
Final Report

SAADI

Integrated Design Approach
of Adapted Schedulers

Project Group 424

Project Group
at the Computer Science Department
of the University of Dortmund

March 2003

Instructors:

Prof. Dr. Horst F. Wedde,
MSc Muddassar Farooq,
Dipl.-Inform. Mario Lischka

Students:

Ammar Mohamed Ammar,
Abdulwhab Bador,
Christian Bockermann,
Rolf Hipler,
Ioannis Karagiorgos,
Piotr Kasprzak,
Tobias Malbrecht,
Simon Muras,
Mattias Sẗoneberg,
Markus Wübben,
Erdal Yigit

This document was created with LATEX 2ε.

Contents

Contents I

List of Figures III

List of Tables V

Listings VII

1 An Introduction to SAADI 1
1.1 Tasks Challenges . 1

2 Theoretical Approach 3
2.1 An Introduction of SAADI . 3

2.1.1 Formal Representation . 4
2.2 Regehr . 7

2.2.1 Hierarchical Scheduling . 7
2.2.2 Guarantees . 8
2.2.3 Guarantee Conversions . 11

2.3 MHS Generation . 14
2.3.1 Mapping of the application requirements to a word 15
2.3.2 The context free grammar . 15
2.3.3 Algorithm for the word-problem / Hierarchy Generation 17

2.4 Fitness and Genetic Operators . 19
2.4.1 Integration with GAs . 20

3 SDL 23
3.0.2 Hardware Requirements . 23
3.0.3 Application Requirements . 24

4 Testing SAADI 27
4.1 Testing cycle of SAADI . 27
4.2 Valuation of scheduler hierarchies . 27
4.3 Measuring scheduling criteria in SAADI . 28

4.3.1 Linux Trace Toolkit . 29
4.3.2 Preparing the testphase . 29
4.3.3 LTTParser . 30

4.4 Simulation of applications . 30
4.5 Running the tests . 32

I

CONTENTS

5 Implementation 33
5.1 Java . 33

5.1.1 The Abstract Scheduling Model (ASM) . 33
5.1.2 The SAADISim(ulation) package . 40
5.1.3 Parser . 43
5.1.4 Saadi Database . 45
5.1.5 The Database Interface . 46
5.1.6 The ConnectionManager and SDLObjectStore class 46
5.1.7 Graphical Users Interfaces . 50
5.1.8 Main Components . 51
5.1.9 MainFrame . 51
5.1.10 SDLFrame . 51
5.1.11 ASMFrame . 52
5.1.12 SDLSourceCodeViewer . 53
5.1.13 CodeGen Source Code . 54

5.2 The Code Generation-Class . 54
5.2.1 Template-file . 54
5.2.2 Public methods . 54
5.2.3 Validation . 55
5.2.4 Implementation . 55

5.3 Kernel . 55
5.3.1 Framework . 55
5.3.2 Interface . 61
5.3.3 Scheduler Implementation . 63
5.3.4 The SAADI System Calls . 69
5.3.5 The SAADI Procfs Interface . 72

6 Evaluation of results 73
6.1 SDL file examples . 73
6.2 Results . 74

6.2.1 Genetic algorithm of SAADI . 74
6.2.2 Linux standard kernel . 74

6.3 Evaluation . 74
6.3.1 Genetic algorithm . 74
6.3.2 Comparison to the standard linux kernel . 75

7 Conclusion 77
7.1 Future Works and Long Term Research . 78

A Extension of SAADI 81
A.1 ASM . 81
A.2 Kernel . 81

B Bibliography 83

II

List of Figures

2.1 Traditional Scheduler Design Cycle . 4
2.2 SAADI Scheduler Design Cycle . 4
2.3 Example hierarchy of schedulers . 8
2.4 An exemplary syntax tree and the derived hierarchy 18

4.1 Testing cycle of SAADI . 28
4.2 Sample trace . 29

5.1 UML diagram of a hierarchy . 36
5.2 UML diagram for ASM generation. 38
5.3 UML diagram ofedu.ud.saadi.asm.earley 41
5.4 UML diagram of the data classes in the SAADIsim package 42
5.5 UML diagram of the implemented events . 43
5.6 UML Diagram of the GUI . 47
5.7 Pseudo-code for the code-generation . 55
5.8 The fork() code path . 59
5.9 The exec() code path . 61
5.10 The schedule code path . 62

6.1 Maiximum, minimum and average fitness values of 12 generations. 75
6.2 Best hierarchy in 12 generations. 76

III

LIST OF FIGURES

IV

List of Tables

2.1 Guarantee conversions induced through various scheduling algorithms 12
2.2 Direct guarantee conversions . 14

5.1 SDL TABLE . 45
5.2 Hierarchy TABLE . 46

V

LIST OF TABLES

VI

Listings

5.1 The schedulable structure . 56
5.2 The scheduler structure . 57
5.3 The runqueue structure . 58
5.4 per schedulable data for Linux scheduler . 63
5.5 runqueue data for Linux scheduler . 63
5.6 per schedulable data for PS scheduler . 64
5.7 The PS Algorithm . 64
5.8 eevdf data . 65
5.9 eevdf algorithm . 66
5.10 RESBS algorithm . 67
5.11 A one argument Linux system call macro . 69
5.12 The SAADI system call prototypes . 70
5.13 The SAADI saadischedparam structure . 70
5.14 The SAADI classest structure . 70
5.15 The SAADI typest structure . 71
5.16 The SAADI scheduler system call structure . 71

VII

LISTINGS

VIII

1 An Introduction to SAADI

by Markus Wuebben

Operating systems can now be found in many electrical devices ranging from desktop PCs, server sys-
tems to PDAs and mobile phones. All these devices are embedded in different environments and need
to satisfy different requirements. While server systems may want maximum task-throughput, desktop
PCs should provide maximum interactivity and mobile devices set special focus on energy-efficient
computing. Schedulers are one of the core elements of operating systems affecting its behaviour more
than any other component. Good task-scheduling can support if not enforce the demanded behaviour
of the operating systems. Unfortunately even schedulers in modern operating systems still provide
only a limited set of scheduling capabilities. This motivated us to start a two semester project at the
University of Dortmund calledSAADI - An Integrated Design Approach to Adaptive Schedulers. In
the scope of this project we lift schedulers to a whole new level by making themadaptive. We inter-
pret adaptability in the sense that schedulers are sensitive to the requirements a task-set of a system
has.

This report depicts the results of our work.
In chapter 2 we present the theoretical foundations of our approach, focus on theScheduler De-

scription Languagein chapter 3 and in chapter 4 we present our testing methods. Chapter 5 outlines
the implementation details. Finally we conclude our work in chapter 7.

1.1 Tasks Challenges

by Christian Bockermann

There are many different challenges to be met in the development of an efficient scheduling algo-
rithm. As mentioned above computers run in different environments which are mainly defined by the
software they run. SAADI approaches the task to find well-optimized scheduler by classifying tasks
(i.e. threads) of software upon their requirements. Taking a closer look at an internet browser one
can specify different tasks of that browser: the User-Interface-thread, a thread for downloading data
and perhaps an interactive multimedia thread playing a video. These threads define different criteria
they need to meet while running. The UI-thread for example waits for user-input while the download-
thread runs in background. The download- thread generates a lot I/O, while the multimedia-thread
is CPU-bound computing a lot of frames. The later one needs a certain amount of CPU time in a
periodical manner to support a certain frame-rate.

Since most of these facts are known when the software is being written the first approach of SAADI
is to define a language by which they can be expressed. This is defined as the SAADI Description
Language, a XML-based language described in chapter 3. As the requirements of software are defined
the next step is to find an algorithm which is optimal to schedule all these tasks. Since one can not
define all the tasks which are to be run at a certain time it is hard to find an optimal scheduler. SAADI
uses a hierarchical scheduler tree to combine benefits of several different schedulers into one scheduler

1

CHAPTER 1. AN INTRODUCTION TO SAADI

tree. By testing several randomized scheduler trees which are then evaluated and improved by a
genetic algorithm (see chapter 2), SAADI tries to find a scheduler tree which meets all requirements
in an efficient manner. This leads to three basic parts of the SAADI framework: The genetic algorithm
with the SDL-parser, a Linux kernel framework to easily implement various scheduling hierarchies
and a set of scripts to start the Linux Trace Toolkit used to measure the performance of the generated
hiearchy. The basic steps to explore a set of randomly generated hierarchies (i.e. apopulationof
hierarchies) are simple:

1. Specify software requirements using the SDL-language.

2. Generate a basic population of hierarchies.

3. Create a test environment for a hierarchy of the population, compile a kernel and measure its
performance.

The last two steps are to be repeated until a hierarchy meets the requirements and achieves a good
fitness. The results of the tests are stored in a relational database. This makes it easy to find an
appopriate hierarchy for a similar specification later without the need to go through the whole testing
procedure again.

2

2 Theoretical Approach

2.1 An Introduction of SAADI

by Muddassar Farooq

The emergence of internet market towards the end of the last century has not only revolutionized the
PC market but also helped in establishing new paradigms for business processes. Hence we expe-
rienced enormous advancements in processor technology, its accompanying peripherals on the one
hand and in differentuser centeredsoftware applications exploiting these advancements on the other
hand. This resulted in a huge paradigm shift about the usability of personal computers (PC) from
their traditional use in automating task to a cardinal component of a computer supported collaborative
work (CSCW) environment. Nowadays in a CSCW environment, a user could start a download from
a remote site, attending a multimedia conference at the same time, listening to light music on his CD,
and taking notes of minutes of the meetings, reading/sending important emails in the mean time and
running a complex simulation in the background. A flux of these evolving applications is making the
processor usage pattern of the applications unpredictable because of greater diversity in the needs of
the users and their CSCW environments. These conflicting but coexisting scheduling requirements
make it an uphill and difficult task to have a generic scheduler that could easily adapt to the needs of
such a wide spectrum of the user community.
Traditionally the field of scheduler design has been enthralled with operating systems designers whose
major concern was to allocate a fair share of processor time to each task so that their response time
is bounded but no guarantees are given to turn around time or deadline failure rates. On the con-
trary, designer of real time schedulers try to meet the deadline of the task with rate-monotonic and
earlier deadline first (EDF) algorithms, but offer no support for conventional applications. Yet third
community of designers dedicated considerable efforts to hybrid approach in which the scheduling
behavior is realized using hierarchical scheduling paradigm. This hierarchical scheduling paradigm
enabled schedulers to schedule a mix of heterogenous applications. However in all these approaches,
users’s communitywas never involved in the design cycle of schedulers (see Figure 2.1). This leads
to not only unsatisfactory experience of the customers in theinformation technologybusiness on the
one hand but also added to the frustration of dedicated application developers who were unable to
provide scheduling policies for even for those applications that are developed by themselves. This
non-existence of communication channel between a user of PC and the scheduler of PC provided
us the grist for the mill in doing research in an interesting field ofuser centered scheduler design
(UCSD).
This paper describes our SAADI (Integrated Approach for Adaptable Schedulers) project. In this

project we try to overcome this anomaly by proposing auser centered scheduler designapproach so
that a user is actively involved in the design cycle of a scheduler (see Figure 2.2) and hence occupy a
pivotal position in formulating scheduling policies. In our framework SAADI, we try to involve a user
by asking him to specify syntactic structure of his applications of interest, their relative importance
and value to him, and semantic specification for scheduling requirements for the operating system

3

CHAPTER 2. THEORETICAL APPROACH

OS−Designers

Users/Programmers of OS

Scheduler
Design

Scheduling
Policies

Operating System
on PC

Evaluation
& Feedback

Figure 2.1: Traditional Scheduler Design Cycle

scheduler. By user of the scheduler in this paper we mean that a person who interacts with the OS
to achieve his goals. Hence in our framework we take care of three types of user: A novice user, An
advance user and Developer. A novice user is a person who has virtually little or no programming
experience but has a knowledge about different type of applications that he will be running on his
machine. An advance user is the one who has some experience in programming and has the ability to
describe his applications and their scheduling requirements. A developer is an advance user who is
involved in developing applications to be run on a machine and hence has the ability to describe the
demands of his applications at each thread level.

Users/Programmers

Scheduling
Policies

Scheduler
Design

OS on
Computers

Evaluation/
Feedback

SAADI

Figure 2.2: SAADI Scheduler Design Cycle

2.1.1 Formal Representation

Abstract Scheduler Model is at the moment formulated as Meta Hierarchical Scheduler (MHS) a
variant of HLS.

Definition 1 (Schedulable Object) A Schedulable ObjectSSr
j can be an application (Ak), a thread

k of an application j(Tkj) or another scheduler, that will be scheduled by its parent schedulerSr.

Definition 2 (Guarantee) A guaranteegSr
Sk

is a contract between a schedulerSr and a schedulable
objectSk regarding the allocation of CPU time bySr to Sk according to the definition ofguarantee

4

2.1. AN INTRODUCTION OF SAADI

as long asgSr
Sk

is enforced.

Definition 3 (Guarantee Set) The following guarantee set G is incorporated in our ASMG = {PS,
PSBE, RESBS, RESPS, FP , ALL, NULL} where PS means proportional share, PSBE pro-
portional share with bounded error, RESBS means a periodic reservation, RESPS a probabilistic
reservation and ALL means that complete CPU time, NULL means no guarantees.

Definition 4 (Scheduler Set)Our ASM supports at the moment a scheduler setS
(go)
r(gi)

whereSr =
{PS∗, RESBS∗, FP, O(1)}, gi ∈ G is an input guarantee thats ∈ Sr receives from its predecessor
schedulersp ∈ Sr and go is an output guarantee that schedulers ∈ Sr provides to its successor
schedulersc ∈ Sr .Where RESBS,TS,PS FP schedulers provide their respective guaranteesg ∈ G,
and O(1) is a standard Linux scheduler by Ingo Molnar.

Definition 5 (Schedulable Set)A schedulable setSl is defined as

Sl =
⋃

Sr ∪
⋃

k=1...n

Ak ∪
⋃

i = 1 . . .m
j = 1 . . . l

Tij

WhereAk is an application with single thread of execution andTij represents thread j of multithreaded
application i.

Definition 6 (Schedulable Relation)A schedulable relationshipSRlm between schedulable object
m and scheduler l exists if

1. ∃ l ≺ m → m is a successor of l

2. m receives on this arc guaranteegm
l provided by scheduler l

Definition 7 (Root Scheduler) A root schedulerSroot ∈ Sr, Sroot /∈ S′
r is the one that gets as input

guaranteeSroot(gi)
= All i.e it has all of CPU time at its disposal for allocating it to its successor

schedulables.S′
r refers to a scheduler set whose members can not become a root scheduler. At the

momentS′
r = {O(1), FP}.

Definition 8 (Meta Hierarchical Scheduler) A structureMHS = {Sroot, G, Sl, SRlm} in our ASM
is called aMeta Hierarchical Scheduler, where

(1) Sroot is the root scheduler of the current hierarchy (Definition 7)

(2) G is the guarantee set supported in the current hierarchy (Definition 3)

(3) Sl is the schedulable set (Definition 5) synthesized from SAADI-SDL in a manner that satisfies
following conditions ⋃

k=1...n

Ak ≺ mk = ∅

5

CHAPTER 2. THEORETICAL APPROACH

⋃
j = 1 . . . l

Tij ≺ mij = ∅

This implies that applications with single threads or threads of multithreaded applications could
only appear at the leaf of a hierarchy.

(4) SRlm ⊆ Sr × Sr subject to following conditions

a) l ∈ Sr,m ∈ Sr,∀l, m : l 6= m

b) ∀l, m,∃SRlm ⇒6 ∃SRml∧ 6 ∃SRkm :: k ∈ Sr,∀k 6= l

c) if m = RESBS ⇒ ∃SRlm ⇔ l = RESBS

d) if m = PS ⇒ ∃SRlm ⇔ l ∈ {PS, RESBS}

e) ∀l, m,∃SRlm ⇔ Sm(gi) = S
(gl)
l = gl

m

Definition 9 (Guarantee Operator) A Guarantee Operatorfg is a mapping between requirements
of applications specified in SDLRsdl to a Guarantee Set (Definition 3) supported in SAADI

fg : Rsdl 7→ Pot(G)

where Pot(G) is a set of all subsets of a Guarantee Set supported in SAADI.

Definition 10 (Guarantee Word) A Guarantee WordWg of length n is a set of tuples of guarantees
with length n. Let us assume that a SDL has n applications

S = Perm(f(A1)× f(A2)× ...× f(An)), f(Ai) ∈ Pot(G), 1 ≤ i ≤ n

where Pot(G) is a set of all subsets of a Guarantee Set supported in SAADI.
Now these tuples could be easily mapped to a set of terminal characters (T)

Wg : S 7→ T ∗,Wg(a1, ..., an) 7→ {a1#a2#...#an}

wherea1,a2,a3....an are terminal character for corresponding guarantee type and # are separation
characters.

Definition 11 (Meta Scheduler Language)A Meta Scheduler Language MSL in our ASM has the
form MSL = (T, V, S, P) where

• T, the finite alphabet, from which the language is formed (terminal characters) i.e a terminal
character for a guarantee type

• V, a finite alphabet, with T disjunct set of help characters (variables)

• S ∈ V , the starting symbol

• P, a finite set of derivation rules (productions)

With the help of MSL we can build a MHS that meets that satisfies the requirementsRsdl of a
set of applications.

6

2.2. REGEHR

Definition 12 (Meta Scheduler Grammar) A Meta Scheduler Grammar (MSG) provides a formal
description of tuples of MSL (Definition 11) with the help of which we could build a MHS (Definition
8) in our ASM that satisfies the requirements of applications specified in SDL.

The form of our grammar MSG = (T, V, S, P) can be found at??.

2.2 Regehr

by Piotr

It is clear that our approach to the problem of scheduling of tasks implies a modular, non-monolithic
framework that is able to handle very diverse application and user demands. For example one user
wants a scheduler that optimally supports his use of a PC as a personal workstation involing mostly
running interactive and multimedia applications. Therefore the scheduler needs to support time-
sharing and soft-realtime scheduling policies. Another user might want to use the PC as a web-server
requiring high throughput (and no soft-realtime scheduling capabilities that might have a negative
impact on the throughput) and even load isolation (e.g. if the user is a provider who wants to use
the web-server for various customers and also wants to guarantee a fair use of CPU-time between
them - a sensible wish). A general monolithic scheduling algorithm can not fulfill all these demands
in an optimal way. Instead it is just optimized for a general usage scenario that was anticipated by
the developers (if the user is lucky the developers of the scheduler also tried to minimize worst case
behavior in some not-so-common situations). Another obvious shortcoming of this traditional ap-
proach to scheduler design in multi-purpose operating systems (called MPOS from now on) is also
the inability to optimize or adapt the scheduler to new application requirements that might emerge in
the future and are unforseen at the point of development (which is quite common in the fast moving
computer industry). So after looking through various research on scheduler models that are able to
support extremly diverse scheduling behavior we finally found a perfect fit: hierarchical scheduling.
The theoretical foundation of our project is mainly based on the research done by John Regehr about
the composition of schedulers into hierarchies.

2.2.1 Hierarchical Scheduling

The main idea of the hierarchical scheduling approach is to arrange simple, well understood schedulers
(e.g. fixed-priority, reservation based, time-sharing) into a hierarchy to derive the complex scheduling
behavior needed to support a given set of applications. A simple example that illustrates this idea and
also allows a first glimpse at the power of this model is shown in figure 2.3.

Schedulers are shown as boxes with their type denoted inside. The arrows symbolize the ”scheduled-
by” relation. The root scheduler of this simple hierarchy is a fixed-priority scheduler (FP) that sched-
ules a cpu-reservation based scheduler (RES) with high and a ”joint scheduler” (J) with low priority.
A joint scheduler is a construct that allows us to reuse slack time that was reserved for a scheduler
or a task but not used up. It is the only type of scheduler that can be ”scheduled by” more than one
scheduler (from a graph-theoretical point of view this construct generalizes the underlying structure
of the hierarchy into a directed acyclic graph). The reservation-based scheduler (RES) can provide
the soft-realtime requirements needed by the video-player application because it takes precedence in
the distribution of CPU-time in relation to the joint scheduler (enforced through the fixed-priority root
scheduler (FP)). On the other hand the use of the joint scheduler (J) allows us to guarantee the alloca-
tion of a certain amount of CPU-time to the proportional-share scheduler (therefore preventing a pos-

7

CHAPTER 2. THEORETICAL APPROACH

FP

RES

PS

J

Video
Player

Word
Processor

Voice
Recognition

Low
High

Figure 2.3: Example hierarchy of schedulers

sible starvation of the word-processor or voice-recognition application that could have been induced
by the soft-realtime requirements of the video-player application in a traditional MPOS scheduler)
and also to use possible slack time in the schedule when the video-player application does not use
up its reserved CPU-time amount. So by using a simple reservation based scheduler, a fixed-priority
scheduler and a joint scheduler as components and arranging them in a ”sensible” way into a hierar-
chical structure we were able to solve one major scheduling problem that is often exhibited by MPOS
schedulers with some minimal soft-realtime support: starvation of tasks.

2.2.2 Guarantees

We just articulated that we needed to arrange the basic scheduler components in a ”sensible” way to
derive a scheduling behavior that satifies our requirements. But what does ”sensible” mean in this
context? Clearly the arrangement of the schedulers can not be arbitrarily. Let’s revisit our example
hierarchy of figure 1. If for example we scheduled the joint scheduler with high priority and the reser-
vation based scheduler with low priority the reservation based scheduler would not be able to provide
the desired soft-realtime scheduling to its child task (it would only be scheduled if the proportional-
share scheduler had no tasks to schedule). But how is it possible to analyze and formally show that a

8

2.2. REGEHR

given scheduling hierarchy exhibits the desired behavior? At this point the concept of a ”guarantee”
comes into play. A ”guarantee” is a fundamental abstraction of our scheduler model. It is a formal
statement describing the allocation and distribution of CPU-time promised to a scheduled object in
our hierarchy (task or scheduler) by its parent. Guarantees are independent of a particular scheduling
algorithm in the sense that different scheduling algorithms are able to provide the same guarantee.
Now it becomes possible to express and analyze scheduling behavior with a set of abstracts: every
scheduler in the hierarchy needs an acceptable ”incoming” guarantee from its parent scheduler to pro-
vide ”outgoing” guarantees to its children. This relation is determined by the implemented scheduling
algorithm. A guarantee conversion system is described in section (2.2.3). From the point of view of
the guarantee system the problem of creating a ”sensible” hierarchy that is able to meet the desired
requirements can be described as follows: the purpose of the scheduling hierarchy is to convert the
”ALL” guarantee that represents 100% of CPU-time and is provided to the root scheduler of the hi-
erarchy by the operating system into a set of guarantees matching the requirements of the application
set. So let’s have a look at the syntax and semantics of the guarantees implemented in our SAADI-
framework at this point. The following syntax is used:

GUARANTEE-TYPE [params]

where[params] is a comma separated list of numerical values describing various parameters. In-
tegers normally represent time units in the millisecond scale (unless otherwise stated).

The ”ALL” guarantee

”ALL” represents a formal statement about the assignment of 100% of the CPU-time. It is given to the
root scheduler of the hierarchy by the operating system and can obviously be used by any scheduler
as an acceptable ”incoming” guarantee.

The ”NULL” guarantee

When no guarantee about the amount or distribution of CPU-time can be made (indicating simply a
best-effort scheduling) the ”NULL” guarantee is used.

CPU reservation guarantees (”RES”)

CPU reservation guarantees describe soft-realtime scheduling behavior and are especially useful in
conjunction with applications that are not able to degrade gracefully when they receive a smaller
amount of CPU-time or an inadequate distribution of CPU-time than they require. Most multimedia
applications fall into this category (e.g. your favriote mp3-player or CD-burning tool). Our scheduling
framework is not able to guarantee hard-realtime behavior due to the missing hard-realtime support in
the standard linux kernel. Stolen time due to IO-operations, swapping, interrupts or other operating
system activity can not be directly guarded against without a significant change of the appropriate
code-paths inside the kernel which is beyond the scope of our work. Nevertheless the 2.5.x (soon to
be 2.6.x) linux kernel - the platform for our scheduling work - has been greatly improved in the area
of system induced latencies and can handle most real-time applications pretty well. In the following
detailed description of the different CPU reservation guarantees ”x” denotes an amount of CPU-time
while ”y” denotes a period. Both values are given in milliseconds. Please note also that - following
John Regehr’s nomenclature - ”soft” means at least the described amount of CPU-time guaranteed

9

CHAPTER 2. THEORETICAL APPROACH

while ”hard” means excatly the described amount of CPU-time guaranteed. This is not to be confused
with the normal meaning of ”hard” and ”soft” in conjunction with realtime scheduling policies. The
following types of guarantees are defined:

• RESBS x, y
Denotes a basic-soft CPU reservation guarantee with amount x and period y

• RESBH x, y
Denotes a basic-hard CPU reservation guarantee with amount x and period y

• RESCS x, y
Denotes a continuous-soft CPU reservation guarantee with amount x and period y

• RESCH x, y
Denotes a continuous-soft CPU reservation guarantee with amount x and period y

As can be easily seen all four guarantee types are constructed by picking either ”basic” or ”contin-
uous” and ”soft” or ”hard”. The meaning of each will be described now.

”basic” CPU reservations The formal semantic of a ”basic” guarantee is that there exists a time
t so that for every integer i the receiving schedulable object is promised a CPU-time allocation of x
time units in every interval of[t + i ∗ y; t + (i + 1) ∗ y] time units. No guarantees regarding the time t
or the the distribution of the CPU-time amount ”x” inside the period-length interval of ”y” are made.

”continuous” CPU reservations ”Continuous” CPU reservations guarantee that for any time t
a CPU-time amount of x will be provided in the interval of[t; t + y]

This implies that the distribution of CPU-time in each interval of the form[t+i∗y; t+(i+1)∗y] (as
defined in 2.2.2) must be the same therefore leading to a much stronger guarantee: every ”continuous”
guarantee is also a ”basic” one the opposite being not true.

”hard” CPU reservations A ”hard” CPU reservations provides the receiving schedulable object
with exactly the x time units every period of y time units - and no extra time, even if it would be
available in the schedule. This mechanism is meant to constrain the CPU-time usage of applications
that can not generate additional value for the user from extra CPU-time.

”soft” CPU reservations ”Soft” CPU reservations express the same guarantee about the pro-
vided CPU-time like the ”hard” variant. In contrast to the latter additional CPU-time may be provided
to the application on a best-effort basis if available. It is assumed that applications with a ”soft”
reservation guarantee can use the extra time to provide additional value for the user.

Proportional-share guarantees

”Proportional-share” guarantees as used in our scheduling framework can roughly be devided into two
groups: proportional-share guarantees with bounded error (PSBE) and the weaker proportional-share
guarantees without any deterministic bounds (PS).

10

2.2. REGEHR

proportional-share guarantees with bounded error (PSBE) This guarantee type has the
following syntax:PSBEs, δ where ”s” denotes the share of the CPU-time promised to the receiving
object (s ∈ [0..1]). Please note that the share ”s” is absolute rather than relative allowing for an easier,
localized analyzing of the resulting hierarchy. Theδ-parameter is a bound on the error-term in the
provision of the CPU-share meaning that for any time t the schedulable object is guaranteed to receive
as ∗ t− δ share of the CPU-time (δ is of course dependent on the implemented scheduling policy and
may be difficult to calculate).

weak proportional-share guarantees (PS) If no deterministic bound on the just described
error-term can be made by the scheduling algorithm a proportinal share guarantee of the following
form can be used: PS s
The parameter ”s” once again describes a share of the CPU-time (s ∈ [0..1]). But because no bound
on the error-term can be provided this share is viewed as an asymptotic value resulting in a much
weaker guarantee compared to a PSBE-type guarantee.

2.2.3 Guarantee Conversions

Forms of guarantee conversions

As mentioned above from the guarantee system point of view the problem of finding a suitable
scheduling hierarchy can be described as a guarantee conversion problem. We take the guarantee
”ALL” and try to convert it into a set of guarantees that is acceptable to our application set. Two
distinct forms of guarantee conversions exist in our framework:

• indirect guarantee conversions by a scheduler

• direct guarantee conversions

Guarantee conversions through schedulers

Every scheduler in our framework is charaterized by one or more tupels of the type acceptable guaran-
tee, set of provided guarantees meaning that the given scheduler can locally convert a guarantee of the
acceptable type into a set of guarantees denoted as ”set of provided guarantees”. Note that more than
one such tuple can exist depending on the implemented scheduling algorithm. Table 1 provides an
insight into the guarantee conversion abilities of different known scheduling algorithms. The syntax
used is:

• A 7→ B+ means that scheduler can convert a guarantee of type ”A” into a set of guarantees of
type ”B”. ”A” shall be the weakest acceptable guarantee (what ”weak” means in this context
will become clear after the next section).

• ”any” denotes a variable that can represent any guarantee type.

To make the scheduler-based guarantee conversion process more comprehensible for the reader we
will discuss some of the presented guarantee conversions in more detail.

11

CHAPTER 2. THEORETICAL APPROACH

Scheduling algorithm Guarantee conversion

fixed priority any 7→ (any,NULL+)
limit RESBS 7→ RESBH

proportinal share PS 7→ PS+

PSBE 7→ PSBE+

RESU 7→ PSBE+

cpu reservation ALL 7→ RESBH+

RESU 7→ RESBH+

time sharing NULL 7→ NULL+

BSS-I, PShED ALL 7→ RESU+

RESU 7→ RESU+

CBS ALL 7→ RESBH+

RESU 7→ RESBH+

EEVDF ALL 7→ PSBE+

RESU 7→ PSBE+

Linux, Win 2000 NULL 7→ NULL+

Lottery, Stride PS 7→ PS+

RESU 7→ PS+

Resource Kernel ALL 7→ (RESBS+, RESBH+)
RESU 7→ (RESBS+, RESBH+)

Rialto, Rialto/NT ALL 7→ RESCS+

RESU 7→ RESCS+

SFQ PS 7→ PS+

PSBE 7→ PSBE+

RESU 7→ PSBE+

SFS PS 7→ PS+

RESU 7→ RESBH+

Spring ALL 7→ RESBH+

RESU 7→ RESBH+

TBS ALL 7→ RESBS+

RESU 7→ RESBS+

Table 2.1: Guarantee conversions induced through various scheduling algorithms

12

2.2. REGEHR

Fixed-priority Assuming that schedulable-objects use distinct priorities (this can be enforced by
admission control) and are scheduled by a preemptive fixed-priority scheduling algorithm, we easily
see that the guarantee conversion properties are independent of the provided ”incoming” guarantee.
Instead the guarantee provided to the scheduler is just passed on to the child with the highest priority.
The other children of the scheduler get only the ”NULL” guarantee (the child with the highest priority
starves all other children if it is CPU-bound). The complexity of analyzing the case where the child
with the highest priority is not CPU-bound does not warrant any results about possible guarantees that
could be made to the other children.

Limit A ”Limit” scheduler is used to convert a soft CPU reservation into a hard CPU reservation.
This can be accomplished by keeping track of the amount of CPU-time used by its (single) child per
time-period and releasing the CPU if additional, not guaranteed CPU-time becomes available.

CPU reservations The CPU reservation scheduler implemented in SAADI needs to receive an
”ALL” guarantee to provide ”RESBH” guarantees to its children.

Time-sharing Our basic round-robin based time-sharing scheduler can use any guarantee to gen-
erate ”NULL” guarantees for its children (implying simple best-effort scheduling behavior). From a
formal point of view the weakest acceptable guarantee to our time-sharing algorithm is the ”NULL”
guarantee which can be easily converted to from any other guarantee (section 2.2.3).

Direct guarantee conversions

The general theory established by John Regehr shows that it is possible to convert certain guarantee
types into other. One trivial example illustrating this possibility is the following: assume we have a
”RES x, y” guarantee given with x denoting the amount of CPU-time and y denoting the period (the
distribution of CPU-time inside the period beeing irrelevant). Then it’s easy to see that this guarantee
can be ”seen as” (or converted to) a ”PSx

y ” guarantee making it acceptable to any schedulable object
needing to receive a ”PS s” guarantee wheres ≤ x

y . On the other hand a conversion in the opposite
direction is not possible because a ”PS” guarantee does not imply any time-based bounds on the
distribution of the CPU-time. Table 2 shows the possible direct conversions between the different
guarantee types and has the following syntax:

• © denotes that no conversion is possible

•
√

denotes that a conversion is possible

• a number enclosed in paranthesis references the theorem from which the presented result has
been derived (a missing number indicates that the result is trivial, e.g. ”ALL”7→ ”RES”, etc.)

The referenced theorems justifying the different conversions are the following:
CPU reservations of type ”basic” can be converted into ”continuous”, ”soft” CPU reservations:

Theorem 1 The guarantee RESBS x, y and RESBH x, y can each be converted into the guarantee
RESCS x,(2y − x + c) for anyc ≥ 0.

On the other hand ”basic” CPU-reservations can not be converted into ”continuous”, ”hard” CPU-
reservations unless x = y (which implies the guarantee ”ALL”):

13

CHAPTER 2. THEORETICAL APPROACH

ALL
√ √

©
√

©
√ √ √ √

RESU ©
√

© © © © ©
√ √

RESBH © ©
√ √

©(2)
√

(1)
√

(4)
√

(5)
√

RESBS © © ©
√

©(2)
√

(1)
√

(4)
√

(5)
√

RESCH © ©
√ √ √ √ √

(3)
√

(5)
√

RESCS © © ©
√

©
√ √

(3)
√

(5)
√

PSBE © © ©
√

(6) ©
√

(6)
√ √ √

PS © © © © © © ©
√ √

NULL © © © © © © © ©
√

7→ A
LL

R
E

S
U

R
E

S
B

H

R
E

S
B

S

R
E

S
C

H

R
E

S
C

S

P
S

B
E

P
S

N
U

LL

Table 2.2: Direct guarantee conversions

Theorem 2 Neither RESBS x, y nor RESBH x, y can be converted into a continuous, hard CPU
reservation unless x = y.

”continuous” CPU-reservations may be regarded as proportional-share guarantees with bounded
error:

Theorem 3 The guarantees RESCH x, y or RESCS x, y may be converted to the guarantee PSBE
x
y , x

y (y − x).

”basic” CPU-reservations may also be regarded as proportinal-share guarantees with bounded error:

Theorem 4 The guarantess RESBH x, y or RESBS x, y may be converted to the guarantee PSBE
x
y , 2x

y (y − x).

All types of CPU-reservations can be converted into a proportoinal-share guarantee:

Theorem 5 Any CPU reservation, whether ”hard” or ”soft”, ”basic” or ”continuous”, with amount
x and period y may be converted into the guarantee PSx

y .

Proportinal-share guarantees with bounded error can be seen as ”soft” CPU-reservations:

Theorem 6 The guarantee PSBS s,δ can, for anyy ≥ δ
s , be converted into the guarantee RESCS

(ys− δ), y or RESBS(ys− δ), y.

2.3 MHS Generation

by Simon Muras, Mattias Stöneberg

To solve the problem of generating a hierarchy for a given set of application requirements the follow-
ing procedure is proposed based on context free grammars:

1. Initially requirements of applications are mapped to a guarantee type that could meet the re-
quirements. The concatenation of all these guarantee types formulates a word. Later on we try

14

2.3. MHS GENERATION

to formulate a context free grammar that could generate this guarantee word. Therefor exactly
one guarantee type has to be assigned to each application thread which fits the requirements as
close as possible(we assume that all guarantees in this word a ordered by the thread‘s id).

2. Using the guarantee conversion rules (direct and based on scheduler types), guarantee types
could be converted to another guarantee types and this helps in construction of a context free
grammar.

3. The CFG-parse algorithm by Earley can verify if the generated word w,w ∈ L(G) (= word
problem). During this verification, the generated syntax tree, with the help of our grammar
rules, is transformed into a tree-based scheduling hierarchy. The Leafs of this scheduling hier-
archy represent required guarantee types.

2.3.1 Mapping of the application requirements to a word

The mapping of a set of requirements to a certain guarantee type is obviously deeply dependent on the
precision with which the requirement were stated and does not have to be unambiguous. Although at
this point of time a random algorithm is used for word mapping, the word ambiguity could be used as
an interfacing point to our knowledgebase.

Taking a slightly more formal point of view:

f : A 7→ Pot(G),

with A = {application requirements in the SDL} and G ={supported guarantee types in SAADI}.
Let n denote the number of the application threads described in the SDL. With

S = Perm(f(A1)× f(A2)× ...× f(An)), f(Ai) ∈ Pot(G), 1 ≤ i ≤ n

we get a set of tuples of guarantees with length n which can be mapped to a word. The mapping is
trivial due to the fact that each guarantee type is represented by its own terminal string which we will
see in the next section. Let T denote the set of terminal characters:

g : S 7→ T ∗, g(a1, ..., an) 7→ {a1#a2#...#an}

This leads to a valid guarantee word, we will now take a look at the definition of a possible context
free grammar.

2.3.2 The context free grammar

A grammar is characterized by:

• T , the finite alphabet, from which the language is formed (terminal characters)

• V , a finite, withT disjunct set of help characters (variables)

• S ∈ V , the starting symbol

• P , a finite set of derivation rules (productions)

15

CHAPTER 2. THEORETICAL APPROACH

Context free grammars are grammars where all productions have the formA 7→ v with A ∈ V andv
= ε (empty word) orv ∈ (V ∪ T)∗.
Our grammarG = (T, V, S, P) has the form:T = T1 ∪ T2, where
T1 = { implemented guarantee types (e.g. null, resbs, ps, ...)}
T2 = { separation character (e.g. # or white space)}
V = V1 ∪ V2 ∪ V3, with
V1 = { implemented guarantee types (but with a distinct representation compared to T, e.g. NULL,
RESBS, PS)}
V2 = { supported scheduler types, where the acceptable “incoming”-guarantees are also taken into
consideration (e.g. for a PS-scheduler: SCHED-PS-PS, SCHED-PS-PSBE)}
V3 = { ALL }
S = ALL
P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5, where
P1 = { G 7→ g | G ∈ { implemented guarantee types} ⊆ V, g ∈ { implemented guarantee types}
⊆ T , whereG andg refer to the same guarantee type}
P2 = { scheduler based guarantee conversions (e.g. for a PS-scheduler: SCHED-PS-PS7→ PS,
SCHED-PS-PSBE7→ PSBE)}
P3 = { rules to connect scheduler types with the different acceptable “incoming”-guaranties (e.g. PS
7→ SCHED-PS-PS or PSBE7→ SCHED-PS-PSBE}
P4 = { supporting rules to model scheduler based guarantee multiplications (e.g. PS7→ PS# PS}
P5 = { direct guarantee conversions (e.g. ALL7→ PS, RESBH7→ RESBS)}
The following grammar file is the currently used:

Definition 13 G = (S, T, V, P), V =V1 ∪ V2 ∪ V3, P = P1 ∪ P2 ∪ P3 ∪ P4

T= { resbs, ps, null, fp}

V1= {RESBS, PS, PSBE, NULL, FP}

V2 =

SCHED-PS-PS, SCHED-PS-PSBE,
SCHED-PS-ALL, SCHED-PSBE-PS,
SCHED-PSBE-PSBE, SCHED-PSBE-ALL,
SCHED-RESBS-RESBS, SCHED-RESBS-PS,
SCHED-RESBS-PSBE, SCHED-RESBS-ALL,
SCHED-TS-PSBE, SCHED-TS-RESBS,
SCHED-TS-NULL, SCHED-TS-ALL,
SCHED-TS-FP, SCHED-TS-PS,
SCHED-LINUX-PSBE, SCHED-LINUX-RESBS,
SCHED-LINUX-ALL, SCHED-LINUX-FP,
SCHED-LINUX-PS, SCHED-FP-PSBE,
SCHED-FP-RESBS, SCHED-FP-ALL,
SCHED-FP-PS, SCHED-FP-FP

V3 = { ALL }

S = { ALL }

P1 = { RESBS→ resbs, PS→ ps, NULL→ null, PSBE→ psbe, FP→ fp }

16

2.3. MHS GENERATION

P2 =

SCHED-PS-PS→ PS, SCHED-PS-PSBE→ PS,
SCHED-PS-ALL→ PS, SCHED-PSBE-PS→ PSBE,
SCHED-PSBE-PSBE→ PSBE, SCHED-PSBE-ALL→ PSBE,
SCHED-RESBS-RESBS→ RESBS, SCHED-RESBS-PS→ RESBS,
SCHED-RESBS-PSBE→ RESBS, SCHED-RESBS-ALL→ RESBS,
SCHED-TS-PSBE→ NULL, SCHED-TS-RESBS→ NULL,
SCHED-TS-NULL→ NULL, SCHED-TS-ALL→ NULL,
SCHED-TS-FP→ NULL, SCHED-TS-PS→ NULL,
SCHED-LINUX-PSBE→ FP, SCHED-LINUX-RESBS→ FP,
SCHED-LINUX-ALL→ FP, SCHED-LINUX-FP→ FP,
SCHED-LINUX-PS→ FP, SCHED-FP-PSBE→ FP,
SCHED-FP-RESBS→ FP, SCHED-FP-ALL→ FP,
SCHED-FP-PS→ FP, SCHED-FP-FP→ FP

P3 =

ALL→ SCHED-FP-ALL, ALL→ SCHED-LINUX-ALL,
ALL→ SCHED-PS-ALL, ALL→ SCHED-PSBE-ALL,
ALL→ SCHED-TS-ALL, ALL→ SCHED-RESBS-ALL,
RESBS→ SCHED-FP-RESBS, RESBS→ SCHED-LINUX-RESBS,
RESBS→ SCHED-RESBS-RESBS, RESBS→ SCHED-TS-RESBS,
PS→ SCHED-FP-PS, PS→ SCHED-LINUX-PS,
PS→ SCHED-PS-PS, PS→ SCHED-PSBE-PS,
PS→ SCHED-RESBS-PS, PS→ SCHED-TS-PS,
PSBE→ SCHED-FP-PSBE, PSBE→ SCHED-LINUX-PSBE,
PSBE→ SCHED-PS-PSBE, PSBE→ SCHED-PSBE-PSBE,
PSBE→ SCHED-RESBS-PSBE, PSBE→ SCHED-TS-PSBE,
NULL→ SCHED-TS-NULL, FP→ SCHED-FP-FP,
FP→ SCHED-TS-FP, FP→ SCHED-LINUX-FP

P4 =

{
RESBS→ RESBS RESBS, PS→ PS PS, PSBE→ PSBE PSBE,
NULL→ NULL NULL, FP→ FP FP

}

2.3.3 Algorithm for the word-problem / Hierarchy Generation

For context free grammars polynomial algorithms exist that solve the word problem, considering the
possibility that for each guarantee word more than one syntax tree might exists (such a grammar is
called ambiguous) the well knownCY K - Algorithm cannot be applied to this grammar. Instead we
will use theΘ(n3)-Parsing Algorithm presented by Earley.

The following algorithm allows the generation of the corresponding scheduler hierarchy for a given
generated syntax tree.

Definition 14 Given: a node r, root of a subtree t , denoted by its description d(r) and its children
c(r), ordered from left to the right and the guarantee word w =g1 g2, . . . gn

Output: G, a set of guarantees, representing the subhierarchy generated from t

Algorithm BUILD HIERARCHY (Root r):
let w begi . . . gn with 1 ≤ i ≤ n

1. if d(r) is a terminal→ set w =gi+1 . . . gn and return{gi}

17

CHAPTER 2. THEORETICAL APPROACH

2. if ∃ a scheduler typeρ and a guarantee typeσ, such thatd(r) = SCHED ρ σ
→ create scheduler s of typeρ and create a incoming guarantee g of typeσ for s
let G′ = ∅
∀c ∈ c(r) : G′ = G′∪ BUILD HIERARCHY(c)
∀g′ ∈ G′ : add g’ as contract to s
return{g}

3. else:
let G′ = ∅
∀c ∈ c(r) : G′ = G′∪ BUILD HIERARCHY(c)
return G’

Here a short explanation of the different algorithm steps:

• First case: The algorithm has found a terminal symbol. It can now choose the next guarantee
from the guarantee word, due the fact that we visit both syntax tree and guarantee word from
left to right.

• Second case: BUILD HIERARCHY has found a ”scheduler production”, this means a scheduler
has to be created, with the corresponding ingoing guarantee, since the defined context free
grammar does not include direct guarantee conversions, the guarantee can be returned without
conversion.

• Third case: The algorithm has found a productionguarantee → guarantee guarantee to
model multiple guarantees below a certain scheduler, the algorithm just needs to return the
recursive results of all subtrees.

Figure 2.4: An exemplary syntax tree and the derived hierarchy

ALL

PS-ALL-Scheduler

PS

RESBS-PS-Scheduler

RESBS

RESBS RESBS

PS

PS PS

ps TS-PS-Scheduler

NULL

null

PS-Scheduler

RESBS-Scheduler t3 TS-Scheduler

t1 t2 t4

resbs resbs

PS

psps ps

resbs resbs null

-

18

2.4. FITNESS AND GENETIC OPERATORS

For a given set of application threadst1, . . . , t4 a corresponding guarantee tuple
{resbs, resbs, ps, null} has been generated, figure 2.4 shows a possible syntax tree and the
generatedmeta hierarchical scheduler.

Observations have shown that the by the randomized Earley Algorithm generated syntax trees and
corresponding hierarchies have several disadvantages concerning the number of schedulers and the
hierarchies depth. For this the following trivial minimizing operations have been implemented:

Definition 15 Given a scheduler s, root of a subhierarchy and its guarantee contracts G(s), each g∈
G(s) has an owner o(g), which is child of s.

MINIMIZATION OPERATIONS for a root r:

1. ∃g ∈ G(s) : o(g) is a scheduler and o(g) and s are of the same scheduler type
→ move all contracts G(o(g))from o(g) to s, remove o(g) from the hierarchy

2. ∃g ∈ G(s) : o(g) is a scheduler and∃g1 ∈ G(s), g2 ∈ G(o(g)) : g1 andg2 are of the same type
→ moveg2 from o(g) to s and remove o(g) from the hierarchy, if G(o(g)) =∅

3. ∃g1, g2 ∈ G(s) : o(g1),o(g2) are schedulers and are of the same type
→ move all contracts G(o(g2))from o(g2) to o(g1), remove o(g2) from the hierarchy

4. ∃g1, g2 ∈ G(s) : o(g1),o(g2) are schedulers and∃g′
1 ∈ G(o(g1)), g

′
2 ∈ G(o(g2)) : g

′
1 andg

′
2

are of the same type
→ moveg

′
2 from o(g2) to o(g1) and remove o(g2) from the hierarchy, if G(o(g2)) = ∅

The first two operations will reduce the hierarchies depth, the third and the fourth examine neigh-
boring scheduler and reduce the hierarchy width. A hierarchy is called minimized, if and only if for
each scheduler in the hierarchy no minimization operation condition is fulfilled and no operation can
be used. The average depth and number of schedulers for a randomized guarantee word g with|g| =
40 is three and eleven scheduler respectively.

2.4 Fitness and Genetic Operators

by Simon Muras, Mattias Stöneberg

Generating hierarchies from given application requirements and representing them by a tuple of guar-
antees does not guarantee, that the generated hierarchy is the most appropriatemeta hierarchical
scheduler, we even can not determine, whatappropriatemeans in this context.

To ensure that at least almost optimum results can be guaranteed we‘ll first introduce a short defini-
tion of a composed fitness function, followed by the description of genetic strategies, which will help
us, finding the optimum in the given search space (=set of legalMHS).

For INTERACTIVE, MULTIMEDIA(which means Soft/Realtime Threads) or BATCH threads
(these are the major thread classes) optimization criterias areresponse time, deadline failure rate
and turnaround time(for a definition of these criteria see chapter Testing). Also for each thread
the importance value has been defined (the lower the importance value (≥1), the more important it
becomes).

Due to the fact, that aMHS‘s goodness depends on the target architecture, theoretical evaluation of
the hierarchy would be incongruous to regain an adequate fitness value, so precise testing is essential.

19

CHAPTER 2. THEORETICAL APPROACH

We will now introduce a basic approach on how the evaluation of an atomic fitness function for threads
will lead us to the definition of a composed fitness function formeta hierarchical scheduler:

Definition 16 If opt(t) is the defined optimum value of a given Threadt(e.g. Response Time of
20 ms) and test(t) the measured value, imp(t) the importance of a thread t∈ T, and letmax =
max{imp(t)|t ∈ T} andmin = min{imp(t)|t ∈ T}. Then the fitnessfitness(t)of t can be defined
as:

fitness(t) =
max + min− imp(t)

max
∗

{
opt(t) < test(t) : opt(t)

test(t)

else : 1

We are now able to define this composed fitness function.

Definition 17 If fitness(i) with iε R is the fitness function with i instead of test(t), then the fitness
fitness(H)of a MHS H with its Threads T is defined as fallow:

fitness(H) =
∑

tεT fitness(t)∑
tεT

max+min−imp(t)
max

This means the fitness function is a quotient of the summed test results and optima.

Due the fact that the response time’s unit is ms, the turnaround time’s is sec and the deadline fail-
ure rate is∈ N, the most complex task dealing with fitnesses of hierarchies is the normalization of
measured values.

2.4.1 Integration with GAs

We will now discuss the problem of defining an adequate genetic strategy. Genetic Algorithms use the
operationsmutation, recombinationandselectionto find theoptimumof a givenfitnessfunction f on
a set of individuals calledpopulation. For a given search domain H and two individualsh1, h2 ∈ H
with a distance function d(h1, h2) the following guidelines for mutation and selection probabilitiesP
should be fulfilled.

Definition 18 For a given search spaceH and two individualsh1, h2 ∈ H with a distance function
d(h1, h2) the following guidelines for mutation and recombination probabilitiesP should be fulfilled.

• ∀h1, h2 ∈ H : P (mutation(h1) = h2) > 0

• ∀h1, h2, h3 ∈ H :
d(h1, h2) < d(h1, h3) =⇒ P (mutation(h1) = h2) > P (mutation(h1) = h3)

• ∀h1, h2, h3 ∈ H :
d(h1, h2) = d(h1, h3) =⇒ P (mutation(h1) = h2) = P (mutation(h1) = h3)

• ∀h1, h2, h3 ∈ H with h3 = recombination(h1, h2) :
max{d(h1, h3), d(h2, h3)} ≤ d(h1, h2)

• ∀h1, h2 ∈ H :
P (d(h1, recombination(h1, h2)) = α) = P (d(h2, recombination(h1, h2)) = α)

20

2.4. FITNESS AND GENETIC OPERATORS

By regarding the set of valid hierarchies as the search domainH the problem of defining a metrics
(with symmetry and triangle inequality as basic criteria) the guidelines defined in 18 becomes exceed-
ingly complicated.

Instead we will define recombination and mutation on guarantee tuples, defined in 2.1.1 and pre-
sented in 2.3.1. For a set of threads a number of distinct guarantee tuplesG can be formulated, taking
randomly a subsetG′ of G as basic population, and defining the operationsmutation : G → G and
recombination : G × G → G. With a certainmutationprobability p (e.g. 1

n with g ∈ G : g =
g1g2 . . . gn) we flip guaranteegi, i ∈ {1 . . . n} into a guaranteeh and construct the new guarantee
wordg′ = g1 . . . gi−1hgi+1 . . . gn.
Assuming that the guarantees in each guarantee word are ordered by their threads even recombi-
nation can be described, giveng, h ∈ G : g = g1g2 . . . gn h = h1h2 . . . hn and with a cer-
tain recombinationprobability p′ a positioni, such that after recombination the guarantee words
g′, h′ ∈ G : g′ = g1 . . . gihi+1 . . . hn , h′ = h1 . . . higi+1 . . . gi are created.
Selection can be realized by the technique ofstochastic sampling with replacement, means a guaran-
tee wordg ∈ G′ whereG′ = {g1, . . . , gm} ⊆ G will be part of the next populationG′′ with at least

the probability
fitness(g)∑m

i=1 fitness(gi)
.

An appropriate adjustments ofmutation probability, recombination probability, population size, num-
ber of generationscan be found in the results section.

21

CHAPTER 2. THEORETICAL APPROACH

22

3 SDL

by Janni

In order to ensure a high diversity of system characterizations from facile descriptions (e.g. made
by a novice user) to very detailed and well analyzed platform specifications with restricted number
of runnable processes we developed n unique system and application description language. Conse-
quently a SDL-parser which decides the well known word problem for this language has been devel-
oped. First of all this parser reads in an SDL File, parses it and then generates a hierarchy of objects
which are organized under a central parser object. Example objects areHardware Requirements
andApplication Requirements.

The ‘Scheduler Description Language‘SDL is part of XML, well described by a complex taxon-
omy. A wordw ∈ SDL, and thus a system‘s description basically consists of of these two compo-
nents:

• Hardware Requirements

• Software Requirements

3.0.2 Hardware Requirements

This fragment ofw describes the given architecture and processor specifications.

• Architecture is a simple parameter specifying the name of the considered architecture.

• The Processor element has multiple parameters which are:

1. The name of the CPU - e.g. Athlon, PentiumII or such

2. Cachesize - the size of the second-level cache

3. Frequency - the frequency of the CPU in MHZ.

4. Bus Speed - the speed of the memory bus.

• The memory attribute has the following options:

1. Memory latency - the latency of the memory in msecs.

2. Memory Speed - the speed of the memory in MHZ

3. Memory Bandwidth - the bandwith of the memory in MBytes/sec

<HARDWARE_REQUIREMENTS>
<ARCHITECTURE name="--">

<PROCESSOR frequency="--" name="--" cachesize="--"
dma="--" bus_speed="--" io_bus_speed="--"

23

CHAPTER 3. SDL

memory_bandwidth="--" memory_latency="-"
memory_speed="--" number_of_cpus="--">

<POWER_MANAGEMENT granularity="--"/>
</PROCESSOR>

</ARCHITECTURE>
</HARDWARE_REQUIREMENTS>

3.0.3 Application Requirements

Application behaviour and its threads can be formulated by this section of the SDL. Each application
basically can be described by the fallowing two attributes: name of the application and it’s path.

<APPLICATION_REQUIREMENTS>
<APPLICATION name="emacs" path="/usr/sbin/">

</APPLICATION_REQUIREMENTS>

The threads of an application at this point of implementation could be divided in three disjoint sets:

1. Interactive-Threads

2. Batch-Threads

3. Periodic-Threads

Each thread can also be associated with a set of attributes which are the following:

1. ID - for a unique identifier inside the operating system

2. Importance
The importance is a number between 1 and∞. The lower the importance value, the more
important a thread becomes. High importance means a higher allocation of free resources and
higher influence on the fitness of hierarchies.

The attributes above can be applied to any type of thread while the fallowing attributes can only be
applied to threads of certain type.

Periodic-Threads have the following extra attributes:

1. Amount, the average amount of cpu-time inms per period

2. Amount Unit
can be microsecsonds (usec), miliseconds (ms) or seconds (s)

3. Period, e.g. a amount of20 ms in a period of100 ms

4. Period Unit
can be usec, ms or s

5. Deadline Failure
An optimum value can be set for each thread⇔. Its value isi ∈ N and1 by default.

24

<APPLICATION_REQUIREMENTS>
<APPLICATION name="--" mode="--">
<PERIODIC id="12" importance="2" amount="12"

period="13" amount_unit="ms" period_unit="ms"
deadline_failure_rate="1"/>

</APPLICATION_REQUIREMENTS>

Batch-Threads have the following extra attributes:

1. Share, the average share of cpu-time in%

2. Turnaroundtime
An optimum value can be set for each thread.

3. Turnaroundtime Unit
can be usec, ms or s

<APPLICATION_REQUIREMENTS>
<APPLICATION name="--" mode="--">
<BATCH id="3" importance="2" share="1"

turnaround_time="10"\\
turnaround_time_unit="ms"/>

</APPLICATION_REQUIREMENTS>

Interactive-Threads attributes:

1. Response Time
An optimum value can be set for each thread.

2. Response Time Unit
can be usec, ms or s

<APPLICATION_REQUIREMENTS>
<APPLICATION name="--" mode="--">
<INTERACTIVE id="10" importance="1" response_time="10"

response_time_unit="ms"/>
</APPLICATION_REQUIREMENTS>

After creating the object hierarchy this structure is used by the GUI in order to visually analyse the
given SDL. The hierarchy also is used by the ASM-Generator in order to generate an adequate MHS
(Meta Hierarchical Scheduler).

25

CHAPTER 3. SDL

26

4 Testing SAADI

by Tobias Malbrecht

This chapter deals with testing SAADI. More precisely, testing SAADI means the testing of hierarchi-
cal schedulers generated with the SAADI framework and afterwards included into a SAADI enhanced
Linux kernel. Testing SAADI is necessary for two reasons: (1) to compare the performance of SAADI
schedulers with other existing schedulers (e.g. theO(1) scheduler by Ingo Molnar, which is part of the
current Linux 2.5 development kernel), (2) to evaluate different scheduler hierarchies. Since we have
not spent any time on the first issue yet, we concentrate on the second intention of testing SAADI.
Section 4.1 introduces the testing processes with the aim to find an optimal scheduler hierarchy. Sec-
tion 4.2 gives a little overview of what parameter we want to measure when testing a SAADI kernel
for evaluation of scheduler hierarchies. In section 4.3 we present the tools we use for testing. The
topic of section 4.4 is simulation of real applications by synthetic ones. In section 4.5 we describe the
testing framework in detail.

4.1 Testing cycle of SAADI

As outlined in chapter 2.4 SAADI pursues an evolutionary approach when generating scheduler hi-
erarchies. This necessitates the computation of a fitness value for each generated hierarchy. This is
a complex task, since the only way of computing the fitness of a scheduler hierarchy is to run the
generated scheduler code representing this certain hierarchy on a real operating system and to mea-
sure these values that have influence on the fitness of the underlying scheduler hierarchy. The main
complication arises from the fact that the evolutionary algorithm itself and the computation must be
split into two different phases. This is however based on the fact, that we designed the high level
part of SAADI on one side (i.e. first of all the evolutionary algorithm to find an optimal scheduler
hierarchy) as a Java program. On the other side the computation or, to be more precise, the evalution
of scheduling behaviour has to be done by running a real operating system (i.e. a SAADI Linux kernel
with a scheduler corresponding to a certain hierarchy), without a chance to directly interact with the
Java part of SAADI.
The scenario described above leads to the testing cycle as shown in figure 4.1. The whole procedure
is coordinated by shell scripts. In the following we describe the components of the testing cycle that
help in understanding the whole testing process. At first we will explain parameters that help in the
evaluation of a scheduler hierarchy.

4.2 Valuation of scheduler hierarchies

To determine the fitness of a generated scheduler hierarchy we have to measure a certain set of values.
These values are scheduling criteria (from the point of view of a particular process):

• turnaround time

27

CHAPTER 4. TESTING SAADI

SAADI

LTTParser TestEnvironment

Testing

(run of LTT)

saadi_init.c

prepare.sh

test_pre.sh

test_post.sh

trace.proc

trace.out

Figure 4.1: Testing cycle of SAADI

• response time

• deadline failure rate

In this regard it certainly does not make any sense to measure and to consider all these three values for
any kind of process. One has to distinguish between three different types of processes (as specified
in the SAADI description language): batch, interactive and real-time. Therefore we measure and
want to optimize turnaround time for batch, response time for interactive and deadline failure rate for
real-time processes1. If one measures those values for the processes that are announced in the SDL
file for which a certain scheduler hierarchy is built, one can compute the fitness of that hierarchy from
that (see chapter 2.4). The evolutionary algorithm used with SAADI then is able to find an optimal
scheduler hierarchy for that certain set of applications specified in the SDL file.
The complication in the determination of this optimal hierarchy is therefor based on the subjects to
measure the scheduling criteria mentioned above to evaluate hierarchies by computing their fitness
from the measured values.

4.3 Measuring scheduling criteria in SAADI

As mentioned in the last section we need to perform a phase of testing and measurement while running
a SAADI kernel to evaluate the underlying scheduler hierarchy. This evaluation is done by following

1Since we only consider basic soft real-time processes in this stage of development, we in fact do not measure deadline
failure rate, but the grade of violation of RESBS-guarantees (i.e. number of times a process does not receive the
guaranteed amount of cpu time during its period).

28

4.3. MEASURING SCHEDULING CRITERIA IN SAADI

tools and components of SAADI that we present in the following.

4.3.1 Linux Trace Toolkit

Since it builds the basis of our measurement, we first concentrate on a brief description of the Linux
Trace Toolkit (LTT). LTT is a kernel-level event logging system. A LTT enhanced linux kernel gains
the facility to trace events at a number of points in the kernel code. Examples for these points are
the entry and exit of IRQs or syscalls as well as a sched change, a process fork or wakeup. All these
events are logged into a file (producing a relatively small overhead of less than2, 5%). Additionally a
file is created before the start of the tracing, listing all existing processes and their names.

tracedaemon -ts60 /dev/tracer trace.trace trace.proc

will run tracing for 60 seconds and store the trace and the process file. To achieve an event file in a
human (and SAADI) readable format we have to run

tracevisualizer trace.trace trace.proc trace.out

subsequently. Figure 4.2 examplarily shows a part of a trace file created that way. As one could see,

File system 1,044,463,092,373,065 421 20 POLL : 7; TIMEOUT : 0

Memory 1,044,463,092,373,066 421 12 PAGE ALLOC ORDER : 0

Timer 1,044,463,092,373,068 421 17 SET TIMEOUT : 3501

Sched change 1,044,463,092,373,070 0 19 IN : 0; OUT : 421; STATE : 1

IRQ entry 1,044,463,092,377,089 0 9 IRQ : 10, IN-KERNEL

IRQ exit 1,044,463,092,377,099 0 7

Soft IRQ 1,044,463,092,377,101 0 12 SOFT IRQ : 2

Network 1,044,463,092,377,102 0 12 PACKET IN; PROTOCOL : 8

Process 1,044,463,092,377,123 0 16 WAKEUP PID : 394; STATE : 1

Sched change 1,044,463,092,377,129 394 19 IN : 394; OUT : 0; STATE : 0

File system 1,044,463,092,377,132 394 20 SELECT : 4; TIMEOUT : 2147483647

Figure 4.2: Sample trace

this example trace contains two of the events, which are relevant when testing SAADI. The first one is
a process wakeup in line 9, when the process with PID 394 moves from ready queue to run queue. The
second one is the following sched change from the process with PID 0 (i.e. the idle task) to the process
with PID 394 which was just woke up before. For the sake of completeness we have to mention that
there is another sched change already in line 4 due to a timer timeout invoked by the process with PID
421.

4.3.2 Preparing the testphase

For setting up the testing environment SAADI includes a module named TestEnvironment. This
module provides two functions: (1) it generates the scheduler code for the scheduler hierarchy gen-
erated by the SAADI code generator, (2) it generates scripts, which prepare and run our test applica-
tions. After having created a subdirectory for the actual hierarchy (with its ID as name), it creates the
scheduler initialisation code (saadi init.c and the scriptsprepare.sh , test pre.sh and
test post.sh in this subdirectory.prepare.sh copies the applications to the same hierarchy
subdirectory. The two test scriptstest pre.sh andtest post.sh start the applications which
should run to test the hierarchy.test pre.sh starts interactive and soft real-time processes, which
should run for the whole LTT run, and is therefore started before the LTT.test post.sh starts all
batch applications and is therefore started immediately after the LTT is started.

29

CHAPTER 4. TESTING SAADI

4.3.3 LTTParser

The LTTParser is actually the interface between the testing framework and the evolutionary algorithm.
To calculate turnaround time, response time and guarantee violations SAADI parses the output gener-
ated from LTT. The LTTParser included in the SAADI.sim package searches for relevant events which
are: process fork, process termination, sched change, IRQ entry and custom SAADI events. Internally
the LTTParser creates a hash table of ProcessStatistic objects (one for each process appearing in the
trace) in which the exact forking or termination times of a process, as well as the times a process got
or lost the CPU, are stored. Then the turnaround time of a process can be calculated as follows2:

tturnaround = ttermination − tfork (4.1)

The response time of a process (i.e. the average response time) is measured by considering the ap-
pearance of a special IRQ entry event and a following3 sched change (n is the number of sequences
of the IRQ entry event and a following sched change to that process occuring in the trace):

tresponse time =
∑n

k=1 tIRQ entryk
− tsched changek

n
(4.2)

The number of deadline misses or the number of RESBS-guarantee violations is the number of times
the following inequation is true when going over every period from trace start until trace end time:

tguaranteed amount > tmeasured amount (4.3)

After having analyzed the trace the ProcessStatistic objects are attached to the given hierarchy (which
is the one the tested kernel was generated from).

4.4 Simulation of applications

While testing SAADI hierarchies (by running LTT), we have to simulate applications, which are
specified in an SDL file. The disadvantage of performing the tests with real applications compared to
synthetical applications is that we can not describe the requirements of real applications as exact as
we need to get exact results from testing. Instead of real we therefore use synthetical applications,
whose requirements can be predetermined and whose behaviour is predictable or even controllable.
Because of the different requirements in consideration of using the event based LTT one has again to
differentiate between batch, interactive and soft real-time processes.

Batch processes

Intending to simulate batch processes, we developed a tool named SAADIbpg. This program does
not represent a batch process itself, but generates programs, that represent batch processes with a
desired execution time. By calling

SAADI_bpg -n test.c -t 20000

2Every time value mentioned in the following euquations relates to the corresponding process.
3Unfortunately the current SAADI testing environment does not consider, that the following sched change may not grant

control to the program, which should be affected by the IRQ, but rather to another one. To deal with that problem,
future work may be done to establish an accurate connection between IRQ events and the appropriate sched changes
they provoke.

30

4.4. SIMULATION OF APPLICATIONS

the tool generates a C program namedtest.c , which after being compiled represents a batch pro-
cess. This batch process will run for about 20 seconds on an otherwise idle machine, which means,
that it has an execution time for about 20 seconds.
SAADI bpg has to be run under an otherwise slightly used or even idle system, because it measures
the time it takes to perform a certain action (e.g. a matrix multiplication). It then computes how
often this action can be performed to almost reach exactly the desired execution time of the batch
process which is to be generated. It is obvious that under the condition of a slightly loaded system,
the turnaround time of a process is approximately equal to its actual execution time. Therefore the
execution time of the generated process is the optimum of turnaround time of that process in general.
If that process is then run under a heavily loaded system (as specified by an SDL file), we would be
able to measure the real turnaround time of that process (i.e. under real conditions) and to compute
the divergence from its optimal value.
The generated batch programs include the facility to throw respectively one LTT user event at the start
of running and one at the end. This is necessary due to peculariaties of the LTT and substitutes the
analysis of process fork and process termination events.

Interactive processes

Simulation of interactive processes may be the most complex task when replacing real applications
by synthetical ones. Interactive means that we want to measure how much time it takes until a user
interaction is processed. On the operating system layer we define this time as the difference between
the time an IRQ entry occured and the time the process is scheduled.
Since it is very difficult and time-consuming to explore we did not concentrate on simulating real
user interaction like keystrokes or pressing mouse buttons. Hence we emulated this user interaction
by activity on a network. Therefore we use an application written by Bill Hartner (unfortunately no
documentation except the readme file provided with this application was available). This application
is a chat client and server workload benchmark and consists of a client and a server program. As
simulation of our interactive processes we run the server program which receives packets over a
certain network interface card with a fixed IRQ (by running the client program on another computer,
sending those packets). Once a packet was received, a IRQ entry event was signaled and logged by
the LTT. A sched change event to the server program is likely to follow. These two events build the
bounds for measuring the response time.
It may be useful to repeat this act of measuring response time a few times during a run of the LTT and
then take the average response time or (since we want to ensure that response time does not exceed a
reasonable value) the maximum response time as basis for optimization.

Soft real-time processes

Basic soft reservation processes can be easily modeled with a tool named Hourglass. Hourglass is a
synthetic application, which provides different thread execution models. So its general approach is
to create threads, which runs any workload during the time the thread is specified to run. From the
various thread execution models we only use periodic ones as representation of basic soft reservation
processes.

31

CHAPTER 4. TESTING SAADI

4.5 Running the tests

Finally we will give a little overview of the mechanism that generally controls the testing. At the mo-
ment we use some shell scripts for that. The one that controls the overall process is namedtest all .
Once SAADI has been started with an SDL and created an SDL directory, it calls SAADI again to
add new hierarchy test environments (see section 4.3.2). After that it calls the next script called
init test for one of these newly generated test environments which mainly compiles the SAADI
kernel with the given scheduler code of a hierarchy. The computer then is rebooted and forced to
start run test afterwards. This script actually starts the testing procedure by running the scripts
generated by the test environment:prepare.sh at first, secondtest pre.sh . Then the LTT (the
tracedaemon) is started as described in 4.3.1 and just after that,test post.sh . If all has been
successful, then the trace is transformed by calling thetracevisualizer . A locking mechanism
prevents a testing environment from being tested twice because thetest all script chooses another
unlocked test environment for the next test. If no more unlocked test environments exist, it again calls
SAADI including its evolutionary algorithm to generate new hierarchies and test environments which
will also be tested as described above.

32

5 Implementation

5.1 Java

5.1.1 The Abstract Scheduling Model (ASM)

by Mattias Sẗoneberg

This section deals with the packageedu.udo.saadi.asm which is one of the basic parts of the
SAADI framework. Purpose of this package is the generation of an Abstract Scheduler Model, that
is an instance of a Scheduling Hierarchy. The Classes defined in this package utilize the SDL-parser
which is defined inedu.udo.saadi.parser to create Java objects that reflect the user specifica-
tion of the system environment and the software used with that system. Using these information the
ASMGenerator class tries to generate a hierarchy which fulfills all the requirements of the specified
software. The resulting Scheduling Model is then integrated into the Linux Kernel by the use of the
CodeGenerator class.

Before having a look at the generation of a hierarchy and at the genetic process, a detailed descrip-
tion of the structures of a single hierarchy and its sub-components is necessary.

Hierarchy (Hierarchy.java)

The real structure of the hierarchy is a reference to its root scheduler. This reference is saved in the
root attribute. It is a tree of scheduler objects with task objects as leaves. Each leaf represents a task
specified by the user. All the other tasks not specified will be scheduled by the scheduler referenced
by thedefaultScheduler attribute.

Since hierarchies are considered as points in a search-space of a genetic process and since they can
satisfy the requirements in a worse or better way, hence these hierarchies have to satisfy a compariosn
metric. Comparison of hierarchies is done by the use of a goodness value. This goodness is a value in
the range from 0 to 1 where 1 is the optimum. It is assigned to the hierarchy after its evaluation in a
test run within the Linux kernel. The evaluation is done by the use of a corresponding statistic object
which is stored in the attributestatistic and its set-method. A detailed description of fitness
computation is given in 2.4.

To distinguish between several hierarchies each is given an unique ID which consists of several
variables. The methodgetID() returns a String which has the following form:

“H”+(value of id)+“At”+(value of creationDate)+“Generation”+(value ofgeneration).

Schedulable (Schedulable.java) In the scheduler hierarchy the objects to be scheduled are
tasks as well as other schedulers. The SAADI framework therefore defines theSchedulable class.
The Task and Scheduler class inherit fromSchedulable which defines a parent schedulable object
and an in-guarantee which is assigned during the generation process.

33

CHAPTER 5. IMPLEMENTATION

Scheduler (Scheduler.java) This is another parent class which defines the following struc-
ture :

All guarantees which a scheduler exports to schedulables are grouped in thecontracts attribute.
This defines a set of children scheduled by the scheduler which can be accessed by the method
getChildren() . Children can be added to the set of contracts byaddContract() . The con-
tracts are an important part of a hierarchy, because they define the way cpu time is shared among the
processes.

Until now, the following schedulers are implemented:

• The LINUXScheduler represents Ingo’sO(1) scheduler

• The FPScheduler realizes a scheduler that schedules tasks with fixed priorities between 0 and
139; it has a timeslice as attribute.

• The TSScheduler is a time sharing or round robin scheduler with a timeslice as attribute.

• The PSScheduler represents a scheduler for tasks that requires a certain proportional share of
cpu time; there is a timeslice-attribute, too.

• The PSBEScheduler inherits from a PSScheduler but considers an additional bounded error for
each share.

• The RESBSScheduler realizes a reservation basic soft scheduler that schedules tasks which
need a certain amount of time in a certain period of time;

• The RESPSScheduler represents a reservation probabilistic scheduler.

Task (Task.java) In addition to the attributes inherited fromSchedulable.java an instance
of this class holds a process statistic (ProcessStatistic.java) defined in thesim package of
SAADI and a thread objectThread.java . The former one is only valid, if the hierarchy in which
it is defined is already tested and the result of the test has been computed. The later attribute describes
a 1-to-1 relation between a task object and a thread specified by the user in the SDL file.

Guarantees (Guarantee.java) After this description of schedulers and tasks which are the
leaves of a scheduling hierarchy we want to outline the relationship between two nodes. As mentioned
before a scheduler contains a set of contracts that each refer to a set of guarantees. A Guarantee
consists of two important attributes: a scheduler object (provider) defines the guarantee and this
guarantee is assigned to a schedulable object (owner) along with astatus . The provider and owner
objects refer to the parent and child relationship of a tree.

Different schedulers may provide different types of guarantees that form a set of guarantee
types. These types are represented by various classes which all inherit from the basic class
Guarantee.java . Until now, we have implemented the following guarantees in regard to all
provided schedulers:

• fixed priority guarantee (FPGuarantee.java) which is provided by a fixed priority sched-
uler; its parameter is a priority (integer from 0 to 139 where 0 is the highest priority),

• proportional share guarantee (PSGuarantee.java) which is provided by a proportional
share scheduler; its parameter isproportion that represents the required cpu time in %

34

5.1. JAVA

• proportional share with bounded error (PSBEGuarantee.java) which is the same like PS-
Guarantee with the additional parameteralpha for the bounded error.

• reservation basic soft guarantee (RESBSGuarantee.java) which is provided by a reserva-
tion basic soft scheduler; its parameters areamount andperiod ,

• reservation probabilistic (RESPSGuarantee.java) which is the same like RESBSGuaran-
tee with the additional parametermaxAmount,

• static guarantee (StaticGuarantee.java); the root scheduler of the whole hierarchy gets
the ALL GUARANTEE (represented by integer 1), that means a scheduler with this guarantee
gets all cpu time. There is a second static guarantee, NULLGUARANTEE, represented by 0;
it is provided by a Linux scheduler or time sharing scheduler. A schedulable with this guarantee
has no cpu time guaranteed.

Now we can show an UML representation of a hierarchy and its components (figure 5.1).

Generation process of an ASM

In the previous sections we displayed the structure of a hierarchy including the structure of schedulers,
tasks and guarantees. Next we describe the procedure of creating such a structure from the information
we get from the SDL specification.

To find an appropriate and “well performing” hierarchy which considers all requirements is
a difficult task. It is divided into two independent tasks: a genetic algorithm, which tries
to find an optimum among all tested hierarchies and a randomized algorithm which automat-
ically creates legal hierarchies. A legal hierarchy is a hierarchy with no guarantee conflicts.
The genetic algorithm is implemented inGeneticClass.java which is encapsulated in the
edu.udo.saadi.asm.earley -package.

These classes are accessed by the SAADI main class only by the use of a method of the ASMGen-
erator, which reflects one of the interfaces of the ASM module:

Interfaces The main interface to access the ASM package is provided by
ASMGenerator.java . It consists of only two public methods, with them first populations
can be created or a previously generated one be evaluated usin an genetic algorithms.

• public Population main(..., SoftwareConstraints sC, ...) :

This method creates a new population (Population.java) using the guarantee mapper
(GuaranteeMapper.java) and the given software constraints. An instance of population
contains a set of guarantee words (GuaranteeWord.java) which in turn contain a set of
guarantees as well as a set of hierarchies. The main methods’ task is to generate legal guarantee
words for the starting population using the software constraints. This is done by the method
map(SoC,...) : all guarantee words are equal in length, which is the number of tasks. They
are generated in a certain way which consider the following condition: at any time the guaran-
tees are fixed at one position for all guarantee words of any population.

The purpose of the guarantee mapper (GuaranteeMapper.java) is to build a new popula-
tion (Population.java) on the basis of the software constraints. An instance of the class
Population contains a set of guarantee words (GuaranteeWord.java) which in turn

35

CHAPTER 5. IMPLEMENTATION

�

����

����

�

�����

�

����

� �

����

� �

����

����

�

�

	
�
��
�

��

����

�

�

����

�

����
�������

� �����

� ����

�����
�

�

����

����

�

����

�������

������������

	�
������

���������

�������
����

������

���
������
���

�	����
��������

������������
���
	
�

������������
���
	
�

������ �

!

�"�
����#$

���� ��������

��
�����

�����

��

�
������

��
������������

�����
��
�����

�
%���������
��

�&������'������

�	
(��
��������

�����)�*��
��!�#
���
�+,

�����
�*&!��-���
��
����

�	
�
�#���

�	
����
�*&!�#
���
����

�
�����
!�#
���
�.�����

������

��
��	�����

/0$���������

/	
�
��������

/����� ���+,

/����!�#
���
�

/�����������
��

/�����

�����
��

/
�
������
��

/����������
��

/������������
��

/����
�*&
�����

/�������!�����

/���!���	

/�����������
���

/�����������
���

/&��
��������

/����*��
�
�1$(��
��� ���+,

/�
&���!�#
���
��!�#
���
�

	
��
�������

�-!12!�#
���
�

��!���	�!���	

������������

��������	��

�!�#
������

�������
�

/��#
���
������
��

/���
��!�#
���
�

/��.�����

�.�����

������������

���������������
��������

���
3�#��-�������	

���%��"��#���

�����
��
��"��#���

������%���

�!�����

���
2�
������

������

�����

���!��
������
��

����-���
�������

����-���
�������

�	
-���
���-���
��!�����

�����45�����

�	
�45 $�
�!���	

�&���"�
����#$�"�
����#$

��
��	�����

/��#
�����	�#��	
�����	

/���
!�� ��
����	

/���
2�� ��
����	

/���
�����������	

�	���������

�(-�(-.�����

�(-.�����

�(-.�����

�(-.�����

�&��
�-�����$���

��!���	�!���	

/&��
�-�����$���

/$�
�!���	

	
���������

�-!�-!.�����

6-!.�����

�-!.�����

�-!.�����

��!���	�!���	

��
��	�����

/�����������

/$�
�!���	

	
�����������

�-!12�-!12.�����

�-!12.�����

�-!12.�����

�-!12.�����

��
7���
������

��!���	�!���	

��
��	�����

/���#����

/$�
�!���	

��������������

��)88���

�'88���

��)889.)'4'� 22�!���.�����

�'889.)'4'� 22�!���.�����

�!���.�����

��!���	�!���	

��
��	�����

/��7���
���

/$�
�!���	

����������

642!.�����

�42!.�����

�42!.�����

��
'����7���
������

��!���	�!���	

/��������

/�
�������

��
	
���������

�42!-!�42!-!.�����

�42!-!.�����

�42!-!.�����

�42!-!.�����

��!���	�!���	

��
��	�����

/���'�������

/$�
�!���	
��
�
���������

�42!1!�42!.�����

�42!1!.�����

�42!1!.�����

�42!1!.�����

��!���	�!���	

��
��	�����

/$�
�!���	

��������

6��������7
���

�!�#
���
�

���������������

��
���
�����������

6���.�����

-��������

��
��	�����

/�#����
��!�#
������
+,

/��������.�����

+,

/��#
���
������
��

/���!���	

/���������
��

/������
�����
��

�

�������

� !!�#
���
�

��!���	�!���	

�	
�������

�(-!�#
���
�

��!���	�!���	

	

�������

�-!!�#
���
�

��!���	�!���	

�����
�������

�8��):!�#
���
�

��!���	�!���	

��
�

�������

�42!1!!�#
���
�

��!���	�!���	

��
	

�������

�42!-!!�#
���
�

��!���	�!���	

������������

��������

�.�����

��
��	�����

�	
�
��
.�����

�.�����

�!���

/������
��!�#
���
�

/���
��!�#
������

/�����!���

/$�
�!���	

������������

������������	������
��������

������������

����

� ���

��!���	�!���	

��
��	�����

/#�
��� #�
��

/��#
���
������
��

/�������-���
��!�����

Figure 5.1: UML diagram of a hierarchy

36

5.1. JAVA

contain a set of guarantees as well as a set of hierarchies. The methodmain(..) is respon-
sible for creation of possible guarantee words reflecting the given software constraints. These
words describe the starting population. All this is done inmain(SoC,...) : All guarantee
words are of the same length (length depends on the number of tasks). Every guarantee word
fulfills the following condition:
The position of a guarantee in a guarantee word refers to the task to which this guarantee is re-
lated, thus a guarantee at position A of a guarantee word refers to the same task as a guarantee
at position A of a different guarantee word (but of the same population).Different guarantees
that meet the requirements of a task are evaluated. The resulting population contains all possi-
ble guarantee words (i.e. all combinations of guarantees) which the tasks can be connected to.
A certain number of guarantee words is then used for further computation.

• public Population main(Population pop) :

This method decides wether the population still contains hierarchies that are to be tested and
if yes then it simply returns the given population and the next untested hierarchy, in case all
hierarchies have been tested then it calls the genetic algorithm which generates a new population
of hierarchies. A more detailed description of this process can be found in paragraphs below.

Another interface is defined byPopulation.java :

• public void updateHierarchy(String id, Statistic stat) :

As the performance of hierarchies is measured using the test environment, therefore several
statistics are collected. This method is used to set the statistics of a tested hierarchy in the
population. The hierarchy is referenced by its ID. After a hierarchy has been tested then it is
possible to compute the fitness value using the methodgetFitness() (see 2.4).

Figure 5.2 displays an UML representation of some classes from packageedu.udo.saadi.asm
as an overview for ASM generation.

Genetic Algorithm If the methodmain(Population) mentioned above is called with a pop-
ulation which only contains guarantee words with completely tested hierarchies then the method
computeNextGeneration(Population):Population is called which continues the ge-
netic algorithm ofGeneticClass.java . Genetic algorithms depend on a stop criteria which is
checked before the algorithm is continued. The stop criterium of our genetic process is represented
by an instance ofStopCriterion.java ; which is fulfilled if the number of generations increases
up to a former specified amount or a hierarchy of the population reaches a certain level of fitness. The
methodstop(...) is called to decide if the algorithm is to be continued or to be stopped. If it is to
be continued the next generation of the population is computed as follows:

1. Selection (select(Population):Population):

The process of “stochastic sampling with replacement” is used. This means that a guarantee

word wi will be taken over to the next generation with a probability of
fitness(wi)∑
j fitness(wj)

. The

new population will be filled with words of the old one until it contains an equal amount of
guarantee words.

2. Recombination (recombine(GuaranteeWord[]):GuaranteeWord[]):

37

CHAPTER 5. IMPLEMENTATION

�

����

����	�
��

��

	���

����� ��
����

�

����

������
��

�

�

	���

� �	���

�

��
����

��

��������

�

�������
��

����

���������	
�

��������������
����

����������
�
��������	��
��

��������	��
��

��	���������� �������

������	��������

���	��
����!����

��	����
��������

�������	��
��

�
 �����""��#��"��#$%

������������

	�
������

������	��
��

� ������ ����"�����

��	����
����&��
�

���
��'("(���"�����

��	����
��)��

����������� (����

�����	����
������

�	���
�������� (����

���*
+�
��
��������� (�������� (

� ��+�
��
��������� (������

� ��������� ���������
�
�
������
����

������,�-��

.��
����/�����
�

.�	����
��/�����
�

.�	����
�����
��'("(����	����
��$%

.���
������� (�������� (

.�	����
�����	����
��$%

. ������ ����������� ($%

.0�
������	���

��������������������������������

����	�������

��
�/��
������
�/��
����

���������
(,01�������
����	���

�����
��/����

����	
�2�*
������
�����	��
��

���������
���	����
��)��$%
������
���	��
��

��	
�
���	����
��)��

������������

	�
������

���������

������������

���������

��	����
��

����	�����

�������
��	����
����	����
��

��
�
	�

.���������� ��	���

.3������ ��	�����

.�
�
	���
�
	�

.
(����
����

������������

�
����	�
�

�3����"�����

��/��0
3���/��
����
�

� /�����3���/��
����
�

���	��
��

� ��+�
��
��������� (������

���*
+�
��
��������� (�������� (

�	���
�������� (����

� ��������� (����)��������

���*
������� (����)����	����
��)��

� ��+�
��
��)��������

���*
+�
��
��)����	����
��)��
����)������

�
�
������
����

.��
����/�����
�

.���
������� (�������� (

.������
�����

.�/�����3���/��
����
�

.�/��0
3���/��
����
�

.�����
����

.3�����	����
��)��$%

.���
��
������	���

Figure 5.2: UML diagram for ASM generation.

38

5.1. JAVA

The guarantee words of the old population are randomly put together in pairs and mixed with a
givenprobability of recombination(given in the constructor) as follows:

An entry point to mix the words is chosen randomly and they are cut off to be exchanged and
put together for a new word. As exampleAAAA andBBBB are cut off at a random point to
A, AAA andB, BBB. Then they are put together to form the new wordsABBB andBAAA.

3. Mutation (mutate(GuaranteeWord):GuaranteeWord):

Each guarantee word of the new population is mutated by exchanging the guarantee at each po-
sition of the word by a different guarantee at a probability of1

n wheren is the length of the word.
The new guarantee has to be a legal one which does not replace the guarantee requirements.

With this procedure a new population is generated which contains new and modified guarantee words
with a certain probability. These words neither contain untested nor already tested hierarchies.

This brings us to the step of “hierarchy generation”.

Hierarchy generation A hierarchy will be generated for each word of a population until it is not
already generated. To achieve this,parseWord(GuaranteeWord,...):Hierarchy[] of
the classEarleyParser.java will be used. This class is the only interface to access the package
edu.udo.saadi.asm.earley . The generation of hierarchies is divided into the following steps:

1. Earley Parsing: It is our aim to create syntax tress which can easily be converted into hierarchy
by the use of a context free grammars and the word problem. In a context free grammar the
rules of production refer to the relation of schedulers to schedulers and schedulers to tasks, rep-
resented by guarantee types. The grammar is an instance ofContextFreeGrammar.java
which is parsed from the fileHL.cfg . This file contains terminal symbols, non-terminal sym-
bols, start symbols and rules of production. It is structured as:

Each line contains a production rule in the formA : B , where asA is a terminal symbol andB
is a non-terminal symbol. Terminal symbols refer to guarantees (of a guarantee word) connected
to a task and are written lower case (e.g.res). Non-terminal symbols are written upper case and
represent schedulers (SCHED-INGUARANTEE-OUTGUARANTEE) and the guarantees which
are related to these schedulers (e.g.RES). As a scheduler may also have other schedulers as
children a ruleA : A A exists. The start symbol is the first symbol in the first line.

Each guarantee word which provides the basis for construction of a guarantee consists of a
set of guarantees. Considering the representation of guarantees as a String (toString()), a
guarantee word represents a word in a context free grammar. By the use of the Earley Parser
([Earley, 1970]) any amount of randomly structured syntax trees can be extracted of such a
word. To achieve this, the Earley Parser constructs a chart, which represents a certain type of
Earley States (EarleyState.java) for every position in the word. After that the Viterbi
Parser creates one or more syntax trees. The implementation relies on [Stolcke, 1995], section
3 and section 5.1 and works as following:

The size of a chart is the size of a guarantee word plus one. After inserting a initial Earley
State at position 0 the chart will be traversed (ascending, beginning with 0) and the method
operate(...) called. This function is responsible for three tasks: callscan(...) ,
complete(...) andpredict() . These methods test the former created chart and cre-
ate an Earley State of type “scanned”, “completed” or “predicted” if needed. For each posi-
tion of the chart the search for a new Earley States is continued, until there are no additional

39

CHAPTER 5. IMPLEMENTATION

states after the three methods were called. There exists a final state at the last position of the
chart, which should be reached in our case every time. Once final state is reached then the
methodbuildHiearchies(...):Hiearchy[] can be used to construct one or more
syntax trees. It uses the recursive functionbuildParseTree(...) which in turn basically
implements the Viterbi Parsing algorithm. The only difference is the case in which a prede-
cessor is to be chosen which is done in a random manner rather than the one with the best
probability. The result consists of a tree ofParseTree objects which contain a string rep-
resenting a symbol of the context free grammar and references to child nodes (nodeLabel).
This tree constitutes a syntax tree.

2. Construction of a hierarchy: The next step inbuildHierarchies(...) is to transform
the constructed syntax trees into hierarchies (see 2.3.3). As the root scheduler has been set
manually and all the tasks which refer to this guarantee word have been added to the hierarchy,
the scheduler tree is created recursively by the use ofbuildSubHierarchy(ParseTree,
Scheduler):Guarantee[]) . If the parse tree contains a terminal symbols as label, the
related guarantee of the guarantee word will be added to the scheduler as a contract, otherwise
it may only be a symbol representing a scheduler or a guarantee between two schedulers:

• In the case of schedulers an instance of the appropriate scheduler is created (by using the
methodgenerateScheduler(String):Guarantee) concerning the label of the
parse tree object. This is done by extracting the type of scheduler and the in-guarantee
from the symbol. The new scheduler object is added to the given scheduler by the in-
guarantee. Afterwards all guarantees which are results of recursive calls to the method
buildSubHierarchy(...) are added to the given scheduler.

• If the guarantee exists between two schedulers it reflects a node which represents a guar-
antee in the hierarchy. Because of this only the guarantees of the siblings of the parse tree
object are added (again by the use ofbuildSubHiearchy(...)).

After a hierarchy is constructed, it reflects the syntax tree completely, but is quite big. Addition-
ally the tasks are spread over the hierarchy inefficiently. Therefore a post processing is required
to minimize the hierarchy. This is done inminimizeHierarchy(...) which primarily re-
solves chains like “PSScheduler→ PSGuarantee→ PSScheduler→ PSGuarantee. . .”. As this
minimized hierarchy has its final form the guarantee parameters for all the guarantees between
schedulers are missing. These are computed byevaluateSchedulerGuarantees() of
Hierarchy.java . The method propagates the guarantee parameters which are already given
(in the leaves, the parameters of the tasks) bottom-up-wise up until the root scheduler. Thus a
schedulers’ in guarantee is the sum of all the requirements of its siblings.

The number of constructed hierarchies per guarantee word is given as a parameter to the method
parseWord(...) and can vary. After the generation phase is complete, the modified population
containing new and/or old guarantee words is returned to the caller ofmain(Population) . If all
hierarchies of a population are tested then a new generation is created.

Figure 5.3 displays an UML representation of the Earley Parser and its components.

5.1.2 The SAADISim(ulation) package

by Tobias Malbrecht

40

5.1. JAVA

�

�
����

�

����

	��
����

� ���������
�������

� ����

�����
�������

� �����

���������	

������	
���

���������������

�
��
�����
���

�������
������
�����

�����������
���

��������

������	������� �	
��

�!����"�
�
�

���������	����������

�
��
�����
���

��
�
�#���$���

���������#���$���

���
����
������

������	
���������	
���

�
"����
���

������	�������!����"�
�
���

�	�%���
���������

�	�%���
����������

������	
����������

��	�������������

���������

���%%���&��
�$
'���(��%%��

�����#
���
�����

������
����(�����
����

�!����"������

������)����*�����	+"��

������
�� �	
����

������	
� �	
����

��	��� �	
����

�	�%���
�� �	
����

������*�����	+����*�����	+"��

�����������,���������,���

������
��	+�������(�����
��

����	+��������������

���������*�����	+"�(�����
����

�%���%�-�*�����	+"�����

�.����
�
��!����"�
�
�

�.����
�
�)�
+,"���!����"�
�
�

�.����
�
�'�������	������!����"�
�
�

��
'�����
�
��!����"�
�
�

���/���
�
���������

������
��,��
�����
���

������
���,��
�����
���

�	+��
,��
�����
���

������

�	+������� �	
��

������,���

����&+��������

���������������

�
��
�����
���

�	+������������,�����

�����0������
���

��	������������

������	
�����*��+1��

�.���/�%���
���

�&��
�$
'���(��%%��

�	�%��
�0���������	
���

���������	
��������

���
�����	
�����*��+1��

��
�����	
����'��������	
�����

���,��%������������

�
��
�����
���

��
��
 ���������
���

Figure 5.3: UML diagram ofedu.ud.saadi.asm.earley .

41

CHAPTER 5. IMPLEMENTATION

In addition to the former described packages we developed another package which is called SAA-
DISim (edu.udo.saadi.sim). This package is an important part of the scheduler hierarchies
evaluation process, since it provides feedback to the ASMGenerator (described in section to facilitate
optimization of the scheduler hierarchies. To get an overview of the testing and evaluation of
scheduler hierarchies and the classification of SAADISim into this process we must refer to chapter.
This section only provides an insight into the implementation of SAADISim.
To get a first overview of the classes provided with SAADISim see figure 5.4. In the following we
describe the control flow of SAADISim.

edu.udo.saadi.sim.LTTParser

−verbose:boolean

+IRQ_ENTRY_STR:String

+SCHED_CHANGE_STR:String

+PROCESS_STR:String

+LTTParser

+parseOutput:void
+parseData:void

+parseProc:void

−parseTraceStartTime:long

−parseTraceEndTime:long

−parseSchedulingChanges:long

 statistic:Statistic

Serializable

edu.udo.saadi.sim.Statistic

−timeWithoutPids:long

−irqs:Hashtable

−processes:Hashtable

−lastIrq:int

+Statistic

+takeEvent:void

+complete:void
−isStarted:boolean

+addProcess:void

+getProcess:ProcessStatistic

+addIRQ:void

+getIRQType:String
+fillHierarchy:Hierarchy

+debug:void

 schedulingChanges:long

 traceStartTime:long

 traceEndTime:long

 traceDuration:long

edu.udo.saadi.sim.ResponseTime

−irq:int

+ResponseTime

 IRQ:int

Serializable

edu.udo.saadi.sim.ProcessStatistic

−executions:Vector

−currExecution:Execution

−responseTimes:Vector

+ProcessStatistic

+startExecution:void

+finishExecution:void

+startResponseTime:void

+finishResponseTime:void

+calculateDeadlineMisses:void

+toString:String

 waitingTime:long

 averageWaitingTime:long

 maxWaitingTime:long

 turnaroundTime:long

 averageExecutionTime:long

 executionTime:long

 maxResponseTime:long

 averageResponseTime:long

 endTime:long

 pid:int

 ppid:int

 startTime:long

 forkTime:long

 exitTime:long

 name:String

 deadlineMisses:int

 currResponseTime:ResponseTime

Serializable

edu.udo.saadi.sim.Execution

+Execution

+finish:void

+debug:void

 startTime:long

 endTime:long

 duration:long

edu.udo.saadi.sim.Event

+NOT_IDENTIFIED:int

+IRQ_ENTRY:int

+SCHED_CHANGE:int

+PROCESS:int

+PROCESS_FORK:int

+PROCESS_EXIT:int

+PROCESS_WAIT:int

+PROCESS_SIGNAL:int

+PROCESS_WAKEUP:int

#tokens:StringTokenizer

+Event

+is:boolean

 type:int

 time:long

 pid:int

 length:int

Figure 5.4: UML diagram of the data classes in the SAADIsim package

42

5.1. JAVA

The classLTTParser parses the output files from the Linux Trace Toolkit (which is described in
4.3.1). It therefore creates an object of the classStatistic that represents the information extracted
from Linux Trace Toolkit output in Java objects. During analysis, theLTTParser createsEvent
objects for every trace line of the LTT output that are relevant for the analysis of the scheduling
behaviour and passes these events to theStatistic object which then examines and stores the
information. Since there are several types of events, we implemented these events as subclasses of the
classEvent . Therefore the event received by theStatistic can either be anEventIRQEntry ,
anEventProcess or anEventSchedChange (see figure 5.5).

edu.udo.saadi.sim.EventProcess

−createdThreadStartAdress:int

−createdThreadPid:int

−forkedPID:int

+EventProcess

 forkedPid:int

 pidWaitedOn:int

 signalDestinationPid:int

 signalId:int
 stateBeforeWakeup:int

 wakeupPid:int

 subType:int

edu.udo.saadi.sim.EventSchedChange

+EventSchedChange

 inTaskPID:int

 outTaskPID:int

 outTaskState:int

edu.udo.saadi.sim.Event

+NOT_IDENTIFIED:int

+IRQ_ENTRY:int

+SCHED_CHANGE:int

+PROCESS:int

+PROCESS_FORK:int

+PROCESS_EXIT:int

+PROCESS_WAIT:int

+PROCESS_SIGNAL:int

+PROCESS_WAKEUP:int

#tokens:StringTokenizer

+Event

+is:boolean

 type:int

 time:long

 pid:int

 length:int

edu.udo.saadi.sim.EventIRQEntry

+EventIRQEntry

 irq:int

Figure 5.5: UML diagram of the implemented events

These events create a representation for process execution and scheduling. In this regard the class
Statistic contains a hashtable ofProcessStatistic objects, one for each process recognized
by the LTT. TheProcessStatistic itself contains a list ofExecution objects, that are created
when the corresponding process owned the CPU for a period of time. A classResponseTime
represents the time period between an IRQ and a succeeding scheduler change. After having finished
analysing events, we compute scheduling criteria for scheduler hierarchy optimization. Since this
computation has to be looked at from a more theoretical point of view, we refer to chapter to learn
more about that. Intending to enforce hierarchy optimization the data recorded during analysis (and
transferred to theStatistic) has to be accessible by the ASMGenerator for its next run. For that
reasonSAADISim stores the information of theStatistic in the underlying hierarchy.

5.1.3 Parser

by Janni

The Parser package builds the foundation for this project. It is used in several locations in the

43

CHAPTER 5. IMPLEMENTATION

project. The main purpose of this package is to read and parse a SDL file and create the corresponding
Parser objects for every SDL-tag. These objects are then used by theASMGenerator , GUI and
CodeGen modules. The Parser is implemented using the JAXP framework of SUN JDK 1.4.x.

The main method of theParser package isparseFile(String xmlFile) . This method
opens the SDL filexmlFile and parses its contents. For every tag in the SDL file an object is created,
these objects/classes correspond to the SDL elements. All attributes of a SDL tag are stored inside the
correspondingParser object. TheParser checks for invalid data types and also performs range
checking for every attribute to enforce syntactic analysis. When theParser detects errors it displays
a detailed error message describing the line in the SDL file where the problem appeared, and which
tag/attribute was responsible for the problem. The attributes in aParser object can be modified by
using the get/set-methods of the specified class. Example: You want to work with theCacheSize
attribute of theProcessor class:

Processor.getCacheSize();
Processor.setCacheSize(128);

Here a little list with theParser subclasses and their SDL equivalents:

• HardwareConstraints.java - This class corresponds to the<HARDWARE RE-
QUIREMENTS> tag in SDL and contains a list ofArchitecture objects.

• Architecture.java - This class corresponds to the<ARCHITECTURE> tag in SDL and
also contains a list ofProcessor objects

• Processor.java - This class corresponds to the<PROCESSOR> tag in SDL

• SoftwareConstraints.java - This class corresponds to the
<APPLICATION REQUIREMENTS> tag in SDL and has a list ofApplication
objects

• Application.java - This class corresponds to the<APPLICATION> tag in SDL and also
contains a list ofThread objects

• Threads:

– There are three types of threads a user can specify in the SDL:ThreadBatch ,
ThreadInteractive andThreadMultimedia .

– Example for a <INTERACTIVE> tag which corresponds to the
ThreadInteractive.java class:

<INTERACTIVE id="3" importance="1" response_time="10"\\
response_time_unit="ms"/>

– Example for a<PERIODIC> tag which corresponds to theThreadPeriodic.java
class:

<PERIODIC id="6" importance="3" amount="50" \\
amount_unit="ms" period="700"/>

– Example for a<BATCH> tag which corresponds to theThreadBatch.java class:

44

5.1. JAVA

<BATCH id="2" importance="2" turnaround_time="110"\\
turnaround_time_unit="ms" share="50"/>

The Parser package object additionally contains code to write aParser object hierarchy
back to disk. This is mainly used by the GUI to save a modified SDL file back to disk. By calling
Parser.saveToStringBuffer() you get aStringBuffer object which contains the
SDL file.

Another variation is the methodParser.saveToHTMLBuffer() . This method saves the
Parser object hierarchy in HTML format using syntax coloring for the different elements. As a
result you get aStringBuffer containing the generated HTML code.

The SDL ID is generated out of the normalized SDL file text. The normalization is a process
where all white spaces are deleted and all text is converted to lowercase. The order of all attributes
and tags is fixed. This normalized SDL is then used to generate an MD5 key which is used as the ID
of the current SDL file.

At last, a very important thing about theParser object is that the SDL DTD is not read out of a
file. The DTD is stored inside theParser object to prevent manipulations of the DTD. Some users
could try to manipulate the DTD and that would cause the Parser to crash or to throw error messages.
The DTD is stored as aStringBuffer object inside theParser class.

5.1.4 Saadi Database

The function of the SAADI Database is to save the SDL file, the generated and tested hierarchy
including statistics about its fitness-values. Basically, the SAADI Database is merely a set of MySQL
database tables.

It consitst of two main components:

• the DB itself,

• the SAADI interface (API), that allows for access to the SAADI db

The Database structure:
The Database consists of two tables.

Id(String) XML(String) averageFitness(double)

Table 5.1: SDL TABLE

In the first table called sdl, the sdl files will be saved as strings(varchar 255), which can be accessed
according to their sdl id, and the fitness value average will be saved as double.The average of the
fitness values of all hierarchies is the arithmetic average of number of hierarchies and sum of the
fitness values.

The second table named hierarchy consists of four columns (idsdl varchar[255] , idhierarchy
int[50], hierarchy of type longblob, fitness of type double). In the first column the sdlids are saved.
The second column is dedicated to the idhierarchy which respects the order of generation of the

45

CHAPTER 5. IMPLEMENTATION

Id sdl(String) Id hierarchy(int) Hierarchy(longblob) Fitness(double)

Table 5.2: Hierarchy TABLE

hierarchies. The third column is dedicated to the hierarchy itself which is saved as type longblob and
which can be accessed by the relationtuple (idsdl, id hierarchy). The fourth column represents the
fitness value of the hierarchy saved in the same row.

Now we want to give an overview about:

• The Database Interface

• The ConnectionManger and SDLObjectStore class

5.1.5 The Database Interface

As one can see in the uml diagram above, the class ConnectionManager is used by two classes, namely
SDLObjectStore und HierarchyObjectStore. The SDLObjectStore class can hold multiple objects of
type HierarchyObjectStore. While the ConnectionManager class is the one, that takes care of all the
connection handling mechanisms (to the DB), the SDLObjectStore saves the SDL files and works as
interface between the SAADI user and the SAADI DB. The function of the HierarchyObjectStore
class is to save the hierarchy of type Hierarchy in the DB.

5.1.6 The ConnectionManager and SDLObjectStore class

The SDLObjectStore class uses the ConnectionManager class, which in turn makes uses of the Java
Database Connectivity (JDBC) interface to establish DB connections. (public java.sql.Connection
getConnection() , public void destroy, public boolean establishConnection() are the maintenance func-
tions).

• Principles of JDBC

JDBC is part of the Java Standard API. It provides interfaces for access to SQL databases by
providing simple interfaces. With the help of JDBC, database clients in applets, servlets, JSP
or EJBs can access relational databases. JDBC makes use of object oriented design patterns,
but is low level in its function of accessing the database, since one will have to write plain SQL
statements in order to make queries. Conceptionally, JDBC is close to OBDC, however JDBC
is type-stricter and has a cleaner interface. JDBC helps on platform independent development
and provides flexibility for developing database access functionality.

• Design of the JDBC-API

While most database have specific APIs and features, JDBC tries to generalize this functionlity
by providing one generic interface to all database implmementations. This is done by providing
a mechanism for loading a database specific driver which encapsulates database specific details
like connection handling, authentication etc. If one wishes to access a different database one
only needs to load the corresponding driver!

46

5.1. JAVA

Figure 5.6: UML Diagram of the GUI

47

CHAPTER 5. IMPLEMENTATION

• Functionality of the JDBC core

The functionality of the JDBC core is roughly outlined in the following:

1. Establish connection to the DB

2. send SQL-Statements and retrieve the reults

3. transactions

4. Stored procedures (these are sql statements similar to functions stored in the database)

5. Prepared statements

6. Batch-Execution of multiple sql statements

7. scrollable results

8. Functionality to iterate the result set.

• JDBC driver types

When using JDBC one has to select from four JDBC drivers:

1. ODBC-Bridge:
JDBC calls will be compiled into ODBC calls (e.g embedded c-code) Note that both the
driver and the native db libraries have to be provided to the client.

2. Partial Java-driver:
Compilation of JDBC calls into native db api calls while making use of vendor-specific
db apis. Here, only native methods are necessary for the client.

3. Net Protocol ALL- Java driver:
JDBC driver, completly implemented in JAVA code- will be downloaded by the client
given that specific middleware is provided.

4. Native Protocol All-Java driver:
direct communication with the DB server. No native code or ODBC drivers are necessary
here. This option is the most modern one.

• Driver interfaces in JDBC

1. java.sql.DriverManager:
Registers the driver and establishes connections to the database. This part contains drivers
loaded at run-time.

2. java.sql.Connection:
represents a database connection.

3. java.sql.statement:
Allows for deployment of sql statements.

4. Java.sql.ResultSet:
maintains the results of an sql-statement in form of a relation. With this class one can also
access every single comlumn of a result.

Usage of the above mentioned classes:

48

5.1. JAVA

• Driver registration:
A jdbc driver will be registered by loading the respective driver. /(for MYSQL: mysql-
connector-java-2.0.14-bin.jar) Class.forName(,Com.mysql.jdbc.Driver);

• DB-Get Connection:
database will be reached through URL

String url= ,jdbc:mysql://hostname";\\
String dbName="saadi" String usr="user";\\
Sring pwd= "passwd";

ConnectionManager con;

Con.setDBHost(url); Con.setDBName(dBName);

Con.setDBUser(usr); Con.setDBPassword(pwd);
Daten aus der DB auslesen:Create an instance of Statement.\\
Statement St= db.createStatement();

//Create an instance of ResultSet
ResultSet rs=st.executeQuery(,SELECT * FROM hierarchy WHERE
Id_sdl= MD5 Schl üssel ")\\

traverse and read ResultSet -\\
Demonstration using the getFitnessValues method\\

public double[] getFitnessValues(String sdlId)\\
{

double[] flist = new double[selectCount(sdlId)];
try
{

Statement st = \\
con.getConnection().createStatement();\\
ResultSet rs;\\
PreparedStatement pst =

con.getConnection().prepareStatement(
"select fitness from hierarchy where " + " id_sdl = ?");

pst.setString(1, sdlId);
rs = pst.executeQuery();
for (int i = 0; rs.next(); i++)
{

flist[i] = rs.getDouble("fitness");
}
pst.close();

}
catch (SQLException se)

49

CHAPTER 5. IMPLEMENTATION

{
}
return flist;

}

It gets a SDLID and returns a field of FitnessValues of all hierarchies,
whereby the run of Resultset happens over:
for (int i=0; rs.next(); i++)

by Ammar, Abdulwhab

5.1.7 Graphical Users Interfaces

by Janni

By reading the other chapters of this report it is easily perceived that SAADI tries to model complex
scenarios. Nevertheless we think that it would come in handy if we made our system easily accessible
and useable. You can use SAADI in two different ways: either you can choose console mode or
alternatively you can use the SAADI-GUI.

When you use the console mode, you have to manually edit the SDL file which is very error prone
because you can easily make mistakes in the SDL syntax even when you use a dedicated XML editor.
Then you can parse the SDL file and generate an ASM hierarchy and the resulting scheduler code
without actually having any idea about the generation process.

The SAADI GUI is able to easily visualize the whole process from creating/editing a SDL file,
generating an ASM hierarchy, generating the scheduler code and finally recompiling the kernel.
Everything is under one GUI and you have full control of every step in the SAADI generation process.

The GUI is also able to speed up the workflow between creating/modifying a SDL file and
generating the resulting ASM hierarchy. The common user will generate/edit a SDL in the GUI,
create the ASM hierarchy on the fly and view the generated ASM hierarchy graphically as a tree.
Then he can choose the single threads or schedulers in the ASM view and let the ASM frame display
information about every object in the ASM hierarchy. The ASM hierarchy allows the user to select
a thread in the ASM frame and modify it in the SDL frame. This way the user can very quickly fine
tune the ASM hierarchy by modifying the SDL file in the SDL frame, generating the ASM view,
modifying the SDL, regenerate the ASM view and so on.

The ASM frame and the SDL frame are connected with each other: modifications or mouse
clicks in one frame affect the other frame, e. g. when you click on a thread in the SDL frame the
corresponding thread in the ASM frame will be highlighted and vice versa.

After the user is satisfied with the SDL file he created, he can choose to generate the Scheduler
code for the current SDL file, then the GUI automatically creates all necessary intermediate files and
objects. In the future, the GUI will also be able to bind the scheduler code into the linux kernel and

50

5.1. JAVA

recompile the kernel.

Error messages from the parser, asm and codegeneration modules are caught by the GUI and
presented in dialogs thus giving the user full visual feedback of every mistake that could occur.

5.1.8 Main Components

Let’s have a look on how the SAADI-GUI is structured and what components are used for it: The
SAADI-GUI’s structure is quite simple, it consists of three main components.

• the MainFrame is the main window and operates as a container for all other frames which are
MDI children and are opened inside the MainFrame. It is also responsible for handling the main
menu actions and for all speed button events.

• the SDLFrame is responsible for displaying and modifying the current SDL file in a tree form.

• the ASMFrame displays the ASM hierarchy that is generated from the current SDL file. It is
able to display the hierarchy in different ways and has some other features that will be explained
in detail later in this section.

5.1.9 MainFrame

The MainFrame is the main window of the SAADI GUI. It is generated, displayed and centered on
the screen by the main class of the GUI, GUIMain.

MainFrame is responsible for generating the toolbar with the speed buttons and for the main menu
entries. This class handles all main menu events and all speed button events. It also takes care of
enabling/disabling menu items and speed buttons in different situations. For example when you start
the GUI and no SDL file is opened, the MainFrame class will disable all menu items and speed
buttons for saving the SDL, generating the ASM hierarchy, deleting an SDL item etc. It also handles
all graphical icons used in the GUI.

It is also responsible for handling all child windows like the SDLFrame, ASMFrame, Codegen-
Frame, SourceCodeFrame etc. Those frames are displayed inside the MainFrame and one cannot
move them out of the MainFrame. MainFrame provides methods for cascading, tiling and switching
of child frames.

5.1.10 SDLFrame

In general the SDLFrame allows the user to create a new SDL file or to modify an existing SDL
file. It also provides the possibility to create a random SDL file which is generated by a specialized
algorithm and is used for testing purposes.

The SDLFrame is split horizontally in two panels:

51

CHAPTER 5. IMPLEMENTATION

• The left panel consists of a JTree component in which all elements of the SDL file are rep-
resented by a tree node. The tree mimics the hierarchy of the SDL-file. Different nodes rep-
resent the hardware requirements, architecture, processor, software requirements, application,
psthread, resthread and tsthread elements of the SDL.

• the right panel shows the details of every node in the JTree component. When you select a
processor in the JTree you can view and modify all of it’s attributes in this right panel. All
attributes are editable by text fields and by spin edits. The GUI only allows valid values for
the attributes. This way the user cannot enter invalid values that would lead to errors in the
ASM hierarchy generation process. After the modifications are finished, one can click on the
”Apply Changes” button to let the GUI save the modified SDL element back into the internal
parser object. At this stage the GUI is internally checking if the modified SDL object is valid
or if there are any collisions with other SDL elements or with other attributes in the same
SDL object. When such a collision occurs, the GUI presents an error message with a detailled
description of what went wrong and suggestions on how to fix the problem.

All SDL elements in the JTree have a leading icon which visually shows the differencs between
these objects. The thread objects icons are coloured boxes, every thread type has it’s own color to let
the user easily distinguish the thread type.

• RESThreads are displayed using the color cyan

• PSThreads are displayed in yellow

• TSThreads are green

These colors are customizable and can be changed in the options menu. This color scheme is used
throughout the whole GUI in order to achieve a consistent color layout that makes all threads easily
recognizable. The user will find this color layout in the SDLFrame, the ASMFrame and in all dialogs
that let you manipulate thread objects.

The user can only add/delete application or thread objects. To do so one can use the two speed
buttons on the toolbar. When you add a thread the add dialog let’s the user choose which type of
thread he wants to create, again using coloured icons for the different thread types. All newly created
threads and applications have safe default values.

The same goes for new SDL files: When one chooses to create a new SDL file via theF̈ile - New
SDL filem̈enu or via the corresponding speed button, the MainFrame generates a SDL file which only
consists of a hardware requirements object, an architecture object with default values for the INTEL
architecture and with a processor of the INTEL processor family. This newly generated SDL is a valid
SDL and can be compiled and used without further modifications.

5.1.11 ASMFrame

The ASMFrame consists of a graphical area in which the ASM hierarchy of the current SDL file is
displayed and of an area with different check boxes and buttons.

This frame generates an ASM hierarchy from the current SDL file and provides different ways of
visualizing it.

52

5.1. JAVA

The generated ASM hierarchy is displayed in form of a tree with coloured nodes and connection
lines. Elliptical nodes represent scheduler objects and rectangular nodes represent thread objects.
Again, the same color scheme like in the SDLFrame is used for the different objects.

By clicking on a thread object the user can highlight the corresponding SDL object in the
SDLFrame. This connection works in both directions. The user can also choose an Application in the
listbox at the bottom of the ASMFrame and the ASMFrame then highlights all threads that belong to
the selected application. This also works in the SDLFrame.

The ASMFrame not only lets the user view the generated ASM hierarchy, but also shows the
incoming guarantees for every ASM object. The user can see the guarantees for every ASM object
by moving the mouse cursor over an ASM object. A tooltip text will appear showing all relevant
informations about this object.

The ASMFrame is able to show the ASM hierarchy in two different views:

• vertical view: in this view the ASM hierarchy is shown vertically. This means that all children
of a scheduler are displayed vertically above or on top of this scheduler.

• horizontal view: the children of a scheduler are displayed horizontally to the left or the right of
this scheduler.

The ASMFrame reflects the applied modifications in terms of a scheduling hierarchy. The user can
also change the views look and feel by adjusting color settings or by choosing between horizontal
and vertical views. In addition to that, when moving over a thread with the mouse the user will be
shown the guarantees this thread will receive. Finally while clicking an application or thread the
corresponding items will be highlighted within the view. As a special gimmick the user can save the
displayed scheduling hierarchy in JPEG format for further external usage.

The last option in the ASMFrame is the ability to export the current ASM hierarchy into a JPEG
file. The user clicks on thëSavë-button in the lower right area of the ASMFrame, a dialog pops up, the
user enters the desired JPEG reolution and the filename and the ASMFrame generates a JPEG with
the specified dimensions for further investigations.

5.1.12 SDLSourceCodeViewer

The user can view the SDL-File source code and the corresponding HTML code within this viewer,
though the user cannot make any changes to the source code - the SDLFrame is meant to do this.
Once again heavy usage of color is being made here.

Sometimes it is necessary to view the XML code of the current SDL file. The GUI offers a special
dialog that shows the XML code of the current SDL file, allowing the user to stay in the GUI instead
of switching to an external application to view the code.

The SDL code is displayed with syntax coloring, that means that the different parts in the code are
coloured differently to make the code more apprehensible.

The user can change this color scheme in the options dialog of the GUI.

53

CHAPTER 5. IMPLEMENTATION

5.1.13 CodeGen Source Code

Here the generated code from the CodeGeneration phase will be displayed. This C-code is the result
of the processing of an ASM hierarchy, which was generated from a SDL-File.

The SAADI GUI can also generate source code from the current SDL file.
To do so the user clicks on̈Build - Generate code” or onto the corresponding speed button on the

toolbar.
The GUI now checks the validity of the current SDL and in case of errors a detailled description

is displayed with suggestions on how to fix the problem. Then the ASM hierarchy is generated.
When this happened correctly the GUI starts the CodeGeneration. In this phase the priorly generated
ASM hierarchy is translated into C - code. The generated C-code is displayed in the CodeGenFrame
allowing the user to have a look at the generated code and if necessary make modifications in the SDL
file. This workflow makes the whole process from generating a SDL file, then the ASM hierarchy and
then the C-code less error-prone, easier and faster.

5.2 The Code Generation-Class

by Christian Bockermann

As described later, this class generates the code of setup function that initializes the scheduler hierar-
chy which is called at late kernel initialization. In addition to that it generates code for a function that
returns the appopriate scheduler for a task and thus implements the application mapping.
This sections does not deal with the initialization functions but describes the internals of the Code-
Generation class and the methods exported to the rest of the system.

5.2.1 Template-file

The CodeGenerator makes use of a template ofsaadi init.c which is distributed in the Java
archive fileSAADI.jar . After loading this file using the classloader the essential parts of the two
functions are inserted. These parts contain the application mapping and the initialization that consists
of severalsaadi construct scheduler calls.
Basically this template file contains certain marks (e.g. SAADIAPPLICATION MAPPING) which
are later replaced by the content of specific string buffers (private buffers of the CodeGenerator-class).

5.2.2 Public methods

In order to generate code, the CodeGenerator offers a few public methods which are exported to the
other classes of the SAADI-project. These are the entry-points where the classes start to use this
CodeGenerator.
Before generating any code an instance of the CodeGenerator-class has to be created. Instatiation is
done by the use of a public constructor which requires two different parameters: The ASM-hierarchy
created by the ASM-Generator and a status of the ASM-Generator. The process of code generation
is started by a call togenerateCode() -method of the instantiated object. This method recursively
traverses the hierarchy and fills the internal string buffers of the object with code for each task and
scheduler found in the hierarchy.
After the traversal the different string buffers contain the C-calls neccessary to construct the schedul-
ing hierarchy and the application-mapping code (this the part cannot be hard-coded). Next the marks

54

5.3. KERNEL

in the template-file are replaced with the contents of the string buffers and the result is print out to
standard output. In parallel it is saved tokernel/saadi init.c relative to the$LINUX ROOT
specified at the command line.

5.2.3 Validation

A special feature of the CodeGenerator class is that it checks a directory containing the linux source
code for a valid SAADI-enhanced kernel. This is done by looking for specific SAADI- related files
which depend on the generated ASM tree. The methodcheckSourceTree() returns true if all
scheduling algorithms used in the ASM tree exist in the linux source (to be precise: the files for the
scheduling algorithms have to exist).

5.2.4 Implementation

The implementation of the CodeGenerator is not very complex. It basically consists of a tree-traversal
and the decision between scheduler and task. Figure 5.7 shows a pseudo-code notation of this traver-
sal.

generateCode (root,schedulable) :

if schedulable is Schedulerthen
addScheduler(root, schedulable)
k = schedulable.getNumberOfChildren()
for i = 0 to k do

generateCode(schedulable, schedulable.getChild(i))
end for

else
addTask(root,schedulable)

end if

Figure 5.7: Pseudo-code for the code-generation

5.3 Kernel

The changes to the linux kernel to integrate our hierarchical scheduling framework are mostly con-
tained to the ”kernel/sched.c“ file which is the place where all of the scheduling logic is implemented.
All central data structures are defined in the ”include/linux/saadi.h” file. Some other files were also
modified to support our changes but these modifications are minor and will be pointed out at appro-
priate places in this text. Our integration work is based on the 2.5.58 development series kernel.

5.3.1 Framework

by Piotr

55

CHAPTER 5. IMPLEMENTATION

The “schedulable” structure

Our whole hierarchical scheduling framework is centered around theschedulable structure so the
documentation of our kernel work shall start here. Theschedulable structure encapsulates all
data the framework needs to schedule an object - either a task or a scheduler. Tasks are represented
by the structuretask struct (defined in “include/linux/sched.h”) in the standard linux kernel. In
order to keep the changes to this critical data structure to a minimum (to avoid conflicts in the future)
we only added one further attribute -this schedulable which allows us to refer to the under-
lying schedulable structure. Besides this change only some scheduler contained, now unneeded
attributes were removed.

Listing 5.1: The schedulable structure

struct schedulable{

schedulert ∗ parent ;

long int time slice ;
int prio ;

/∗ status of the schedulable∗/
unsigned int status ;

union {
struct linux data O1;
struct eevdfdata eevdf ;
struct resdata res ;
struct respsdata resps ;
struct ps data ps;

} scheddata ;

schedulert ∗sched;
task t ∗task ;

};

Everyschedulable object has aparent scheduler which is the scheduler used for scheduling
this object (note that a schedulable object can be associated to both tasks and schedulers; they are
regarded as the same from the scheduling point of view). Thetime slice attribute denotes the cpu
time in ticks left to the object and is decremented via the timer interrupt (which depends on the defini-
tion of theHZvalue which can change from architecture to architecture and is set to milliseconds on
i386). If it reaches zero then a rescheduling is initiated. The next attribute -prio - is a compatibility
hack to allow linux system calls (e.g.sys nice()) to access to the prioritity of the task/scheduler.
If the object is scheduled by any other scheduler than the saadi-port of the original linux scheduler
than changes in this value will have no effect. At the moment two different states are defined for a
schedulable object:

• ENQUEUED - meaning the schedulable object is currently enqueued in the runqueue of the
parent scheduler and

56

5.3. KERNEL

• FIRST TIME SLICE - indicating that this is the first time slice the object uses (e.g. a freshly
forked process) (this information is useful for providing more fairness to processes which spawn
a lot of children that exit very fast)

Thesched data union provides scheduler specific information and is unused in the framework
itself. If this schedulable structure refers to a scheduler then the attributesched points to an appro-
priate structure, and is zero if the object is a common task and vice versa for task objects.

The “scheduler” structure

Schedulers are represented by thescheduler data structure. Besides encapsulating the obvious
attributesid , type andclass (denoting the id, type and the class of the scheduler) it provides
the framework-scheduler interface by which the scheduler specific logic can be accessed and against
which new schedulers can be written and integrated into the framework. The details of this interface
will be discussed in the next section.

Listing 5.2: The scheduler structure

struct scheduler{

unsigned int id ;
unsigned int type ;
unsigned int class ;

spinlock t lock ;

link func t link ;
unlink func t unlink ;
join func t join ;
leavefunc t leave ;
schedulefunc t schedule ;

runqueuet rq ;

schedulablet ∗ this schedulable ;

/∗ list of idle child schedulers∗/
struct list head idlelist ;

/∗ scheduler status∗/
unsigned int status ;

};

The spinlocklock guards thescheduler structure and the associated runqueuerq and serial-
izes the access to it. As with thetask struct thethis schedulable pointer provides us with
the access to the underlyingschedulable data structure. In order to avoid wastage of precious
cpu-cycles for large scheduling hierarchies, our framework automatically removes idle schedulers
(i.e. schedulers which have no tasks in their runqueue and only idle schedulers beneath them) from

57

CHAPTER 5. IMPLEMENTATION

the hiearchy and temporarily places them on the idle-list of their parent scheduler. Obviously the root
scheduler of the hierarchy can not become idle and the idle-task which is a special system thread not
handled by any scheduler is scheduled on the cpu if there are no other tasks to schedule. A scheduler
is reinserted into the hierarchy when a task associated with this scheduler is created or wakes up from
sleep. Thestatus field helps to keep track of the current status of the scheduler. At the moment
only one status is defined:

• SCHEDIDLE - the scheduler has been temporarily removed from the hierarchy and placed on
the idle-list of it’s parent scheduler

The “runqueue” structure

Therunqueue data structure is used to keep track of the schedulers and tasks that currently compete
for the cpu time based on the rules defined by the scheduler to which the runqueue is attached. The run-
queue structure can be devided into two parts: the first part implements attributes that help keep track
of different statistics (nr running , nr switches , nr uninterruptible)that are needed by
other parts of the system (migration thread , migration queue - these are needed by cpu-
migration-code to be found in the “kernel/sched.c” file but not directly connected to our scheduling
work) or are used directly by our scheduling framework (curr - points to the schedulable currently
being run,nr idle , idle queue - both are used by the scheduler (un)-idle code). The second part
is scheduler specific and implements the data structures that are needed to hold all the schedulable
objects. For instance the port of the original linux scheduler uses two arrays of lists while the eevdf
scheduler uses binary trees.

Listing 5.3: The runqueue structure

struct runqueue{

unsigned long nr running , nrswitches , nruninterruptible ;
schedulablet ∗ curr ;

task t ∗ migration thread ;
struct list head migrationqueue ;

/∗ idle schedulers are removed from the active\\
/ expired queues
∗ and put here∗/

unsigned long nr idle ;
struct list head idlequeue ;

atomic t nr iowait ;

/∗ scheduler implementaion specific data
∗/

union {
struct O1 rq data O1;
struct eevdf rq data eevdf ;

58

5.3. KERNEL

struct respsrq data resps ;
} impl;

};

The “fork()” code path

To illustrate the sematics of the (most important) saadi related functions and provide an high level
overview of the inner workings of our scheduling framework we will now have a look at the different
code paths taken during the execution of a task.

saadi_init_task_time_slice()

saadi_construct_task()

schedule(TASK_FORKED)

link()

saadi_assign_task_to_scheduler()
copy_process()

wake_up_forked_process()

do_fork()

fork()

join()

SAADILinux Kernel

Figure 5.8: The fork() code path

The life of (nearly) every task begins with a call tofork() by its parent. During this call var-
ious data structures of the parent are copied and new data structures are initialized. The details
of this process can be found in “kernel/fork.c:copyprocess()”. From the perspective of our frame-
work it is also the right time to initialize the data structures our framework needs to cope with the
newly created task - mainly theschedulable -structure. This is accomplished through a call to
saadi construct task() late inkernel/fork.c:copy process() . If something goes
wrong saadi destruct task() is called to clean up. We also have to give the task some ini-
tial time slice. This is done bysaadi init task time slice() which just divides the par-
ents time slice by two and gives one part to the parent and the second to its child. Obviously this
keeps the sum of all time slices currently given to processes constant and prevents the parent from
artificially extending its usable time slice resulting in more scheduling fairness. When the child pro-
cess exits very fast without using up its first time slice, the remainder is reclaimed for the parent.

59

CHAPTER 5. IMPLEMENTATION

The next step is to wake up the newly created process (i.e. let it join the set of processes currently
competing for cpu time) which is implemented by a call towake up forked process() from
kernel/fork.c:do fork() . Here our first goal is to determine by which scheduler this task
has to be scheduled in order to know into which runqueue to put it. The functionsaadi assign
task to scheduler() implements this by using the name of the task to derive its scheduling

parameters as defined in the ASM (note that this function is created by the code generation module).
After knowing the responsible scheduler we call itslink() function to make this connection per-
manent and give it a chance to react to this event by callingschedule() with theTASK FORKED
flag set. Lastly we calljoin() to place the task (or rather the underlying schedulable object) into
the schedulers runqueue. Now the task can be scheduled like any other task currently running on the
system.

The “exec()” code path

Since running a lot of copies of the same task is not really that interesting hence a task has also the
opportunity to replace the code/data segments inherited from its parent with newly loaded data from
the hard disk (e.g. your bash does this when you execute a new program). The responsible syscall
is calledexec() . Due to the fact that in our system a task is identified by its filename a call to
exec implies that the connection between the task and its scheduler has to be re-evaluated. This is
accomplished infs/exec.c:do execve() by a call tosaadi task reassign() . If we
have to move the task to a different scheduler we first remove it from the runqueue of its old scheduler
(leave()), then cut the connection to this scheduler (unlink()), create a connection to its new
scheduler (link()) and finally end the movement by placing it in the new scheduler’s runqueue
(join()).

The “scheduling” code path

The scheduling process is normally initiated fromsched.c:scheduler tick() which is
called from the timer interrupt withHZ frequency and gives us our basic cpu time metric - the
tick. Of course a request for a new scheduling decision can also be initiated by other parts of the
system (e.g. when a task is forked). To signal the need for a new scheduling decision, a call to
set tsk need resched() is sufficient. Insched.c:scheduler tick() we decrement
the time slice left for the currently running task and also every scheduler on the path from its parent
to the root scheduler of the hierarchy by one. If any time slice reaches zero we signal that a new
scheduling decision is needed. The linux kernel responds to this need by callingschedule() as
soon as possible. Here a rather large loop is used to traverse the scheduling hierarchy from the first
scheduler where a new scheduling decision has to be made on the way down from the root scheduler
until we finally arrive at a leaf of the hierarchy which is always a task. Note that only tasks are
objects that are given the cpu by a context switch. Scheduler code is only executed in the context
of our framework, in order to determine a task that can be finally scheduled and maintance of our
data structures. The whole process is made complex by the fact that scheduler runqueues can be
empty in which case we put the scheduler on the idle-list of its parent scheduler and in the case
of the root scheduler we have no real task that we can schedule and therefore we schedule the idle-task.

60

5.3. KERNEL

exec()

do_execve()

leave()

unlink()

join()

link()

saadi_task_reassign()

Linux Kernel SAADI

Scheduler−Interface

Figure 5.9: The exec() code path

5.3.2 Interface

by Piotr

• link()
It is called whenever an association between a scheduled object and its scheduler changes.
This happens for example when a freshly forked task is assigned to a scheduler or a task (or a
scheduler) is moved in the hierarchy (then we have to call ”unlink()” first on the old scheduler).
The specific scheduler can use the call to initialize the scheduling specific ”scheddata” union
in the assigned schedulable object or setup some intern data structures etc.

• unlink()
As can be expected unlink is the counterpart to link and called when the link between a schedu-
lable object and its parent scheduler has to be removed (e.g. when the task exits or when a
schedulable object has to be moved in the scheduling-hierarchy)

• join()
join() mostly replaces the ”activatetask()” function in the standard linux kernel. It is called
when a schedulable object joins the runqueue of the scheduler (note: ”link()” must have been
called prior to that). After joining the runqueue a schedulable object competes with the other
objects in the runqueue of the scheduler for the cpu and if it wins it is given the cpu for a period
determined by the scheduler. Note that ”join()” and ”leave()” are called more frequently as one

61

CHAPTER 5. IMPLEMENTATION

set_tsk_need_resched()

timer interrupt

schedule()

context switch

scheduler_tick()

SAADI

Linux Kernel

Figure 5.10: The schedule code path

would expect. This is due to the fact that on every waiting of the task in the system (e.g. when
waiting for an IO-operation to complete) the task (or the underlying schedulable object to be
precise) is removed from the runqueue of the parent scheduler and is placed in the appropriate
wait queue.

• leave()
This is the counterpart to ”join()”: a schedulable object leaves the runqueue of the parent sched-
uler. It is important to understand that while ”unlink()” is mostly called when a task exits,
”leave()” is frequently called while e.g. waiting on some ressource.

• schedule()
This is the place where the scheduling algoritm is implemented. A special event variable is used
to describe the exact scheduling event type that must be answered. The following values and
semantics are defined:

– SCHEDULABLE EXPIRED
Indicates that the time slice of the schedulable object has reached zero.

– SCHEDULABLE PREEMPTED
Denotes that the schedulable was interrupted on a sub time-quantum level. This can be
useful in realtime enviroments where one does not want to wait until the time quantum of
the schedulable object is used up or it yields the cpu. This event is not used at the moment.

– DISPATCH
Signals the need to choose a new task object for assigning to the cpu. If the returned

62

5.3. KERNEL

object is of type task, then it can immediately run on the cpu. If it is a scheduler, then the
framework will recursively issue a DISPATCH event until a task is found. Failure to find
an appropriate task results in the scheduling of the idle-task.

– TASK FORKED When a newly forked task is woken up in ”wakeup forked process()”
this event is used.

5.3.3 Scheduler Implementation

by Rolf

Currently there are six schedulers implemented in SAADI: roundrobin, fixed priority, linux, propor-
tional share, EEVDF, reservation scheduler and Reservation Probabilistic Soft (RESPS).

The Linux Scheduler

The Linux scheduler uses the same algorithm as the O(1) scheduler in the Linux 2.5 kernel, developed
by Ingo Mjolnar. The runqueue data shown in 5.5 consists of two arrays: active and expired, that hold
the tasks, sorted by priority. A new tasks is assigned a timeslice and queued in the active array. When
the task has used its timeslice, it is assigned a new timeslice and enqueued in the expired array. Once
the active array is empty the active and expired array are swapped.

Listing 5.4: per schedulable data for Linux scheduler

struct linux data {

int prio ;
prio array t ∗ array ;

struct list head runlist ;

unsigned int first time slice ;
};

Listing 5.5: runqueue data for Linux scheduler

struct O1 rq data{

unsigned long expiredtimestamp ;

prio array t ∗ active ,∗ expired , arrays [2];
int prev nr running [NRCPUS];

};

PS

The per task data for the PS scheduler is in the “struct psdata” shown in figure. The share is the
Guarantee parameter settable from the user space by a syscall or the scontrol program. The virtual

63

CHAPTER 5. IMPLEMENTATION

time vt for a task advances proportional to the time the task is executed and inverse proportional to
the share of this task. If a task has been running for “timerunning” the virtual time is set to

V T = V T +
time running

share
(5.1)

The virtual time of a tasks that have been blocked is set to the minimum virtual time of the tasks in the
runqueue, so a task can not accumulate credits by sleeping or waiting for IO. The scheduler always
chooses the task with the smallest VT to run next. So every task gets execution time proportional to
its share. Figure 5.7 shows the PS scheduling algorithm in pseudocode.

Listing 5.6: per schedulable data for PS scheduler

struct ps data {
int share ;
unsigned long vt ; /∗ virtual time∗/
unsigned long start time ;
struct list head runlist ;

};

Listing 5.7: The PS Algorithm

/∗ schedulable s joins the runqueue∗/
ps join (s){

if (s . vt>minqueueVT)
s . vt = minqueueVT;

enqueue(s); /∗ add s to runqueue∗/
}

/∗ schedulable s leaves runqueue∗/
ps leave (s){

s . vt += runtime/s . share
dequeue(s); /∗ delete s from runqueue∗/

}

/∗ s is preempted or timeslice expired∗/
ps preempted(s){

/∗ update the VT for s , which has been running for runtime∗/
s . vt += runtime/s . share ;

}

/∗ select new schedulable to run next∗/
ps dispatch (){

/∗ select schedulable from runqueue with smallest vt∗/
next = getrequest ();

64

5.3. KERNEL

next . timeslice = TIMESLICE;
return next ;

}

EEVDF

The Earliest Eligible Virtual Deadline First algorithm also provides a proportional share guarantee to
its tasks. The share of a task along with other per taks parameters is in the struct eevdfdata shown in
figureref:. The per scheduler data in eevdfrq data is shown in figureref:. The scheduler has a virtual
time, which advances every time a task has run for time delta as

V (t) = V (t) +
delta

total weight
(5.2)

. Where totalweight is the sum of the shares of all active tasks.
The variables ve and vd denote the virtual eligible time and virtual deadline of a task. When a task

makes a request for runtime of requestsize and joins the runqueue its eligible time is calculated as

ve1 = V (t0) (5.3)

the following ve are calculated as

vek+1 = vek +
request size

wi
(5.4)

. The virtual deadline is

vdk = vek +
request size

wi
(5.5)

.
A task will only be scheduled, when its eligible time ve is greater or equal than the queue virtual

time V(t). The algorithm select always the task with the earliest virtual deadline vd which is eligible
ve >= V (t).

Listing 5.8: eevdf data

struct eevdfdata {
int share ; /∗ proportional share of the

∗ client ∗/

/∗ data needed for algorithm implementation∗/
int lag ; /∗ lag of the client ∗/

int ve ; /∗ virtual eligible time∗/
int vd ; /∗ virtual deadline∗/
int min vd; /∗ minimum virtual deadline in

∗ whole subtree
∗ only used by∗ request procs
∗/

65

CHAPTER 5. IMPLEMENTATION

schedulablet ∗ client ; /∗ client on which behalf the
∗ request is made∗/

/∗ pointer for binary tree representation∗/
eevdfdatat ∗ left , ∗ right , ∗ parent ;

};

struct eevdf rq data {
/∗ the binary tree with all pending requests∗/
struct eevdfdata ∗ requesttree ;

/∗ current virtual time∗/
int virtual time ;

/∗ total weight of all active clients∗/
int total weight ;

/∗ time in jiffies of last vt update∗/
unsigned long int last vt update ;

/∗ nr . of ticks we had to forward the virtual time by∗/
unsigned long int nr vt forward ticks ;

/∗ nr . of time we had to reset the vt to\\
prevent overflowing∗/

unsigned long int nr vt resets ;
};

Listing 5.9: eevdf algorithm

/∗ schedulable s joins the runqueue∗/
eevdf join (s){

scheduler−>total weight+=s.weight;
s .ve = scheduler . virtualtime ;
s .vd = s .ve + (REQUEST) / s.share
insert request (s);

}

/∗ schedulable s leasves runqueue∗/
eevdf leave (s){

schedule . totalweight−=s.weight;

deleterequest (s);

}

66

5.3. KERNEL

/∗ s is preempted or timeslice expired∗/
eevdfpreempted(s){

deleterequest (s);
s .ve∗= requestsize / s . share ;
s .vd = s .ve + requestsize / s . share ;
insert request (s);

}

/∗ select new schedulable to run next∗/
eevdfdispatch (){

next = getrequest ();
}

Reservation

The reservation scheduler provides basic soft reservation guarantees. Schedulables scheduled by the
reservation scheduler have the guarantee parameters amount and period, held in the “struct resdata”
5.3.3. The scheduler uses an earliest deadline first algorithm similar to the scheduler in the Nemesis
OS []. The deadline is always the end of the current period. The scheduler simply runs the task with
the earliest deadline for the given amount of time. Tasks which have run for their amount are put in a
waiting queue and are reinserted in the runqueue at the end of their period and given a new timeslice
as their new amount. If there is no task in the runqueue because all tasks have been executing for their
reserved amount, the scheduler runs a random task from the waiting queue for a short period.

struct resdata {
int period ;
int exectime ;

int deadline ;
struct list head runlist ;

};

Listing 5.10: RESBS algorithm

/∗ schedulable s joins the runqueue∗/
resbsjoin (s){

s . deadline = now + s. period ;
s . timeslice = s . exectime ;
enqueue(s); /∗ insert s into runqueue , sorted by deadline∗/

}

/∗ schedulable s leaves runqueue∗/
resbsleave (s){

67

CHAPTER 5. IMPLEMENTATION

dequeue(s); /∗ delete s from runqueue∗/
}

/∗ s is preempted or timeslice expired∗/
resbspreempted(s){

tasksin waiting queuewith deadlineover back to runqueue ()
/∗ s has used its timeslice insert into waiting queue∗/
dequeue(s,runqueue);
enqueue(s, waitingqueue);

}

/∗ select new schedulable to run next∗/
resbsdispatch (){

/∗ return the task with earliest deadline from runqueue∗/
next = getnext (runqueue);
if (! next){

/∗ as there is no task left in runqueue,\\
run task from waiting for short time(overun time)∗/
next = getnext (waitingqueue);
next . timeslice =5;

}
}

68

5.3. KERNEL

5.3.4 The SAADI System Calls

by Markus Wuebben

In order to provide an interface to the scheduler core within the kernel we implemented a set of system
calls to retrieve information about and set parameters within the scheduler1. This way a process may
set its desired scheduling behaviour and retrieve information about its scheduling parameters and the
scheduler available in the SAADI system from userspace.

Why new syscalls?

In fact there are quite a few scheduler specific syscalls available within Linux due to the POSIX 1.b
standard and we thought about extending them since they do not suffice the requirements of SAADI
but after our research we recogized that the cleanest and ”safest” way to implement the desired func-
tionality would be to implement new calls.

System calls in Linux on x86 architecture

System calls provide the interface between a process in userspace and the operating system (kernel).
System calls within Linux on x86 architecture work by putting the thesyscall numberof the desired
system call in registereaxand its arguments into registersebx, ecx, edx, esi, edi (,ebp)depending on
the number of arguments the syscall takes2. The kernel then handles the software interupt to serve
the request. The return value is stored in registereax. The necessary assembler code is provided in
form of macros which are stored in theasm/unistd.h . Listing 5.11 depict such a macro for a one
argument system call.

Listing 5.11: A one argument Linux system call macro

#define syscall1 (type ,name,type1,arg1)\
type name(type1 arg1)\
{ \
long res ;\

asm volatile (” int \$0x80”\
: ”=a” (res)\

: ”0” (NR ##name),”b” ((long)(arg1)));\
syscallreturn (type , res);\

}

libsaadi and scontrol

In order to provide some convinience for the user of a SAADI enhanced system we implemented
a library calledlibsaadi. This library encapsulates the SAADI system calls and features other neat
functions. Also, a tool calledsontrol is delivered with every distribution of SAADI. With the help
of scontrol the owner of a process (or root) may manipulate the processe’s scheduling behaviour.
Please refer to the help of scontrol by callingscontrol --help . scontrol and libsaadi
can be found beneath thecontrib directory in your SAADI Linux kernel source tree.

1In earlier versions we made use of the so-called procfs available under Linux but this mechanism has been deprecated in
favor of the system calls.

2This applies only to system calls that take less than five arguments. System calls with more arguments still expect the
syscall number to be ineax, but the arguments are arranged in memory and the pointer to the first arg is stored inebx.

69

CHAPTER 5. IMPLEMENTATION

The New Calls

In Listing 5.12 one can find the prototypes of the implemented system calls. This is how they can
be accessed fromlibsaadi . The prototypes can be found in the header file oflibsaadi . In the
Listings 5.13, 5.14, the according parameter definitions can be found.

Listing 5.12: The SAADI system call prototypes

long saadisignaldeadlinefailure (pid t pid);

long saadiset scheduler (pidt pid , saadischedparamt ∗param);

long saadiget scheduler (pidt pid , saadischedparamt ∗param);

long saadiget availablescheduler (saadischedulert ∗param);

long saadiget schedulerof class (int class , typest ∗ types);

long saadiget schedulerclasses (classest ∗ classes);

Listing 5.13: The SAADI saadischedparam structure

struct saadischedparam{

int class ; // The class of the scheduler
int type ; // The type of the scheduler
int id ; // The Scheduler ID

// The following union carries the possible
// scheduling parameters a certain type of
// scheduler uses
union {

// FIXED PRIORITY and ROUNDROBIN use the same
// struct like the LINUX scheduler
struct linux scheddata O1;
struct eevdfscheddata eevdf ;
struct resscheddata res ;
struct respsscheddata resps ;
struct ps scheddata ps;

} scheddata ;

};

Listing 5.14: The SAADI classest structure

typedef int classest [SCHED MAX CLASS+1];

Listing 5.15: The SAADI typest structure

70

5.3. KERNEL

typedef int typest [SCHED MAX TYPE+1];

Listing 5.16: The SAADI scheduler system call structure

struct saadischeduler{

int id ;
int class ;
int type ;
int parent ;

};

typedef struct saadischeduler saadischedulerstruct ;
typedef saadischedulerstruct saadischedulert [MAX SCHEDULER];

The semantic of the system calls are:

• long saadi_signal_deadline_failure(pid_t pid);
Processes scheduled by schedulers of classREScan signal a deadline failure to the kernel. The
kernel may then react to those failures adjusting its scheduling policy for this process. The
argument the syscall takes is

1. pid_t pid : The process id of the process that wishes to signal a deadline failure.

• long saadi_set_scheduler(pid_t pid,
saadi_sched_param_t *param);

Processes may set the scheduler it is subject to using this syscall. The arguments this system
call takes are

– pid_t pid : The process id of the process wishing to set the scheduler.

– saadi_sched_param_t *param : The scheduling parameter to be filled with the
according scheduling parameter the desired scheduler takes.

• long saadi_get_scheduler(pid_t pid,saadi_sched_param_t *param);
Returns the scheduling policy and parameters a process is scheduled under. The arguments the
syscall takes are

– pid_t pid : The process id of the process the information is retrieved for.

– saadi_sched_param_t *param : The scheduling paramter struct that is filled
with the according information. The memory is to be allocated by the calling process.

• long saadi_get_available_scheduler(saadi_scheduler_t *param);
Returns the available schedulers in the kernel. The argument the system calls takes is

– saadi_scheduler_t *param The parameter to be filled with the scheduler infor-
mation. The memory is to be allocated by the calling process.

• long saadi_get_scheduler_of_class(int class, types_t *types);
Returns the scheduler types that are available of a certain specified class. The arguments the
process takes are

71

CHAPTER 5. IMPLEMENTATION

– int class : The class for which the types are to be returned.

– types_t *types : This structure is filled with the available types. The memory is to
be allocated by the calling process.

• long saadi_get_scheduler_classes(classes_t *classes);
Returns the available scheduling classes. The argument the system call takes is

– classes_t *classes : This structure is filled with the available classes. The mem-
ory is to be allocated by the calling process.

5.3.5 The SAADI Procfs Interface

by Markus Wuebben

The SAADI Procfs Interface has been deprecated. All functionality that was provided by the Procfs
implemenation is now covered by the use of the SAADI system-calls (see Sec. 5.3.4). In addition a
tool calledscontrol is delivered which implements a set of convenience functions to access these
system-calls.

72

6 Evaluation of results

by Tobias Malbrecht, Mattias Stöneberg (except 6.1)

In the previous chapters we described the function of SAADI. Now this chapter finally presents the
results we got by running SAADI.
To see how SAADI performs, we first have to consider the input on which SAADI should be tested.
The set of possible input is not bounded as well as not easy to formalize. Therefore, in section 6.1 we
present some SDL examples, that SAADI can be tested with.
Since testing SAADI (i.e. running SAADIs genetic algorithm to find an optimal scheduler hierarchy
for a certain SDL file) is a very time-consuming task1, we have only run a few tests, whose results
are shown in 6.2. This section also presents some measurements we made to compare SAADI and a
standard Linux kernel, that we took as reference.
Finally, section 6.3 interprets the results.

6.1 SDL file examples

by Erdal Yigit

At this Time we use 5 different SDL files for the test environment. Every file has a different max.
theoretical system load, number of applications, and various main focus from application types.

SDL example 1 A small SDL with 7 interactive, 4 periodic and 4 batch processes which approx.
65% system load.

SDL example 2 A overloaded SDL with 9 interactive, 8 periodic and 4 batch processes. The system
load is approx. 200%.

SDL example 3 A SDL with 8 interactive, 5 periodic and 8 batch processes. This SDL describe
a system with more interactivity programs like web browsers etc. The system load is approx.
95%

SDL example 4 This SDL describe a system environment with main focus on batch processes. The
SDL specify 4 interactive, 5 periodic and 8 batch processes. The system load is approx. 115%

SDL example 5 A SDL which include the description for 4 interactive, 8 periodic and 4 batch
processes. The main focus is in this time on the periodic processes, which become the most
processor time. The system load is approx. 100%.

1Several minutes are needed to build, run and test a single individual (i.e. scheduler hierarchy).

73

CHAPTER 6. EVALUATION OF RESULTS

6.2 Results

As shown in the last section, there are a lot of possibilties of scenarios in which the performance
of SAADI can be evaluated. Here we pick one example scenario, whose results are show in this
section. The sample SDL file taken represents a scenario in which the computer is highly overloaded.
Under this assumption, it is likely, that most of the processes requirements could not be fulfilled. This
probably would result in a relatively low fitness value, which can be computed from the difference of
the processes requirements and the actually measured scheduling criteria (as outlined in chapter 2.4).
In the following, we first concentrate on the results measured while running the genetic algorithm of
SAADI.

6.2.1 Genetic algorithm of SAADI

Since it is unlikely, that the real optimum (i.e. a fitness value of1) is actually reached, we limited
the number of generations to13. Figure 6.1 shows the progression of the minimum, maximum and
average fitness values (per population and generation). As you can see from the curves, the fitness
values range from a minimum of about0.07 to a maximum of about0.80. When we interpolate a
linear function for each the minimum, maximum and average curves, we get three straight lines with
each a slightly positive gradient. The greatest increase is in the minimum fitness values.

The most important value, which can be read off the chart, certainly is the maximum fitness value.
This maximum is reached in the 10th generation. Its value is (as said above) about0.80781419.... The
scheduler hierarchy of the corresponding individual is the shown in figure 6.2.

6.2.2 Linux standard kernel

To proof the great performance of the SAADI approach, we need a reference as a basis for comparison.
The SAADI Linux kernel is based on the standard linux development kernel 2.5.58. It was a natural
decision to choose this kernel as a reference for comparison with SAADI.
To get appropriate results, we of course applied the same input data as with SAADI, which means, we
run the same SDL file (i.e. the same test applications). We run the test ten times and got values that
range from0.20 to 0.43.

6.3 Evaluation

Due to the wide application area and the resulting huge amount of input applicable to SAADI, we
were not able to run sufficient tests. This section concludes performance and applicability from the
test results described in the former section.

6.3.1 Genetic algorithm

As described in former sections, building an appropriate scheduler tree is a major task, which made the
appliance of a genetic algorithm suggestive. The genetic algorithm applied in SAADI showed good
performance, as can be seen from the results described in the last section. Relatively good performing
individuals (i.e. scheduler hierarchies) are found throughout the process. Additionally, the not well
performing scheduler hierarchies were assorted making the population more stable. As could be
seen, generation14 does not contain an indiviual with a fitness value less than0.4. This outcome is
especially acceptable when we regard the fitness values resulting from tests with the reference kernel.

74

6.3. EVALUATION

Figure 6.1: Maiximum, minimum and average fitness values of 12 generations.

6.3.2 Comparison to the standard linux kernel

As said above, the14th generation of the SAADI genetic algorithm does not contain any individual
with a fitness value less than0.4. Especially, the overall maximum fitness value found was even more
than twice that value. The fitness values resulting from tests with the standard linux developement
kernel 2.5.58 we took as reference range had a maximum of only about0.43. This shows the ad-
vantage of the SAADI approach over conventional general purpose scheduling. This result becomes
overwhelming regarding the point, that these results were measured applying an SDL file dramatically
overloading the computer. In contrast to best-effort scheduling, SAADI provides scheduling due to
the application requirements. A fitness value of0.8 as reached with a SAADI hierarchical scheduler
running a set of applications highly overloading a computer shows that SAADI fulfills application
needs in an adequate or even superior manner.

75

CHAPTER 6. EVALUATION OF RESULTS

Figure 6.2: Best hierarchy in 12 generations.

76

7 Conclusion

by Mario Lischka

The most challenging aspects of this project were the integration of a framework for hierarchical
schedulers into the Linux–kernel on the one hand, and modeling the scheduler hierarchy in such a
way that genetic algorithms can be applied, on the other hand. In order to raise the general acceptance
and usability of our approach we developed a graphical user interface for the SAADI Scheduler
Description Language, which allows the user to specify her or his preferences for the scheduling.
Another important aspect is the testing environment which interacts with those parts of SAADI that
are responsible for generating different hierarchies, in order to find an optimal one for the given user
requirements.

As we did not want to build a simulator to test our approach, but target real world application we
choose the Linux–kernel to substitute the existing scheduler with a dynamic hierarchical scheduler.
Additionally we can compare the original scheduler with our MHS and the results are very promising.
It was a challenging task to integrate our framework into the current Linux–kernel, which is the
interface between the scheduler–hierarchy and the other functions of the kernel and on the other side
for various basic schedulers. In this project we have integrated basic set of schedulers which were
used during our experiments. Further schedulers may be integrated easily for detailed description we
may refer you to the Appendix A.2.

Another key aspects of this project is mapping guarantees to the scheduling hierarchies and a
guarantee word which is used as input of genetic algorithms. The method presented in section 2.3
solves this problem and allows to include the restriction developed by Regehr [Regehr, 2001] and
further extension (as described in the Appendix A.1).

As our approach is auser centered scheduler design, our GUI provides an easy to use interface
for specifying the preferences of a user. These user requirements are expressed through constructs of
the SAADI Scheduler Description Language, an XML based language, which allows to exchange of
these information between the GUI, the genetic algorithms, the testing environment and future parts
of this project in a standardized format. Future application may interact with the scheduler hierarchy
of a kernel directly through system calls as described in section 5.3.4.

Finally we want to find an optimal scheduler hierarchy which fulfills all preferences given by the
user. Therefore we developed a test environment which generates as yet artificial payload and deter-
mines the fitness of a given scheduler hierarchy. Based on these results several generations of hier-
archies are tested in order to find an optimal one. Until now an optimal scheduling hierarchies were
found only when the user requirements were not very challenging, but with harder user requirements
our schedulers are performing far better than the original LinuxO(1) scheduler.

77

CHAPTER 7. CONCLUSION

7.1 Future Works and Long Term Research

by Muddassar Farooq

SAADI has demonstrated that interesting and novel ideas from Evolutionary Algorithms could be
incorporated in the real life operating systems. Due to lack of time and resources we could not com-
pletely explore different dimensions relating to our approach and hence interesting and challenging
projects could be take in future to fully exploit the potential offered by SAADI.

• At the moment we generate offline hierarchies and then evaluate them with different test profiles
to select the best one. However a more challenging and desirable feature is to extend the existing
framework in such a manner that a hierarchy could be generated and modified on the fly during
run time. This will not only simplify most of the task related to testing a hierarchy but also
enable our scheduling system to really evolve in an adaptable fashion with changing dynamic
environments.

• At the moment we have a very basic genetic algorithm in place just to show a proof of con-
cepts model. Probably in future it makes sense to evaluate more advanced and sophisticated
recombination, selection and mutation operators to conclude firmly about the real impact of
evolutionary approach in the scheduling framework. Our preliminary findings are that in our
framework genetic strategies do not really bring quantifiable benefits. However this is just a
preliminary conclusion and needs to be verified with rigorous and extensive testing.

• In our work we did not consider the stolen time problem at all. Generally we assume that our
scheduling system has 100 percent CPU time. However under greater network traffic, this is
not true as the time to server hardware interrupts is taken from the scheduler in an operating
system. Hardware interrupts have hight priority over normal scheduler. Probably an interesting
task would be to study the behavior of stolen time and then try to approximate its behavior with
a model so that in our ”guarantee” system we could take care of this important factor and the
scheduling system is more robust.

• At the moment a user specifies the requirement of tasks himself in the SDL file. An interesting
approach would be to develop an analyzer tool that could parameterize different characteristics
of an application and then determine its scheduling requirements.

• SAADI could be extended to run on multiprocessor systems. An interesting approach to in-
vestigate would be to run on each processor a specialized scheduler and then these group of
schedulers could cooperate with each another to schedule different tasks. Quite interestingly
then this cooperating could be seen as Multi-Agent System where different agents try to work
together through communication and cooperation to achieve an overall optimum for the com-
plete system.

• SAADI at the moment do not consider hardware architecture of the machine on which it runs. In
future we could extend SAADI framework so that it tries to adapt to architectures like Pentium
Speedstep that has got a Dynamic Voltage Scaling (DVS) feature. All schedulers could convey
their idle time information to the root scheduler who could then make an informed decision
whether to downscale voltage or frequency of the processor. If schedulers are implemented like
agents then root scheduler could negotiate different energy saving options with its children e.g.

78

7.1. FUTURE WORKS AND LONG TERM RESEARCH

We could save 10 percent energy as a system in case you are willing to accept a 20 msecond
response time instead of 15 msecond and simulate interesting options.

• In SAADI framework developers have to implement their won scheduler to incorporate them.
Probably yet interesting approach would be to develop another framework which helps in writ-
ing interesting simple new schedulers from interesting scheduling policies.

79

CHAPTER 7. CONCLUSION

80

A Extension of SAADI

In the following we describe the procedure, how to extend SAADI concerning the abstract scheduler
model as well as the Linux kernel provided with SAADI. The possibility of extending SAADI due
to further requirements is made possible by the high grade of modularitiy in the implementation of
SAADI.

A.1 ASM

by Simon Muras

We will now discuss the possibility of adding new scheduler and eventually corresponding guaran-
tees to theMeta Hierarchical Scheduler. For a new scheduler typeδ and a corresponding new guaran-
tee typeγ two classesedu.udo.saadi.asm.δScheduleras subclass ofedu.udo.saadi.asm.Schedulerand
edu.udo.saadi.asm.γGuaranteeas subclass ofedu.udo.saadi.asm.Guaranteehave to be written. You
can of course choose existing subclasses likeedu.udo.saadi.asm.RESScheduleras superclass if you
want to realize aRESBH-scheduler.
The next step is the modification of the given grammar file for theMSG. Take notice that both guar-
antee productions (likeγ → . . .) and scheduler productions (likeSCHED − δ − ∗ → . . .) need to
be named like the given scheduler and guarantee classes.
If a scheduler of typeδ needs in addition system resources (e.g. some sort ofshare like the PS-
scheduler the methodevaluateParent of the classHierarchy needs to be rewritten.
Last but not least the addition of a new scheduler to the theoretical framework the code generation
process needs to be slightly modified, means the scheduler-c− code mapping must be realized, for a
detailed description see chapter.

A.2 Kernel

by Piotr, Rolf

To implement a new scheduler namedδ, a new file named saadischedδ.c has to be created in the
kernel/ directory of the kernel source. In this file the functions join, leave, link, unlink, schedule,
construct and destruct have to be implemented as described in 5.3.2 the scheduler specific data (the
runqueue etc.), the struct runqueue, defined in include/linux/saadi.h, contains the union impl. The
new scheduler can use a member of this union or a new data struct can be defined. Also in saadi.h the
schedulable specific data is defined in the struct schedulable. The union scheddata can be extended
to contain the data for the new scheduler.

In include/linux/saadischedtypes.h the new scheduler type SCHEDδ and if it is of a new guaran-
tee type scheduler class also the SCHEDCLASS γ has to be defined.

81

APPENDIX A. EXTENSION OF SAADI

Now the kernel/Makefile has to be modified to include the new sourcefile in the files to compile for
the kernel. In the line obj-y= ... our saadischedδ.o has to be added and voila the next saadi run can
use the new scheduler.

82

B Bibliography

[Earley, 1970] Earley, J. (1970). An efficient context-free parsing-algorithm. pages 451–455.

[PG Saadi, 2003] PG Saadi (2003). Interim Report of Project-Group 424 “Saadi - Integrated Ap-
proach for Adaptable Schedulers”. Interne Berichte, Universität Dortmund, Fachbereich Infor-
matik.

[Regehr, 2001] Regehr, J. (2001). Using hierarchical scheduling to support soft real-time applications
on general-purpose operating systems.

[Stolcke, 1995] Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that
computes prefix probabilities. InComputational Linguistics, (MIT) Press for the Association for
Computional Linguistics, volume 21.

83

	Contents
	List of Figures
	List of Tables
	Listings
	An Introduction to SAADI
	Tasks Challenges

	Theoretical Approach
	An Introduction of SAADI
	Formal Representation

	Regehr
	Hierarchical Scheduling
	Guarantees
	Guarantee Conversions

	MHS Generation
	Mapping of the application requirements to a word
	The context free grammar
	Algorithm for the word-problem / Hierarchy Generation

	Fitness and Genetic Operators
	Integration with GAs

	SDL
	Hardware Requirements
	Application Requirements

	Testing SAADI
	Testing cycle of SAADI
	Valuation of scheduler hierarchies
	Measuring scheduling criteria in SAADI
	Linux Trace Toolkit
	Preparing the testphase
	LTTParser

	Simulation of applications
	Running the tests

	Implementation
	Java
	The Abstract Scheduling Model (ASM)
	The SAADISim(ulation) package
	Parser
	Saadi Database
	The Database Interface
	The ConnectionManager and SDLObjectStore class
	Graphical Users Interfaces
	Main Components
	MainFrame
	SDLFrame
	ASMFrame
	SDLSourceCodeViewer
	CodeGen Source Code

	The Code Generation-Class
	Template-file
	Public methods
	Validation
	Implementation

	Kernel
	Framework
	Interface
	Scheduler Implementation
	The SAADI System Calls
	The SAADI Procfs Interface

	Evaluation of results
	SDL file examples
	Results
	Genetic algorithm of SAADI
	Linux standard kernel

	Evaluation
	Genetic algorithm
	Comparison to the standard linux kernel

	Conclusion
	Future Works and Long Term Research

	Extension of SAADI
	ASM
	Kernel

	Bibliography

