Developing Human-Robot
Dialogue Management Formally *

Hui Shi John Bateman

Universitat Bremen, Germany
shi@informatik.uni-bremen.de, bateman@uni-bremen.de

Abstract. In shared-control systems, such as intelligent service robots,
a human operator and an automated technical system are interdepen-
dently in charge of control. Natural Language dialogues have long been
acknowledged as a potentially fruitful modality for instructing, describ-
ing and negotiating in human-machine interfaces. Since shared-control
systems are often embedded in safety-critical devices, formal methods
are thus widely used for improving the quality of such systems. In this
paper, we present a formal method based approach for dialogue manage-
ment and show how it enhances the clarity of dialog modelling, provides
several engineering properties (e.g., validation, test and simulation) and
supports the generation of clarification subdialogues.

1 Motivation

It is important that a dialogue system be robust. But the testing of a dialogue
system to ensure robustness is usually cumbersome and expensive. Moreover, if
dialogue is the primary means of communication between a user and a safety
critical technical system, such as an intelligent service robot or an aircraft, then
the robustness and correctness of the dialogue system become indispensible.
Little attention has so far been paid to these aspects of system design, however
(e.g. [1]).

Some researchers in the Natural Language Processing Community have de-
veloped models of dialogue (e.g., [16]) that draw upon formalisms common in
computer science, for example those relying on the idea that dialogues can be
modeled as finite-state machines. In the Formal Methods Community, on the
other hand, technical systems are modeled using forms of mathematical logic that
can be subjected to very powerful analyses using mechanized theorem provers
and model checkers. Since finite-state machines are among those formalisms used
in formal methods, we can now combine ideas from both sides: modelling and
controlling dialogue management using formal methods to ensure robustness and
correctness.

* We gratefully acknowledge the support of the Deutsche Forschungsgemeinschaft
(DFG) through the Collaborative Research Centre SFB/TR 8 Spatial Cognition
- Subproject 13-SharC.



Over the past ten years, assistive systems as well as smart rehabilitation
robotics have becoming increasingly interesting for both industrial and academic
research. The long-term goal of our chief experimental scenario, an autonomous
wheelchair, called Rolland, is to provide an assistive system for daily use by
elderly or handicapped people. Rolland makes use of laser range finding sensors
and cameras to construct spatial representations of its environment, which can
then form the basis for complex spatially-aware interactions.

We are currently exploring the application of the formal methods mentioned
above for dialogue modeling within Rolland’s dialogue system, to enable Rolland
to engage in natural language dialogue with its user concerning tasks to be
undertaken and destinations to be reached. Now we are exploring the use of
these representations for interaction with its user; natural language has therefore
become an important modality of communication with the system. This scenario
brings with it some particular communication problems that must be solved.
These include: Mode confusions, which occur if the human operator loses track
of the mode transitions performed by the robot; and knowledge disparities, which
happen if the robot’s knowledge representation mismatches that of the user’s.
Identification of such situations is undoubtedly vital to developing a robot which
does what the user expects it to do.

As an example, consider a scenario in which the wheelchair Rolland is driving
down a corridor when a person suddenly steps into its path. Upon seeing the
colleague, the user may decide to stop and talk for a moment, uttering “please
halt”. However, unbeknownst to the user, Rolland did not actually acknowledge
the user’s utterance, but decided to come to a stop of its own accord — having
viewed the colleague as an obstacle. Thus, when the colleague moves on, the
user will be surprised that the wheelchair continues on its path, despite the user
not having instructed it to continue. Such mode confusions become increasingly
common with more complex systems and are now well known to have potentially
extremely serious consequences.

It is precisely in this area of recognizing the particular problems at hand
that we are investigating how formal methods can help. Formal model checking
is employed in order to detect automatically these and other confusing situations
(e.g., [13]). Then, based on the automatic analysis of the conflict, subdialogues
can be planned, filled with appropriate content, and generated in order to clear
up such a misunderstanding as soon as it occurs.

2 The Approach

2.1 Architecture

The system architecture presented in Fig. 1 focuses on the concept of dialogue
centred shared-control navigation robots, where the component Robot controller
contains software for controlling the robot’s behaviour; Robot knowledge base
provides the robot with necessary spatial and conceptual information; User’s
control model represents the user’s theory about the robot’s control system;
User’s knowledge model represents the user’s relevant knowledge.



Natural language

| Natural language Dialogue management generating

processing

| Robot controller I Robot I

| knowledge base

User’s control User’s knowledge
model model

C) Component —= Information channel

Fig. 1. A conceptural dialogue system architecture

2.2 Dialogue Modelling

Our approach to modelling dialogues is to move from empirically moti-
vated dialogue patterns to models that can be used in computationally instanti-
ated dialogue systems. The method followed here is to use the COnversational
Roles (COR) model [16] as a generic situation-independent dialogue model. This
generic model can then be restricted as necessary so as to cover precisely par-
ticular empirically motivated discourse patterns that are revealed during our
experiments. Naturally we will expect that the basis model itself may need to
be extended or altered in the fact of dialogue evidence from our scenarios.

The view of dialogue given in the COR model is essentially a state transi-
tion graph. The corresponding dialogue models can be incorporated directly in
Rolland’s dialogue manager as Communicating Sequential Processes (CSP) as
discussed in the following subsection. The COR model is broadly compatible
with current information state approaches to dialogue (e.g., [10]), in that the
nodes of the transition network represent particular abstract information states
that a dialogue has reached. This means that we operate with a level of ab-
straction that draws from a broad information state that information that is
particularly concerned with the dialogic structure; we return to this below. This
is important in that it places a stronger structural emphasis on the kinds of tran-
sitions that are supported between states. Following these ideas we show in Fig.
2 a transition network giving a simplified dialogue model from our experiments
with way-description tasks [4] —i.e., tasks where a user gives some description to
Rolland of how to reach a destination that Rolland does not yet know. This is
drawn from a real dialogic situation, albeit an extremely simple one in order to
restrict the our necessary discussion here.

Here the interaction possibilities have been split into two networks, the first
describing the user dialogic moves parameterized with participants, and the sec-
ond giving the possiblities for the user to give instructions and additions, or for
the system to request extensive feedback. In the transition network, parame-
terized moves, such as instruct(user,robot), add(user,robot), dialogue(user,robot)



dialogue(user,robot) instruct(user,robot) / add(user,robot)

; user.instruct/
instruct(user,robot) user.add robot.acknowledge
instruct(user,robot) E S

robot.ask
add(user,robot)

robot.ask = dialogue(robot,user)
O terminate state

Fig. 2. A transition graph as simplified dialogue model

and dialogue(robot,user) are further defined as subdialogues. Moreover, moves
like user.instruct, user.add, and robot.acknowledge are basic dialogue moves—i.e.,
moves that are directly implemented by other components as speech acts and
actions.

2.3 Formalisation of Dialogue Model

We have chosen to apply the well developed method of Communicating Se-
quential Processes (CSP) from the formal methods community in order to model
dialogue models because of its executability, good tool support, and our exten-
sive experience with it (e.g., [14]). CSP is used for the specification of reactive
systems in general; it can be seen as a very abstract, highly readable and easily
maintainable language to specify finite state automata. Nevertheless, our ap-
proach is not restricted to CSP, other formal methods (e.g., [5], [3,7], [11]) can
also be applied.

In the finite state approach [15], dialogues are scripted utterance by utterance
on a very concrete level. Each utterance leads to a new state, where various
follow up utterances are allowed, each leading to a new state. In contrast to this
approach, transition graph based dialogue models explain dialogue structure
while abstracting from utterance details. In our dialogue model (see Fig. 2) the
information about the basic dialogue acts of dialogue participants decides the
dialogue structure.

Although our dialogue model is very generic, for a real dialogue management
system, other information, such as questions under discussion and beliefs, must
also be taken into account. As in TrindiKit [2] we use stacks and queues as data
types to represent them. Each basic dialogue move leads to a state change in
the dialogue model, and invokes one or more functions operating on these data
structures, as well. Ususally, information states can not be captured by a finite-
state model. What we do is to divide each information state into an abstract



state and a content part. An abstract state contains only that information that
is necessary for controlling dialogue transitions. For instance, if the user tells
Rolland to find a route to a particular place P, then find_place as abstract
question and P as content will be added into the questions under discussion.
Fortunately, for our application and many other pratical dialogue systems, the
set of abstract states is finite.

Moreover, domain specific components must also be considered. For the dia-
logues concerning Rolland’s navigation system, a map of the environment space
or a knowledge base including landmarks and their spatial relations is indis-
pensible. The concrete information that is given in the reactions of a domain
specific component, such as the Robot’s controller or Robot’s knowledge base,
are abstracted for the purpose of the formal model into three categories: exact
one positive answer to an action exists; several possible reactions exist; or no
answer is possible. It is these abstract reactions, not concrete answers, that then
influence dialogue transitions between the user and the robot. Communication
between these components and the CSP model is provided by defining CSP
‘channels’ for information exchange and drivers for their implementation. The
abstraction of communication data between robot and domain specific compo-
nents can be extended or altered for different applications without complication.

Summarily, the formalization of the dialogue transition management consists
of the following steps.

— Definition of CSP channels as interfaces to Rolland’s components and to
information states.

— Abstraction of communication data to achieve domain independence and to
reduce the state space.

— Formalization of the dialogue control as CSP processes according to the
dialogue model.

3 An implementation and some benefits

Once represented in CSP we can draw on a substantial body of methods for
analysing abstract properties of our dialogue model that would otherwise not
be available. Primarily among these we currently make use of FDR, (Fuailures-
Divergence Refinement) [6], a model-checking tool for state machines with foun-
dations in the theory of concurrency based upon CSP. Except for the ability
to check determinism, primarily for checking security properties, its method of
establishing whether a property holds is to test for the refinement (in one of the
semantic models of CSP) of a transition system capturing the required specifi-
cation by the candidate machine. The main ideas behind FDR are presented in
[12].

Our prototypical implementation of a CSP dialogue architecture (see Fig. 3)
includes mainly a state machine Generator using FDR; a Validator using FDR
as model-checker; a Simulator with a graphical interface; and a set of interfaces
for integrating other system components. The Driver controls internal dialogue
states according to the given CSP spcification and events from both the user



A
1

CSP specification

A

Sz
@
QD

Fig. 3. The prototypical implementation

and the system. If the dialogue model is changed, all we need is to give a new
CSP specification and a suitable driver. Other components remain unchanged.

The following example briefly sketches how our approach helps during the
development of dialogue models. Before we could build the dialogue model pre-
sented in Fig. 2, which enforces a structuring on the dialogic tasks undertaken
and explicitly represents joint dialogic projects that speakers are necessarily en-
gaged on when enacting the interaction, two previous versions had been de-
veloped. A distinct problem with the first version derived directly from the
preliminary survey of the empirical data; the problem was an apparent lack
of regularity and generalization: i.e., that “speakers can do anything anytime”.
This version was then transfered to the kind of finite transition graph commonly
used for dialogue models, where the arcs represent the dialogue acts and the
nodes are information or discourse unit states. But this intermediate version in
fact contained many re-occuring patterns, which were then drawn out explicitly
in the transition graphs shown above. Importantly, the tranformation from one
version to a new one is not always straightforward and modelling errors can oc-
cur, e.g., some dialogues accepted by a previous version may be rejected by the
new one. Fortunately, with a CSP implementation we are now in the position
to detect such transformation errors by verifying the equivalence of the CSP
dialogue specification using the model-checker FDR. After detecting errors, we
could made the necessary changes in the new version. As a result, we achieve
a well-structured dialogue model, while also ensuring that this model correctly
represents the empirical results, as well.

4 Conclusion

Through applying the formal method CSP the system described above now
supports the validation of several properties of the dialogue system. These in-
clude such properties describing the relations between two dialogue models (in-
clusion, compatibility, etc.), fairness between different dialogue participants, and
the absence of loops or the absence of locks which can easily be introduced by



implementation errors. Moreover, the simulator provides a test and simulate
environment for the whole dialogue management system from the software en-
gineering point of view. Last but not least, the approach allows the automatic
detection of the confusion situations mentioned in Section 1 above with respect
to the current dialogue and robot system states. In such a situation, detailed
information is added to the current information state in order to construct a
(sub)dialogue to clear up the misunderstanding.

References

1. Alexandersson, J., Heisterkamp, P.: Some Notes on the complexity of Dialogues. In:
Dybkjaer, L., Hasida, K. and Traum, D. (eds) Proceedings of the IJCAI’99 workshop
on knowledge and reasoning in pratical dialogue systems (2000)

2. Cooper, R., Larsson, S.: Dialogue Moves and Information States. In Bunt, H.C.,
Thijsse, E.C.G. (eds): Proceedings of the third international workshop on compu-
tational semantics, Tilburg, Germany (1999)

3. Daws, C., Yovine, S.: Two Examples of Verification of Multirate Timed Automated
With Kronos. In Proc. 1995 IEEE Real-Time Systems Symposium. IEEE Computer
Society Press (1995) 66-77

4. Fisher, K.: First analysis of Rolland in advance way-description task corpus. Internal
communication, Dec. 2004

5. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall (1991)

6. Formal Systemes: Failures Divergence Refinement FDR2 Preliminary Manual. For-
mal Systems (Europe) Ltd (2001)

7. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time System. Information and Computation 111. (1994) 193-244

8. Hoare C. A. R.: Communicating Sequential Processes. Prentice-Hall International
(1985)

9. Krieg-Briickner, B., Shi, H., Ross, R.: A Safe and Robust Apprach to Shared-control
via Dialogue. In Chinese Journal of Software, Vol.15, No. 12, 1744-1755 (2004)

10. Larsson S. and Traum D.: Information State and Dialogue Management in the
TRINIDI Dialogue Move Engine Toolkit. In Natural Language Engineering pp. 323-
340. Special Issue on Best Practice in Spoken Language Dialogue Systems Engineer-
ing (2000)

11. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers, (1993)

12. Roscoe A. W. : The Theory and Practice of Concurrency. Prentice Hall (1998)

13. Rushby, J.: Using Model Checking to help Discover Mode Confusions and other
Automation Surprises. Reliability Engineering & System Safety 75(2). Elsevier Sci-
ence, 167-177 (2002)

14. Shi, H., Peleska, J., Kouvaras, M.: Combining methods for the analysis of a fault-
tolerant system. In 1999 Pacific Rim International Symposium on Dependable Com-
puting (PRDC). IEEE Computer Society (1999) 124-135

15. Sutton, S., Kayser, E.: The CSLU Rapid Prototyer: Version 1.8, Technical report.
Oregon Graduate Institute, CSLU (1996)

16. Sitter, S., Stein, A.: Modeling the illocutionary aspects of information-seeking di-
alogues. Information Processing and Management 28, (1992) 165-180

17. Winograd, T., Flores, F.: Understanding Computers and Congnition. Addison-
Wesley Professional; 1st edition (1987)



