
Final Report PG 428: Development of a Data- and

Network Scheduling for Grid Computing Including a

Flexible Evaluation Mechanism

Kay S. Brennecke, Stefan Einbrodt, Jan Philip Eumann, Sebastian Freitag,

Joern Gerendt, Manuel Heß, Bouchta Lakhal, Stefan Pinschke,

Zouhair Sabry, Daniel Sander, Sebastian Schlitte,

Thomas Wojczechowski

March 2004

2

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Meta Computing and Grid Computing . 9

1.3 Existing Concepts . 10

1.3.1 Globus Toolkit . 10

1.3.2 Condor and Condor-G . 10

1.3.3 UNICORE and UNICORE Plus . 11

1.3.4 EU DataGrid . 11

1.3.5 Legion . 11

1.4 Summary . 11

2 Core Concepts of GridSched 13

2.1 Distributed Grid Scheduling . 14

2.1.1 Super Scheduler . 15

2.1.2 Local Scheduler . 15

2.1.3 Directory Service . 15

2.1.4 Schedules . 16

2.2 Evaluation of Schedules . 16

2.3 Scheduling Strategies . 17

2.4 Conceptual Aspects . 17

2.4.1 Hardware Management . 17

2.4.2 Network Management . 17

2.4.3 Data Management . 18

2.4.4 User Access Management . 18

2.4.5 Job Description . 19

2.4.6 Job Definition . 19

2.4.7 System Control and Configuration . 19

3

4 CONTENTS

3 Design and Implementation of GridSched 21

3.1 Introduction . 21

3.1.1 Roles in Grid Scheduling . 21

3.1.1.1 Resources . 21

3.1.2 Strategy and Components of GridSched . 22

3.2 Graphical User Interfaces . 24

3.2.1 ServerGUI . 25

3.2.2 ClientGUI . 30

3.3 Job Description . 35

3.3.1 Requirements . 35

3.3.2 Idea and Design . 35

3.3.3 Implementation . 36

3.3.3.1 LanguageItem . 36

3.3.3.2 ObjectiveFunction . 38

3.3.3.3 Job . 39

3.3.3.4 ObjectBobResource . 39

3.3.3.5 ObjectDataResource . 40

3.3.3.6 ObjectNetResource . 40

3.3.3.7 DoItem . 40

3.3.3.8 Helper classes . 41

3.3.4 Example . 41

3.3.5 Conclusion . 43

3.4 Super Scheduler . 44

3.4.0.1 Requirements . 44

3.4.0.2 Design . 44

3.4.1 Modular Scheduling Strategy Subcomponents . 46

3.4.1.1 SimpleSched . 48

3.4.1.2 NuSched . 57

3.4.1.3 Conclusion . 72

3.5 Resource Information Service . 73

3.6 Local (Sub-)Scheduler . 74

3.6.1 Requirements . 74

3.6.2 Design . 74

3.6.3 Implementation . 75

3.6.4 Summary . 79

3.7 DataManager . 79

3.7.1 Requirements . 79

3.7.2 Idea . 79

3.7.3 Implementation . 81

3.7.3.1 MainLoop/Start . 81

CONTENTS 5

3.7.3.2 Communication . 85

3.7.3.3 Database . 86

3.7.3.4 Administration of jobs . 89

3.7.3.5 Scheduling . 91

3.7.3.6 File transfer . 93

3.7.4 Summary . 93

3.8 Network Management . 94

3.8.1 Motivation . 94

3.8.2 Requirements . 94

3.8.3 New Idea / Major Changes to previous idea . 95

3.8.3.1 Global Graph . 95

3.8.3.2 Local Graph . 95

3.8.3.3 Reservation . 95

3.8.3.4 Forecast . 96

3.8.4 Implementation . 97

3.8.5 GUI . 97

3.8.5.1 Using the GUI . 99

3.8.6 Unsolved Problems . 101

3.9 Policy . 103

3.9.1 Requirements . 103

3.9.2 Idea . 103

3.9.3 Implementation . 103

3.10 Deployment of GridSched’s Components . 103

3.11 Summary of GridSched’s Architectural Features . 105

4 Simulation in GridSched 107

4.1 Concept of GridSched’s Simulator . 107

4.2 Design and Implementation . 108

4.2.1 Initialization and Control . 108

4.2.2 Processor ’Elysion’ . 111

4.2.2.1 Virtual Networking . 111

4.2.2.2 Job Processing . 114

4.2.2.3 Time Synchronization . 117

4.2.2.4 Event Handling . 118

4.2.3 Evaluation Facility . 119

4.2.3.1 Components . 119

4.2.3.2 Implementation Guide . 122

4.3 Integration of GridSched Services . 123

4.3.0.3 GridSched Service Requirements . 123

4.3.0.4 SimulationProxy Functionalities . 124

6 CONTENTS

4.3.0.5 Implementing the SimulationProxy in Services 124

4.3.0.6 Avatar Initialization and Termination . 125

4.4 GridSched Component Alignments . 125

4.5 Simulation GUI . 128

4.6 Summary . 130

5 Summary 135

5.1 GridSched’s Features . 135

5.2 Potential improvements and future enhancements . 135

6 Configuration and Installation 139

6.1 Ant . 139

6.2 Graphical User Interfaces . 149

6.2.1 ServerGUI . 149

6.2.2 ClientGUI . 149

6.3 Scheduler . 154

6.3.1 Resource Information Service . 154

6.3.2 Titan . 154

6.3.3 Bob . 155

6.4 Data Manager . 156

6.5 Network Manager . 156

6.6 Simulator . 157

6.6.1 Creating a simulation scene by an XML-Document 158

6.6.1.1 Global Simulation Settings . 158

6.6.1.2 Job Definitions . 159

6.6.1.3 Grid Environment . 160

Preface

The software covered in this document was created as part of the student working group PG4281 at
the University of Dortmund. This student working group consisted of 12 students of computer science
at the University of Dortmund and was organized by Ramin Yahyapour, Carsten Ernemann and Volker
Hamscher of the Computer Engineering Institute (CEI) which is part of the department of electrical
engineering. The task was the development of a Grid Scheduler accounting for data- and network resources
and including a flexible evaluation mechanism. Therefore the software was named GridSched, an obvious
combination of the words ”Grid” and ”Scheduler”.

Purpose of this document

As the title suggests this document is the final report of the student working group PG428. It explains
the concepts as well as the features of GridSched in detail, including possible enhancements. To be able
to understand the basic ideas and concepts the reader is expected to have basic knowledge in the areas
of computer science and Grid Computing. However for a comprehensive understanding of all aspects of
GridSched knowledge in the area of the Java programming language is recommended.

Structure

First an introductory part explaining what Grid Computing is about and which solutions currently
exist is given in chapter 1. chapter 2 presents the basic ideas and concepts used in GridSched while
chapter 3 provides a more detailed description of the several parts GridSched consists of as well as the
features of the software. Due to the complexity and importance of the simulation chapter 4 has been
designated to focus on all aspects of the simulation in detail. Chapter 5 covers features that had to
be cancelled as well as possible enhancements. Finally chapter 6 explains how to install and configure
GridSched. For an even more detailed description of the software the Javadocs of GridSched are available
at http://www-ds.e-technik.uni-dortmund.de/~pg428/.

1PG is short for the German word ”Projektgruppe”. PGs for students of computer science at the University of Dortmund
are numbered consecutively.

7

8 CONTENTS

Chapter 1

Introduction

It is assumed that most of the readers have a basic knowledge of Grid Scheduling and its related terms and
technologies. For reasons of completeness this introductory chapter gives the reader a brief introduction.

1.1 Motivation

Since the development of the first processor the computing power of available processors has increased
dramatically. Nevertheless the research in proteins with specific properties to fight cancer, predictions of
climatic changes and many other problems in science and industry obviously demonstrate the huge de-
mand for computing power. Parallel computing systems and supercomputers are today utilized for these
tasks. Comparing the growing complexity of computing tasks with the evolution of computers regarding
their performance it is obvious that the increasing demand of computing power has not been met by an
adequate amount of available computing power until today. Generally it is assumed that this correlation
will not change in the foreseeable future. On the other side much potential computing power is wasted
because of idle running. This leads to the idea to use a computer system’s idle time to increase the total
amount of available computing power.

This means there are basically two undesirable scenarios:

• the owner of a computer system has more computing power available than the executed computing
tasks need,

• the owner of a computing task to be executed needs more computing power than available on the
momentarily used computer system.

Additionally it is often very difficult to predict how much computing power a computing task will need.
In the first scenario the computing power during the processor’s idle time is unused and wasted. This
results in an increase of the ownership’s cost because the costs of purchasing and maintaining are spread
on less computing power usage.

In the latter scenario computing jobs have to be postponed or canceled, or other computer systems
coping with the computing task have to be found.

1.2 Meta Computing and Grid Computing

To decrease the costs of computing a more efficient computing power utilization is needed. The idea of
Meta Computing respectively Grid Computing is to make computing power and resources available to

9

10 CHAPTER 1. INTRODUCTION

others in a network environment. To the user it is presented as a virtual pool of computing resources pro-
viding computing power. Instead of looking at many computer systems manually for the needed amount
of computing power and adequate kinds of resources a single system is used to execute the computing task.

The probably best example illustrating this idea is the Power Grid with its ease of use and its per-
manent availability. While the term Meta Computing refers only to computing power the term Grid
Computing expands the term resource to all other possible resources. These may be resources like data
or network connections. But one can also think of specialized resources like visualization caves, abstract
resources like lecture halls or totally ordinary resources like coffee machines.
An example of a typical Grid Computing job may be a computation of data, the transfer of the results
to a visualization cave, the modification of parameters, another computation on these data and a visual-
ization of the final results on the same visualization cave. Due to latency problems and an exponentially
high number of possibilities to combine different resources, job scheduling in a Grid is a complex task.

1.3 Existing Concepts

To accomplish Grid Computing industry and research institutions have worked on solutions. This chapter
is intended to be a brief overview of the most important of them.

1.3.1 Globus Toolkit

The Globus Toolkit [19] is maintained by the Globus Alliance[8] which was founded in 1995. It includes
code libraries and protocols which enable the management of distributed resources like memory and
bandwidth. It’s aim is to create a universal suite of protocols which are needed to build computational
Grids just as the TCP/IP suite of protocols which enable communication between computers. The Globus
Toolkit is based on web services which comply to the Open Grid Services Infrastructure (OGSI) [17]. The
open architecture, the portability and the fact that decisions about standards are made in a community
based forum, called the Global Grid Forum[7], are the main reasons why the Globus Toolkit is widely
regarded as the project with the best chances to become a global and universal standard. The Global
Grid Forum was founded in June 1999. It’s main task is to support and to promote the development
and establishment of Grid Computing technologies. This is accomplished by the documentation of ’best
practices’, technical specifications, experiments and guidelines. Global Grid Forum is the place where
decisions about standards are made. Actually the prefix ’global’ resembles reality regarding the fact
that Global Grid Forum is joined by more than 5000 scientists, developers and users of more than 400
organizations from more than 50 countries.

1.3.2 Condor and Condor-G

Condor [11] has been developed for about 15 years by the Condor Research Project [4] of the Univer-
sity of Wisconsin-Madison. The goal is to “develop, implement, deploy, and evaluate mechanisms and
policies that support High Throughput Computing on large collections of distributively owned comput-
ing resources”. High Throughput Computing (HTC) environments are able to provide high amounts of
computing power over long periods of time. Condor is a platform for users who want to provide unused
computing power or computing power of dedicated servers. It enables the administrators of participating
systems to decide under which conditions computing power is provided. In general Condor is used inside
a single administrative domain. Condor-G [11] has been created to add the features of the Globus Toolkit
to the Condor system. This means Condor-G is able to take advantage of security and resource access
outside a single administrative domain. This is achieved by using the Globus Toolkit for inter-domain
resource management. Simultaneously Condor is used for resource and job management within a single
domain.

1.4. SUMMARY 11

1.3.3 UNICORE and UNICORE Plus

UNICORE[5] is an abbreviation for “Uniform Interface to Computing Resources”. It is a project which
existed from 1997 to 1999. UNICORE and its successor UNICORE Plus (2000 to 2002) were funded by
the German Federal Ministry of Education and Research. Several scientific institutions and international
companies took part in this project.

UNICORE provides a software solution allowing users to submit jobs to remote systems without having
to deal with details of the target operating system and other system’s properties. This is achieved by
using web based technology wherever it is possible. The user is able to edit jobs on her local computer
before it is submitted to the UNICORE Grid. All these jobs may be monitored via the user’s system.

1.3.4 EU DataGrid

The DataGrid[6] project was founded and is funded by the European Union. The goal is to create an
infrastructure for the analysis and review of computer generated data for scientific experiments. The focus
is on development and evaluation of infrastructures which support scientists working on their research,
being independent on their location as long as they have a computer connected to the Internet at their
hands.
The EU DataGrid project is lead by CERN but other international organizations are involved and take
part in the development. More than 200 scientists participate in the DataGrid. This may ensure to bring
forward the development of Grid technologies especially in aspects of data management.

1.3.5 Legion

Legion[1][14] is a project of the department of computer science of the University of Virginia and several
partners. At this time it is the most advanced Meta Computing system and offers several testbeds.
It offers transparent access to distributed resources on different platforms appearing as one single high
performance computer from the view of its users. For these distributed resources like computers, libraries,
simulations and cameras it offers services as distribution strategy, data management, error tolerance and
security features.

1.4 Summary

As the mentioned systems were created for different purposes they provide different functionalities. From
the perspective of the user a system may provide a resource management which is not only limited to
computing, network and data resources but includes all kinds of peripheral resources as well. The system
may offer the ability to submit, monitor and control her computing jobs.
From the administrators point of view the system may provide the possibility to choose how to offer its
resources. Furthermore security and billing issues have to be regarded. At this time no solution exists to
cover all aspects of Grid Computing.
Comparing the mentioned systems shows some of them have an experimental character focused on specific
research issues like the EU DataGrid which is focused on data management. Other systems try to fulfill
the needs of a specific user group. For example Condor is designed to fit to the special needs of High
Throughput Computing.
The UNICORE project as well as the Legion project helped in the Grid Computing research by finding
solutions to a number of problems. But they are not designed to create a global standard.
The Globus Toolkit seems to be the project being suited to create a global standard for Grid Comput-
ing. It is based on global standards and provides the low level framework which is necessary to ensure
interoperability between computing systems taking part in a Grid Environment.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Core Concepts of GridSched

This chapter gives an idea of the essential concepts of the GridSched system. It describes the fundamental
functional demands which are realized in the GridSched project. Basically these demands are fulfilled by
the GridSched’s scheduling process and its management of resources and reservations. The objective of
this chapter is to summarize the essential ideas of the GridSched system developed during the analysis,
design and prototyping phase of the GridSched project.

When GridSched is running in a bounded Grid Computing Environment it is called a managed Grid
Environment or managed Grid. This means that the GridSched system takes control of only some or
all available Grid Resources in this bounded address space which constitute a network domain as well.
In a managed Grid only some or all GridSched services and components may be installed. Therefore the
range of GridSched’s control is fully decided by its carrier.

In GridSched there are two different groups of users involved: the resource providers and the users

Figure 2.1: Main terms in GridSched’s concept.

who want to execute jobs. The resource provider installs and starts the appropriate GridSched services
to make her resources available in the managed Grid. Moreover she defines prices and policies to control

13

14 CHAPTER 2. CORE CONCEPTS OF GRIDSCHED

the user’s access to the resources. A GridSched user has to identify herself. Afterwards she is able to
define jobs which may be executed if the appropriate resources are found. These correlations are shown
in Figure 2.1.

2.1 Distributed Grid Scheduling

The GridSched developer’s idea of Grid Scheduling is to combine Grid Resources and computing tasks
regarding the aspects of time and benefit. The resulting approach is a middleware platform to unite the
providers and users of distributed resources in a Grid Computing Environment.

GridSched’s task is to execute computing jobs in a given period of time using specified Grid Resources
which are under control of GridSched. In most of the existing Grid Computing Systems the idea of a Grid
Resource is limited to common hardware items like CPU’s and RAM. In GridSched the term of Grid
Resource is extended by data and network connections. Actually GridSched’s concept of a resource is not
restricted to physically existing resources. In GridSched any act of providing a service is seen as a resource.

Large amounts of distributed resource in a Grid Computing Environment require a considerable effort

Figure 2.2: GridSched’s concept of distributed scheduling.

concerning the management of resource information and reservation requests. A centralized management
service is unsuitable to fulfill this requirement because of the enormous efforts to realize scalability.

Accordingly the concept of distributed scheduling provides a better solution. GridSched’s essential parts

2.1. DISTRIBUTED GRID SCHEDULING 15

of the distributed scheduling system are the GridSched’s services Local Scheduler, Super Scheduler,
DataManager and NetworkManager. All these executable components are accompanied by other
executable and non-executable GridSched components which support the scheduling and reservation pro-
cess indirectly.

The sum of these fundamental ideas makes up GridSched’s approach. It is completely different to any
other system existing at the time the project started.

2.1.1 Super Scheduler

In the context of Distributed Scheduling the Super Scheduler is to be seen as a coordinating function
unit and as a counterpart to a cluster of Local Schedulers which are assigned to distributed resources.
One of the two main tasks of GridSched’s Super Scheduler is the processing of incoming jobs which have
to be executed in a limited period and which are needing specified Grid Resources.

The other task is to generate reservation requests regarding the time and resource aspects of the job.
Basically it is distinguished between binding and unbinding reservations. Unbinding reservations are ap-
plied during the process of determining a variety of possible resource schedules. After selecting a single
schedule the binding reservations are used to take control of the specified resources.

In a Grid Computing Environment managed by GridSched it is possible to set up one or many instances
of the Super Scheduler. In the GridSched project the Super Scheduler is called Titan.

2.1.2 Local Scheduler

GridSched’s Local Scheduler is allocated to a specific computing resource offered in the managed Grid
Computing Environment. It is needed to set up one instance of the GridSched’s Local Scheduler on each
hardware resource which has to be controlled by GridSched.

Basically it works on top of local hardware schedulers. GridSched’s components are not able to perform
hardware reservations or any other hardware handling. It is assumed that this functionality is provided by
the hardware layer implementation of the Grid Computing Environment which is managed by GridSched.

One of the main tasks of GridSched’s Local Scheduler is to manage and process incoming reservation
requests received from Titan, GridSched’s Super Scheduler. Besides GridSched’s Local Scheduler stores
qualitative and quantitative information on the managed resource in the directory service which is de-
scribed in Section 2.1.3.

In further context GridSched’s Local Scheduler is called Bob.

2.1.3 Directory Service

To find appropriate resources the directory service is needed. It stores all properties of the resources
which exist in the managed Grid Computing Environment. A set of parameters describes the attributes
of a resource.

The directory service is realized by using a central or distributed database system adapted to the demands
of network management tasks. Basically every GridSched service involved in the scheduling process is
able to access the directory service via Lightweight Directory Access Protocol (LDAP).1

There is only one instance of the directory service needed in a managed Grid Domain.

1LDAP is a standardized protocol for using directory services. It is independent from manufacturers and is available for
a big variety of platforms. It provides the access to a directory and defines its hierarchical data structure and a name space.
For more information on using LDAP in context of Grid Computing see [16].

16 CHAPTER 2. CORE CONCEPTS OF GRIDSCHED

2.1.4 Schedules

The result of the scheduling process is represented by one or many resource schedules. Resource sched-
ules are generated by Titan processing the given job and the answers to reservation requests sent by
GridSched’s Local Schedulers. A schedule represents a combination of resources to perform a given job
regarding the resource’s time of availability.

If a valid schedule is retrieved Titan tries to reserve the scheduled resource. Therefore it uses the same
communication path used for the reservation requests. Afterwards the regarding job is executed.

In GridSched the resource schedule is supplemented with an entity representing costs. It is assumed
that the usage of resources will cause costs for the providers. Moreover the users of resources have to pay
a price when using the resources.

To limit the complexity of the GridSched project a billing system is not implemented. All costs and
prices are meant to be symbolic.

2.2 Evaluation of Schedules

To take account of all different aspects of Grid Resource usage the cost respectively the degree of produc-
tivity of a resource is combined with its time of availability and its quantitative parameters. The degree of
productivity is represented by the so-called ObjectiveFunction. It is given for a specific combination of
resources and is determined by a mathematical function which is an algorithmic description of the user’s
preferences regarding qualitative and quantitative resource parameters. An ObjectiveValue is a specific
value of the ObjectiveFunction. It is calculated by Titan when determining a valid schedule for a given
job. The size of the ObjectiveValue is proportional to the size of productivity of a resource combination
respectively to the price of the resource’s usage.

GridSched’s user can define a limit for a price. This is the criteria to choose one of many schedules
determined by Titan. Moreover it enables GridSched’s users to put a focus on resources used for their
computing jobs. Generally this means a user can have different point of views when evaluating a schedule:

• job execution on specialized Grid Resources to maximize productivity regardless of the costs,

• fast job execution by using powerful but expensive Grid Resources,

• inexpensive job execution by using less powerful but inexpensive Grid Resources,

• inexpensive job execution by accepting long durations because of using idle resources in several
distributed intervals.

On the other side a resource provider may have totally different aspects in mind regarding the evaluation
of a schedule:

• profit maximization by offering resources at a high price,

• load maximization by offering resources at a low price during periods when they are used at a low
rate,

• satisfaction of the resource user regardless of cost consumption or prices which actually may be
achieved.

So the fundamental part of GridSched’s distributed scheduling concept may be understood as a market-
based negotiation process between resource providers and resource users. As mentioned before GridSched
is able to determine prices and costs but it does not provide any billing functionality which may be an
item of future enhancements.

2.3. SCHEDULING STRATEGIES 17

2.3 Scheduling Strategies

All scheduling strategies are represented by algorithms which are implemented in scheduling modules.
Two strategies to find a valid schedule are presented in detail in Chapter 3. A scheduling module may
be replaced by another scheduling module. Thus GridSched’s Super Scheduler may be adapted to the
specific needs of GridSched’s carrier2.

2.4 Conceptual Aspects

Figure 2.3: A view on GridSched’s components.

Besides all aspects regarding resource scheduling, there are some further important problems which need
GridSched’s solution.

2.4.1 Hardware Management

As mentioned before the hardware resources have to be managed and reservations must be handled. This
is part of GridSched’s Local Scheduler called Bob which works on top of existing hardware resource
schedulers. This special type of scheduler is a part of the Grid Computing Environment managed by
GridSched. Most of the management tasks of Bob have been explained in Section 2.1.2.

2.4.2 Network Management

Network connections are treated like a special type of resource. Therefore a distinctive GridSched com-
ponent is needed for management tasks. In GridSched it is called NetworkManager.

Basically this component determines what network connection routes are generally available in a man-
aged network domain. When receiving a reservation request it is examined if a connection between the
given start and end point is available.

2A carrier is a person or an organisation which uses GridSched to provide job execution on a Grid Computing Environment
to GridSched’s users. A carrier may be a resource provider as well.

18 CHAPTER 2. CORE CONCEPTS OF GRIDSCHED

Like GridSched’s Local Scheduler the reservation is done by the hardware layer implementation of the
Grid Computing Environment managed by GridSched. Analogous to GridSched’s Local Scheduler the
NetworkManager of a network domain handles all incoming network reservations but it does not execute
them.

Besides the period of availability other important properties of a Net Resource are handled by Titan
and NetworkManager: latency, bandwidth and Quality of Service (QoS).

QoS may be described as a size to define the assurance of the mentioned network connection proper-
ties like period of availability, latency and bandwidth. Special network services like DiffServ or MPLS
provide QoS3. They are embedded into network’s hardware components like switches and routers to im-
plement network reservations.

Another important outlook is the processing of network routes which cross the boundary of a network
domain managed by a single NetworkManager. As mentioned before one instance of the NetworkMan-
ager controls a single network domain. Thus all instances of the NetworkManager must communicate and
coordinate with each other to handle multi-domain network connections.

2.4.3 Data Management

Data is seen as a special type of resource and it appears in the form of files in an operating system’s file
system. These files are objects processed by GridSched’s DataManager. All files used in a managed Grid
Environment are registered in the directory service by the DataManager. As they are registered they may
be queried by any GridSched’s scheduler.

GridSched’s DataManager is able to transfer a data file from its source location to a distant location
in the managed Grid Environment. The destination is a computer needing the particular data file to
execute a computing job in a given period. To execute a copy job GridSched’s DataManager uses Grid-
Sched’s NetworkManager.

For scheduling purposes it is necessary to consider the following situations regarding copy jobs:

• the file to be processed is available at a specific location in the managed Grid Environment,

• the file to be processed is available at several different locations in the managed Grid Environment,

• The source and destination locations are not connected by a network route,

• The source and destination locations are connected by one or many network routes. In the case that
more than one route is available these routes differ in their characteristic properties like duration
of availability, bandwidth and QoS.

To schedule the execution of copy jobs it is important to consider the amount of memory space available
at the destination location.

2.4.4 User Access Management

Not only for Data Resources it is important to control user’s access to resources managed by GridSched.
To access resources which are managed by GridSched the authorization of GridSched users is needed.
This functionality is provided by a GridSched component called PolicyManager.

With PolicyManager it is possible to define rules which describe the permitted or forbidden access to
specific resources for users or user groups.

3For more information on DiffServ, MPLS and other QoS concepts in context of Grid Computing see [3]

2.4. CONCEPTUAL ASPECTS 19

2.4.5 Job Description

The definition of a job contains the description and enumeration of the needed resources. GridSched’s
job description may be seen as a computing language algorithmically interpreted by the system. This
is done by declaring a period of time, the amounts of needed resources and all parameters describing
their qualitative characteristics like processor performance, processor type or existence of a co-processor.
Moreover the chronological and spatial dependencies between single Grid Resources may be expressed.

To realize the mentioned market-based negotiation process the number representing costs respectively
the degree of productivity is integrated into a job description. A maximum price given by a GridSched
user is also deposited in the individual instance of a job description.

A job description is used globally in GridSched. It represents a data structure to process jobs and result-
ing reservation requests universally in GridSched. Its hierarchical characteristics allows to compose a job
by defining separated sub-jobs.

2.4.6 Job Definition

According to the syntax of GridSched’s job description language a job is defined by using a Graphical
User Interface (GUI). In GridSched it is called ClientGUI. The name of the GUI points out the role of
its users in GridSched.

All items are accessed by editable text fields and drop-down boxes. This GUI also gives information
on all user’s defined jobs and its state. GridSched’s users have to authorize themselves to access the
system. A user is only allowed to see jobs she defined by herself.

2.4.7 System Control and Configuration

Most of the GridSched’s components are executable services which are controlled via a unique GUI named
ServerGUI. Its functionality includes starting, stopping and configuring of GridSched’s services.

If the GUI and the services reside on the same machine the service control may be done locally. Al-
ternatively the service control may be executed remotely if the GUI and the services reside on different
machines.

20 CHAPTER 2. CORE CONCEPTS OF GRIDSCHED

Chapter 3

Design and Implementation of
GridSched

3.1 Introduction

This chapter focuses on the design and the technical realization of GridSched. At first an explanation
of what is understood to be the different roles of participants in Grid Scheduling is given. Then it will
elaborated on which components were designed to support those participants in acting the roles identified
and how these components interact in order to form a complete Grid Scheduling solution.

3.1.1 Roles in Grid Scheduling

The Grid is a collection of sites which are connected by a common, heterogeneous network. Two roles
that each site may act as were identified. They are defined as follows: (Also see Figure: 3.1.1)

• Provider The provider offers the service of accessing some of its resources to the Grid.

• User The user accepts the services of the providers to perform operations which she couldn’t
perform with her resources alone.

At this point it is necessary to define what a resource is.

3.1.1.1 Resources

A resource might be just about anything that meets the following criteria.

• It is connected to some kind of service which can be offered to the Grid.

• There are attributes to distinguish the properties of this resource from others.

• The acceptance of that service is limited to a specific span of time, a time slot. A time slot begins
at a certain time, goes on uninterruptedly for a specific duration and ends after that duration is
over.

Many kinds of services fulfill these criteria. Consider a room-rental-service where the usage of a resource
(the room) which is specified by its location (attributes) can be booked for some span of time (time slot).
A service would usually not be exclusively offered to the Grid but may be accepted by other parties as
well. In the case of a room-rental-service a room may possibly belong to a hotel where it can also be
booked by phone or otherwise. So there are usually multiple systems that organize access to one resource.

21

22 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

GRID

User

Provider

JOB

RESOURCES

...

...

Figure 3.1: Roles in Grid Scheduling.

A scheduling system for the Grid must take into account that it will most likely not have exclusive control
over a resource, but must share it with other scheduling systems.

Of course each site may act more than one role. One site may provide access to some of its resources while
it needs to access other resources that it doesn’t possess itself. In that case, the site acts as a provider as
well as a user.

3.1.2 Strategy and Components of GridSched

In the case of GridSched it is differentiated between two kinds of resources which might best be named
’physical’ and ’virtual’ resources.

• A physical resource exists regardless of it being used or not. This applies for resources like computer
hardware or for rooms as described in the example above. Reserving such a resource is achieved by
marking the resource as reserved for the user, no further actions have to be taken.

• A virtual resource does not exist as long as it is not used. Reserving such a resource usually involves
reserving other resources which may themselves be either virtual or physical. Consider the following
example.
A user wants to process a digital file on a computer-system. To achieve this the following services
are needed.

– The computer Of course access to the computer is needed. It is a physical resources since
the computer exists even if it is not accessed.

– The File The file itself exists even if it is not used, but it does not necessarily exist on the
desired machine. So the service of accessing a file is a virtual resource which may consist of
multiple other resources:

∗ The computer Again, a computer, or more precisely its mass storage devices are needed
to store the file for the time it is meant to be accessed.

∗ The file-transfer If the file does not yet exist on the target computer, it must be trans-
ferred. This is a virtual resource because the file is only transferred when needed. Again
transfer of a file needs other resources to be successful:

3.1. INTRODUCTION 23

∗ The network While a network itself is a physical resource, the service of routing packets
over that network is not. In case of a true reservable network connection, a dedicated route
between the source and the target site must be established which only transports packets
of the user who reserved that connection.

To reflect the roles and the kinds of resources identified the following structure was created for GridSched
(See Figure: 3.1.2).

GRID

User

ProviderProvider

DataManager NetworkManagerLocalScheduler

SuperScheduler SuperScheduler

UserUser

NetworkManagerDataManagerLocalScheduler

JOB

RESOURCES RESOURCES

JOBJOB

......

...

...

......
Figure 3.2: Architecture of GridSched.

• The role of the provider Providers should be rendered capable of offering the services of their
resources to the Grid. This includes among other things: publishing the resource’s existence, inter-
action with local scheduling systems and access control.
For each kind of resource covered by GridSched an independent piece of software was created to
provide these features. See Local Scheduler(Section: 3.6), DataManager(Section: 3.7) and Network-
Manager(Section: 3.8) on details about these components.

• The role of the user Users should be enabled to find and assemble resources of the Grid in such
a way that they can be employed in a job. To accomplish this a software is needed that can access
the Grid to find resources that reflect the users requirements and to produce a combination of
these resources which is capable of processing the job. This part of GridSched is called a Super
Scheduler which is described in (Section: 3.4).

24 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

For being able to deal with any kind of resource in a flexible manner a common communication interface
was created that Super Schedulers and Resources employ for interaction. Based on the definition of
resources (Section: 3.1.1.1) the information that needs to be exchanged can be reduced to the following:

• DISCOVERY It must be possible to learn about the existence of a resource in order to use it.
Over the course of the following sections, this kind of interaction may occur in the name of ’getting
resources’.

• AVAILABILITY It is necessary to verify that a given resource is available to the user at a given
time. Over the course of the following sections, this kind of interaction will be referred to as ’getting
timeslots’.

• OFFER It must be possible to learn about the concrete circumstances under which the resource
can be used. This includes agreeing on a precise start- and end-time of the service that is to be
accepted. Over the course of the following sections, this kind of interaction may be referred to as
’getting offers’.

• NOT BINDING RESERVATION A reservation of a resource is understood to be the act of
agreeing to an offer previously issued by the provider of a resource. By reserving a resource it is
ensured that for the given span of time, the associated service is available to the user. There are
two levels of reservation as part of a two phase reservation procedure: It must be ensured that all
resources employed for a job can successfully be reserved or that none of those resources is reserved.
Therefore it is demanded that each resource offers the possibility of performing a reservation which
is valid for a limited span of time only. This span of time serves as a grace period within which
all other resources needed can be reserved. Only if all resources can be successfully reserved in this
way, the second phase of reservation can commence. Over the course of the following sections, this
kind of interaction may occur as ’reserving gracefully’.

• BINDING RESERVATION While a ”not binding reservation” simply prevents that another
party performs the same reservations while another reservation is in progress, a binding reservation
takes full effect and effectively guarantees that the condition reflected by the properties of the
previously issued offer holds. In other words, after a binding reservation the service as described by
the offer is available to the reserving user, and all consequences of this reservation take effect.

One reason why this is important is that the act of reserving a resource incurs demanding a fee
from the reserving user for the acceptance of the associated service. A job however consists of many
of such reservations. If only some of those reservations can be done successfully, the job still can not
be carried out, but the reservation fees for the successful reservation would nevertheless take effect.
Over the course of the following sections, this kind of interaction may be referred to as ’reserving
bindingly’.

• CANCEL RESERVATION The reservation of a resource may be cancelled. The conditions
under which this is possible may vary according to the kind of resource and to the providers’
policies. Cancelling a resource means that the associated service will no longer be available to the
reserving user, but there is no guarantee that an associated reservation fee will be re-transferred to
any extend.

This small set of access methods makes it possible to create a very abstract view of the Grid and to
present any kind of resource in a unified way.

3.2 Graphical User Interfaces

GridSched’s component called GUI is made up of three different graphical user interfaces. Each serves a
specific purpose and user group.

The part of GridSched’s GUI called Client GUI is used to define and manage jobs to be executed
in the Grid Computing Environment managed by GridSched. Its name expresses the role of its users

3.2. GRAPHICAL USER INTERFACES 25

within the GridSched system.

Server GUI is the part of GridSched’s user interface component which utilizes administrative fea-
tures of GridSched to its carriers or administrators. This user interface provides control of all GridSched
services running in the managed Grid Computing domain.

As shown in Chapter 5 GridSched is supplemented by a simulator component. A specific user inter-
face is needed to handle this executable part of the GridSched project. It is called Simulation GUI and
is assigned to GridSched’s user interface component, but functionally it is part of GridSched’s simulator.
Thus it is described in Chapter 5.

3.2.1 ServerGUI

GridSched’s ServerGUI is used to control and configure all GridSched services running in the managed
Grid environment. The name of this GUI describes the part of the GridSched system which is accessed
via this interface. It consists of two individual parts called Service Control GUI and Service Con-
figuration GUI.

All individual parts of the ServerGUI are created dynamically at runtime. As mentioned before in a
Grid environment managed by GridSched its types of service can exist as one or many instances. But it
is also possible that one or many types of service does not exist. So in Service Control GUI only those
control elements are provided that correspond to actually installed GridSched services.

For each installed service a separate Service Configuration GUI is provided to change all available con-
figuration items. To the GUI’s user it seems that each installed service has its own individual Service
Configuration GUI. Actually there exists only one instance of the Service Configuration GUI which is
built up individually each time the user wants to change a service’s configuration. So all parts of Grid-
Sched’s ServerGUI which are specific for the configurations of services are built up dynamically.

Service Control GUI

Requirements Starting and stopping GridSched’s services and accessing their configuration parame-
ters is the sum of functionality included in this part of GridSched’s ServerGUI.3.3 This is provided for
local GridSched services running together with the Server Control GUI on the same machine and for
GridSched services running on different machines far off but within the managed Grid domain.

This means that local and remote GridSched services are controlled via a single user interface. For
this reason the IP Address or the name of a remote machine is entered into a specific text field and
all installed GridSched services on the selected machine are determined. This is done by checking the
existence of the corresponding configuration file. So the Service Control GUI is built up dynamically for
a specified GridSched server.

Architecture The architecture of the Service Control GUI consists of the Swing container class1 and
a control class named ServiceControl.3.4

The object derived from ServiceControl starts and stops GridSched services. It also calls the Server
Configuration GUI using a service identifier as the parameter.

1Swing is part of the Sun Java language to provide platform-independent GUI programming. It defines a huge variety of
GUI control elements. A Swing container class encapsulates Swing control elements like buttons or text fields to place them
into a GUI frame. Many Swing classes are inherited from the Abstract Windowing Toolkit (AWT) classes. AWT is
the predecessor of Swing. [12]

26 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Figure 3.3: Use Cases of GridSched’s ServerGUI.

The ServiceControl’s constructor determines all locally installed GridSched services by checking the
existence of the corresponding configuration file. The services respectively the corresponding configura-
tion files and the ServiceControl object have to reside on the same machine. So the ServiceControl

object manages only GridSched services which are locally to it. The command to execute the mentioned
control functions is received from an object derived from ServerGUI.

Coincidentally a ServerGUI object represents the event listener of all control elements contained in
ServerGui such as the ”Start”, ”Stop” and ”Configure” button and the ComboBox to select a GridSched
Server. When these control elements used by the GUI’s user an event is fired. All events are processed by
the event listener object using corresponding methods to start and stop services or to build up the Service
Configuration GUI. Using Remote Method Invocation (RMI) it is easily possible to realize remote
control on ServiceControl objects residing far off the machine on which the ServerGUI object is residing.

Entering a new IP address or a new name into the combo box causes an event which triggers a method to
build up the contents of the ServerGUI’s container newly. Calling a unique method of the ServiceControl
object the ServerGUI object gets the identifiers of all locally installed GridSched services.

Service Configuration GUI

Requirements This part of GridSched’s ServerGUI makes it possible to edit single configuration items
of a GridSched’s service.3.3 It is called by the Service Control GUI.

Before starting the Service Configuration GUI the path of the corresponding configuration file may

3.2. GRAPHICAL USER INTERFACES 27

Figure 3.4: Classes of GridSched’s ServerGUI.

28 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

be changed via a dialog. All available parameters and their values are read from a configuration file and
presented in a dialog. This dialog is built up dynamically. So only one Swing container class is needed to
create to edit all existing configuration files. This effects that the code is easy to maintain. Changes may
be done very quickly for all kinds of configuration file representations.

All configuration parameters are ordered hierarchically in a XML document stored in a configuration
file. Some of the parameters are grouped together in hierarchy items. The hierarchy is visualized in the
Service Configuration GUI’s tree view. All parameters and their values contained in a hierarchy item
may be viewed and edited in text fields contained in a detail pane which is shown when selecting the
corresponding hierarchy item.

Like the Service Control GUI an object derived from the Service Configuration GUI class represents
an event listener as well. The OK button fires an event that causes the parameters to be written into the
corresponding configuration file.

Architecture A configuration file stores configuration information as a XML document. This docu-
ment respectively the contained configuration parameters are read and processed by an object derived
from the ConfigFile class and from the objects representing GridSched’s services. 3.4 The structure and
the contents of the XML documents are static and given by the service’s developers.

To process the XML documents inside the Service Configuration GUI it is transformed into a object-
based hierarchical data structure. A single XML document is represented by a ConfigDoc object. This
object can contain one or many ConfigGroup objects and ConfigItem objects. These objects represent
containers for ConfigItem objects.

A ConfigItem object contains ConfigAttribute objects representing the configuration parameters. Like
the parameters a ConfigAttributehas an identifier and a value. All other objects exist to order and group
ConfigAttribute object. They represent the structure of an XML document. Like ConfigAttribute ob-
jects they have identifiers to store the XML element names but no values.

A ConfigDoc object is always assigned to a ConfigFile object. A ConfigFile object provides methods
to read and write a configuration file. In this methods a ConfigDoc object is a parameter or the returned
value. Similarly to the distribution of work of ServerGUI and ServiceControl objects ConfigFile ob-
jects have a controlling task and they are used by ConfigGUI objects. The whole process of reading and
writing a configuration file is illustrated in the Sequence Diagram in 3.5

Implementation Details

The implementation of ServerGUI is using Java’s Swing and AWT classes to implement both graphical
user interfaces especially for the interface’s containers, control elements and the event listeners.

To realize the remote access to distant objects Java’s RMI is utilized.
ServiceControl’s constructor method creates a remote type of a ConfigFile object for each exist-
ing configuration file. Afterwards these remote objects are registered at a central RMI Registry. The
ConfigFile objects and ServiceControl object must reside on the same machine. A ServiceControl

object itself is instantiated and registered by the ServerGUI’s main method which is the main method of
the executable ServerGUI component as well.

Stopping a GridSched service by using the Service Control GUI interrupts the execution of the ser-
vice but it does not terminate the existence of its instance. Thus a new start of a service via the GUI
after changing its configuration parameters does not restart the service with the changed configuration.
This has to be done by killing the service’s process via the operating system of the local host before
pressing the GUI’s ”Start” button.

3.2. GRAPHICAL USER INTERFACES 29

Figure 3.5: Sequence Diagram of GridSched’s ServerGUI.

30 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

3.2.2 ClientGUI

Requirements

GridSched’s ClientGUI is a graphical user interface for creating and managing jobs on an instance of
Titan (see also Section 6.2.2). This service is provided to GridSched’s users. Moreover it is possible to
initiate the scheduling process and to select a created schedule.
To define a job in the GUI it is necessary to represent the data structure of the job description by GUI
elements. A tree view helps navigating the hierarchical structure of the job definition. To support the
user defining a job a help window is provided. After defining a job a consistency check is performed.
The user can create, manage and edit only her own jobs. Therefore the authentication of a user is needed.

Architecture

GridSched’s ClientGUI consists of five parts and eight classes based on Java Swing technology. Its main
concept is the separation of the GUI elements (named *GUI) from the functions to control (named
*Control).

The first part is the main class GridSchedClient. It’s function is to start and to initialize an instance of
the ClientGUI. The second part is the central unit of the ClientGUI. It consists of the classes ClientGUI
and ClientControl. It contains login, user management, job management and schedule management.
To communicate with an instance of Titan Remote Method Invocation (RMI) is used. Therefore Titan’s
communication interface GUIInterface is provided. The third part is the application and display manager
for the language items ”target” and ”resource”. It consists of the classes JobGUI and JobControl. When
saving the data entered in the GUI all entered data will be checked for consistency. The fourth part
realizes the navigation in the structure of the job definition. It consists of the classes JobTreeGUI and
JobTreeControl. The fifth part displays help, version and system messages. It consists of the class
HelpWindow.

For details of implementation see also Figures 3.6 to 3.14.

3.2. GRAPHICAL USER INTERFACES 31

Figure 3.6: UML: ClientGUI.

���������	
�

�����

��	��	�����
�

	������	����	

��������	

��������

�������������

	����

��

Figure 3.7: UML Activity: ClientGUI - log in.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

���������	

�

�������

�

��������

��������	

����	

Figure 3.8: UML Activity: ClientGUI - new job.

���������	
���� 	
������ ��
�������	
����	�����
 ����
���������

���

��������

��������

�	�	�	���
����

�	�	�	�����������������

�	�	������
��������

�	�	���
����

�	�	�����������������

�	��������

�	��������

Figure 3.9: UML Sequence: ClientGUI - log in.

3.2. GRAPHICAL USER INTERFACES 33

��������	

�
��

����	

������������	
���	

���������������	�

����	��	����
�������������	�

Figure 3.10: UML Sequence: ClientGUI - new job.

��������	 �������
���
� �
����
����� ��������
�

����

����������	
�

�����������������
���������

�����������	
�

������
��	
�

���������	
�

Figure 3.11: UML Sequence: ClientGUI - edit job.

��������	
����� ��	
�������� ����

��� ����

������

��

���������

���������	�
��	����

�������	�����	����

���������	�
��	����

���������	�
��	����

������
��

������
��

Figure 3.12: UML Sequence: ClientGUI - edit main target.

34 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

���������	 �������
����� �����	

����

�����������	
�����
�
���
��

������������������

�����������������

Figure 3.13: UML Sequence: ClientGUI - edit target or resource.

������ ��	
����� ��	
�������� ���������
�� �
���	�������������

��

���������	

�������������������	���������

���������������	

�������������	

�����������	

��������������������

Figure 3.14: UML Sequence: ClientGUI - save job.

3.3. JOB DESCRIPTION 35

3.3 Job Description

To consign a query to GridSched the user has to formulate a job. To do so she can use the provided
GUI to commit all data necessary to describe the job to the system. But jobs submitted to the system
must be formulated in a way the system can handle them. So to process the jobs created by the means
of the GUI, the inputs must be converted to an internal representation after being validated. Therefore a
language was created to describe the jobs and their component parts. It consists of data structures which
hold all necessary information.

3.3.1 Requirements

What are the requirements of the language? The language should be powerful enough to describe all
possible jobs that should be accepted by the system as valid descriptions. It´s main purpose should be
to hold the data representing a submitted job and make this data portable. It should be flexible enough
to allow future extensions and improvements.

As the language is used throughout all components of the GridSched software, the representations needed
by different components differs from case to case. For example the scheduler has to run complex algo-
rithms on a set of resources and therefore represents them in a special format.

Nevertheless, all the implementations have some things in common. To allow local redefinitions of the lan-
guage items without restructuring interoperability, interfaces are used. All language items are defined
as interfaces.

3.3.2 Idea and Design

To provide a deeper insight into how jobs look like, this topic will be picked up next.

A job submitted to GridSched mainly contains information about what kind of resources the user needs
and in which way she wants them to be used together.

In the most simple case, a computational task handed to the scheduling system includes an executable
(for example a shell script), a reference to input data and a specification of the hardware required.

The term Resource refers to the description of any kind of hardware, data (file or executable) and
network infrastructure.

So first the user has to specify which respectively what kind of resources she wants to use for her job. To
do so she can chose from different kinds of resources, e.g. data-, network- or CPU-resources, and specify
required and optional attributes. All these resources have counterparts in the language. To be able to
state how resources, executable and data are to be used together, a special description called DoItem
was introduced holding information about the desired interactions between the resources. It also allows
different alternative requirements to be expressed. This will be explained in greater detail later.

In GridSched, the objects just mentioned(Resource(s), DoItem) are supposed to form a Target. A Target
comprises all items that have to be used simultaneously to perform a computation.

Often, a computation results in the creation of data that can be processed further: It’s output data
can be the input data for a new computation. A Job is considered to be a chain of computations, which
means that it consists of several Targets. Nevertheless, a Job only including one Target is a valid Job as
well.

Moreover a Target can contain an indeterminate number of Sub-Targets describing computational
tasks which generate data used by their Super-Target and have to be executed before the Super-Target.
As said before DoItems can be used to give alternative resource scenarios. This may be useful, but often

36 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

one possible alternative is preferred by the user.

To enable the scheduler to rate its schedules and select the best one, the user must provide a score
function for every job. This function is called ObjectiveFunction. It contains information about what
kind of resources the user prefers, what she´s willing to pay for the computation and so on.

To get an idea of what items a job contains and how it looks like have a look at Figure 3.15.

Resource
Resource

Resource DoItem

Resource
Resource
Target

Target

Job

ObjectiveFunction

Figure 3.15: Language Item structure.

3.3.3 Implementation

Apart from creating the interfaces for all the items mentioned, it was decided to supply sample imple-
mentations for the most important ones. So all components can use the provided implementations of the
interfaces or use own, adapted implementations.

The implementations were named : Object+name of the implemented interface (e.g. ObjectTarget is
the implementation of Target).
To get an overview about the structure, have a look at Figure 3.16 showing all interfaces of the language
and their relations.

Subsequently there´ll be a brief explanation of the most important interfaces respectively their sample
implementations.

3.3.3.1 LanguageItem

All language interfaces are supposed to extend this one. This serves two different purposes:

1. Make all language objects serializable

2. Force all language classes to implement a function for XML import and export

As you can see there is no need to write an implementation for this particular interface. Nevertheless,
the functions mentioned above make it essential for the whole language package.

Considering inheritance, this interface is the root of the inheritance tree.

The function for XML import- and export was not actually implemented as the whole communication
model changed during it´s implementation. But for further information have a look at Section 3.3.5.

3
.3

.
J
O

B
D

E
S
C

R
IP

T
IO

N
3
7

�

�

�

����

�����	
��

���������	�

��������	�
���

��������
�������
�	�
���

��������������
�	�
���

������
���
���������������

����	�����
���������������

���������
���������������

�����
���	�
���

����	���
���	�
���

�������	�
���

��������
�	�
���

����	���� ���!������

����"�#�$�%����

������!$�%����

����&���������

����� �����

���� �����

�����%&"'����

�����%��	�
���

����(!��"����	�
���

����(!��"�
�%���
��	�
���

�����	
��

���	������	���

����)���
��*�����+���

��+�������������

���	�
����	�
���

�������������

��
�%	�
����+���

�
�
�������
���
���

����
���

�����	
��

������������

���,�)�	�
���

���
��,�)�+���

�����	
��

���������	�

���������	�
���

���������+���

���������	�
���

���������+���

����'�����&������������$����
��&���������

����'�����&����������+���

������������&������������$����
��&���������

������������&����������+���

�����	
��

����������	�

���������	�
���

����	��
��'$ �	�
���

����)����"����	�
���

������!	�-�����

�����	
��

������	�

��������� ���

������!"�" ���

������#�� ���

�������"$%�� ���

����'$ �	�
���

����+�
�*��������������������

������.����+����������+���

������.����+������������.����+���������

�����������������������

����'$ �+���

���� �����

�����%��+���

�����%��	�
���

�����������"
���������

����&�����"
���������

����/
���"
���������

����"
����"
���

����*�%������*�%�����

����*#������

�����	
��

���

������.����+������������.����+���������

������.����+����������+���

��������*�
����*�
���

��������*�
����+���

����/
����	�
���

����/
����+���

����'��
�	�
���

����'��
�+���

����0�#����

�����	
��

��	�

���������������

����&�

���#����

�����	
��

�������

����	��
�*�%������

����(��*�%������

������
����������

�����	
��

������

����� ��	�
���

����� ��+���

����$����
���$����
��

����$����
���+���

�
�%�+�$����
���+���

������ ��%��� ��%

�����	
��

���������	������	���

�����������������

����)�����#����

�������������*#���	�
���

����)�����#*#���	�
���

�����	
��

������

��&' �����(

���� �����(

�
�) �����(

�� �����(

��������(�����(

����* �����(

������� ��%���� ��%12

������ ��%��� ��%

������ ��%�+���

����*#���	�
���

���$����
����������

�����	
��

�����������������	�

����	��
���$����
��

����������������$����
��

��������
����$����
��

�����	
��

���������

������������	�
���

����(!���������	�
���

���������	�
���

�����	
��

������
�

�����	
��

���������

�����	
��

�������� !

����	��
���	�
���

����������������	�
���

��������
��	�
���

F
ig

u
re

3
.1

6
:
L
a
n
g
u
a
g
e

In
terfa

ce
stru

ctu
re.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

3.3.3.2 ObjectiveFunction

The purpose of the ObjectiveFunction is to allow the user to rate a schedule. Therefore it should repre-
sent a formula that uses constants and Resource’s attributes as variables. For reasons of convenience it
should be able to read that formula from a string. The only method it must supply is one that returns a
numerical evaluation of the associated formula.

Because the implementation of the ObjectiveFunction is complex and it can be used in all components
of GridSched without modification, a sample implementation of this interface is provided. The details
of this implementation named ObjectObjectiveFunction, will be discussed in the rest of this paragraph.

The content of an ObjectiveFunction is described by a string expressing a mathematical formula. Af-
ter having created an ObjectObjectiveFunction- -object, this string can be passed to it.

The following rules describe the grammar of an ObjectiveFunction:

non-terminal symbol production

expression term or ifThenElse
term product or unary or (expression) or literal
ifThenElse if expression then expression else expression
product term AbstractBinaryOperator term
unary AbstractUnaryOperator term

Table 3.1: Grammar of the ObjectiveFunction.

All the keywords in the table above have corresponding private classes in ObjectObjectiveFunction, the
sample implementation of the ObjectiveFunction-interface. The methods AbstractUnaryOperator and
AbstractBinaryOperator play an important role in extensibility regarding mathematical functionality.
New operators can simply be implemented by writing classes that extend the corresponding abstract
class.
The +-operator may serve as an example here:

private class Plus extends AbstractBinaryOperator {

public Plus(LinkedList l) {

super(l,"+");

}

public double evaluate() {

return (arg1.evaluate() + arg2.evaluate());

}

}

Figure 3.17: Code of the +-operator.

Adding new unary and binary operators is very easy. The if/then/else-operator should be explained
particularly: The expression given between if and then is checked for being non-zero. If that is the
case, the then-part is evaluated and returned, otherwise it is the else-part whose value the statement
returns.

The grammar defines Literals that have not been explained yet: A Literal can either be a constant
(e.g. 13) or a reference to a Resource’s attribute, for example ”res1.numCPU”.

Internally, an ObjectiveFunction-object keeps the resource’s attributes in a table that is referred to
as literal table

On details about how this table is initialized, please see Figure 3.3.3.3.

3.3. JOB DESCRIPTION 39

3.3.3.3 Job

To understand the structure of the interface Job, it is important to recall the language objects’ structure
explained in Section 3.3.2. Resources which should/must be reserved simultaneously are collected to Tar-
gets to be able to process the computation’s output. A Job was defined as a chain of computations. So a
Job contains one root target that may contain subordinate Targets.

Another important point is that a Job contains an ObjectiveFunction. As explained in the previous
paragraph, an ObjectiveFunction references Resources’ attributes. Therefore it uses the literal table. It
is the task of a Job’s getObjectiveFunction-method to initialize the ObjectiveFunction’s literal ta-
ble before returning the ObjectObjectiveFunction-object. This works as follows: The Job queries its
Target to return all attributes in a hashtable. The Target calls all subordinate Targets and all directly
associated Resources for their attribute hashtable. Figure 3.18 illustrates this process.

+convertToHashtable()

Job

+convertToHashtable()

Target A

+convertToHashtable()

Resource A

+convertToHashtable()

Target B

+convertToHashtable()

Resource D

+convertToHashtable()

Resource C

1

+convertToHashtable()

Resource B

23 6

7
9

4

8
10

11

5 10

Figure 3.18: Sequence of convertToHashtable.

3.3.3.4 ObjectBobResource

This class represents resources that belong to a Bob, which means hardware resources. ObjectBobResource
has a lot of attributes that will be explained later. How does the job-object gather all the attributes from
all its resources? See Figure 3.18 to get the answer.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

What attributes does an ObjectBobResource have? In general, there are two types of attributes, fixed
and variable ones. The fixed ones occur in every ObjectBobResource-object and are therefore imple-
mented as attributes. The variable ones are stored in a hashtable. Their purpose is to describe random
qualities of a resource. For example, if the user asks for the software XMMS, version 1.2.8 to be installed
on the system. Two problems occur regarding this kind of request:

• There are two many different products around to have a static attribute for each of them

• New products appear every day, so you must be able to request them even if the Grid software does
not know of their existence

To solve this problem the feature hash is introduced, which carries pairs of the form (feature name,
value). Feature name typically states the name of a software product whereas value states its version.
With this mechanism it is possible to describe the features of a resource in a very flexible way.

For a detailed description of each of the static attributes please have a look into the Javadocs.

3.3.3.5 ObjectDataResource

The class ObjectDataResource mainly consists of attributes which are necessary to describe a wanted
Data Resource and of the corresponding getters and setters.

3.3.3.6 ObjectNetResource

For the sample implementation the class ObjectNetResource implementing the interface NetResource.
This class consists primarily of attributes which are necessary to describe a wanted network connection
containing attributes like endpoint a, endpoint b, needed bandwidth and latency, maximal price. With this
implementation it´s possible to specify bandwidth and latency for both uplink and downlink connection.

3.3.3.7 DoItem

Every target consisting of different resources has an associated DoItem which specifies what to do with
the resources. For example it could be possible to execute program A(resource 1) on CPU B(resource
2) using data C(resource 3). So DoItems actually describe how sets of resource defined in a target should
be used together. As the DoItem is a recursive structure, a DoItem has a list of other DoItems. This par-
ticularity results from the fact that there are different kinds of DoItems. For the sample implementation
the classes ObjectDoItemRun, ObjectDoItemCopy, ObjectDoItemAnd and ObjectDoItemOr
were implemented, all implementing the interface DoItem. Using these classes jobs consisting of either
executing a program on a specified kind of computer using a specified Data Resource or copying some
kind of data between specified locations can be phrased. Of course the operations can be combined. It
is also possible to create queries containing logically concatenated DoItems using the classes Object-
DoItemAnd or ObjectDoItemOr.

To pickup up the preceding example:
If a target containing the CPU resource CPU and the Data Resources data1 and data2, data1 being
executable data, is specified and it should be expressed that data1 should be executed on an CPU of
kind CPU using data of kind data2, this target would have a DoItem of type ObjectDoItemRun.

Of course the user should not be enforced to create the nested objects of the different DoItem classes to
phrase her query. The user specifies her query as a string using the provided GUI. Internally an object
of the class ObjectDoItem is created and the method of this class to parse the query is invoked. If the
query complies with the given syntax, the different nested objects are created to transform the query to
a form understandable by the system.

3.3. JOB DESCRIPTION 41

non-terminal symbol production

statement RUN or highLevelStatement
highLevelStatement AND(statement) or OR(statement) or RUN
RUN RUN EXE ON CPU USING data

EXE String specifying an executable
CPU String specifying a CPU
data String specifying a dataset

Table 3.2: Grammar for the DoItems.

In the sample implementation the following grammar is used to regiment the format of the textual
queries:
So all queries respecting this grammar are valid and can be processed by the system. There are two

more things to mention about the textual queries. As can be seen in the presentation of the grammar,
strings can be used to specify CPUs, data sets and executables. These strings can either specify just
types of resources or concrete resources like ”use the CPU of the computer with IP address 10.30.135.11”
. Furthermore the strings are regimented, too. You can only use strings representing resources that are
part of the surrounding target. Those strings are held in a hash table.

3.3.3.8 Helper classes

There are some classes that are used in different parts of the software but are not part of its core func-
tionality. Their purpose is to prevent inconsistencies and redundancy.

The first helper class to mention is the class ObjectTimeslot. Often the problem of having to repre-
sent a time period may occur, which is the combination of a start time, an end time and a duration. This
class provides a convenient notation for this.

Price was made a separate class because this encapsulation allows to abstract from concrete curren-
cies. While internally the software deals with numbers that do not represent a particular currency, a
feature that allows the user to determine an exchange ratio by setting a variable, is imaginable. This
exchange ratio would only appear in the price-class.

3.3.4 Example

To illustrate the structure of the language once again an example will be presented . A certain job and
its representation in the language will be shown next. To alleviate understanding have a look at Figure
3.19.

The figure elucidates the hierarchical structure of the language.

The Job-object is the root of the tree. It contains all other items, basically it´s just a passive container
having no active functions. As said before a job contains at least one target and an objective function. So
does the sample job. Target A is composed of 6 resources, one being the result of another computation,
represented by Target B. Except of Target B representing the data resulting from a former computation
the other resources do not depict concrete resources(e.g. program xy on computer 10.30.135.202) but
templates for resource types. They isolate the pool of resources the scheduler can pick to satisfy the
query. To give a possibility to rate the schedule the objective function is consigned to the schedule. It is
necessary for the scheduler to pick the resources which fit the query best and to improve its results.
The DoItem belonging to Target A prescribes how the resources should be used together, basically data
should be copied to a specified kind of CPU and be executed there. Of course Target B must be executed
before Target A, as its result should be used in Target A.

Creating the query the user just fills the fields she´s interested in. If she wants a variable amount,

4
2

C
H

A
P

T
E

R
3
.

D
E

S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A
T

IO
N

O
F

G
R

ID
S
C

H
E

D
Job

Target A ObjectiveFunction

DoItem Target B Net 2 CPU 2 Data 3 CPU 3 Data4

Net 1 CPU 1 Data 1 Data 2 DoItem

(if (CPU2.count < 7)
 then (2*CPU2.count)
 else (4 + CPU2.count * 1,5))
+ ln(CPU3.count)

endtime<169674 count = 1
bandwidth > 100

2 < count < 15
OID =1.2.3.11.23
URI = „“

„OS“ = „Linux“
„glibc“ = „3.15“
„gcc“ = „2.95“

Type = exec
OID = 08.15.47.1
URI = „“

4 < count < 11
OID = 07.11.02.8
URI = „“

„OS“ = „Solaris“
„cc“ = „4.1“

Type = exec
OID = 2.8.11.24
URI = „“

(copy(TargetB to CPU2 use Net2)
AND exec Data3 with TargetB)
OR
(copy(TargetB to CPU3 use Net2)
AND exec Data4 with TargetB)

count = 1
bandwidth > = 10

count = 1
OID = 1.2.3.11.2
URI = „“

„Linux“ = „2.0.12“
„pnlib“ = „2.6“
„xv“ = „“
„gcc“ = „3.15“

type = exec
OID = 08.15.47.1
URI = ““

type = file
OID = 187.87.45
URI = „“

Copy(Data1 and Data2 to CPU1 use Net1)
exec Data1 with Data2 on CPU1

Starttime>167899
endtime <177645

resources of
Target A

resources of Target B

F
ig

u
re

3
.1

9
:
E

x
a
m

p
le

J
o
b
.

3.3. JOB DESCRIPTION 43

maybe between 2 and 15, of a special kind of CPU, the CPU belonging to a computer with Linux in-
stalled, she would just fill the fields for the type of CPU, the OS, and the amount of CPUs.
After scheduling finished successfully, the resource-objects represent concrete resources and all fields
available from the resources are filled.

3.3.5 Conclusion

The language changed just slightly since the first term. It was intended to implement functionality to
export the Java objects to XML and vice versa. The interfaces reflect those intentions as they contain
methods for these conversions. It was finally decided not to implement this functionality in the sample
classes as our plans to change the communication were not implemented. The decision was made that
SOAP, which definitely would have needed the XML im- and export, would not work properly with the
system. So RMI is still used for message passing and there´s no need for XML.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

3.4 Super Scheduler

Roles in Grid Scheduling may be divided in at least two classes: those who provide resources and those
who employ resources to run a job. To provide access to their resources, the providers may set up local
schedulers that manage their utilization. To select those resources that would be employed in a job,
another scheduler must negotiate with the local schedulers of the resources that are participating in Grid
Scheduling to find those among them who are suitable and available. This kind of scheduler is called
Super Scheduler.

In GridSched a component is needed that allows users to submit, manage, schedule and execute jobs for
the Grid. That component was named ’Titan’.

3.4.0.1 Requirements

• Stand alone service Titan should be a service which would be available to multiple users and
which can be accessed remotely and in parallel to allow better utilization of information which were
gathered about the Grid.

• Convenient input and management of jobs Titan should feature a user interface that allows
easy assembly and specification of the resources that a user wants to employ in a job. This includes
the possibility of conveniently creating objective functions and DoItems.

• Flexible configuration of the scheduling algorithm As not all scheduling concepts and strate-
gies might be suited for all kinds of jobs and Grid situations, Titan should provide means to employ
different schedulers that a user can choose from to process her job.

3.4.0.2 Design

Core The central components of Titan are formed by a JobManager. The JobManager keeps track of
Jobs that where submitted by users. Jobs are stored in wrapper classes named TitanJobs. These wrapper
classes hold additional information on who submitted the job, whether or not it was successfully scheduled
and what kind of scheduler was assigned to handle the job.

Frontend Over the course of the project, two frontends were created.

• The first version centers around the UserProxy class which provides a rather small set of operations
to a web based interface. The development of the Web Frontend was stopped after the first term.
Please see [13] for details.

• The second frontend exports access to a wider array of operations via Java RMI. These operations
are used by the client GUI package explained in (Section: 3.2.2). The implementing class is named
LocalFrontend.

Along with that frontend, several new features were added to Titan:

• Account Management An AccountManager keeps track of TitanAccounts which hold information
about a users contact information, access password and of the jobs the user has submitted so far.

• Session Management In order to perform any action using the LocalFrontend, a user must first
identify himself using the username and password stored by the account manager. The user is then
issued a sessionId which must be sent along with all entailing method invocations.

3.4. SUPER SCHEDULER 45

Serializable
BobGateway

Serializable
DataManagementGateway

Serializable
NetworkManagementGateway

Serializable
Gui

java.io.Serializable
UserProxy

Remote
interface

...titan.frontend.GUIInterface

UnicastRemoteObject
Serializable

ActiveComponent
...titan.frontend.LocalFrontend

Serializable
...titan.frontend.SessionManager

Serializable
...titan.account.AccountManager

AvatarControl
Serializable

Titan

Introspection
org.gridsched.scheduler.SchedulerDataSource

Attachable
ActiveComponent

JobBroker

Thread
Serializable

ReservationClient

java.io.Serializable
ActiveComponent

JobManager

Figure 3.20: Classes of Titan.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

• Access Permission Management A set of actions was created for use with GridSched’s own
Policy Manager (Section: 3.9). In order to perform an operation on the LocalFrontend, the Policy-
Manager must grant access for the corresponding action. For a description of the possible operations,
please refer to the Interface
org.gridsched.titan.frontend.GUIInterface.

The validity of the SessionId as well as the permission to perform the desired action is verified for every
method invocation of the local frontend to provide some degree of security.

Backend Backend classes provide access to the Global Grid. They form something like a ’Grid abstrac-
tion layer where any kind of resource can be interacted with in a unified way by means of the protocol
mentioned in (Section: 3.1.1.1). For each type of resource a corresponding gateway was created that im-
plements the set of common access methods. The JobBroker class provides unified access to any existing
gateways and serves as SchedulerDataSource for schedulers which want to access the Grid. Reservations
are handled by the ReservationClient class which allows reserving the resources of a previously scheduled
job by means of a simple negotiation scheme. (See Paragraph: 3.1.2 at page 24)

3.4.1 Modular Scheduling Strategy Subcomponents

In this section the different Schedulers implemented for ’Titan’ are presented.

The Scheduling Problem Technically, scheduling, as it is understood in the scope of the project, is
the process of creating a plan when, and in which order and how to perform certain actions. In GridSched,
it is tried to reserve and use certain kinds of resources at given times.

Additionally it is necessary that those resources are selected in such a way as that the objective value
of this schedule is optimal. The objective value is produced by an objective function, which takes the
resources’ properties and uses them as input for a complex arithmetic expression. Evaluation of that
expression produces the objective value.

A schedule can be interpreted as a complicated system of equations whose variables are the resources’
properties. For each resource there is one equation. This equation is met if its variables are selected in
such a way that there exists a resource on the Grid whose properties match those variables’ values. These
equations can be solved by querying the Grid for offers on that resource. A corresponding local-scheduler
will inspect the variables already determined and will try to select the rest of them accordingly. The
result is a selection of variables which meet this single equation. There is one equation that describes
how resources are to be employed in conjunction. That equation can be created by inspecting the job’s
structure and its DoItems. Effectively, DoItems can be translated in an equation. The equation is met,
once all resources have been selected in such a way that all dependencies between resources are met.
Consider the following simple example:

Consider a job that employs two separate computers to perform some kind of distributed computation. To
do this, it is essential that both computers run their part of that computation at the same time, because the
two will eventually have to exchange data from time to time. So there is a dependency between the timeslot
that the first computer should be reserved for and the timeslot of the second computer. Furthermore it
must be guaranteed that communication between the two computers will be sufficiently fast. To achieve
this it is necessary to reserve a network connection between those two computers that provides enough
bandwidth for the data that are expected to be exchanged and that features a sufficiently low latency. The
parameters of this network connection depend on those of the computers that are employed in the job.
Obviously that connection must be reserved for the same timeslot as those of the computers employed.
Additionally the addresses of the sites that the network connection is meant to connect must be provided.
These addresses would obviously be the same as the addresses of the two computers. So there is a relation
between the computer’s site’s addresses and the network connection’s start- and endpoint parameters.
The objective function is the final equation that has to be maximized. Its value can be defined as negative
infinity as long as one of the other equations are not met.

In the following a brief overview about the methods considered for solving this problem is provided.

3.4. SUPER SCHEDULER 47

• Linear Optimization Maximization of a functions’ value seems to be a linear optimization prob-
lem. Unfortunately this strategy requires that all variables can somehow be converted into non-
discrete numbers. Furthermore all equations have to be linear. None of both is the case.

• Dynamic Programming At first it seems like selecting one resource after another in such a way
that for each resource it is picked the one which is suited the most for participating in the job might
be a good idea. Unfortunately, even if there was a function which decides which resource-option is
the best, there is no guarantee that selecting those resources will result in a good objective value.
Consider the following example:

Suppose that there was a simple objective function which returns an optimal value if all resources’
prices are minimal. It looks like a good strategy to pick the cheapest option available for each
resource. Unfortunately, due to other dependencies it may occur that by selecting a cheap option
for one resource there will be no cheap options available for other resources. So Bellman’s equation,
which is essential for dynamic programming, does not hold.

• Branch and Bound If there was one valid solution to the system of equations it would be possible
to enforce or prohibit some values of some variables and see if a better solution comes about when
that modified equation is re-solved. Since it is possible to find a solution to the system of equations
the objective value of that solution can be used as a lower bound. The problem is finding an upper
bound for the remaining problem. It is possible to remove all equations but the objective function
itself and take that as a relaxation of the problem. The task would then be to compute maximum
value possible under the current constraints of enforced or prohibited values. But, since the objective
function can be of whichever form it would be necessary to resort to genetic algorithms to do a
black-box optimization of that function. This approach did at least seem feasible and was attempted
during the implementation of SimpleSched.

A common strategy Under the circumstances presented, most of the traditional approaches of com-
puter science seem fated to fail. The only way that appears to be left is to resort to heuristic approaches
like genetic algorithms. For that reason, all schedulers implemented for GridSched up to today work in
the following way:

Compute a single valid schedule;

Store that schedule;

While the Algorithm should continue (

Select a previously stored schedule;

Modify that schedule;

Compute a new valid schedule that is based on the modified one;

Store that new Schedule;

)

Usually, genetic algorithms can produce useful results only if they perform enough iterations, so the main
concern was to find efficient ways to compute a valid schedule.

In order to make the use of different schedulers as transparent as possible a common interface was created
that defines the basic operations that each scheduler must support. Some of these are:

• assignJob(Job theJob) An existing instance of a scheduler is assigned a job for which it should
produce schedules.

• assignDataSource(SchedulerDataSource theSource) The scheduler is assigned a reference to a
SchedulerDataSource, which serves as a source of information on existing Grid Resources. Usually
this would be an instance of Titan’s JobBroker class. (See Section: 3.4.0.2)

• startScheduling() This will commence the scheduling activities.

• getSchedules() At any time after invocation of startScheduling(), calling this method can be
used to get a most recent list of schedules produced which comes in ascending order, sorted by the
objective value of the schedules.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

/**

* Start with a single empty schedule.

*/

Schedule = new Schedule();

do {

/**

* Find resources on the Grid which are suitable

* for accomplishing the job.

*/

Resources = discover(Job);

/**

* Contact those resources to find out which of

* them are available at the given time.

*/

Timeslots = check_availability(Resources);

/**

* Select Resources in a predefined-defined order.

*/

for(all resources needed for schedule){

Schedule.add(get_offer(Timeslots));

}

/**

* If successful, add the newly created Schedule

* to a Set of Schedules.

*/

Schedules.add(Schedule);

/**

* Create a variant of the best Schedule and

* re-compute it, hoping that it will become

* even better.

*/

Schedule = make_variant(Schedules.get_best_schedule());

} while(scheduler_should_continue());

Figure 3.21: Algorithmic description of SimpleSched.

Over the course of the project, two schedulers where designed. They were named SimpleSched and
NuSched.

3.4.1.1 SimpleSched

SimpleSched was created for the prototype of GridSched. The goal was to write a scheduler that would
find a solution at all, so the objective was to keep it simple.

To find a good schedule for the resources defined in a given job, the SimpleSched would perform the steps
as seen in Figure: 3.21

3.4. SUPER SCHEDULER 49

Design This paragraph will elaborate on the following areas of interest:

1. Representing a schedule

2. Finding resources on the Grid and getting timeslots for them

3. Selecting among the resources available

4. Creating variants of a complete schedule

Finally there will be a vague estimation of the algorithms complexity and performance, along with a
summary of SimpleSched’s features.

1. Representing a schedule Each job that needs scheduling is assigned an instance of the scheduler
that would run in an own thread. Once started the scheduler would convert the job into an internal
data structure, the ProblemSpace. There (See Figure: 3.22) any resource or target is represented as
a Problem.

2. Finding resources on the Grid and getting time slots for them The task of the scheduler is
to find a solution for each problem recursively until the root problem of the ProblemSpace is solved.
To do that, the scheduler relies on a set of resources it queries from the Grid. These resources are
organized in a data structure called OptionsPool. It reflects the options the scheduler has to solve
a problem. This set is made of instances of non-dynamic resources that where found on the Grid.
The process of finding these resources is called population. The options pool is populated once
at initialization time. It looks for instances of all non-dynamic resources it finds in the current
ProblemSpace. For each instance retrieved, it immediately requests time slots and stores them
as options. Once the root problem of a ProblemSpace has been solved a valid schedule has been
computed. That Solution is added to the SolutionSpace. (See Figure: 3.26)

3. Selecting among the resources available The order, in which problems need to be solved on
the one hand comes from the structure defined by the hierarchy of targets as found in the job.
On the other hand, the do-items found in each target introduce a second, more detailed level of
dependency. They describe in what time and logical order resources need to be allocated. Analyzing
a given job, the ProblemSpace organizes the resources in a dependency tree. The LowerBoundSolver
takes a ProblemSpace and traverses its dependency tree. It uses backtracking to try out possible
combinations of options for different resources until a valid solution for the root-problem is found
or the algorithm runs out of options for the root problem.

Resources must meet certain constraints to be valid. Such constraints arise from the dependency
structure within the job or are provided by the user. Typical constraints are time slots or budget.
Usually the user sets a limit on the price she wants to pay for the execution of her job. Normally she
would also enter a time window within which the job should take place. The LowerBoundSolver must
take into account these constraints when selecting resources. Constraints change as more and more
problems of the ProblemSpace are solved, budget decreases, time slots for certain resources depend
on the availability of others. These changes are propagated as the LowerBoundSolver traverses the
ProblemSpace.

The LowerBoundSolver has access to the ProblemSpace and to the corresponding OptionsPool. To
create a Schedule it performs the steps as seen in Figure: 3.24 and Figure: 3.25 .

4. Creating variants of a complete schedule Once a schedule has been computed, it is stored
in a SolutionSpace. Its task is to keep track of the solutions already produced and to create new
problems to be solved. This is called branching and is achieved by removing selected options from
the options pool of the current problem. This will prevent the LowerBoundSolver from reproducing
the last solution and force it to create a new one. (See Figure: 3.26) Initially, the SolutionSpace
contains nothing but one node. The root-SolutionSpaceNode. When the SolutionSpace is called to
produce solutions, it goes through the following loop, until a stop-criterion is met.

50 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

0..*

java.io.Serializable

Instance

-resource:SchedulerResource

+Instance

+Instance

-computeConstraints:Constraints

+getConstraints:Constraints

+getResource:SchedulerResource

+meetsConstraints:boolean

java.io.Serializable

Problem

-child:Problem[]

-depth:int

-doItem:SchedulerDoItem

-id:int

-instance:Instance

-instances:LinkedList

-isResource:boolean

-resource:SchedulerResource

+Problem

+Problem

+countChildren:int

+getChild:Problem

+getChildren:Problem[]

+getDepth:int

+getDoItem:SchedulerDoItem

+getId:int

+getInstance:Instance

+getInstances:java.util.LinkedList

+getResource:SchedulerResource

+isResource:boolean

+setDoItem:void

+setInstance:void

+setInstances:void

+setResource:void

+toString:String

java.io.Serializable

ProblemSpace

-job:Job

-problem4name:java.util.Hashtable

-root:Problem

+ProblemSpace

+ProblemSpace

+getJob:Job

+getRoot:Problem

+iterator:java.util.Iterator

-makeProblemList:void

+toJob:Job

Represents the job that the

scheduler works on.

Represents a Resource

or a Target.

Figure 3.22: Classes related to the ProblemSpace classes of SimpleSched.

3.4. SUPER SCHEDULER 51

Cloneable

Serializable

interface

Constraint

+clone:Object

+getIntersection:Constraint

+getRest:Constraint

+getUnion:Constraint

+isValid:boolean

+meetsConstraint:boolean

Exception

ConstraintTypeException

-a:Constraint

-b:Constraint

+ConstraintTypeException

+getConstraint1:Constraint

+getConstraint2:Constraint

java.io.Serializable

Constraints

-constraints:Hashtable

+Constraints

+Constraints

+Constraints

+addConstraint:void

+constraintsMet:boolean

+getIntersection:Constraints

+getPriceConstraint:PriceConstraint

+getRest:Constraints

+getTimeConstraint:TimeConstraint

+getUnion:Constraints

+setPriceConstraint:void

+setTimeConstraint:void

+toString:String

Cloneable

java.io.Serializable

PriceConstraint

-budget:float

+PriceConstraint

+PriceConstraint

+clone:Object

+getBudget:float

+getIntersection:Constraint

+getRest:Constraint

+getUnion:Constraint

+isValid:boolean

+meetsConstraint:boolean

+setBudget:void

+toString:String

java.io.Serializable

Cloneable

TimeConstraint

-duration:long

-endTime:long

-startTime:long

+TimeConstraint

+TimeConstraint

+TimeConstraint

+clone:Object

+getDuration:long

+getEndTime:long

+getIntersection:Constraint

+getRest:Constraint

+getDisjunction:Constraint[]

+getStartTime:long

+getUnion:Constraint

+isValid:boolean

+meetsConstraint:boolean

+setDuration:void

+setEndTime:void

+setStartTime:void

+toString:String

+toTimeslot:Timeslot

-TimeEvent

Thrown if

operations are

performed on

incompatible

constraint-types.

Represents a

whole set of

constraints.

Figure 3.23: Classes related to the implementation of Constraints within SimpleSched.

52 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

constraints = get the job’s main-target’s constraints;

doItem = get the job’s main-target’s DoItem;

BottomUpCompute(doItem, constraints);

forward an exception if the call fails;

compute and return the objective value for that solution;

//recursive method

BottomUpCompute(doItem, constraints){

if(doItem reflects a resource){

if(the resource is non-dynamic){

get an option for that resource

from the OptionsPool;

throw an exception if there is no such option;

}

else {

query the SchedulerDataSource for

an offer for that dynamic resource

that fits the current constraints;

throw an exception if there is no such offer;

}

set the result as a selected instance

for the resource;

return;

}

else{

for(all child-doItems doItem’){

BottomUpCompute(doItem’, constraints);

if(the call returned successfully){

update the constraints;

}

else {

go back to the last child-DoItem

that was processed successfully;

throw an exception if there is

no such child-DoItem left;

invalidate that DoItem’s selected

resource instance;

restore that DoItem’s constraints;

}

}

}

Figure 3.24: Pseudocode representation of the LowerBoundSolver’s strategy for creating a valid schedule.

3.4. SUPER SCHEDULER 53

T
o
u
c
h
 n

e
x
t
D

o
It
e
m

 a
n
d
 p

a
s
s

C
o
n
s
tr

a
in

ts
 t
o
 i
t.

Q
u
e
ry

 O
p
ti
o
n
s
P

o
o
l
fo

r
a
n

In
s
ta

n
c
e
 o

f
th

a
t
re

s
o
u
rc

e
 t
h
a
t

m
e
e
ts

 t
h
e
 c

o
n
s
tr

a
in

ts
.

S
e
le

c
t
th

a
t

In
s
ta

n
c
e
 a

n
d

c
o
m

p
u
te

 i
ts

C
o
n
s
tr

a
in

ts
.

T
h
ro

w

O
u
tO

fO
p
ti
o
n
s
E

x
c
e
p
ti
o
n

T
o
u
c
h
 n

e
x
t
c
h
ild

 D
o
It
e
m

 a
n
d
 p

a
s
s

C
o
n
s
tr

a
in

ts
 t
o
 i
t.

U
p
d
a
te

 C
o
n
s
tr

a
in

ts

F
a
ll

b
a
c
k
 t
o
 t
h
a
t

D
o
It
e
m

 a
n
d
 i
n
v
a
lid

a
te

it
's

 s
e
le

c
te

d
 I
n
s
ta

n
c
e
.

F
a
il

a
n
d
 t
h
ro

w
 a

n

O
u
tO

fO
p
ti
o
n
s
E

x
c
e
p
ti
o
n
.

n
o

y
e
s

y
e
s

n
oy

e
s

n
o

y
e
s

n
o

y
e
s

Is
 t
h
is

D
o
It
e
m

 a

le
a
f?

C
o
u
ld

 s
u
c
h
 a

n

In
s
ta

n
c
e
 b

e

fo
u
n
d
?

W
a
s
 t
h
e
 o

p
e
ra

ti
o
n
 s

u
c
c
e
s
s
fu

ll

a
n
d
 w

a
s
 a

n
 i
n
s
ta

n
c
e
 s

e
le

c
te

d
?

re
tu

rn

A
re

 t
h
e
re

 m
o
re

c
h
ild

 D
o
It
e
m

s
 t
o

p
ro

c
e
s
s
?

Is
 i
t
p
o
s
s
ib

le
 t
o
 f
a
ll

b
a
c
k
 t
o

a
 c

h
ild

 D
o
It
e
m

 t
h
a
t
a
lr
e
a
d
y

h
a
s
 a

n
 I
n
s
ta

n
c
e
 s

e
le

c
te

d
?

Figure 3.25: Activity diagram of the LowerBoundSolver’s strategy for creating a valid schedule.

(1)Take an unsolved SolutionSpaceNode and

have a LowerBoundSolver compute a solution for it.

(2)If that succeeds, call branch on that node,

creating new unsolved nodes.

Solutions are converted into jobs and stored in a list of schedules. Elements of that list are sorted by
their objective-value as returned by the associated objective function. The loop continues as long
as there are unsolved nodes left or as long as none of the stop-criteria is met. Currently the only
stop-criterion is the number of iterations the loop does. It is met once the loop has been repeated a
certain number of times. Another criterion may be met once the best objective-value has not been
improved by a certain percentage for a given number of cycles.

The implementation allows to retrieve a schedule from the scheduler even when the algorithm has
not completely finished yet. It allows the user to follow the improvements the scheduler achieves

54 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

0..*

java.io.Serializable

LowerBoundSolver

-optionIterators:java.util.Hashtable

-problemSpace:ProblemSpace
-selectedInstances:java.util.Hashtable

-solutionSpaceNode:SolutionSpaceNode

+LowerBoundSolver

-bottomUpCompute:void

-forwardCompute:void

-getNextOption:Instance

-getOffer:Instance
-invalidate:void

-isChosen:boolean

-markChosen:void

+solve:double

-unmarkChosen:void

-isDynamic:boolean

java.io.Serializable

OptionsPool

-options:java.util.Hashtable

-space:ProblemSpace

-constraints:Constraints

+OptionsPool

+computeOptions:void

+getOptions:Options

-populate:void

-isDynamic:boolean

-match:boolean

java.io.Serializable

SolutionSpace

-lastSolution:int

-stop:StopCriterium

-solved:java.util.LinkedList

-unsolved:java.util.LinkedList

-pool:OptionsPool

-root:SolutionSpaceNode

-source:SchedulerDataSource

-space:ProblemSpace

+SolutionSpace

+getResults:LinkedList

+getSchedulerDataSource:SchedulerDataSource

+solve:void

java.io.Serializable

SolutionSpaceNode

-children:SolutionSpaceNode[]

-done:boolean

-excludes:LinkedList

-includes:LinkedList

-lowerBoundSolver:LowerBoundSolver

-number:int

-pool:OptionsPool

-problemSpace:ProblemSpace
-solutionSpace:SolutionSpace

-upperBoundSolver:UpperBoundSolver

-value:double

+SolutionSpaceNode

+branch:SolutionSpaceNode[]
+countChildSolutions:int

+getChildSolution:SolutionSpaceNode

+getExcludes:java.util.LinkedList

+getIncludes:java.util.LinkedList

+getLowerBound:double

+getOptionsPool:OptionsPool

+getResult:Job
+getSolutionSpace:SolutionSpace

+getUpperBound:double

+isDone:boolean

+getNumber:int

+getProblemSpace:ProblemSpace

-ProblemByDepth

java.io.Serializable

interface

StopCriterium

+shouldStop:boolean

Stores solutions.

Holds include and

exclude lists for a

solution.

Holds options for

the Solver to

choose from.

Processes

solutions.

Figure 3.26: Classes related to the SolutionSpace sub-module of SimpleSched.

3.4. SUPER SCHEDULER 55

create ProblemSpace

create SolutionSpace

select unprocessed solution

create solution

create more unprocessed

solutions through branching

add solution to list of

schedules

yes

no

no

create schedules

invoked on scheduler

Enough solutions

produced?

Did create Solution

succeed?

Figure 3.27: Activity diagram of the scheduler’s strategy of improving a schedule.

over time and to decide for himself when and which schedule to take. The user may request the
collection of created schedules at any time to see if there are new schedules available.

Efficiency An important factor for the runtime of the algorithms is the size of the OptionsPool.
Let s be the size of the OptionsPool. The OptionsPool contains time slots for each non-dynamic
resource that occurs in the job. For each of these resources, several instances may exist. An instance
is a resource that matches the resource that was described in the job, and that exists somewhere
on the Grid. For each instance, time slots are requested. The number of possible time slots per
instance is limited by the time slot the job is supposed to run within:

Suppose the job’s time slot covers t time-units.
The maximum number of different time slots at which that resource is available is t/2. For each of
these time slots, which must be at least one time unit in length, there must be another time slot
at which the resource is not available. Otherwise, two time slots could be merged. It can not be
predicted how many instances of a specific resource will exist on the Grid. Assuming that for each
resource ri there are ni instances, each having t/2 different time slots, the OptionsPool may contain
up to

∑
ni ∗ t/2 time slots. In order to be able to continue the estimation of runtime the following

is assumed:

56 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

There is only one instance per resource, having t/2 time slots. Let r be the number of non-dynamic
resources defined in the job. Then, s would be r ∗ t/2 .

(a) Creating a schedule This Algorithm (See Figure: 3.24) performs a search over all possible
combinations of time slots of different resources that can be found in the OptionsPool. That
means that in the worst-case (if not one combination is valid) all those combinations are tried
out before the algorithm fails. Assuming that the OptionsPool contains t/2 time slots for r
different resources, there will be no less than (t/2)r possible combinations to try out.

(b) Finding a good schedule Every time a valid solution has been produced, one of its selected,
non-dynamic resources is excluded, so that no child-solution will be the same as the actual one.
However, since the LowerBoundSolver always produces combinations of resources in the same
way, all the combinations that were already discarded in the last run of the LowerBoundSolver
will be tried again before new combinations of time slots are tested in a new run. So every
new computation of a schedule will take longer than the last one.

Assume there are no limits on how many iterations the scheduler may perform to find a good
schedule.
Let c be the number of possible combinations that the LowerBoundSolver will produce. In the
worst case, each of these combinations is a valid schedule. In that case the scheduler would
do c iterations. Let x be the current iteration. To produce the combination of time slots for
iteration x + 1 the LowerBoundSolver would have to reproduce the combinations of iteration
0 to x. Doing c iterations, the computation of

∑
x = c ∗ (c/2 + 1) = O(x2)

are accumulated. Assuming that c is (t/2)r the estimated worst-case runtime is

< O((t/2)2∗r).

Summary For the prototype implementation, a very basic scheduler was implemented that, if
given enough time, can produce the optimal combination of given instances. It handles some of the
DoItems a job may contain, but not all, so that only very simple jobs can be scheduled.

The behavior of the OptionsPool results in the generation of a lot of network traffic before schedul-
ing actually begins. This strategy may be inefficient because most of the options generated will
most likely never be touched since the first valid solution generated will be returned by the Lower-
BoundSolver. It might be wiser to keep resource instances first and request time slots on demand
only.

Also, many options may be very similar with regard to the resource and the time slot they represent.
The overall complexity of finding one schedule can be reduced by dividing options into classes and
keeping only a certain number of options per class. These classes could be induced by a yet to find
equivalence-relation.

Furthermore, the strategy of the SolutionSpace in finding a better schedule is merely a local-search
which may easily fall victim to local optima. Its general convergence speed can be considered poor,
too.
Ways around this might be resorting to a more randomized approach like genetic algorithms.

Originally it was intended to use a branch&bound approach. The methods for branching and the
creation of a lower-bound are already there. The computation of an upper bound however proved
to be problematic. Since the objective-function can take any form it is difficult to compute the
maximum-value this function could possibly produce.

As stated before, it is differentiated between dynamic and non-dynamic resources. It was also
decided to generally treat data-transfer and network-resources as dynamic.
This is already a big limitation to the flexibility of the scheduler. It might well make sense to ask
questions like: “What machines with the following characteristics can this file be transferred to

3.4. SUPER SCHEDULER 57

until this time?” or “Give me all machines with the following characteristics that can be connected
through a 100megabit connection with a latency below 100 milliseconds at a given time slot.” In such
a case network and data-transfer resources would not be dynamic, but the choice of Bob Resources
would depend on them. The interface is currently not powerful enough to handle such questions,
neither are the modules responsible for data and network-management capable of answering to such
requests. Figure: 3.28 shows an overview of the classes involved.

0..*

java.io.Serializable

LowerBoundSolver

java.io.Serializable

OptionsPool

java.io.Serializable

ProblemSpace

java.io.Serializable

Scheduler

java.io.Serializable

interface

SchedulerDataSource

java.io.Serializable

SolutionSpace

java.io.Serializable

SolutionSpaceNode

The

scheduler's

connection

to the

outside

world.

Stores

solutions.

The main

class.

Holds

include and

exclude lists

for a

solution.

Represents

the job.

Holds options for

the Solver to

choose from.

Processes

solutions.

Figure 3.28: Overview of the scheduler module’s classes.

3.4.1.2 NuSched

A Flexible Framework for Super-Schedulers

Idea From the experiences with the SimpleSched the following weaknesses were identified:

58 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

• Strict, hard coded order for selecting resources. SimpleSched imposes a special sequence
in which the resources of a job had to be selected.This order must be known to the implementing
programmer and be hard coded into the scheduler. So SimpleSched’s code must be altered on
the introduction of every new resource and DoItem. The order in which resources must be
queried however is neither necessarily obvious, nor must it be unique. It is thus desirable that
a scheduler makes as few assumptions as possible regarding the order in which resources should
be selected.

• Resources and dependencies are implemented at object level. Some properties of a
resources description are dependent on the resources that have been selected before. Other
properties in turn influence the description of resources which have not yet been selected. For
SimpleSched, this problem was solved in a rather inconvenient way:

For each resource, a separate class was implemented and some of its get-methods where over-
written so that they accessed the properties of other problems which they depended on.

Example:
A network connection’s get-methods for the names of the start- and end-nodes to connect to
would access the corresponding computer resources ’uri’ property and return their correspond-
ing hostnames.

This approach proved to be error prone and inflexible. The kinds of properties that would
require such redirection had to be known in advance and had to be implemented manually.
It may therefore be wise to have a more general model of resources which allows flexible
manipulation and analysis of its properties and their dependencies.

• No validity checking. When SimpleSched queries the Grid for an offer on a resource, no
validation is performed whether the request makes sense at all, or if the reply received even
satisfies the request. This could lead to very strange behaviour which could greatly endanger
the robustness of the scheduling algorithm. It was evident that a convenient way of ensuring
the validity of requests and replies.

• Monolithic design. As SimpleSched’s design was so straight forward, many features where
crammed into relatively few classes which soon exceeded their original scope of competence.
SimpleSched became difficult to debug and to extend as more and more features where added
during the course of its implementation. A new approach should feature a clean design that is
optimized for flexibility and expandability.

Design To overcome these weaknesses a more general approach was considered. First of all, a
data structure that would conveniently reflect inter-resource dependencies had to be designed.
Furthermore it had to be flexible enough to handle new features and new kinds of resources and it
should be independent on the scheduling algorithm’s implementation as well as on concrete Grid
access mechanisms.

A flexible data-structure for schedules: The Multi-Layered Graph It was discovered that
a schedule can to some extend be regarded as a graph. Resources form the Nodes2, while their
inter-dependency can be interpreted as Edges. In the following, it is enumerated on the concepts
and features of the data-structure that was designed for NuSched.

• Hierarchical precedence of properties: The Multi Layered Graph Initially, a Schedule
contains just the blueprints for the associated resources. Normally, the user would not define
all required properties of all resources.

Usually the timeslot that is common to all resources that are to be employed together are
defined by the parent target of those resources. So there should be some way to define those
values independently on the resources’ blueprints. If however the user entered a timeslot for
some of the job’s resources those values would have to override the more general values from
the parent target.

2In the rest of this section the terms ”Node”, ”Edge”, ”Field” and ”FieldSet” refer to entities of NuSched rather than
to entities of the NetworkManager that also employs such terms.

3.4. SUPER SCHEDULER 59

BudgetLayer

+BudgetLayer
+getField:Field
+putField:void
+getFields:FieldSet
+getLayerName:String
+getPriority:int

EdgeLayer

+EdgeLayer
+putField:void
+getFields:FieldSet
+getLayerName:String
+getPriority:int
+addEdge:void
+getEdge:Edge
+getField:Field

FieldLayer

+FieldLayer
+FieldLayer
+getField:Field
+putField:void
+getLayerName:String
+getPriority:int
+getFields:FieldSet
+setFields:void

Serializable
interface

Graph

+addNode:void
+addEdge:void
+getEdge:Edge
+getNode:Node
+getNodeNames:Set

Serializable
interface

Layer

+getField:Field
+putField:void
+getFields:FieldSet
+getLayerName:String
+getPriority:int

LayeredGraph

+LayeredGraph
+putLayer:void
+addNode:void
+addEdge:void
+getEdge:Edge
+getNode:Node
+getLayers:LinkedList
+getLayer:Layer
+getNodeNames:Set
+removeLayer:void
+toString:String

LayeredNode

+LayeredNode
+LayeredNode
+getName:String
+setName:void
+getField:Field
+getFieldatLayer:Field
+setFieldatLayer:void
+setField:void
+getEdge:Edge
+getEdges:Edge[]
+getFields:FieldSet
+getFieldDefinition:FieldDefinition
+addFieldDefinition:void

Serializable
interface

Node

+getName:String
+setName:void
+getField:Field
+setField:void
+getFieldDefinition:FieldDefinition
+getEdge:Edge
+getEdges:Edge[]
+getFields:FieldSet

Serializable
Comparable

...Schedule

Figure 3.29: Classes of NuSched’s ’Graph’ package.

60 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

GenericEdge

-id:int

-nodeA:String
-nodeB:String
-fieldA:String

-fieldB:String
-r:Relation

+GenericEdge
+getFieldA:String
+getFieldB:String
+getId:int

+getNodeA:String
+getNodeB:String
+getOppositeField:String
+getOppositeNode:String
+getRelation:Relation
+toString:String

GenericField

-value:Object
-name:String
-r:Relation

+GenericField
+getValue:Object
+matches:boolean
+clone:Object
+getName:String
+toString:String

Serializable
interface

Field

+getName:String
+getValue:Object
+matches:boolean
+clone:Object

Serializable
interface

Edge

+getId:int
+getNodeA:String
+getFieldA:String
+getFieldB:String
+getNodeB:String
+getOppositeNode:String
+getOppositeField:String
+getRelation:Relation

Serializable
FieldSet

-toStringSortFields:boolean
-debug:boolean
-fields:Hashtable
-log:Category

+FieldSet
+putField:void
+putFields:void
+containsField:boolean
+getField:Field
+matches:boolean
+getDifference:FieldSet
+clone:Object
+toString:String
+getCommon:FieldSet
+resembles:boolean
+size:int
+remove:void

Serializable
interface
Relation

+verify:boolean
+getMatchFor:Object

Figure 3.30: More classes of NuSched’s ’Graph’ package.

To provide such functionality the concept of layers is introduced. Each Layer contains some
of the properties of some of the resources. In the Graph, multiple Layers are used. The lowest
Layer contains default values for prices and timeslots of each node. It is called the default
Layer. Above that Layer the values of the resource descriptions derived from the input job are
stored. This is called the job Layer.

If the Graph is called to return a property it traverses its Layers from top to bottom until
it finds a Layer that contains the desired property. When the Graph is called to retrieve all
of a resources’ properties, it searches them bottom up, so that properties from higher Layers
replace those of lower Layers.

• Abstract definition of resources and their properties: Fields, FieldSets and Field-
Layer A resource is understood as a collection of Fields which represent the resource’s prop-
erties. Such a collection is called a FieldSet, a property is called a Field. An incomplete
FieldSet can serve as a kind of blueprint that describes only those properties the desired re-

3.4. SUPER SCHEDULER 61

source needs to have. Comparing two FieldSets Field by Field allows a verification whether a
resource found on the Grid matches a blueprint. Each Field has a name, so that corresponding
Fields can be found in the FieldSets that need to be compared. The value of a Field can be
just about anything, so each Field comes with a Format.

In the Graph, each Node represents a resource, and each resource is represented by its Fields.In
the case of a FieldLayer Fields are stored in one FieldSet per Node. It provides methods to
obtain all of a nodes Fields as a FieldSet or to fetch a single Field from a single Node by its
field-name.

• Comparing properties of resources: Relations To allow operations like comparing Fields
relations must be introduced. A Relation takes two Fields and returns whether or not those
two Fields correlate or not. Additionally a method that takes one Field as an input and
returns another Field so that this new Field is in relation to the old one was created. For each
Format there is such a Relation. Each Relation comes with a relation-type. A relation-type
can be common relation-symbols like equality, less than, more than... but they can be also
very special.

Imagine a relation for an URL-Format. Two URLs are to be related when their hostnames are
the same. So a relation-type named ”same host” is created.

• Realizing dependencies between properties through edges: The Edge Layer Some
properties of a resource depend on the properties of other resources.

Example:
If some resource X was to be employed at the same time as some other resource Y, then it its
obvious that in the schedule, the start- and endtime for resource X must be the same as the
start- and endtime of resource Y.

An Edge consists of two Fields and a Relation that describes how the two Fields depend on
each other. It is possible to reuse the Relations that were created for comparing Fields. Edges
are stored in a special Layer, the Edge Layer, which is usually situated above the job Layer.

When a Field is accessed and there is an Edge on that Edge Layer which connects to that Field,
that access is redirected accordingly until a value is discovered. Then, the relation associated
with that Edge is applied to return a corresponding value. Redirection can take place multiple
times since it is possible that the destination Field of an Edge is connected to even more Edges.
After a finite number of redirections the following condition will occur: A Field is reached that
connects only to Edges that have already been traversed. This can either be because of this
Field being a dead end or the Field is part of a loop. Either way, Edge redirection is no longer
possible and the search for the value of that Field is continued on the next lower Layer.

• Scheduling: The Scheduling Layer Any scheduler will consult the Grid for resources. Each
reply is converted into a FieldSet and is stored in the scheduling Layer, which is conceptually
a Field Layer. The scheduling Layer is placed on top of all other Layers, because there is no
way these values can be altered but by re-requesting a resource. The requests will be made
according to the Fields procured from the Layered Graph, which automatically computes all
of a resources properties with the help of its Layers. All dependencies are applied as soon as
values are retrieved from the Graph and any change the scheduling algorithm performs on its
schedule immediately influences the properties of resources which are yet to be selected.

• Computing price constraints: The Budget Layer Selecting resources must not exceed
the budget entered for the job. Therefore, requests for resource offers provide a property
that define the maximum amount that can be spent on the reservation of that resource. The
remaining budget however depends on the prices of those resources that have already been
selected and the original budget itself, obviously. To compute the maximum budget available
to one remaining resource, the concept of the budget Layer is introduced. It is situated below
the Edge Layer and above the job Layer. This Layer, when queried for the price property of
a node will take the original budget and subtract the prices’ property values of all resources
selected so far and return the result.

The reader will possibly realize that this concept is indeed powerful and flexible. There is no
limitation on the number of Layers which can be added to the Graph, and virtually any information
can be stored and modified regardless of format and purpose. The functionality of each Layer is

62 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

not limited to just storing data, its behaviour can be complex like that of the Edge Layer or the
budget Layer.

Having found a data-structure that seemed to meet the requirements the other components neces-
sary for NuSched can be specified.

Converting GridSched resources into FieldSets and back: The Analyzer To convert a job
into a multilayered-Graph and back, and to translate between GridSched resources and FieldSets,
a package named analyzer was designed.

The GraphFactory contains Methods for creating a Graph from a Job and vice versa, which includes
traversing and analyzing the target and resource hierarchy of a GridSched job and setting up the
Graphs Nodes accordingly. Additionally it inspects a job’s do Items and creates the appropriate
Edges.

Resources are converted using ResourceConverters by processing a corresponding set of FieldDef-
initions. Each FieldDefinition holds information on how to get and set a named value of a given
resource, what it’s format does look like and what the resulting Fields relation should be. Since
GridSched Resources mostly store primitive data-types instead of abstract containers like NuSched’s
Field objects, special rules were established to decide when a resources property was to be regarded
as ’undefined’.

Example:
When a job’s computer resource’s number of cpus property is zero, that value is regarded as unde-
fined instead of forcing the scheduler to look for a computer that does not have any CPU.

Edge creation is done by assigning Edges recursively for each DoItem. For that purpose a class named
StaticDoItemRules holds instructions on which Edges to create for a given DoItem. Converting a
Graph back into a Job is currently done by replacing the corresponding resources’ properties with
the properties found in the Graph.

With help of the Graph package and the analyzer package it became easy to inspect and verify jobs
and their resources. An implementation of a job verifier can be found in
org.gridsched.scheduler.JobVerifier .

Accessing the Grid: The Grid Agents Each resource that takes part in a scheduling process
is assigned one GridAgent which serves two purposes.

(a) When queried, it returns a resource found on the Grid that matches the requirements formed
by the current state of the Graph.

(b) The Agent itself decides which resource out of a pool of possible options it should return. It
uses caches to keep communication with the Grid to a minimum.

This leaves a great degree of freedom to the implementing programmer on how to design the agents.
In the following it is elaborated on how implemented Grid Agents were implemented and what their
respective features are.

• Cross schedule validity While one resource is assigned to exactly one agent, one agent may
be assigned to multiple resources at a time. If a job requires multiple instance of one resource
this prevents repeated requests to Grid. It is even possible to assign resources of different
jobs to one agent. If multiple, similar scheduling processes are running in parallel this can cut
communication cost.

• Fully event driven: Introspection To allow effective handling of many requests in parallel,
the Grid Agents and their components are entirely event driven. This was accomplished by
use of the Introspection package which was designed for GridSched. See
org.gridsched.util.introspection for details. Each component that is part of a GridAgent
roughly works the following way:

Events are synchronized by use of an event queue. For every incoming event that is dequeued-
queued, the appropriate modifications are performed on the data-structures of that component.

3.4. SUPER SCHEDULER 63

BobResourceConverter

+toResource:Resource
+toFieldSet:FieldSet

DataResourceConverter

+toResource:Resource
+toFieldSet:FieldSet

GraphFactory

+toFieldSet:FieldSet
+toJob:Job
+toResource:Resource
+makeLayeredGraph:LayeredGraph
+collectTargets:void
+collectResources:void
+updateResources:void

NetResourceConverter

+toResource:Resource
+toFieldSet:FieldSet

StaticDoItemRules

+getEdgesForDoItem:LinkedList

Serializable
FieldDefinition

+makeField:Field

StaticResourceDefinitions

+getResourceDefinitions:LinkedList

GenericResourceConverter

+setFieldOnResource:void
+makeTimeslotField:Field
+getTimeslot:Timeslot
+makeLinkConnectionField:Field
+getLinkConnection:NetResourceConnection
+makeLongField:Field
+makeIntegerField:Field
+makeStringField:Field
+makeUriField:Field
+makePriceField:Field
+makeBoolField:Field
+makeFloatField:Field
+makeDoubleField:Field
+getLong:Long
+getInteger:Integer
+getFloat:Float
+getDouble:Double
+getBoolean:Boolean
+getString:String

Figure 3.31: Classes of NuSched’s ’Analyzer’ package.

64 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Introspection

ActiveComponent
AbstractAgent

Introspectable

Serializable
interface

Agent

Introspection

AgentAdaptor

Attachable

interface
AgentCacheElement

Serializable
AgentCacheManager

ObjectTimeslot
AgentOffer

Introspection
Serializable

ActiveComponent
AgentResource

Introspection
Timeslot

ActiveComponent
AgentTimeslot

BobFieldSetQueryFilter

BobResourceQueryFilter

DataFieldSetQueryFilter

DataResourceQueryFilter

Serializable
NegativeCache

NetFieldSetQueryFilter

NetResourceQueryFilter

OfferAgent

Introspection
QueryFilter

ResourceAgent2

interface

TimeslotBasedAgentCacheElement

Serializable

TimeslotBasedCacheManager

Figure 3.32: Classes of NuSched’s ’GridAgent’ package.

3.4. SUPER SCHEDULER 65

Afterwards a central method is invoked that inspects the new state of the component and trig-
gers new events accordingly. (See Figure: 3.33)

• Time constrained caching strategies In Grid Scheduling, special care must be taken on
how long an information fetched from the Grid will be valid. It is most likely that multiple
scheduling processes are considering the same resources for their schedules. A cached resource’s
information can become invalid, because in the meantime reservations have taken place so that
the resource is no longer available. For that reason, all entries in the GridAgents’ caches do
only have a limited time of validity and are purged from the cache once that span of time
expires.

• Offer returning strategy Each entity of the GridAgent that is faced with multiple options
to handle a request can employ a depth first, or a breadth first strategy. In the first case,
it would evaluate only one option at a time and proceed once the results about the current
option are available. In depth first mode, options that have been considered the least are tried
before others. In breadth first mode, all options are evaluated in parallel, since those options
are usually represented by other GridAgent entities it depends on which of those entities takes
the least time to evaluate the option and to return the desired reply.

An AgentFactory manages a pool of Agents and returns one instance of an Agent according to the
kind of resource that the agent is to be attached to.

Currently, there are two different kinds of agents, ResourceAgents and OfferAgents.
ResourceAgents are used for resources that allow discovery by a remote directory service (See
Section: 3.5). They employ a three level caching scheme: (Resources, Timeslots, Offers). So there
are entries that store information on one existing Grid Resource each. Every such entry may refer
to multiple entries which store information on the different timeslots when that specific resource is
available. Those entries in turn maintain information on the different offers that where procured
for those individual timeslot.
Each such entry is an active component of the corresponding ResourceAgent which handles and
forwards requests independently.
OfferAgents are responsible for such kinds of resources where discovery is performed otherwise and
which cannot respond to timeslot requests. For those kinds of resources, only offers can be cached.

Finding a good schedule: The Algorithm

• Finding one schedule: The Solver To produce a schedule, the solver maintains four stacks:
(toDo, pending, selected, failed). Initially, all resources that need to be scheduled are placed
on the toDo stack. In contrast to SimpleSched, NuSched makes no assumptions on the order
in which resources must be selected. Therefore, if not specified otherwise(i.e. by the optimizer)
the selection order is created in the following way:

For each resource, the corresponding agent is called to return a value on how many options
it can possibly produce for the resource in question. Resources on the ’toDo’ stack are then
sorted in ascending order.

In every iteration, one resource is taken from the ’toDo’ stack and the corresponding agent
is contacted to provide an offer for the employment of that resource. In the meantime, the
resource is placed on the ’pending’ stack. Currently, there may only be one resource on that
stack, but theoretically the solver may request multiple resources in parallel if those resources
are independent. Once the agent in charge returns, two conditions may occur.

(a) The query could not be processed successfully. This happens if no resource could be
found that matches the conditions formed by the current schedule. The resource is moved
from the ’pending’ stack to the ’failed’ stack.

– If there are items left on the ’toDo’ stack, the next resource is taken from that stack
and the corresponding agent is contacted to return an option.
Reason: Selection of a resource failed. The reason may be that there is simply not
enough information available to make a meaningful request for that resource. It is

6
6

C
H

A
P

T
E

R
3
.

D
E

S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A
T

IO
N

O
F

G
R

ID
S
C

H
E

D

Put corresponding

request on blacklist.

Analyze all pending requests.

Analyze and store

request in queue.

Exit Store the reply.

Wait for events.

Raise success event.

Forward the request to that agent

cache element.

Query the grid

about the

request.Raise Fail event.

kill event incoming requestfailed querysuccessfull query

an offer exists for this request

an entry was found that matches

the request and that points to

another agent cache element.

yes

no entry for that request was found

in the cache

no, not queried

Was the grid already queried

for this request and did this

requests' time to live expire?

F
ig

u
re

3
.3

3
:
T

h
e

b
a
sic

w
o
rk

in
g
s

o
f
ev

ery
im

p
lem

en
ted

G
rid

A
g
en

t
co

m
p
o
n
en

t.

3.4. SUPER SCHEDULER 67

Introspection
Serializable

ActiveComponent
Optimizer

-gi:GenericGuiIntrospector
-agents:Hashtable
-blueprint:Job
-shouldrun:boolean
-creationDate:long
-dead:boolean
-debug:boolean
-done:LinkedList
-fresh:LinkedList
-graph:LayeredGraph
-lastTask:int
-optimizerTimeout:long
-running:LinkedList
-schedules:TreeSet
-taskMaxFail:int
-taskMaxMutate:int
-taskTimeout:long
-state:byte

+Optimizer
-die:void
-dispatch:void
-doWork:void
-handleSolverFail:void
-handleSolverSuccess:void
-spawn:void
+optimize:void
+getJobs:LinkedList
+stop:void
+getState:byte
+isActive:boolean
+resume:void
+getActiveComponentName:String

-ScheduleContainer
-OptimizerTask
-SolverFailListener
-SolverSuccessListener

Introspection
ActiveComponent

Solver

-agentAdaptors:Hashtable
-failed:LinkedList
-schedule:Schedule
-pending:LinkedList
-selected:Stack
-toDo:LinkedList
-queue:ActiveIntrospectorQueue
-debug:boolean
-checkForDoubleID:boolean
-solving:boolean

-createResolveOrder:void
-doWork:void
-handleSelectionEvent:void
-handleSelectionFailEvent:void
-handleStopEvent:void
+solve:void
+getSchedule:Schedule
+Solver
+stop:void
+addAgentAdaptor:void
+removeAgentAdaptor:void
+getResolveOrder:LinkedList
+setResolveOrder:void
+flush:void
+isActive:boolean
+resume:void
+getActiveComponentName:String
-guardID:boolean

-RequestCallbackIntrospector

Serializable
Comparable

Layer
Schedule

-score:double
-resources:Hashtable
-exclusions:Hashtable
-offerCodes:Hashtable
-baseExcludes:Hashtable

+getResourceNames:Set
+setResource:void
+getExclusions:Collection
+baseExclude:void
+excludesToBaseExcludes:void
+exclude:void
+unExclude:void
+compareTo:int
+clone:Object
+Schedule
+Schedule
+getField:Field
+putField:void
+getFields:FieldSet
+getLayerName:String
+getPriority:int
+toString:String
+flush:void

Figure 3.34: Classes of the ’Algorithm’ package of NuSched.

68 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

tried to select some of the other un-processed resources first before it is tried to select
that resource again.

– If there are no resources left on the ’toDo’ stack, but the ’selected’ stack is not empty,
the resource on top of that stack is removed, its current option is excluded and the
corresponding agent is asked to return another option for that resource. The resource
is moved to the top of the ’pending’ stack.
Reason: Requesting a resource failed because the constellation of the resources already
selected made it impossible to select any other resource. The algorithm must fall back
and create a different constellation so that all resources can be selected successfully.

– If all resources are on the ’failed’ stack, the solver has failed to produce a schedule.
Reason: The algorithm has tried all combinations of resources possible under the given
ordering of requests, but there was at least one resource that could not be selected
independent on the constellation of the other resources.

(b) The query could be processed successfully. The resource is moved from the ’pending’
stack onto the ’selected’ stack. All resources from the ’failed’ stack are moved back onto
the ’toDo’ stack. If there are no resources on the ’failed’ stack, the schedule was completed
successfully.
Reason: Requests that did fail may now succeed because the constellation of selected
resources is now a different one. If all resources are selected there is nothing more to do.

• Optimizing schedules: The Optimizer The purpose of the optimizer is to create the best
schedule possible. The creation of a valid schedule is called a task. A successful task may be
modified and re-computed a given number of times in order to produce a better value, which
is called ’mutation’. Even if a task fails, it may be modified a given number of times and be
re-computed, which is called ’revival’.

The Optimizer maintains a set of successful scheduling tasks(initially empty), as well as a list
of un-processed scheduling tasks(initially one task). As long as no stop criterion applies the
optimizer would perform the following:

(a) Stop any running task that has expired its time quantum.

(b) Dispatch any task on the list of un-processed tasks.

Dispatching of a task consists of inserting the corresponding schedule-layer into the layered-
Graph, so that selection of resources can take effect. Additionally the participating Agents
are attached to the solver so that they can accept requests from it. Finally the solver itself is
started.

Upon the successful termination of a task, that task is moved to the set of successful tasks.
Afterwards it is attempted to find a task from that set whose schedule produces the best
objective value among all tasks and which has not been mutated more than the maximum
number of mutations allowed. The resources selected for that tasks are excluded, so that re-
running that task will not produce an identical schedule. The newly mutated task is en-queued
for dispatching.

If no such task can be found, the optimizing process is declared to be over. If there is at least
one task in the set of successful tasks, the process is declared successful.
If a task should fail, be it because of timeout or because the corresponding solver could not
find a solution, one of two possible actions are performed:
If the task’s maximum fail count has not yet been reached, that task is ’revived’ by modifying
its selection order. This revived task is en-queued for dispatching
Otherwise that task is discarded and it is attempted to select another task from the set of
successful tasks and to create a mutation of it.

Summary As expected, the introduction of a powerful data-structure greatly facilitated writing
and expanding NuSched. Adding new resources is as simple as providing another set of FieldDef-
initions for that new resources’ properties. Adding different DoItems can easily be achieved by
creating the appropriate Edge-creation-rules. The scheduling algorithm, the data-structure and the
Grid-access-mechanism are well separated and can be exchanged almost seamlessly.

3.4. SUPER SCHEDULER 69

Create resolve order

Select next resource

Mark resource as selected.

Mark resource as failed.

Mark all failed resources

as unselected and clear

all exclusions.

Mark one selected

resource as

unselected and

exclude its current

option.

no

no
yes: success

yes

yes

Selection finishes

no

yes: failureno

Resolve order defined?

Was the selection successfull?

All resources failed?

All resources selected?

Figure 3.35: Activity diagram of the solver’s algorithm.

It is difficult to estimate the performance of NuSched in terms of O-notation, because most op-
erations are constrained through timeout-values and the overall flow of control is less obvious as
SimpleSched’s.

One big issue remains in form of the current GridAgents. Since they were designed to be entirely
event driven, independent active entities, there are a lot of threads competing for the CPU and a
lot of synchronization and even more method invocations are performed even for the most simplest
tasks. Deleting an entry from the caches not only consists of removing some references, but incurs a
large overhead of stopping event queues, withdrawing event listeners and other clean up operations
which became increasingly difficult do manage. The result is poor overall performance.

A better agent design would greatly improve performance and capabilities of NuSched, but at the
moment of implementation insufficient knowledge on cache design and event driven programming
was available overcome the weaknesses encountered.

Nevertheless NuSched is believed to have some potential. Among the ideas which where not realized
due to lack of time are:

70 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Dispatch new Schedulingtask

Store the Task's results.

Stop SchedulingTasks

that timed out

Revive the task with

different resolve order

and enqueue for

re-dispatching.

Create a mutation of a Task by

excluding some of its selected

options and enqueue it for

re-dispatching.

yes

Task finishes

yes

yes

no

no

no

yes

no

Did the Task finish successfully?

Can this task be revived?

Any SchedulingTasks to

dispatch?

Is there a Task that can still be mutated?

Figure 3.36: Activity diagram of the optimizer’s algorithm.

• Multi-Stage-Solving Currently, NuSched’s solving algorithm picks options without consid-
ering their compatibility with other resources. Or, more precisely, it may pick resources which
are very unlikely to be available at the same time that other resources are available. A solution
to this might be another solver which influences a different Layer in the layered Graph. This
solver could, with help of a more sophisticated implementation of GridAgents, analyze at which
timeslots there is a high probability to find options for all needed resources. By enforcing these
timeslots, the efficiency of the original solver would improve.

• Multi-Level-Optimization The current optimizer performs very simple attempts of modifi-
cation in order to influence the the quality of the schedules’ objective value. There exist ideas
to introduce another Layer where an optimizer could pre-set properties of some resources’
blueprints which it thinks are inherent for a better schedule. Such optimizations could be
achieved by employing means of statistical analysis on the set of schedules that where already
produced. Doing so, common properties of ’good’ schedules might be discovered, or it may be
possible to extrapolate some properties’ values and enforce them for further schedules.

3.4. SUPER SCHEDULER 71

graph

analyzer
test

+UriRelation
+IntegerRelation
+FieldSet
+Relation
+CycleException
+FloatRelation
+GenericField
+Field
+StringRelation
+DoubleRelation
+LayeredGraph
+BudgetLayer
+EdgeLayer
+FieldLayer
+Node
+GraphException
+RelationException
+Edge
+GenericEdge
+LongOffsetRelation
+HashtableRelation
+PriceRelation
+TimeslotRelation
+LongRelation
+BoolRelation
+Layer
+LayeredNode
+Graph

Scheduler
Serializable

ActiveComponent
NuSched

gridAgent

test

+QueryException
+Agent
+OfferAgent

+ResourceAgent2
+QueryFilter
+ComponentCode
+BobFieldSetQueryFilter
+AgentException
+OfferCode
+DataFieldSetQueryFilter
+TimeslotBasedAgentCacheElement
+AgentReplyEvent
+AgentCacheElement
+AgentFactory
+AgentRequest
+BobResourceQueryFilter
+AgentAdaptor
+NegativeCache
+AgentOffer

+NetResourceQueryFilter
 AgentGenericRequest
+AbstractAgent
+TimeslotBasedCacheManager
+AgentTimeslot
+AgentResource
+DataResourceQueryFilter
+AgentCacheManager
+NetFieldSetQueryFilter

algorithm

+Solver
+Schedule
+Optimizer

Figure 3.37: Packages of NuSched.

72 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

3.4.1.3 Conclusion

Performance Both schedulers can produce valid schedules but due to the nature of the opti-
mization techniques employed, no good objective values can be expected if the number of options
is large and the quality of resources varies. Too many iterations would be required to approximate
a near optimal objective value. Another reason is the rather long communication overhead which
results in long phases of waiting for replies during the course of scheduling. In some experiments,
creating one schedule took more than 15 seconds even though there where no alternatives for the
scheduler to choose from.

Internal tests with a predefined set of options showed that the schedulers can indeed produce dozens
of schedules a second even if there are lots of alternatives to choose from. This huge gap shows that
a much better way of inter-resource communication must be found in order to enable any kind of
sophisticated scheduling.

Alternative Sets of Resource Definitions As presented in Section: 3.3.3.7, a DoItem may
contain a term called ’or’ that permits the consideration of alternative sets of resource combinations
in a single schedule. Handling of this DoItem though is not currently implemented.

In SimpleSched, handling of DoItem - ’or’ can be realized fairly easy since scheduling is performed
by traversing the hierarchy of DoItems. If scheduling of one alternative of such a DoItem fails, the
next option is attempted.

In NuSched, handling of such a DoItem can be realized by introducing different Layers for any
alternative combination of resources. Deciding which of these alternative Layers will be effective in
the current schedule can be done at the corresponding task’s dispatch time, or it can be done during
scheduling. In that case the decision is delayed until a resource that occurs in one of the alternative
Layers is selected. Since that resource was selected, its corresponding Layer must be active and all
other alternative Layers must be disabled.

Multi-Reservation of one resource Apart from performance, there is one more problem that
might need further investigation. The scheduling algorithms must prevent that a resource is em-
ployed twice in the same schedule.

Consider a job that requires two computers which are to perform some kind of distributed compu-
tation. The scheduler must ensure that it does not select the same machine for the second computer
as it chose for the first one. In general, this could be allowed if the machine in question has multiple
processors, but in that case, the scheduler would still have to verify that BOTH processors are
available at the same time. There are multiple ways to solve this issue.

(a) Prevent any two resources in a schedule to have the same ID. This is the strategy
that was actually realized in SimpleSched and NuSched. If a resource is encountered that is
about to be selected has the same ID as another resource that has already been selected, that
second option is excluded and it is tried to find another resource with a different ID. This
behaviour effectively prevents that a resource will be reserved beyond its capacity, but some
promising options in scheduling are wasted.

(b) Verify that each resource has enough capacity to handle the combined load. If a
resource is employed twice in a schedule, it must be verified that the resource can still handle
the load. In other words, it must be assured that not just one, but all reservations for that
resource will succeed. To do this the combined resources’ needs must be computed and this
request must be sent to the resource in order to find out if it is still available under those
conditions. While this is technically possible, its realization would introduce more problems:

Arithmetic operations on Fields must be implemented so that the combined properties of two
resources can be computed. A similar technique was implemented for the TimeslotManager
data-structure (See package: org.gridsched.util.timeslot), so this should be easy. Addi-
tionally it would have to be defined at scheduler-level WHICH of a resources Fields must
be combined. For a computer-system resource the number of CPUs, the amount of memory-
and mass-storage-consumption would have to be added. However that information must be

3.5. RESOURCE INFORMATION SERVICE 73

available on every kind of resource. While this would be easy for the current version of Grid-
Sched(there are not too many different kinds of resources), this might not be a good idea for
a more complex Grid environment with hundreds of kinds of resources and different policies
concerning how multiple reservations add up.

(c) Different scheduling approach, distributed super-scheduling. Each local-scheduler
must be sent a most recent copy of the current schedule instead of being sent the resource in
question only. Based on that copy, each local-scheduler may inspect for himself whether or not
it can grant a request based on what has already been selected in the schedule. Furthermore,
if a local-scheduler is working on that schedule anyway, it might as well fill in as much of the
resources still un-selected as possible. Doing so, it would then consider only those resources
which it has control over. This way, competence of handling double reservation of resources
is shifted towards the local-schedulers, because they possess the information available. The
original super-scheduler would receive a partly completed, valid schedule as a reply and then
request more resources by passing it to the next local-scheduler that might be able to fill in
more of the un-selected resources.

This procedure could be realized by re-designing parts of NuSched, the communication Module,
and of course the local-schedulers.

3.5 Resource Information Service

Grid Scheduling requires some kind of shared directory so that participating resources can be discovered.
Schedulers may access that directory to find suitable resources for a given job. In the case of GridSched
LDAP was chosen as a technology to register and discover participating resources.

Lightweight Directory Access Protocol (LDAP) is an open-standard protocol for accessing X.500 directory
services. The protocol runs over Internet transport protocols, such as TCP. [15]

In order to store information on GridSched Resources in an LDAP directory, custom LDAP-schemes had
to be created (See Section: 6.3.1). A frontend class was written to facilitate access to the directory of
GridSched Resources. It employs SUN’s JNDI-technology to interact with the remote directory service
and offers Methods to publish and discover GridSched Resources.

Remote directory service interaction
To establish a connection to a remote service, an instance of the JNDIProxy, which supplies a set of
operations on remote directories, must be defined. The constructor call has to be passed the designated
network address, and the port number of the remote host. Before any operation can be performed, the
method connect() must be invoked.

Publishing and discovering resources
The JNDIProxy methods
publishNetResource() and publishComputeResource() are to be used to add a resource to the con-
nected directory server. The opposite are the calls removeNetResource() and removeComputeResource(),
a remover or publisher must be proprietor of a resource, thus he must pass a resource object to any of
these calls. To look up for resources, a search template in form of a resource instance must be instantiated.
Each attribute occupied with a non-zero value becomes part of a string search pattern, this is done by
the BobGateway class in the org.gridsched.bob package for e.g. .

The lookup calls
(getMatchingNetResources(), getMatchingComputeResources()) in the
JNDIInterface (See Figure 3.38) do only accept the resulting search string as parameter returning a
NamingEnumeration instance of all matching resources, registered in the remote directory which are then
transformed back into concrete resource objects.

74 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

jndiProxy

JNDIProxy

searchControl

SearchControls

directory

DirContext

external caller

if(!connected)

try

catch(NamingException e)

1: getMatchingComputeResources(String):NamingEnumeration

1.3.1: answer:=search("ldap://"+ this.remoteAddress+ ":"+ this.por...

1.2: <constructor>(2, 0, 0, null, false, true)

Figure 3.38: Receiving matching resources.

3.6 Local (Sub-)Scheduler

In Grid Scheduling there are different parties with different interests. On the one hand there are those
who submit jobs to be computed on the Grid. On the other hand there are owners of resources who want
their resources to be available to the Grid. This availability, however, should not remain unrestricted.
The provider of resources would want to remain in control of who uses them, when they will be used and
what for they will be used.

GridSched features a component that is meant to address this issue. It was codenamed ”Bob”

Bob allows ’physical’ resources to take part in Grid Scheduling. This implies publishing, querying, reser-
vation and administration of resources.

3.6.1 Requirements

Taking these considerations into account the following requirements for ”Bob” arise.

• Resources In order to make resources available in the Grid, their existence needs to be published.
Access to local resources is usually managed by a low-level scheduling system, perhaps partly
integrated into the operating system. Resources that participate in Grid Scheduling must remain
available for local users, too. Thus, the existing system scheduler cannot be replaced by a Grid
Scheduler but a Grid Scheduler may be installed ”on top” of it. In that case, reservation information
must be propagated in two directions: From the Grid to the system scheduler and vice versa.

• Resource Customization Owners of large scale installations, like universities or companies usu-
ally organize their hardware in a hierarchical fashion.

• Security considerations While access to the resources of an institution may generally be per-
mitted,access to selected departments of that institution may not. It is, thus, desirable to have
hierarchical access control definitions.

3.6.2 Design

With regard to these requirements, Bob was designed as follows:
(Also see Figure: 3.6.3)

3.6. LOCAL (SUB-)SCHEDULER 75

To manage resources that participate in Grid Scheduling, Bob features a data structure called Resource-
Manager. It stores references to each resource available to an instance of Bob.

Each so called Bob Resource features a datastructure called TimeTable. It is used to keep track of
reservations that originated from the Grid and of reservations that were performed locally.

To synchronize those reservations, each resource that participates in Grid scheduling is assigned as Sched-
ulerProxy that mediates between the ResourceManager and the resource’s own system scheduler.

Access permissions to these resources are managed by the same policy manager that is employed elsewhere
in GridSched (See Section: 3.9).

3.6.3 Implementation

For GridSched, one special kind of resource was realized: It consists of the service of running an executable
on a computer system for a given span of time. Attributes of that resource are of course the properties of
that computer system, like system architecture, physical memory, processor count and type, and so on.
Scheduling and execution of processes is traditionally a task of the operating system.

The ResourceManager relies on a Hashtable that stores references to Bob Resources. The unique ID of
each resource in GridSched serves as key.

The Timetable datastructure employs a TreeSet whose entries represent the beginning and the end of
each reservation made for its associated resource. Reservations are propagated to the corresponding
SchedulerProxy.

The SchedulerProxy starts and stops execution of an executable according to the beginning and ending of
each reservation. Information on what to execute is contained within the resource description that comes
along with the reservation. If execution fails, the corresponding reservation is automatically cancelled so
that the remaining time can be used otherwise.

Resources of the ResourceManager are registered at a remote directory service via the ResourcePublisher
class which employs GridSched JNDIProxy (See Section: 3.5) to interact with an LDAP Server.

Bob itself runs an endless loop which listens for incoming requests and takes action accordingly.

Example: Reserving Resources
The following is an example on how the process of reserving a resource typically looks like.

1. Bob is queried for time slots of a resource that was previously published by the ResourcePublisher.
The ResourceManager then collects free intervals of time where the resource is not yet reserved.

2. Bob is then queried at least once for an offer on one of these time slots.

3. The resource is reserved as ”grace”.

The ResourceManager creates an entry in the resource’s timetable. After a predefined-defined grace
period expires, this reservation will be automatically removed. (See Figure: 3)

4. The resource is finally reserved as ”binding”. This is done to confirm the grace reservation so that
it will not be canceled automatically. The binding reservation will be propagated to the resource’s
SchedulerProxy which will notify the corresponding system scheduler of the reservation. (See Figure:
4)

76 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

AvatarControl
Bob

+getCurrentTimeMillis:long
+iStarted:void
+iStopped:void
+shouldStop:boolean
+main:void
+Bob
+Bob
+Bob
+getPolicyManager:PolicyManager
+getResourceManager:ResourceManager
+getRunningFlag:boolean
+getSafe:boolean
+getState:void
+setState:void
+start:void
+stop:void
+getSimProx:SimulationProxy
+log:void
+isSimulated:boolean

 BobState

org.gridsched.util.introspection.Introspection
Serializable

org.gridsched.communication.Gateway
BobProxy

+BobProxy
+getOffers:org.gridsched.language.Resource[]
+getResources:org.gridsched.language.Resource[]
+getTimeSlots:org.gridsched.language.Resource[]
+mainLoop:void
+cancelReservation:boolean
+reserveBinding:boolean
+reserveGrace:boolean
+start:void

-LoadAdaptor

Runnable
Serializable

ResourcePublisher

+ResourcePublisher
+run:void

Serializable
ResourceManager

+ResourceManager
+ResourceManager
+deleteResource:boolean
+cancelReservation:void
+enterBindingReservation:boolean
+enterGraceReservation:boolean
+findResource:Resource
+getNewResource:LinkedList
+getResource:Resource
+getTimetable:Timestructure
+setResource:void
+getCancellations:TreeSet
+getReservations:TreeSet
+earlyFinish:void

-GraceGuard

Serializable
Entry

+deleteEndtime:void
+deleteOwner:void
+deleteStarttime:void
+getbinding:boolean
+getday:int
+getEndtime:long
+getGrace:boolean
+getjahr:String
+getmonat:String
+getOwner:String
+getStarttime:long
+setbinding:void
+setEndtime:void
+setGrace:void
+setOwner:void
+setStarttime:void
+toString:String

Introspection
Serializable

Timestructure

+toString:String
+Timestructure
+getFreeTime:LinkedList
+removeEntry:boolean
+setbindingreservation:boolean
+setGracereservation:boolean

-EventComparator
+TimeTableEvent
-TimeStructureGuiIntrospector

org.gridsched.language.ObjectBobResource
Serializable

Resource

+Resource
+Resource
+Resource
+removeentry:void
+getTimestructure:Timestructure
+deleteCostfunction:String
+deleteOnline:boolean
+deleteOwner:String
+deletePolicy:Policy

+deleteTimestructure:void
+getOnline:boolean
+gettimeblock:ObjectTimeslot
+getOwner:String
+getPolicy:Policy

+getPublisher:boolean
+setOnline:boolean
+setOwner:void
+setPolicy:void
+setPublisher:void
+toString:String

Introspection
Serializable

Runnable
SchedulerProxy

+SchedulerProxy
+run:void

Figure 3.39: Bob Class Diagram.

3
.6

.
L
O

C
A

L
(S

U
B

-)
S
C

H
E

D
U

L
E

R
7
7

���������		��

�
����

��������

����

�	
��

���

����������

�����	��

������

��	���

������	

�
����������������������

���������	
�����
��	���	

�����������������������
������������������������������� �!"���

���#��$������%����&��������� �!"��'����'��������	����
((

������$������%����&�
(

���)�������*���������+��,����	���(�+����*,����((����*

��������	
���������
�

�������������������������

��-�������������������+��,����	���(�+�������,����((����*

���������������������
�

�������������������������

��.����� �������%�(����*

��������
��*��+�/�	��(����*

��#�����0����������(����*

����

���������������������������
��	� �������	

F
ig

u
re

3
.4

0
:
B

o
b

G
ra

ce
R

es
er

va
ti
o
n
D

ia
g
ra

m
.

7
8

C
H

A
P

T
E

R
3
.

D
E

S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A
T

IO
N

O
F

G
R

ID
S
C

H
E

D

���������		��

�
����

��������

����

�	
��

���

����������

�����	��

������

��	���

������	

�
����������������������

���������	
�����
��	���	

�����������������������
�������������������������������� !"���

���#��$������%����&���������� !"'�(����(��������	����
))

������$������%����&�
)

���*�������+���������,��-����	���)�,����+-����))����+

��������	
���������
�

�������������������������

��.�������������������,��-����	���)�,�������-����))����+

���������������������
�

�������������������������

��/�����0�����1�	��)����+

��������
��+��,���%�)����+

��#����� ����������)����+

����

�����������	��	��������������
��	� �������	

F
ig

u
re

3
.4

1
:
B

o
b

B
o
u
n
d
R

es
er

va
ti
o
n
D

ia
g
ra

m
.

3.7. DATAMANAGER 79

3.6.4 Summary

• Scheduler proxies The current SchedulerProxy is capable to launch executables on the machine
it runs on. Termination of a job, however, can become difficult due to the way how Java and the
underlying OS handles child processes. No other kinds of resources are implemented.

• Manipulation of resources Resources can be added at initialization time by parsing information
from an XML document. The same is done for policies.

• Sub-Bobs Originally it was intended to create the possibility of arranging Bobs in a hierarchical
fashion. One Bob’s resource manager would not only hold references to resources that it manages
itself, but also to those resources managed by other instances of Bob which run on remote machines.
Requests to such remote resources would be forwarded accordingly if the access permissions defined
by the local policy manager apply. This way it would have been possible to have a hierarchical
definition of resource access privileges.

3.7 DataManager

An important task combined with Grid Computing lies in finding and transferring data files. This is very
important because files used in science and research tend to be very large [2]. So it is necessary to have
special methods to transfer and locate files.

3.7.1 Requirements

It is necessary to have a replica service which knows where a file and copies of a file exist. Locating files
is interesting because it might be that a file which should be transferred already exists on a computer
which could be better reached, for example because of higher bandwidth [22]. This can help to reduce
the time needed to transfer the file dramatically. Therefore it might be desirable to have a replica service
which automatically distributes files in the Grid. This leads to the questions which files should exist, how
often and where [9, 20].

Another important task is to manage the storage capacity on computers in the Grid which is used to
store these replicas. On top of locating files it is necessary to transfer files from one computer in the
Grid to another. There are a lot of different possibilities to transfer a file including partial file transfer or
transfer from multiple hosts which should be supported. It should also be possible to remove files from
the Grid which should not be used anymore.

On top of this the DataManager has to assure that special tasks can only be carried out by people which
are allowed to do a task. Therefore it is necessary to have a service which authenticates users to the Grid
and gives special rights to certain people or groups, e.g. it might be possible that a file should only be
available to a certain group of users.

It is also necessary to reserve resources like files, network routes or disk space, so that a resource is really
available at the time at which it is needed. Therefore it is necessary to have a kind of reservation service.

3.7.2 Idea

The DataManager component of GridSched tries to fulfill the tasks described above. The classes which
were implemented to offer the desired functionality can be divided in several different parts.

• The control class DataGate which is responsible for coordinating all actions of the component. On
top of this the DataGate class manages reservations, initializes all needed classes of the component
and configures the settings to run it (see Figure 3.44).

80 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Grid

search for a file

transfer a file

delete a file

Figure 3.42: Requirements of the Grid towards the DataManager.

• Classes which manage the access to the database which is used to locate files. The database contains
information about where a specified file exists or will exist. That means the database also stores
information about future file transfers. For example if file x.dat should be transferred to computer y
which will be completed at time z, the database stores that file x.dat will be available on computer
y by the time z. So if a request arrives for file x.dat the component might offer to transfer the file
to the wished destination from computer y. For more details see Section 3.7.3.3 and Figure 3.44.

– DbGate - Serves to bind the component to the database. It is implemented to make it easier
to use the database connection and to separate the rest of the program from the SQL syntax.

– DbConn - Realizes the access to the database technically by using a special driver.

• Classes which administrate jobs. This is necessary because jobs do not need to be executed imme-
diately. Therefore jobs which should be executed in the future are managed in a list until the job
execution time is reached. A more detailed explanation is given in Section 3.7.3.4 and in the Figure
3.46.

– JobController - Manages the jobs in a list and sorts them by the execution time.

– Job - Upper class for all following sorts of jobs.

– JobAddToDb - Extends Job and represents a job where a file should be added to the database.

– JobCopy - Extends Job and represents a job where a file should be copied.

– JobDelete - Extends Job and represents a job where a file should be deleted from the Grid.

• Classes which are responsible for the communication with other components. The DataManager acts
like a server for other components of GridSched like Titan and NetworkManager. Therefore proxy
classes exist which are listening for incoming requests from other components. After deciding what
kind of request arrived the corresponding methods of the DataGate are called. Then it is the task of
the DataManager to produce an answer for the request, e.g. to decide which file to use for a special
transfer. In most cases it is necessary to question other components to produce a response for the
incoming requests, for example network routes are reserved by the NetworkManager component.
Therefore gate classes to these components exist.

– NetGate - The class which sends messages to and receives messages from the NetworkManager
component of GridSched (see Figure 3.45).

3.7. DATAMANAGER 81

– BobGate - The class which sends messages to and receives messages from the Bob component
of GridSched (see Figure 3.45).

– DataProxy - Listens for requests from other components (see Figure 3.44).

• A Class which manages the transfer of files. The GassGate which supports the transfer of a file
between computers on the Grid. It was planned that the transfer should be done with support of
Gass [10], a service of the Globus Tool Kit [8], but at least normal FTP is used. For more details
see Section 3.7.3.6.

• The Scheduler class of the DataManager component creates a list of job bundles each with file and
route for a request. That means the scheduler computes which file is most suitable for a transfer.
The functionality is described in Section 3.7.3.5 and shown in Figure 3.45.

• Container classes

– SearchItem is used as a container for all required information considering reservation and
copying.

– File which represents an entry of the database.

3.7.3 Implementation

In the following the implementation of the DataManager component is described. This includes the de-
scription of how the component is started and what happens during the running process. On top of this
the database, the JobManager, the function of the scheduler and the file transfer are explained.

3.7.3.1 MainLoop/Start

There are two modes in which the DataManager component could be started. One is the normal mode,
the other is simulation mode. There are a few differences between the two modes, e.g in simulation mode
a file is not really transferred through the Grid. After the decision in which mode the component should
run, the needed objects are created like

• the Scheduler, who makes decisions about which file will be transferred

• the DbGate, the connection to the database

• the DataProxy, responsible for receiving requests

• the JobController, who manages the creation and execution of jobs

• the GassGate, which is responsible for transferring files

During the startup of the component a configuration file is read and for example the location of the used
database is configured. Another important task while starting up the component is to start the needed
threads. There are two threads which are generated by the component

• the first thread is running in the DataGate, which is the control class of the component, it is
responsible for checking if a job is ready for execution. Therefore the execution time of the next
job from the JobController is compared with the actual time. The time used differs depending
on the mode in which the component is running. In simulation mode the time is assigned from the
simulation component while in normal mode the actual system time is used. If a job is ready for
execution it gets executed.

• the second thread is running in the DataProxywhich is listening for requests from other components.
If a message arrives the corresponding methods to create an answer are called.

8
2

C
H

A
P

T
E

R
3
.

D
E

S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A
T

IO
N

O
F

G
R

ID
S
C

H
E

D
Comparable

Serializable

SearchItem

Serializable

GassGate

Serializable

Scheduler

Serializable

NetGate

Serializable

BobGate

Serializable

JobAddToDB

Serializable

JobDelete

Serializable

JobCopy

Comparable

Serializable

Job

Serializable

JobController

SimulationControl

Serializable

Runnable

DataGate

Serializable

DbGate

Serializable

DbConn

Thread

Serializable

DataProxy

F
ig

u
re

3
.4

3
:
D

a
ta

M
a
n
a
g
er

cla
ss

d
ia

g
ra

m
ov

erv
iew

.

3.7. DATAMANAGER 83

Figure 3.44: Control class and database classes.

84 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Thread

Serializable

DataProxy

-rmiProxy:RMIInterface

-dataGate:DataGate

-netGate:NetGate

-ip:String

+DataProxy

+DataProxy

+run:void

+duplicateResource:ObjectDataResource

Comparable

Serializable

SearchItem

-jobId:int

+SearchItem

+compareTo:int

 id:int

 destinationURI:String

 sourceURL:String

 sourceURI:String

 sourceHash:String

 routeId:Route

 jobCost:float

 offerTimeLimit:long

 offerAvailability:long

Serializable

GassGate

-gridFtpHost:String

-gridFtpFolder:String

-gridFtpPort:int

-gridFtpUser:String

-gridFtpPasswd:String

-simMode:boolean

+GassGate

+copyFile:int

+deleteFile:int

SimulationControl

Serializable

Runnable

DataGate

Serializable

Scheduler

-maxAvailability:long

-startDelay:long

-compareDate:Date

myBobGate:NetGate.BobGate

+Scheduler

+createItem:SearchItem

+createItemList:LinkedList

-CreateId:int

 hostAddress:String

 localPath:String

 mxAvailability:long

 delay:long

Serializable

NetGate

rmiProxy:RMIInterface

-ip:String

-scheduler:Scheduler

+NetGate

+getRoute:Route

+reserveRoute:boolean

+reserveGrace:boolean

+cancelReservation:boolean

+receiveMessage:MessageEnvelope

+BobGate

Serializable

BobGate

-rmiProxy:RMIInterface

-ip:String

+BobGate

+BobGate

+getFreeSpace:long

+reverseFreeSpace:long

+receiveMessage:ObjectBobResource

Figure 3.45: Scheduler class and gate classes to other components.

3.7. DATAMANAGER 85

Serializable
JobAddToDB

-hash:String
-description:String
-author:String
-state:int
-url:String
-mark:int
-dateFrom:Date
-dateTo:Date
-filesize:long
-filedate:Date

+JobAddToDB
+gethash:String
+getdescription:String
+getauthor:String
+getstate:int
+geturl:String
+getmark:int
+getdateFrom:Date
+getdateTo:Date
+getfilesize:long
+getfiledate:Date

Serializable
JobDelete

-url:String

+JobDelete
+geturl:String

Serializable
JobCopy

-sourceURL:String
-destinationURL:String
-routeHandling:Route

+JobCopy
+getdestinationURL:String
+getsourceURL:String
+getrouteHandling:Route

Comparable
Serializable

Job

executionTime:Date
cost:float
id:long

+Job
+compareTo:int
+getexecutionTime:Date
+getcost:float
+getid:long

Serializable
JobController

-jobList:ArrayList
-myGate:DbGate

+JobController
+copy:long
+delete:long
+addToDB:long
+cancelJob:void
+listJobs:void
+getfirstJob:Job

SimulationControl
Serializable

Runnable
DataGate

Figure 3.46: Job classes.

3.7.3.2 Communication

Like described above the DataProxy acts as a server for other components and is waiting for clients like
Titan to send requests to the DataManager. There are several possible kinds of requests (see Figure 3.47):

• SEARCH - This request is send to find out if and where a specified file exists. Therefore the
method search() of the DataGate class is called. Then it questions the database to find out where
the specified file exists.

• GETOFFERS - Such a request is send to get an offer to transfer a specified file from a source
to a destination. To create an answer the method sCopy() of the DataGate class is called. It first
questions the database and then asks the scheduler to compute which file could be used most
efficiently (see Figure 3.48).

86 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Titan

Search

Copy

ReserveBound

GetOffers

ReserveGrace

ReserveCancel

Figure 3.47: Possible requests from Titan.

• COPY - Copies a file from a source to a destination. Therefore the method copy() of the DataGate
class is called. Then it directs the call to the GassGate to transfer the file.

• RESERVEGRACE - A grace reservation could be done after getting an offer and using the offer
id. The method reserveGrace() of the DataGate class is called. Then it tries to reserve everything
which is needed to transfer the file like the network route or the disk space needed to store the file
on the destination computer.

• RESERVEBOUND - A bound reservation could be carried out after a grace reservation using
the reservation id. To do so the method reserveBound() of the DataGate class is called. Then it
tries to reserve the needed parts of the Grid.

• RESERVECANCEL - A reservation could be cancelled using the reservation id. If a reservation
needs to be cancelled the involved components are informed to cancel a reservation.

• FREESPACE - This request is send to find out the free space of a given host at a specific time.
Therefore a time slot must be given. The lowest free space in this interval is the result.

While the DataProxy is running in server mode and listening for requests from other components, the
DataManager component also acts like a client of other components and uses their services to produce
answers for incoming requests. For example to produce an answer for a GETOFFERS request from Titan
it is necessary to ask the NetworkManager for a route between a source and a destination. In this case the
NetworkManager component is the server and answers the request from the DataManager component.
Therefore the NetGate class is used to send and receive messages to produce answers.

3.7.3.3 Database

The DataManager administrates a database in which the available files in the Grid are stored. To achieve
a better availability and scalability the database is based on MySQL. The database serves as a catalog in
which files are recorded. Search requests can send to the database which will return a result if a matching
file exists.

Database Binding

The connection between Java and the MySQL database is provided by the library ConnectJ. The com-
munication class DbConn realizes the most important part to establish a connection. Because of that the

3
.7

.
D

A
T
A

M
A

N
A

G
E

R
8
7

DataProxy

dataGate

DataGate

dbGate

DbGate

scheduler

Scheduler

searchCache

LinkedList

searchItemList

LinkedList

if(searchCache != null && !searchCache.isEmpty())

if(searchItemList == null)

1.4.2: addAll(searchCache):boolean

1.4.1.1: <constructor>()

1.3: isEmpty():boolean

1.2: searchCache:='createItem(ResultSet,String,long,long,float):Linke...

1.1: fileList:=search(hash):ResultSet

1: sCopy(String,String,long,long,boolean,float):LinkedList

F
ig

u
re

3
.4

8
:
S
eq

u
en

ce
D

ia
g
ra

m
:
S
ea

rch
a
n
d

co
p
y

a
fi
le.

88 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Database

ConnectJ

DbConn

methodes calls

driver

application

DbGate

SQL syntax

Java

Figure 3.49: Scheme of the database.

classes which need to get information from the database do not need to care about further connection
details. They just send a query to the database which then returns a result set that contains the answer
to the query.

To establish a connection to the database some parameters are necessary like a user name, a password,
the address and the name of the database. Then the ConnectJ driver can be loaded and a connection can
be established.

The main job of the DbConn class is to receive a SQL query and give the produced answer of the database
back to the calling component. This job is done by the execute() method of the DbConn class.

After using a connection, it must be closed by calling the close() method of the DbConn class.

Structure of the database

The key value of the database is the hash value which is the most significant part to identify a file in the
Grid. The hash value is unique. It is generated by a secure random generator.

In the following the structure of the database is shown.

• hash - unique value to identify a file in the Grid

• description - contains additional information about the file

• author - the provider of the file

• state - gives information about the availability of the file

• cost - contains the price to work on a file

• URL - the resource locator of the file

• mark - if the bit is set, there is a job working on this file

• dateFrom - tells from which time the file will be available

3.7. DATAMANAGER 89

• dateTo - the time until the file will be available

• filesize - contains the size of the file.

• filedate - the date the file was constructed

All important information and attributes of the registered files are readable from the database.

Using the database through DbGate

The class DbGate is implemented to make it easier to use the database connection and to separate the
rest of the program from the SQL syntax. Every DbGate has its own connection to the database, which
should increase performance when distributed databases are used. To initialize a DbGate it is necessary
to set all parameters of a connection like user name, password, address, database name and table name.

The DbGate offers to add files to the database catalog with all required attributes. The required infor-
mation is listed in the database structure. The class also offers the possibility to search for files in the
database. Therefore it is necessary to pass a string to the search() method. The given string is then
compared with the hash value, the description, the author and the URL. If matching records in the
database could be found, a result set is given back.

On top of adding files to the database, files can also be removed from it. To execute a delete operation
the URL of the file must be given.

As mentioned before the mark entry describes the availability of a file. The method modifyMarkEntry()

can be used to modify the state of the mark bit which is set, when a planned job needs this file. When
the job is executed the mark bit is reset.

3.7.3.4 Administration of jobs

The jobs the DataManager component is executing are jobs which are concerned with copying, deleting
and adding files to the Grid. A job does not need to be executed immediately. A job contains an execution
time and when this time is reached a job gets executed which is checked by the DataGate like described
above.

The JobController class is responsible for managing the jobs. After a job is constructed it will be placed
in a job queue which is controlled by this entity. Then it is possible to reorganize the jobs when a job got
cancelled. The JobController also sorts the waiting jobs regarding the execution time.

Every JobController has its own gate to the database. This structure is used because of general database
implementation schemes like described in the section before.

Jobs

There are three different kinds of jobs which are used (see also figure 3.46).

• JobCopy - Contains the information to copy a file

• JobDelete - Contains the information to delete a file from the grid

• JobAddtoDb - Such a job is executed to add a file which should be copied to the database, so that
database also contains the new destination where the file will exist after the file transfer

All three kinds of jobs extend Job. The general job has an id, an execution date and costs for attributes.
By initializing a new job the id is set automatically. The id is also the return value when creating a job.
The Job implements the interface comparable. So jobs can be sorted in the order of execution.

90 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

JobController

Job

id
cost
executionTime

List of
waiting Jobs

.

.

.

DbGate

DbConn

copy
delete
add

cancel
list

Figure 3.50: Scheme of the job controller.

JobCopy

To copy a file information like the source, the destination and a network route is required. This parameters
must be given to create a copy job.

If a new copy job is created some actions need to be done to make further operations efficient. First the
source file must be marked because it is not allowed to delete the file before the job is executed. Second it
is necessary to add the destination file - even if physically not yet present - to the database. The dateFrom
field is set to the execution time of this job. So the scheduler knows with the help of the database that
there will be a copy of a file at the given time in the future. Before a CopyJob is accepted the free space
of the destination host is checked. If there is not enough space, the job is refused.

When cancelling a copy job, the source file must be unmarked, and the destination file must be deleted
from the database.

JobDelete

To delete a file it is just necessary to specify the URL of the file. The file will be marked and the dateTo
field is set to the execution time of this job.

In case of cancelling this deletion job, this file will be unmarked and the dateTo field is set to null.

JobAddToDb

To add a file to the database a JobAddToDb is required. All parameters as described in the structure of
the database are necessary. At the given time the file will be available in the grid.

3.7. DATAMANAGER 91

When such a job is cancelled, only the job object will be removed.

3.7.3.5 Scheduling

The scheduler is activated by the MainLoop each time it is working on a GETOFFERS request.There
are two ways of scheduling: scheduling with external and scheduling with internal files. In both cases the
scheduler gets fixed defaults like how long the file will be needed, when the transfer must be completed,
the maximum amount which the transfer is allowed to cost and the time from which on the file be avail-
able. The availability is especially important if the result of one job is the basis for the next job.

Scheduling with an internal file

If a file on the internal host is required for a job, the MainLoop starts the schedule method CreateItemList().
For this list a result set of the MySQL database is required which contains all potential copies of the
needed file. Potential means that it is possible that the result set contains files which are not physically
existing yet, but are planned to be copied to that destination. The result set is provided by the MainLoop.

First the scheduler checks the defaults, e.g. if enough storage capacity on the destination host is available
and how long. After this the scheduler checks the result set and picks out all files who can’t fulfill the
defaults because they don’t have enough capacity or are too expensive. The remaining files will be checked
to find the quickest and cheapest available transportation route.

For all bundles of a file and route which fulfill the defaults a SearchItem will be created. The SearchItem
is used as a container for all required information considering reservation and copying.

All SearchItems will then be sorted regarding their costs and will then given back to the MainLoop in
a list.

Scheduling with an external file

If a certain file of an external host should be copied for a job the MainLoop uses the scheduling method
createItem()(see also Figure 3.51). The scheduler gets the common defaults and apart from that spe-
cial information about the file like the name, availability, address and maximum size. If the file is the
result of a job which is not finished yet its size is not known then of course. In those cases it is neces-
sary to work with assessed (maximum) values. The further course is exactly the same as in the method
createItemList(). As a result this method gives a single SearchItem.

The SearchItem container

For the reservation of all needed components and resources different information are required. They are
gathered in the SearchItem class (see Figure 3.45). For sorting all SearchItems of a list the method
compareTo is used which sorts the SearchItems by cost.

The SearchItem container contains the following information:

• jobId unique id for all SearchItems for a request

• jobCost whole costs for all needed resources

• sourceURI full address of the source file

• destinationURI full address of the destination file

• sourceHash unique string used for file-identification

• routeId needed for the reservation of the transfer route

• offerAvailability end-time for the validity of the bundle-information

9
2

C
H

A
P

T
E

R
3
.

D
E

S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A
T

IO
N

O
F

G
R

ID
S
C

H
E

D
Scheduler

Scheduler

compareDate

Date

static

DataGate

myBobGate

BobGate

myNetGate

NetGate

route

Route

answer

SearchItem

DataGate

if(copyFinish < compareDate.getTime() + this.startDelay)

for(long i = 300;route == null & i < maxTime & needetBand > 1000;i *= 2)

if(route != null)

1: createItem(String,long,long,long,long,float):SearchItem

1.6.3: <constructor>(queryId, sourceUri, "", destinationUri, route, ro...

1.6.2: getCost():float

1.6.1: queryId:=CreateId():int

1.5.1: route:=getRoute(srcHost, this.hostAddress, startTime, startTi...

1.4: getFreeSpace(this.hostAddress, fileSize, copyFinish + useDurat...

1.3: getTime():long

1.2.1: getCurrentTimeMillis():long

1.1: getTime():long

F
ig

u
re

3
.5

1
:
S
eq

u
en

ce
D

ia
g
ra

m
:
S
ch

ed
u
ler.crea

teItem
().

3.7. DATAMANAGER 93

Classes

The following classes are needed for the scheduling-process:

• org.gridsched.dataManager.Scheduler Creates a list of job bundles each with file and route
for a request. The primitive algorithm works on a small number of files. Many files can urge a very
long runtime.

• org.gridsched.dataManager.SearchItem Container class for a job bundle with file and route
for a request.

3.7.3.6 File transfer

At the moment GassGate uses simple FTP to transfer a file. You need a FTP-Server for copying the files.
Locally GassGate uses a simple FTP-Client.

The aim is using tools based on the Globus toolkit 3, for example GridFTP [21, 20] or GASS (Global
Access to Secondary Storage) [10]. Both GridFTP and GASS use the GSI (Grid Security Infrastructure)
for authentication and secure data transfer. Thus, you will need to acquire the GSI credentials before you
can transfer any data.

Copy a file

The method copyFile() needs the address of the source file, the address of the destination file and a
route for the transfer. At the moment the route will be ignored.

Delete a file

You can only delete a local file. The GassGate method deleteFile() needs the address (URL) of the
file. It uses the class ,,java.io.File”.

Classes

The following classes are needed for the file transfer:

• org.gridsched.dataManager.GassGate Interface to Globus Gass service. It copies or deletes
files.

• org.gridsched.util.ftp.FtpClient Simple implementation of a FTP-Client.

3.7.4 Summary

There are some features which could be added to the DataManager, but these are only things, that are
not really necessary.

• General There is no automatic replica service included jet. This service could start transfers by
itself to distribute the files in the Grid.

• Database The database could be improved by using a distributed database to make queries more
efficient and to assure a good availability of the database.

• File transfer A change to GridFTP or GASS with certificates would offer different new possibilities
like partial file transfer or different transfer options for different users. But it is decided against the
Globus Tool Kit and so this feature is also gone.

94 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

3.8 Network Management

The grid consists of computing machines connected via a network. It could also be seen as a graph
consisting of nodes and edges, whereby the nodes represent the machines that offer resources like data or
storage and the edges represent the connections between them.

The network is just another resource in the grid, offering a means of communication and transportation.
Therefore it is obvious that a management component for this resource is in need.

The NetworkManager in GridSched is the central component concerning network management including
the reservation of certain network routes and offering certain network routes with regards to attributes
like bandwidth or costs.

3.8.1 Motivation

Concerning grid scheduling, different requirements occur to the system. It may be necessary for a calcu-
lation job, to transfer great amount of data from one place to another respecting strict time constraints,
so that the job can be calculated on time. It may also be necessary to support a minimum promised
bandwidth for telephone and video conferences. So problems concerning data management always in-
volve problems concerning network management. It is not only sufficient to know what data is located at
a specific node at a special time, but to be able to transport this data to another location in a specific
amount of time. Looking at the grid, it consists of nodes which represent different locations within the
grid. These locations are computers which have a unique address. To copy data from one place to another,
it is necessary to know the structure of the grid and the states of single attributes like bandwidth, latency,
throughput and so on.

To transport data from one place to another it is necessary to reserve a route through the grid and
to be able to make sure that special attributes of the route can be assured. Therefore it is ideally optimal
to know every single component of the network and to be able to report the state of every single attribute
at a special time. So the scheduler can always find and reserve the ”optimal” route within the grid. It
is therefore necessary to maintain a monitoring and reserving mechanism. The global grid is a structure
that is not limited by state or enterprise borders. It is composed of many nodes in different sub-nets that
belong to different owners. Necessarily it must be possible to calculate costs for reserving and offering
routes. So a cost component is necessary. All previously mentioned functions find themselves implemented
in the NetworkManager.

3.8.2 Requirements

The main duty of GridSched’s NetworkManager is to provide a network connection to move data from
one node of a network to another. This particular network connection may be requested by GridSched’s
DataManager or directly by the scheduler. Both nodes, the starting and the ending node, of a network
connection may be assigned to different network domains.

Network connections are often needed for a special period of time which may be nested in a specified time
interval. Moreover, a requested network connection has to fit to some quality aspects, i.e. bandwidth and
latency which are also known as Quality of Service (QoS). In order to achieve certain levels of QoS, it is
necessary to reserve a specific network route which represents the requested network connection. With
this step, it is prevented that other requests for a network route may cause conflicts which compromise
the requested QoS of a reserved route. The fact, that some network connections cannot be reserved, is
also regarded in NetworkManager´s approach.

Another critical aspect of network route reservation is its monetary price. The usage of a reserved net-
work route causes certain costs to its owner or provider which are billed to its user. Therefore, costs of
connectivity of all participated nodes must be stored in a central database of GridSched’s service.

3.8. NETWORK MANAGEMENT 95

3.8.3 New Idea / Major Changes to previous idea

In the new approach to the solution of our problems, it was generally abstracted from the technical
mechanisms of reservation and focused on the administration of the reservations . Therefore, GARA has
vanished from the management of our network. In fact, we have never been able to test our environment
with using GARA. Several computers would be needed to construct a testbed that is capable of outputting
relevant information and results.
Several internal discussions and one discussion with the inventor of GARA made us think about our way
of using NWS as well. Until then, NWS has been used as a forecast service for determining the bandwidth
of routes at a given time.
In the new approach the network grid built of two graphs, a local and a global graph, was considered(see
Figure 3.52).

3.8.3.1 Global Graph

The global graph represents the network considering network domains. These domains can be seen as
a heap of network nodes geographically close to one another. E.g. the computers of the university of
Dortmund represent such a domain. Every domain is represented by one NetworkManager, the network
component of GridSched. That means for every one domain, a NetworkManager has to be installed and
run. Every single domain is represented by a node in the global graph, and an edge in the global graph
represents a direct connection between such two domains.

This graph will obviously be highly fragmented, because a direct connection between every two Network-
Managers is highly unlikely.
But it could also be possible to add edges to the graph that do not represent a direct connection. With the
help of a metering tool it could be possible to determine e. g. bandwidth and other important attributes
regarding the connection between two nodes. So it could be assumed what the connection does look like
and an edge could be added to the global graph representing this connection.

3.8.3.2 Local Graph

If the global graph is built of nodes which represent network domains, the local graph is built of nodes that
stand for the machines within the domains. Taking the former example, the local graph would represent
the machines within the university of Dortmund.

The local graph represents a network considering real existing nodes in between a NetworkManager’s
domain. Because all participating nodes are under the control of one Administrator and very near to each
other, the resulting graph should not contain isolated nodes.

3.8.3.3 Reservation

As mentioned before, our new approach to solve the problem regarding reservation abstracted from the
technical reservation itself. To be able to reserve network connections using GARA, you have to own or
at least know every node on the route you are trying to reserve and on every node a special service has
to be installed and run. That makes it very hard to reserve routes between NetworkManagers, because
it is highly unlikely that a direct connection exists. Most of the routing will touch unknown territory.
That and the problem, that a mechanism to send the data over the former reserved route would be
needed(some kind of routing protocol), induced the decision to remove GARA from the former approach
and take one step back.
Now Reservation is being made by using an universal reservation component that is capable of reserving
network routes considering former reservations regarding attributes of those reservations such as band-
width and timeslots. So reservation is being taken into consideration, the reservation of real machines
could not be accomplished.

96 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Grid

Global

Graph

Local

Graph

Domain

A

Domain

B

Figure 3.52: Global and Local Graph.

3.8.3.4 Forecast

When the scheduler or DataManager in GridSched needs network connections for transferring data from
one place to another, it places a request to the NetworkManager. The request contains information about
the quality parameter of the needed connection (e. g. bandwidth) and the timeslot(s) that refer to the
start- and endtime the connection is needed.

If the NetworkManager has to be capable of presenting valid and precise offers, it has to be aware
of the state the network will be in at the time the connection is needed. To be able to make such pre-
dictions, a forecast service must be at hand that meters the routes that will be offered every time of the
day continuously. Such a service also has to be aware of other reservations that are being made in the
network. E. g., if a route with a given bandwidth of 100 Mbit/s has been reserved at 18:00 hours with a
bandwidth of 60 Mbit/s and a NetworkManager, not aware of that, offers this route at 18:00 hours with
a given band- width of 70 Mbit/s, the parameters for one or both of the reservations cannot stand.
So, to implement a forecast service, the reservations being made in the network have to be saved. It is
also necessary to meter any routes to be able to predict situations for making precise offers. The first
point could be implemented very easily, but to implement the second point in a well-formed manner,
every route in the network that is managed has to be known. The state of the network must be known at
every time. This cannot be done easily if the network that is managed is as big as the one GridSched is
working on. First, not every route that exists is known. You may be able to manage small networks like

3.8. NETWORK MANAGEMENT 97

the ones the former mentioned local graphs refer to. But taking a network our former mentioned global
graph consists of, only a few direct connections exist between two domains that are well known and thus
can be managed. The number of unknown connections is extremely high and therefore unmanageable for
neither a reservation nor forecast service. Even if an edge is added to the global graph that stands for
the network between the two existing nodes, the state of this network can not be predicted precisely ,
because the route metered before has not to be taken the next time this network is metered.
These problems lead to the decision to rather work on other problems concerning the network component
than solve this problem. Therefore a forecast service does not exist in GridSched’s NetworkManager.

3.8.4 Implementation

The NetworkManager’s implementation is being divided into 3 packages: main, visibleGraph and graph.
The main package provides the main functionality of NetworkManager. The central class is the NetGate

class that responds to all requests that are coming from other components. The constructor reads a
properties-file called ”nmConf.xml” that contains information about where to find the local graph and
the LDAP server. Using the main method within NetGate, all necessary components relevant to the
NetworkManager are started properly. As the central interface to the ”outside world” NetGate contains
the following methods:

• getOffer()

• reserveGrace()

• reserveBind()

The NetProxy class deals with incoming requests using RMI as the means of communication from the Net-
workManager to other components. It can be used by a given set of requests: ”getOffer”, ”reserveGrace”
and ”reserveBind”.

If a request deals with several NetworkManagers, not only with the one getting the request, the NetToNetProxy
class splits the request into pieces that concern the other NetworkManagers and sends new requests to
them, so that an offer or reservation can be generated properly. These newly generated requests are called
”getInternalOffer” and correspond with the Reservation Manager from the domain the request is sent
to. The Reservation Manager calls the method ”findPath” from its LocalGraph class that returns a route
through the local domain.
The Route class is still the class that represents a network route concerning the main attributes band-
width and start- and endpoint.
The LDAPObject and LdapGate classes are used to publish network resources using the LDAP protocol.
The global graph structure is such a resource that is published. If an offer or reservation is made by a
NetworkManager, the global graph structure is loaded from LDAP to get the most actual form of it. Any
changes regarding this structure can be loaded back to LDAP. The graph structure (local and global) are
implemented using the graph package.
The last package used in the NetworkManager is visibleGraph and realizes an administration interface
for the user.

3.8.5 GUI

To simplify administrative work, a graphical user interface for the NetworkManager was implemented.
This GUI should enable the administrator of the managed domain both to view and edit the structure
of the domain. Additionally the reservations for all network links can be viewed.

All features of the GUI will be explained briefly subsequently.

9
8

C
H

A
P

T
E

R
3
.

D
E

S
IG

N
A

N
D

IM
P

L
E

M
E

N
T
A
T

IO
N

O
F

G
R

ID
S
C

H
E

D

LocalGraph

LocalGraph

LocalGraph

LocalGraph

scheduler/DataManager

ReservationManager

ReservationManager

NetToNetProxy

NetToNetProxy

NetGate

NetGate

GlobalGraph

GlobalGraph

ReservationManager

ReservationManager

1.1.1.1:*[for every NetManager] getOffer(LinkedList):LinkedList

1.1: create

1.2: getOffer(Route):Route

1.1.1.1.1: getInternalOffer(Route):Route

1.1.3: findPath(String,String,long,long,long,long):LinkedList

1.2.1: findGlobalPath(String,String,long):LinkedList

1.1.2: create

1.1.1: create

1.1.1.1.1.1: findPath(String,String,long,long,long,long):LinkedList

1: Route:=getOffer(Route):Route //getOffer

F
ig

u
re

3
.5

3
:
E

x
a
m

p
le

g
etO

ff
er().

3.8. NETWORK MANAGEMENT 99

Figure 3.54: GUI of the NetworkManager.

3.8.5.1 Using the GUI

For a better understanding of the following explanations, please have a look at Figure 3.54. The GUI
is divided into two parts by a split pane. The right part of the pane shows a graphical representation
of the loaded local graph or the reservations of the network links. The user can choose between these
possibilities by pressing the corresponding tab. The left part contains sub-panes which enable the user to
edit the graph or choose a network link whose reservations should be shown in the right pane. Starting
the GUI a graphical representation of the local graph specified in the properties file is presented.

The graph just displays all network nodes and the links between them. To add a new node to the
graph the user just has to enter the URI of the new node and finish the action by pressing the button
labeled ”add”, the node will appear right away in the graph. To delete a Node the correspondent node
must be selected by means of the combo box inside the pane ”delete node”. After confirming the selection
by pressing the button ”delete” the node and all adjunctive edges will be deleted.
To add an edge, the user just has to select the nodes the edge should connect and enter the bandwidth

of the edge. After pressing the ”add” button, the changes will appear right away. Of course the entered
bandwidth should be not greater than the actual bandwidth of the network link as it represents the
reservable amount of bandwidth of the link. The user must take care of this herself as the GUI can not
validate this.

Furthermore the edge must connect two different node, otherwise a warning would appear and the edge
would not be created. To edit an edge respectively its bandwidth, the edge should be selected by means
of the corresponding combo box inside the pane ”edit edge” and a new value for its bandwidth can be

100 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Figure 3.55: Menu of the GUI.

entered. To confirm the changes, the button labeled with ”save” must be pressed.

Again the user should not increase the bandwidth to an amount greater than the actual available band-
width of the link. She can reduce the amount of bandwidth only if the new value does not affect reser-
vations already made for this link. Otherwise a warning will appear and the changes will not be taken over.

To delete an edge, the edge just has to be selected by means of the combo box inside the panel la-
beled ”delete edge”. Of course this selection has to be confirmed.
All changes to the graph appear right away in the graphical representation and also affect the running

system. But to make the changes persistent, the graph has to be saved.

To save the graph the user must select ”save local graph” from the menu ”local graph”, see Figure
3.55. Then she can specify a location to store the graph in. It should be kept in mind that the saved
graph will be only loaded at the next start of the NetworkManager if it is stored in the location specified
in the configuration file or if the configuration file is changed. Using this menu the user can also create a
new, empty local graph or load an another existing local graph.

A new graph has to be created only when constructing a new domain. Loading an existing graph is
mainly needed for testing purpose.

As said before besides editing the local graph the user can also use the GUI to view the reservations
for every network link of the managed domain. To do so she has to select ”local reservations” in the right
tabbed pane. Then an edge should be selected by means of the combo box inside the pane labeled ”view

3.8. NETWORK MANAGEMENT 101

Figure 3.56: Reservations of a specified network link.

reservations”. Then all reservations for the selected edge can be seen in the right pane, see Figure 3.56.

3.8.6 Unsolved Problems

There are two problems that could not be solved because of the lack of time:

• we were not able to add the NetworkManager to GridSched’s simulation on time

• as mentioned before, we were also not able to realize a forecast service, because of the problems
connected to it

102 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

test

+TestReservationManager

+ReservationManagerTest

+TestNetGateCommunication

+TestComWithDM

+TestLdapGate

+TestNetGate

+tester

+TestTimeslotM

Serializable

NetToNetProxy

-netToNetProxy:NetToNetProxy

-rmiProxy:RMIInterface

-ip:String

-naming:String

-reservationManager:ReservationManager

-log:Logger

+NetToNetProxy

+getOffer:LinkedList

+reserveGrace:Route

+reserveBind:Route

+reserveBind:Route

+cancelReservation:void

Serializable

ReservationManager

-rmiProxy:RMIInterface

-jndiProxy:JNDIProxy

-netGate:NetGate

-localIp:String

-reservations:Hashtable

-localGraph:LocalGraph

-remoteAddress:String

-port:int

-globalGraph:GlobalGraph

-netToNetProxy:NetToNetProxy

-ip:String

-naming:String

-log:Logger

+ReservationManager

+ReservationManager

+getGlobalGraphFromLdap:GlobalGraph

+getOffer:Route

+getInternalOffer:Route

+reserveGrace:Route

+reserveGraceInternal:Route

+reserveBind:Route

+reserveBindInternal:Route

+cancelreservation:void

+cancelreservationInternal:void

-generateOffer:Route

-getUriCollectionFromGlobalPath:List

+addReservation:void

+getReservation:LinkedList

+getLog:Logger

+getGlobalGraph:GlobalGraph

+getIp:String

+getJndiProxy:JNDIProxy

+getLocalGraph:LocalGraph

+getLocalIp:String

+getNaming:String

+getNetGate:NetGate

+getNetToNetProxy:NetToNetProxy

+getPort:int

+getRemoteAddress:String

+getReservations:Hashtable

+getRmiProxy:RMIInterface

+setGlobalGraph:void

+setIp:void

+setJndiProxy:void

+setLocalGraph:void

+setLocalIp:void

+setNaming:void

+setNetGate:void

+setNetToNetProxy:void

+setPort:void

+setRemoteAddress:void

+setReservations:void

+setRmiProxy:void

ProxyQuery

-startAddress:String

-endAddress:String

-startTime:long

-endTime:long

-duration:long

-neededBandwidth:long

-maxCost:float

-ip:String

-naming:String

+ProxyQuery

+getDuration:long

+getEndAddress:String

+getEndTime:long

+getIp:String

+getMaxCost:float

+getNaming:String

+getNeededBandwidth:long

+getStartAddress:String

+getStartTime:long

+setDuration:void

+setEndAddress:void

+setEndTime:void

+setIp:void

+setMaxCost:void

+setNaming:void

+setNeededBandwidth:void

+setStartAddress:void

+setStartTime:void

java.lang.Exception

NetGateException

+NetGateException

Exception

NetProxyException

+NetProxyException

AvatarControl

Serializable

<<control>>

NetGate

-log:Logger

-rmiNetProxy:RMIInterface

-rmiNetToNetProxy:RMIInterface

-netToNetProxy:NetToNetProxy

-netProxy:NetProxy

-localGraph:LocalGraph

-reservationManager:ReservationManager

-runningFlag:boolean

-safeState:boolean

-simulated:boolean

-simNetProxy:SimulationProxy

-simNetToNetProxy:SimulationProxy

-pathToLocalGraph:String

-ldapAddress:String

-ldapPort:int

-ip:String

-naming:String

-shouldStop:boolean

-runningComponents:int

-isStopped:boolean

+NetGate

+NetGate

+NetGate

+main:void

+startNetProxy:void

+setLocalGraph:void

+getLocalGraph:LocalGraph

+getRunningFlag:boolean

+getState:void

+setState:void

+getOffer:Route

+getInternalOffer:Route

+reserveGrace:Route

+reserveGraceInternal:Route

+reserveBind:Route

+reserveBindInternal:Route

+cancelReservation:void

+cancelReservationInternal:void

+getPathToLocalGraph:String

+setPathToLocalGraph:void

+start:void

+stop:void

-configureSettings:void

+shouldStop:boolean

+iStarted:void

+iStopped:void

+setShouldStop:void

+isSimulated:boolean

+isSafeState:boolean

+setSimulated:void

+setRunningFlag:void

+setSafeState:void

+getIp:String

+setIp:void

+getLog:Logger

+getRunningComponents:int

+getSimNetProxy:SimulationProxy

+getSimNetToNetProxy:SimulationProxy

+isStopped:boolean

+getLdapAddress:String

+getLdapPort:int

+getNaming:String

+getNetProxy:NetProxy

+getNetToNetProxy:NetToNetProxy

+getReservationManager:ReservationManager

+getRmiNetProxy:RMIInterface

+getRmiNetToNetProxy:RMIInterface

+setRunningComponents:void

+setSimNetProxy:void

+setSimNetToNetProxy:void

+setStopped:void

+setLdapAddress:void

+setLdapPort:void

+setNaming:void

+setNetProxy:void

+setNetToNetProxy:void

+setReservationManager:void

+setRmiNetProxy:void

+setRmiNetToNetProxy:void

visibleGraph

+VisibleEdge

+EdgeComparator

+ButtonActionListener

+SelectionListener

+VisibleGraphCreation

+VisibleGraph

+VisibleGraphPanel

+NetManagerFrame

+VisibleGraphFrame

+MenuActionListener

+NodeComparator

+ViewReservationsListener

+EditEdgeListener

+BorderPanel

+VisibleNode

graph

test

+GlobalPath

+Edge

+LocalNode

+LocalEdge

+Node

+GlobalGraph

+LocalPath

+GlobalEdge

+GlobalNode

+PathNotFoundException

+LocalGraph

+Path

+Graph

Serializable

Route

-startAddress:String

-endAddress:String

-handle:String

-bandwidth:int

-latency:int

-cost:float

-startIntervall:long

-endIntervall:long

-duration:long

-startTime:long

-reservable:boolean

-status:String

-objectiveFunction:ObjectiveFunction

-hopList:String[]

+Route

+Route

+getStartAddress:String

+setEndAddress:void

+setStartAddress:void

+getEndAddress:String

+getHandle:String

+setHandle:void

+getBandwidth:int

+setBandwidth:void

+getLatency:int

+setLatency:void

+getCost:float

+setCost:void

+getStartIntervall:long

+setStartIntervall:void

+getEndIntervall:long

+setEndIntervall:void

+getDuration:long

+setDuration:void

+getStartTime:long

+setStartTime:void

+getStatus:String

+setStatus:void

+getReservable:boolean

+setReservable:void

+getHopList:String[]

+setHopList:void

+getObjectiveFunction:ObjectiveFunction

+setObjectiveFunction:void

+clone:Object

Thread

Serializable

NetProxy

-rmiProxy:RMIInterface

-log:Logger

-netProxy:NetProxy

-inquiryRoute:ObjectNetResource

-offerRoute:ObjectNetResource

-route:Route

-netGate:NetGate

-localAddress:String

-ip:String

-naming:String

+NetProxy

+NetProxy

+getInstance:NetProxy

+resolveAddress:String

+run:void

Serializable

LDAPObject

uri:String

bandwidth:int

latency:int

costPerMbitPerMinute:float

garaManagerContact:String

startIpAddressRoom:String

endIpAddressRoom:String

-graph:String

+LDAPObject

+LDAPObject

+getCostPerMbitPerMinute:double

+getEndIpAddressRoom:String

+getGaraManagerContact:String

+getLatency:int

+getStartIpAddressRoom:String

+setCostPerMbitPerMinute:void

+setEndIpAddressRoom:void

+setGaraManagerContact:void

+setLatency:void

+setStartIpAddressRoom:void

+getBandwidth:int

+getUri:String

+setBandwidth:void

+setUri:void

+setGraph:void

+getGraph:String

FileGate

-ipToManager:Hashtable

-managerToCost:Hashtable

-table:Hashtable

-costTable:Hashtable

+getCost:float

+getManagerContact:String

+setManagerContact:void

+managerContactEqual:boolean

+getBandwidth:int

+getLatency:int

+publishNetResource:void

interface

DbGate

+getCost:float

+getBandwidth:int

+getLatency:int

+getManagerContact:String

+setManagerContact:void

+managerContactEqual:boolean

neLdapGate

-jndiProxy:JNDIProxy

-searchResults:NamingEnumeration

-returnContact:String

-ldapObject:LDAPObject

+getJndiProxy:JNDIProxy

+getCost:float

+getManagerContact:String

-getMatchingResource:LDAPObject

+setManagerContact:void

+managerContactEqual:boolean

+getBandwidth:int

+getLatency:int

Figure 3.57: Class Diagram NetworkManager.

3.9. POLICY 103

3.9 Policy

In a distributed, heterogeneous environment like a Computational Grid, powerful means for user authen-
tication and authorization are essential. Participants have to protect their systems from unauthorized
access and want to remain in control of the resources they offer to the Grid. The software must provide
appropriate functionality which has to be easy, understandable and robust . A complex system is likely
to raise doubt and concern about whether the configuration was really done correctly.
A software that fails to meet the requirements mentioned above will be rejected by the market.

3.9.1 Requirements

In practice, different users request access to resources.
The owner of the resources now deploys a policy that contains the following elements:
Users that identify certain users, groups that help to state rules for more than one user simultaneously,
and resources that reflect the hard- and software the owner offers on the Grid. Apart from that, there
are permissions, that state what is allowed. The rules that define the permissions for a user and a
certain resource are called policy.

3.9.2 Idea

It is necessary to be able to use wild cards and give rules a well defined order of precedence to meet the
requirements defined above. This is achieved by implementing the policy as a tree. Nodes are labelled
with (user, group, resource) and represent a permission.

When handed (user, group, resource) and being questioned for the corresponding permission, the tree is
traversed until a node has no successors that also fit the (user, group, resource). From the root of the tree
towards the leafs the labels of the nodes become more specific. The root of the tree therefore is labelled
(See Figure 3.58), thus matching any user in any group for any resource.

3.9.3 Implementation

The implementation mainly uses two classes: Policy and PolicyManager. The class PolicyManager uses
an inner class called ”entry” which wraps Policy-objects into tree nodes, thus enabling the PolicyManager-
class to build a tree as described above.
PolicyManager returns the Policy(the applying rule) for a supplied (user, group, resource). This Policy
can be questioned for the permission.
The reason for the PolicyManager not to return the permission directly is extensibility. The class Policy
is likely to be augmented by new functions, providing more functionality to the user. The PolicyManager-
class is completely independent from them.

3.10 Deployment of GridSched’s Components

In this section the allocation of GridSched’s components respectively its services to machines within
the managed Grid environment is described fundamentally. Additionally an overview of all GridSched’s
communication interfaces and protocols is given. The GridSched’s concept regarding Grid domains is
explained as well.

A Grid domain is a domain in a Grid environment. It represents a bounded network address space.
When GridSched is running in a Grid domain it is called a managed Grid domain. A member of a
domain is capable to address all other members within the same Grid domain. A domain can contain
sub-domains to organize members in logical or spatial sections.

104 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

G
ro

up
=*

U

se
r=

*
R

es
ou

rc
e=

*
pe

rm
=d

en
y

G
ro

up
=A

U

se
r=

*
R

es
ou

rc
e=

*
pe

rm
=a

llo
w

G
ro

up
=B

U

se
r=

*
R

es
ou

rc
e=

*
pe

rm
=a

llo
w

G
ro

up
=C

U

se
r=

*
R

es
ou

rc
e=

*
pe

rm
=a

llo
w

G
ro

up
=D

U

se
r=

*
R

es
ou

rc
e=

*
pe

rm
=d

en
y

G
ro

up
=A

U

se
r=

a
R

es
ou

rc
e=

*
pe

rm
=d

en
y

G
ro

up
=A

U

se
r=

b
R

es
ou

rc
e=

*
pe

rm
=a

llo
w

G
ro

up
=C

U

se
r=

c
R

es
ou

rc
e=

*
pe

rm
=a

llo
w

G
ro

up
=C

U

se
r=

c
R

es
ou

rc
e=

y
pe

rm
=a

llo
w

G
ro

up
=A

U

se
r=

b
R

es
ou

rc
e=

x
pe

rm
=a

llo
w

G
ro

up
=A

U

se
r=

b
R

es
ou

rc
e=

y
pe

rm
=d

en
y

G
ro

up
=C

U

se
r=

c
R

es
ou

rc
e=

x
pe

rm
=d

en
y

G
ro

up
=C

U

se
r=

c
R

es
ou

rc
e=

z
pe

rm
=a

llo
w

Figure 3.58: The tree-structure of the policy.

It is supposed that a carrier running GridSched is a resource provider and an owner or carrier of a
Grid domain. The range of GridSched’s control is fully decided by its carrier. She is free to install a Local
Scheduler on certain or all domain’s machines to offer their resources within the managed domain.

In GridSched components are differentiated by existence as one or many instances. In a Grid domain
managed by GridSched there exists only one instance of the directory service, PolicyManager, Commu-
nication component and the ClientGUI. Bob, Titan, DataManager, NetworkManager and ServerGUI are
all GridSched’s services with more than one instance existing in a managed Grid domain.

An instance of Bob, GridSched’s Local Scheduler represents all other Bob’s running in a single sub-
domain of the managed Grid domain.

A single instance of GridSched’s Super Scheduler is able to be addressed by members of more than
one managed sub-domain. Moreover there are several instances allowed to exist within a single managed

3.11. SUMMARY OF GRIDSCHED’S ARCHITECTURAL FEATURES 105

domain. So it is possible that a single Bob may be addressed by more than one Super Scheduler.

Different kinds of GridSched’s services and components are able to run on a single machine in any
combination. On the other hand each existing GridSched service may be deployed on its own machine.

To describe the communication between GridSched’s components different protocols and methods may
be distinguished.

Most of GridSched’s components use the communication method provided by GridSched’s communi-
cation component using a specific data structure mentioned before and RMI communication methods.
The communication links between the involved components are lined up as pairs representing all possible
combinations of existing component instances within a managed Grid:

• Local Scheduler (Bob) and Super Scheduler (Titan),

• DataManager and NetworkManager,

• Local Scheduler (Bob) and DataManager.

Some GridSched services use unique RMI-based communication models because other kinds of data
structures are needed to be transferred. This is related to the following combinations of GridSched
components:

• ClientGUI and Titan,

• ServerGUI and Bob,

• ServerGUI and Titan,

• ServerGUI and DataManager,

• ServerGUI and NetworkManager.

A third communication method used in GridSched is represented by the LDAP protocol. It is used by
Bob and Titan to access the directory service running in a managed Grid.

3.11 Summary of GridSched’s Architectural Features

GridSched is designed to be a middleware solution bringing together the providers and users of Grid
resources and providing Grid Scheduling functionality.

All of the system’s parts are designed as unique components with specific tasks. Combined with well-
defined interfaces it is possible to set up a running GridSched system using different combinations of it’s
components. Moreover it is possible to swap GridSched’s components by other component implementa-
tions to fit GridSched to special needs of it’s carriers.

The concept of distributed scheduling is realized by GridSched’s DataManager, NetworkManager, Lo-
cal Scheduler (Bob) and Super Scheduler (Titan). Bob and Titan exchange reservation data by using
GridSched’s communication component. Titan is designed to use exchangeable scheduling strategies us-
ing different heuristic scheduling algorithms implemented in Titan’s sub-components.

All information on resources available to the scheduling components are stored in a centralized database
called directory service. Its access is realized by LDAP.

GridSched’s DataManager uses a SQL-based database to manage data files available and used in a
managed Grid domain and their properties. DataManager provides interfaces to Titan and GridSched’s
NetworkManager to enable scheduling of data resources.

106 CHAPTER 3. DESIGN AND IMPLEMENTATION OF GRIDSCHED

Like Bob GridSched’s NetworkManager works above local hardware schedulers which are realizing reserva-
tions in Grid’s hardware layer. It is controlled by DataManager via the communication interface provided
by GridSched’s communication component. NetworkManager integrates two different data structures to
represent the existing network infrastructure in a managed Grid environment: in the global graph its
nodes represent domains while Local graph’s nodes represent machines. In both graphs the edges repre-
sent network connections. All nodes and edges store network resource and reservation information.

The communication component of GridSched provides an universal communication model used by most
of the components. It is described by a client-server structure. Both communication partners are able
to act as a server and a client. Commands and it’s Replies are transferred between the components in-
volved in the scheduling and reservation process. These communication entities are encapsulated in a data
structure called MessageEnvelope. All commands include parameters which are part of the job description.

GridSched’s job description is a descriptive language which is used globally by most of the components
to process jobs and to schedule needed resources. It describes the needed resources and the costs caused
by resource reservations. It’s hierarchical structure makes it possible to compose a job from sub-jobs.

A user interface to the Super Scheduler is provided by the ClientGUI. It utilizes the job description
language to define and manage jobs by it’s users.

In ServerGUI a hierarchical data structure is used to process the XML-based configuration files. Control
classes capture the read-write-access to the configuration files and to start and stop GridSched’s exe-
cutable components called GridSched services. Two classes implement graphical user interfaces built up
dynamically. It’s control elements trigger the control classes methods.

The PolicyManager implements authorized access to GridSched’s functionality and the managed re-
sources. Policies describe the authorization as formally defined rules combining users, user groups, re-
sources and permissions. Policies are represented by a tree data structure which is used to store permission
values for certain user and resource combinations.

Chapter 4

Simulation in GridSched

4.1 Concept of GridSched’s Simulator

This section deals with the simulation component of the GridSched project. Firstly a short explanation
about why it is necessary to simulate is given. After that, different kinds of simulation techniques are
described and it is explained which simulation approach was chosen for GridSched. Then the architecture
of the simulation component and the integration of the other components of GridSched into the simulation
are described.

After designing and implementing a system there is a need to prove that the system produces correct
and good results. Scheduling tries to optimize. Therefore it is interesting to evaluate the quality of the
included scheduler in contrast to others. That means to find out how good the results are that the
GridSched system produces compared to other scheduling systems.

There are several approaches to evaluate a system which could be divided in two main directions.

• Theoretical analysis of systems and algorithms means to determine the performance of al-
gorithms or systems by mathematical methods. The goal of these examinations is to prove lower
or upper bounds. These methods are difficult in combination with scheduling algorithms because
they are very complex and difficult to handle. On top of this it is often just possible to prove
worst-case performance, while it is often more interesting to know about the average performance
of a scheduling algorithm.

• Practical analysis of systems and algorithms includes many different methods to evaluate a
system or an algorithm, for example benchmarking of the real system and testbeds. One of the most
interesting practical methods is simulation. The goal of simulating a system is to describe, explain
and to predict the behavior of the real system. One of the advantages of a simulation is that it
can be used in cases where other analyzing methods fail because the examined system does not yet
exist or the examined course of events is either too slow or too fast to be recognized in reality. A
simulation is often a cheaper, less dangerous, more flexible and faster alternative and in some cases
even the only possible method to evaluate a system. A model of the system must be programmed
to run a simulation.

There are several different simulation techniques which can be divided in

• Continuous simulation which uses mathematical models, mainly in form of differential equations.
In this kind of simulation the state of the system could be computed for every moment.

• Discrete simulation where time is proceeding in discrete steps. That means the state of the system
can only be determined for certain times. The class of discrete simulation can be further divided
into event-based and time-based simulation. Time-based simulation means that the simulation time
is always proceeding in determined time intervals while event-based simulation means that the
simulation time is proceeding because of the occurrence of events.

107

108 CHAPTER 4. SIMULATION IN GRIDSCHED

A discrete event-based simulation has been chosen to evaluate the GridSched project to meet all require-
ments regarding the GridSched project. This kind of simulation technique offers the possibility to jump
from one event to another when nothing happens between two events which is relevant for the system.
That means that you are able to use workloads, for example of a whole year, which can be processed in
a much shorter time because the time a simulation needs to run depends on the amount of events being
processed and not on the period of time that is covered by the used workload. Time between events is
not interesting for the system because there is nothing happening which could affect the state of the
system. A scheduling system is such a system in which changes of the state occur when a new job is
submitted or a job is executed and can leave the system. These are not the only occurring events. While
processing a job new events can appear which are relevant for the system, like messages between parts
of the simulation model.

A Grid in general consists of host computers, where services are running to provide its familiar func-
tionalities. These are connected with network connections to exchange information. To mirror them, the
simulation maps host computers to Nodes and services to Avatars resulting in a virtual Grid. These
are controlled by the simulation via Java RMI mechanisms. The design is applied to perform a simulation
scene on a single workstation. According to the fact that services operate externally and each form is
running exclusively on a computer under real conditions, the Nodes representing a Grid scene are mul-
tiplexed to a single machine by a timesharing mechanism similar to applied operation system concepts.
Thus one Node including all associated Avatars is simulated at once. Only Titan as a part of simulator is
excluded from this concept, it is even running exclusively in the simulation program. That means, that
only one instance of a super-scheduler may exist in a simulation turn.

4.2 Design and Implementation

The GridSched simulation consists of four parts, the initialization and control component, an integrated
database called ’Okeanos’, the processor ’Elysion’ and an evaluation facility. All components are kept
together by the Simulation class (see Figure 4.1), containing all references of control classes.

To obtain a closer relationship to reality conditions of a Grid, the design approach is to change as
least as possible to the GridSched services. Thus services as Bob and DataManager are supposed to
run separately from the simulation program in their familiar surroundings, as independent computer
programs running on the underlying operation system. But to take control over them, they have to
be slightly modified. This is done by implementation of the SimulationProxy class, assuming several
functionalities based on communication, persistence, and initialization of GridSched services. Furthermore
modifications to Bob and DataManager became evident, i.e. running jobs virtually. A service controlled by
the simulation environment is mentioned as an Avatar. The sections below describe the implementations
of all components of the simulation.

4.2.1 Initialization and Control

There are some Java classes which are responsible for initializing and controlling the simulation (see
Figure 4.1). These are

• SimulationControl This class is responsible for controlling the simulation. It initializes all the
needed components to run a simulation. It also contains methods to start, stop, resume, create,
save and load a simulation. If such a method is called, the SimulatorControl directs the call to
the responsible class like Init, Elysion or Persistence.

• Init Builds up the simulation environment. There are two possibilities to build up a simulation.
One is to enter all needed components via the Simulation GUI (for more details see Section 4.5).
Then the corresponding Java objects are created and the simulation environment will be set up. An
other opportunity is to use an XML file in which the simulation environment is described. Then the
XML document is parsed and the needed Java Objects are created. Therefore the Init class has
methods like createNodes(), createLinks(), createBobResources() and a lot more to produce
the Java objects (see also Section 6.6.1). The produced nodes for example are stored in a database

4.2. DESIGN AND IMPLEMENTATION 109

called Okeanos (see also Figure 4.2). Its functions are saving and managing of nodes. It covers all
functionalities concerning the management of nodes, i.e. the registration and removal of nodes in
the simulation scene, or modifications on their attributes. Okeanos uses a linked list to store the
nodes.

• Persistence Saves and loads the state of a simulation. Therefore two methods are existing:

– The save() method, stores the actual state of the simulation which is done by putting the
state of the SimulatorControl in an
ObjectOutputStream which is then saved into a zip file which contains not only the actual
state of the simulation but also Avatar state files, so that Avatars can resume their work in
the state they had when they were stopped, a log file and if existing the XML file by which
the simulation was build.

– The load() method, reads the content of the zip file and unzips the files. Then the state of
the simulation is loaded by producing an
ObjectInputStream. Then the states of the saved simulation components are reestablished.

Simulation

+AVTRECEIVEDELAY:int

+TITANADDRESS:long

+SIMULATIONADDRESS:long

-protoFlag:boolean

+nodeDispatcher:NodeDispatcher

+logUnit:LogUnit
+inspector:ElysionStateInspector

+timeManager:TimeManager

+eventManager:Elysion

+eventTable:EventTable

+init:Init

+okeanos:Okeanos

+persistence:Persistence

+simulatorControl:SimulatorControl
+simulator_io:Simulator_IO

+staticResourceLibrary:StaticResourceLibrary

+messageProcessor:MessageProcessor

+connector:Connector

+eventCollector:EventCollector

+eventProcessor:EventProcessor

+jobProcessor:JobProcessor

+flushLDAPFlag:boolean
+batchMode:boolean

+logBookLibrary:LogBookLibrary

-stopped:boolean

+titan:Titan

+getEventManager:Elysion

+Simulation

+Simulation
+getTimeManager:TimeManager

+getNodeDispatcher:NodeDispatcher

+getLogUnit:LogUnit

+getOkeanos:Okeanos

+main:void

+getMessageProcessor:MessageProcessor

+getEventCollector:EventCollector
+getJobProcessor:JobProcessor

+saveSimulation:void

+loadSimulation:void

+stopSimulation:void

+resumeSimulation:void

+startSimulation:void

+createSimulation:void

+createSimulation:void
+isProtoFlag:boolean

+getInspector:ElysionStateInspector

+getLogBookLibrary:LogBookLibrary

+setStopped:void

+getStopped:boolean

+shutdown:void

Serializable

SimulatorControl

+buildComponents:void

+stopSimulation:void

+resumeSimulation:void

+startSimulation:void

+saveSimulation:void

+loadSimulation:void

+createSimulation:void

+publishDataResources:void
+publicBobResources:void

+createSimulation:void

+getLastEvent:Date

+getDbGate:DbGate

+getStateFileDir:String

+getRmiPort:int

+getStaticResourceAddress:String

+getStaticResourcePort:int
+setStaticResourceAddress:void

+setStaticResourcePort:void

+getSimulationName:String

+getDbName:String

+getWorkloadEntries:ArrayList

+getScheduler:int

Serializable

Simulator IO

+Simulator_IO

+saveSimulation:void

+loadSimulation:void

+stopSimulation:void
+resumeSimulation:void

+startSimulation:void

+createSimulation:void

+createSimulation:void

Serializable

Remote

Cloneable

EventToken

-jobEntity:long

-code:int

-message:Object
-receiver:long

-sender:long

-time:java.util.Date

-virtualRMINaming:String

+EventToken

+EventToken

+getMessage:Object
+getReceiver:long

+getSender:long

+getTime:java.util.Date

+getVirtualRMINaming:String

+setVirtualRMINaming:void

+getCode:int

+toString:String

+getJobNr:long

Runnable

Serializable

RMIInterface

JNDIInterface
SimulationProxy

+SimulationProxy

+receiveMessageEnvelope:MessageEnvelope

+receiveCommonMessageEnvelope:MessageEnvelope

+getTime:java.util.Date

-receiveEntireMessage:EventToken
-receiveMessage:EventToken

-receiveMessage:EventToken

+register:void

+run:void

-sendMessage:void

+sendMessageEnvelope:void

-stopAvatar:void

-writeState:void
+setIdle:void

+startServer:void

+getSequelNumber:long

+throwEvent:void

+getLDAPControls:Attributes

+publishNetResource:void

+publishComputeResource:void

+getNetResources:LDAPObject[]
+removeComputeResource:void

+removeNetResource:void

+getMatchingNetResources:NamingEnumeration

+connect:void

+getMatchingComputeResources:NamingEnumeration

+stopServer:void

+flushDirectoryContent:void

+getId:long
+log:void

+reqSimTimeDone:void

Serializable

Init

+Init

+InitOkeanos:void

+createBobResources:ArrayList

+createDataResources:ArrayList
+createObjectNetResourceConnections:void

+createNetResources:ArrayList

+createLinks:void

+createNodes:ArrayList

+createJobs:ArrayList

+createLDAPObjects:ArrayList

+createAvatarMessages:ArrayList

+createFilesForDatabase:ArrayList
+createWorkload:ArrayList

-produceID:int

Serializable

Persistence

+Persistence

+load:boolean

+save:void

-zip:void

-unzip:String

-saveEntry:void

-SimulationState

Serializable

interface

AvatarControl

+running:boolean

+safeState:boolean

+getRunningFlag:boolean

+getState:void

+setState:void

+start:void

+stop:void

Figure 4.1: Simulation main package classes.

110 CHAPTER 4. SIMULATION IN GRIDSCHED

1

1

10..*

1

1..*

1 1

Serializable
GridStructure

+setnode:void
+getindex:int
+getXYroute:Route

+deleteXYroute:void
+initMatrix:void
+setroute:void
+getAllNode:List
+getAvatar:Avatar
+getNode:Node

+getDataSet:LinkedList
+setDataSet:void
+operation:void
+kantenlist:LinkedList
+cleanRoutes:void

+Kanten

Serializable
<<control>>

Okeanos

+Okeanos
+getLink:void
+setLink:void
+getRoute:LinkedList
+getNode:Node

+getAvatarNode:Node
+addAvatar:void
+removeAvatar:void
+removeNode:void

 node:Node

 gridStructure:GridStructure
 allNodes:List

LogObject
Serializable

Avatar

+Avatar
+toString:String

 ack:boolean
 aliasLocation:String
 aliasParameter:String
 ID:long
 inetAddress:String

 inetPort:int
 node:Node
 state:State
 idle:boolean
 idleFlag:boolean

 simulTime:Date
 name:String
 information:String

LogObject
Serializable

Node

+getAvatar:Avatar
+getID:long

+setID:void
+startWatch:void
+stopWatch:void
+Node
+Node

+addAvatar:void
+removeAvatar:void
+initWatch:void

 avatarList:LinkedList
 description:String

 simulTime:java.util.Date
 watch:java.util.Date
 messageQueue:java.util.LinkedList
 running:boolean
 numExternalQueries:int
 stoppedSimulTime:Date

 name:String
 information:String
 ipAddress:String

...simulation.Simulation

+Simulation
+Simulation

+main:void
+saveSimulation:void
+loadSimulation:void
+stopSimulation:void
+resumeSimulation:void
+startSimulation:void

+createSimulation:void
+createSimulation:void
+shutdown:void

 eventManager:Elysion

 timeManager:TimeManager
 nodeDispatcher:NodeDispatcher
 logUnit:LogUnit
 okeanos:Okeanos
 messageProcessor:MessageProcessor
 eventCollector:EventCollector

 jobProcessor:JobProcessor
 protoFlag:boolean
 inspector:ElysionStateInspector
 logBookLibrary:LogBookLibrary
 stopped:boolean

Serializable
StaticResourceLibrary

+StaticResourceLibrary
+connectToLdap:void
+addBobResources:void
+addNetResources:void

+addFilesForDatabase:void

 jndiProxy:JNDIInterface
 rmiProxy:RMIProxy

Serializable
java.rmi.Remote

State

+State

 timeStamp:java.util.Date
 fileName:String

1.1, okeanos Figure 4.2: Okeanos classes.

4.2. DESIGN AND IMPLEMENTATION 111

4.2.2 Processor ’Elysion’

The title Elysion is given by the Greek mythology, a land in another dimension, connected to Earth in a
way that if Elysion is destroyed, then so is Earth. The analogy to a simulation environment is self-evident.
Several major assignments are complied by Elysion, setting up virtual computers (mentioned as Nodes)
and a network environment for Avatars, to log their activities and process simulation incidents. As a
design approach, Elysion is partially event-controlled, resulting in a less complex object-model. Its role
in the simulation is to process jobs, as they would run in reality. Furthermore it provides mechanisms to
evaluate a simulation turn.

Elysion is parted into several Java implemented classes (see Figure 4.3), structured by its given assign-
ments:

1. JobProcessor Manages the processing of a single job, and contains all jobs being committed as a
working-set.

2. JobEntity A data-structure representing a single job and mirrors its state.

3. MessageProcessor Mediates the message-traffic between Avatars and Elysion, and encapsulates
the GridSched communication facility.

4. EventProcessor As it was mentioned, that Elysion is partially event-driven, it processes thrown
events, and engineers their effects.

5. EventCollector Accepts events from any components to collect them. It notifies the EventProces-
sor to take and process them.

6. JobFactory A special class, providing a static method to generate up to thousands of jobs by using
templates, which can defined in the simulation´s input.

7. NodeDispatcher The core unit to control booting and shutdown of Nodes (see Section 4.3.0.6).

8. Elysion The Interface of the processor enabling control over simulation progression.

9. Connector The communication agent to manage information flow between the processor and
Avatar´s associated to Nodes, which are set up by Elysion.

10. TimeManager An entity containing simulation time, and to measure its time advance.

11. Titan package Titan is a part of Elysion in this context, by providing its scheduler and job-
processors. According to the simulation approach, the scheduler is the entity to be evaluated.

4.2.2.1 Virtual Networking

Working on a virtual Grid requires the appliance of network in a virtual way. The first modification is the
naming of network addresses, the simulation uses integer values for addressing network entities instead
of IP numbers, these are identical to the identifier of Nodes and Avatars (see Figure 4.6). Routing is
performed by the MessageProcessor class, the communication unit of the processor. It manages message
queues of all Nodes, where all associated Avatars can send or receive messages. Furthermore an RMI
interface is defined to access all incorporated operations that are performed via network. From Avatar´s
point of view, it is accessed by the SimulationProxy (see Figure 4.1) hosted in each service running in
the simulation environment. On the one hand, network activities, affecting only the current Node are
non-critical since all participants are running and can react immediately. On the other hand, messages
leaving the current Node must be handled especially, because the receiver is not active and cannot react.
So the message is stored into the message queue of the addressed Node, which is scheduled to start,
and the requesting Node will be shut down before. This context switch of Nodes is required to process
this event completely. This functionality is hosted in the NodeDispatcher class, and is parted into two
phases:

112 CHAPTER 4. SIMULATION IN GRIDSCHED

LogObject

JobEntity

+JobEntity

+addEvent:void

+awaitStage:void

+getCompletionState:int

+getCompletionTime:long

+getDispatchTime:long

+getEndDate:long

+getEvents:TreeSet

+getExecutionTime:long

+getID:long

+getInformation:String

+getJobDefinition:org.gridsched.language.ObjectJob

+getName:String

+getNodeRequestCount:int

+getNodesRequested:int

+getProtoType:long

+getReservation:String

+getReserveTrials:int

+getSchedule:int

+getSimulTime:Date

+getStage:int

+getStartDate:long

+getStartTime:long

+getSubmissionTime:long

+getTimeManager:TimeManager

+getWorkload:String

+incReserveTrials:void

+incStage:void

+isFirstEvent:boolean

+isReserved:boolean

+isReservedfailed:boolean

+removeEvent:EventToken

+setCompletionTime:void

+setDispatchTime:void

+setExecutionTime:void

+setFirstEvent:void

+setID:void

+setReserved:void

+setReservedfailed:void

+setSchedule:void

+setStage:void

+setStartTime:void

+setSubmissionTime:void

+setExecutor:void

interface

WorkloadInterface

+getNodesRequested:int

+getNodeRequestCount:int

+getSubmissionTime:long

+getExecutionTime:long

+getID:long

+getCompletionState:int

+getDispatchTime:long

+getStartTime:long

+getCompletionTime:long

+getProtoType:long

+getStartDate:long

+getEndDate:long

+getReservation:String

+getWorkload:String

Serializable

BoundedBuffer

+BoundedBuffer

+count:int

+capacity:int

+put:void

+take:Object

+release:void

Serializable

EventCollector

+EventCollector

+accept:void

+getBuffer:BoundedBuffer

LogObject

Runnable

EventProcessor

+EventProcessor

+accept:void

+run:void

+shutDown:void

+getSimulTime:Date

+getName:String

+getID:long

+getInformation:String

+isProperty:boolean

Serializable

TimeManager

+TimeManager

+updateNodeTime:void

+getClock:java.util.Date

+startWatch:void

+stopWatch:void

+setClock:void

+isTicking:boolean

LogObject

JobProcessor

+READYTOCOMMITSTAGE:int

+READYFORSCHEDULINGSTAGE:int

+READYTORESERVESTAGE:int

+READYTOEXECUTESTAGE:int

+EXECUTIONSTAGE:int

+TERMINATEDSTAGE:int

+SCHEDULINGFAILEDSTAGE:int

+RESERVATIONFAILEDSTAGE:int

+EXECUTIONFAILEDSTAGE:int

+addEvent:void

+process:void

+scheduleNextJob:void

+finishJob:void

+getClock:Date

+catchAvatarEvent:void

+initJobList:void

+getCurrentJob:JobEntity

+getSubmittedJob:JobEntity

+getJobList:LinkedList

+getFinishedJobList:LinkedList

+getSimulTime:Date

+getName:String

+getID:long

+getInformation:String

+setNotific:void

+awaitSafe:void

+getInitialJobsCount:int

JobFactory

Serializable

NodeDispatcher

+NodeDispatcher

+addToReadyQueue:void

+addToWaitingQueue:void

+getCurrentNode:Node

+startNode:void

+stopNode:void

+setNode:void

+shutdown:void

+setOutput:void

+getOutput:AvatarOutPutTrace

+killAllAvatars:void

org.gridsched.simulation.Simulation

+AVTRECEIVEDELAY:int

+TITANADDRESS:long

+SIMULATIONADDRESS:long

+nodeDispatcher:NodeDispatcher

+logUnit:LogUnit

+inspector:ElysionStateInspector

+timeManager:TimeManager

+eventManager:Elysion

+eventTable:EventTable

+init:Init

+okeanos:Okeanos

+persistence:Persistence

+simulatorControl:SimulatorControl

+simulator_io:Simulator_IO

+staticResourceLibrary:StaticResourceLibrary

+messageProcessor:MessageProcessor

+connector:Connector

+eventCollector:EventCollector

+eventProcessor:EventProcessor

+jobProcessor:JobProcessor

+flushLDAPFlag:boolean

+batchMode:boolean

+logBookLibrary:LogBookLibrary

+titan:Titan

Serializable

Elysion

+stopFlag:boolean

+Elysion

+SimulationRunner:void

+beginSimulation:void

+resumeSimulation:void

+generateEventToken:EventToken

+generateJobEventToken:EventToken

+stopSimulation:void

+shutDown:void

+waitOnSimulationCompletion:void

+setStopFlag:void

+getStopFlag:boolean

LogObject

MessageProcessor

+getInetAddress:String

+establishRMI:void

+getRMIProxy:RMIProxy

+processInterNodeMessage:void

+receiveMessage:EventToken

+receiveMessage:EventToken

+receiveEntireMessage:EventToken

+sendMessage:void

+cleanNodeMessageQueue:void

+getSimulTime:Date

+getName:String

+getID:long

+getInformation:String

+getLocalregistry:Registry

UnicastRemoteObject

Connector

+existingAvatarState:boolean

+Connector

+getNode:Node

+receiveEntireMessage:EventToken

+getSimulTime:java.util.Date

+receiveMessage:EventToken

+receiveMessage:EventToken

+accept:void

+setInetAddress:void

+signalStart:void

+signalStop:void

+getStoppedSimulTime:Date

+getStateFileName:String

+reportIdle:void

+getLDAPControls:Attributes

+publishNetResource:void

+publishComputeResource:void

+getMatchingComputeResources:NamingEnumeration

+removeComputeResource:void

+removeNetResource:void

+getComputeResources:ObjectBobResource[]

+getMatchingNetResources:NamingEnumeration

+connect:void

+getNetResources:LDAPObject[]

+getGoEvent:boolean

+setGoEvent:void

+log:void

+getStateFileDir:String

+setNode:void

+reqSimTime:void

Figure 4.3: Elysion Classes.

4.2. DESIGN AND IMPLEMENTATION 113

• Starting a Node It is invoked by calling the startNode() method (see Figure 4.4). At first
its message queue is restored from its associated Node object. All program files of the associated
Avatars will be executed by the operation system in a special simulation mode, these are idle at this
moment and are waiting for simulation controls. The Connector object becomes active and sends
’clear to run’ messages (represented by EventToken class) to all Avatar processes and waits for
their acknowledgments (see Figure 4.4). After that, the Nodes simulation time is synchronized to
the global simulation time and its watch is started. Finally a ’go-event’ flag is set, signaling the
Avatars to start their operation.

currentNode

Node

connector

Connector

timeManager
TimeManager

avatar*

Avatar

jobEntity

JobEntity

jobProcessor
JobProcessor

nodeDispatcher

NodeDispatcher

calling object

try

for(int i = 0;i < this.currentNode.getAvatarList().size();i++)

try

for(int i = 0;i < this.currentNode.getAvatarList().size();i++)

1.13: startWatch():void

1.12: startWatch():void

1.11: setSimulTime(Simulation.jobProcessor.getCurrentJob().getSi...

1.10: getSimulTime():Date

1.9: getCurrentJob():JobEntity

1.8: setGoEvent():void

1.7.1: signalStart():void

1.6.1: runAvatar(tempAvatar):void

1.5.2: getAvatarList():LinkedList

1.5.1: getAvatarList():LinkedList

'for' repeat condition

1.4: setNode(this.currentNode):void

1.3: stopWatch():void

1.2: setRunningFlag(true):void

1.1.1: selectNextNode():void

1.5.3: setIdleFlag(false):void

1: startNode():void

1.1, startnode

Figure 4.4: startNode() sequence diagram.

• Stopping a Node Invoked by calling the stopNode() method (see Figure 4.5). It calls the
Connector to stop the actual local simulation time and emits ’stop signals’ to all running Avatars.
The acknowledge messages contain the file descriptors for their state files (refer to Section 4.3), by
receiving them all Avatars switch into idle state and could be interrupted . Then the LST (local
simulation time) is saved by the NodeDispatcher and all Avatar processes are terminated (see
Figure 4.5). At least the message queues of the Connector are saved into the corresponding Node

objects, and the Connector object is disposed.

114 CHAPTER 4. SIMULATION IN GRIDSCHED

timeManager

TimeManager

nodeDispatcher

NodeDispatcher

calling object

currentNode

Node

connector

Connector

messageProcessor

MessageProcessor

if(this.currentNode != null)

try

catch(avatarNotRunningException e)

while(!this.runningProcess.isEmpty())

try

catch(Exception e)

1.5: setRunningFlag(false):void

1.4.5: cleanNodeMessageQueue(currentNode):void

1.4.4.1: setRunning(false):void

1.4.3.1.1: stopAvatar((Process) this.runningProcess.removeFirst()):...

1.4.1.1: signalStop():void

1.3: stopWatch():void

1.2: stopWatch():void

1.1: stopWatch():void

1: stopNode():void

1.1, stopNode

Figure 4.5: stopNode() sequence diagram.

The sequence depends on the state of the NodeDispatcher, is no Node running, the context switch is
performed without stopping a Node. Although Titan is a permanent instance, its attitude is similar to
a Node, when a message is sent to them, the current Node is also interrupted due to the expectation
that the next Node that will be simulated will change. All virtual network activities are logged by the
MessageProcessor (see Figure 4.3) and can be watched at the provided graphical user-interface (see
Section 4.5).

4.2.2.2 Job Processing

The simulation object is evidently the procession of jobs as they would occur in reality. To simulate them,
each job´s life-cycle in the simulation is parted into stages (see Figure 4.8), according to the ordering
of incidents in the reality, when a job is committed to Titan. Finally, when a job has been simulated

4.2. DESIGN AND IMPLEMENTATION 115

Identifier Entity

99 Titan
-2 Simulation Processor
-1 Log Unit

greater 0 divisible by 10 Node
(greater 0 divisible by 10) + 1 Bob
(greater 0 divisible by 10) + 2 DataManager
(greater 0 divisible by 10) + 3 NetworkManager

Figure 4.6: Virtual network addresses.

completely, its stage results in a final stage. The definition of stages are given in the JobProcessor class as
final integer values, to provide a better comprehension, they are associated with names. So programmers
can add or modify definitions with ease, but must consider semantics and algorithms of the JobProcessor
and EventProcessor classes to keep functionality. An automate of the possible stage-transitions can be
seen in Figure 4.7. An explanation of each stage is given below.

EXECUTIONFAILED
STAGE

RESERVATION
FAILED
STAGE

SCHEDULINGFAILED
STAGE

TERMINATED
STAGE

EXECUTION
STAGE

READYTOEXECUTE
STAGE

READYTORESERVE
STAGE

READYTOCOMMIT
STAGE

READYFOR
SCHEDULING

STAGE

Real
Time

Titan
accept Job

Titan
schedule Job

Titan
Reserve Job

no preemption

final

final

final

final

Figure 4.7: Job stage transitions.

As mentioned each job is represented by a JobEntity object, containing among others the job definition,
analogue to real-time conditions, and a submission time, determining at what simulation time a job is to
be simulated. So the hole working-set of jobs is the entire simulation program for a scene, it defines the
sequence.
The JobProcessor takes control over the stages of every job in the working-set by programming among
others Titan directly (see Figure 4.7). It uses its common interface for job scheduling and reservations of
resources. First, the JobProcessor schedules a Job initially from its set (READYTOCOMMITSTAGE),
then it will be committed to Titan. Afterwards (READYTOSCHEDULESTAGE) by invoking Titan´s
UserProxy class´method schedule() and all job controls is passed to Titan temporarily. During its
scheduling process, it will talk to several Nodes according to its policies. Each Node appealed will be
started by the NodeDispatcher, and then shut down, when the Node has sent a response message.
While this, the JobProcessor is sleeping. When Titan finishes a scheduling-process it will throw an
Event to notify it, which evaluates the event, and determines the stage advance of the job (READY-
TORESEVESTAGE), depending on the success of a schedule. If succeeded, the JobProcessorwill invoke
Titan to reserve. This process is similar to the scheduling mechanism, but reserved CPU Resources will

116 CHAPTER 4. SIMULATION IN GRIDSCHED

Process stages
READYTOCOMMITSTAGE
READYFORSCHEDULINGSTAGE
READYFORRESERVATIONSTAGE
READYTOEXECUTESTAGE
EXECUTIONSTAGE
TERMINATEDSTAGE
Final stages
SCHEDULINGFAILEDSTAGE
RESERVATIONFAILEDSTAGE
EXECUTIONFAILEDSTAGE

Figure 4.8: A short overview of all job stages.

request Elysion for simulation time, to process the execution of a reservation virtually. Afterwards, if all
reservations are succeeded (READYTOEXECUTIONSTAGE), requests for simulation-time of resources
are processed (EXECUTIONSTAGE) by the JobProcessor. When succeeded the job´s simulation is fin-
ished (TERMINATEDSTAGE). An explanation of each stage is given below, which includes other final
stages, whose are reached, if something in the simulation process failed. A sequence diagram illustrates
the implementation of job processing in the JobProcessor class (see Figure 4.9).

1. READYTOCOMMITSTAGE The initial Job stage, meaning each job in the working-set can be simulated.

2. READYFORSCHEDULINGSTAGE After a job has been committed to Titan, this stage is set.

3. READYFORRESERVATIONSTAGE Titan has thrown an event, that a schedule has been computed, and
can be reserved.

4. READYTOEXECUTESTAGE All resources of a schedule have been reserved successfully.

5. EXECUTIONSTAGE The reserved Timeslots are being processed by the reserved CPU resource(s).

6. TERMINATEDSTAGE All reserved Timeslots has been processed and the simulation of this job has
ended.

7. SCHEDULINGFAILEDSTAGE Titan has not found any suitable schedule, the simulation of this job is
finally terminated.

8. RESERVATIONFAILEDSTAGE Titan could not reserve all scheduled resources, the simulation of this
job is finally terminated.

9. EXECUTIONFAILEDSTAGE Any request computation for simulation-time by one or more CPU re-
sources failed, the simulation of this job is terminated finally.

Elysion has the ability to simulate more than one job in single scene. So before a job can be simulated,
the JobProcessor schedules a job for next. The inherent policy is quite simple, the job with the least time
is selected, for more information about time synchronization, refer to Paragraph 4.2.2.3. When a job has
been selected to be processed, the method process() in the JobProcessor class, takes control by calling
further internal methods depending on the actual stage of it (see Figure 4.9). Due to the circumstance,
that the simulation time of execution of reservation may overlap, some considerations in the design have
been taken into account, to handle this. To prevent complicated implementations of role-backs in the
simulation, preemption of jobs is performed when the simulation time windows of jobs overlap. But
preemption is only supported when the actual job is in EXECUTION or READYTOCOMMIT stage (see Figure
4.7). Thus, jobs must not overlap others. This circumstance can be avoided, if the simulation input is so
defined, that that case will never appear. Due to the fact, that the process of scheduling and reserving
a job takes just tickles of time, and the execution of jobs is much longer, the submission times of jobs
should have a distance of some minutes. In a simulation term of several days or month of simulation time,
this matter is obviously negligible and carries no weight.

4.2. DESIGN AND IMPLEMENTATION 117

jobProcessor
JobProcessor

calling object

static
Elysion

eventCollector
EventCollector

currentJob
JobEntity

if(currentJob == null)

if(awaitSafe)

1: process():void

1.8: postProcess():void

1.7: postProcess():void

1.6: reserve():void

1.5: schedule():void

1.4: add():void

1.3: getStage():int

1.2.2: accept(Elysion.generateEventToken(EventTokenInterface.SC...

1.2.1: generateEventToken(EventTokenInterface.SCHD_NEXTJOB):E...

1.1.2: notifyAll():void

1.1.1: setSafe(true):void

methods to be called

depend on job stage

Figure 4.9: Job processing.

4.2.2.3 Time Synchronization

There are two different time-lines , the local simulation time (LST) and the global simulation time
(GST). Each Job has a unique LST, whereas the GST is synchronized to the actual job that is processed.
Additionally there is a watch for each simulation time entity to measure advance during simulation phases.
The technical implementation has been realized in the TimeManager class and each instance is controlled
by control class instances, such as the JobProcessor and the MessageProcessor. Several incidents make
time synchronization necessary, three major activities can be performed then: a simulation time can be
paused, resumed or set to a new time. The enumeration below lists some use-case examples.

1. Job scheduling After the JobProcessor has a new Job to be simulated selected, the current Job
is set to a new stage, its time will be halted. The new instance´s LST is resumed and the GST is
synchronized to that. This topic is the most important, because it influences the sequence of the
simulation and ensures coherency to real-time conditions of a job set. The reference clock of all
Avatars, Nodes and Elysion is the LST of the current processed job.

2. Message passing In a message passing system, there are two counterparts, the sender and the re-
ceiver of messages. The MessageProcessor compares their LSTs (+ latency time) and synchronizes
them to the latest, if they differ.

3. Performing Titan Titan´s reference clock is always the GST, during its scheduling and reservation
turns it sends messages toward Avatars representing resource owners. As mentioned before, their
associated Nodes have to be switched, because only one Node can be simulated at once. Due to the
issue, that this will never occur in reality, all simulation times are on hold in the meantime and are
resumed when it is performed.

118 CHAPTER 4. SIMULATION IN GRIDSCHED

4. Finishing the simulation The GST is synchronized to the defined final-time of the simulation
when all jobs of the working-set are processed and have reached a final stage.

4.2.2.4 Event Handling

Events are incidents, that affect the simulation process instantly. These may be thrown by different
entities, i.e. Avatars, Titan and Elysion. Thus their appearance differs and have to be managed variably.
Each part of Elysion can be an erector of events. Thus major parts of the implementation of the simulation
processor are event-driven. There are several classes to provide these functionalities: EventCollector,
EventProcessor and BoundedBuffer. Their roles are illustrated in Figure 4.10.

An event is represented by the EventToken class (see Figure 4.1) containing all necessary fields to comply
event-handling. To figure out the type of an event, it has got an integer typed code, which is defined in
the EventTokenInterface. There each number has an associated Java static final defier, which is more
comfortable for programmers. A list of current processed event codes is given in the enumeration below:

EventAcceptor

BoundedBuffer

accept()Errector
EventProcessor

THREAD
sleeps when no events

process()
processes events

EventToken

add EventToken

notify :
arrival of new events

fetch EventTokens

Object
Object

Object

call dedicated methodsEventToken

Fields
associated job
eventcode
message
Sender
Receiver
LST

act as an event errector

Figure 4.10: Event processing.

1. SEND MESSAGE Thrown by the Connector class to invoke the MessageProcessor to process
a sent message.

2. STRT NODE The NodeDispatcher is wanted to start a Node from its queue.

3. STOP NODE The NodeDispatcher is wanted to start a Node from its queue.

4. AVT IDLESIGNAL Thrown by the Connector class to indicate that a running Avatar instance
became idle and can be shut down. This is usual done by Bob-typed Avatars, when the actual job
is in EXECUTIONSTAGE.

5. AVT ACQUIRESIMTIME Thrown by the Connector class to indicate that a running Avatar
is requesting simulation time for future.

6. SCHD NEXTJOB Invokes the JobProcessor to select a new job for simulation and starts its
processing. If the current job is in a non-preemption state, this event has no effect.

7. JOB RESFINISHED Thrown by the reservation client of Titan appointing a succeeded reser-
vation. The event is passed to the JobProcessor to advance the job stage, that it is ready for
execution.

4.2. DESIGN AND IMPLEMENTATION 119

8. JOB RESFINISHEDFAILED The opposite case of the previous event, then the job will be
terminated by the JobProcessor.

9. PROC JOB The JobProcessor will continue processing its actual job without scheduling a new
one.

10. JOB SCHFINISHED Thrown by Titan appointing a succeeded schedule, which is stored in
job´s associated JobEntity. The event is passed to the JobProcessor to advance the job stage,
that it is ready for reservation.

11. JOB SCHFINISHEDFAILED The opposite case of the previous event, the job will be termi-
nated then by the JobProcessor.

12. JOB FINISH Thrown by either the JobProcessor or the EventProcessor itself as a consequence
of another event
(for e.g. JOB SCHFINISHEDFAILED). It will end the simulation of the current job and invokes
a new job schedule.

13. NO JOBSLEFT Thrown by the JobProcessor when all jobs have been simulated completely.
The simulation turn will end.

14. AVT CONNSIGNAL Thrown by started Avatars to indicate their connectivity to Elysion.

15. AVT STOPSIGNALACK Thrown by Avatars to be stopped indicating their acknowledge.

16. AVT STARTSIGNALACK Thrown by started Avatars to indicate their readiness to start their
execution.

17. STOP SIGNAL Thrown by the Connector to invoke generation of notification messages for the
current Node, to inform the associated Avatars to cease their activities, that they can be terminated
without harm.

As illustrated in Figure 4.10, any object can be an event-erector. This is done by generating an EventToken

instance which is to be passed to the EventCollector by invoking its accept()-method. It will add the
transmitted EventToken to its internal event-buffer (BoundedBuffer) and will notify the EventProcessor,
that the buffer was filled, which wakes up and processes each event in the buffer until it is empty. Then
it falls asleep to save CPU time. For each event the EventProcessor forks a new thread, to keep liveness
in the whole process.

4.2.3 Evaluation Facility

To gain conclusions about a simulation turn, empiric data must be generated and provided. These can
be obtained by tracing the state of a simulation, which can be represented by integers, strings or whole
objects. A typical use-case is to keep trace about the load of CPUs in a defined period. The evaluation

package is a common architecture to comply those assignments. Its primer goal is to trace values of object
instances.

4.2.3.1 Components

The design of this package is held common and can easily be adapted to other software project. The
implementation of the evaluation facility is shown in Figure 4.11 is structured into four major parts:

1. LogObjects Any Objects thats attributes or values are to be traced must extend the LogObject

class and becomes itself a LogObject. Then all needed functionalities are implemented. A complete
guide about logging is given in Section 4.2.3.2.

120 CHAPTER 4. SIMULATION IN GRIDSCHED

2. LogProperties The abstract class LogProperty represents a single attribute to be traced. The
inherited classes LogPropertyInteger,
LogPropertyFloat, LogPropertyString and LogPropertyObject can be instantiated and must
comply to the data-type of the attribute. LogEntities (see Figure 4.12) are snapshot of values,
detailed information can be found in Section 4.2.3.2.

3. LogBooks LogObjects can be grouped to a LogBook object. Each one must contain at least on
objects. The top is the LogBookLibrary, a container of LogBooks. This hierarchical structure is
given to make it easier for display issues in GUIs, because it builds up an instance of an Java
Swing JTree. So that user can select any object to evaluate its traces. The LogBookLibrary is
quite proprietary and must be modified for other software projects, because it initializes the log
environment for Elysion, too.

One class has not been mentioned yet, the LogUnit. This one is the predecessor of the current imple-
mentation, its primary intention was to log everything of a simulation turn into a text file located in
the working path of the simulation turn. Due to the circumstance that the simulation package became
a graphical user interface (see Section 4.5), which interacts with the current implementation, its actual
assignment is to produce workloads of all jobs being processed by Elysion. The JobEntity instances,
which each represents a single job, contains all information to produce workloads. These are kept an
managed by the JobProcessor. In the text file, each line is the result of a job process and contains
following fields:

1. ID The ID of the job given by Elysion.

2. Prototype If a workload input (see Section 6.6.1) was provided, the number correspondents to the
ID of the used template job according to the sequence in the input XML-file.

3. Exitstage The last stage that a job has reached, after its processing has terminated (see Figure
4.8). This is an integer value, and its associated stage can be reviewed either in the graphical user
interface or in the JobProcessor class.

4. NodesReq The total number of different Nodes, that have been activated during job processing
(scheduling and reservation).

5. Reqcnt Total number of requests to Nodes (scheduling and reservation).

6. Submission The LST when the job was committed to Titan (long value). This value equals to
zero, if something went wrong before.

7. Dispatch The LST when Titan has finished scheduling (long value). This value equals to zero, if
something went wrong before.

8. Exec The LST when the job´s stage reached EXECUTIONSTAGE (long value).This value equals to
zero, if something before went wrong.

9. Term The LST when the job´s processing was finished (long value). This value equals to zero, if
something went wrong before.

An example workload output is given below:

;CreationTime:12.02.2004 09:04:17

;SimulationName:SimulationsTest

;ProcessingComputer:host12.user12

;WorkingDirectory:c:\temp\gridsched2\simulation\

;SimulationRMIPort:2099

;SimulationLDAPHost:127.0.0.1

;SimulationSQLDB:gridsched

;LineFormat: ID Prototype ExitStage NodesReq ReqCnt

; Submission Dispatch Exec Term

0 0 5 3 11 975668379648 975668380429 975668510220 975668910220

4.2. DESIGN AND IMPLEMENTATION 121

interface

LogPropertyHostInterface

+toString:String

 simulTime:Date
 name:String

 ID:long

interface
LogPropertyInterface

+toString:String

+getEntriesBeforeSimTime:ArrayList
+getEntriesAfterSimTime:ArrayList

+getEntriesSimTimePeriod:ArrayList
+getEntriesBeforeRealTime:ArrayList

+getEntriesAfterRealTime:ArrayList
+getEntriesRealTimePeriod:ArrayList

 propertyType:Object
 allSimTimeEntries:ArrayList

 allRealTimeEntries:ArrayList

interface
EvaluationInterface

 information:String
 property:boolean

DefaultMutableTreeNode
LogBookLibrary

treeModel:DefaultTreeModel

-jobLogBook:LogBook
-nodeLogBook:LogBook

-simulationLogBook:LogBook
-jTree:JTree

+LogBookLibrary
+setupLogBooks:void

-setupLogNodes:void
-setupLogJobs:void

+setupLogControlClasses:void
+toString:String
+setupLogMessageProcessor:void

 jtree:JTree

 information:String
 property:boolean

Serializable
LogUnit

-workloadFileName:String

-logFile:File
-workloadFile:File

-fileWriter:FileOutputStream
-workloadWriter:FileOutputStream

-events:LinkedList
message:String
workloadheader:String

+createFiles:void

-checkForEvents:void
+add2Log:void
+toWorkload:void

+add2Log:void
+add2Log:void

+shutDown:void

 fileName:String

JFrame
Runnable

SpeakersCorner

-crashReported:boolean
-errStream:BufferedReader
-lock:boolean

-f:JFrame
-textField:JTextArea

-stream:BufferedReader
-document:PlainDocument

-scrollPane:JScrollPane
-progress:int
-progressChars:String[]

-ShouldStop:boolean
-clean:boolean

+setOutput:void
+clear:void

+SpeakersCorner
-processStdStream:void

-processErrStream:void
+run:void

+write:void
-progress:void
+add2HeadLine:void

+start:void
+stop:void

+shutDown:void

 shouldStop:boolean

 headLine:String

DefaultMutableTreeNode
LogBook

-name:String
-logObjects:Hashtable

addLogObject:void
removeLogObject:void

getLogObject:LogObject
getlogObjects:Set
+LogBook

-generateHeader:String
+toString:String

 information:String
 property:boolean

DefaultMutableTreeNode

LogProperty

#name:String
#content:StringBuffer

#header:StringBuffer
#realTimeTreeSet:TreeSet

#realTimeHash:Hashtable
#simTimeTreeSet:TreeSet
#simTimeHash:Hashtable

#host:LogPropertyHostInterface

+LogProperty
#generateLogHeader:void
+toString:String

+getEntriesBeforeSimTime:ArrayList
+getEntriesAfterSimTime:ArrayList

+getEntriesSimTimePeriod:ArrayList
+getEntriesBeforeRealTime:ArrayList

+getEntriesAfterRealTime:ArrayList
+getEntriesRealTimePeriod:ArrayList

 allSimTimeEntries:ArrayList
 allRealTimeEntries:ArrayList

 information:String
 propertyType:Object
 property:boolean

DefaultMutableTreeNode
LogObject

-logProperties:Hashtable

-logHost:LogPropertyHostInterface

+addLogIntegerProperty:void
+addLogFloatProperty:void
+addLogObjectProperty:void

+addLogProperty:void
+removeLogProperty:void

+getLogProperty:LogPropertyInterface
+LogObject
-generateHeader:String

+toString:String
+addEntryFloat:void

+addEntryInteger:void
+addEntryObject:void

 logProperties:Set
 name:String

 ID:long
 property:boolean

 information:String

LogPropertyInteger

+addEntry:void

+LogPropertyInteger
+toString:String

 propertyType:Object

LogPropertyFloat

+addEntry:void
+LogPropertyFloat

 propertyType:Object

LogPropertyString

+addEntry:void
+LogPropertyString

 propertyType:Object

LogPropertyObject

+addEntry:void
+LogPropertyObject

 propertyType:Object

1.1, evaluation

Figure 4.11: Evaluation facility classes.

122 CHAPTER 4. SIMULATION IN GRIDSCHED

LogEntryObject

message:Object

+LogEntryObject

+toString:String

 entry:Object

Serializable

interface

LogEntryInterface

+toString:String

 realTime:Date

 simTime:Date

LogEntryInteger

message:int

+LogEntryInteger

+toString:String

 entry:int

LogEntry

simTime:Date

+LogEntry

+getSimTime:Date

+setSimTime:void

 realTime:Date

LogEntryString

message:String

+LogEntryString

+toString:String

 entry:String

LogEntryFloat

message:float

+LogEntryFloat

+toString:String

 entry:float

1.1, evaluationclass

Figure 4.12: LogEntry classes.

4.2.3.2 Implementation Guide

This sections is intended as a brief manual for using the log mechanisms of the evaluation facility. First of
all it should be deliberated which objects should be traced. Then all desired class definition must extend
the LogObject class. Now it is able to obtain LogProperties. It is important to set the correct data-type
(see Section 4.2.3.1). Due to the ability to attach more than one property, each one is associated with an
hash-key.

An example code of is given below to add a integer-typed property to a new LogObject:

...

static final string DESC="Node Count Trace";

static final string HASH="nodecount";

int value=0;

LogClass logObject=new LogClass(); // extends LogObject class

LogPropertyInteger property=new LogPropertyInteger();

logObject.addLogIntegerProperty(DESC,HASH);

...

These properties are not directly coupled with attributes or values and must be managed by hand. That
means, all attribute´s changes must be set to their dedicated properties manually. Properties can be
filled with LogEntry Objects, these are typed too. So there are LogEntryObject, LogEntryString and
so on (see Figure 4.12), they represent snapshots of an attribute´s change. These snapshot have to invoke
manually by calling methods. To set a new entry, each property provides an addEntry() method (see
Figure 4.11). The LogObject provides the same mechanisms to shorten implementation. When a LogEntry
instance is being created, the real-time and LST is attached to it. Furthermore each entry carries a message

4.3. INTEGRATION OF GRIDSCHED SERVICES 123

Class Properties
Node activation trace
JobEntity node requests (for schedule and reservation), stage, schedules
MessageProcessor processes messages
JobProcessor jobs left, Node load
EventProcessor processes events

Table 4.1: Property traces.

that describes the state, respectively the content of a value or an object that is snapshot. So it is even
possible to trace the whole state of all program´s objects over the time for e.g. .

To continue the example code:

...

value=1;

logObject.addEntryInteger(HASH,value);

value=2;

logObject.addEntryInteger(HASH,value);

...

To receive the traces of a property for evaluation in programs, the class provides several methods,
getEntriesAfterSimTime() or getEntriesBeforeRealTime() for instance.

Table 4.1 lists properties, that are traced by the current implementation of the simulation program. These
can be viewed in the graphical user interface (see Section 4.5).

To group on ore more LogObjects to a LogBook, its addLogObject() method are called by submitting a
hash value and the objects reference. This is analogue to the addition of LogProperties to LogObjects.
To reference log entities in general, their hash values can be applied to their hosted object instances. As
shown above, it is quite simple to implement further properties to be logged and traced.

4.3 Integration of GridSched Services

To make an existing GridSched service work with the simulation environment, it must include an instance
of the SimulationProxy class as introduced in Section 4.2. It provides a common interface to communicate
with the simulation processor. From the service´s point of view, it is applicable in a very transparent
way. Thus all services must distinguish between a ’real mode’, where the SimulationProxy is not used,
and a ’simulation mode’ by implementing it. This is to supposed to do via command line options. When
the simulation is starting an Avatar process, the command line switches ’-SimHub:[network address]’
and ’-SimID:[virtual network address]’ are committed to the executables. The first one determines
the host machine, where the simulation program is running, the latter one sets an unique identifier, equal
to the virtual network address (see Section 4.2.2.1), that each Avatar should own. These information are
necessary to establish an RMI connection to the simulator. If these options are not set, then the Avatar
shall run in ’real mode’.

4.3.0.3 GridSched Service Requirements

To define the requirements towards a service, in order to be controllable by the simulation program, all
these conditions below must be met:

1. Two modes of operation, the ’normal mode’ and the ’simulation mode’.

2. All components of the service must be interruptible in their execution.

3. The whole service must be able to save its current state on disk to claim a later resume of execution.

124 CHAPTER 4. SIMULATION IN GRIDSCHED

4. The SimulationProxy class must be applied.

The next section illustrated the assignments of the SimulationProxy class being integrated in a service.

4.3.0.4 SimulationProxy Functionalities

An overview is given below, what functions are covered by the SimulationProxy class:

• Control over the host program It is evident, that an interface towards the host program must
exist, to assume power over it. This is realized by the AvatarControl interface. Thus at least
one class must implement it, but at much as total control over the whole program is assured. The
method start() indicates the component, that it is allowed to execute, the opposite stop() method
signals, that it must interrupt its execution to gain a safe state, where it can be interrupted without
any data loss. Before the SimulationProxy object can access any of these methods of an entire
component, it must be registered to it by invoking the register() method. The mechanism is
simple by providing the AvatarControl interface reference of the object to register.

• Persistence To comply this special requirement as described in the text above, the AvatarControl
interface includes a read() and a write() method. The first one may only be called, before the
start() method has been called, the latter one, after the stop() method has been invoked.
Their meaning should be self-evident. From the implementation´s point of view, these function-
alities are realized by providing Java ObjectStreams. An advantage of this mechanism is that the
SimulationProxy does not need to take care about the internal data-structures of the components.

• Absorption of all communication package functionalities The RMIInterface is also imple-
mented by the SimulationProxy, so that service components can use the communication in their
familiar way. But is it to be kept in mind, that virtual network addresses must be used (see Section
4.2.2.1). Even operations on remote directories are complied by implementing the JNDIInterface,
the mechanism is equal to the reality mode, but the simulation environment is using its own di-
rectory service, hosted by via the StaticResourceLibrary class, to prevent interdependencies. All
service components should access their RMIProxy and JNDIProxy via the interfaces RMIInterface
and JNDIInterface and not via the concrete implementations to gain transparency between sim-
ulation and real mode.

• Time service It provides a getTime() method to deliver the actual local simulation time. The
usage of this is most important for the simulation mode, because the LST usually differs from the
real-time.

• Simulation event processing As indicated
in Section 4.2.2.4, Avatars can process events by sending or receiving messages via the RMIInterface.
Furthermore they can signal that they have become idle, by invoking the setIdle() method, and
can be interrupted. This event form only affects the simulation environment, when all Avatars of
an active Node became idle. Another application, as used by Bob in the READYTORESERVESTAGE,
is to claim simulation time for predictable incidents by calling the throwEvent() method, where
a time stamp is passed to determine the occurrence of these. And also a description string, to log
and identify, when the event is processed. When an Avatar got the acquired simulation time, it
must call itself the setIdle() method from the SimulationProxy to signal that it requests its
termination, otherwise it would gain simulation-time infinitely. The SimulationProxy avails itself
of these events to negotiate with the simulation processor, i.e. waiting for stop signals or something
similar, by using the form of EventTokens. A more detailed point of view of their usage is explained
in Section 4.3.0.6, where the processes, that happen inside of Avatars, when a Node context switch
is scheduled.

4.3.0.5 Implementing the SimulationProxy in Services

This section is a short instruction, how to include the SimulationProxy into a host program, to make it
compatible with the simulation program.

4.4. GRIDSCHED COMPONENT ALIGNMENTS 125

1. Modify the code, that both modes of execution are provided (see Section 4.3).

2. Parse the command line for the options ’-SimHub:’ and ’-SimID:’.

3. Instantiate a SimulationProxy object, pass the command line arguments and the count of com-
ponents, that will be registered and assign its reference to RMIInterface and JNDIInterface

attributes both, if necessary. Make it visible to all objects, that access its functionalities.

4. Complete all methods defined by the AvatarControl interface for all classes implementing the
interface.

5. Perform the familiar initialization activities. Keep in mind, that no component should start working
before the SimulationProxy invoked the start() methods.

6. Register all classes to the SimulationProxy object by invoking the
register() method.

4.3.0.6 Avatar Initialization and Termination

This section is dedicated to show all processes, that happen inside of Avatars, when the simulation
processor is going to start or stop their associated Nodes. The Avatar initialization ties in with Section
4.3.0.5, so the focus is set on the SimulationProxy during these phases.

• Initialization The SimulationProxy´s constructor performs several operations to bind itself to
the simulation environment (see Figure 4.13). First, it looks up the Connector RMI instance of the
simulation running on the given host provided by command-line options. Then it requests the actual
local simulation time, and sends out an EventToken for greeting issues, to signal the Connector

connectivity. The next assignment is to clarify, if the service has already been simulated, if it is true,
then the information about an existing state-file, that has been saved before, is received. Afterwards
an internal thread is started to listen for stop signals.

When these steps are finished, the components must register itself to the SimulationProxy by
calling the register() method (see Figure 4.13). In each call, the count of registered components is
incremented. If all entities has been registered, the SimulationProxy resumes activity and checks, if
a state file exists. If not, all start()methods, provided by the AvatarControl interface, are invoked.
Otherwise, if the condition was true, the state file is loaded and piped into an ObjectInputStream

and passed to all registered components by calling their setState() methods before. Afterwards
an AVT STARTSIGNALACK event is thrown towards the simulation environment. Finally it waits for
a ’go event’ from the processor indicating, that the host can operate. This command is passed by
calling the start() methods of all registered components.

• Termination The listener thread for ’stop running’ events introduced in the last point loops until
such a event is thrown, then it calls the internal stopAvatar() method to begin all necessary
steps to shut down the host program (see Figure 4.14). This method calls all stop() methods
from the registered components, invoking their operational termination. These calls should only
set internal flags to prevent blocking of the SimulationProxy, then it loops until all calls of the
getRunningFlag() method result negatively. The next step is the preparation of the state file,
whose filename is among the others composed of the virtual network address. The file is typed
as ’.hst’, which stands for ’hades state file’. This file is now generated and combined with an
ObjectOutputStream, which is passed to all registered components by calling their getState()

methods (see Figure 4.14). Finally a EventToken, containing all information about the written
state file, is sent to the simulation processor, to signal, that the Avatar has been shut down and its
process can be terminated.

4.4 GridSched Component Alignments

This section delves into the alignments towards the simulation, that have been done to make them
compatible. The GridSched services Bob and DataManager are modified as described in Section 4.3.

126 CHAPTER 4. SIMULATION IN GRIDSCHED

connector

ConnectorInterface

simulationProxy
SimulationProxy

Avatar

timeMan
TimeManager

greetingMessage

EventToken

avatarControl

AvatarControl

signalackMess

EventToken

runningSignal
EventToken

try

if(this .connector .existingAvatarState(this.id, this.simulTime))

catch(RemoteException e3)

try

if((!this.firstRun) && (this.numberOfClassesToBeRegistered == this.controlClasses.size()))

try

catch(InterruptedException e1)

while(!this.connector.getGoEvent())

for(int i = 0;i < controlClasses.size();i++)

try

try

try

while(message == null)

try

for(int i = 0;i < this.controlClasses.size();i++)

if(this.numberOfClassesToBeRegistered > this.controlClasses.size())

3.1.8: sendMessage(message):void

3.1.7: committing running signal, this.id

3.1.6.1: start():void

3.1.5.1.1: getGoEvent():boolean

'while' repeat condition

3.1.4.1: message:=receiveEntireMessage("clear to run"):EventToken

3.1.3.1: accept(message):void

3.1.2: committing AVT_STARTSIGNALACK

3.1.1.1.1: setState(objectInputStream):void

2.4.1.2.2: getStateFileName(this.id, simulTime):String

2.4.1.2.1: getStateFileDir():String

2.4.1.1: existingAvatarState(this.id, this.simulTime):boolean

2.3.1: accept(greetingMessage):void

2.2: committing AVT_CONNSIGNAL,Simulation.SIMULATIONADDRES...

2.1.2: <constructor>(this.connector.getSimulTime())

2.1.1: getSimulTime():java.util.Date

2: <constructor>(String,int,long,int)

3: register(AvatarControl):void

1:

Figure 4.13: Avatar initialization.

4.4. GRIDSCHED COMPONENT ALIGNMENTS 127

avatarControl
AvatarControl

simulationProxy
SimulationProxy

connector
ConnectorInterface

Connector via RMI

for(int i=0;i<this.controlClasses.size();i++)

while(!allStopped)

for(int i = 0;i < this.controlClasses.size();i++)

if(tempStopped)

try

catch(InterruptedException e1)

try

catch(RemoteException e)

1: sends STOP_SIGNAL

1.1.5: writeState():void

1.1.3.1: stateTimeStamp:=getStoppedSimulTime():java.util.Date

1.1.2.1.1: tempStopped:=getRunningFlag():boolean

1.1.1.1: stop():void

1.1: stopAvatar():void

1.1, avtstop

Figure 4.14: Avatar stop sequence.

They only provide one component to register to the SimulationProxy, their main classes. Due to the
circumstance that Bob manages resources, it makes no sense to run it without holding any. Thus, the
SimulationProxy provides a mechanism to fill it with some initial resources, as defined in the XML
document of the simulation scene input file. This is only done, when the entire Bob is started for the
first time, because its persistence function will save them, too. Okeanos stores their descriptions in the
StaticResourceLibrary class publishing them to a remote directory server. As mentioned before Titan
became part of the simulation processor, so the entire ’simulation mode’ is not invoked by command-line
but rather via a special constructor call. Detailed information how Titan is involved in the simulation is
described in Section 4.2.2.2. Both, Titan and Bob, have access to a log() method in their main classes to
provide important information about their activities to the log facility of the simulation. Another effect of
the inclusion of Titan into the processor is that, its message traffic does not leave it via RMI mechanism.
So the communication package also provides an simulation mode, where it modifies the RMI functions of
the RMIProxy to map it to the virtual network of the simulation processor. But this modifications affect
only Titan.

128 CHAPTER 4. SIMULATION IN GRIDSCHED

4.5 Simulation GUI

The Simulation GUI offers an availability to build up a simulation, run a simulation, view the output
and the state during a simulation run and to analyze the result after running a simulation. A description
of how these aspects are realized is following.

Figure 4.15: Overview of the Simulation GUI.

The Simulation GUI is divided in two main parts. One part consists of a configuration tab in which a
simulation can be build up by entering Nodes, Bob and Data Resources, jobs and general configuration
settings (see Figure 4.16). The other part is the inspector tab which displays the state and the results of
the simulation.

Configuration Tab The configuration tab contains on the left side a tree which displays all editable
components. The right side displays the component which should be edited. There are several buttons
available in the configuration tab.

• Edit After selecting a component in the tree, this component is editable after clicking the edit
button. After entering all necessary values and clicking the save button a corresponding JAVA
object will be created.

• Start When all needed components are entered the simulation can be started by clicking this
button.

• Remove The selected component will be removed by clicking this button.

• Save Saves a whole simulation configuration with all created objects.

• Load Loads a whole simulation configuration with all saved objects.

4.5. SIMULATION GUI 129

Figure 4.16: Simulation configuration tab.

As mentioned before it is possible to enter the configuration of a simulation via the GUI but it there is
also the possibility to use an XML-document to build up a simulation scene. Such an XML-document
describes the settings of the simulation. Further details about the XML-documents are given in Section
6.6.1. On top of this a text editor is integrated in the simulation GUI to offer the opportunity to change
the values in the XML-file (see also Figure 4.17).

After building a simulation environment a simulation run can be started by clicking the run button in
the inspector part of the simulation GUI. It is also possible to halt a simulation and resume it later. After
stopping a simulation it can be saved to a file. It is of course possible to reload this file and to resume
the simulation turn later. Some technical details about saving a simulation are given in Section 4.2.1.

Inspector Tab The inspector tab itself is divided in two more tabs, one called log facility which shows
information about the state and the result of a simulation and a tab called log statistics which allows
to show charts concerning selected parts of an simulation. The inspector tab offers on the left side a
so called logbook tree in which general information about the simulation and about jobs and nodes are
displayed. During a simulation these values are updated so that the state of the simulation in general,
for example how many jobs are already simulated, can be examined as well as the state of a selected part
of the simulation, for example a node and the requests send to this node. A more detailed explanation is
given in Section 4.2.3.2.

The log facility tab shows on the right side several widgets which are displaying the output that Avatars
produce, a log information widget and a widget in which all events could be displayed.

The log statistics tab offers a window in which selected properties can be added via drag and drop. It is
possible to choose the graphical representation of these properties, e.g. lines, bars or pie charts which are
then displayed below, for example see Figure 4.19 where the finishing times of jobs are represented in a

130 CHAPTER 4. SIMULATION IN GRIDSCHED

Figure 4.17: Simulation GUI XML Editor.

diagram. It is possible to choose between a real time and a simulation time axis. In this case a real time
axis was chosen to see how long it took to simulate each of these jobs.

Another example for a graphical analysis is given in Figure 4.20. In that graphic it is possible to see how
often a node was requested to execute a job. In this case the DataManager on node 20 was requested six
times to execute the job.

A bar which shows the progress of the simulation is placed under the log browser. This bar shows a
percentage which states how much of the simulation has already been completed. On top of this the
bar changes its color from red over orange to green while the simulation is proceeding. Another feature
this status control element offers, is to estimate the completion time of the simulation. This is done by
multiplying the average time the already simulated jobs needed to execute with the number of jobs left
and adding this result to the actual time to get approximately the time by which the simulation will be
finished.

4.6 Summary

The simulator offers an opportunity to simulate the GridSched middleware. It it possible to simulate jobs
like they would be executed in the GridSched environment. All components of GridSched are working
in the same way as they do in normal mode just a few adaptations were necessary (see Section 4.3 for
details). Therefore it is possible to examine the real behaviour of the GridSched middleware by using the
simulator. It was possible to detect a lot of failures and problems of GridSched in that way during the
development of the project.

A lot of functionalities were added during the second term of the project. The simulator is able to simulate
an arbitrary number of jobs which can be entered either by an XML-document (see Section 6.6.1) or via

4.6. SUMMARY 131

Figure 4.18: Simulation GUI in action.

a GUI. A simulation can be built up and executed with the help of a GUI. This GUI offers the availability
to define a simulation, run a simulation, and to view the output and the state during a simulation run.
Furthermore it is possible to analyze the result after a simulation has been running (see also Section
4.5). Therefore an evaluation facility was added to the simulator to be able to examine the results of a
simulation. This offers the opportunity to trace certain properties, for example the CPU load (see Section
4.2.3.1). The evaluation facility can be easily extended if additional properties should be traced.

Although a lot of functions could be added to the simulator there are also functions which could not
be realized. Although the NetworkManager is now working properly and all necessary alignments were
performed it is not possible to integrate NetworkManagers in the simulation. The integration was not
achieved because of different reasons. One important reason is the communication structure of GridSched.
Another reason is the design of the simulation which made it impossible to integrate components which
are acting both as a server and a client. Examples for components which are acting like that are Titan,
DataManager and NetworkManager. In the case of Titan the problem was solved by fully integrating
Titan into the simulation. The other components receive requests that can only be answered in a correct
way by sending requests to other components. For example, the DataManager needs to question the Net-
workManager for a network connection or a NetworkManager might need to ask other NetworkManagers
in other domains to produce an answer (see Section 3.8 for details). After sending such a request, the
sender waits for an answer to complete the task. The design of the simulation only allows one Avatar to
be active at one time. The sender of such an request could not be shut down until an answer is received
which could not be produced until the sender was shut down and the receiver could compute an answer.

There are several opportunities to solve this problem. One possible solution would have been to change
the components of GridSched in a way that only Titan acts both as a server and a client. This solution
was not chosen because it would have been necessary to change the entire design of GridSched and
almost every component of the project. Another opportunity is to change the communication structure

132 CHAPTER 4. SIMULATION IN GRIDSCHED

Figure 4.19: Simulation GUI line chart representation of a log entry.

of GridSched to a completely event based system, then components would not have to wait busy for
incoming requests or answers and could be shutdown after sending a request. Furthermore it might be
possible to allow more than one avatar to be associated to a Node and being activated at once, which
would result in a significant design change of the simulator. All of these options would have afforded an
amount of work which could not be realized during the remaining time.

4.6. SUMMARY 133

Figure 4.20: Simulation GUI pie chart representation of a log entry.

134 CHAPTER 4. SIMULATION IN GRIDSCHED

Chapter 5

Summary

5.1 GridSched’s Features

GridSched provides the basic functionality to create Jobs on the local computer via a Graphical User
Interface and to transfer it to an available Super Scheduler which is able to schedule and reserve the
needed resources by querying Local Schedulers, NetworkManagers and DataManagers. If this happened
successfully, a Local Scheduler can start and stop the execution of scheduled Jobs. Furthermore the
simulation is able to simulate workloads with a huge number of jobs and a Graphical User Interface is
able to present the results of the schedule in a flexible manner.

Apart from these functional properties, GridSched provides a flexible and extensible framework for Grid
Scheduling. Every single component may either be improved, extended or even be replaced independent of
the other components by a more sophisticated one. As communication between the components is done via
a communication interface, the underlying protocol may also be replaced. Some ideas for improvements
can be found in the next Section. For a comprehensive summary of the features of GridSched see Chapter
3.11.

5.2 Potential improvements and future enhancements

Although considerable effort has been conducted it was not possible to achieve all goals and improvements
which emerged since the start of the project. The following list gives a brief overview of planned features
and improvements that had to be discarded for various reasons as well as ideas for enhancements. Unless
stated otherwise the reason not to implement the feature was the lack of time.

General

• Support of the Globus Toolkit

At the start of the project Globus Toolkit 2 was soon to become obsolete and therefore disqualified
for usage. The usage of Globus Toolkit 3 was prevented due to several reasons. First of all, no
final version including all necessary services was available. Furthermore, the complexity of the
simulation would have been increased dramatically, as many APIs of the Globus Toolkit would
have to be encapsulated. Finally, an additional considerable amount of time would have to be spent
on getting familiar with the Globus Toolkit.

Super Scheduler (Titan)

• Interconnection between Super Schedulers

135

136 CHAPTER 5. SUMMARY

For a better load-sharing it might be helpful to have Super Schedulers communicating to each other
as another Super Scheduler may have other Resource Managers available to it. However, whether
this measure would result in better performance in reality is questionable.

• Ability to process simultaneous reservations of the same resources

The current implementation processes the reservations for every Job independently of one another.
This may lead to a situation where two scheduled Jobs which include at least two common resources
block each other from successfully reserving the required resources as a resource is not available for
reservation by another Job as long as it is part of a reservation process.

• Job Monitoring

A Job Monitor would enable the user to monitor and change the current state of her job.

• Integration of reservation and scheduler

The integration of the reservation into the scheduler would enable the scheduler to immediately
response to a failed reservation by excluding resources during the phase of scheduling.

• A billing system

This would enable the administrator to keep track of the costs of resource reservation and usage of
her users.

DataManager

• No active replica service

The DataManager in its current implementation does not offer active replica services. This means
it does not by itself make decisions about the copying, moving and deletion of data based on recent
usage.

• LDAP not used

Instead of LDAP it was decided to use SQL to store information about files.

NetworkManager

• No Forecast

The NetworkManager does not offer forecasts of network usage by the network weather system as
this would have required an considerable additional amount of time due to increased complexity.
Furthermore the possibilities concerning would have been quite limited and due to the fact that
the forecasts would have been based on past average usage, the significance of these forecasts are
questionable in general.

• No connection to the simulation

The NetworkManager is not able to communicate with the simulation. A new implementation of
the NetworkManager may be required for this to be possible.

• No low-level reservations

Reservations are not passed down to the level of routers which is of course necessary to enforce
reservations.

• No use of GARA

The Globus Architecture for Advanced Reservation (GARA) is not used as this would have de-
creased the possibilities of testing the software during the process of implementation.

• Quality of Service

The realization of this feature would have been quite complex and it would have been quite impos-
sible to test this part of the implementation.

5.2. POTENTIAL IMPROVEMENTS AND FUTURE ENHANCEMENTS 137

Graphical User Interface

• Graphical User Interface as Java-Applets

Instead, the Graphical User Interfaces are Java applications using Java Swing.

• No integrated Graphical User Interface

As the three Interfaces are meant for very different purposes, a integration into one single Graphical
User Interface would not result in a significant advantage.

Communication Interface

• No use of SOAP

For reasons of performance and difficulties during implementation, RMI was preferred.

Language

• Import and Export of XML

Due to the lack of support for SOAP there was no demand for this feature.

138 CHAPTER 5. SUMMARY

Chapter 6

Configuration and Installation

The software Apache Ant is used for automatically installing and configuring GridSched.
Ant is a build tool similar to the UNIX utility make. It provides functionality to automate compilation
and deployment of the Java-based software in a modular way.
This section will describe the installation process, figure out the different steps and explain how the
installation routine can be used.

The GridSched software comprises several components. Depending on the intended use, the configuration
of these components may differ. Consider as an example a host that is supposed to offer resources to the
Grid but that should not provide scheduling functionality. On this host, the component Bob has to be
configured correctly, while other components as Titan can be deactivated entirely. On the other hand,
there are some components (i.e. Communication that always have to be installed and configured.

Basically, the installation consists of four steps:

1. Create directory structure

2. Compile Java files

3. Copy binaries to their destination

4. Create initial configuration

The first three steps do not depend on the intended use of the system that is installed. They are required
on every system. What can be customized are the paths that should be used by the installation.
The last step is important for determining the functionality of the installed system.

6.1 Ant

This section describes, how Ant is used to meet the requirements explained in the previous paragraph.
Before doing this, it should be mentioned that Ant relies on the concept of so-called tasks and targets.
Tasks are single actions (i.e compiling or copying a file). These single actions can be aggregated to targets,
that can be considered as macros. They can be executed by the user, depending on what should be built
by Ant, by passing their name as a command line argument.
Note that there is a default target that is always executed if Ant is called with any parameter. The figure
shows which different targets exist for building GridSched and how they depend on each other. Depen-
dencies are an important concept within Ant. Often, several installation steps are interdependent. So for
example it is necessary that binaries are created before they can be copied to their intended destination.
With Ant, this is modelled by making the target install dependent on the target compile .
Executing a task leads to Ant executing all the required targets recursively.
All is the default target. It builds GridSched with all options available and does not contain any task

139

140 CHAPTER 6. CONFIGURATION AND INSTALLATION

Create „Build“
and „Dist“
directory

Compile source
files into „Build“

directory

Copy binaries
into „Dist“
directory

Configure Titan Configure Bob Configure
DataManager

Configure
NetManager

Create „Cfg“
directory config

build

dist

titan bob dm nm

all

Figure 6.1: Structure of GridSched Ant file.

itself.

<project name="GridSched" default="all" basedir=".">

<description>

Build file for GridSched

</description>

<!-- Global properties -->

<property name="prop" location="/temp/gridsched2/properties"/>

<property name="src" location="/temp/gridsched2/src"/>

<property name="build" location="build"/>

<property name="dist" location="dist"/>

<property name="cfg" location="dist/config"/>

<property name="lib" location="/temp/gridsched2/lib"/>

<target name="init">

<!-- Create the time stamp -->

<tstamp/>

<!-- Create the build directory structure used by compile -->

<mkdir dir="${build}"/>

<!-- Remove jfree-directory -->

<!-- delete dir="${src}/org/jfree"/ -->

</target>

<target name="communication" depends="init" description="compile communication" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

6.1. ANT 141

<include name="**/communication/" />

<exclude name="**/test/" />

<!-- exclude name="**/communication/" / -->

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="bob" depends="communication" description="compile bob" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/bob/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<!-- exclude name="**/bob/" / -->

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="dataManager" depends="bob" description="compile dataManager" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

142 CHAPTER 6. CONFIGURATION AND INSTALLATION

<src path="${src}" />

<include name="**/dataManager/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<!-- exclude name="**/dataManager/" / -->

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="language" depends="dataManager" description="compile language" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/language/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<!-- exclude name="**/language/" / -->

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="netManager" depends="language" description="compile netManager" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

6.1. ANT 143

<src path="${src}" />

<include name="**/netManager/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<!-- exclude name="**/netManager/" / -->

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="policy" depends="netManager" description="compile policy" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/policy/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<!-- exclude name="**/policy/" / -->

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="scheduler" depends="policy" description="compile scheduler" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

144 CHAPTER 6. CONFIGURATION AND INSTALLATION

destdir="${build}">

<src path="${src}" />

<include name="**/scheduler/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<!-- exclude name="**/scheduler/" / -->

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="simulation" depends="scheduler" description="compile simulation" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/simulation/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<!-- exclude name="**/simulation/" / -->

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="titan" depends="simulation" description="compile titan" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

6.1. ANT 145

destdir="${build}">

<src path="${src}" />

<include name="**/titan/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<!-- exclude name="**/titan/" / -->

<exclude name="**/util/" />

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="util" depends="titan" description="compile util" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/util/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<!-- exclude name="**/util/" / -->

<exclude name="**/gui/" />

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="gui" depends="util" description="compile gui" >

<javac sourcepath="${src}" debug="on"

146 CHAPTER 6. CONFIGURATION AND INSTALLATION

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/gui/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<!-- exclude name="**/gui/" / -->

<exclude name="**/install/" />

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

<target name="install" depends="gui" description="compile install" >

<javac sourcepath="${src}" debug="on"

srcdir="${src}"

destdir="${build}">

<src path="${src}" />

<include name="**/install/" />

<exclude name="**/test/" />

<exclude name="**/communication/" />

<exclude name="**/bob/" />

<exclude name="**/dataManager/" />

<exclude name="**/language/" />

<exclude name="**/netManager/" />

<exclude name="**/policy/" />

<exclude name="**/scheduler/" />

<exclude name="**/simulation/" />

<exclude name="**/titan/" />

<exclude name="**/util/" />

<exclude name="**/gui/" />

<!-- exclude name="**/install/" / -->

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</javac>

</target>

6.1. ANT 147

<target name="dist" depends="install"

description="Copy files to their final destination" >

<mkdir dir="${dist}/class"/>

<copy todir="${dist}/class">

<fileset dir="${build}"/>

</copy>

</target>

<target name="config" depends="dist"

description="Create initial configuration" >

<!-- In folder "cfg" information about installed components is stored. Config-GUI uses this info -->

<mkdir dir="${cfg}"/>

<copy todir="${cfg}">

<fileset dir="${prop}"/>

</copy>

<rmic classname="rmic org.gridsched.simulation.elysion.Connector" base="${build}">

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

</rmic>

<rmic classname="rmic org.gridsched.communication.RMISession" base="${build}"/>

</target>

<target name="bob" depends="config"

description="Create bob configuration" >

<java classname="org.gridsched.install.Config" classpath="${dist}/class">

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

<arg line="${cfg}/bobconf.xml bobResource arch value i686"/>

</java>

</target>

<target name="titan" depends="config"

description="Create Titan configuration" >

<java classname="org.gridsched.install.Config" classpath="${dist}/class">

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

<arg line="${cfg}/titanConf.xml jobBrokerConfig message_timeout value 10000"/>

</java>

<java classname="org.gridsched.install.Config" classpath="${dist}/class">

148 CHAPTER 6. CONFIGURATION AND INSTALLATION

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

<arg line="${cfg}/titanConf.xml jobBrokerConfig max_message value 1"/>

</java>

</target>

<target name="dm" depends="config"

description="Create DataManager configuration" >

<java classname="org.gridsched.install.Config" classpath="${dist}/class">

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

<arg line="${cfg}/dmConf.xml database dbhost value localhost"/>

</java>

</target>

<target name="nm" depends="config"

description="Create NetManager configuration" >

<java classname="org.gridsched.install.Config" classpath="${dist}/class">

<classpath>

<pathelement path="${build}"/>

<fileset dir="${lib}">

<include name="**/*.jar"/>

</fileset>

</classpath>

<arg line="${cfg}/nmConf.xml ldap port value 19382"/>

</java>

</target>

<target name="all" depends="bob,titan,nm,dm"

description="complete installation" >

</target>

<target name="clean"

description="clean up" >

<!-- Delete the ${build} and ${dist} directory trees -->

<delete dir="${build}"/>

<delete dir="${dist}"/>

</target>

</project>

6.2. GRAPHICAL USER INTERFACES 149

6.2 Graphical User Interfaces

6.2.1 ServerGUI

Before executing the ServerGUI component for the first time the stub and skeleton classes of the
ServiceControl and the ConfigFile class have to be created. This is done by compiling both classes
with Java’s RMI compiler called RMIC which is included in a Sun JDK like in version 1.4 or better.
There is no other parameter than the class path needed when running rmic.

Before compiling the local system’s classpath variable has to be modified to refer to the local Java
class directory and the JDK directory. As far as the stub and skeleton classes exist and the RMI registry
is running in the managed network domain the ServerGUI is ready to be executed by the command java

ServerGUI.

The default location of the GridSched service’s configuration files is the directory containing the ServerGUI
classes: .\org\gridsched\gui\server. If the location is changed the default path may be adjusted in
the user interface.

6.2.2 ClientGUI

The GridSched ClientGUI is a graphical user interface for creating and managing jobs on a host run-
ning Titan. The client can be started by executing the file client.jar or by using the command java

client.jar.

After starting the program a login window appears (see Figure 6.2).

Figure 6.2: The Login window.

The user has to enter her account name, her password and the address of the Titan she wants to work
at. For the login she has to press the ”Login” button.

If the user does not have any account, she can create one by opening ”File” → ”New Account” (see
Figure 6.3).

For the creation of the account the user has to enter the complete data and the address of the preferred
Titan. After sending the data the ”Log In” window appears again.

When the user is logged in the ”List of Jobs” window appears (see Figure 6.4).

The ”List of Jobs” window shows a list of the current jobs. The list contains the ”JobID”, short de-
scriptions of the jobs and their current schedule state. The user has the possibility to create a new job
with the ”New Job” button or to work with one of the already existing jobs. She can choose the job
she wants to work at by marking it in the list or entering the ”JobId” directly. Afterwards she can edit,
cancel, delete or start the schedule of the job. If she has edited or cancelled a job she is required to restart
the scheduling. If there exists a job which has already been scheduled the user can watch the ”List of
Schedules” (see Figure 6.5).

150 CHAPTER 6. CONFIGURATION AND INSTALLATION

Figure 6.3: The New Account window.

Figure 6.4: The List of Jobs window.

6.2. GRAPHICAL USER INTERFACES 151

Figure 6.5: The List of Schedules window.

The ”List of Schedules” shows all schedules for the selected job with ”ScheduleID” and ”ObjectiveValue”.
The user can choose a ”ScheduleID” to either execute the job according to the chosen schedule or cancel
it. Further details of the schedule are displayed by pressing the ”Show” button.

The now opened ”Job” window shows all important data of the job: ”JobId”, ”ScheduleState”, ”Objec-
tiveFunction” and the scheduler witch created the schedule.

To get back to the ”List of Jobs” the ”List of Jobs” button is provided (see Figure 6.4).

A new job can be created by pressing the ”New Job” button. The ”Job” window opens (see Figure 6.6).

Figure 6.6: The Job window.

To create the job the user has to define the main target by first pressing the ”Main Target” button. A
”Target” window will be opened (see Figure 6.7).

In the ”Target” window the user has to enter a unique name, a start and an end time or an duration and
a maximum price for the job. Resources (”Bob”, ”File”, ”Net”) and sub targets can be added.

In the window ”Bob Resource” a hardware resource can be specified. The user is required to enter a
name, but all other specifications are optional (see Figure 6.8).

In the window ”Data Resource” a file needed can be specified. This requires the name and the hash or
address of the file (see Figure 6.9).

152 CHAPTER 6. CONFIGURATION AND INSTALLATION

Figure 6.7: The Target window.

Figure 6.8: The Bob Resource window.

Figure 6.9: The Data Resource window.

6.2. GRAPHICAL USER INTERFACES 153

Figure 6.10: The Net Resource window.

In the window ”Net Resource” a network connection can be specified. The name is mandatory, all other
fields are facultative (see Figure 6.10).

154 CHAPTER 6. CONFIGURATION AND INSTALLATION

6.3 Scheduler

6.3.1 Resource Information Service

GridSched uses Sun ONE Directory Server [18] as an LDAP Server. The ”properties” folder contains the
appropriate configuration ldif file (99user.ldif). It may be necessary to modify that file in order to use
it on other LDAP implementations.

6.3.2 Titan

Most of the Super Scheduler’s properties may be configured by a central XML file which is situated in
GridSched’s ”properties” folder. It is named titanConf.xml

<jobBrokerConfig>

<message_timeout value = "10000"/>

<max_messages value = "1"/>

</jobBrokerConfig>

Configure how long Titan will wait for replies when communicating with other GridSched components
and how many replies Titan will accept for the same request.

<reservationClientConfig>

<message_timeout value = "5000"/>

</reservationClientConfig>

Configure how long Titan will wait for replies to reservation requests.

<JNDIConfig>

<host name = "panda.e-technik.uni-dortmund.de" port = "19382"/>

</JNDIConfig>

Configure the hostname and port that Titan will use to contact the remote directory service.

<nuSchedConfig>

<optimizer_timeout value = "30000"/>

<solver_timeout value = "15000"/>

<solver_max_fail value = "2"/>

<solver_max_mutate value = "4"/>

</nuSchedConfig>

Configure properties of the NuSched scheduling module. Define the maximum time that the solver may
spend on creating one schedule, how often one scheduling-task may fail before it is abandoned and how
often it may be mutated. Specify how long the total scheduling process is allowed to take.

<agentConfig>

<request_timeout value = "30000"/>

<negative_cache_timeout value = "30000"/>

<positive_cache_timeout value = "30000"/>

<depth_first_mode value = "false"/>

</agentConfig>

Configure properties of NuSched’s agent modules. Specify how long requests are allowed to remain inside
an agent and how long entries will be cached. Agent components may be in depth first mode and evaluate
one option after another, or they may be in breath first mode and try to evaluate all options in parallel.

6.3. SCHEDULER 155

<defaultConfig>

<debugUI value = "true"/>

</defaultConfig>

Choose whether or not a debug window should be displayed to to visualize some of the activities going
on in Titan.

<Policies>

<Policy group="*" user="*" name="access">

<permission general = "true"/>

</Policy>

</Policies>

Set up basic access permissions for Titan.

Most properties will be stored in Titan’s ”properties” Hashtable. Titan features a static method Object

getProperty(String name) to retrieve any property from anywhere in the code at any time.

6.3.3 Bob

Most of the LocalScheduler’s properties can be configured by the XML file bobconf.xml in GridSched’s
”properties” folder.

<JNDIConfig>

<host name = "panda.e-technik.uni-dortmund.de" port = "19382"/>

</JNDIConfig>

Define the hostname and port that Bob will use to communicate with the remote directory service, where
it publishes its resources.

<ReservationConfig>

<grace_timeout value= "10000"/>

</ReservationConfig>

Configure the duration that a grace reservation will be valid.

<bobResource>

<arch value = "i686"></arch>

<subArch value ="mmx,sse"></subArch>

<os value = "Windows_NT"></os>

<osVer value = "5.11"></osVer>

<speedIndex value="2400"/>

<physRam value="502"/>

<maxRam value="1266"/>

<id value="814"/>

<OID value="123456"/>

<name value="thisMachine"/>

<numCPU value="1"/>

<!-- uri value="grid://pool-e08/bob/thisMachine"/ -->

<!-- bob value="grid://pool-e08/bob"/ -->

<!-- dataManager value="grid://pool-e08/data"/ -->

<netManager value="grid://pool-e06/net"/>

<diskSpace value="9767516"/>

<cancelPrice value="1"/>

<bindingPrice value="1"/>

<gracePrice value="1"/>

156 CHAPTER 6. CONFIGURATION AND INSTALLATION

<type value="0"/>

<cost value="0"/>

</bobResource>

Set up the properties of the resource(s) that this Bob manages. There may be more than one.

<Policies>

<Policy group="*" user="*">

<permission general="true"/>

<costfactor value="0.001"/>

</Policy>

</Policies>

Set up basic access permissions for Bob and its’ resources.

Unless not specified by the configuration file Bob will try to determine the following resource properties
by itself:

• id Bob will compute a unique id from the machine’s IP-address.

• uri Bob will use the uri grid:\\"hostname"\bob\"resourceName".

• bob Bob will use the uri grid:\\"hostname"\bob.

• dataManager Bob will use the uri grid:\\"hostname"\data.

• netManager Bob will use the uri grid:\\"hostname"\"name".

6.4 Data Manager

Four different aspects of configuration are addressed by the configuration.

• Network Manager

• Database

• Scheduler

• gassGate

The first aspect is configured by keys located directly beneath the file’s ¡configuration¿ element. For the
other topics, separate sections have been created.
The section gassGate contains the information necessary for accessing a Globus GASS Gateway.
The keys withing scheduler allow to configure the interaction between DataManager and Scheduler.
The section database contains the information necessary for accessing the database used by DataManager.

6.5 Network Manager

The configuration file consists of two section. The first one, localGraph, contains the key location. This
is used to specify the location of the file which describes the network graph.
The second section, ldap, contains the keys address and value. They are used to specify IP address
and TCP port of the LDAP server used by NetManager.

6.6. SIMULATOR 157

<configuration>

<netManagerHostName value="pool-b07"/>

<netManagerIPAddress value="129.217.186.163"/>

<database>

<dbHost value ="panda"/>

<dbName value ="gridsched"/>

<dbTable value ="file"/>

<dbUser value ="pg428"/>

<dbPasswd value ="aaa"/>

<providedSpace value = "10000000"/>

</database>

<scheduler>

<startDelay value ="1000"/>

<validityDuration value ="120000"/>

<localHost value ="129.217.184.3"/>

<localFolder value="c:/temp"/>

</scheduler>

<gassGate>

<port value ="21"/>

<ftpUser value ="griduser"/>

<ftpPasswd value ="grid"/>

</gassGate>

</configuration>

Figure 6.11: Sample configuration file for DataManager.

<configuration>

<localGraph>

<location value="c:\home\LocalGraph.ser"/>

</localGraph>

<ldap>

<address value="localhost"/>

<port value="19382"/>

</ldap>

</configuration>

Figure 6.12: Sample configuration file for NetManager.

6.6 Simulator

This section describes all necessary steps that are needed to create a simulation scene. In contrast to
other parts of GridSched, there is no configuration in general. All program settings are individual for
each scene, and are parts of the simulation´s input. As mentioned in 4.5, there are two possibilities to
committed an input to the simulation. The first one is provided by a graphical user-interface introduced
in 4.5. The latter one is the use of an XML-document, which contains all settings. Section gives a brief
introduction how to create these. But both require a remote directory and a SQL-database server to
manage resources, refer to Section 6.4 for instructions.

158 CHAPTER 6. CONFIGURATION AND INSTALLATION

6.6.1 Creating a simulation scene by an XML-Document

The simulation GUI provides an option to load an XML-file, which was either created externally by hand
or via the internal text editor (see 4.5). The syntax equals to common XML-tag definitions:

1. empty tags < defiervalue = ”value of defier”/ >

2. enclosing tags < defier > ... < /defier > These tags may include empty tags.

The document is structured in three parts, global simulation settings (see 6.6.1.1), a list of jobs that are
to be simulated (see 6.6.1.2), the virtual Grid Computing Environment (6.6.1.3). All tags of any part of
the document has to be encapsulated with the enclosing tag ’<simulation> ... </simulation>’. The
text below introduces in each part in more detail.

6.6.1.1 Global Simulation Settings

These settings affect the whole configuration of the simulator and the simulation turn. The list below
gives an overview of each tag defier which must be set.

• name The name of the simulation.

• directory The working-path of the simulation (a an absolute canonical path name).

• staticResourceLibraryA Remote directory server for the simulation to store resources, its network-
address (address) and port number (port) must be set.

• starttime - endtime A start time and end time of the simulation (GST).

• rmiport The IP-port that should be used for RMI communication.

• logunit The name for a workload file (without suffix as a canonical path name).

• SQLdatabase The configuration for the SQL database used for the DataManager component, which
consists of following settings: host-address (dbHost) of the SQL-server, the name of the database
(dbName), the table (dbTable), the table user (dbUser) and her password (dbPasswd).

Their sequence in the document is not prescribed an can vary. This block is encapsulated by the
<configuration>...</configuration> tag. An example configuration of this part of the document
is given below:

<configuration>

<directory value="c:\temp\simulation\"/>

<name value="foobar"/>

<starttime value="1.12.2000 8:00:00"/>

<endtime value="31.12.2010 8:00:00"/>

<rmiport value="2099"/>

<staticResourceLibrary>

<address value="foo.bar.de"/>

<port value="19381"/>

</staticResourceLibrary>

<logUnit>

<filename value="c:\temp\simulation\logfile"/>

</logUnit>

<SQLdatabase>

<dbHost value ="foo.bar.de"/>

<dbName value ="simulation"/>

<dbTable value ="turn_01"/>

<dbUser value ="foobar"/>

<dbPasswd value ="foobar"/>

</SQLdatabase>

</configuration>

6.6. SIMULATOR 159

6.6.1.2 Job Definitions

The XML-document also contains the description of jobs which should be simulated. A job consists
of several different parts. The most important setting is the simulation time of the submission to the
scheduler, because it affects the sequence of the simulation (simSchedTime). On top of this the user who
submits the job and the group the user belongs to must be set, to comply the policies used by Bob and
Titan. All other tags describing a job are equal to the familiar definitions as used in reality (see 3.3).
Their is no limitations, how many jobs are committed to the document except of hardware limitations
given by the hosted machine. Below an example is given, how to specify a single job:

<job>

<simSchedTime value="01.12.2000 12:00:00"/>

<user value="leading0"/>

<group value="pg428"/>

<objectiveFunction value = "1/(cpu.Price+archive.Price+bat.Price)"/>

<objectTarget>

<doItem>

<instructions value="run(bat,cpu,archive)"/>

</doItem>

<resources>

<bobResource>

<arch value = "athlonxp"/>

<subArch value ="mmx,sse"/>

<os value = "Windows_NT"/>

<name value = "cpu"/>

<numCPU value = "1"/>

</bobResource>

<dataResource>

<name value = "bat"/>

<maxSize value = "18"/>

<sourceURI value = "grid://41/public/extractproject.bat"/>

</dataResource>

<dataResource>

<name value = "archive"/>

<hash value = "project"/>

</dataResource>

</resources>

<name value="main"/>

<oid value="10"/>

<price>

<value value="7400000"/>

<currency value="0"/>

</price>

<timeslot>

<starttime value="3.12.2000 20:00:00"/>

<endtime value="5.12.2000 20:30:00"/>

<duration value="7200000"/>

</timeslot>

</objectTarget>

</job>

To be able to simulate a big amount of jobs it would be uncomfortable to enter all these jobs into the
XML-document by hand. Therefore it is possible to use the described job definitions as templates (protos)
for creating jobs of the same type, varied by the submission time (simSchedTime), the starttime and
endtime and the duration. To invoke the production of jobs from a single template, the ’<workload
value="workload value"/>’’’ must be included to the document at job-level. To vary the mentioned

160 CHAPTER 6. CONFIGURATION AND INSTALLATION

values, a randomized method is used. To gain more control over it , the workload value contains a
tuple of ten long values of different assignments parted by ’|’ characters. These values has the following
meaning and must appear the the same ordering:

1. JobProtoType The ID of the job template that should be used, the ID numbers are given by the
sequence of the job templates in the documents, starting with ’0’.

2. Count The number of jobs to produce from the referred template.

3. SubMissionIntervall The submission-time gap between two jobs as a long value in milliseconds.

4. SubmissionVariance The randomized variance of the SubMissionIntervall in milliseconds.

5. PrefferedStartTimeOffset The time gap between submission time and starttime of a job in
milliseconds.

6. StartTimeOffsetVariance The randomized variance of the PrefferedStartTimeOffset in mil-
liseconds.

7. PrefferedEndTimeOffset The time gap between the begin of the starttime and endtime of a
job in milliseconds.

8. EndTimeVariance The randomized variance of the PrefferedEndTimeOffset in milliseconds.

9. PrefferedDuration The duration of a job.

10. DurationVariance The randomized variance of the PrefferedDuration in milliseconds.

Note that the submission-time of the first job is relative to the starttime of the simulation and not of
its used template. A restriction of how many workload tags are defined is not given. It is even possible
to use a template more than once. An example is given below:

<workload value="0|10|14400000|36000000|1800000|360000|7200000|36000|400000|0"/>

6.6.1.3 Grid Environment

The XML-document must also contain all required information to create a Grid Computing Environment
for the simulation, which consists of Nodes. As described in 4.1, a Node represents a computer on which
services of GridSched like Bob and DataManager can run. Nodes are defined in the document with the
enclosing tag ’<node>...</node>’ which must contain following fields

• description A string to describe this Node.

• id The virtual network address for this node. Note, that this number must divisible by 10, refer to
4.2.2.1 for details.

• ipAdress A real IPv4 address can be attached, but this has no effect on the simulator since virtual
network addresses are used.

• avatar Is an enclosing tag, to attach a new Avatar to the Node, and contains the fields, type,
aliasLocation, aliasParameter. The first one indicates the service, that it should be an instance
of, the digit ’1’ is to be set for a Bob, ’2’ for a DataManager. The second one gives the executable,
that is to be called, when the associated Node is scheduled to run. The last one represents optional
parameter, that can be passed to the executable. A node cannot carry more than one Avatar in the
current implementation of Elysion, but the data-structures and the initialization of the Simulation
can handle multiple Avatars for a Node. An example configuration of a Node is given below:

6.6. SIMULATOR 161

<node>

<description value="Computer Node 10"/>

<id value="10"/>

<ipAddress value="129.186.217.10"/>

<avatar>

<type value="1"/>

<aliasLocation value="java org.gridsched.bob.Bob"/>

<aliasParameter value=""/>

</avatar>

</node>

At least to complete a simulation scene, there must be resources be defined. Otherwise every schedule from
Titan will fail. There are two types of resources, for Bob and for the DataManager. Both are represented
by the enclosing tags <bobResource>...</bobResource> and <databaseFile>...</databaseFile>.
The empty tags to fill in are equal to their Java class´representations and are explained in 3.3.3.4 and
3.7.3.3. To attach a resource to services, that have to manage it, the following fields must be set to their
URIs where their virtual address is encoded:

• For Bob Resources, the URI, bob, dataManager and netManager fields. An example is given below
for a Bob with the virtual network address ’11’, a DataManager addressed by ’22’. The netManager
has no effect and will be ignored by the simulation´s initialization.

<URI value="grid://11"/>

<bob value="grid://11/bob/thisMachine"/>

<dataManager value="grid://22/data"/>

<netManager value="grid://33/net"/>

• For DataManager Resources, the uri and sourceURI fields have to be set to dedicated locations as
an URI formatted string. Note that real data transfers of the DataManager are not simulated by
the simulation, so that these setting do not affect. But the scheduling and reservation of these are
simulated, so that declarations of Data Resources are mandatory. An example of a Data Resource
is given below:

<databaseFile>

<hash value="astronomical"/>

<description value="programming project files"/>

<author value="123"/>

<state value="0"/>

<uri value="panda://public/image.gz"/>

<SourceURI value="panda://public/image.gz"/>

<mark value="1"/>

<dateFrom value="1.12.1998 5:00:00"/>

<dateTo value="12.12.2010 8:00:00"/>

<filesize value="123"/>

<filedate value="1.12.1999 8:00:00"/>

<cost value="50"/>

</databaseFile>

The XML-document is parsed during the initialization of the simulation environment. Within this process
the Java objects are produced and for example given to Okeanos, the internal database of the simulation
to store these definitions. Another example are the Bob Resources which are instantiated corresponding
to the values in the file and then are pushed to the StaticResourceLibrary which writes the information
into an LDAP server.

At least an example of a simulation XML-document is given below. It defines a scene with two job
templates, four nodes and 4 resources. For each template, ten jobs are generated resulting in twenty jobs
to be simulated.

Example XML document for a simulation scene:

162 CHAPTER 6. CONFIGURATION AND INSTALLATION

<simulation>

<configuration>

<directory value="c:\temp\gridsched2\simulation\"/>

<name value="SimulationsTest"/>

<starttime value="1.12.2000 8:00:00"/>

<endtime value="31.12.2010 8:00:00"/>

<rmiport value="2099"/>

<staticResourceLibrary>

<address value="panda"/>

<port value="19381"/>

</staticResourceLibrary>

<logUnit>

<filename value="c:\temp\gridsched2\simulation\presentationlog"/>

</logUnit>

<SQLdatabase>

<dbHost value ="panda"/>

<dbName value ="gridsched"/>

<dbTable value ="gridsched"/>

<dbUser value ="pg428"/>

<dbPasswd value ="aaa"/>

</SQLdatabase>

</configuration>

<job>

<simSchedTime value="01.12.2000 12:00:00"/>

<user value="leading0"/>

<group value="pg428"/>

<objectiveFunction value = "1/(cpu.Price+archive.Price+bat.Price)"/>

<objectTarget>

<doItem>

<instructions value="run(bat,cpu,archive)"/>

</doItem>

<resources>

<bobResource>

<arch value = "athlonxp"/>

<subArch value ="mmx,sse"/>

<os value = "Windows_NT"/>

<name value = "cpu"/>

<numCPU value = "1"/>

</bobResource>

<dataResource>

<name value = "bat"/>

<maxSize value = "18"/>

<sourceURI value = "grid://41/public/extractproject.bat"/>

</dataResource>

<dataResource>

<name value = "archive"/>

<hash value = "project"/>

</dataResource>

</resources>

6.6. SIMULATOR 163

<name value="main"/>

<oid value="10"/>

<price>

<value value="7400000"/>

<currency value="0"/>

</price>

<timeslot>

<starttime value="3.12.2000 20:00:00"/>

<endtime value="5.12.2000 20:30:00"/>

<duration value="7200000"/>

</timeslot>

</objectTarget>

</job>

<job>

<simSchedTime value="01.12.2000 14:00:00"/>

<user value="leading0"/>

<group value="pg428"/>

<objectiveFunction value = "1/(cpu.Price+astro.Price+bat.Price)"/>

<objectTarget>

<doItem>

<instructions value="run(bat,cpu,astro)"/>

</doItem>

<resources>

<bobResource>

<arch value = "athlonxp"/>

<subArch value ="mmx,sse"/>

<os value = "Windows_NT"/>

<name value = "cpu"/>

<numCPU value = "1"/>

</bobResource>

<dataResource>

<name value = "bat"/>

<maxSize value = "18"/>

<sourceURI value = "grid://41/public/astro.bat"/>

</dataResource>

<dataResource>

<name value = "astro"/>

<hash value = "project"/>

</dataResource>

</resources>

<name value="main"/>

<oid value="10"/>

<price>

<value value="7400000"/>

164 CHAPTER 6. CONFIGURATION AND INSTALLATION

<currency value="0"/>

</price>

<timeslot>

<starttime value="3.12.2000 20:00:00"/>

<endtime value="5.12.2000 20:30:00"/>

<duration value="7200000"/>

</timeslot>

</objectTarget>

</job>

<node>

<description value="Computer Node 40"/>

<id value="40"/>

<ipAddress value="129.186.217.40"/>

<avatar>

<type value="1"/>

<aliasLocation value="java org.gridsched.bob.Bob"/>

<aliasParameter value=""/>

</avatar>

</node>

<node>

<description value="DataManager Node 30"/>

<id value="30"/>

<ipAddress value="129.186.217.30"/>

<avatar>

<type value="2"/>

<aliasLocation value="java org.gridsched.dataManager.DataGate"/>

<aliasParameter value=""/>

</avatar>

</node>

<node>

<description value="DataManager Node 20"/>

<id value="20"/>

<ipAddress value="129.186.217.20"/>

<avatar>

<type value="2"/>

<aliasLocation value="java org.gridsched.dataManager.DataGate"/>

<aliasParameter value=""/>

</avatar>

</node>

<node>

<description value="Computer Node 10"/>

<id value="10"/>

<ipAddress value="129.186.217.10"/>

6.6. SIMULATOR 165

<avatar>

<type value="1"/>

<aliasLocation value="java org.gridsched.bob.Bob"/>

<aliasParameter value=""/>

</avatar>

</node>

<bobResource>

<arch value = "athlonxp"></arch>

<subArch value ="mmx,sse"></subArch>

<os value = "Windows_NT"></os>

<osVer value = "5.11"></osVer>

<speedIndex value="2400.0"/>

<physRam value="502"/>

<maxRam value="1266"/>

<id value="0"/>

<OID value="123456"/>

<type value="0"/>

<cost value="1"/>

<name value="thisMachine"/>

<numCPU value="1"/>

<URI value="grid://11"/>

<bob value="grid://11/bob/thisMachine"/>

<dataManager value="grid://22/data"/>

<netManager value="grid://33/net"/>

</bobResource>

<bobResource>

<arch value = "athlonxp"></arch>

<subArch value ="mmx,sse"></subArch>

<os value = "Windows_NT"></os>

<osVer value = "5.11"></osVer>

<speedIndex value="2400.0"/>

<physRam value="502"/>

<maxRam value="1266"/>

<id value="0"/>

<OID value="123456"/>

<type value="0"/>

<cost value="1"/>

<name value="thisMachine"/>

<numCPU value="1"/>

<URI value="grid://41"/>

<bob value="grid://41/bob/thisMachine"/>

<dataManager value="grid://22/data"/>

<netManager value="grid://33/net"/>

</bobResource>

<databaseFile>

<hash value="astronomical"/>

<description value="programming project files"/>

<author value="123"/>

166 CHAPTER 6. CONFIGURATION AND INSTALLATION

<state value="0"/>

<uri value="panda://public/image.gz"/>

<SourceURI value="panda://public/image.gz"/>

<mark value="1"/>

<dateFrom value="1.12.1998 5:00:00"/>

<dateTo value="12.12.2010 8:00:00"/>

<filesize value="123"/>

<filedate value="1.12.1999 8:00:00"/>

<cost value="50"/>

</databaseFile>

<databaseFile>

<hash value="project"/>

<description value="hubble space scope prints"/>

<author value="123"/>

<state value="0"/>

<uri value="panda://public/astro.gz"/>

<SourceURI value="panda://public/astro.gz"/>

<mark value="1"/>

<dateFrom value="1.12.1998 5:00:00"/>

<dateTo value="12.12.2010 8:00:00"/>

<filesize value="123"/>

<filedate value="1.12.1999 8:00:00"/>

<cost value="50"/>

</databaseFile>

<!-- #

Elysion Workload Definition File

Format for each Line representing a prototype population:

JobProtype(int)|Count(int)|SubmissionInterval(long)|

SubmissionVariance(long)|PrefferedStartTimeOffset(long)|

StartTimeOffsetVariance(long)|prefferedEndTimeOffset(long)|

EndTimeVariance(long)|

PrefferedDuration(long)|DurationVariance(long)

#

-->

<workload value="0|10|14400000|36000000|1800000|360000|7200000|36000|400000|0"/>

<workload value="1|10|14400000|36000000|1800000|360000|7200000|36000|400000|0"/>

</simulation>

List of Figures

2.1 Main terms in GridSched’s concept. 13

2.2 GridSched’s concept of distributed scheduling. 14

2.3 A view on GridSched’s components. 17

3.1 Roles in Grid Scheduling. 22

3.2 Architecture of GridSched. 23

3.3 Use Cases of GridSched’s ServerGUI. 26

3.4 Classes of GridSched’s ServerGUI. 27

3.5 Sequence Diagram of GridSched’s ServerGUI. 29

3.6 UML: ClientGUI. 31

3.7 UML Activity: ClientGUI - log in. 31

3.8 UML Activity: ClientGUI - new job. 32

3.9 UML Sequence: ClientGUI - log in. 32

3.10 UML Sequence: ClientGUI - new job. 33

3.11 UML Sequence: ClientGUI - edit job. 33

3.12 UML Sequence: ClientGUI - edit main target. 33

3.13 UML Sequence: ClientGUI - edit target or resource. 34

3.14 UML Sequence: ClientGUI - save job. 34

3.15 Language Item structure. 36

3.16 Language Interface structure. 37

3.17 Code of the +-operator. 38

3.18 Sequence of convertToHashtable. 39

3.19 Example Job. 42

3.20 Classes of Titan. 45

3.21 Algorithmic description of SimpleSched. 48

3.22 Classes related to the ProblemSpace classes of SimpleSched. 50

3.23 Classes related to the implementation of Constraints within SimpleSched. 51

3.24 Pseudocode representation of the LowerBoundSolver’s strategy for creating a valid schedule. 52

3.25 Activity diagram of the LowerBoundSolver’s strategy for creating a valid schedule. 53

3.26 Classes related to the SolutionSpace sub-module of SimpleSched. 54

3.27 Activity diagram of the scheduler’s strategy of improving a schedule. 55

167

168 LIST OF FIGURES

3.28 Overview of the scheduler module’s classes. 57

3.29 Classes of NuSched’s ’Graph’ package. 59

3.30 More classes of NuSched’s ’Graph’ package. 60

3.31 Classes of NuSched’s ’Analyzer’ package. 63

3.32 Classes of NuSched’s ’GridAgent’ package. 64

3.33 The basic workings of every implemented GridAgent component. 66

3.34 Classes of the ’Algorithm’ package of NuSched. 67

3.35 Activity diagram of the solver’s algorithm. 69

3.36 Activity diagram of the optimizer’s algorithm. 70

3.37 Packages of NuSched. 71

3.38 Receiving matching resources. 74

3.39 Bob Class Diagram. 76

3.40 Bob GraceReservationDiagram. 77

3.41 Bob BoundReservationDiagram. 78

3.42 Requirements of the Grid towards the DataManager. 80

3.43 DataManager class diagram overview. 82

3.44 Control class and database classes. 83

3.45 Scheduler class and gate classes to other components. 84

3.46 Job classes. 85

3.47 Possible requests from Titan. 86

3.48 Sequence Diagram: Search and copy a file. 87

3.49 Scheme of the database. 88

3.50 Scheme of the job controller. 90

3.51 Sequence Diagram: Scheduler.createItem(). 92

3.52 Global and Local Graph. 96

3.53 Example getOffer(). 98

3.54 GUI of the NetworkManager. 99

3.55 Menu of the GUI. 100

3.56 Reservations of a specified network link. 101

3.57 Class Diagram NetworkManager. 102

3.58 The tree-structure of the policy. 104

4.1 Simulation main package classes. 109

4.2 Okeanos classes. 110

4.3 Elysion Classes. 112

4.4 startNode() sequence diagram. 113

4.5 stopNode() sequence diagram. 114

4.6 Virtual network addresses. 115

4.7 Job stage transitions. 115

4.8 A short overview of all job stages. 116

LIST OF FIGURES 169

4.9 Job processing. 117

4.10 Event processing. 118

4.11 Evaluation facility classes. 121

4.12 LogEntry classes. 122

4.13 Avatar initialization. 126

4.14 Avatar stop sequence. 127

4.15 Overview of the Simulation GUI. 128

4.16 Simulation configuration tab. 129

4.17 Simulation GUI XML Editor. 130

4.18 Simulation GUI in action. 131

4.19 Simulation GUI line chart representation of a log entry. 132

4.20 Simulation GUI pie chart representation of a log entry. 133

6.1 Structure of GridSched Ant file. 140

6.2 The Login window. 149

6.3 The New Account window. 150

6.4 The List of Jobs window. 150

6.5 The List of Schedules window. 151

6.6 The Job window. 151

6.7 The Target window. 152

6.8 The Bob Resource window. 152

6.9 The Data Resource window. 152

6.10 The Net Resource window. 153

6.11 Sample configuration file for DataManager. 157

6.12 Sample configuration file for NetManager. 157

170 LIST OF FIGURES

Bibliography

[1] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, Paul F. Reynolds Jr.
A Synopsis of the Legion Project. Department of Computer Science, University of Virginia.

[2] Arcot K. Rajasekar, Reagan W. Moore. Data and Metadata Collections for Scientific Applications.
In Lecture Notes in Computer Science Vol. 2110, Springer-Verlag Heidelberg, 2001.

[3] B. Lakhal, S. Pinschke. Netzwerk-Management. In Seminarband PG 428: Entwicklung eines Daten-
und Netzwerk-Schedulings für Grid-Computing in Verbindung mit einem flexiblen Bewertungsmech-
anismus, 2003.

[4] The Condor Project, http://www.cs.wisc.edu/condor/, as of March 2004.

[5] Dietmar Erwin. UNICORE Plus Final Report, Uniform Interface to Computing Resources, Joint
Project Report for the BMBF Project UNCORE Plus. Forschungszentrum Jülich, 2003.

[6] The EU Datagrid, http://www.eu-datagrid.org, as of March 2004.

[7] Global Grid Forum, http://www.gridforum.org, as of March 2004.

[8] Globus Alliance, http://www.globus.org, as of March 2004.

[9] Heinz Stockinger, Asad Samar, Bill Allcock, Ian Foster, Koen Holtmann, Brian Tierney. File and
Object Replication in Data Grids. In Proc. 10th Intl. Symp. on High Perfomance Distributed Com-
puting, IEEE Press, 2001.

[10] J. Bester, I. Foster, C. Kesselmann, J. Tedesco, S. Tuecke. GASS: A Data Movement and Access
Service for Wide Area Computing Systems. In Proceedings of the Sixth Workshop on I/O in Parallel
and Distributed Systems, 1999.

[11] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny and Steven Tuecke. Condor-G: A Computa-
tion Management Agent for Multi-Institutional Grids. In Proceedings of the Tenth IEEE Symposium
on High Performance Distributed Computing (HPDC10), San Francisco, California, August 7-9 2001.

[12] http://java.sun.com.

[13] Kay S. Brennecke, Stefan Einbrodt, Jan Philip Eumann, Sebastian Freitag, Joern Gerendt, Manuel
Heß, Bouchta Lakhal, Stefan Pinschke, Zouhair Sabry, Daniel Sander, Sebastian Schlitte, Thomas
Wojczechowski. Interim report pg 428: Development of a data- and network scheduling for grid-
computing including a flexible evaluation mechanism. Technical report, University of Dortmund,
2003.

[14] Legion, http://legion.virginia.edu, as of March 2004.

[15] OpenLDAP. Openldap - community developed ldap software. 2004.

[16] S. Pinschke, S. Schlitte. Directory-Dienste mit LDAP. In Seminarband PG 428: Entwicklung eines
Daten- und Netzwerk-Schedulings für Grid-Computing in Verbindung mit einem flexiblen Bewer-
tungsmechanismus, 2003.

171

172 BIBLIOGRAPHY

[17] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm,
P. Vanderbilt, D. Snelling. Open Grid Services Infrastructure (OGSI) Version 1.0. In Global Grid
Forum Draft Recommendation, 6/27/2003.

[18] http://wwws.sun.com/software/products/directory srvr/home directory.html.

[19] Thomas Sandholm, Jarek Gawor. Globus Toolkit 3 Core - A Grid Service Container Framework.
July 2003.

[20] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, S. Tuecke. Data Management and Transfer in HighPerformance Computational Grid
Environments. In Parallel Computing, Vol. 28, 2001.

[21] W. Allcock, J. Bresnahan, I. Foster, L. Liming, J. Link, P. Plaszczac. GridFTP Update January
2002. In Technical Report (http://www.globus.org/datagrid/gridftp.html), 2002.

[22] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, et al. Data Management in an International
Data Grid Project. In Lecture Notes in Computer Science Vol. 1971, Springer-Verlag Heidelberg,
2000.

