve a high mass analyser efficiency, it is desirable to make the detector at 

least as wide as the length of the ions beam that is accelerated into the drift region. 

The microchannel plate was produced in BURLE and constructed together by 

BRUKER, (Fig. 3-19 left). Two microplates are sandwiched together in such a way 

that the bias angles aligned 180° opposite to obtain a gain of 106 to 108, as shown in 

Fig. 3-19 (right), it is the so called Chevron style. The MCPs are 40 mm in diameter 

and have 6 µm diameter channels biased at a angle of 8° to the MCP input surface. 

The voltages are applied to each MCP through a resistor divider. The output signal is 

derived from a 50 Ω conical anode, connected directly to computer. The anode is 

held at ground potential. 

 

 

-2KV

1M

100K

200K

Grid
1M

MCP

Anode

To computer

Fig. 3-19 Microchannel plate detector mounted on a flange, and circuit of it. 

 

For data acquisition, three cards ADA-100, DDG-100, MSA-200 are used. They are 

produced by Becker & Hickl GmbH. DDG-100 is a digital pulse/delay generator 

(pulse width 10 ns to 655.35 µs, pulse period 40 ns to 655.35 µs) . ADA-100 is a 10 

ns ADC module and MSA-200 is a 5 ns multiscaler. As shown in Fig. 3-20, the signal 

from MCP is pre-amplified by a 1.8 GHz wide band amplifier (ACA-2,  Becker & Hickl 

GmbH), then the signal is divided by a power divider (50 Ω, 6dB, 12.4 GHz, Suhner) 

connected to MSA and ADA card. The start time is triggered from DDG-100 digtital  

pulse / delay generator. 
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Fig. 3-20 Block diagram of data acquisition of TOF 

A data acquisition program has been written by Mr. Skole in ISAS Berlin, which was 

run under windows 98 operating system by a pentium IV computer. 
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4. SIMION simulation of UV-IMS-TOF 

The ion simulation software SIMION v. 7.0 is used to model ion trajectory in 

interfacing UV-IMS to TOFMS. The purpose of this study is to design a interface  and 

TOFMS to detect ions produced in UV-IMS. The device was modelled before building 

the prototype. SIMION is a ion optics software program originally developed by David 

Dahl at the Idaho National Laboratory, USA. The latest version allows for great 

expanded simulation capabilities. These include larger array size (50 million points) 

and three dimensional modelling. Dynamic parameter variation and time varying 

potentials are now also possible. 

4.1. Simulation of interface 

The pinhole interface to an ion mobility spectrometer/mass spectrometer (IMS/MS) is 

simulated by SIMION 7.0. IMS is working under ambient pressure, so the commercial 

SIMION software can not directly applied to it for ion trajectory, but the electric field 

can be simulated. 

Sampler

Skimmer

Lens

Ioniztion room

Electrode
Presampler

 

Fig. 4-1 SIMION plot of electric field of self-made UV-IMS ionisation region and the pinhole 

system. The IMS ionisation room and the electrode is 2 kV, fore-sampler set to 30 V and lens 

150 V, sampler 120 V, skimmer 0 V. 

At first the dimensions, angles and distances of all the components are exact 

proportional defined  in SIMION. The IMS is under atmospheric pressure, the region 
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between pre-sampler and sampler is about 6 mbar, between sampler and skimmer is 

1.4 x 10-2 mbar. In addition to gas flow, the ions are brought into TOFMS through all 

the pinholes by electric field, as shown in Fig. 4-1 the contour draw of interface, the 

ions created by UV-lamp are pushed and focused to go through the 0.5 mm orifice on 

pre-sampler by the electrical field in ionisation room. Behind the pre-sampler there is 

a lens set to 150 V, this lens act as an Einzel lens (central electrode) and the pre-

sampler and sampler as end electrode which have different potential, it directs and 

focuses the flow of ions toward sampler. Between sampler and skimmer the field 

strength increases from 2 V/mm (immediately behind sampler) to 50 V/mm (before 

skimmer) and brings the ions into TOFMS. According to the simulation, the potential 

of lens is critical for ion transmission, because the entrance aperture of sampler is 

only 0.25 mm in diameter. It is in accordance with the experiment results. 

Experiments with this configuration has been performed too, the distance between 

the fore-sampler and sampler are 12 mm, distance between the UV ionization room 

and fore-sampler was set to 7 mm, the ions signal can reach 0.52 pA maximum. 

When the distance between the fore-sampler and sampler were prolonged to 43 mm 

maximum signal can reach 0.29 pA. When the voltage on sampler set to a certain 

amount, the voltage on skimmer affect the signal not so much. The voltage difference 

between the sampler and skimmer can not more than 400 V, otherwise there is 

discharge between. 

 

4.2. Effects of Einzel lens in TOFMS 

In an actual design, the ion beam should have a narrow and parallel shape in the 

region of the TOFMS extraction region before it is orthogonal extracted and 

accelerated. 

At first step, only Einzel lens was used to bundle the ions together after they entered 

TOFMS through orifice cones. In Fig. 4-2, an ion beam is shown where ions are 

reached at the end of orthogonal extraction of the TOFMS, in this case 240 mm from 

the sampler cone. 
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Einzel lens

Faraday plate

Sampler
Skimmer

 
           
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-2 Ion trajectory through Einzel lens, for 3D diagram a section is cut away to show the 

passage of ions 

Some effort was given to modelling the geometry and potentials of Einzel lens as 

demonstrated in Fig. 4-2 where Einzel lens had a length of 12 mm, 10 mm in 

diameter. Voltage on sampler cone are 120 V, skimmer cone are 0 V. In all 

instances, the voltage on the first and third lens were tied together while the central 

lens was fixed at 0 V. 
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Fig. 4-3 Influence of Einzel lens with different diameters  to ions trajectory   

The results obtained when ions originated from a point are shown in Fig. 4-3, the 

ion’s definition are as follows: Ion mass: 100 amu, charge: 1.00+, First Az angle: +3 

degrees, Delta Az: -0.5 degrees, First EI Angle: 0 degrees, Delta EI 0 degrees, Ion 

kinetic energy: 100 eV, and Grouped, Coul Repl 1.0x10-7. For same potential 60V on 

the lens, the larger the diameter of the Einzel lens, the less time for the ions to hit the 

Faraday plate and the larger space distribution have the ions. Regardless of the 

dimension of the lens, the difference in flight time ranges were 10 ns compared the 

ions start with 0 degree and 3 degrees (Fig. 4-3 left), for example,  for 10 mm 

diameter the ions reached the Faraday plate in 11.072 ns and 11.082 ns, for 16 mm 

in 11.032 ns and 11.042 ns respectively. The parabolic shape is due to the 

decelerating effects of the Einzel lens. Those ions that pass closest to the electrode 

surface are most strongly affected. The space distributions were even more 

pronounced, it was from ±3.9 mm to ±7.5 mm for 10 mm diameter lens to 16 mm 

diameter (Fig. 4-3 right). The larger the diameter of the Einzel lens, the greater the 

space distribution. So in this sense, the possible smaller diameter should be adopted, 

therefore, 10 mm inner diameter was chosen for our TOF instrument. 

As for 10 mm  Einzel lens, different voltages were applied, as shown in Fig. 4-4.  for 

60 V, 65 V, 70 V and 75 V on the lens,  the ions flight time increased with the 

increasing of voltage, despite the potential on Einzel lens, ions flight time ranges 

were 10 ns compared the ions start with 0 degree and 3 degrees.  The ions expand 

in z-direction were only ±0.54 mm and ±1.1mm when the voltage on lens were 75 V 

and 70 V respectively. These values clearly show the importance of selecting the 

correct voltage.  

the ion trajectory can be controlled by the  voltage of the central part of the Einzel 

lens too, according to the simulation, the ions distribution in z-direction can be 
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reduced when negative voltage applied on the central electrode, but negative 

potential on the lens will accelerate the ions pass through it, it is not desirable for oa 

extraction and acceleration in z-direction. 

The results presented above demonstrate the advantage of using SIMION to 

examine ion optics in TOFMS, it is helpful for design and optimise the system. 
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Fig. 4-4 The influences of different voltages on Einzel lens of 10 mm in diameter to ions 

trajectory   

 

4.3. Influence of grids and grid geometry on ion trajectory 

Grids are used in oa-TOFMS to divide regions of ion modulator and ion extraction 

and acceleration region. A grid consists of evenly spaced metal wires running at right 

angles to each other. There are a wide variety of wire densities and transmissions 

which provides a wide choice of specifications of grids.  

 

Fig. 4-5 Simulated section of grid  of evenly spaced metal wires running at right angles to 

each other  
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Fig. 4-5 shows the SIMION 3D simulation of grid. It includes 16 grid holes with wire 

density of 117.6 lines per inch (13 µm wires, hole 203 µm) and two solid electrodes in 

a distance of 0.4 mm to grid to establish the fields in either direction.  

When different electric fields are placed on each side of a grid, a small electrostatic 

lens is produced at each opening. The simulated potential function for such a 

boundary is illustrated Fig. 4-6,  the grid separate fields having a fivefold difference in 

strength. 

Grid

E1=50V/mm

E2=250V/mm

 

Fig. 4-6 Representation of potential contours at the boundary of two electrical fields 

separated by a grid 

When ions flight through the grid, it will be deflected and the deflection depends on 

the ion energy and the electrical field difference between the two sides of the grid, 

Fig. 4-7 shows the ion trajectory through one cell of the grid from E1 to E2. The ions 

are focused. The focal length can be determined by  

12
0

2
EE

K
f e

−
=   4-1 

where Ke is the energy of the ion crossing the grid cell, E1 and E2 are the electrical 

field strengths at each side of the grid. The total ion energy Ke can be described as 

the sum of three velocity components 222

2
1

zyxe vvvmK ++= , where vx is the ions’ 

initial velocity component in X-direction, which is conserved during the flight time, vy 

is the velocity component in y-direction, which is perpendicular to the extraction 

direction and vz is the velocity component in the orthogonal acceleration and flight 
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direction. 

The velocity components vy and vz will change after the ions passing the grid and 

deflected according to their position in the gap between the wires of the grid. Ions are 

accelerated in the z-direction and  simultaneously decelerated in the y-direction so 

that total kinetic energy is conserved. The variation of vz causes a flight time error 

and the variation of vy results in an arrival spread in y-direction from the center of the 

MCP. 

E1 E2

 

Fig. 4-7 Ion trajectory through the grid from E1  to E2 

The grid material most commonly used is produced by Buckbee Mears of St. Paul, 

MN, USA. Their products include a wide variety of wire densities and transmissions. 

The most popular meshes have wire densities of 70, 117.6 and 333 lines per inch 

(lpi). These have transmissions of 90%, 88.6% and 70% respectively. Fig. 4-8 shows 

the flight velocity spread through grid with wire densities of 70, 117.6 and 333 lpi 

respectively. The values are given in one quadrant of a hole. Real operating 

conditions are taken into account. The electrical fields in front of and behind grid are 

50 V/mm and –250 V/mm respectively.  The difference in ion velocity increases with 

the wire density decreases, for 70 lpi the difference is nearly 14 fold higher than that 

of 333 lpi.  

Z
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Fig. 4-8 The effect of grid density on the magnitude of the velocity spread 

Take into account the y-displacement caused by grid. Shown in Fig. 4-9, the lower 

the wire density is, the worse the y-displacement is required.  
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Fig. 4-9 Ions’ y- displacement at 0.4 mm behind grid with wire densities of 70, 117.6 and 333 

lines per inch 

Although they are quite small. but with regard to the linear TOFMS with a 

acceleration stage followed by a drift region and detector. With the 70 lpi grid, a 20 

mm radius detector at 48 cm from the source would be demanded. Although 333 lpi 

wire density provides a higher mass resolving power limit and less y-displacement, it 

will reduce the ion transmission. It seems that 117.6 lpi wire density is a good 

compromise. 

In oa-TOFMS, the angle deviates from 90° for the grid in an orthogonal accelerator 

where ions have far less than their final velocities in the TOF direction. The effect of 

angle of incidence is shown in Fig. 4-10. the effect is significant when the field 
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strength on either side of the grid are 50 V/mm and 500 V/mm respectively. 
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Fig. 4-10 Simulated ions velocity spread passing through 117.6 lpi grid boundary in an oa-

TOFMS when ions approaching the grid at an angle not equal to 90° 

 

4.4. Simulation of oa-extration and acceleration. 

The parameters for the simulation are shown in Table 4-1. 

Table 4-1 parameters for oa-extraction and acceleration simulation 

Microchannelplate Ø 26 mm 

Length acceleration  47 mm 

Drift region 480 mm 

Grid /out/inner Ø 90 mm / Ø 20 mm 

Repeller  Ø 90 mm 

Distance between the repeller and Grid 1 6 mm 

Thickness of field gard plates  1 mm 

Distance between two field guard plates 5 mm 

  

Different numbers of field guide rings, interval between the rings and different 

voltages for the extraction and acceleration were investigated. For the ion mass of 

100 amu, when the initial Ke is 10 eV, the y position when it hit the MCP (starting 

from Y=0) are shown in Table 4-2.  The voltage on repeller and the acceleration 

voltage affect the ion trajectory very much compared to the interval between each 

ring for the acceleration rings. For example, for 7 rings, with the interval between 

each ring varied from 3 mm, 4 mm and 5 mm the y position of ion (100 amu) at the 

end of TOF was 30.36 mm, 30.35 mm and 30.78 mm respectively when the voltage 
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on repeller was 0.35 kV and acceleration voltage was set to –2 kV. For 7 rings 

system and interval between each ring set to 4 mm, The y position change from 

30.36 mm to 35.17 mm only the acceleration voltage go from –2 kV to –1 kV. And the 

voltage on repeller increases from 0.35 kV to 2 kV, the Y position change from 30.36 

mm to 25.90 mm. 

When the other conditions are same, only the number of field guard rings increase 

from 7 to 8 and 9, the Y position changed from 30.36 mm to 30.73 and 30.74. it 

affects the ion trajectory not so much either. 

Repeller(350V)

Grid1(0V) Field guard rings

Grid2(-2KV) Ion beam MCP

Fig. 4-11 1 Ion trajectory by orthogonal extraction and acceleration system with 7 field guard 

rings and the interval between rings 4 mm. repeller voltage 350 V, acceleration voltage –2 

kV, MCP –2 kV. The initial ion’s Ke is 10 eV. 

The initial energy of ions is very important for oa-extraction, when the ion’s initial Ke 

increase to 50 eV, the ions flight angle are too big that for the above mentioned 

voltage it is impossible to reach MCP. Taken into account of the diameter of the 

microchannelplate, a deflector is indispensable when the ions’ initial energy 

perpendicular to extraction are high.  

Deflector

 

Fig. 4-12 The ions trajectory  with deflector after the orthogonal extraction. The acceleration 

voltage is –2 kV, repeller Pulse voltage 0.35 kV, deflector voltage 170 V and –170 V 

respectively. 

The deflector was simulated with SIMION 7.0, shown in Fig. 4-12, they are two 

parallel plates  each 40 mm in length and 30 mm in width, the ions (max 100 amu, 
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initial energy 10 eV) can reach the detector when the voltage on deflector was set to 

170 V and –170 V respectively. The experiments were consistent with simulation. 

When no deflection voltage was applied, no signal was observed by MCP. 

 

Table 4-2 Ion position at the end of TOF with different configurations and different extraction 

and acceleration voltages 

Number of Field 

guard rings 

Interval between 

each ring/mm 

Voltage on 

repeller/kV 

Acceleration 

voltage/kV 

Y position of ion at 

the end of TOF/ mm 

0.35 30.36 

1 27.81 

2 

 

-2 

25.90 

0.35 35.17 

1 31.39 

2 

 

-1 

28.71 

0.35 23.12 

1 21.88 

 

4 

 

2 

-4 

20.90 

0.35 30.35 

1 27.75 3 

2 

-2 

25.82 

0.35 30.78 

1 28.03 

2 

-2 

26.02 

1 23.59 

2 22.20 

7 

 

5 

3 

-4 

21.14 

0.35 30.73 

1 28.07 8 4 

2 

-2 

26.10 

0.35 30.74 

1 28.07 9 4 

2 

-2 

26.11 
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5. Characterization of the pinhole interface for IMS-TOF 

The ions formed in IMS have been characterized using mass spectrometry, 

unfortunately the ability of mass spectrometer to identify ions has been questioned. 

The concern is that the ions are molecular or clusters and that the distribution of the 

cluster ions changes as the stagnant drift gas expands into the vacuum system of the 

mass spectrometer. 

The ability of ions to attract and attach neutral molecules is a subject with a long 

history. A free jet expansion can be viewed as a fast flow reactor. This has been the 

case, any ions in the expanding buffer gas can change composition. When the buffer 

gas is helium or hydrogen heated to 125°C - 250°C, the sampling errors are reduced 

so that relative ion intensities are essentially identical to those theoretically 

anticipated in the stagnant gas. Because nitrogen and air are commonly used gases 

for IMS, so in this work nitrogen was used to make the studies. 

 

5.1. Effusion into the vacuum system 

The pinhole interface between IMS and TOFMS can be viewed as a fast flow reactor. 

Once in the vacuum, the gas expands adiabatically and forms a free jet [135, 136]. 

Gasflow rate G0 through the first orifice is  

G0 = 0.445 n0 a0 D0
2, 5-1 

Where n0 is source number density,  

n0 = P0/(T0 kb), 5-2 

P0 and T0 are pressure and temperature respectively, kb is Boltzmann constant. a0 is 

speed of sound in the source,  

a0 = (δRgT0)1/2, 5-3 

where δ is the specific heat ratio, Rg is the individual gas constant, for nitrogen Rg is 

297 J/kg*K, and Do is the diameter of the orifice. As for Do = 0.5 mm, G0 is 35 ml/s.  

Mach disc at xm downstream from the orifice is 4 - 6 mm, according to following 

equation [137].  

2/1

1

067.0 







=

P
P

D
x

o

m , 5-4 

where P0 the pressure in IMS (here is 815 mbar) and P1 is the background pressure 
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for the expansion within the chamber (here is fore-vacuum 3-6 mbar), Do is the 

diameter of the orifice.  

So the Mach disc locates before the ions enter the sampler of TOF. The ions may 

react with water or neutral molecules to form adducts and clusters downstream the 

Mach disc. When such ions are analysed in mass spectrometer, the weak bonds 

associated with the ion adduct and clusters leading to false information about the 

relative concentration of the ions exist in IMS. Therefore care must be taken in 

applying the TOFMS results to IMS.  

For example, normal UV-IMS spectrum of acetone shown in Fig. 5-1. There is only 

one peak at K0=1.80 cm2V-1s-1. But the acetone mass spectra shown in Fig. 5-2 are 

different with different voltages applied on sampler. 
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Fig. 5-1 UV-IMS spectrum of  26 µg/L acetone  

The water content of the sample gas was 0.197 ppm (measured with Panametrics 

moisture monitor series 35). The major ions are (CH3COCH3)n(H2O)mH+ with m/z 

ratios of 59, 77,116, 134, 174, 192. When thevoltage on the sampler is 50 V, the 

most abundant ion is (CH3COCH3)2
+, which has an amplitude 6.7 times that for 

(CH3COCH3)+ and 5.5 times that for (CH3COCH3)3(H2O) +. When the voltage on 

sample increases to 80 V, the most abundant ion is still (CH3COCH3)2
+, but the ratio 

decreased, it has an amplitude 1.7 times that for (CH3COCH3)+, the trimer and trimer 

water adduct ions disappear. If the voltage on sampler goes up to 110V, the major 

ion change to (CH3COCH3)H+, which has an amplitude 4.0 times that for 

(CH3COCH3)H3O+ and 35.5 times that for (CH3COCH3)2
+. When the voltage 

increases to 130 V, the spectra is nearly the same as that of 110 V, but if the voltage 

on the sampler is below 40 V, there is no signal which can be detected in mass 

spectrometer. Other ketones display the same feature, for example, 2-hexanone has 
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the most abundant dimer ion, which is 5.2 times amplitude that for monomer ion 

when the voltage on the sampler is 50 V. When the voltage increases to 110 V, there 

is nearly no dimer ion. 
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Fig. 5-2 IMSPID TOFMS spectra of acetone with different voltages applied on the sampler 

So the electric field in the first stage vacuum can dissociate the ions as they gain 

energy from the field and collide with neutral gas molecules during the expansion. 

Collisional dissociation of larger cluster ions is favored over smaller cluster ions 

because the larger ions are more weakly bounded to their adducts. This may occur 

just beyond the Mach disc. Because changes of the voltage on the pre-sampler and 

the lens can only vary the total intensity of signal, and the relative magnitude of the 

peaks doesn’t change. 

 

5.2. Comparison with Finnigan LCQ™ mass analyzer 

In order to determine what kind of ions are the major one in IMS, UV-IMS was 

coupled to a Finnigan LCQTM MS detector. This system was originally equipped with 

an APCI interface and coupled with liquid chromatographic columns. As shown in 

Fig. 5-3, instead of the pinhole a heated capillary is used as sample ions inlet, so the 

ions should have totally different conditions.  
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Fig. 5-3 . Schematic diagram of APCI ionisation source of Finnigan LCQ (above),  from 

Finnigan LCQ hardware mannual 1996. Instead of APCI source, the UV-IMS without shutter 

grid  (bottom)  was used as ionisation source coupled to MS detector 

 

With this equipment acetone was measured and all the data were collected at normal 

operating conditions for Finnigan LCQ™. the shutter grid of the UV-IMS was 

removed and the IMS was driven as a IMS[PID]. Fig. 5-4 shows the spectra of the UV-

IMS coupled to the Finnigan LCQTM MS detector, the major peak is at m/z 59, which 

is corresponding to protonated acetone molecular ion. This result is the same as that 

of IMS TOF spectrum with sampler voltage of 110 V. 
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Fig. 5-4 IMS [PID]-mass Finnigan LCQTM MS spectrum of acetone 

 

Toluene was measured with both system. Fig. 5-5 shows the IMS [PID]-mass spectrum 

of toluene, there are mainly four peak groups at m/z 81, 92, 107, and 220. The first 

one may be due to contaminations from the IMS cell, because the cell was used after 

short activation. 92 is the monomer peak M+, 107 and 220 should be clusters. 
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Fig. 5-5 IMS [PID]- Finnigan LCQTM MS mass spectrum of toluene  

 

The IMS-TOF spectrum of toluene is shown in Fig. 5-6, compared with that of the 

Finnigan LCQTM MS spectrum, the major ion has m/z ratio of 92, which corresponds 

to the molecular ion, and a peak at m/z 78 and 107 which corresponds to benzene 

and xylene ions, respectively. 
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Fig. 5-6 Spectrum of toluene using IMS -TOF 

 

Fig. 5-7 shows the IMS[PID]- Finnigan LCQTM mass spectrum of methyl t-butyl ether 

(MTBE). The highest peak is at 57 m/z. Obviously it results from [CH3]3C+, The peaks 

at m/z 88 and m/z 177 are MTBE monomer and protonated dimer respectively, which 

have amplitude of 60%  and 35% that of [CH3]3C+. Fig. 5-8 shows the spectrum of 

MTBE using IMS –TOF with the sampler voltage on 110V, the most abundant ion is 

at m/z 107, it corresponds to (C5H12O.H3O)+. The MTBE molecular ion and the 

fragment of [CH3]3C+ have the amplitude of 88% and 51% that for major peak 

respectively. The obvious difference between TOF and Finnigan LCQTM MS is that 

the protonated molecular ion is much greater in TOF. Especially, for substances with 

high proton affinities like MTBE, which has a proton affinity of 841.6 kJ/mol. 
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Fig. 5-7 IMS[PID]- Finnigan LCQTM mass spectrum of MTBE 
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Fig. 5-8 Spectrum of MTBE using IMS -TOF 

 

Selected other substances have also been measured, shown in Table 5-1. According 

to these results, for most volatile organic compounds the major ions corresponding to 

monomer ions and the normally used UV lamp can lead to cleavage of bonds for 

some compounds the fragments are very stable, but for some other substances such 

as isoprene, it is easy to form clusters. 
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Table 5-1 Substances and their mass signals measured using Finnigan LCQ mass 

spectrometer 

Peaks Substance Molecular weight
Fragment monomer Dimer Cluster 

acetone 58  59[MH+]*   
butanone 72  73[MH+]*   
benzene 78  78*   
toluene 92   91,92*  107,220 
o-xylene 106 80, 91 106*   

mesitylene 120 93, 105 120*  136 
m-dichlorobenzene 147 92 146*, 148   
tetrachloroethylene 166 92 166,*164,168   

trichloroethylene 131 59,61    
MTBE 88 57* 88 176 171 

α-pinene 136 81, 93, 119 136 272*  
isoprene 68     80*,95,107

* basic peak 

 

5.3. Studies with air and argon 

Instead of nitrogen also synthetic air and argon were selected as carrier gas, 

because air is a commonly used drift gas for IMS. Furthermore these two gases have 

large Joule-Thomson expansion coefficients, 0.1371 and 0.23 for air and argon at 

373 K, respectively whereas it is for helium –0.0638 at 373 K [138], any tendencies 

toward nucleation should be amplified.  

Fig. 5-9 shows acetone mass spectra collected with synthetic air, argon and nitrogen 

as carrier gas individually. The water content in synthetic air, argon and nitrogen are 

0.4 ppm, 0.4 ppm and 0.3 ppm respectively. The major ions for all three gases are 

(C3H6O)H+ with m/z ratio of 59, which has an amplitude 5.5 - 6.5 times that for 

(C3H6O)H3O+ at m/z 77. all the spectra are quite similar, only in argon there are a lot 

of small peaks maybe because of the impurity. No carrier gas adducts are observed 

in either of the three gases. Signal magnitude is nitrogen > argon > air. 
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Fig. 5-9 Spectra of acetone using synthetic air, argon and nitrogen as carrier gas (from 

above to bottom) with optimal voltages on interface of TOF. 

 

5.4. Influence of the distance between sampler and skimmer 

Acetone was detected with the distance between the sampler and skimmer set at 4 

mm, 5 mm and 6 mm, respectively. The peak distributions are the same as illustrated 

in Fig. 5-10, the major peak is at m/z 59 which is corresponding to the protonated 

molecule peak. With regard to the magnitude of the signal, 4 mm and 5 mm are 

nearly the same and 6 mm is obviously small, this is consistent with the experiments 

detected with the electrometer. 
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Fig. 5-10 UV-TOF spectra of acetone with different distance between the sampler and 

skimmer 

 

So it means the second step of the vacuum is not critical for the ion identification, 

The above illustrated measurement was done with a sampler diameter of Ф 0.35 mm, 

the vacuum is 6 mbar and 1.3 x 10-2 mbar, respectively, before and after the sampler. 

According to the above mentioned equation 5-4, the Mach disc was located before 5 

mm downstream of the sampler. The ions distribution remained regardless of the 

Mach disc position, only the signal intensity changed. Consequently the reactions 

leading to misunderstanding of ions status occur in the first step when ions go 

through first orifice from atmospheric pressure into vacuum. 

 
5.5. Influence of the other parameters of interface 

The other parameters such as the diameter of the sampler were investigated. The  

signal magnitude was reduced to half of the value when the sampler diameter in 0.35 

mm decreased to 0.25 mm as showed in Fig. 5-11. The highest peak of acetone are 

identical at m/z 59. 
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Fig. 5-11 UV-TOF spectra of acetone with different diameters of the sampler. The distance 

between the sampler and skimmer was 4mm. 

As demonstrated in Fig. 5-12, the voltage on the pre-sampler can influence the signal 

magnitude greatly, the peak height at 59 m/z with the pre-sampler on 90 V is 4.4 

times of that of pre-sampler set at 125 V, although the peak at 77 m/z is only 1.5 

times correspondingly.  
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Fig. 5-12 UV-TOF spectra of acetone with different voltage on pre-sampler, the other 

parameters are the same. 

 

The major peak of acetone on both conditions are composed of protonated 

monomers, the voltage on the pre-sampler can not affect it. 
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6. Material and Methods 

6.1. Chemicals 

acetone, for spectroscopy 99.9%, Merck, Darmstadt 

2-butanone, puriss p.a. 99,5% (GC), Fluka, Steinheim 

3-pentanone, for synthesis 99% (GC), Merck, Hohenbrunn 

cyclohexanon, puriss p.a. 99,5% (GC), Fluka, Steinheim 

2-hexanone, purum 98% (GC), Fluka, Steinheim 

2-Heptanone, purum 98% (GC), Fluka, Steinheim 

2-octanone, purum 97% (GC), Fluka, Steinheim 

5-nonanone, purum 97% (GC), Fluka, Steinheim 

ethanol, for spectroscopy 99.9%, Merck, Darmstadt 

1-propanol, 99.8% (GC), Fluka, Steinheim 

1-butanol, for UV-spektoskopie, Riedel-de Haen 

2-butanol, puriss p.a. 99,5% (GC), Fluka, Steinheim 

3-methyl-1-butanol, microselected, 99% (GC), Fluka, Steinheim 

3-methyl-1-butanol, purum, 99% (GC), Fluka, Steinheim 

2-pentanol, purum, 98% (GC), Fluka, Steinheim 

1-hexanol, puriss p.a. 99% (GC), Fluka, Steinheim 

3-octanol, puriss p.a. 99% (GC), Fluka, Steinheim 

benzene, G.R. 99.7%, Merck, Darmstadt 

toluene, puriss 99,7% (GC), Fluka, Steinheim 

o-xylene, puriss p.a. 99% (GC), Fluka, Steinheim 

m-xylene, puriss p.a. 99% (GC), Fluka, Steinheim 

ethylbenzene, puriss p.a. 99% (GC), Fluka, Steinheim 

1,3 – dichlorobenzene, puriss p.a. 99% (GC), Fluka, Steinheim 

pyridine, puriss p.a. 99% (GC), Fluka, Steinheim 

lutidine, puriss p.a. 99% (GC), Fluka, Steinheim 

All reagents are used without further purification. 

 

6.2. Sample gas preparation 

A large range of test gas concentrations were required for the measurements, so the 

exponential dilution as well as the generation of gases using a permeation septum 
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were exploited. The schematic diagrams for the permeation and the exponential 

dilution device are shown in Fig. 6-1. 

 

6.2.1. Membrane inlet permeation device 

For the UV-IMS-TOF main measurements using UV-IMS-TOF, a 1mL vial (CS-

Chromatographie Service GmbH, Langerwehe) is partially filled with the pure liquid of 

the compound of interest and was then sealed with a central hollow cap, where a 

PDMS (polydimethylsioxane) membrane (thick: 1mm; Reichelt Chemietechnik GmbH 

+ Co., Heidelberg ) was seated, variation of the test gas concentration was achieved 

by using other membranes, such as sealing disc made from nature rubber and PTFE 

G8-S, G8-1.0, G8-1.3 (CS-Chromatographie Service GmbH). The vial was put in a 

big bottle maintained at a constant temperature while passing a flow of 1 L/min 

nitrogen gas (99.999%) over it. The resulting test gas concentration was determined 

by weighing the remaining mass of the vial within certain time interval. It can be 

expressed by  

cg tvmC /∆=   6-1 

where ∆m is the mass difference (µg), t is the time interval (min) and vc is the carrier 

gas flow rate (L/min). In this way, the constant concentration of test gas was 

generated. 

 
 
 
 
 
 

         

PDMS membrane

Carrier gas To instrument

Sample

A  

Gas inlet Syringe

Sample gas to instrument

5.8L flask

Septum

B  

Fig. 6-1 A: Schematic of permeation device,   B: Schematic of exponential dilution device. 

 

6.2.2. Exponential dilution device 

for the calibration and LOD detections, exponential dilution was employed [131]. the 

pure solutes of 5-10 µL were injected with syringe into a 5.8 L flask through a septum 
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and fully vaporized  and diluted by a constant nitrogen gas flow of 1 L/min. the 

resulting test gas concentration was calculated with  

t
g eCC ε−= 0   6-2 

 in this expression C0 is the initial concentration, with 

gc Vv /=ε   6-3 

where vc is the carrier gas flow rate and Vg is the volume of the dilution flask. 

 

6.2.3. Carrier gas humidity generator 

For the measurement of the influence of the carrier gas humidity, well defined relative 

humidity (RH) values of the sample carrier gas were generated by mixing two gas 

flows with mass flow controller (MFC — MKS, mass-flow® controller). One was dry 

nitrogen (0% relatively humidity), the other passing through two serial bottles with 

water and expected to be saturated (100% relatively humidity), as shown in Fig. 6-2. 

With different flows of these two gases the relative humidity of the carrier gas can be 

controlled. Calibration of the system using a standard RH sensor showed excellent 

agreement of measured and expected RH. 

PDMS membrane

Carrier gas

To instrument

Sample

A
Humidifier

MFC

MFC
0% RH

100% RH

Water

 

 

Fig. 6-2  schematic diagram of the humidifier to generate given RH in carrier gas  
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6.3. Ketones detection with UV-IMS-TOF 

The study of eight aliphatic ketones (acetone, 2-butanone, 2-pentanone, 2-hexanone, 

2-heptanone, 2-octanone, 3-octanone, 5-nonanone) and one cyclic ketone 

(cyclohexanone) was undertaken in order to study systematically the processes of 

photoionization and reactions in UV-IMS. 

 

6.3.1. UV-IMS and UV-TOF measurements of pure substances 

Pure ketone samples were measured using the membrane inlet permeation system. 

Different concentrations were achieved according to the volatility of the substance 

and the type of membrane. The UV-IMS spectra are showed in Fig. 6-3, Acetone, 

butanone, 2-pentanone consisted of one major peak and the drift times increase 

continuously from 18.9 ms for acetone to 23.1 ms for 2-pentanone. When the 

concentration are very high, a small peak appeared after the first peak. For 120 µg/L 

acetone  there is an additional peak at 22.3 ms. 

12 16 20 24 28 32 36 40

cyclohexanone

5-nonanone2-octanone2-heptanone2-hexanone2-pentanonebutanoneacetone
Drift time / ms   

Fig. 6-3 Ion mobility spectra for acetone (120 µg/L), butanone (173 µg/L), 2-pentanone (52 

µg/L), 2-hexanone (240 µg/L), cyclohexanone (93 µg/L), 2-heptanone (35 µg/L), 2-octanone 

(112 µg/L) and 5-nonanone (98 µg/L) 

Beginning from 2-hexanone, in front of the major peak  there are 1 or 2 other peaks. 

This fragment peaks increase too according to the number of carbons. The  K0 of 2-

hexanone fragment is 1.91 cm2V-1s-1 which is even faster than that of acetone (1.80 

cm2V-1s-1). 
The trend in the drift times for acetone, 2-butanone, 2-pentanone, 2-hexanone, 2-

heptanone, 2-octanone and 5-nonanone reflected the size difference consistent with 

molecular mass for each compound. From the drift time, the reduced mobilities of the 

ketones are calculated and listed in Table 6-1. The reduced mobility for the major 
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peak is decreased from 1.80 cm2V-1s-1 for acetone to 1.13 cm2V-1s-1 for 5-nonanone. 

In addition, 2-octanone (K0=1.17 cm2V-1s-1)and 3-octanone (K0=1.20 cm2V-1s-1) can 

also be separated by UV-IMS. In order to identify the peaks in the UV-IMS, the same 

pure ketone samples were measured individually with UV-TOF. It yields simple 

spectra that facilitate analysis as shown together in Fig. 6-4: All the ketones have one 

major peak corresponding to [MH]+, and one other apparent peak corresponding to 

[MH+H2O]+. Those are ions with m/z values for acetone (59,77), 2-butanone (73,91), 

3-pentanone (87,105), 2-hexanone (101, 119), 2-heptanone (115, 133), 3-octanone 

(129, 147) and 5-nonanone (143, 161). But for cyclohexanone, octanone and 

nonanone the [M+H]+ peaks are relatively small, because the cyclohexanone, 

octanone and nonanone have lower vapour pressure, so the concentrations in the 

gas samples are smaller. The dimer peak appeared for all ketones, too. 
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Fig. 6-4 10.6 eV UV-lamp photoionization TOF spectra of acetone (81.7 µg/L), butanone 

(74.6 µg/L), 3-pentanone (74.8 µg/L), 2-hexanone (37.4µg/L), 2-heptanone (17.0 µg/L), 2-

octanone (15.9 µg/L), 5-nonanone (10.4 µg/L), cyclohexanone (12.3 µg/L) 
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Table 6-1 Reduced mobility K0 of the ketone ions with UV-IMS 

K0 (cm2 V-1.s-1) 
Ketone MW 

 
IE(eV) 

 
Peak 1 

 (major peak) Peak 2 Peak 3 

acetone 58 9.69 ± 0.02 1.80 1.50  
2-butanone 72 9.52 ± 0.04 1.65 1.39  

2-pentanone 86 9.31 ± 0.02 1.50   
cyclohexanone 98 9.16 ± 0.02 1.41   

2-hexanone 100 9.35 ± 0.06 1.37  1.91 
2-heptanone 114 9.33 ± 0.03 1.26 1.33 1.78 
2-octanone 128 9.40 ± 0.03 1.17  1.68 
3-octanone 128 - 1.20  1.69 
5-nonanone 142 9.07 1.13 1.20 1.58 

 

In  Fig. 6-5 the relationship between reduced mobility K0 of the major peaks in the 

UV-IMS and the mass of [M+H]+ of the ketones are demonstrated. 
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 Fig. 6-5 Plots of reduced mobility K0 of the major peaks in IMS vs. [MH]+of the ketones 

respectively 

It demonstrates that 5-nonanone remarkably  deviates from the linear because of the 

different position of the carbonyl group. 2-hexanone is the turning point which is 

consistent with the UV-IMS spectra, starting from it there are separable fragment 

peaks. It can be explained by the UV-TOFMS too. In Table 6-2 all the peaks and their 

abundances in TOFMS are listed. The peak area of the base peak in TOF was taken 

as 1, other peaks are calculated according to it. All fragments for acetone, 2-

butanone and 2-pentanone are 7%, 12% and 9%, respectively, and the mass of the 

fragments are similar to those of the molecule ions, so for these three ketones 

appear only one peak by IMS measurements. The fragment ions of 2-hexanone, 2-

heptanone, 2 -octanone, 3-octanone and 5-nonanone constitute respectively 21%, 

20%, 24%, 21%, 22% of the total ion current, which is in good agreement with gas 

phase ion energy data[139].  the mass of the fragments are much smaller than that of 
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molecule, consequently there are more peaks by IMS. although cyclohexanone has 

16% fragment, there is no small fragment, so in IMS there is only one shoulder 

before the major peak and no separable fragment peak.  

Table 6-2 the ion abundances by UV-TOF with sampler voltage of 104 V 

Ketone m/z Abundance Ketone m/z Abundance 

5-nonanone 

143
43 
69 
110
124
155
159
246
284

1.00 
0.04 
0.04 
0.03 
0.11 
0.07 
0.04 
0.06 
0.10 Acetone 

59 
43 
51 
77 
101 
117 
189 

1.00 
0.02 
0.05 
0.30 
0.04 
0.13 
0.10 

2-heptanone 115
30 
43 
55 
71 
100
129
133
199
229

1.00 
0.03 
0.04 
0.02 
0.02 
0.10 
0.04 
0.08 
0.04 
0.10 

2-Butanone 
73 
43 
55 
57 
63 
91 
94 
127 
145 

1.00 
0.01 
0.02 
0.03 
0.06 
0.22 
0.06 
0.06 
0.14 

2-octanone 129
43 
69 
85 
113
143
146
223
257

1.00 
0.06 
0.04 
0.02 
0.12 
0.08 
0.08 
0.09 
0.13 2-pentanone 87 

43 
75 
105 
149 
171 

 

1.00 
0.03 
0.06 
0.12 
0.03 
0.09 

 

3-octanone 129
43 
69 
94 
113
143
146
192
222
256

1.00 
0.03 
0.03 
0.06 
0.09 
0.07 
0.04 
0.04 
0.21 
0.14 

2-hexanone 101 
43 
87 
83 
94 
119 
173 
201 

1.00 
0.06 
0.08 
0.04 
0.03 
0.11 
0.05 
0.13 

cyclohexanone 99 
81 
86 
117
169
197

1.00 
0.06 
0.10 
0.16 
0.08 
0.21 

 

6.3.2. UV-IMS, UV-TOF measurements of mixture 

The mixture of 2-heptanone and 3-octanone were investigated by IMS and TOFMS 
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individually (Fig. 6-6). With IMS these two ketones can not be separated, The main 

peaks of 2-heptanone and 2-octanone become combined and the small fragments 

merged too. With UV-TOFMS 2-heptanone and 2-octanone protonated molecular ion 

peak at m/z 115 and 129 are the main peaks and well separated. The ionisation 

energy of 2-heptanone (9.33 eV)  and 2-octanone (9.40 eV) are similar. Two 

molecular peaks can be clearly seen, but for mixture of substances with distinct 

difference of  ionization energy, for example acetone (9.69 eV) and  2-octanone (9.40 

eV), due to the charge transfer the peak of acetone is relative small, so the relative 

signal intensities for each compound in a mixture may not give an accurate 

representation of the relative abundances, to solve this problem, a chromatographic 

separation before the test is necessary.  
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Fig. 6-6 Spectrum of 2-heptanone and 2-octanone mixture using UV-IMS (left)              

and TOF (right) 

 

6.3.3. Limits of detection and calibration curve 

Response vs. concentration was determined individually for acetone and butanone 

with UV-IMS and UV-TOF, plots of signal ( peak area) vs. gaseous concentrations 

are shown in Fig. 6-7 with a linear range of three orders of magnitude. The detection 

limits (LOD) with UV-IMS for acetone and butanone are 0.19 µg/L and 0.097 µg/L, 

respectively, while they are with UV-TOF 0.80 µg/L and 0.42 µg/L, respectively. 
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Fig. 6-7 Plot of log peak area vs. log gaseous concentration with (a) UV-IMS (b) UV-TOF

 

6.3.4. Photo ionisation mechanism of ketones 

The principle mechanism for photoionization of ketones is proton absorption and 

electron ejection to form the molecular ion M+. In the presence of water vapor (~0.2 

ppm humidity in the carrier gas of nitrogen), the molecule ion can extract hydrogen to 

form MH+ or even [MH.H2O] +, because the ketone has a high proton affinity. There 

are also little abundance of fragmentations, which has not been actively explored 

previously. It could be formed from protonated monomers rearrangements or 

decompositions to small fragment ions. All the observed modes of dissociation and 

reactions are discussed as following, the most abundant ions for all the ketones are 

protonated molecular ions ([i], [vii]) and all the ketones have [M+H3O]+ ions too. The 

fragment ions can attach proton or water molecule too. 

 CH3COR + hν → CH3COR + + e- [i]  
    → CH3CO+ + R [ii]  
    → RCO+ + CH3

 [iii]  
    → R+ + CH3CO [iv]  
    → CH3CO CH2

+ + R1
 [v]  

    → CH3COC2H4
+ + R2 [vi]  

 CH3COR +. + H2O → [CH3COR.H ]+ + OH [vii]  
    → [CH3COR.H3O ]+ + OH [viii]  
 CH3COHR + + H2O → [CH3CHOH.H2O] + + R [ix]  
    → [RCHOH] + + R [x]  

 

For acetone two fragments at m/z 43 and 51 are observed. The abundance are only 

2% and 5%, respectively. process [ii] and [iii] are identical which yield [CH3CO]+ 

corresponding to 43. It should be noted that fragment at m/z 51 was not mentioned 

before by other mass spectra, it may be the CH3(H2O)2
+. The fragmentation should 
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occurred in the ionisation source [140]. While the low pressure gas discharge lamp 

used as ionisation source for IMS and TOF output energy is 10.6 eV and the 

appearance potential of [CH3CO]+ is 10.3 eV [141] and the ionisation source was 

working under atmospheric pressure so the ions can react with moisture in the carrier 

gas. For butanone, process [ii] and [iii] occur to yield ions at m/z 43 and 57. There is 

also a anomalous fragment at m/z 63 which is the main fragment. It should through 

process [iv] to get [CH3CHOH.H2O]+. For pentanone the predominant fragment is at 

m/z 75, it should  through process [v] and be assigned as [CH3COCH2
.H2O]+. for 

these three ketones, the small amount of fragments together with the MH+ and 

MH3O+ peak consist the major peak in UV-IMS. 

For 2-hexanone fragment through [ii] and [x] are predominate. There are 6% amount 

of [CH3CO]+ at m/z 43 and 8% amount of [CH3CH2CH2 CH2CH2 OH]+ at m/z 87. It 

exhibit (MH-18)+ peaks from the loss of water too. The major fragment of 2-

heptanone and 2-octanone are through process [ii] and [iii] which corresponding to 

[MH-CH3]+ (100), [M-CH3]+ (113) and [CH3CO]+(43), process [iv] and [v] also take 

place and [MH+CH3]+ were observed too.  

For 5-nonanone the prominent fragment is the [M-18]+ peak and cyclohexanone has 

this peak too. 

In general, the peaks of ketones appeared in UV-IMS should be the mixture of 

fragments, protonated and hydrated molecular ions, so when mixtures of ketones are 

measured by IMS, the ratio of ions or the type of ions in one IMS peak will be 

changed thus the drift time will be shifted or even new peaks will appear. 
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6.4. Alcohols detection with UV-IMS-TOF 

The series of saturated aliphatic alcohols including ethanol, 1-propanol, 1-butanol, 1-

pentanol, 1-hexanol as well as some  of the secondary or tertiary alcohols, 2-butanol, 

2-pentanol and 2-hexanol, 2-heptanol and 3-octanol and two branched alcohols, 3-

methyl-1-butanol, 3-methyl-2-butanol were investigated. These short chain alcohols 

were selected which were usually measured by UV-IMS. Methanol can not be 

detected  while the ionisation energy is 10.83 eV and the UV-Lampe here used is 

10.6 eV. In order to get the best peak shape, the concentration of the alcohols are in 

the ppm range. 

 

6.4.1. Comparison of UV-IMS and UV-TOF detection 

The UV-IMS signal for alcohols are relatively complex. In addition to the main peak, 

there are one or two peaks in front and after the major peak, so the peak is very 

broad as shown in Fig. 6-8. For 1-pentanol and 1-hexanol there is a clearly visible 

peak at the drift time 17.13 ms (K0=2.01 cm2V-1s-1) and 18.26 ms (K0=1.90 cm2V-1s-1) 

(K0=2.01 cm2V-1s-1) respectively. The drift time (major peak) from ethanol to 1-

hexanol increase continuously from 19.73 ms (K0=1.77 cm2V-1s-1) to 27.57 ms 

(K0=1.25 cm2V-1s-1). All the reduced mobilities of the alcohols are listed in.Table 6-3. 
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Fig. 6-8 UV-IMS spectra of primary alcohols (left), ethanol (125 µg/L), 1-propanol (125 µg/L), 

1-butanol (92 µg/L), 1-pentanol (73 µg/L) and 1-hexanol (72 µg/L). On the right are 1-hexanol 

(72 µg/L) and 1-hexane (34 µg/L). 

Compared the secondary alcohols to the corresponding primary one, they all have a 

major peak, but secondary alcohol has shorter drift times. K0 for 1-butanol and 2-

butanol are 1.44 cm2V-1s-1 and 1.49 cm2V-1s-1. 1-pentanol and 2-pentanol are 1.34 

cm2V-1s-1  and 1.40 cm2V-1s-1, respectively, but with regard to 1-hexanol (1.25 cm2V-

1s-1) and 2-hexanol (1.43cm2V-1s-1), the difference of K0 is much greater. For 
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branched alcohol 3-methyl-1-butanol and 3-methyl-2-butanol, the ion mobility spectra 

are totally different, 3-methyl-2-butanol has only one major peak at 23.90 ms (1.43 

cm2V-1s-1) as normal primary and secondary alcohols, 3-methyl-1-butanol has two 

main peaks at 28.50 ms (1.21 cm2V-1s-1) and 31.27 ms (1.10 cm2V-1s-1). There is also 

a clearly visible peak at 25.53 ms (1.35 cm2V-1s-1). It demonstrate that the different 

ions or different ratio of ions are produced. So, UV-IMS is very good instrument for 

alcohol detection as well as their isomers. 
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Fig. 6-9 UV-IMS spectra of 3-methyl-2-butanol (148µg/L) and 3-methyl-1-butanol (70µg/L) 

(left), 2-hexanol (143µg/L) and 1-hexanol (72µg/L) (right) 

 

Table 6-3 Reduced mobility K0 of measured alcohol ions with UV-IMS 

K0 (cm2/ V.s) 
Alcohols MW (u)

 
IE(eV) 

 
Peak 1 

 (major peak) 
ethanol 46.07 10.48 ± 0.07 1.77 

1-propanol 60.10 10.22 ± 0.06 1.62 
1-butanol 74.12 9.99 ± 0.05 1.44 
2-butanol 74.12 9.88 ± 0.03 1.49 

1-pentanol 88.15 10.42 ± 0.03 1.34 
2-pentanol 88.15 9.78 ± 0.03 1.40 
1-hexanol 102.17 10.35 or 9.89 1.25 
2-hexanol 102.17 10.24 or 9.89 1.43 
2-heptanol 116.2 10.4 ± 0.1 1.20 
1-octanol 130.23 — 1.18 
3-octanol 130.23 — 1.15 

3-methyl-1-butanol 88.15 — 1.21 / 1.10 
3-methyl-2-butanol 88.15 9.75 ± 0.05  1.43 

 

All these alcohols have been measured by TOF to recognize the peaks in UV-IMS. 

The TOF spectra of primary alcohols are given in Fig. 6-10 and all of them have 

protonated molecular ions, hydrated molecular ions and fragments at m/z = [M-17]. 

The relative high intensity of the dimer ions in the spectra are because of no drift gas 
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to collide with them to decompose clusters as the conditions in IMS.  For ethanol the 

hydrated molecular ions intensity is 63% to the base peak when the area of base 

peak was taken as 100%. 1-propanol is 53%. This can result from the hydroxyl group 

in alcohols. It connects water with hydrogen bond which is relatively strong, the 

hydrated molecule ions can not decompose by the collision with drift gas in IMS, 

resulting in peaks after the main peak together with other clusters and dimers. For 1-

butanol, 1-pentanol and 1-hexanol the base peaks are fragments at m/z [M-17]. 

 

It may come from the lose of the hydroxyl group. For 1-propanol, 1-butanol, 1-

pentanol and 1-hexanol it is possible while the ionisation energy to yield 

corresponding alky ions are 10.56 eV, 10.18 eV, 10.04 eV and 9.89 eV respectively, 

which are under 10.6 eV of the UV-lamp energy. For ethanol small amount of ions at 

m/z 29 corresponding to CH3CH2
+ may come from the interface system. While for 

such a decomposition an energy of 12.7 eV is required, and that is much higher than 
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Fig. 6-10 UV-TOF spectra of ethanol (97 

µg/L), 1-propanol (95 µg/L), 1-butanol (92 

µg/L), 1-pentanol (85 µg/L) and 1-hexanol  

(88 µg/L) 
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the lamp energy. The abundance of CnH2n+1
+ fragmentation increase with the number 

of carbons. The construction of alkyl ions is totally different compared to alcohol ions, 

because the collision cross section are much smaller. As for hexane, the reduced 

mobility K0 is 1.81 cm2V-1s-1, while for 1-hexanol K0 is 1.25 cm2V-1s-1 as showed in 

Fig. 6-9.  

The secondary alcohol UV-TOF spectra are given in Fig. 6-11, the abundance of the 

fragment at m/z [M-17] is relatively smaller compared to corresponding primary 

alcohols. For 1-butanol, 1-pentanol and 1-hexanol, the base peaks are with m/z ratio 

of [M-17], while for 2-butanol, the base peak is the protonated molecule ion peak. 

The abundance of [M-17] is only 49% of base peak. For 2-pentanol the ratio of 

protonated ions and fragment at m/z [M-17] are quite the same. 2-hexanol is not as 

other alcohols, the base peak  is at m/z 99, corresponding to M-3 and the peak at 

m/z 85 is very small. It is reflected in UV-IMS spectra (Fig. 6-9) where 2-hexanol has 

only a small peak, so the ion at m/z 85 should be due to C6H13
+. 
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Fig. 6-11 UV-TOF spectra of 2-butanol (98 µg/L), 2-pentanol (91 µg/L), 2-hexanol (93 µg/L) 

and 2-heptanol (60 µg/L) 

 

Because the UV-IMS spectra of 3-methyl-1-butanol and 3-methyl-2-butanol are 

totally different, they should have different decomposition. It was proved in TOF as 

showed in Fig. 6-12, there are two major peaks at m/z 106 and 71 in TOF for 3-

methyl1-butanol,due to the [M-17] and [M+H2O], for 3-methyl-2-butanol, the base 



Materials and method 

 78

peak is at m/z 60 corresponding to [M-C2H4]. so the main peak in UV-IMS spectra 

consists of fragment ions instead of normally considered monomer for 3-methyl-2-

butanol.  
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Fig. 6-12 TOF spectra of 3-methyl-1-butanol (86 µg/L) (left) and                         

3-methyl-2-butanol (166 µg/L) (right) 

 

6.4.2. Photoionization mechanism of alcohols 

One of the most characteristic aspects of the mass spectra of alcohols is that the 

base peak is not always the molecular ion or protonated molecule ion through 

reaction [I] and [III], the loss of m/z 17 giving a peak at m/z [M-17] as fragment ion is 

for higher primary alcohols most abundant [II]. Another common peak occur at m/z 

[M+18] [IV], due to the adducts of water molecule. The dimer peak is also evidently 

visible by most alcohols in high concentration [V] because of the strong hydrogen 

bond of hydroxyl in alcohols. All the following processes of photoionization of 

alcohols may occur in UV-IMS. 

 ROH + hν → ROH + + e- [I]  
    → R+ + OH [II]  
 ROH + + H2O → [ROH2

 ]+ + OH [III]  
    → [ROH +H2O ]+   [IV]  
 ROH2

 + + ROH  → [(ROH)2
 H] +   [V]  

 

Additionally, the TOF spectra of 2-hexanol also exhibit base peak corresponding to 

the loss of three hydrogen atoms (M-3) and this fragment is much more intense than 

the molecular ions.  

hexan-2-ol

CH3 CH
CH3

OH

CH3 C
CH2

+

O

M-3

hv
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6.4.3. Limits of detection and calibration curve 

Response vs. concentration was determined individually for ethanol and 1-propanol 

using UV-TOF. The plots of the signal (peak area) vs. the gaseous concentrations 

are shown in Fig. 6-13 with a linear range of three orders of magnitude. The 

detection limits (LOD) with the UV-TOF are 8.6 µg/L and 3.0 µg/L, respectively. 
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Fig. 6-13 Calibration curve for ethanol and 1-propanol 

In Fig. 6-14 the spectra of ethanol with 764 µg/L and 8.6 µg/L are illustrated. In high 

concentrations, additional to the ethanol molecular ion, the ethanol dimer ion at m/z 

93 and water cluster at m/z 64 are present while in low concentration there only 

appeared the molecular ion. 
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Fig. 6-14 Spectra of ethanol with 764 µg/L and 8.6 µg/L 
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6.5. Aromatic hydrocarbons detection with UV-IMS-TOF 

Aromatic compounds such as benzene, toluene, and xylene are key targets of 

importance with respect to environment monitoring and currently normal analytical 

methods are gas chromatography (GC) and gas chromatography coupled with mass 

spectrometry (GC-MS). The use of a UV-IMS to detect aromatic hydrocarbons is 

sensitive and reliable [142, 143]. 

 

6.5.1. Comparison of UV-IMS and UV-TOF detection. 

Fig. 6-15 shows the UV-IMS spectra of compounds benzene, toluene, o-xylene and 

ethylbenzene, normally all the substances have one peak.  
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Fig. 6-15 Ion mobility spectra for benzene, toluene, o-xylene and ethylbenzene 

The reduced mobilities calculated for these peaks are summarized in Table 6-4. The 

K0 value for benene, toluene and o-xylene are 2.09, 1.98, 1.89 cm2V-1s-1, 

respectively, showing a decrease with an increase of the mass of the molecule.  

Table 6-4 Reduced mobility K0 of measured aromatic ions with UV-IMS 

K0 (cm2 V-1s-1) Alcohols MW (u)
 

IE (eV) 
 Peak  

Benzene 78.11 9.24 2.09 
Toluene 92.14 8.83 1.98 
o-Xylene 106.17 8.56 1.89 

Ethylbenzene 106.17 8.77 1.92 
Propylbenzene 120.19 8.71 1.77 
Chlorobenzene 112.56 9.07 1.95 

Aniline 93.12 7.72 -- 
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Ethylbenzene has the K0 of 1.92 cm2V-1s-1 and there is no distinct difference to that of 

o-xylene. Their reduced mobility is relatively greater compared to those of ketones 

and alcohols, while they have the ring construction. 

The corresponding UV-TOF spectra given in Fig. 6-16 illustrate that the major ions 

for benzene, toluene, o-xylene and ethylbenzene are molecule ions which are at m/z 

78, 91, 106, 106, respectively. For benzene and toluene, the fragments are very 

small, o-xylene shows more fragmentation with peak at m/z of 91, which is resulting 

from the loss of methyl group. This peak with m/z ratio of 91 has a magnitude of 41% 

compared to the main peak at m/z 106. even more fragmentation shows 

ethylbenzene with peaks at m/z 91 and 77. the fragment ion at m/z 91 rises even to 

56% to the ratio of major molecule ion at m/z 106. and the cluster ion at m/z 121 is 

much greater, it has a magnitude of 25% to that of the major peak of molecule ion. 
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Fig. 6-16 Spectra of benzene, toluene, o-xylene and ethylbenzene  with UV-TOF 

 

Other aromatic substances such as aniline has been studied by UV-TOFMS. Aniline 

exhibits a very pronounced molecular ion (major peak), which can be explained by 

stabilization of the radical 
NH2

+

. 
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Fig. 6-17 UV-IMS-TOF spectra of aniline 

 

6.5.2. Separation of mixtures of compounds 

The UV-TOF spectra has been shown to allow the identification of mixture of 

aromatics. In Fig. 6-18 shows the TOF spectra of mixture of 134 µg/L benzene, 56 

µg/L toluene and 43 µg/L o-xylene. All three molecular ions can be seen without 

separation using a GC column.  
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Fig. 6-18 TOF spectra of mixture of 84 µg/L benzene, 56 µg/L toluene and 43 µg/L o-xylene 

 

6.5.3. Limits of detection and calibration curve 

In Fig. 6-19, the calibration curves for benzene and toluene are shown, respectively. 

The linear range for benzene and toluene are 17.2 µg/L to 1576 µg/L and 2.5 µg/L to 

200 µg/L. As demonstrated in Fig. 6-20 with the lowest concentration toluene exhibits 

only one molecular ion peak near the detection limit and in high concentrations there 

are some fragments at m/z 51, 65, 77 and clusters with a m/z ratio of 107, 
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121,149,176, but the abundances are very small. 
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Fig. 6-19 Calibration curves for benzene and toluene 
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Fig. 6-20 Spectra of toluene with 200 µg/L and 2.5 µg/L 

 

6.5.4. Photo ionization mechanism of aromatics 

As shown in spectra a typical TOF spectrum of aromatics is dominated by the 

molecular ion. For benzene the following process may occurred. The small amount of 

fragments at m/z 65 and 51 can be seen in TOF spectra in Fig. 6-16. 
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for ethylbenzene, the molecule ion with the mass of 106 is ionized by UV light and 

the fragment ion C7H7
+(91) and C6H5

+ (77) are formed by loss of one and two methyl 

group. The cluster ion at m/z 121 formed through adduct of a methyl group. All the 

processes are as demonstrated below. 

CH2

CH3

hv

CH2

CH3

+

CH2
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-CH3

106 106 91

+
CH3

CH2

CH3

CH3
+

121

-CH3 +

77

 

These fragments and clusters can be seen in the spectra in Fig. 6-16, it shows good 

consistent with the experiments. 
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6.6. Measurements of applications to real samples 

6.6.1. Measurements of CWA simulants  

Since the introduction of ion mobility spectrometry in the early 1970s, the IMS has 

been used to detect chemical warfare agents (CWA). Individual CWA simulants 

including dimethyl methylphosphonate (DMMP), usually used as a simulant for Sarin 

and diisopropyl methylphosphonate (DIMP), a chemical by-product resulting from the 

manufacture and detoxification of Sarin are investigated by UV-TOF due to the high 

toxicity of the CWA.  

UV-TOF yield a predominant molecular ion. Minimum fragmentation was the most 

benefit for this method compared with normal electron ionization (EI) mass 

spectrometry as demonstrated in Fig. 6-21. These results show a considerable 

reduction in complexity of the ion signals.  
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Fig. 6-21 Comparison of UV-TOF (above) vs EI (bottom, from NIST chemistry webbook)  for 

dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP)   
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6.6.2. Sulfur-free odorant for nature gas 

For other esters like ethyl acrylate, which is used as a synthetic flavouring substance 

and fragrance adjuvant in nature gas as S-free odorant illustrated in UV-TOF spectra 

evidently one peak at m/z 101, too. 

29

73

88

101

118

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

500
ethyl acrylate
  (MW 100)
CH3

O

CH2

O

 

C
ou

nt
s

m / z  

Fig. 6-22 UV-TOF spectrum of 25 µg/L ethyl acrylate  

 

6.6.3. Diesel oil marker 

The utility of UV-TOF for high speed and high throughput analysis of  5-nonanone in 

diesel oil matrix was also investigated. 5-nonanone is used as a marker substance 

for the identification of the diesel oil. Fig. 6-23 shows the comparison of diesel oil and 

50 ppm 5-nonanone in diesel oil, there are two peaks at m/z 143 and 160, which 

obviously came from the 5-nonanone molecular ion and the water cluster ion. 
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Fig. 6-23 UV-TOF spectra of 50 µg/L 5-nonanone in diesel oil  
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Additionaly the dynamic range of 5-nonanone was investigated. Signal level versus 

concentrations of the analytes are shown in Fig. 6-24. The measurements show a 

linear range of 3 decades with a LOD of 5 ppmv. 

The linear dependence is relatively insensitive to the presence of other compounds in 

a mixture. This property is useful for conducting quantitation of a target compound in 

mixtures and becomes very useful for high-throughput applications because it 

minimizes the need to conduct chromatography separation in some cases. Some 

other usually used soft ionisation methods such as APCI and ESI are susceptible to 

competition for charge effects, which makes them less reliable for conducting 

quantitative measurement in the absence of a separation step.  
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Fig. 6-24 Plot showing linearity of signal vs concentration of 5-nonanone added in diesel oil 

 

6.6.4. Mould (fungi) analysis with UV-IMS-TOF 

Microbial volatile organic compounds (mVOC) include alcohols, ketones, terpenes, 

aldehydes, esters and aromatics  produced as metabolic by-products of bacteria and 

fungi and are detectable before any visible signs of microbial growth appear. They 

play an important role as indoor allergens, and may be responsible for a large variety 

of health problems such as skin irritation, headaches, and asthma symptoms. The 

monitoring of these substances is a tool for diagnosis of the presents of micro-

organisms and helps to reduce the health risks. 

The emissions of bread mould cultures were measured as a practical application of 

real samples using UV-IMS-TOF. Two pieces of bread were put in a closed beaker 

flask and after several days the headspace air was introduced directly into the UV-

IMS-TOF by a carrier gas in 300 mL/min. Fig. 6-25 shows the spectra of the 

emissions after 2 and 5 days culture. After 2 days there are 3 peaks at m/z 47, 64, 93 
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which are corresponding to protonated ethanol molecule ion and its water adduct and 

dimer. After 5 days also the protonated acetone ion with m/z ratio of 59 appeared,. 

Additionally there is a peak at m/z 138, which could be the trimer ion of ethanol or 

other substances which should be analysed with MS-MS. Compared this method with 

the UV-IMS combined with a capillary gas chromatographic colum or with a multi 

capillary column (MCC) [144], it is very fast and convenient to operate and the whole 

measurement was completed in 2 minutes and didn’t need to be separated before. 
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Fig. 6-25 UV-IMS-TOF spectra of bread mould culture after 2 and 5 days                  

with headspace introduction  

 

6.7. Influence of the moisture in UV-IMS-TOF 

Moisture in the sample gas causes the major problem using ion mobility 

spectrometers. It makes spectra change and sensitivity as well as selectively 

decrease [145]. Therefore, the influence of humidity on the UV-IMS-TOF signal was 

investigated.  
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Fig. 6-26 UV-IMS-TOF spectra of 100 µg/L butanone with different humidity of the sample 

gas. Above the relative humidity is 33%, in the middle 10%, and bottom 0.3 ppm absolute 

humidity in sample gas.  

 

Absolute humidity (AH) in ppm are measured by the Panametrics moisture monitor 

series 35, the relative humidity (RH) was measured with a standard RH sensor. 

In the present of water hydrated monomer M+(H2O)n or MH+(H2O)n can be formed as 

shown in Fig. 6-26. When butanone in normal dry sample gas of 0.3 ppm absolute 

humidity the major peak is at m/z 73 (MH). There is only one additional hydrated ion 

at m/z 91 (MH+(H2O)) with a magnitude of 13% to that of the molecule ion. When the 

sample gas relative humidity increases to 10% (25°C), the signal of molecule ion’s 

height decreases to the half of that before, and the ion at m/z 91 rises to 19% of that 

of molecule ion. When the moisture increases even to 33% relative humidity (25°C), 

peak at m/z 73 is only 1/30 to that in dry gas. Besides one water bound protonated 

ion at m/z 91, which has magnitude of 33% of that of the base molecule peak, 

additional peaks of molecule ion plus water clusters appear at m/z 109, 127, 145, 

163, 181, 199 and so on, they have the intensities of about 13% of that of the base 

molecule peak. Water peaks at m/z 18, 36, 54 are relatively higher, they have the 
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magnitude of 11%, 28% and 33%, respectively of that of the molecule ion. 

Further investigations with different analytes, selected from different chemical groups 

including ethanol and benzene were investigated. They all show water cluster ions in 

a making high humidity. Those additional peaks decreasing the sensitivity of UV-IMS-

TOF sensitivity as showed in Fig. 6-27. The reason for the different behavior of 

benzene could be the nonpolar structure and the related lower reactivity with water 

molecules. 
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Fig. 6-27 Decrease of the signal area of UV-IMS-TOF spectra for ethanol, benzene and 

butanone with increasing relative humidity. The major molecular ion peak area was 

normalized for all analyte. 

 

Detection limits of benzene, ethanol and butanone were determined using 

exponential dilution under 20% RH and 0% respectively. As listed in Table 6-5, in the 

case of 20% RH in nitrogen as carrier gas, the detection limits are about 10 times 

higher than those using dry gas as carrier gas. 

Table 6-5 Detection limits of benzene, ethanol and butanone with different relative humidities 

Detection limits (µg/L)   
0% RH 20% RH 

Benzene 2.5 30 
Ethanol 8.6 120 

Butanone 0.4 6 
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7. Conclusions and outlook 

Ion mobility spectrometry is a separation technique based on the average cross-

section of ions. When interfaced to mass spectrometer, additional mass information 

of the ions could be collected. As shown by theoretical and experimental results in 

this thesis, a carefully designed UV-IMS[PID] coupling with oa-TOFMS was 

successfully self-made. It offers high transmission, simple spectrum, high speed and 

it is able to record the whole mass spectrum quasi simultaneously. These features 

make it attractive to identify ions, fragments or ion clusters in IMS and to conduct 

high-throughput molecular analysis of large libraries for compound confirmation and 

purity assessment.  

 

The pinhole interface system to the UV-IMS [PID]-TOF was characterized by studying 

a two and a three stage interface. For the two stage pumped interface the effect of 

the distance between two skimmers on pressure and variations of potentials and 

dimensions of the pinhole on ion yield were explored. It is proved that with a diameter 

of 0.25 mm for the sampler, a diameter of 0.3 mm of the skimmer and a distance 

between them set to 6 mm, the vacuum can reach 8.2x10-6 mbar, but it is not 

desirable for TOF. With the construction of the 3 pinhole system, the vacuum can go 

down to 10-7 mbar and the signal can also be detected with different dimensions of 

the pinhole. As regard to the compromise of ion yield and vacuum, the best 

configuration is with a diameter of 0.5 mm for the pinhole of the pre-sampler, a 

diameter of 0.2 mm for the pinhole of the sampler and a diameter of 0.4 mm for 

pinhole of the skimmer, and the distance between the sampler and skimmer set to 5 

mm. 

 

By simulation with SIMION v. 7.0 it was proved that the configuration of the three  

stage differential pump system and the Einzel lens was suitable for an orthogonal 

design of an interface between atmospheric pressure and the TOFMS. The results 

from SIMION modeling suggested that the beam could be made parallel by the 

Einzel lens in the region of the TOFMS extraction region, and it will be affected by 

initial energy of the ion beam. The ions can reach the microchannel plate when the 

initial energies Ke are not too high or with an additional deflector. The voltages on the 

repeller and the acceleration region have much more effects compared to the 
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number of field guard rings and length of the acceleration region. 

The pinhole interface systems are optimized and proved to be able to identify ions 

that has been ionized in IMS. Although reactions downstream of the Mach disc can 

create sampling errors that distort measured ion distributions, it was shown that it can 

be adjusted by the voltage on the sampler of the interface of the instrument. The 

identity of the ions observed in this work are pretty much as expected and agree with 

literatures. 

 

This device has been proved to have unique benefits for volatile organic compounds 

analysis. The utility of the UV-IMS[PID]-TOF for high-speed and high throughput 

analysis of different groups of chemicals, including ketones, alcohols and aromatics 

were studied. The detection limits are in the range of 0.8 µg/L for acetone, 8.6 µg/L 

for ethanol and 17.2 µg/L for benzene with direct permeation sampling. The 

instrument has a dynamic range of about 3 decades for all detected compounds. A 

wide range of applications including chemical weapon simulation substances 

detection as well as fungal analysis were achieved with this device. It yields simple 

spectra that facilitate analysis.  

 

Compared with the most commonly used ionization methods such as atmospheric 

pressure chemical ionization (APCI) and electrospray ionization (ESI), the UV 

photoionization works on a different principle. The excitation of a molecule by a 

photon can directly eject an electron if the photon energy exceeds the ionization 

potential of the molecule. This process is independent of the surrounding molecules, 

therefore reducing ion suppression effects. So it is possible to analyze mixtures 

without resorting to GC to separate the components and itoffers better quantitation 

accuracy in mixtures. Sample preparation is simple, no additives are needed. The 

generality of the photoionization condition make it possible for near-universal soft 

ionization of a wide variety of compounds. 

 

Compared the results of TOF spectra with UV-IMS spectra, most VOCs appearing in 

UV-IMS are monomer or protonated monomer ions. For the selected ketones from 

acetone to nonanone, the most abundant ions are protonated molecular ions and 

beginning from hexanone, the fragmentation is evident and can be detected in IMS. 

In the case of selected alcohols, not all of them have base peak corresponding to 
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protonated molecule ions. Some of them such as 3-methyl-2-butanol and 2-hexanol 

the fragment ion are most abundant. These two groups of compounds all have 

obvious water adducts peaks because of high proton affinities. For aromatic 

substances the major ion is the molecular ion. 

 

As enumerated above, the UV-IMS[PID]-TOF could be a powerful means for the rapid 

analysis of a wide variety of environmental, industrial and biological sample mixtures 

by benefits of minimal fragmentation, simple sample preparation and near-universal 

detection efficiency for a wide class of compounds. 

 

In order to assign the peaks in UV-IMS better, in the future, a real time two 

dimensional separation of simultaneous drift time in IMS and flight time in TOF 

should be set up. Ions can be gated for 1 ms into the drift region at a frequency of 10 

Hz, which is normally used by our UV-IMS made in ISAS. This provided maximum of 

100 ms for the TOFMS to collect about 2000 spectra with a maximum length of 50 µs 

when operated at a frequency of 20 kHz. The UV-IMS gate and TOFMS oa-extractor 

could be both triggered by a pulse generator and data acquisition should be delayed 

with respect to both UV-IMS gate and TOFMS extraction, to reduce the size of data 

array. Two dimensional acquisition software should also be developed. 

 

To increases ion transmission efficiency, gas-filled RF-quadrupole provides a perfect 

interface between atmospheric pressure ionisation source and the TOF mass 

analyser, which is working in a high vacuum condition. The cooling property of the 

gas-filled quadrupole can be served as a tool to confine an ion beam in order to 

obtain a smaller space volume, which is important to improve MS resolving power.   

 

The mass resolving power of the instrument can be improved in the future by using 

reflector time-of-flight analyser (ReTOF), which almost doubles the flight path and 

hence the dispersion in time of flight, but this effect is of lower importance than its 

capability to compensate for initial energy spread. 
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10. Abbreviations index 

a0  speed of sound in the interface  

A analyte molecule 

AB analyte molecule 

AB* excited analytical molecule AB 

[AB] concentration of analytical molecule AB 

AH absolute humidity 

APCI atmospheric pressure chemical ionization 

APPI atmospheric pressure photoionization 

b the length of the modulator in X-direction 

ß radioaktive particles 

c concentration 

C drift gas molecule 

C0  initial concentration of sample gas 

Cg sample gas concentration 

[C] conzentration of drift gas molecule C 

CWA chemical warfare agents 

d1 lengths of the modulator of linear TOF 

d2 lengths of the accelerator of linear TOF 

D lengths of the field-free drift tube of linear TOF 

Do  diameter of the orifice 

D1 distance of the start position of ions in modulator of TOF 

ε exponential coefficient 

e electron 

E Elcetric field 

E1 extracting  field in TOF 

E2 Accelerating field in TOF 

EI electron impact 

ESI electrospray ionization 

f mass spectrum repetition rate 

f0 focus length 

F Faraday constant 

FAB fast atom bombardment 

FWHM full-width at half-maximum height  

G0 gas flow rate  
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G1 first grid in TOF 

G2 second grid in TOF 

h Planck’s constant 

i current 

I transmitted photo intensity 

I0 incident photo intensity 

I0-I absorbed photo intensity 

IMS ion mobility spectrometer 

k reaction rate constant 

kb Boltzmann constant 

K Ion mobility 

K0 Ruduced ion mobility 

Ke ion’s kinetic energy   

∆Ke ions energy spread 

Kx ion’s initial kinetic energy   

Kz ion’s kinetic energy after orthogonal acceleration  

L length of field-free drift tube of TOF 

Ld length of drift tube of IMS 

Li length of the ionization room 

Lm wavelength of UV lamp 

m analyte ion mass  

∆m    mass difference 

M analyte molecule 

M+ analyte molecular ion 

Mm molecular mass 

MALDI matrix assistant laser desorption ionization 

MCC multi capillary column 

MCP microchannel plate 

MH+ protonated analyte molecular ion 

MS  mass spectrometer 

n0 source number density 

η photoionization efficiency 

ηs  photoionization cross section 

nI Ionendichte  

N number density of drift gas 

N0 Avogadro constant 

Ω collision cross section of the ion 
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oa orthogonal acceleration 

P pressure 

P0 Standard pressure 101,3 kPa 

PID photoionization detector 

ppm percent per million 

δ  specific heat ratio   

R reaction rate 

Rg  individual gas constant 

Rm resolving power of mass spectrometer 

RH relative humidity 

s Adsorption coefficient 

SIMS secondary ionization 

t time 

td drift time of ions in IMS 

T Temperature 

T0 Standard temperature 273 K 

TDC Time-to-digital converter 

TOF  time-of-flight mass spectrometer 

µ  Reduced mass  

UV ultraviolet 

UV-IMS ISAS UV-IMS 

UV-IMS[PID] ISAS UV-IMS, operated as PID 

vc  carrier gas flow rate 

vd Velocity of the ions in IMS 

Vg  volume of the dilution flask 

Vx Ion’s initial velocity in x direction  

Vy Ion’s initial velocity in y direction  

vz Ion’s initial velocity in z direction  

∆vz  initial velocity of the ion towards the repeller 
z charge of the ions 

∆z spatial spread of ions  
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