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Abstract

This thesis addresses two topics: the inflationary perturbation spectrum and preheating
after hybrid inflation.

Quantum fluctuations in the inflationary universe provide a natural mechanism for the
generation of primordial perturbations which seed the formation of cosmic structure. In
this thesis we present a semi-analytical, and mathematically controlled, so-called uniform
approximation. This approximation can be used for the calculation of scalar and ten-
sor inflationary perturbations. Detailed calculations of the power spectra, the spectral
indices and other observables are performed to leading and next-to-leading order in the
uniform approximation, respectively. Explicit “slow-roll” assumptions are avoided. A sim-
ple extension of the leading order, which is gained from the detailed understanding of the
next-to-leading order, leads to excellent accuracy of the uniform approximation, which is
demonstrated with several representative examples. The results are compared to stan-
dard slow-roll approximations as well as to exact numerical results. The techniques and
numerical routines described here allow to calculate primordial perturbation spectra very
efficiently with high precision and to constrain some models of inflation.

Furthermore, this thesis provides a detailed analysis of some aspects of preheating
after hybrid inflation. In the hybrid model the inflationary expansion is terminated by a
phase transition of a symmetry-breaking field. During inflation this symmetry-breaking
field is trapped in a false vacuum, becomes dynamically instable and performs a transition
to the true vacuum. Herein the important influence of the back-reaction of quantum
fluctuations is considered by using a bubble-resummation of the propagators. The problem
of renormalization in a system of multiple and coupled fields is explicitly solved. The
false vacuum transition after hybrid inflation, along with other physical observables, is
analyzed with detailed numerical investigations reliably and the influence of back-reaction
of quantum fluctuations is emphasized.





Zusammenfassung

Diese Doktorarbeit behandelt zwei Themengebiete: das inflationäre Störungsspektrum und
die Vorerwärmungsphase im Anschluss an die Hybrid-Inflation.

Quantenfluktuationen im inflationären Universum bilden einen natürlichen Mechanis-
mus zur Erzeugung primordialer Störungen, aus denen kosmische Strukturen entstehen. In
einem Teil der Arbeit präsentieren wir ein mathematisch kontrolliertes, semi-analytisches
Näherungsverfahren zur Berechnung des inflationären Störungsspektrums für skalare und
tensorielle Störungen. Detaillierte Berechnungen des Leistungsspektrums, des spektralen
Index und anderer Observablen werden durchgeführt, zu führender und nächstführender
Ordnung in einer uniformen Approximation sowie mit Fehlerschranken. Diese Berech-
nungen verzichten auf explizite “slow-roll”-Annahmen. Zusammen mit einer einfach zu
implementierenden Erweiterung der führenden Ordnung, welche wir aus dem detaillierten
Verständnis nächstführender Ordnungen gewinnen, wird die ausgezeichnete Genauigkeit
des Verfahrens uniformer Approximationen anhand verschiedener Beispiele demonstriert.
Die Ergebnisse werden mit exakten numerischen Resultaten und der slow-roll-Näherung
verglichen. Die vorgestellten Techniken sind zusammen mit den entwickelten Program-
men von unmittelbarem Nutzen zur theoretisch präzisen Berechnung von primordialen
Störungsspektren sowie der Einschränkung von einigen inflationären Modellen bzw. Modell-
parametern.

Weiterhin werden einige Aspekte der Vorerwärmungsphase im Anschluss an die Infla-
tion im Rahmen des sogenannten Hybrid-Modells detailliert untersucht. Die inflationäre
Expansion endet in diesem Modell mit einem Phasenübergang eines symmetriebrechen-
den Feldes. Dieses symmetriebrechende Feld ist während der inflationären Phase in einem
falschen Vakuumzustand gefangen und vollführt, dynamisch destabilisiert, einen Übergang
zum wahren Vakuum. Indem eine Blasen-Resummation der Propagatoren formuliert wird,
kann der wichtige Einfluss von Rückwirkungen der Quantenfluktuationen explizit berück-
sichtigt werden. Das Problem der Renormierung in einem System mit mehreren gekoppel-
ten Kanälen wird gelöst. In detaillierten numerischen Simulationen wird so sehr zuverlässig
der Phasenübergang nach der Hybrid-Inflation untersucht und die Bedeutung der Rück-
wirkungseffekte der Quantenfluktuationen herausgestellt.
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The hum level in the room suddenly increased as several ancillary
bass driver units, mounted in sedately carved and varnished cabi-
net speakers around the room, cut in to give Deep Thought’s voice
a little more power.
“All I wanted to say,” bellowed the computer, “is that my circuits
are now irrevocably committed to calculating the answer to the Ul-
timate Question of Life, the Universe, and Everything.” He paused
and satisfied himself that he now had everyone’s attention, before
continuing more quitely. “But the program will take me a little
while to run.”
Fook glanced impatiently at his watch. “How long?” he said.
“Seven and half million years,” said Deep Thought.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy





Chapter 1

Introduction

1.1 Cosmological perturbations and the inflationary

universe

This thesis is about the physics of the very early Universe. Nevertheless it is appropriate
to start with observations of the present Universe, as it turns out that our present Universe
contains a wealth of information about its beginning.

It has been found that the distribution of matter on very large astrophysical scales,
the so-called large scale structure (LSS), is startlingly homogeneous. Sufficiently large
independent volumes of the Universe contain similar mean densities of matter (see, e.g.,
Ref. [1] for a recent discussion). On smaller astrophysical scales there are inhomogeneities.
The galaxies are not randomly distributed. We find them to lie in clusters, bubbles,
filaments, walls, and other sheetlike structures. A dominant feature are voids, i.e., there
are many regions where we find almost no galaxies (see Figs. 1.1 and 1.2). The super-
clusters build a network around these voids.

Furthermore, the radiation from the last scattering of primordial photons – released
some 400,000 years after the Big Bang – presents itself as an almost uniform background
in the microwave range. This cosmic microwave background (CMB) radiation is observable
today and can be thought of as a photography of the Big Bang. But also this CMB radiation
is not entirely homogeneous. Since the first discovery of tiny fluctuations, by the Cosmic
Background Explorer (COBE) satellite experiment [5, 6], a wealth of new data, including
the remarkable results from the Wilkinson Microwave Anisotropy Probe (WMAP) [7, 8],
have dramatically improved our knowledge about cosmology and the very early Universe
[9, 10]. There are tiny anisotropies in the microwave sky, which are of primordial origin
(the relevant physics of CMB anisotropies is reviewed, e.g., in Ref. [11]). In terms of
numbers the deviation, from an overall homogenous background, is of the order of one part
in a 100,000. Fig. 1.3 shows a full sky map of the first-year WMAP data displaying the
anisotropies.

One obvious question is where the small anisotropies both in the CMB and in the LSS
come from and how the quantitative features may be explained without fine-tuning the

1



2 Chapter 1. Introduction

Figure 1.1: Galaxy redshift survey [Sloan Digital Sky Survey (SDSS)] displaying the
large scale structure; shown is in comoving coordinates a 5◦ slice of the equatorial plane
containing ∼ 70,000 galaxies; each point represents a galaxy; the survey is not complete
yet and there are less points in the right part of the plot; taken from the publication of the
SDSS collaboration in Ref. [2].

Figure 1.2: 4◦ slices in northern and southern galactic hemisphere as measured in the 2
degree Field Galaxy Redshift Survey (2dFGRS) containing ∼ 80,000 galaxies; the survey
is already complete; taken from the review article Ref. [3], see also Ref. [4].
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Big Bang initial conditions. Along with these questions the main cosmological puzzles
[12, 13, 14] of the standard Big Bang scenario are: (1) Why is the Universe so isotropic
and homogeneous on large scales, in spite of the fact that separated regions were causally
disconnected? (2) Why is it so flat, i.e. why is it near critical mass density? The first
question is known as the horizon problem, the second as the flatness problem. Other
questions are: Why is the Universe so large? What is the origin of the Hubble expansion?
Why are there so few magnetic monopoles?

Figure 1.3: Full sky CMB map (internal linear combination map) as published by the
WMAP collaboration [7, 15]; colors refer to pixel temperatures in mK and the angular
resolution is ∼ 1◦; NASA has made the WMAP data available via the LAMBDA archive
[16].

Aiming at answering these questions, the inflationary universe has been introduced in
1980 by Alan H. Guth [17]. Basically, inflation is a phase of rapid exponential expansion
driven by vacuum energy which provides a large negative pressure with repulsive grav-
ity. The simplest realization introduces a single scalar background field, called inflaton
field. During the rapid expansion the Universe has supercooled. Soon after the invention
of the inflationary scenario it was realized that quantum fluctuations of the field driving
inflation provide a very natural mechanism for the formation of cosmological perturba-
tions [18, 19, 20, 21, 22]. Signatures of such primordial perturbations are present both
in the CMB and LSS. In the inflationary universe they have a common origin. Indeed,
primordial fluctuations of the inflaton field provide initial seeds that are amplified by the
gravitational instability, leading to the formation of structure in our Universe. In this
sense quantum fluctuations of subatomic size are blown up to astrophysical scales. The
inflationary universe redundantizes many of the required postulates of the standard Big
Bang scenario [12, 13, 14].

Although inflation is not a fundamental theory but rather a paradigm, the inflation-
ary universe has been proved extremely successful in order to explain the outstanding
cosmological problems and to address them quantitatively. Moreover there is no convinc-
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ing alternative scenario which is comparably competitive. The finished [23], ongoing [8],
and future [24] observations of the CMB via full-sky satellite experiments, high resolu-
tion ground based [25, 26, 27, 28] and balloon experiments [29, 30], as well as telescope
based large surveys of the sky [31, 32, 33], serve as powerful tools for the understanding
of the first moments and the subsequent evolution of our Universe. The satellite experi-
ment PLANCK will be launched in 2007. Its mission is to measure the anisotropies in the
CMB radiation over the whole sky “with unprecedented sensitivity and angular resolution”
[24]. The source of information provided by PLANCK will allow testing theories of the
very early universe at spectacular precision. Cosmology has already entered a new age of
precision.1

In order to fully utilize the high precision experiments we also need powerful analytical
and numerical computation tools, as well as fast, efficient, and reliable computer programs.
The analytical and numerical techniques have to cope with the precision requirements of
present and future observations. Such theoretical tools are necessary in order to constrain
inflation and to analyze cosmological data and thus to finally address the pressing cosmo-
logical puzzles quantitatively with the highest possible precision. With very precise and
reliable theoretical tools it is then possible to discriminate between particular inflationary
models for the first time.

The inflationary fluctuations, primarily, arise from an effectively free scalar field and are
hence Gaussian random fields. They are completely characterized by two-point statistics,
such as the power spectrum [34]. In the subsequent stages after cosmic inflation the
fluctuations have been exposed to various dynamical processes. The physics from the time
where light cannot escape the primordial soup until the last scattering of the photons
can be encoded in a transfer function for radiation or matter, respectively. Once the
Universe becomes transparent for photons in the era of recombination, the CMB radiation
is released. The physical processes encoded in the transfer functions have modified the
primordial power spectra leading to the power spectra of matter and radiation that we
observe today [14].

In this thesis analytical and numerical methods for precision calculations of the pri-
mordial power spectra are developed.

We apply the method of uniform approximation [35, 36, 37, 38, 39, 40, 41, 42] to the task
of calculating the inflationary fluctuations [43, 44, 45]. We calculate spectra for density
and gravitational wave perturbations along with their associated characterizing quanti-
ties. Via detailed analytical and numerical calculations the efficiency and precision of the
method will be demonstrated and, as a central issue, its error-control discussed. Certainly
direct numerical calculations can give answers for the power spectra without further ap-
proximations. But powerful analytical or semi-analytical approximations have their own
advantages. They provide intuition and understanding of a large class of different models
and of the general mechanisms. Provided tight error controls can be met, they are much

1Some cosmological quantities like e.g. the baryon density, the total energy density, the age of the
Universe, the time of decoupling and the scalar spectral index are already known to a few percent accuracy
and will continue to improve in the future. Although the uncertainties in selected quantities in comparison
of LSS and CMB data may be slightly bigger (∼20%), it is fair to say that the age of speculations is over.
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faster than direct numerical calculations and are thus extremely useful for large parameter
studies. Indeed, direct numerical calculations may only be reasonable for spot-checking
a small number of parameters or models. In the past, so-called “slow-roll” approxima-
tions have been extensively used. The main idea behind the slow-roll approximation is an
expansion around the limit of exact scale invariance [14]. However, the expansion made
there, being essentially a derivative expansion, is uncontrolled. In addition, simple exten-
sions beyond the leading order in slow-roll parameters are not possible. Some alternative
techniques [46] have been suggested but lead to rather involved expressions for the power
spectra and spectral indices and, more importantly, are not error-controlled. The ultimate
accuracy with which the primordial perturbations must be calculated is of course guided
by how accurately the matter and radiation transfer functions can be computed.2 At
present this can be done with an accuracy of the order of 0.1% [51]. As already said, the
combination of the primordial power spectrum and the transfer functions leads to power
spectra which can be directly compared with observations. One should also keep in mind
that beyond a limit of ∼ 0.1% it may no longer be justified to neglect some other effects
in the underlying treatment of the cosmological perturbations. The theoretical basis is
a perturbed form of Einstein’s equations in a spatially flat Friedmann-Robertson-Walker
(FRW) universe. Beyond the first-order linearized perturbation theory, the theoretical cal-
culations become very involved, e.g., due to the issue of gauge-invariance. Second-order
perturbations typically produce some additional small amount of non-Gaussianity in the
perturbation spectra (see, e.g., Ref. [52] and references therein). Presumably it is not
meaningful at present to calculate the primordial power spectra with an accuracy much
better than ∼ 0.1%, i.e., without taking some of the neglected effects into account which
may become important when going beyond such accuracy.

We follow a twofold goal when calculating the inflationary perturbation spectra in this
thesis. First, error-controlled uniform approximations are presented that are simple to
implement and give exquisite accuracy. Second, we utilize some of the findings of the
approximate strategy in order to improve the efficiency of a numerical code which is also
developed and presented. As a net result the numerical code for calculating the power
spectra is expected to be relatively fast.3 Using several representative examples as well as
exactly solvable models we demonstrate that primordial power spectra can be calculated
with an accuracy of the order 0.1% (or even better).

1.2 The problem of reheating

Shortly after the introduction of the inflationary universe the problem of reheating has
been pointed out [54]. After inflation, the Universe is frozen in a state of extremely low
entropy without any particles. In contrast, the amount of particles in our present Universe

2This is typically done with CMBFAST [47, 48], CAMB [49, 50], or similar Boltzmann codes.
3Although other groups [53] may have developed numerical routines for their publications, no code is

on the market, so that we cannot check different code speeds at present. We plan to publish our own codes
in the future.
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is of the order of 1090.
The first obvious question is how particles may have been produced efficiently. When

trying to answer this question, the major problems are: (i) there is no fundamental theory
for reheating and (ii) the full dynamics with back-reaction of quantum fields are both
conceptionally and numerically complex and difficult to solve. The first aspect implies that,
as for inflation itself, effective models must be constructed, where successful reheating may
further depend on model parameters like masses, vacuum expectation values (if symmetries
are spontaneously broken) or coupling constants. The second aspect highlights some of
the more technical difficulties of nonequilibrium quantum field theory.

The present picture of reheating can be summarized as follows: Via resonant processes
like parametric resonance a large number of particles is produced in a relative short time
span (see, e.g., Ref. [55]). Most importantly, space-time expansion can be neglected, al-
lowing us to work in Minkowski space-time. Perturbative processes like the direct decay
of the inflaton field are highly suppressed and thus are not efficient in converting the field
energy of the inflaton into particles. The reason is that the couplings of the inflaton to
other particles or to itself have to be very small.4 Resonant nonperturbative processes
do not require large coupling constants, but instead work for a wide spectrum of param-
eters. Resonant processes occur while the inflaton field oscillates coherently around the
minimum of its potential. The first stage of reheating in which a resonant production of
almost all particles contained in the present Universe occurs, is called preheating. Para-
metric resonance in quantum field theory, in the context of preheating or reheating after
inflation and also independent of that, has been studied by various authors (see, e.g.,
Refs. [57, 58, 59, 60, 61, 62, 63]). As long as back-reaction effects are less important,
parametric resonance can even be studied within classical field equations. Depending on
the model, these equations are of the Mathieu or Lamé type and one can analyze how
the system dynamically moves through regions of stability or instability. Narrow or broad
resonance regimes (or transitions between them) can be found. Once the system moves
away from the resonant regime, the perturbative decay of particles or classical fields is
the dominant process. With more and more particles produced, the scattering of these
particles, i.e. quanta, becomes important and finally leads to a thermal distribution of
particles. The temperature associated with this thermal ensemble is referred to as the
reheating temperature Treh. Baryogenesis (or leptogenesis) has to take place before ther-
modynamical equilibrium is established and it is thus very natural to study the appearance
of a baryon asymmetry at the stage of reheating [64].

After inflation ends, the Universe gets “warm” and presents itself as a soup of particles,
just as postulated in the standard Big Bang scenario. Since there is no guarantee that the
initial state was “hot”, in the same sense the late entropy-rich Universe is called “hot”,
the phrase “reheating” should better be understood as “defrosting”.

There are different observational constraints on reheating. The reheating temperature,

4The amplitude of scalar and tensor perturbation spectra depends on the self-coupling of the inflaton
field and is thus fixed by observational constraints [56]. The λΦ4 model, although under strong observa-
tional pressure, requires λ ' 10−12 for instance.
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e.g., cannot be too high. Otherwise, too many gravitinos are produced which is in conflict
with the abundance of light elements. The decay of many gravitinos after nucleosynthesis
would modify the very successful predictions of the standard Big Bang nucleosynthesis (see,
e.g., Ref. [65] for some quantitative details). Depending on the model it is also possible
that primordial metric perturbations are generated during preheating. Various authors
have studied this problem (see e.g., Refs. [66, 67, 68, 69, 70, 71]). Preheating may also
imprint a significant amount of non-Gaussianity in the CMB radiation [52, 71].

Thus, for reheating there are many conceptional and observational aspects to discuss;
we have named only a few. In this thesis we are primarily interested in the preheating stage,
which has a rich dynamical structure by itself. In order to calculate reheating temperatures,
we would have to go through the full reheating stage and not just its first moments,
namely the preheating stage (see e.g. the discussion in Ref. [62]). The complications of
nonequilibrium quantum field theory require some further assumptions and simplifications.

In absence of a fundamental theory we have to consider effective models. Particular
types of models are chaotic inflation models [72] with a single scalar inflaton field rolling
down in a relatively featureless potential. Inflation ends once the inflaton field expectation
value drops below the critical value, where the kinetic energy density of the inflaton field is
bigger than its potential energy density. Subsequently the inflaton field oscillates around
a minimum value and produces particles (quanta) via resonant processes. These particles
interact with each other and are expected to reheat the Universe [57, 62].

In other models the inflaton field couples to a second field that is dynamically unsta-
ble and undergoes a phase transition which ends inflation. The second field may be a
symmetry-breaking field analogous to the Higgs field postulated in the standard model of
particle physics. A phase transition is realized in so-called hybrid models of inflation, or
hybrid inflation for short [73]. The most important feature of hybrid inflation is that the
inflaton field is not responsible alone for the particle production and reheating. In the
dynamically unstable regime the symmetry breaking field produces lots of particles via
spinodal amplification and resonant processes.

In this thesis we will develop analytical and numerical methods which allow to study the
effects of quantum back-reaction in the nonequilibrium dynamics of coupled scalar fields
[74]. In particular, this requires a nonperturbative approximation scheme and we face
many difficulties, usually met in nonequilibrium quantum field theory. Bare propagators
have to be resummed in a thermodynamically consistent way. In addition, in quantum
field theory we encounter divergences and infinities. Renormalization is thus a central
issue [75, 76]. These methods are especially important to understand some aspects of the
preheating stage after hybrid inflation [63, 77, 78, 79, 80] with its associated phase transition
and quantum dynamics. The phase transition ending inflation there, is a transition from a
“false” metastable vacuum to the “true” stable vacuum. It thereby replaces models [63, 81,
82, 83] where a rapid decrease of the energy density is induced by an instantaneous quench.
An important goal is the detailed study of this false vacuum transition. The analytical and
numerical methods are also useful under more general circumstances. The role of quantum
fluctuations and their back-reaction on the classical fields and onto themselves has to be
addressed. Compared to previous investigations of other groups [63, 77, 78, 79, 80, 84]
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we are able to include the important effects of quantum back-reaction by implementing a
summation of bubble diagrams [85]. Because we fully renormalize all divergent equations
we completely avoid problems like undesirable and artificial dependences of the physical
observables on unphysical cut-off parameters. Without quantum back-reaction the false
vacuum transition cannot be studied [86] because numerical simulations break down. We
will also study in detail under which circumstances a classical description [87, 88] may be
adequate and if some long-range correlations build up [89, 90]. Due to the coupling of two
scalar fields the dynamics in hybrid models is very rich and can be complicated.

We still have to neglect re-scattering of quanta and hence our approximation is limited
to the early-time dynamics, much before the reheating time scale is reached. Our ap-
proximation thus cannot be used to describe the late-time thermalization processes which
are ultimatively reheating the Universe. Indeed such a computation of the full reheating
dynamics would be extraordinary challenging, both from an analytical and from a numer-
ical point of view. However, since we are mainly interested in the false vacuum transition
that happens in the early stage of preheating, the restrictions of our approximation are
well justified. Our detailed calculations provide valuable information on the dynamics in
systems of coupled scalar fields, as relevant for preheating after hybrid inflation [74].

1.3 Publications

Some aspects of this thesis on inflationary perturbations have already been published or
presented at conferences:

1. Salman Habib, Andreas Heinen, Katrin Heitmann, Gerard Jungman and Carmen
Molina-Paris,
Characterizing inflationary perturbations: the uniform approximation,
Phys. Rev. D70, 083507 (2004) [arXiv:astro-ph/0406134].

2. Salman Habib, Andreas Heinen, Katrin Heitmann and Gerard Jungman,
Inflationary Perturbations and Precision Cosmology, Phys. Rev. D71, 043518 (2005),
[arXiv:astro-ph/0501130].

3. Andreas Heinen
The Inflationary Perturbation Spectrum: Numerical and Analytical Calculations,
Talk given at the 8th Paris Cosmology Colloquium “WMAP and the early Universe”,
Paris, France, 9-10 December 2004.
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Some of the findings on the quantum dynamics in hybrid models have already been
published in the following article and conference proceedings:

4. Jürgen Baacke and Andreas Heinen,
Out-of-equilibrium evolution of quantum fields in the hybrid model with quantum back
reaction, Phys. Rev. D69, 083523 (2004), [arXiv:hep-ph/0311282].

5. Jürgen Baacke and Andreas Heinen,
Nonequilibrium dynamics in scalar hybrid models, Proceedings of the 6th Conference
on Strong and Electroweak Matter 2004 (SEWM04), Helsinki, Finland, 16-19 June
2004, [arXiv:hep-ph/0407064].

Other studies by the author concerning nonequilibrium quantum field theory in 1+1
dimensional toy models will not be considered here [91, 92, 93].

1.4 Plan of this thesis

The plan of this thesis is as follows. Part I covers the important theoretical background. In
Chap. 2 we give an overview on the theory of cosmological perturbations and on inflation.
In Chap. 3 different inflationary models are reviewed. In Chap. 4 we briefly summarize
conventional slow-roll approximation techniques which are used in this thesis only for
comparison.

In Part II the calculation of the inflationary perturbation spectrum is presented. In
Chap. 5 the method of uniform approximations for inflationary perturbations is developed
in great detail. After highlighting some aspects of the numerical implementation in Chap. 6
we present detailed results of extensive numerical calculations in Chap. 7. The Part is
finalized by a summary and conclusions of the main findings in Chap. 8.

Part III covers calculations as relevant for the preheating stage after inflation. In
Chap. 9 the application of the technique of effective actions is discussed and a particular
resummation scheme is worked out. The set of renormalized dynamical equations for the
hybrid model is derived in detail in Chap. 10. The results of large numerical calculations
are presented and extensively discussed in Chap. 11. This Part ends with a summary and
conclusions of the main findings in Chap. 12.

The thesis is completed by a couple of Appendices covering lists of formula needed,
more technical calculations, and some additional aspects.





Part I

Theoretical Background
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Chapter 2

Theory of Cosmological

Perturbations and of Inflation

In this Chapter we present the theory of linearized gravitational perturbations in an ex-
panding universe. In particular, we focus on cosmologies with fluctuations in a universe
with a Friedmann-Robertson-Walker (FRW) background metric. Although the theory of
cosmological perturbations is not restricted to the inflationary universe we will focus on
the situation where the fluctuations originate from a single, scalar inflaton field. First, we
briefly review the relevant cosmological background. Second, the concept of the inflation-
ary universe is presented, along with a discussion of its solution to the main cosmological
problems. Third, we summarize the ingredients for a gauge-invariant treatment of classical
perturbations. The important aspects of the quantum theory of perturbations are high-
lighted subsequently. Finally, we explain how to calculate characteristic quantities like the
power spectrum and the spectral index.

Gauge-invariant equations for the fluctuations which describe the evolution of cosmo-
logical perturbations, will be the central results here. They form the basis from which we
derive either approximate or numerical solutions for the perturbation spectra.

The early universe involves many different physical processes. The main target of this
Chapter is to show the path to the inflationary perturbation spectrum, rather than to
present a self-contained review on the complex theory of cosmological perturbations. For
detailed reviews the reader is referred to Refs. [12, 14, 34, 94] (see also Ref. [95] for a review
on inflation).

2.1 Background

The background will be a FRW universe with the background line element ds given by

ds2 = gµνdx
µdxν =

[
−dt2 + a2(t)γij(x)dxidxj

]

= a2(η)
[
−dη2 + γij(x)dxidxj

]
, (2.1)

13
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where

γij(x) = δij

[
1 +

K
4

(x2 + y2 + z2)

]−2

. (2.2)

Here a(t) is the scale factor and η is the conformal time given by a(t)dη = dt. Note that we
choose a metric gµν with the signature (−1, 1, 1, 1). A flat universe corresponds to K = 0,
a closed one to K = 1 and an open one to K = −1. These geometries refer to the three-
dimensional space corresponding to the hypersurface η = const. Greek indices run from 0
to 3 and Latin letters denote spatial indices running from 1 to 3. We also assume that all
matter or radiation present can be described by a perfect fluid. The energy-momentum
tensor then has the form

Tµν = pgµν + (p+ %)uµuν, (2.3)

where p is the pressure, uµ is the velocity vector and % is the energy density, given by the
0-0 component of the conservation law T µν

; ν = 0, i.e.

%̇ = −3H(%+ p). (2.4)

In Eq. (2.3) possible dissipative terms are neglected. An overdot denotes a derivative with
respect to physical time t and H is the Hubble parameter explained below. Einstein’s
equation is given by

Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (2.5)

where G denotes Newton’s constant and we have used the convention Rµν = Rσ
µσν =

Γσ
µν, σ − Γσ

σµ, ν + Γσ
µνΓ

ρ
σρ − Γσ

ρµΓρ
σν and R = Rµ

µ [95]. For the discussion presented here a
cosmological constant Λ is irrelevant and thus will be omitted by setting Λ = 0 in the
following. From the 0-0 component and the i-i components of the Ricci tensor Rµν we can
derive a special solution of Einstein’s equations, the Friedmann equations

ä = −4π

3
G(%+ 3p)a , (2.6)

H2(t) =

(
ȧ

a

)2

=
8π

3
G%− K

a2
. (2.7)

The Hubble parameter H = ȧ/a characterizes the size of the universe since H−1 is the
Hubble radius. These equations form the basis of the standard Big Bang model.

The observation of a cosmic microwave background supports the idea that the universe
has been dominated by radiation at early times (t . 105yr). Today the universe is dom-
inated by matter1. The equation of state for radiation is given by p = 1

3
%. Neglecting

1There is also a dark energy contributing to the total energy density, which may be encapsulated in a
non-vanishing cosmological constant Λ [96].
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the contribution K (this is a good approximation for small a) we find in the radiation
dominated era

a(t) ∝ t1/2 ; % ∝ a−4 (radiation dominated universe) . (2.8)

Similarly for a matter dominated universe with p = 0

a(t) ∝ t2/3 ; % ∝ a−3 (matter dominated universe) . (2.9)

The critical density %c is the density, which would make the universe flat. It is defined
by

%c ≡
3H2

8πG
. (2.10)

The ratio Ωtot of the total density %tot (including the vacuum energy %Λ = Λ
8πG

) and the
critical energy density Ωtot is given by

Ωtot =
%tot

%c
, (2.11)

indicating the geometry of the universe. If Ωtot = 1, we have a flat universe, Ωtot > 1
corresponds to a closed one and Ωtot < 1 to an open universe. The WMAP team [8] gives
a value

Ωtot = 1.02 ± 0.02 (2.12)

when first-year WMAP data and data from galaxy clustering are included in the analysis.2

At present observations are still compatible with all geometries. We will come back to the
quantity Ωtot in the next Section. In the following we will drop the suffix “tot”. Unless
explicitly stated we will always refer with Ω to the total density.

2.2 The inflationary paradigm

The inflationary universe has been introduced by Alan Guth in 1980 [17] in order to
solve some of the outstanding cosmological problems listed below. These problems are
fundamental weaknesses of the old Big Bang scenario. Before coming to the problems we
sketch the main ideas of the inflationary universe. The fundamental assumption is the
existence of a state with negative pressure [17]. As obvious from Eq. (2.6), a negative
pressure p produces a repulsive form of gravity, because it leads to an acceleration of the
scale factor a, if the pressure term 3p dominates over the energy density term %.

The physics of scalar fields makes it easy to construct states of negative pressure.
Consider the energy-momentum tensor for a single scalar field φ given by

T µν = ∂µφ∂νφ− gµν

[
1

2
∂λφ∂λφ+ V (φ)

]
. (2.13)

2The fit assumes the so-called ΛCDM model (dark energy plus cold dark matter).
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The pressure is given by

p =
1

3

3∑

i=1

Tii =
1

2
φ̇2 − 1

6
(∂iφ)2 − V (φ) . (2.14)

If the dynamics of φ is dominated by the potential energy V (φ) we have a state with
negative pressure. The accelerated phase of expansion ends when this is no longer the
case, i.e., when the kinetic energy equals the potential energy. The dynamical equation for
the inflaton field φ is obtained as

φ̈(t) + 3H(t)φ̇(t) +
∂V (φ)

∂φ
= 0 . (2.15)

The Friedmann equation follows with % = 1
2
φ̇2 + V (φ)

H2(t) =
8πG

3

[
1

2
φ̇2(t) + V (φ)

]
. (2.16)

The features of the inflationary universe are most conveniently explained in the view
of the well-known cosmological puzzles which we list in the following (see, e.g., Refs. [13,
14, 97, 98]). Some of these aspects are related.

� The Universe is big.

It is of course easy to take the size of our Universe as a matter of fact. In addition, we
cannot put its size in any relative context. However, the visible part of our Universe
contains the enormous number of ∼ 1090 particles, i.e., the total entropy is of that
order. The obvious question is where this number comes from. This question is also
related to the flatness problem. Without a mechanism that can produce such a large
number of particles or entropy from nothing, one has to postulate that almost all
the particles which our Universe contains, have been there right from the beginning.
In contrast to this, the inflationary universe leads to an exponential growth of all
scales. During reheating the vacuum energy of the field driving inflation is released,
mainly due to decay processes of the inflaton field into its own quanta and other
fields or quanta. Starting with a modest entropy it is easier to explain S ∼ 1090, by
exponential multiplication of a small initial number. In his paper Guth suggested
Sp = Z3S0, where Sp is the present entropy, S0 is the initial entropy and Z is a (big)
numerical factor [17]. The expansion phase during inflation is nonadiabatic, which
allows entropy to grow substantially. We will give a value for Z when discussing the
flatness problem.

� The Hubble expansion.

During the 1920s and 1930s Edwin Hubble discovered that the Universe is expanding
[99]. Galaxies are moving away from each other with a recession velocity v = H0d,
where d is the distance to earth and H0 is the Hubble constant in the present epoch.
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As we have seen, the Hubble constant is part of the Friedmann equations. We
may easily take the Hubble expansion for granted. Without inflation the Hubble
expansion is one of the postulates of the cosmological model. In the inflationary
universe the Hubble expansion is a consequence of states with negative pressure
providing repulsive gravity.3

� Homogeneity and isotropy.

The Universe is very homogenous on large astrophysical scales. The CMB radiation
is also very homogenous. After correcting the motion of the earth around the sun the
measured intensity of the CMB radiation is the same in all directions with a precision
of one part in 100,000. The CMB radiation was released at a time of ∼ 400,000 years
after the Big Bang, as the primordial plasma became transparent. The CMB gives
thus a view on the Universe at that time, indicating that the uniformity was already
established then. One can show that in the standard Big Bang scenario the uniformity
would have been established only by processes occurring much faster than the speed
of light. This violates causality and so the problem of uniformity at early times is
also known as the horizon problem. In the inflationary universe the homogeneity is
explained by the exponential expansion. The homogeneity was established at the size
of quantum fluctuations and has been stretched to become large enough to encompass
the whole universe.

� Flatness.

The flatness problem is very startling. In the standard Big Bang scenario there is no
explanation why Ω is so close to one. The reason is the following [17]: The Planck
time 1/mpl ≈ 5.4×10−44 s is the typical time scale in which a closed universe reaches
its maximum size. An open universe reaches a value % much smaller than the critical
density at the order of this time scale. In the standard Big Bang scenario Ω ≈ 1 is an
unstable equilibrium point. Any tiny deviation from 1 would lead to Ω much bigger
or smaller than 1 during expansion, in contrast to the observation of a nearly flat
Universe. In terms of numbers one would have to tune the initial value of Ω to 58
decimal places at the Planck time to end up with Ω ≈ 1 today. Even at the beginning
of nucleosynthesis at t ≈ 1 s it would have to be tuned to roughly 15 decimal places.
Otherwise the universe would never survive the required ∼ 1010 years. Although it
is possible to have such an extreme fine tuning of the initial state, it does not seem
very likely. The situation is different in the inflationary universe. There the ratio Ω
is driven towards one, because

Ω − 1 ∝ exp(−2HIt), (2.17)

3One may take up the position that the question of the origin of the Hubble expansion is now replaced
by the question where the potential energy of the inflaton field comes from. However, the answer is that
the energy is provided by the gravitational field itself. There is no lower bound for the energy of the
gravitational field. The total energy can indeed be zero. See, e.g., the comments in Ref. [100] in the
context of eternal inflation.
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where HI is the value of the Hubble parameter during inflation [97]. As long as the
inflationary period is long enough one can start at almost any value of Ω. Coming
back to the numerical factor mentioned above one needs Z & 1028 in order to have
a sufficiently flat universe. It is worthwhile to note that inflation does not lead to
exact flatness, but rather to an universe that is nearly flat. (For a suggestion how
flatness may be parameterized see e.g., Ref. [101].) Typically inflationary models
lead to |Ω − 1| ∼ 10−4.

� Absence of magnetic monopoles.

Magnetic monopoles are extremely massive particles that carry a net magnetic charge.
Many grand unified theories (GUTs) predict a fairly large number of them, but
we do not observe them. If there is, like in the inflationary universe, a phase of
exponential expansion which sets in at an energy below the GUT-scale, the density
of relic monopoles becomes very low. Basically the inflationary phase dilutes the
monopole density to a completely negligible level.

� Anisotropy of the CMB and LSS.

How can structures in the CMB be larger than the horizon? In the standard Big
Bang scenario this seems to violate causality. The problem of generating anisotropies
in the CMB and the LSS is known as the causality problem. In the inflationary
universe the situation is different and there is no causality problem. During the
stage of an exponential expansion, with vacuum energy dominating, the Hubble
radius H−1 is roughly constant. Compared to a fixed comoving scale the Hubble
radius is shrinking. After inflation the Hubble radius H−1 increases more rapidly
than a fixed comoving scale. In Fig. 2.1 the situation is sketched schematically.
The important aspect of inflationary universe models is that, during the period of
inflation, perturbations are generated inside the Hubble radius, then leave the horizon
and effectively freeze, because they lost causal contact. Eventually they reenter the
horizon, since the Hubble radius increases after inflation has ended. With further
expansion the fluctuations become perturbations on large astrophysical scales. Thus
the perturbations have their origin in quantum fluctuations of the scalar inflaton
field. The duration of the inflationary period is what determines the final “size” of
the fluctuations.

So far we also did not specify the time scale of inflation. The reason is that it depends
on the particular implementation of a successful inflationary model. In order to make
definite predictions on the perturbation spectra we have to specify V (φ) by choosing a
particular model. Different classes of inflationary models will be discussed in Chap. 3.
However, quite typically the inflationary phase may take place some 10−40 s to 10−32 s after
the initial singularity. During the tiny amount of ∼ 10−35 s the Universe has enlarged
by an enormous factor of ∼ 1028 (from the size of an elementary particle to the size of
a grapefruit). A convenient definition characterizing the expansion is the number of e-
foldings defined via

a(t) = aend exp[−N(t)], (2.18)
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Figure 2.1: Simplified schematic sketch of the evolution of length scales in inflationary
universe models; the Hubble radius 1/H (solid line) and a perturbation mode with fixed
comoving wavenumber k (straight dashed line) are shown as a function of the scale factor
a in terms of physical distance x; aR denotes the scale factor where inflation ends and
reheating starts; the scale of the fluctuation leaves the Hubble radius at a time t = ti(k)
and reenters at t = tf (k).

where aend is the scale factor at the end of inflation. The expansion by a factor of ∼1026

corresponds to N ≈ 60 e-foldings.

2.3 Gauge invariant treatment of linearized fluctua-

tions – classical perturbations

The FRW universe discussed in the previous Section is not yet realistically, since the matter
distribution in our present Universe and the CMB radiation is not entirely homogeneous.
We must include perturbations. The full line element ds may be replaced by

ds2 = g(0)
µν dx

µdxν + δgµνdx
µdxν, (2.19)

where g(0) means the unperturbed background part [the FRW universe defined by Eq. (2.1)
in our case] and δg describes the perturbations. In general one can distinguish between
scalar, vector, and tensor perturbations. Scalar perturbations correspond to density pertur-
bations, vector perturbations to vortical motions in the plasma and tensor perturbations to
gravitational waves. Only scalar perturbations are gravitationally instable, meaning that
they can provide seeds for structure formation. During expansion vorticity is damped.
Moreover, in single-field inflation vector perturbations cannot be produced. Hence, vec-
tor perturbations are effectively suppressed. In the following we only consider scalar and
tensor perturbations.

The line element may be parameterized by

ds2 = a(η)2
[
ds2

S + ds2
T

]
, (2.20)

with

ds2
S = −(1 + 2A) dη2 + 2B|i dηdx

i +
[
(1 + 2C)γij + 2E|i|j

]
dxidxj (2.21)
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and

ds2
T = hijdx

idxj. (2.22)

Scalar perturbations are constructed using the four scalar quantities A,B,C,E. The three-
dimensional covariant derivative of a function f with respect to a coordinate i has been
denoted by f|i. For K = 0, i.e., in a spatially flat universe the covariant derivative will
become an ordinary partial derivative. The tensor hij parameterizing the tensor perturba-
tions is traceless, symmetric and transverse.

A serious complication in the theory of fluctuations around the background of an ex-
panding universe is the freedom of choosing a gauge, i.e., background coordinates [102].
We can introduce two gauge invariant variables ΦA and ΦB, the Bardeen potentials

ΦA = A+ (B′ + HB) − (E ′′ + HE ′) , (2.23)

ΦB = C − 1

3
∆(3)E + H(B − E ′) . (2.24)

Primes denote differentiation with respect to conformal time, H = a′/a = aH and ∆(3)

denotes the three dimensional spatial Laplacian.
In the longitudinal gauge the perturbed metric becomes

ds2 = a2(η)
[
−(1 + 2ΦA)dη2 + (1 + 2ΦC)γijdx

idxj
]
. (2.25)

This gauge yields a direct physical interpretation for ΦA and ΦC . They generalize the
Newtonian potential. The longitudinal gauge may be understood as a “conformal Newto-
nian” gauge. The variables ΦA and ΦC are the amplitudes of the metric perturbations in
the conformal Newtonian coordinate system. The tensor perturbations, described by hij,
themselves are gauge-invariant.

We also have to introduce matter perturbations. The energy-momentum tensor includ-
ing first order perturbations is given by

Tµν = T (0)
µν + δTµν , (2.26)

where T
(0)
µν is the unperturbed energy-momentum tensor

T (0)
µν = p(0)g(0)

µν + (p(0) + %(0))u(0)
µ u(0)

ν , (2.27)

corresponding to Eq. (2.3). The perturbation is δTµν given by

δT 0
0 = δ% , (2.28)

δT 0
i = a−1(%(0) + p(0))δui , (2.29)

δT i
j = −δpδi

j . (2.30)

It is assumed that all quantities are gauge-invariant quantities, constructed analogous to
the potentials ΦA and ΦC . Note that in the longitudinal gauge the perturbations δ%, δp,
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and δui immediately correspond to perturbations of the energy density, the pressure, and
the velocity field. The perturbations in the pressure δp can be re-expressed in terms of
perturbations of the (energy) density δ% and the entropy per baryon via

δp =

(
∂p

∂%

)

S

δ% +

(
∂p

∂S

)

%

δS = c2sδ%+ τδS , (2.31)

where cs has the interpretation of the adiabatic sound speed.4

In the case of a vanishing anisotropic stress which is the case for a perfect fluid, the
two gauge-invariant parameters ΦA and ΦC become identical, i.e., Φ ≡ ΦA = ΦC [34]. The
perturbed metric becomes

ds2 = a2(η)
[
−(1 + 2Φ)dη2 + (1 + 2Φ)γijdx

idxj
]
. (2.32)

The remaining task is to derive a dynamical equation for Φ. This can be done by combining
the components of Einstein’s equation with the equation for the pressure perturbation δp,
providing a single partial differential equation for the potential Φ (for the derivation see
Ref. [34])

Φ′′ + 3H(1 + c2s)Φ
′ − c2s∆

(3)Φ + [2H′ + (1 + 3c2s)(H2 −K)]Φ = 4πGa2τδS . (2.33)

For purely adiabatic perturbations (δS = 0) the source term on the right hand side in the
above equation vanishes. This will be assumed in the following. With some changes of
variables the friction term with Φ′ can be eliminated. Let us define w by

Φ ≡ 4πG(%(0) + p(0))1/2w = (4πG)1/2

(H2 −H′ + K
a2

)1/2

w . (2.34)

After some calculation [34] the equation for w is obtained in the form

w′′ − c2s∆
(3)w − θ′′

θ
w = 0 , (2.35)

where

θ =
H
a

[
2

3
(H2 −H′ + K)

]−1/2

. (2.36)

A second form of the evolution equation can be obtained by introducing a scalar u, which
is defined by the relation

∆(3)w = −c−2
s

(
d

dη
+
θ′

θ

)
csu. (2.37)

4Taking into account radiation (r) and matter (m) components via % = %m + %m the parameters cs and

τ are obtained as c2

s = 1

3
(1 + 3

4

%m

%r

)−1 and τ =
c2

s
%m

S
[34].
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Because of the relation between this definition and the differential operator which appears
in the equation for w, it can be shown that u satisfies the evolution equation

u′′ − c2s∆
(3)u− z′′

z
u = 0 , (2.38)

where
z =

a

csH
(
H2 −H′ + K

)1/2
. (2.39)

Eq. (2.38) is the main result of this Section. The gauge-independent variable u is also
related to the quantity ζ via u = zζ. In a comoving gauge ζ takes on the physical meaning
of an intrinsic curvature perturbation [103]. The intrinsic curvature perturbation ζ becomes
constant for super-horizon modes [104]. It is related to the metric perturbation in a simple
way,

∆(3)Φ = −(4πG)1/2H2 −H′ + K
hc2s

(u
z

)′
. (2.40)

Recalling that Φ has the interpretation of the Newtonian gravitational potential, this
Poisson equation indicates how u/z acts as a source for the potential.

The tensorial perturbations can be derived in a similar way. The corresponding equation
for a gauge-invariant quantity v is obtained as

v′′ − c2s∆
(3)v − a′′

a
v = 0 . (2.41)

If, as in the inflationary scenario, the universe is dominated by a single (relativistic)
scalar field, with a background energy-momentum tensor as in Eq. (2.13), the speed of
sound is given by cs = 1. Assuming also that the universe is spatially flat (K = 0) the
quantity z simplifies to

z =
aφ̇

H
. (2.42)

The fluctuations of scalar and tensor modes originate from quantum fluctuations of the un-
derlying matter fields (the inflaton) and of the metric. The dynamical equations for scalar
and tensor fluctuations [Eqs. (2.38) and (2.41)] reveal the form of a Klein-Gordon equa-
tion with a negative mass squared, given by −z ′′/z and −a′′/a, respectively. Having such
canonical evolution equations for scalar and density fluctuations allows a straightforward
quantization.

2.4 Quantization of the fluctuations

At present a full quantum theory of gravity is not available. However, in the context
of linearized fluctuations around the background of an expanding universe, a consistent
quantization of cosmological perturbations is possible [34]. This is done by requiring the
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usual canonical commutation relations for the fields and their canonical momenta. The
gauge-invariant formalism is very useful here, since it only involves physical degrees of
freedom. Quantization results in fixing the initial conditions for the fluctuation modes.

At first, the reduced action for scalar perturbations u is given by
∫
d4x

√
γL =

1

2

∫
d4x

√
γ

(
u′2 − γiju,iu,j +

z′′

z
u2

)
, (2.43)

where γij is the metric on background η = const. surfaces and γ is its determinant. There
is an analogous action for tensor perturbations.

In the quantum theory the variables u and v become operators and will be denoted by û
and v̂. Without going into detail, we note that the usual canonical commutation relations
hold for û, π̂u, v̂ and π̂v, where the π̂s denote the canonically conjugate momenta. For a
spatially flat universe (K = 0) we can take a basis of plane waves and expand the operator
û as

û(η,x) =

∫
d3p
√

2π
3

[
âkuk(η) exp(ik · x) + â†ku

∗
k(η) exp(−ik · x)

]
. (2.44)

The complex amplitude uk(η) satisfies

u′′k(η) +

[
k2 − z′′(η)

z(η)

]
uk(η) = 0. (2.45)

Solving Eq. (2.45) is the fundamental problem in determining the perturbation spectrum.
The corresponding mode equation for tensor perturbations is given by

v′′k(η) +

[
k2 − a′′(η)

a(η)

]
vk(η) = 0. (2.46)

Since the small fluctuations are Gaussian5, the perturbation spectrum can be fully char-
acterized by two-point correlation functions, such as the power spectrum defined by

〈0|û(η,x)û(η,x + r)|0〉 =

∫ ∞

0

dk

k

sin kr

kr
Pu(η, k) . (2.47)

2.5 Calculation of the power spectra

Eq. (2.45) and (2.46) have the mathematical form of Schrödinger equations. A simple
approach to analytical approximation of Eqs. (2.45) and (2.46) relies on the fact that exact
solutions exist in the limits k2 � |z′′/z|, |a′′/a| (short wavelength) and k2 � |z′′/z|, |a′′/a|
(long wavelength) or, as will be made more explicit below, as −kη → ∞ and kη → 0−.
For scalar perturbations,

uk → 1√
2k
e−ikη

(
k2 � |z′′/z| , −kη → ∞

)
, (2.48)

uk → Akz
(
k2 � |z′′/z| , −kη → 0

)
. (2.49)

5This is always true in a theory of linear approximations.



24 Chapter 2. Theory of Cosmological Perturbations and of Inflation

Here, the short wavelength solution corresponds to the choice of an adiabatic vacuum
for modes on length scales much smaller than the scale set by the curvature. The long
wavelength solutions correspond to the growing mode on scales much larger than the
Hubble length.

The long wavelength solution for ζk = uk/z is just the (k-dependent) constant Ak of
Eq. (2.49). In order to determine the corresponding power spectrum Pζ(k) ≡ PS(k), the
main task is to fix the unknown constant Ak by connecting the two asymptotic solutions.
The situation is sketched in Fig. 2.2. The large-k regime lies in region I and the small-
k regime lies in region III. The two asymptotic solutions may be connected either by a
matching procedure performed in region II, typical of the slow-roll class of approximations
(see Chap. 4), or, as performed in Chap. 5, by constructing a global interpolating solution.
Once Ak is determined, the power spectrum for ζk can be computed in the regime (kη → 0−)
of actual interest,

Pζ(k) =
k3

2π2
|ζk|2 . (2.50)

Analogous solutions exist for gravitational wave perturbations and the corresponding power
spectrum Ph(k) (h is the amplitude of the two polarizations of gravitational waves).

η

z’
’(η

)/z
(η

)

Region I         Region II         Region III

Radiation

k-mode

η
_

 Inflation

Figure 2.2: Sketch of the potential barrier for density perturbations. The vertical dashed
lines delineate the three different regions where the solution for uk is investigated as ex-
plained in the text. η̄ marks the point where the k-mode enters into the potential barrier,
the turning point. Inflation lasts over a wide η-range, extending region II as indicated by
the arrows. In the far right of region III radiation dominates.

Solving the mode equations (2.45) and (2.46) for different momenta k, the power spectra
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for scalar and tensor perturbations are obtained via

PS(k) = lim
kη→0−

k3

2π2

∣∣∣∣
uk(η)

z(η)

∣∣∣∣
2

, (2.51)

PT (k) = lim
kη→0−

k3

2π2

∣∣∣∣
vk(η)

a(η)

∣∣∣∣
2

, (2.52)

where we denote the power spectrum for ζ by PS and the index S (T ) indicates scalar
(tensor) perturbations.

The tensor power spectrum is often defined with an additional factor as

Ph(k) = 8PT (k), (2.53)

leading to the definition of the tensor to scalar ratio as

R(k) =
Ph(k)

Pζ(k)
=

8PT (k)

PS(k)
. (2.54)

The generalized spectral indices for the scalar and tensor perturbations are defined to
be

nS(k) = 1 +
d lnPS(k)

d ln k
, (2.55)

nT (k) =
d lnPT (k)

d ln k
. (2.56)

Running of the spectral indices is conventionally parameterized by the second logarithmic
derivative of the power spectra

αS(k) =
d lnnS(k)

d ln k
, (2.57)

αT (k) =
d lnnT (k)

d ln k
. (2.58)





Chapter 3

Inflationary Models

At present a concrete fundamental theory of everything is not known and there is no
fundamental theory for the inflationary universe. Inflation should be understood as a
class of theories. The present situation is that we have to rely on effective models. Some
of them are introduced ad hoc while others may be motivated from supergravity, string
theory or other theories. Each model makes specific predictions. However, there are plenty
of models around (see, e.g., Ref. [105] for a comprehensive review on particle physics
models of inflation). Some of them are intuitive, while others appear weird to us. We will
concentrate on some special classes of models in this Chapter. In general, we distinguish
between single-field inflation models, where the background dynamics is dominated by a
single scalar field, and multi-field inflation models, where more than one field is dynamically
excited. The focus for the remainder of this part we will be on some classes of single-field
inflation. We only comment shortly on multi-field inflation (or other exotic scenarios).

3.1 Single-field inflation

Single-field inflation classifies inflationary scenarios in which the background dynamics is
dominated by a single scalar background field, the inflaton field φ, that evolves in a given
potential V (φ). Other fields may well be present, however they must remain in a frozen
state.1 All simple models have in common that inflation takes place in a part of the
potential that is very flat.

The focus in this Section is on chaotic [72], hybrid [73], and power-law inflation [106].
We also investigate potentials with special features that imitate a phase transition. We
leave out so-called small-field inflation models where the inflationary phase takes place at
a plateau of the potential. This includes, e.g., new inflation [107, 108], natural inflation
[109, 110], and other scenarios. In addition we do not comment on the various “inverted”
versions, models with running parameters or other modified versions of chaotic or hybrid
inflation [105].

1Note that we have to reconsider eventually the underlying treatment of linearized fluctuations, if more
than one dynamical field is present in the inflationary stage.

27
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3.1.1 Chaotic inflation

Chaotic inflation has been introduced by Andrei Linde in 1983 [72]. In chaotic inflation
the inflaton field φ is moving towards the origin of its potential. The field amplitude of
φ during the observable part of its motion is several times larger than mpl (the Planck
mass), hence there is no obvious particle physics motivation for chaotic inflation. The
inflationary expansion ends once the kinetic energy density of the field driving inflation
becomes smaller than its potential energy density. The simplest potential is given by

V (φ) =
1

2
m2φ2 , (3.1)

which has only one parameter, the inflaton mass m. The mass m is constrained by ob-
servations to be m2 ≈ 10−12m2

pl. Such a potential is compatible with present observations
[56, 111]. Higher monomial potentials like

V (φ) =
1

4
λφ4 , (3.2)

or even

V (φ) = λ̃m4−p
pl φp , (3.3)

with p/2 ≥ 3 are under strong pressure from recent observations (p = 4) or considered as
ruled out (p ≥ 5) [56, 111, 112].

In Fig. 3.1 we display a schematic sketch of a chaotic inflation potential along with
the two stages of inflation and reheating. The dashed line symbolizes the value where the
kinetic energy of the inflaton field is equal to its potential energy. The inflationary stage is
above that line, reheating below it. During reheating the inflaton field oscillates coherently
around the minimum of its potential and produces particles via parametric resonance.
Note that in the chaotic inflation scenario the inflationary expansion does not start at a
metastable point. The terminology “chaotic” refers to the choice of initial conditions. The
initial conditions are not known, but it turns out that they are not important [100, 113].

Preheating in chaotic inflation type models has been studied by various authors [55,
57, 58, 60, 114, 115].

3.1.2 Hybrid inflation

Hybrid inflation models incorporate at least two scalar fields. One field is the inflaton
field, rolling down in its flat potential, and the other field is a symmetry breaking field
that is trapped in a false vacuum state. Hybrid inflation has been introduced by Linde
in Ref. [73]. The false vacuum state becomes unstable once the inflaton field reaches a
critical value. The symmetry breaking field that ends inflation is practically zero in the
inflationary phase, and nonzero only at the end of inflation. Thus, it does not contribute
to the perturbation spectrum. Hybrid inflation can be treated as single-field inflation,
because the phase transition ending inflation is very rapid and does not leave a signature at
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Reheating

Initial conditions
???

Inflation
φ pl(0)>> M

Figure 3.1: Schematic sketch of the stages from inflation to reheating with respect to
the inflaton potential of chaotic inflation; during reheating the inflaton field oscillates
coherently around the minimum of its potential and produces particles via parametric
resonance, as indicated by the small dots and lines.

cosmologically relevant scales. The only relevant contribution from the symmetry breaking
field during inflation is false vacuum energy.

The simplest potentials of hybrid inflation contain monomial polynomials of φ and a
vacuum energy term, i.e.,

V (φ) = V0

[
1 +

(
φ

φ0

)p]
. (3.4)

Via the parameters φ0 and V0, hybrid inflation may be embedded at very different energy
scales. In particular the field amplitude of the inflaton field may be of the order of mpl or
smaller. The reason is that the inflaton field does not necessarily carry the major part of
the energy density, which can be provided by V0.

Hybrid inflation requires additional scalar fields. The question about the origin of all
these fields arises. Possible solutions are super-symmetric theories which have a large num-
ber of additional fields, the scalar super-partners of the fermions. Since super-symmetry, if
it exists, has to be broken in nature, the scalar super-partner of an “ordinary” fermion can
be relatively heavy. Hybrid potentials are also “natural” in the context of string theory or
super-gravity (see, e.g., Refs. [78, 84, 105, 116, 117]). The most attractive feature of hybrid
models is that the inflation field is only responsible for the inflationary expansion, while
the symmetry breaking field reheats the universe via particle production and scattering
of the produced particles. There is no need to couple the inflaton field directly to other
degrees of freedom, unlike in the simpler versions of chaotic inflation.

The standard two-field model

The phase transition ending inflation and preheating after hybrid inflation is the main
topic of part III of this thesis. For this purpose we choose a particular model for the
symmetry breaking sector (for the fields and the coupling between them).

The simplest realization of a hybrid inflation model with two scalar fields as proposed
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originally by Linde [73] is defined by the Lagrange density

L =
1

2
∂µΦ∂µΦ +

1

2
∂µX∂

µX − V (Φ, X) , (3.5)

with the hybrid potential

V (Φ, X) =
1

2
m2Φ2 +

1

2
g2Φ2X2 +

λ

4
(X2 − v2)2 . (3.6)

For simplicity we have suppressed the dependence of all fields on the space-time arguments
x = (t,x). The quantum fields Φ and X, as represented by capital letters, are assumed to
have non-vanishing classical expectation values

〈Φ〉 = φ , (3.7)

〈X〉 = χ . (3.8)

The classical expectation values will also be denoted as the order parameters of the fields.
We will refer to Φ (or φ) as the inflaton field, i.e., the field that couples to gravity, and
to X as the symmetry breaking or Higgs field and to χ as its order parameter. The field
X mediates the phase transition and is sometimes also dubbed “waterfall” field in the
literature. Note that there is no quartic self-coupling present in the inflaton sector.

The shape of the classical hybrid potential V (φ, χ) as defined by

V (φ, χ) =
1

2
m2φ2 +

1

2
g2φ2χ2 +

λ

4
(χ2 − v2)2 , (3.9)

is shown in Fig. 3.2. V (φ, χ) follows from the potential V (Φ, X) by replacing the quantum
field operators by their classical expectation values.

Spinodal region

In the χ direction the potential has the form of a double-well close to φ ≈ 0 and is
symmetric for larger values of φ. The critical value is at

φc =
v
√
λ

g
. (3.10)

This is precisely the point where the classical mass term for the Higgs field, given by

m2
χ(φ) = −λv2 + g2φ2 , (3.11)

is zero. Inflation stops, when the system reaches this point [73, 77]. The mass m2
χ is

negative in the so-called spinodal region with −φc < φ < φc and positive everywhere
else. The qualitative picture of this spinodal instability is as follows: In the spinodal
region quantum fluctuations are exponentially amplified. The quantum fluctuations lead
to corrections to the classical masses. Depending on the relative sizes of classical and
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Figure 3.2: Generic shape of a hybrid potential V (φ, χ) as a function of the classical fields
φ and χ; at the base of this plot the contour lines of the potential are shown. Classically
the potential has two stable minima located at φ = 0 and χ = ±λv. The potential is very
flat in the φ-direction close to χ ≈ 0.

quantum contributions from the various fields the process of entering and leaving the
spinodal region may be repeated several times in a dynamical evolution. However, via the
back-reaction of the quantum fluctuations the dynamically negative masses should finally
become positive, which stabilizes the system. The details will depend on the parameters
chosen.

In previous investigations quantum fluctuations have been included without back re-
action [118], with back reaction in the one-loop approximation [86] and in the Hartree
approximation with an ultraviolet (UV) cutoff in a supersymmetric model including ax-
ions [78]. The model investigated in Ref. [78] is rather special; it incorporates several scalar
degrees of freedom of a non-minimal supersymmetric standard model.

It is important to note that semiclassical one-loop approximations, which miss the back-
reaction of the quantum fluctuations onto themselves, do not lead to a stabilization of the
system in the spinodal regime. Hence, one cannot describe the false vacuum transition
with semiclassical one-loop approximations. We will go beyond such approximations in
this thesis.

3.1.3 Power-law inflation

As discussed in the previous Chapter a characteristic feature of the inflationary universe
is an accelerated expansion of space-time. In many inflationary models the scale factor a
indeed grows exponentially. However, strict exponential growth is not a necessary ingredi-
ent of the inflationary paradigm. Abott and Wise [119], Lucchin and Matarrese [106] and
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other authors have discussed (shortly after the seminal paper on inflation by Guth [17])
inflationary cosmologies that are characterized by the scale factor growing like

a(t) ∝ tp , (3.12)

where p is a constant greater than one. According to the power-law growth of the scale
factor this scenario has been named power-law inflation. The starting point may be the
inflaton potential defined by [120]

V (φ) = V0 exp

(√
2

p
φ

)
. (3.13)

The attractive feature of power-law inflation is that it is one of the very few analytically
tractable models. It provides a useful foil for testing approximations. This feature has
maintained its popularity, even though the basic model is not realistic, as inflation never
comes to an end. Characteristic of power-law inflation is a constant spectral index. The
running of nS and nT is zero. In particular the spectral indices for scalar and tensor
perturbations are given by

nS = 4 − 2νS , (3.14)

nT = 3 − 2νT , (3.15)

with

νS = νT =
3

2
+

1

p− 1
. (3.16)

Note that nT = nS − 1. The scale-invariant Harrison-Zeldovich spectrum with nS = 1
corresponds to the choice p → ∞. In that limit power-law inflation also has a quasi-
exponential growth of the scale factor a(t).

In Fig. 3.3 we display the dependence of nS on the power p. Also plotted are the allowed
ranges from recent observations of the CMB and LSS.

3.1.4 Potentials with special features

In order to learn something about the possible form of the inflaton potential, as well as
about approximation techniques, we can consider artificial potentials, which exhibit special
features. These potentials can lead to sharp signatures in the calculated perturbation
spectra. The slow-roll approximation may fail [121]. A typical example is a potential with
a step [53, 121], defined as

V (φ) =
1

2
m2φ2

[
1 + c tanh

(
φ− φstep

d

)]
. (3.17)

Depending on the parameters, the calculated spectrum can significantly differ from a scale
invariant spectrum. There are oscillations in the power spectrum. Note that the parameters
in Eq. (3.17) are already constrained by WMAP, e.g. c ∼ 0.001 [56].
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Figure 3.3: Dependence of the scalar spectral index nS on the power p for power-law
inflation (solid line); also shown is the allowed range from observations of the CMB and
LSS; the area between the dashed lines corresponds to nS = 0.99 ± 0.04 (only WMAP
data), and the area between the dotted lines to nS = 0.96 ± 0.02 (WMAP, CBI, ACBAR,
2dFGRS, and Ly-α data); these values are results of power-law fits without running of
the spectral index and a ΛCDM cosmology, see Ref. [8]; from present data the Harrison-
Zeldovich choice nS = 1 cannot be excluded.



34 Chapter 3. Inflationary Models

3.2 Multi-field inflation and other exotic scenarios

There are of course many other (more exotic) inflationary scenarios. In a typical grand
unified theory the appearance of many scalar degrees of freedom usually cannot be avoided.
Supersymmetry, if it exists, provides many scalar degrees of freedom. Also string theories
have many scalar fields. Leaving aside completely different scenarios like brane inflation
[122, 123] (this cannot be discussed within “ordinary” inflation, i.e., within the context of
Chap. 2), the potential driving inflation can be more complex. Potentials with more than
one scalar field may lead to multiple inflation, where the individual stages are smoothly
connected, so that inflation does not interrupt completely.

Observations of the temperature anisotropies of the CMB by WMAP (first-year data
analysis, see Refs. [8, 56]) reveal some statistical anomalies of the data with respect to
the fit, which assumes a nearly scale invariant primordial power spectrum. In particular
the low quadrupole (also observed by COBE-DRM) has stimulated a lot of speculation
[124, 125]. The potential origin of superimposed oscillations, possibly present in the pri-
mordial power spectrum, has also been discussed [126, 127]. It should be said that from an
observational point of view, all such exotic scenarios do not seem to be required at present.
The Universe seems to support very simple ideas [128]. Concerning the low-` phenomena
of the temperature anisotropies power spectrum, we have to study and to understand the
data in greater detail, e.g., with respect to possible foreground contamination. There is
the question, whether the low-` microwave background is cosmic [129].

For these reasons we will focus on single-field inflation in this thesis. Some special
single-field inflation potentials can already lead to distinctive features in the primordial
power spectrum.
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The Conventional Slow-Roll

Approximation

In this Chapter the concept of slow-roll approximation is briefly reviewed. We will list the
basic equations, in particular the expressions for the power spectra, the spectral indices,
the running of the spectral indices, and the ratio of tensor to scalar perturbations.

We follow the presentation of Stewart and Lyth here [130]. A comprehensive description
of the slow-roll approximation may also be found in Ref. [131]. Early investigations, to
zero order in the slow-roll parameters, can be found in Refs. [18, 19, 20].

4.1 The method of slow-roll

Conceptionally the slow-roll expansion is an expansion around the limit of exact scale
invariance (nS = 1). This can be made clear from the expressions in power-law inflation,
where the slow-roll expansion becomes exact if p→ ∞ (p is the power with which the scale
factor grows in time). The relevant formula will be given in Sec. 5.4. Indeed this observation
explains why the slow-roll expansion is expected to work for all models producing a scalar
spectral index close to one.

The basis of slow-roll expansions is a set of slow-roll parameters, defined by

ε ≡ − Ḣ

H2
=

1

2

(
φ̇

H

)2

, δn ≡ 1

Hnφ̇

dn+1φ

dtn+1
. (4.1)

In terms of ε, δ1 and δ2 the potential z′′/z, appearing in the fluctuation equation for scalar
perturbations [Eq. (2.45)], can be written as

z′′

z
= 2a2H2

(
1 + ε +

3

2
δ1 + 2εδ1 + ε2 +

1

2
δ2

)
. (4.2)

This expression is still exact. Assuming now that ε and δ1 are constant and small, higher

35
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terms δn>1 must vanish and the equation for uk is approximated by

u′′k(η) +

(
k2 − A

η2

)
uk(η) = 0 , (4.3)

with
A = 2 + 6ε+ 3δ1 = constant. (4.4)

The solutions to this equation are Hankel functions, i.e., Bessel functions of first and second
kind. An analogous equation exists for gravitational waves. The crucial point is that A has
to be exactly constant for the solutions to be Bessel functions. When taking into account
higher orders of the slow-roll parameters the quantity A is no longer constant. There is
thus no natural extension of the slow-roll approximation in terms of Bessel functions. In
addition the slow-roll expansion lacks of an error-control theory.

There are some conceptional questions concerning the presentation of Stewart and Lyth
[130]. A precisely constant value ε would imply ε = −δ1, while Stewart and Lyth [130]
take ε and δ1 to be independently constant at different values. Formally this is impossible.
Lidsey et al. discuss this aspect in Ref. [131]. However, the final expressions for the power
spectra and spectral indices are not affected.

The precision of slow-roll predictions has been studied in detail in Ref. [132]. Even
second order approximations in the slow-roll parameters may not be sufficient in any case.
(We will shortly comment on counting the orders in Sec. 4.4.) As said above, the standard
slow-roll approximation runs into serious difficulties, once the assumption of ε and δ1

being constant is dropped. Different ways of improving the slow-roll approximation have
been suggested, see e.g., Refs. [46, 133, 134, 135]. However, they often lead to rather
involved expressions for power spectra and spectral indices and, more importantly, are
not error-controlled. Other extensions rely on particular approximations for the behavior
of the Hubble radius during inflation [136, 137] and so do not require that ε and δ1 are
independently small and constant.

It is not impossible though that our Universe is so close to exact scale invariance that
any error from slow-roll approximations is subdominant. Further experimental observations
of the CMB radiation and of galaxy clustering and redshift surveys will provide an answer
in the future.

4.2 Normalized solution

The normalized solution to Eq. (4.3), with the correct asymptotic behavior [see Eq. (2.48)]
at small scales, is obtained as

uk(η) =

√
π

2
ei(ν+ 1

2
) π
2 (−η)1/2H(1)

ν (−kη)(−η)1/2 , (4.5)

where

ν =
3

2
+ 2ε+ δ1 . (4.6)
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To first order in the slow-roll parameters the conformal time is given by

η =

∫ t dt

a(t)
' − 1

aH

1

1 − ε
. (4.7)

Inflation ends once ε > 1. With help of the above equations the asymptotic solution in the
relevant regime kη → 0− is obtained as

uk(η) → ei(ν− 1

2
) π
2 2ν− 3

2

Γ(ν)

Γ(3/2)

1

2k
(−η)−ν+1/2 . (4.8)

4.3 The power spectra

Substituting Eq. (4.8) in the general expression (2.51) the scalar power spectrum, to first
order in the slow-roll parameters, reads [130]

PS(k) ' [1 + 2(2 − ln 2 − b)(2ε + δ1) − 2ε]
2G

π

H4

φ̇2

∣∣∣∣
aH=k

, (4.9)

where b is the Euler-Mascheroni constant, 2 − ln 2 − b ' 0.7296 and ln 2 + b− 1 ' 0.2704.
Note that the power spectrum is just rewritten in terms of the values the quantities had
when the Hubble radius was crossed (aH = k). Nevertheless, it is the asymptotic power
spectrum in the limit kη → 0− or k/aH → 0−.

Similarly one finds for tensor perturbations [130]

PT (k) ' [1 − 2(ln 2 + b− 1)ε]
2GH2

π

∣∣∣∣
aH=k

. (4.10)

4.4 Spectral indices

The scalar and tensor spectral indices are given by [130]

nS(k) ' 1 − 4ε− 2δ1 − 2(1 + c)ε2 +
1

2
(3 − 5c)εδ1

−1

2
(3 − c)δ2

1 +
1

2
(3 − c)δ2, (4.11)

nT (k) ' −2ε− (3 + c)ε2 − (1 + c)εδ1, (4.12)

with c ' 0.08145. We will refer to these expressions as second-order slow-roll results,
reflecting the appearance of second-order and squares of first-order slow-roll parameters.
The expressions

nS(k) ' 1 − 4ε− 2δ1 (4.13)

and
nT (k) ' −2ε (4.14)
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are the well-known results to first order in the slow-roll parameters. Eqs. (4.13) and (4.14)
are widely used expressions and will also be compared to corresponding expressions of the
uniform approximation.

It is not so obvious how we should count and name the orders in the slow-roll ap-
proximation, see, e.g., the discussion in Ref. [131]. We have avoided a terminology like
lowest-order and next-to-lowest order. The latter would correspond to Eqs. (4.9)–(4.12)
and, obviously, involves different orders of the slow-roll parameters in the expressions for
PS and nS.

4.5 Further approximation of the background dynam-

ics

So far all slow-roll expressions have been used without actually approximating the back-
ground equation for the inflaton field φ. Based on a Taylor expansion in the potential V (φ)
and its derivatives, Liddle and Lyth [138] introduced an approximation for the background
equations. This approach (formalized and expanded to higher orders by Liddle, Parsons,
and Barrow [139]) leads to a simplification of the slow-roll parameters in the following
form:

ε =
1

2

(
V ′

V

)2

− 1

3

(
V ′

V

)4

+
1

3

V ′2V ′′

V 3
, (4.15)

δ1 =
1

2

(
V ′

V

)2

− V ′′

V
− 2

3

(
V ′

V

)4

− 1

3

(
V ′′

V

)2

+
4

3

V ′2V ′′

V 3
+O(V ′′′). (4.16)

Here we have followed the conventions of Stewart and Lyth [130]. Expanding the slow-
roll parameters in terms of derivatives of the potential is quite popular in the literature.
One reason, presumably, is that one does not have to solve the background equations
numerically, which renders the “design” of a potential V (φ) simpler. Being an asymptotic
expansion, this approximation will lead to extra errors, which can become large. We will
explicitly demonstrate this when discussing particular models.
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Chapter 5

The Uniform Approximation

In this Chapter we describe the method of uniform approximation for the calculation of
inflationary perturbations, first presented in Ref. [43], and subsequently extended and
improved in Refs. [44, 45].

Historically the uniform approximation began with the work of Langer [35, 36, 37, 38,
39, 40] and others, and was followed by notable contributions of Olver [41, 42], which we
rely on. The method of uniform approximation employed here can be understood as a
“uniformization” of the well-known Wentzel-Kramers-Brillouin (WKB) or Liouville-Green
(LG) approximation [140, 141] in the presence of transition points.1 The WKB approxi-
mation has also been applied to the problem of calculating the inflationary perturbation
spectrum [127, 142, 143].

Asymptotic expansions of differential equations via approximants in terms of special
functions can provide useful insight in problems which can be only numerically addressed.
Realistic error bounds for the approximants, as well as for the physical observables derived
from them, are of obvious importance for practical calculations.

In Sec. 5.1 we present the method of uniform approximation on the basis of the differ-
ential equations for the fluctuations during inflation. Then we turn to the calculation of
the power spectra and their characterizing quantities like, e.g., the spectral indices and the
ratio of tensor to scalar perturbations. The leading order approximation is presented in
Sec. 5.2, the next-to-leading order in Sec. 5.3. We will provide closed expressions to leading
and next-to-leading order with corresponding error bounds. In Sec. 5.4 we will investigate
power-law inflation which is one of the very few analytically solvable models. In Sec. 5.5 we
investigate simplifications of non-local expressions using local expansions. The results for
power-law inflation together with the results from local expansions are utilized in Sec. 5.6
in order to calculate estimates of the error bounds, and in Sec. 5.7 in order to find a
powerful improvement strategy. Finally, in Sec. 5.8 we comment on further expansions in
terms of slow-roll parameters and calculate expressions for the spectral indices that can be
compared to the standard slow-roll approximation.

1Adiabatic and semiclassical approximations like the WKB approximation have a long history in math-
ematics and physics. A short history of the uniform approximation can be found in Ref. [42], at the end
of Chap. 11.
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5.1 The method and general expressions

For our purpose, the key advantages of the uniform approximation are that it does away
with WKB-like matching conditions [144], a procedure that fails to indicate the error
of the approximation, has controlled error bounds over the entire domain of interest, is
systematically improvable, and allows analytic simplifications in special cases of physical
interest.

We begin our discussion of the uniform approximation by making the substitution

z′′(η)

z(η)
≡ 1

η2
C2(η) (5.1)

in Eq. (2.45), yielding

u′′k(η) +

[
k2 − C2(η)

η2

]
uk(η) = 0. (5.2)

A similar substitution can be made for the case of tensor perturbations.
If, in Eq. (5.2), we make the assumption that C is constant then an exact solution

in terms of Bessel functions is immediate. This is the case for power-law inflation, see
Sec. 5.4. The problem is to solve the equation when C is not constant but slowly varies
in time. Our aim is to do this without being forced to state C(η) in any real detail. We
will now follow the presentation of Olver [42] and provide a summary of the treatment of
uniform approximation for the differential equation of interest (5.2).

The differential equation we wish to solve is of the general form

d2u(η)

dη2
=
[
b2g(η) + q(η)

]
u(η). (5.3)

Depending on the behavior of b2g(η) + q(η) this equation has different approximating
solutions. In the case that b2g(η̄) + q(η̄) = 0 at the point η̄, so η̄ is a turning point, the
solution is expressed in terms of Airy functions; if g(η) has a pole of order n ≥ 2 the LG
approximation2 must be employed [42]. In our case the relevant function is −k2 +C2(η)/η2;
we have a turning point which will depend on the explicit form of g(η) and a pole of order
2 in the limit η → 0−. Therefore, we have an Airy solution around the turning point
which goes over to an LG solution for conformal time approaching zero. As will be shown
later, this approximation fits the exact behavior of the solution accurately. For the two
approximating solutions (Airy and LG), the convergence criteria are established in the
following way. Assume that we have a pole of order n ≥ 2 at a finite endpoint a2 and that
g(η) and q(η) are meromorphic functions of the form

g(η) =
1

(a2 − η)2

∞∑

s=0

fs(a2 − η)s, (5.4)

q(η) =
1

(a2 − η)2

∞∑

s=0

gs(a2 − η)s. (5.5)

2The LG approximation is essentially equivalent to the familiar Wentzel-Kramers-Brillouin (WKB)
approximation. More precisely the WKB approximation enforces certain matching conditions [144].
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Then the error control function (see Appendix A.1) converges if g0 = −1/4. For a detailed
proof of this important fact, see Ref. [42]. For the error control criteria to be satisfied in
our case, we must make the choices

g(η) =
1

η2

[
C2(η) +

1

4

]
− k2 (5.6)

≡ ν2
S(η)

η2
− k2, (5.7)

q(η) = − 1

4η2
. (5.8)

The final form of Eq. (2.45) then becomes

u′′k(η) =

{
−k2 +

1

η2

[
ν2

S(η) − 1

4

]}
uk(η) , (5.9)

where ν2
S = (z′′/z)η2 + 1/4 and the turning point is at k2 = ν2

S(η̄S)/η̄2
S. Note that the

turning point η̄S is a given function of k.
In an exactly analogous fashion, the equation for the tensor modes (2.46) is written in

the form

v′′k(η) =

{
−k2 +

1

η2

[
ν2

T (η) − 1

4

]}
vk(η) , (5.10)

where ν2
T = (a′′/a)η2 + 1/4 and the turning point is at k2 = ν2

T (η̄T )/η̄2
T .

Unlike the approach of matching solutions through regions I, II, and III in the potential
z′′/z (see Fig. 2.2) or a′′/a, the idea of a uniform approximation is to provide a single
approximating solution which converges uniformly in all three regions with a global, finite
error bound. The normalization is determined once and for all by simply matching to the
exact solution as k → ∞.

To continue, we follow Olver in defining a new independent variable ξ and a new
dependent variable U , given by [42]

ξ

(
dξ

dη

)2

= g(η) (5.11)

and

u =

(
dξ

dη

)−1/2

U. (5.12)

In terms of the new variables, Eq. (5.3) becomes

d2U

d2ξ
=
[
b2ξ + ψ(ξ)

]
U, (5.13)
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where

ψ(ξ) =
[
4g(η)g′′(η) − 5g′2(η)

] ξ

16g3(η)
+
ξq(η)

g(η)
+

5

16ξ2
, (5.14)

2

3
ξ3/2 = −

∫ η̄

η

√
g(η)dη, η ≥ η̄, (5.15)

2

3
(−ξ)3/2 =

∫ η̄

η

√
−g(η)dη, η ≤ η̄. (5.16)

Now imagine neglecting ψ(ξ) as a first approximation; then the potential is purely linear
in ξ and the solution to the differential equation is given in terms of Airy functions (see
Fig. 5.1 for a plot of the Airy functions). In the next order where ψ(ξ) is no longer
neglected, the derivation of the solution u becomes more involved. Fortunately, in Ref. [42]
the general solution for Eq. (5.3) in the uniform approximation to all orders is derived with
error bounds to be

u
(1)
2n+1(b, ξ) =

[
g(η)

ξ

]−1/4
[
Ai(b2/3ξ)

n∑

s=0

As(ξ)

b2s
+

Ai′(b2/3ξ)

b4/3

n−1∑

s=0

Bs(ξ)

b2s
+ ε

(1)
2n+1

]
,

(5.17)

u
(2)
2n+1(b, ξ) =

[
g(η)

ξ

]−1/4
[
Bi(b2/3ξ)

n∑

s=0

As(ξ)

b2s
+

Bi′(b2/3ξ)

b4/3

n−1∑

s=0

Bs(ξ)

b2s
+ ε

(2)
2n+1

]
,

(5.18)

with coefficients defined by an iterative procedure,

A0(ξ) = 1 w.l.o.g., (5.19)

Bs(ξ) =
±1

2
√
±ξ

∫ ξ

0

[ψ(v)As(v) − A′′
s(v)]

dv√
±v , (5.20)

As+1(ξ) = −1

2
B′

s(ξ) +
1

2

∫
ψ(ξ)Bs(ξ)dξ . (5.21)

The upper signs in Eqs. (5.20) and (5.21) are to be taken on the right of the turning
point η̄, i.e., if η ≥ η̄, and the lower signs on the left of the turning point, equivalent to
Eqs. (5.15) and (5.16). The error terms ε

(1)
2n+1 and ε

(2)
2n+1 are discussed in Appendix A.1. In

the next and following Sections, we will calculate the leading (n = 0) and next-to-leading
order (n = 1) solution for Eqs. (5.9) and (5.10) with explicit error bounds and derive the
corresponding power spectra and spectral indices [44, 45].



5.1. The method and general expressions 45

(a)

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5  0  5  10

x

Ai(x)
Bi(x)

(b)

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5  0  5  10

x

Ai’(x)
Bi’(x)

Figure 5.1: Plotted are the Airy functions: (a) Ai(x) (solid line) and Bi(x) (dashed line)
(b) Ai′(x) (solid line) and Bi′(x) (dashed line) where the prime denotes a derivative with
respect to x.
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5.2 The leading order approximation

We now turn to the specific form of the approximating solutions at leading order.

5.2.1 Normalized solutions with error bounds

Taking n = 0 in Eqs. (5.17) and (5.18) we find a solution for uk(η) containing a part valid
to the left of the turning point (η ≤ η̄) and a part valid to the right of the turning point
(η ≥ η̄). The unnormalized solutions are

u
(1)
k, � (η) = u

(1)
k,1, � (η)[1 + ε

(1)
k,1, � (η)], (5.22)

u
(2)
k, � (η) = u

(2)
k,1, � (η)[1 + ε

(2)
k,1, � (η)], (5.23)

with

u
(1)
k,1, � (η) =

[
f � (k, η)

gS(k, η)

]1/4

Ai[f � (k, η)] , (5.24)

u
(2)
k,1, � (η) =

[
f � (k, η)

gS(k, η)

]1/4

Bi[f � (k, η)] , (5.25)

and

f � (k, η) = ∓
{
±3

2

∫ η̄S

η

dη′ [∓gS(k, η′)]
1/2

}2/3

, (5.26)

gS(k, η) =
ν2

S(η)

η2
− k2 , (5.27)

|ε(1)k,1, � (η)| ≤ 1

λ

M(f � )

E(f � )Ai(f � )

{
eλVη,α(E) − 1

}
, (5.28)

|ε(2)k,1, � (η)| ≤ 1

λ

E(f � )M(f � )

Bi(f � )

{
eλVβ,η(E) − 1

}
. (5.29)

The lower index 1 reflects the order of the approximation, the functions with index < are
taken on the left of the turning point, and those with the index > are to be taken on the
right of the turning point. M(η), N(η), Vα,β, and λ are defined in Appendix A.1. An
estimate for λ is λ ' 1.04. The error control function E(η) is given by

E(η) = −1

4

∫
dη

{
g
−3/2
S

[
g′′S − 5

4

(g′S)2

gS
− gS

η2

]}
± 5

24|f � |3/2
. (5.30)

Inserting the explicit expression for gS(k, η), Eq. (5.27), and integrating by parts leads to

E(η) =
νS(ν ′Sη − νS)

(ν2
S − k2η2)3/2

+

∫
dη

4η
√
ν2

S − k2η2

{
1 −

[
νS(ν ′Sη − νS)

ν2
S − k2η2

]2
}

± 5

24|f � |3/2
.

(5.31)
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Essentially the error terms ε
(1,2)
k,1, � (η) in Eqs. (5.22) and (5.23) encapsulate the contributions

to u
(1,2)
k,1, � (η) beyond leading-order. The general solution for uk(η) is a linear combination of

the two fundamental solutions u
(1)
k (η) and u

(2)
k (η), viz.,

uk(η) = Au
(1)
k (η) +Bu

(2)
k (η), (5.32)

independent of the order of the approximation. In order to fix the constants A and B we
have to construct a linear combination of u

(1)
k (η) and u

(2)
k (η) such that the result has the

form uk(η) = e−ikη/
√

2k in the limit k → ∞. In this limit, the domain of interest is region
I, far to the left of the turning point. In this case, for well-behaved νS, f<(k, η) is large
and negative and we can employ the asymptotic forms [145]

Ai(−x) =
1

π1/2x1/4
cos

(
2

3
x3/2

)
− π

4
,

Bi(−x) = − 1

π1/2x1/4
sin

(
2

3
x3/2

)
− π

4
. (5.33)

Making the choices,

A =

√
π

2
ei π

4 , B = −i
√
π

2
ei π

4 , (5.34)

we find

uk,1,<(η) = lim
−kη→∞

C√
2k

exp

{
i
3

2
[f<(k, η)]3/2

}
, (5.35)

which is the required adiabatic form of the solution at short wavelengths and as η → −∞
( 2.5). C is a constant phase factor which is meaningless when computing the power
spectrum.

The η → 0− limit defines the region of interest for calculating power spectra and the
associated spectral indices. In this region, the 1/η2 pole dominates the behavior of the
solutions and the Airy solution goes over to the LG solution. The LG form of the solu-
tion is more tractable than the Airy form, leading to simple expressions for the spectral
indices. We now demonstrate how the Airy solution for small η approaches the LG solu-
tion. The linear combination of Eqs. (5.22) and (5.23) in first order with the appropriate
normalization is given by

uk,1, � (η) =

√
π

2
Cf

1/4
� (k, η)g

−1/4
S (k, η) [Ai(f � ) − iBi(f � )] , (5.36)

with the error bound

|εk,1, � (η)| ≤
√

2

λ
{exp[λVη,α(E)] + exp[λVβ,η(E)] − 2} (5.37)

derived from Eqs. (5.28), (5.29), (A.3), and (A.5). (The explicit form of the variation
of E will be discussed below.) For small η we are on the right of the turning point; the
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argument of the Airy functions, i.e., f>(k, η), becomes large and the Airy functions can be
approximated by [145]

Ai(x) =
1

2
√
π
x−1/4 exp

(
−2

3
x2/3

)
, (5.38)

Bi(x) =
1√
π
x−1/4 exp

(
2

3
x2/3

)
, (5.39)

which leads to

uk,1,>(η) =
C√
2
g
−1/4
S (k, η)

[
1

2
exp

{
−2

3
[f>(k, η)]3/2

}
− i exp

{
2

3
[f>(k, η)]3/2

}]
.

(5.40)

For computing the power spectra in the kη → 0− limit, only the growing part of the
solution is relevant:

uk,1,>(η) = lim
kη→0−

−iC
√ −η

2νS(η)
exp

{
2

3
[f>(k, η)]3/2

}
. (5.41)

We now discuss the variation of E . (See Appendix A.1 for a short discussion on the
variation of a function in general.) We are interested in the error bound of uk,1 over the
full domain of interest −∞ < η < 0−, which implies β = −∞ and η → 0−. In the general
case,

V−∞,η(E) =
∑

|E(α) − E(β)|, (5.42)

where the sum is over all individual monotonic subintervals (α, β) ⊆ (−∞, η) of E . In the
special case of monotonic E over the full range of η the answer can be given in a simplified
form: By inserting the definition of gS(k, η) from Eq. (5.27) into Eq. (5.30) and integrating
by parts we find for the variation of the error control function:

V−∞,η(E) =

∣∣∣∣∣−
1

2νS
− 1

4

∫
dη

η
√
ν2

S − k2η2

{
1 −

[
νS(ν ′Sη − νS)

ν2
S − k2η2

]2
}∣∣∣∣∣ , (5.43)

where it is understood that η has to be taken in the limit η → 0−.

5.2.2 Power spectra

Once the approximate solutions to Eqs. (2.45) and (2.46) have been found in the manner
described above, the relevant power spectra can easily be computed. The definition of the
scalar power spectrum is

PS(k) = lim
kη→0−

k3

2π2

∣∣∣∣
uk(η)

z(η)

∣∣∣∣
2

= lim
kη→0−

k3

2π2

∣∣∣∣
uk,1,>(η)

z(η)

∣∣∣∣
2

|1 + εk,1,>(η)|2

= lim
kη→0−

P1,S(k)
[
1 + εPk,1,S(η)

]
, (5.44)
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with
εPk,1,S = 2Re εk,1,> + |εk,1,>|2 , (5.45)

and P1,S(k) denoting the power spectrum for the scalar perturbations in the leading order
approximation. It is understood that all time-dependent quantities are to be evaluated in
the limit η → 0−. Substituting the LG expression for uk from Eq. (5.41), we have

P1,S(k) = lim
kη→0−

k3

4π2

1

|z(η)|2
−η
νS(η)

exp

{
4

3
[f>(k, η)]3/2

}
, (5.46)

with the error bound for the power spectrum given in Eq. (5.45).
The calculation for the tensor power spectrum follows along the same lines, yielding

P1,T (k) = lim
kη→0−

k3

4π2

1

|a(η)|2
−η
νT (η)

exp

{
4

3

[
f̃>(k, η)

]3/2
}
, (5.47)

with the error being controlled exactly in the same manner as in Eqs. (5.45) and (5.43)
with the subscripts S → T and f̃(k, η) indicating that gS(k, η) in Eq. (5.26) has to be
replaced by gT (k, η).

5.2.3 Ratio of tensor to scalar perturbations

The tensor to scalar ratio, R(k), is given by

R(k) =
8P1,T (k)

P1,S(k)

(
1 + εRk,1

)
, (5.48)

with the error term

εRk,1 =
1 + εPk,1,T

1 + εPk,1,S

− 1. (5.49)

Note that if νS = νT the error is identically zero. In other words, the ratio of tensor
to scalar perturbations is exact already at leading order in the uniform approximation if
νS = νT . We will come back to this point when we discuss power-law inflation where ν is
not only constant but also has the same for scalar and tensor perturbations.

5.2.4 Spectral indices

Next we discuss the evaluation of the spectral indices. In general the spectral index for
scalar perturbations can be obtained from the power spectrum via Eq. (2.55) and for tensor
perturbations via Eq. (2.56). Differentiation of the power spectrum with respect to k is
straightforward. It is important to note that the turning point η̄S is a function of k, since
k = −νS(η̄S)/|η̄S| where νS(η̄S) is the value of νS(η) at the turning point η = η̄S. Using
this relation, we find

n1,S(k) = 4 − 2k2 lim
kη→0−

∫ η

η̄S

dη′√
gS(k, η′)

. (5.50)
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Following from the discussion above, the error in the spectral index arises only from the
k-dependent part of the error in the power spectrum, which vanishes if νS is constant. Thus
the error in the spectral index is sensitive only to the time variation of νS. To estimate this
error, the spectral index as written in Eq. (2.55) can be expressed via the leading order
power spectrum in the following form:

nS(k) = 1 +
d ln(P1,S + εPk,1,S)

d ln k

= 1 +
d lnP1,S

d ln k
+
d ln(1 + εPk,1,S)

d ln k
(5.51)

≈ 1 +
d lnP1,S

d ln k
+ k

dεPk,1,S

dk
(5.52)

≡ n1,S(k) + εnk,1,S, (5.53)

with

εnk,1,S = k
dεPk,1,S

dk
. (5.54)

Here we have neglected error terms of order (εPk,1,S)2.
The above analysis can be carried out for tensor perturbations in an identical fashion,

including the error estimation, with the replacement νS → νT . The spectral index for
gravitational waves is given by

n1,T (k) = 3 − 2k2 lim
kη→0−

∫ η

η̄T

dη′√
gT (k, η′)

. (5.55)

5.3 The next-to-leading order approximation

We now turn to the specific form of the solutions at next-to-leading order.

5.3.1 Normalized solutions

To proceed to the next order, we first write the unnormalized solution for uk, following
directly from Eqs. (5.17) and (5.18):

u
(1)
k,3 � (η) =

[
f � (k, η)

gS(k, η)

]1/4

{Ai[f � (k, η)] (A0[f � (k, η)] + A1[f � (k, η)])

+Ai′[f � (k, η)]B0[f � (k, η)]} , (5.56)

u
(2)
k,3 � (η) =

[
f � (k, η)

gS(k, η)

]1/4

{Bi[f � (k, η)] (A0[f � (k, η)] + A1[f � (k, η)])

+Bi′[f � (k, η)]B0[f � (k, η)]} , (5.57)
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with

A0[f � (k, η)] = 1, (5.58)

B0[f � (k, η)] =
±1

2
√
±f � (k, η)

∫ f �

0

ψ(v)√
±v dv, (5.59)

A1[f � (k, η)] = −1

2
B′

0[f � (k, η)] +
1

2

∫
ψ[f � ]B0[f � (k, η)]d[f � (k, η)]. (5.60)

The error bounds in next-to-leading order are given by [derived from Eqs. (A.1) and (A.2)]:

|ε(1)k,3, � | ≤ 2E−1(f � )M(f � )Wf � ,β, (5.61)

|ε(2)k,3, � | ≤ 2E(f � )M(f � )Wα,f � , (5.62)

with

Wf � ,β = exp
{

2λVf � ,β(|f � |1/2B0)
}
Vf � ,β(|f � |1/2B1),

(5.63)

Wα,f � = exp
{

2λVα,f � (|f � |1/2B0)
}
Vα,f � (|f � |1/2B1),

(5.64)

and

B1(f � ) =
±1

2
√

±f �

∫ f �

0

dv√
±v [ψ(v)A1(v) − A′′

1(v)],

(5.65)

A′′
1(v) = −1

2
B′′′

0 (v) +
1

2
[ψ′(v)B0(v) + ψ(v)B′

0(v)],

(5.66)

recursively derived from Eqs. (5.20) and (5.21).

As in leading order, the general solution uk(η) is a linear combination of u
(1)
k (η) and

u
(2)
k (η). Fortunately, we will not have to calculate the normalization again; in the limit η →

−∞ the Bunch-Davies vacuum is the exact solution of the differential equation for uk(η),
and, in this limit, all corrections from the next-to-leading order terms are subdominant
and of no interest.

A further simplification follows from the fact that only the growing solution u
(2)
k (η) is

relevant to determining the power spectrum and spectral index and that we can restrict
ourselves to the solution for uk in the limit kη → 0−. Employing once again the approx-
imation for the Bi-function for large, positive argument, Eq. (5.39), and in addition, the
approximation for its derivative,

Bi′(x) =
1√
π
x1/4 exp

(
2

3
x2/3

)
, (5.67)
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the normalized uk(η) in the relevant regime is

uk,3,>(η)
kη→0−

= −iC
√

− η

πνS(η)
exp

{
2

3
[f>(k, η)]3/2

}
(5.68)

×
{

1 − 1

2
B′

0(f>) +
√
f>(k, η)B0(f>) +

1

2

∫
ψ(f>)B0(f>)d(f>)

}
.

The error bound is given by

|εk,3,>| ≤ 2f
−1/4
> exp

{
2

3
[f>(k, η)]3/2

}
Wα,f � . (5.69)

5.3.2 Power spectra

Analyzing B0 in detail shows that the derivative B ′
0 and the integral over ψB0 are sub-

dominant in the limit kη → 0−. Hence the only term leading to a correction of the power
spectrum is B0 itself. From the general expression (5.44), the power spectrum at next-to-
leading order is

P2,S(k)
kη→0−

= P1,S(k)
∣∣∣1 + 2

√
f>(k, η)B0[f>(k, η)]

∣∣∣ , (5.70)

with P1,S(k) as defined in Eq. (5.46) and

B0(f>) =
1

2
√
f>

∫ f>

0

ψ(v)√
v
dv, (5.71)

ψ(v) =
5

16v2
+
v (4gSg

′′
S − 5g′2S )

16g3
S

− v

4η2gS
. (5.72)

The first term in B0 [after writing out ψ(v) according to Eq. (5.72)] can be integrated
immediately. The contribution from the lower integration limit, which appears divergent
at a first glance, cancels with contributions from the other terms in the integral. This can
be shown by expanding ψ(v) around zero and integrating explicitly. The error bound can
be calculated in the same way as in leading order. We find

PS(k) = lim
kη→0−

k3

2π2

∣∣∣∣
uk,3,>(η)

z(η)

∣∣∣∣
2 [

1 + εPk,3,S(η)
]
, (5.73)

with

εPk,3,S =
2εk,3,>

uk,3,>(η)
. (5.74)

Here we have neglected terms of quadratic order in εk,3,>.
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5.3.3 Spectral indices

The spectral index at this order, n2,S , as calculated from its definition (2.55), denotes

n2,S(k) = n1,S(k) + lim
kη→0−

2k

|1 + 2
√
f>B0|

∂(
√
f>B0)

∂k
, (5.75)

where n1,S(k) is given by Eq. (5.50). Evaluating the derivative of B0 with respect to k
leads to the following expression for the spectral index:

n2,S(k) = n1,S(k) +
2k2

2|1 + 2
√
f>B0|

(5.76)

×
[∫ η

η̄S

dη′√
gS

(
g′′S
2g2

S

− 15g′2S
g3

S

− 1

4η2gS

)
−
∫ f>

0

dv

4v2

(
ψ(v) − 15

8v2

)∫ η

η̄S

dη′√
gS

]
.

The error estimate for the spectral index can be obtained in a similar way as in leading
order, just as for the power spectrum. We find

nS(k) = n2,S(k) + εnk,3,S, (5.77)

with

εnk,3,S ≈ k
dεPk,3,S

dk
. (5.78)

In the case of the errors in next-to-leading order we have to evaluate Wα,f � which is defined
in Eq. (5.64). This can be done in principle but the result is rather long and complicated.
Rather than calculating the integrals explicitly, we will present a simple and powerful
improvement strategy in Sec. 5.7, utilizing the general formulae at next-to-leading order
without implementing them fully.

Proceeding in the same way as for the scalar perturbations the power spectrum and
the spectral index for the tensor perturbations, including error bounds, can be calculated.
P2,T (k) can be obtained from Eqs. (5.70)–(5.72) by replacing P1,S(k) with P1,T (k) on the
r.h.s. of Eq. (5.70) and replacing gS(k, η) and its derivatives in Eq. (5.72) by gT (k, η) and
its derivatives. The spectral index for the tensor perturbations can easily be derived by
replacing n1,S(k) and gS(k, η) and its derivatives in Eq. (5.76) on the right hand side by
n1,T (k) and gT (k, η) and its derivatives.

5.4 Analytical solutions for power-law inflation

In order to demonstrate the accuracy of our approximation we now investigate power-law
inflation, where νS and νT are constant. Power-law inflation, as defined by the potential
V (φ) = V0 exp(

√
2/p φ), is one of the few classes of exactly solvable models. Both the

dynamical background equations as well as the equations for the fluctuation modes can
be solved analytically. Exact expressions for the power spectra have been given, e.g., by
Stewart and Lyth [146]. (See also the discussion in Ref. [131].)
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We will restrict the discussion first to scalar perturbations. Tensor perturbations can
be treated in the same way replacing νS → νT . The equation for the scalar modes uk

[Eq. (5.9)] simplifies to a Bessel equation of the form

u′′k(η) =

[
−k2 +

1

η2

(
ν2

S − 1

4

)]
uk(η) , (5.79)

where

νS = νT =
3

2
+

1

p− 1
. (5.80)

The conformal time follows from the exact expression

η = − 1

aH

1

(1/p− 1)
. (5.81)

The normalized solution with the correct asymptotic behavior at small scales (kη →
−∞) is given by

uk(η) =

√
π

2
(−η)1/2H(1)

νS
(−kη) , (5.82)

where H
(1)
νS is the Hankel function of the first kind of order νS [146]. Note that the solutions

are only exact up to a (meaningless) phase factor. In Eq. (5.82) we have dropped a phase
factor ei(νS+1/2)π/2, which is included in the expressions of Lyth and Stewart. The solution
in Eq. (5.82) has the advantage that in the limit kη → 0− the two orthogonal solutions
reproduce the ex and e−x asymptotic of the uniform approximation. This will facilitate
the direct comparison of the various numerical, analytical or approximate results.3

Inserting the solution in Eq. (5.82) in the general expression (5.44) and calculating the
limit kη → 0− provides the exact power spectrum

P ex
S (k) =

22νS−2

2π3
Γ2(νS)(−kη)1−2νSk2

(
H

aφ̇

)2 ∣∣∣∣
k=aH

(5.83)

=
22νS−2

π2
e−2νSν2νS−1

S (−kη)1−2νSk2

(
1 +

1

6νS
+

1

72ν2
S

+ · · ·
)(

H

aφ̇

)2 ∣∣∣∣
k=aH

,

(5.84)

where we have used Stirling’s formula to replace the Γ function. Note that the power
spectrum is rewritten in terms of the values the quantities had when the Hubble radius
was crossed (k/aH → 0). This is a subtle point, see, e.g., the discussion of Eq. (5.83) in

3Solutions very similar to the one in Eq. (5.82) have been found for the slow-roll approximation, see
Sec. 4.2. Note that in Chap. 4 the quantity ν has been approximated to first order in the slow-roll
parameters. While for power-law inflation both definitions agree exactly, the same is not true in general.
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Ref. [131]. Since the k-dependence is explicit in Eq. (5.83), the scalar spectral index is
easily found from Eq. (2.55)

nS = 4 − 2νS . (5.85)

For power-law inflation the tensor power spectrum and the tensor spectral index are
given by

P ex
T (k) =

2

p
P ex

S (k) , (5.86)

nT = 3 − 2νT . (5.87)

Next we turn to the corresponding expressions in the uniform approximation. The
general expression for the power spectrum in leading and next-to-leading order in the
uniform approximation is given by Eq. (5.46) and Eq. (5.70), respectively. For constant
νS, the integrals which appear in these expressions can be solved analytically, leading to
the results

P
(1)
S (k) =

22νS−2

π2
e−2νSν2νS−1

S (−kη)1−2νSk2

(
H

aφ̇

)2 ∣∣∣∣
k=aH

,

(5.88)

P
(2)
S (k) =

22νS−2

π2
e−2νSν2νS−1

S (−kη)1−2νSk2

(
1 +

1

6νS

)(
H

aφ̇

)2 ∣∣∣∣
k=aH

. (5.89)

Comparison of these results with the exact power spectrum in Eq. (5.84) reveals a nice
feature of the uniform approximation for the special case of power-law inflation: Improving
the uniform approximation order by order leads to matching corrections to the Γ-function
in powers of inverse ν.

A more rigorous analysis of the errors in the uniform approximation along the lines
explained in Sec. 5.2 and 5.3 shows that the leading order solution is bounded by the
absolute value of the relative error

|ε>,1,2| ≤
√

2

(
1

6νS

+
λ

72ν2
S

+ · · ·
)
, (5.90)

where λ ' 1.04 [42]. The error in the power spectrum given in Eq. (5.88) falls comfortably
within the bound.

Similarly, we can exactly solve the integrals in the expressions for the spectral indices
in leading and next-to-leading order, Eqs. (5.50) and (5.76). We find that the spectral
index in leading order is already exact

n
(1)
S = n

(2)
S = 4 − 2νS. (5.91)

This is an important result demonstrating the high accuracy of the uniform approximation
already at leading order. There are no higher order corrections to be expected since the
corrections to the power spectrum in second order, Eq. (5.89), are k-independent. We
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can also evaluate the error bound for the spectral index from Eq. (5.54) for constant ν
as a cross-check: Consistent with obtaining the exact value of nS , we find that the error
vanishes.

Next, we give the corresponding expressions in the slow-roll approximation. Tradition-
ally, results for slow-roll inflation are calculated at k = aH (see Sec. 4.3). Following this
choice, the result for power-law inflation is [46]

P SR
S (k) =

H4

4π2φ̇2

[
1 − 2

p
(c+ 1) +

2

p2

(
c2 + c− 5

2
+
π2

4

)]
. (5.92)

The scalar spectral index is given by

nSR
S = 1 − 2

p
− 2

p2
. (5.93)

Apparently, in the limit of exact scale invariance (nS = 1, which is the case for p → ∞)
the slow-roll result for nS becomes exact.

Before proceeding, we note that for power-law inflation ν = νS = νT can take values
between 1.5 and 2.5 for p→ ∞ and p = 2, respectively. In Fig. 5.2 we display the relative
error of the power spectrum in the uniform approximation to leading-order (LO), next-to-
leading order (NLO) and to next-to-next-to-leading order (NNLO) as a function of ν. The
relative errors are ∼10% at LO, ∼0.5% at NLO and ∼0.1% at NNLO, respectively. The
error of the power spectrum in the uniform approximation does not change dramatically
as a function of ν. This robustness of the error control is a key feature of the uniform
approximation.

Slow-roll is known to be inaccurate for small values of p [132]. We therefore pick p = 2
as a test case—equivalent to νS = 5/2. The slow-roll result for the scalar power-spectrum
to first order in the slow-roll parameters has an error of almost 30% [44], while the leading-
order uniform approximation has an error of roughly 7% (see Fig. 5.2). The slow-roll result
to second order in the slow-roll parameters is still inaccurate to 9%, which is worse than
the result from the uniform approximation at leading order. The uniform approximation
at next-to-leading order has the remarkably small error of only 0.2% (see Fig. 5.2). This
is a very encouraging result.

In addition we can compare the spectral index for power-law inflation. For the case
p = 2, the slow-roll approximation clearly does not lead to a good answer, as the exact result
is nS = −1 while the slow-roll answer is nS = −0.5 (second-order result). Of course p = 2
does not represent a realistic model for inflation. At higher values of p the slow-roll answer
improves dramatically. The amplitude of the power spectrum in slow-roll approximation
also enhances rapidly for larger values of p. It becomes exact only for p→ ∞. In Fig. 5.3
we display the relative error of nS in the slow-roll approximation to first and second order
in the slow-roll parameters which corresponds to the first and second inverse powers in p
[see Eq. (5.93)]. At p ≈ 10 the result to second order in the slow-roll parameters is smaller
than ∼ 0.1%. Note that this result holds only for power-law inflation with no running of
the spectral index. The uniform approximation for nS is exact already at leading-order,
independent of the choice of the power p.
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Figure 5.2: Relative error (in percent) of the power spectrum for the uniform approx-
imation to leading order (LO, solid line), next-to-leading order (NLO, dashed line) and
next-to-next-to-leading order (NNLO, dashed-dotted line) as a function of the parameter
ν; the LO gives an accuracy ∼ 10%, the NLO ∼ 0.5% and the NNLO ∼ 0.1%. Note that
for power-law inflation the errors are k-independent, i.e., the power spectra are inaccurate
by a simple global normalization factor.
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as a function of the power p in power-law inflation; the slow-roll approximation becomes
exact for p→ ∞; the uniform approximation is exact already at leading-order, independent
of the choice of the power p.
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As we will show in Sec. 5.7 the results for power-law inflation are very useful in order
to improve the accuracy of the leading-order uniform approximation in the case of time-
dependent ν.

5.5 Local approximations:

Expansion around the turning points

After we have discussed the ν = const. case in detail, we now turn back to the general case
of time dependent νS and νT .

The results for the power spectra and the spectral indices to leading and next-to-
leading order in the uniform approximation are non-local expressions. In order to compare
them with conventional slow-roll results it is desirable to have local expressions for some
physical quantities of interest. Moreover, local approximations will turn out to be very
useful simplifying the calculation of the error control functions and improving accuracy of
the leading order expressions (see Sec. 5.6 and 5.7). Again the analysis is identical for the
scalar and tensor cases so we address the scalar case first.

We note that the leading-order power spectra in the uniform approximation involve
integrals of the form [see, e.g., Eq. (5.46)]

I1(k) =

∫ η

η̄S

dη
√
gS(k, η) =

∫ η

η̄S

dη

√
ν2

S(η)

η2
− k2 . (5.94)

The leading order expressions for the spectral indices involve integrals with a square-root
singularity at the turning point η̄S, i.e., [see, e.g., Eq. (5.50)]

I−1(k) =

∫ η

η̄S

dη√
gS(k, η)

=

∫ η

η̄S

dη√
ν2

S
(η)

η2 − k2

. (5.95)

Similar integrals appear in the case of tensor perturbations, with νS replaced by νT . In
the relevant limit kη → 0−, where the perturbation spectra are calculated, the integrals
are dominated by the pole term 1/η2 under the square root. The integrand in the integral
I−1 vanishes indeed linearity in this limit. In addition, for many inflationary models νS

is also slowly varying with time. It is therefore justified to expand νS in a Taylor series.
Including terms up to second order derivatives, νS(η) reads

ν2
S(η) = ν̄2

S + 2ν̄S ν̄
′
S (η − η̄S) + (ν̄ ′2S + ν̄ ′′S ν̄S)(η − η̄S)2 + O[(ν − ν̄S)3] . (5.96)

The bar indicates that the quantities are evaluated at the turning point η̄, defined by
kη̄ = −ν(η̄). The turning point is k-dependent and so is, e.g., ν̄S. If in Eq. (5.96) only the
first term of the Taylor series is included, the terminology ultra-local (approximation) will
be used.

With the expansion in Eq. (5.96) the integrals in Eqs. (5.94) and (5.95) can be solved
exactly. Solutions from the ultra-local part of a local expansion of νS correspond to the
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results from the case of power-law inflation, with νS replaced by ν̄S and analogously νT

replaced by ν̄S.
As an example we now calculate the scalar spectral index at leading order in the uniform

approximation as given by Eq. (5.50). To second order in derivatives we find

nS(k) ' 4 − 2ν̄S

{
1 − ν̄ ′S

ν̄S
η̄S

(
1 − π

2

)
+
η̄2

S

2

[
ν̄ ′2S
ν̄2

S

(2 − π) +
ν̄ ′′S
ν̄S

(1 − π)

]}
. (5.97)

This is a simplification of the non-local result. For the tensor spectral index we find
analogously

nT (k) ' 3 − 2ν̄T

{
1 − ν̄ ′T

ν̄T

η̄T

(
1 − π

2

)
+
η̄2

T

2

[
ν̄ ′2T
ν̄2

T

(2 − π) +
ν̄ ′′T
ν̄T

(1 − π)

]}
. (5.98)

Using simple test functions with a mild variation of the potential ν, we have verified that
it is adequate (at the one percent level) to keep terms up to second order derivatives.
The accuracy of such simplified leading-order results will also be checked numerically with
several representative examples in Chap. 7.

5.6 Estimate of the leading-order error bound

Although we can calculate (in principle) the error bound for the power spectra from the
general expressions in Eqs. (5.28) and (5.30), it is convenient to have simpler estimates for
the errors.

We begin by considering the case of constant ν, where the k-independent error bound for
the power spectrum in leading order of the uniform approximation is found by substituting
Eq. (5.90) in Eq. (5.45)

|εP1 | ≤ 2
√

2

(
1

6ν
+

λ

72ν2
+

1

36
√

2ν2
+ · · ·

)
, (5.99)

the generic ν denoting either of νS or νT . This bound is rigorous and useful, though the
prefactor is not optimally sharp for the case of constant ν.

Suppose now that ν(η) varies slowly with time. Fix k and consider the value of ν(η)
at the turning point η̄(k), defined by kη̄ = −ν(η̄). Given the slow variation of ν(η), this
value ν̄(k) is a slowly varying function of k. By expanding the expression for the error
control function of Eq. (5.30) locally around the turning point as in the previous Section,
we obtain what is effectively a derivative expansion of the error term. The leading term in
this expansion, which is free of derivatives, has the same form as the expression above for
constant ν, though it now carries the mild k-dependence of the variable-ν case,

|εPk,1| . 2
√

2

[
1

6ν̄(k)
+

λ

72ν̄2(k)
+

1

36
√

2ν̄2(k)
+ · · ·

]
. (5.100)

This bound is not meant to be rigorous, since higher order terms in the derivative expansion
are not included. However, it is effective and useful in the case of slowly varying ν(η).
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Before proceeding, we make a few observations on the nature of the error terms. In
the case of constant ν, i.e., for power-law inflation, we have seen that the spectral index
is exact already at leading order of the uniform approximation. All higher orders lead to
a k-independent amplitude correction for the power spectrum. Because νS = νT in the
constant ν case, the ratio of tensor to scalar perturbations is also exact.

5.7 A simple and powerful improvement of the lead-

ing order

The next-to-leading order results for uk and vk and the corresponding power spectra and
spectral indices contain several integrals over η, which are tedious to evaluate [see, e.g.,
Eqs. (5.70) and (5.76)]. In contrast, the results at next-to-leading order for the case of
constant ν turned out to be very simple. In essence, higher order terms in the uniform
approximation generate a prefactor which occurs in the Stirling series for Γ(ν) [147]. In
particular

Γ2(ν) =
1

2π
e−2νν2ν−1

(
1 +

1

6ν
+

1

72ν2
− 31

6480ν3
− 139

155520ν4
+ . . .

)
(5.101)

≡ 1

2π
e−2νν2ν−1[Γ∗(ν)]2 (5.102)

with

Γ∗(ν) ≡ 1 +
1

12ν
+

1

288ν2
− 139

51840ν3
+ · · · . (5.103)

We know this prefactor a-priori to be present in the case of constant ν (see Sec. 5.4). The all-
orders prefactor [Γ∗(ν)]2 improves the normalization of the power spectrum dramatically.
The first and second term represent the leading order and next-to-leading order corrections,
respectively.

The natural question arises as to whether or not it is possible to utilize these results
to improve the leading order expressions without recourse to full computation of the sub-
leading approximations.

For most viable inflationary models, ν varies slowly and corrections from the derivatives
of ν are sub-dominant. The full next-to-leading order machinery may not be required if ν
is sufficiently well-behaved. In this Section we implement this idea and derive improved
leading-order results for the power spectra. Note that, at leading order, the spectral index
is exact for constant ν. Thus, the main improvement is to be expected in the amplitude
of the power spectrum.

First, we make two important observations: (i) The next-to-leading order expression
for the power spectrum [see, e.g, Eq. (5.70)] has the form of a multiplicative correction to
the leading order power spectrum and (ii) the correction factor involves a non-local integral
expression.

For the case of constant ν this correction factor reduces at next-to-leading order to the
k-independent normalization correction, as given by the first two terms in Eq. (5.103).
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For time-dependent and slowly varying ν(η), the error bound for the power spectrum is
in fact dominated by an amplitude prefactor which has only a subdominant contribution to
the spectral index. This can be understood as follows. Suppose that we split the scattering
potential in the form

ν2(η) − 1

4
= ν̄2 − 1

4
+ ν2(η) − ν̄2, (5.104)

and choose the η-independent but k-dependent constant ν̄(k) to be the value of ν(η) at the
turning point. This splitting allows us to identify two separate contributions to the total
error term for the power spectrum,

εPk,1 = ε̄ + ε̃. (5.105)

The term ε̄ arises solely from the ultra-local contribution in the derivative expansion of ν,
and by explicit calculation it is known to be of the form

ε̄ = [Γ∗(ν̄)]2 − 1 (5.106)

=
1

6ν̄(k)
+

1

72ν̄2(k)
− 31

6480ν̄3(k)
− 139

155520ν̄4(k)
+ · · · .

We do not have to calculate the error term ε̄ with the ultra-local approximation ν(S) ' ν̄
explicitly, since this is the same as for constant ν with ν replaced by ν̄(k), i.e., Eq. (5.103)
can be used immediately. The remaining error term ε̃ satisfies an integral equation of the
form considered by Olver [42], with a reduced inhomogeneity; explicit calculation leads to
the rigorous bound

|ε̃| ≤ V(E − Ē)

V(Ē)
[1 + O(|ε̄|)] |ε̄| . (5.107)

Here E is the full error control function, Ē is the error control function for the case of
constant ν = ν̄(k), and V(·) indicates total variation as defined in Appendix A.1.

In the generic case of slowly varying ν(η) this expression clearly shows that ε̃ is signif-
icantly reduced in comparison to ε̄. Therefore we are motivated to absorb the ultra-local
contributions from higher order corrections into the power spectrum, leading to an im-
proved leading-order expression

P̃1(k) = P1(k)[Γ
∗(ν̄)]2. (5.108)

This improvement applies to both the scalar and tensor power spectra, with νS(η) and νT (η)
respectively. Since typical values of ν ∼ 2 occur for both scalar and tensor fluctuations, the
terms on the right hand side of Eq. (5.108) correspond to amplitude corrections of order
10%, 0.35%, 0.06%, and 0.006%, respectively (see Fig. 5.2). These can be viewed primarily
as local normalization corrections.

To complete the discussion, we can obtain a non-rigorous estimate for the size of ε̃,
again using a derivative expansion in E to isolate the leading local contributions. In this
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expansion, the leading derivative-free terms in E−Ē must cancel, and therefore the leading
term is proportional to the first derivative of ν(η). We find

|ε̃| .
3

2

∣∣∣∣
ν̄ ′

k

∣∣∣∣ [1 + O(|ε̄|)] |ε̄|

.
1

4ν̄(k)

∣∣∣∣
d ln ν̄(k)

d ln k

∣∣∣∣
[
1 + O

(
1

ν̄(k)

)]
, (5.109)

where we have used the chain rule to write the derivative in terms of a derivative of ν̄(k)
with respect to k and have used the explicit form for ε̄(k) [45]. It is understood that
this is not a rigorous inequality, since we have neglected the higher order terms in the
derivative expansion, but it is well-motivated and useful for slowly-varying ν(η). This
error estimate determines the order to which the local corrections (5.108) should be taken
into account. For instance, when ν is slowly varying, most of the error can be compensated
using Eq. (5.108). Examples will be specified in Chap. 7, where we explicitly demonstrate
the success of this improvement procedure. As is to be expected, the ratio R(k) is much
less sensitive to the normalization error compared to the amplitude of the power spectrum.
For this quantity, the error is well estimated by Eq. (5.109).

5.8 Slow-roll redux

It is possible to simplify the approximate expressions for the spectral indices4, as presented
in Sec. 5.5, one step further by expanding them in terms of slow-roll parameters ε and δi.
Obtaining expressions from the local approximants for nS and nT [Eqs. (5.97) and (5.98)]
is straightforward: we simply expand νS, νT , and their derivatives in terms of slow-roll
parameters. A crucial point to keep in mind is the value of k in terms of which the
results are stated. In the slow-roll expansion the evaluation of the slow-roll parameters is
traditionally given at horizon crossing, −kη → 1, a somewhat arbitrary choice due to the
uncontrolled nature of the approximation. As shown in detail in by Steward in Ref. [133]
calculating the slow-roll parameters at a convenient time close to horizon crossing leads
to small finite corrections in power spectra and spectral indices. In our case, the natural
expansion point is the turning point, therefore a truly direct comparison with slow-roll
results, such as those of Ref. [46], is rather complicated.

The starting point is an expression which connects the conformal time η with the slow-
roll parameters [131]

η ' − 1

aH

[
1 + ε+ 3ε2 + 2εδ1 + 15ε3 + 20ε2δ1 + 2εδ2

1 + 2εδ2 + · · ·
]
. (5.110)

It follows from Eq. (5.110) that to first order in the slow-roll parameters, η ' −(1 +
ε)/aH [this expression can be compared to Eq. (4.7)]. Using Eq. (5.110) and for scalar

4Obtaining expressions for the power spectra is also possible. The results from the improved leading-
order uniform approximation should be used in order to do this.
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perturbations

ν2
S =

z′′

z
η2 +

1

4
, (5.111)

and the expression for z′′/z given in Eq. (4.2), we can write ν̄S, ν̄ ′S η̄S and ν̄ ′′S η̄
2
S in terms of ε

and δn. We find for the different contributions to second order in the slow-roll parameters5:

ν̄S =
3

2
+ 2ε̄ + δ̄1 +

16

3
ε̄2 +

14

3
ε̄δ̄1 −

1

3
δ̄2
1 +

1

3
δ̄2 + O(ε̄3), (5.112)

η̄S ν̄
′
S = −4ε̄− 5ε̄δ̄1 + δ̄2

1 − δ̄2 + O(ε̄3), (5.113)

η̄2
S ν̄

′′
S = 4ε̄2 + 5ε̄δ̄1 − δ̄2

1 + δ̄2 + O(ε̄3) . (5.114)

As before, the bar indicates that the slow-roll parameters are to be calculated at the turning
point, and O(ε̄3) represents all slow-roll terms of third order and higher. Finally, inserting
Eqs. (5.112)-(5.114) into the local expression for the scalar spectral index (5.97) allows us
to write the spectral index in terms of slow-roll parameters:

nS(k) ' 1 − 4ε̄− 2δ̄1 − 8ε̄2
(

17

6
− π

)
− 10ε̄δ̄1

(
73

30
− π

)
(5.115)

+2(δ̄2
1 − δ̄2)

(
11

6
− π

)
.

Thus, starting from the non-local expression for the scalar spectral index given by the
leading-order uniform approximation [Eq. (5.50)], we have arrived at a local expression for
nS in terms of slow-roll parameters by employing two expansions: First we expanded the
integrand in the expression for the spectral index in a derivative expansion in ν̄S, to solve
the integral in Eq. (5.50). Then we further expanded the result in slow-roll parameters.
However, the two expansions are not independent; had we decided to stop the expansion
in derivatives in νS after the first term we would not have obtained the second order slow-
roll contributions from the expansion of the second derivative of νS. If one wants results
quoted to some order in slow-roll parameters, this requires going up to a finite order in
derivatives of ν̄S; however, written in this way, it is a priori not obvious which expansion is
the dominant one—either the expansion in derivatives of ν̄S or the expansion in slow-roll
parameters. In the absence of further information regarding νS itself, the question cannot
be answered satisfactorily. This demonstrates one of the inherent difficulties of deriving
higher order expressions for the spectral index via Taylor expansions without having a
well-defined error bound.

The analogous result in the slow-roll approximation [Eq. (4.11)] agrees to first order
in the slow-roll parameters [Eq. (4.13)]. The forms of the higher order contributions are
apparently different due to the difference in evaluation points and the different approxima-
tions employed. However, both results should be treated with some caution: (i) Without
an error control theory, it is not clear that inclusion of higher order terms actually improves

5In Ref. [44] we have given the expression including third-order terms.
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the accuracy of the result (convergence is not guaranteed since the Taylor expansion leads
only to an asymptotic expansion); (ii) the evaluation point of the slow-roll parameters
leads to an uncertainty in the calculation—if one really wants results accurate to the per
cent level, this uncertainty is important. In order to obtain results with high accuracy,
error controlled approximations are necessary.

For completeness we also give the equivalent result for the tensor spectral index, derived
from a slow-roll expansion of the local result, Eq. (5.98). We find

nT (k) ' −2ε̄−
(

34

3
− 3π

)
ε̄2 −

(
28

3
− 3π

)
ε̄δ̄1 , (5.116)

where we have used
a′′

a
= 2a2H2

(
1 − 1

2
ε

)
. (5.117)

As for the scalar spectral index, the result agrees with Eq. (4.12) to first order in the
slow-roll parameters.



Chapter 6

Numerical Implementation

In this Chapter we describe the numerical implementation of the exact mode-by-mode in-
tegration and the uniform approximation and its simplifications. Some additional technical
details can be found in Appendix A.2. Since the uniform approximation is useful both in
setting initial conditions for the exact numerical solution, and as a complete semi-analytic
method in its own right, we discuss it first below (Sec. 6.1). The exact mode-by-mode in-
tegration follows in Sec. 6.2. A dedicated test of power-law inflation poses as a benchmark
for testing the accuracy of the various numerical implementations. Important results are
presented in Sec. 6.3.

6.1 Leading-order uniform approximation:

Numerical issues

6.1.1 Preliminaries

We begin by addressing some technical points and introducing conventions. Since the
conformal time is defined only up to a constant, we set it to zero at the end of inflation. If
the given model does not have a natural end to inflation this point is somewhat arbitrary
and we set η to zero typically a number of e-folds after the highest mode of interest freezes
out.

The power spectrum and the spectral index are to be calculated in the limit kη → 0−,
so that the LG approximation can be used. To avoid accumulation of numerical error,
however, these quantities should not be calculated directly in this limit. Since the freeze-
out happens soon after the turning point is crossed, the computation is carried out some
e-folds after the turning point for each respective mode, but well before the end of inflation.
The linear combination of both solutions to the mode equations, in terms of Ai- and Bi-
functions, is then completely dominated by the exponentially growing part. We found
that carrying out the computations four or five e-folds after the respective turning point
provided sufficient accuracy.

65
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In the computations described below, the Ai- and Bi-functions were calculated with the
algorithm given in Ref. [148].

6.1.2 The mode solutions

The full solutions uk,1,>(η) and uk,1,<(η) are not needed for the calculation of the power
spectrum and the spectral index. Nevertheless, it is useful to calculate some of them for
selected momenta k in order to compare the leading order uniform solutions to the exact
numerical solutions found from a mode-by-mode integration of the differential equations.
For η < η̄ we can calculate the integrals appearing in f<(k, η), as defined in Eq. (5.26)
numerically via ∫ η̄

η

dη′
√
g(k, η′) =

(∫ ηi

η

+

∫ η̄

ηi

)
dη′
√
g(k, η′), (6.1)

where ηi is an initial value of the conformal time. In the actual numerical routine we
therefore have to know the second integral before we can calculate the uniform solutions
left of the turning point: This is achieved by an additional run of the integrator for the
background equations.

6.1.3 Power spectra and spectral indices

The power spectra for scalar and tensor perturbations in leading order of the uniform
approximation are given by Eqs. (5.46) and (5.47). The integrals are calculated using
a trapezoidal rule with non-equidistant discretization in conformal time. As mentioned
above, we avoid calculating the spectra numerically in the limit kη → 0−, but instead do
so some 4-5 e-folds after the turning point. In the case of power-law inflation analytical
results are available for the leading order contributions to the power spectra (see Sec. 5.4).
We have checked that the power spectra numerically calculated from Eqs. (5.46) and (5.47)
are in agreement with these analytic results (see Sec. 6.3 for more details).

The spectral indices in the uniform approximation may be calculated either by numer-
ically differentiating the power spectra, or by using the formulae in Eqs. (5.50) and (5.55).
In Appendix A.2.2 we describe how to deal with the inverse square root singularities ap-
pearing in the integrals to be performed in the second case.

6.2 Mode-by-mode numerical integration

6.2.1 Initial conditions and mode functions

In order to numerically calculate the mode functions, we must satisfy the initial condition
requirement, i.e., in the limit kη → −∞,

uk(η) −→
1√
2k
e−ikη. (6.2)
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Two difficulties in imposing this formal initial condition immediately arise. First, in any
numerical solution, the calculation must begin at a finite initial time, thus for modes
with small enough values of k, the condition kη → −∞ may not be fulfilled. Second,
for modes at larger k values, there are very many oscillations before the turning point is
reached, naively requiring very fine time steps if the entire temporal range must be handled
numerically.
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Figure 6.1: Imaginary (growing) part of the scalar mode function for a power-law model
with p = 11 for the mode k = 0.0214 hMpc−1. The solid red line is the exact analytical
solution, the dashed-dotted blue line the result from the numerical solution of the exact
equations, and the dashed green line the uniform approximation to leading order; the
results of analytical and uniform approximation calculations are almost on top of each
other. The arrow shows the turning point and the green band is the estimated error bound
for the leading order uniform approximation.

To circumvent these problems, we use the uniform approximation to set initial con-
ditions in a regime where it is exponentially accurate. For each mode, we take as initial
condition the uniform approximation result at roughly 20 zeros, i.e., 10 oscillations, before
the turning point for that mode. The number of zeros from a given time to the turning
point can be estimated by nπ ≈ k[η̄(k) − η]. As shown below, this initialization proce-
dure suppresses numerical errors, especially in the high-k regime where the precision of the
power spectrum and the spectral index is improved without taking smaller time steps. In
addition, only a smaller number of “active” modes, i.e., the modes that are within some
20 zeros before the turning point and not yet frozen out, need be considered at any time.
In the regime of small k, we first note that as inflation has to start somewhere in practical
numerical calculations, this introduces a lowest value for k, defined by the criterion that
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Figure 6.2: Real (damped) part of the scalar mode function for a power-law model
following Fig. 6.1; we made no attempt of fine-tuning the meaningless initial phase of the
numerical solution so that we observe a slight rise of the numerical solution around 2 e-folds
here; the absolute value is not affected (Fig. 6.3).
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Figure 6.3: The absolute value of the scalar mode function for a power-law model following
Fig. 6.1.
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the mode should be well inside the Hubble length. As the initial conditions for inflation are
unknown, we will assume (i) that inflation began well before the 55-65 e-folds necessary
to solve the flatness and horizon problems, and (ii) by the time our calculations are to be
performed, Eq. (6.2) applies. By isolating how initial conditions are defined from possible
early-time artifacts, our method of implementing initial conditions also leads to substantial
improvement in the low-k regime as well.

In Figs. 6.1, 6.2, and 6.3 we display the (growing) imaginary part, (damped) real part
and absolute value of uk for a mode with k = 0.0214 hMpc−1 for a power-law inflation
model. As can be seen in all cases, the uniform approximation at leading order and the
numerical results are very close. The error in the absolute value |uk| (relevant to the power
spectrum) from the mode-by-mode integration is shown in Fig. 6.4. The numerical error is
less than 1 part in 105. To check the accuracy of the solution of the background equations,
the numerical deviations from the expected pure constant values for ν, ε, and δ1 are shown
in Fig. 6.5; the errors are comfortably below one part per million. Detailed quantitative
results are given in the following Section.
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Figure 6.4: Relative error of |uk| shown in Fig. 6.3 for the numerical calculation (blue
line). The arrow shows the turning point for the mode.

6.2.2 Power spectra and spectral indices

For the case of scalar perturbations the modes freeze out once the power spectrum PS(k, η),
as defined in Eq. (2.51), becomes constant as a function of conformal time, i.e., when
P ′

S(k, ηfreeze) ' 0 at a numerically determined freeze-out time ηfreeze. We found that it
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Figure 6.5: Relative errors of ν, ε, and δ1; model parameters are as specified in Fig. 6.1.

is numerically robust to track the time derivative of PS(k, η) to determine this freeze-out.
The same situation holds for the tensor perturbations and PT (k, η) as defined in Eq. (2.52).

Once the power spectra have been obtained, the spectral indices for scalar and tensor
perturbations are found by evaluating the derivatives of the power spectra with respect
to k, as defined in Eqs. (2.55) and (2.56). The derivatives are computed numerically with
non-equidistant momentum discretization due to the momentum readjustment described
in Appendix A.2.1. We take three discretization points and approximate the derivative
by a non-symmetric second-order rule. In the numerical evaluation of the derivatives, for
every individual k we use two very close neighboring points with ∆ ln k ≈ 0.01–0.02 over
the entire k-range considered.

6.3 Tests for power-law inflation

As one of the few analytically tractable models, power-law inflation [106, 120] provides
a useful foil for testing approximations. This feature has maintained its popularity, even
though the basic model is not realistic, as inflation never comes to an end.

We compared detailed results from the uniform approximation in leading and next-to-
leading order with slow-roll and exact results in Sec. 5.4.

Here, we use the power-law model for testing the accuracy of our numerical implemen-
tations of the exact mode equations, as well as the uniform and slow-roll approximations.
The spectral indices are constant, therefore the running of the spectral index—which mea-
sures the k-dependence of nS and nT —vanishes. In addition, the ratio R(k) = 16/p of the
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Table 6.1: Numerical precision tests in the power-law case with p = 11 at k∗ =
0.06875 hMpc−1 = 0.0495 Mpc−1 (h = 0.72±0.05; the WMAP pivot scale is at 0.05 Mpc−1,
see Ref. [8]) in the various approximations.

Approximation R(k∗) nS(k∗) αS(k∗) nT (k∗) αT (k∗)

Analytical 1.454545 0.8 0 -0.2 0
Numericala 1.454544 0.79998 < 10−7 -0.20002 < 10−7

Uniform, 1. orderb 1.454541 0.79992 0.00001 -0.20008 0.00001
Local approx., 0. orderb – 0.80000 < 10−7 -0.20000 < 10−7

Local approx., 1. orderb – 0.79999 < 10−6 -0.20001 < 10−6

Uniform, Slow-Roll reduxc – 0.80165 < 10−7 -0.19835 < 10−7

Slow-Roll, 1. orderd 1.454545 0.81818 < 10−7 -0.18182 < 10−7

Slow-Roll, 2. ordere – 0.80165 < 10−7 -0.19835 < 10−7

aMode-by-mode integration.
bAlready exact in that order.
cSee Eqs. (5.115) and (5.116).
dExpected results: nS = 1 − 2/p and nT = −2/p.
eExpected results: nS = 1 − 2/p− 2/p2 and nT = −2/p− 2/p2.

power spectra is constant. Instead of showing our results graphically—all curves would
be almost indistinguishable by eye—we summarize our findings in Tab. 6.1. We quote
the results for R(k), the spectral indices, and their running αS and αT at the WMAP
pivot scale k∗ = 0.0495 Mpc−1 [8]. We have picked the power p = 11, which is of course
much too small to be considered a realistic inflationary model, but is perfectly acceptable
for illustrative purposes. In the uniform approximation there is an explicit expression for
the spectral indices nS and nT , while the tensor to scalar ratio R(k) is calculated via the
amplitudes of the power spectra. In the purely numerical computation, the spectral index
is obtained by taking numerical derivatives of the power spectrum as described earlier.

The error in the exact numerical determination of the ratio of the power spectra R∗(k)
is smaller than 1 part in 106, while the numerical error in the implementation of the uniform
approximation is slightly larger (3 parts in 106). In the case of power-law inflation, the
spectral indices do not accurately reproduce the expected analytic results, though they do
reproduce the expected slow-roll results to 1/p-order with the slow-roll parameters being
constant in time (in this case, ε = −δ1 = 1/p and δ2 = 2/p2). This provides a check on
the integration of the background equations, but contains no further useful information.

For the scalar spectral index nS(k∗) we find a relative error in the exact numerical
calculation of 0.0025% while for the uniform approximation the relative error is roughly
0.01%. Again, no error in the numerical implementation of the slow-roll approximation
is detected. The situation for the tensor spectral index nT (k∗) is similar. The numerical
errors in the uniform approximation for the spectral indices are slightly larger than for the



72 Chapter 6. Numerical Implementation

exact numerical mode-by-mode approach due to the numerical integration of a function
with an inverse square root singularity. The results for αS(k∗) and αT (k∗) are very close
to zero in all cases.

In addition, we tested our improvement strategy for the uniform approximation which
should work perfectly in the case of power-law inflation since ν is constant. We found a
relative error for PS(k) of 0.15% if we include corrections up to 1/ν2, of 0.025% includ-
ing corrections up to 1/ν3, and of 0.01% if we include corrections up to 1/ν4 following
Eq. (5.108). The corrections are slightly worse than anticipated but consistent with the
small error of 0.01% in the numerical implementation of the uniform approximation.



Chapter 7

Results from Numerical Calculations

7.1 Chaotic inflation

7.1.1 Quadratic potential V (φ) = m2φ2/2

The simplest chaotic model is that for a free scalar field with mass m. In this model,
normalizing the amplitude of the scalar power spectrum to the WMAP fit, as described in
Appendix A.2.3, is equivalent to fixing m2 = (1.89 ± 0.21)× 10−12/8πG. The initial value
for the inflaton field is given by φ(0) = 16.8/

√
8πG with a small initial velocity of φ̇(0) =

−0.1/
√

8πG/s. These parameters ensure that the inflationary phase lasts long enough to
provide a realistic model, i.e., it leads to 57.655 e-folds after the k = 0.0495 Mpc−1 mode
crosses the Hubble length.

First, we analyze the results for the power spectra PS(k) and PT (k), plotted in Figs. 7.1(a)
and 7.1(b). The exact numerical results for the power spectra as defined in Eqs. (2.51) and
(2.52) are shown in red (solid line), the results from the leading-order uniform approxima-
tion given in Eqs. (5.46) and (5.47) are shown in green (dashed line), the first order slow-roll
results as defined in Eqs. (4.9) and (4.10) are shown in blue (dashed-dotted line), and the
improved uniform approximation results [to second-order in the sense of Eq. (5.108) for
the scalar perturbations] are shown in purple (dotted line). The light green band displays
our estimate of the error bound for the leading-order uniform approximation as given in
Eq. (5.100). The estimate error for the improved uniform approximation in leading order
[see Eq. (5.109)] is so close to the result itself that the error band is not visible in this plot.
We will use these color and linestyle assignments for the remainder of the Chapter.

The exact numerical results, the improved leading-order uniform approximation, and
the slow-roll approximation are almost indistinguishable by eye in Fig. 7.1. The leading-
order uniform approximation deviates in the amplitude from the exact numerical result by
∼ 10% as expected. The improvement strategy performs just as predicted by Eq. (5.108):
the second-order correction reduces the error to ∼ 0.1% while the fourth-order reduces
it further to ∼ 0.01%, for both scalar and tensor perturbations. This consistently good
behavior is due to the fact that ν is varying slowly. Note that the improvement strategy
should be carried out to roughly match the error estimate given by Eq. (5.109)—fourth-
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Table 7.1: Determination of the characteristic quantities for the 1
2
m2φ2 chaotic inflation

model at k∗ = 0.06875 hMpc−1 = (0.0495 ± 0.0034) Mpc−1 (h = 0.72 ± 0.05; the WMAP
pivot scale is at k = 0.05 Mpc−1, see Ref [8]) in the various approximations; parameters:
m2 = (1.89 ± 0.21) × 10−12/8πG, φ(0) = 16.8/

√
8πG, φ̇(0) = −0.1/

√
8πG/s leading to

57.655 e-folds of inflation after horizon crossing of k=0.0495 Mpc−1.

Approximation R(k∗) nS(k∗) αS(k∗) nT (k∗) αT (k∗)

Numericala 0.13749 0.96507 -0.00064 -0.01765 -0.01779
Uniform, 1. order 0.13740(14) 0.96505(3) -0.00064 -0.01768(1) -0.01773
Uniform, imp. 1. orderb 0.13749(0) 0.96507(0) -0.00064 -0.01765(0) -0.01773
Local approx., 0. orderc – 0.96465 -0.00066 -0.01786 -0.01799
Local approx., 1. orderc – 0.96501 -0.00064 -0.01761 -0.01770
Uniform, slow-roll reduxd – 0.96566 -0.00062 -0.01757 -0.01768
Slow-Roll, 1. ordere 0.13752 0.96523 -0.00063 -0.01741 -0.01755
Slow-Roll, 2. ordere – 0.96507 -0.00064 -0.01764 -0.01779

aMode-by-mode integration.
bThe improvement here is to second order in powers of 1/ν, cf. Eq. (5.108)
cSee Eqs. (5.97) and (5.98).
dSee Eqs. (5.115) and (5.116).
eSee Eqs. (4.11) and (4.12).
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order in this instance; beyond this point the error is dominated by other contributions.
Next we investigate the scalar and tensor spectral indices as functions of k. The results

are displayed in Figs. 7.2a and 7.2b. The shaded band represents the error estimate for the
leading order of the uniform approximation [see Eq. (5.54), calculated with the estimate
in Eq. (5.106)]. The error estimate for the scalar spectral index is of the order ∼ 0.002%,
therefore of the same order as the discrepancy to the numerical result. Note that the
improved scalar and tensor spectral index calculations agree completely with the numerical
results in Tab. 7.1. The deviation of the slow-roll approximation for the scalar spectral
index in first order from the exact numerical result is also very small, roughly ∼ 0.02%. As
stated before this is not surprising: the slow-roll approximation is expected to work well
for this type of model, where the slow-roll parameters ε and δ1 are very small and almost
constant. However, the tensor spectral index has an error of more than 1%.

In Fig. 7.3 the ratio R(k) of tensor to scalar perturbations as defined in Eq. (2.54) is
shown. The corresponding relative errors of the uniform approximation, of the slow-roll
approximation, and of the improved uniform approximation are presented in Fig. 7.4. In
Fig. 7.3 the lines representing the different approximations are practically indistinguishable
by eye. In contrast to the relative errors in the power spectra (∼ 10% without improvement
and ∼ 0.01% with fourth-order improvement), the relative error in the tensor to scalar ratio
R(k) is already smaller than ∼ 0.07% (dashed line in Fig. 7.4) without the improvement,
and smaller than ∼ 0.001%, i.e., practically exact, with second-order improvement (solid
line in Fig. 7.4) (cf. Sec. 5.7). There is no point in improving further since the result has
already reached the estimated error threshold (5.109) beyond which improvement becomes
incomplete. This behavior is a general feature of the approximation when the inflation
model leads to a slowly varying ν(η).

Finally, we have listed the ratio of tensor to scalar perturbations, the scalar and spectral
spectral index, and their running in the various approximations or simplified approxima-
tions, in Tab. 7.1. All quantities are again evaluated at k∗ = 0.0495 Mpc−1. Error estimates
for the uniform approximation are indicated by the numbers in brackets. For chaotic in-
flation the running of the spectral indices, αS(k) and αT (k) is non-zero. Note that the
running of the tensor spectral index is roughly one order of magnitude bigger than the
running of the scalar spectral index.

7.1.2 Quartic potential V (φ) = λφ4/4

In the quartic model—relative to the quadratic potential—higher derivatives of the poten-
tial exist. Consequently, the slow-roll results in this case are expected to have a bigger
error. In comparison to the quadratic case, for the model considered below, the errors are
worse for the scalar spectral index (∼ 0.02% versus ∼ 0.1%) and comparable for the case
of the tensor spectral index (∼ 2%). In contrast, the uniform approximation still provides
an accuracy of a fraction of a percent. Although the slow-roll expansion for this model
can be improved to second-order with notably better results. This behavior exhibits the
general tendency of the slow-roll expansion if terms arising from higher order derivatives
of the potential are significant. In terms of observational viability, the φ4-model is under
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Figure 7.1: (a) Scalar power spectrum PS(k) and (b) tensor power spectrum PT (k) for a
chaotic 1

2
m2φ2-model, parameters as specified in Tab. 7.1. Solid red line: exact numerical

results, dashed green line: uniform approximation, dashed-dotted blue line: slow-roll; dot-
ted purple line: second-order improved uniform approximation [cf. Eq. (5.108)]; the green
band is the estimate for the error bound for the uniform approximation, Eq. (5.100). The
exact results and the results from the improved uniform and slow-roll approximation are
visually on top of each other. The error estimate for the improved uniform approximation,
Eq. (5.109), is so small as to be indistinguishable from the result itself.
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Figure 7.2: (a) Scalar spectral index nS(k) and (b) tensor spectral index nT (k) for a
chaotic 1

2
m2φ2-model, parameters as specified in Tab. 7.1. Solid red line: exact numerical

results, dashed green line: uniform approximation, dashed-dotted blue line: slow-roll; the
green band is the error estimate for the uniform approximation. Unlike the case for the
power spectrum, accurate results for the uniform approximation are obtained without
recourse to the improvement procedure specified by Eq. (5.108).
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Figure 7.3: Tensor to scalar ratio R(k) for a chaotic 1
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m2φ2-model; parameters as specified
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Figure 7.4: Relative error of the tensor to scalar ratio R(k) for a chaotic 1
2
m2φ2-model;

parameters as specified in Tab. 7.1. Here the dotted purple line denotes the (second-
order) improved leading-order of the uniform approximation; the green error band is the
error estimate for the first order uniform approximation, the dark green band is the error
estimate for the improved leading-order result.
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strong pressure from combined analysis of the WMAP CMB anisotropy data and data
from galaxy clustering (see e.g., Refs. [56, 111, 112]).

The results for the spectral indices are displayed in Figs. 7.5(a) and 7.5(b). As in the
previous example the leading-order uniform approximation is very close to the exact nu-
merical result. However, the first-order slow-roll result does not match as closely as for the
quadratic potential. As done earlier for the φ2-model, we have listed various characteristic
quantities in Tab. 7.2.

Table 7.2: Determination of the characteristic quantities for the 1
4
λφ4 chaotic inflation

model at k∗ = 0.06875 hMpc−1 = (0.0495 ± 0.0034) Mpc−1 (h = 0.72 ± 0.05; the WMAP
pivot scale is at 0.05 Mpc−1, see Ref [8]) in the various approximations; parameters: λ =
(1.75 ± 0.19) × 10−13, φ(0) = 24/

√
8πG, φ̇(0) = −1/

√
8πG/s, leading to 60.579 e-folds of

inflation horizon crossing of k=0.05/Mpc.

Approximation R(k∗) nS(k∗) αS(k∗) nT (k∗) αT (k∗)

Numericala 0.25963 0.94999 -0.00090 -0.03356 -0.01705
Uniform, 1. order 0.25948(113) 0.94990(3) -0.00089 -0.03367(2) -0.01694
Uniform, imp. 1. orderb 0.25964(0) 0.94999(0) -0.00089 -0.03356(0) -0.01703
Local approx., 0. orderc – 0.94942 -0.00092 -0.03395 -0.01726
Local approx., 1. orderc – 0.94991 -0.00090 -0.03340 -0.01697
Uniform, slow-roll reduxd – 0.95081 -0.00087 -0.03368 -0.01706
Slow-Roll, 1. ordere 0.25969 0.95077 -0.00087 -0.03285 -0.01669
Slow-Roll, 2. ordere – 0.95001 -0.00089 -0.03354 -0.01703

aMode-by-mode integration.
bThe improvement here is to second order in powers of 1/ν, cf. Eq. (5.108)
cSee Eqs. (5.97) and (5.98).
dSee Eqs. (5.115) and (5.116).
eSee Eqs. (4.11) and (4.12).

7.2 Inflationary model with a C2 potential function

As a next example we investigate a toy model with a continuous potential function with
continuous first and second derivatives and a jump in the third derivative at a specific
value of φ. Generally speaking, dynamical changes in the potential of the field driving
inflation can be induced by couplings to other degrees of freedom. For example, in hybrid
models a phase transition is used to terminate inflation. If a dynamical transition happens
at cosmologically relevant scales, i.e., well before the end of inflation, it leaves a clear
signature in the power spectra and spectral indices. Such a transition may be naturally
realized in multi-field models of inflation (see, e.g., Ref. [127]). Other examples are steps
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Figure 7.5: (a) Scalar spectral index nS(k) and (b) tensor spectral index nT (k) for the
quartic potential potential λφ4, parameters as specified in Tab. 7.2. Solid red line: exact
numerical results, dashed green line: uniform approximation, dashed-dotted blue line:
slow-roll; the green band is the error estimate for the uniform approximation.
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in the potential (Sec. 3.1.4, Ref. [121, 53]), leading to oscillations in the primordial power
spectra and spectral indices. In such models ν2 cannot be considered as a constant, but
can display sudden changes. Rather than taking one of such potentials we consider here a
toy potential that is smoother in the sense that oscillations in ν2 or z′′/z are avoided:

V>(φ) =
1

4
m2φ2

∗(α− 1) +
2

3
m2φ∗(1 − α)φ+

1

2
αm2φ2 +

1

12φ2
∗

m2(1 − α)φ4, (7.1)

V<(φ) =
1

2
m2φ2, (7.2)

where V (φ) = V>(φ) for φ > φ∗ and V (φ) = V<(φ) for φ < φ∗. The potential is constructed
in such a way that V>(φ∗) = V<(φ∗), V

′
>(φ∗) = V ′

<(φ∗) and V ′′
>(φ∗) = V ′′

<(φ∗) but V ′′′
> (φ∗) 6=

V ′′′
< (φ∗). Thus there is a finite jump in the third derivative of the potential.

 0.5
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Figure 7.6: z′′/(za2) and ν2
S and a′′/a3 and νT for the C2-potential; the point φ∗ is

reached at N ≈ 12.4. The beginning in time of the numerical calculation is at N = 0. The
inflationary attractor is reached at N ' 1.8, checked by varying φ̇(0) and determining at
which e-fold the φ behavior becomes independent of the initial velocities. The quantities
a′′/a3 and νT , relevant for tensor perturbations, are much smoother than the corresponding
quantities z′′/za2 and νS for the scalar perturbations, leading to smaller errors in the
approximations as discussed in the text.

We present numerical results with parameters chosen specifically to demonstrate the
general effect of a more rapidly changing ν. During the evolution in this potential the
parameters ε and δi are not constant (not even approximately); δ1 cannot be considered
small when the inflaton field fulfills φ > φ∗ (with the parameters below, |δ1| can be as large
as 0.14).
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Figure 7.7: (a) Scalar power spectrum PS(k) and (b) tensor power spectrum PT (k) for
the C2-potential in Eqs. (7.1) and (7.2); parameters: α = −100, m2 = (1.90 ± 0.21) ×
10−12/8πG, φ∗ = 15.2/

√
8πG, φ(0) = 17.5/

√
8πG, φ̇(0) = −0.2/

√
8πG/s. Solid red line:

exact numerical results, dashed green line: uniform approximation, dashed-dotted blue
line: slow-roll; the green band is the estimate for the error bound for the (unimproved)
uniform approximation. Again, the exact results and the results from the improved uniform
and slow-roll approximation are on top of each other.
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Figure 7.8: (a) Relative errors for the scalar power spectrum PS(k) and (b) tensor power
spectrum PT (k) for the C2-potential, Eqs. (7.1) and (7.2). In both cases, the light green
band denotes the estimated error bound for the leading-order uniform approximation
(5.100) and the dark green band denotes the best estimated error for the improvement
procedure (5.108). The results are nicely consistent with these estimates showing where
the second-order improvement can be enhanced by going to higher order, and also where
it cannot.
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The parameters chosen to specify the model are: α = −100, m2 = (1.90 ± 0.21) ×
10−12/8πG, φ∗ = 15.2/

√
8πG, φ(0) = 17.5/

√
8πG, φ̇(0) = −0.2/

√
8πG/s. With this choice

of parameters the number of e-folds is 57.320, counted from k∗ = 0.0495 Mpc−1.
The relevant time-dependent terms ν2

S and z′′/(za2) in the scalar mode equation and ν2
T

and a′′/a3 in the tensor mode equation are displayed in Fig. 7.6 as a function of expansion
e-folds (z′′/z and a′′/a have been divided by a2 to filter out the exponential growth of the
scale factor). The point φ∗ is reached at N ≈ 12.4 (note that in this plot N = 0 defines
the beginning of the numerical calculation). Due to the jump in the third derivative both
quantities for the scalar perturbations display a kink at this point. The qualitative behavior
is also different on either side of the kink. While z′′/z has a kink, a′′/a is completely well-
behaved. Note that z′′/z, as e.g., expressed in Eq. (4.2) as an exact expression in terms of
the slow-roll parameters, is more sensitive to higher derivatives of the potential than a′′/a
[cf. Eq. (5.117)]. Thus we can expect the effects of the change in the potential at φ = φ∗

to be amplified in the scalar power spectrum relative to the tensor power spectrum.
The results for the scalar and tensor power spectrum are displayed in Fig. 7.7. With

the same conventions as in Fig. 7.1, the different approximations (leading- and improved
leading-order of the uniform approximation and the slow-roll approximation) are compared
to the exact numerical results. The scalar power spectrum [see Fig. 7.7(a)] shows a sig-
nificant deviation from a power-law shape. Up to k ≈ 0.025 hMpc−1 the spectrum rises,
reaches a maximum and falls off for larger k. As in the previous examples, the leading
order of the uniform approximation has an amplitude error of roughly 10% with respect
to the exact numerical results. The (second-order) improved leading-order uniform ap-
proximation, however, lies almost on top of the numerical results. Remarkably, although
the shape deviates from a simple power-law behavior quite significantly, the improvement
strategy is still effective.

The relative errors are shown in Figs. 7.8(a) and 7.8(b). The error behavior divides
into two regimes, to the left and the right of k ∼ 0.05 hMpc−1. The behavior to the
right is that of a φ2-model [cf. Eq. (7.1)] while the behavior to the left is that of a
polynomial potential with linear, quadratic, and quartic terms (7.2). Note that the error
estimate from Eq. (5.109) changes sharply across this divide, by more than an order of
magnitude, from ∼ 0.1% to ∼ 0.005%. To the left, this error estimate shows that there
is no point in attempting a correction beyond second-order using Eq. (5.108), consistent
with the results shown for second and fourth-order corrected spectra. To the right, the
smallness of the error estimate is consistent with the improved quality of the fourth-order
results. Results for the tensor spectrum are qualitatively similar. As expected, the uniform
approximation improves on the slow-roll result to the left of k ∼ 0.05 hMpc−1, since the
slow-roll assumptions are violated in this region.

The spectral indices are displayed in Figs. 7.9(a) and 7.9(b). The potential z ′′/z (see
Fig. 7.6) leads to a blue scalar spectrum for smaller momenta and a red scalar spectrum
for larger momenta [Fig. 7.9(a)]. For the spectral index the uniform approximation in
leading order is remarkably close to the exact numerical result, more or less independent
of k. It only deviates slightly at k ≈ 0.04 hMpc−1 for the scalar spectral index. In
Fig. 7.10 the relative errors of the uniform approximation and the slow-roll approximation
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Figure 7.9: (a) Scalar spectral index nS(k) and (b) tensor spectral index nT (k) for the C2-
potential in Eqs. (7.1) and (7.2) in the region around the kink; parameters specified as in
Fig. 7.7. Solid red line: exact numerical results, dashed green line: uniform approximation,
dashed-dotted blue line: slow-roll; the green band is the error estimate for the uniform
approximation.
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are displayed. Away from the transition k-value, the relative error is smaller than ∼ 0.2%
for the scalar spectral index and smaller than ∼ 0.5% for the tensor spectral index. The
slow-roll approximation, by comparison, deviates by ∼ 2% from the exact numerical results.

In all the computations so far, the background equations were not approximated to
obtain H(t) and φ(t) and its derivatives, but were solved numerically. For the model in
Eqs. (7.1) and (7.2), we have calculated the spectral indices in the slow-roll approximation
also with the additional approximation for the background equations in Eqs. (4.15) and
(4.16) (see Sec. 4.5). The degradation in the relative error is shown in Fig. 7.10.

The ratio R(k) of tensor to scalar perturbations is depicted in Fig. 7.11, while the
corresponding relative errors for the different approximations are shown in Fig. 7.12. The
uniform and the slow-roll approximation are both quite close (∼ 1% error) to the exact
numerical result, even though the variations in R(k) are not small. Following Sec. 5.7 the
accuracy of the leading-order uniform approximation for the ratio R(k) can be improved
using Eq. (5.108) and the corresponding equation for tensor perturbations. We have not
displayed this improved ratio in Fig. 7.11, since it would be almost indistinguishable from
the exact numerical result. However, Fig. 7.12 shows that the relative error of the (second-
order) improved leading order of the uniform approximation is smaller than ∼ 0.3% over
the whole k range, consistent with the error estimate (5.109).
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Figure 7.10: Relative error of the (a) scalar and (b) tensor spectral index [see
Figs. 7.9(a) and 7.9(b)] for the C2-potential in Eqs. (7.1) and (7.2). The green band is the
error estimate for the uniform approximation. In addition to the uniform and the slow-roll
approximation we also show the slow-roll approximation including higher order derivatives
of V (φ) [see Eqs. (4.15) and (4.16)]. Light brown dotted line: first-order slow-roll, dark
brown dashed-dotted line: second-order slow-roll.
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Figure 7.11: Ratio R(k) of tensor to scalar perturbations for the C2-potential in Eqs. (7.1)
and (7.2); the green band is the error estimate for the uniform approximation to leading
order; the relative difference between all three approximations is below 2% (see Fig. 7.12),
making it difficult to distinguish the curves.
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for the C2-potential in Eqs. (7.1) and (7.2); the green band is the error estimate for
the uniform approximation to leading order, the dark green band is the estimate for the
improved leading order.



Chapter 8

Conclusions of Part II

We have presented the method of uniform approximation as an excellent technique for
calculating the inflationary perturbation spectra [43, 44, 45]. A key feature of the method
is the existence of a robust error-control theory [42]. Error control, which is missing
in the slow-roll approximation and also in WKB approximations [142, 143], is a crucial
advantage for practical calculations. We have presented closed expressions for the power
spectra, spectral indices and other quantities of interest, to leading and next-to-leading
order in the uniform approximation, and with corresponding error bounds.

At leading order in the uniform approximation, we showed how to implement a useful
approximate error bound for the power spectrum and the spectral indices. We demon-
strated that the leading-order results in this approximation can be easily improved for
well-behaved νS and νT using previously obtained results for the case of constant ν (power-
law inflation). In addition, we provided an error estimate for the power spectra obtained
from the improved leading-order. The improvement strategy and the error estimates are
based on our knowledge of the ultra-local corrections from the next-to-leading order uni-
form approximation results. The estimates are much tighter than the general leading-order
error bounds from the uniform approximation. We have discussed further simplifications
of the non-local integral expressions appearing in the uniform approximation, in terms of
a derivative expansion combined with an expansion in terms of slow-roll parameters. The
inherent danger of uncontrolled approximations has been pointed out.

In addition to semi-analytic calculations in the uniform approximation, we have also
implemented an efficient and accurate method for exact mode-by-mode integration uti-
lizing results from the uniform approximation to set up the initial conditions. Such an
initialization procedure is very convenient in numerical calculations, since it avoids the
time-integration over fast oscillating functions, thus improving both precision and speed
of numerical calculations.

The uniform approximation was numerically investigated in detail and compared to ex-
act mode-by-mode results. Our numerical and semi-analytic results for the power spectra
and spectral indices agree within 0.1%. Thus, the primordial power spectra can be deter-
mined at the same level of accuracy as the transfer functions [51]. We have also compared
the results for the power spectra, the corresponding spectral indices and their running

89
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to standard slow-roll approximations, with a view to understanding and controlling the
various sources of errors.

We have analyzed in detail different classes of inflationary models: power-law mod-
els, chaotic models, and a model with a C2-potential. We used the power-law model, for
which exact analytical results exist, to demonstrate the accuracy of our numerical imple-
mentations of the exact mode-by-mode integration, the uniform approximation, and the
slow-roll approximation. The deviation of the analytic and numerical results was in gen-
eral very small, around 1 part in 106. Two almost scale-free chaotic inflationary models
were chosen as representatives for common slow-roll models: For these models the slow-roll
approximation was very good. As a final example, we constructed a C2-potential which
had two dynamical phases patched together in a relatively smooth manner. In the first
phase, where ν changes more rapidly than in the second phase, the uniform approximation
was much more accurate than the slow-roll approximation, while in the second phase both
approximations produced very good results with small errors.

Up-coming high-precision CMB measurements [24, 26, 27, 28, 30] will provide data
to constrain the zoo of inflation models [105]. An accurate and fast code for calculating
primordial power spectra, spectral indices, and their running will be crucial to this analysis.
We have developed and tested a code for calculating the primordial perturbation spectra.
The next step is to develop an interface to connect the code to Boltzmann solvers [47, 48, 49,
50] in order to generate the different Cls, which characterize the anisotropies, directly. The
fine structure of the observations of the CMB and LSS holds much of the information about
the inflationary epoch, and the new high-precision methods will expose this information.

In addition, it is possible to use the code to test the robustness of the information
obtained on the inflationary equation of state from the measured power spectrum by the
recently introduced non-parametric reconstruction program [149] and other parametric
reconstruction techniques [131].

A deeper understanding of inflation can shed light on the nature of dark energy [96, 150],
since there may be a profound link between inflation and the late-time acceleration of the
expansion of the Universe which is the signal of dark energy (see Refs. [151, 152, 153, 154] for
some very recent discussions). The two complementary approaches of forward predictions
and non-parametric reconstruction can provide new precision probes of the first moments
of our Universe.
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Chapter 9

Nonperturbative Approximations

In this Chapter a nonperturbative approximation technique for nonequilibrium quantum
field theory is presented. First, we give an overview on nonequilibrium quantum field theory
and various approximation techniques. Next, we introduce a fairly general Lagrangian for
scalar fields. Then, relevant types of Feynman diagrams are introduced. Finally, we turn
to a special effective action approach which we will use in order to derive renormalized
equations of motion for the classical fields and their quantum fluctuations.

9.1 Nonequilibrium quantum field theory

Nonequilibrium quantum field theory means the study of initial value problems in quantum
field theory. The initial state is most of the cases very far away from thermal equilibrium.
The very early universe was in such a state and preheating is essentially a problem of
nonequilibrium (quantum) field theory.

In almost any quantum field theory the departure from thermal equilibrium leads to
major complications. Resonance processes can be important, dynamical instabilities can
occur, the fields may develop exponentially large values or effective coupling constants may
become very large. Standard perturbation theory breaks down in any of these situations.
Lattice calculations, i.e., ab initio calculations starting from a discretized action and using
statistical methods for the path integral, are not applicable. Within nonequilibrium quan-
tum field theory we cannot work with an imaginary time, unlike in classical field theories
or in thermal equilibrium. However, the situation is not hopeless. Over the last decades
powerful approximations have been developed. These approximations have to rely on a
nonperturbative resummation of perturbative Feynman diagrams. They contain arbitrary
high orders of the coupling parameters and propagators. The so-called resummation of an
infinitely large class of perturbative Feynman diagrams leads to self-consistent Schwinger-
Dyson equations, also known and widely used in other contexts (see, e.g., Ref. [155]).
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Most importantly, reasonable approximations are constrained by the requirements:

1. They have to be nonperturbative.

2. There should be thermodynamical consistency ⇔ total energy must be conserved.

3. Renormalizability should be guaranteed.

4. The time evolution should not be secular.

Usually these requirements are not independent of each other.
The first requirement is fulfilled if the equations of motion for the quantum part are self-

consistent, i.e., the equations for the propagators are Schwinger-Dyson equations. However,
not every Schwinger-Dyson equation is thermodynamically consistent. Thermodynamical
consistency is easily achieved by using a variation principle, i.e., if all relevant equations are
derived by a functional variation of the same effective action, the resulting set of equations
is thermodynamically consistent (see, e.g., Ref. [156]). Within nonequilibrium quantum
field theory thermodynamical consistency is related to the conservation of the total energy.
The third aspect from the list above means that we should not violate the renormalizability
of the original theory when developing an approximation. Unlike in standard perturba-
tion theory we usually cannot fix the counterterms order by order perturbatively. This
effectively makes the procedure of renormalization much more involved. We need a full
hierarchy of perturbative counterterms. Only very recently several authors have carefully
studied the issue of renormalization [157, 158, 159, 160, 161]. Finally, the last requirement
of having a secular-free evolution further constrains the possibilities of finding appropriate
approximations.

It turns out that the requirements listed above are fulfilled by so-called N -particle
irreducible (NPI) effective actions, where N ≥ 2 in order to guarantee a non-secular time
evolution. Also dynamical renormalization group techniques have been used (see, e.g.,
Refs. [162, 163]).

Besides all these aspects, directly addressing the approximation, the dynamics itself
have to be causal. The time evolution of out-of-equilibrium systems in quantum field
theory is described within the closed-time-path (CTP) or Schwinger-Keldysh formalism
[164, 165] (see also Ref. [166, 167]). In addition we have to choose a proper initial state so
that the usual canonical commutation relations for the creation and annihilation operators
of the quantum fields are satisfied. This is done by taking a Fock basis at the initial time
t = 0.

Another—more pragmatic—requirement that has not been mentioned so far, is the
efficiency of the numerical implementation due to computational limitations. The past
numerical calculations have been limited very often by insufficient computer power. Along
with the development of computation power, nonequilibrium quantum field theory im-
proved tremendously, after seminal publications in the 1980’s [168, 169, 170], mainly in
the last decade [76, 89, 115, 171, 172, 173, 174, 175, 176, 177]. The well-known one-loop,
Hartree and large-N approximations can be based on the two-particle irreducible (2PI) for-
malism [178, 179, 180]. This formalism has also been used beyond mean field approaches
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[181, 182, 183, 184, 185, 186]. A subclass of the 2PI formalism is the so-called two-particle
point-irreducible (2PPI) formalism [85, 91, 92, 187, 188]. The various leading-order ap-
proximations of the 2PI and 2PPI effective action are identical. The latter scheme has ad-
vantages with respect to some technical issues of renormalization [157, 158, 159, 160, 161]
and we will use the 2PPI formalism here when deriving renormalized equations of motion.

Although leading-order approximations, like the Hartree or large-N approximation, can
give useful insight into the out-of-equilibrium dynamics of quantum fields at early times,
they miss the important scattering of quanta which ultimatively lead to reheating.1 Thus,
using leading-order type approximations we can only address the preheating stage in which
scattering processes are believed to be almost unimportant. Here we are mainly interested
in the transition from the false vacuum to the true vacuum, i.e., the first moments of
preheating after inflation. Using a leading-order approximation scheme is thus adequate.
Calculations in systems with coupled scalar fields are already difficult, both analytically
and numerically [86, 191]. The main complication is due to the renormalization of the
coupled fields in the presence of quantum back-reaction. In the past, other groups have
either completely neglected the back-reaction of the quanta onto themselves [80, 84, 86] or
they have used simple cut-off schemes [78] which may exhibit a dangerous dependence on
the cut-off parameters chosen and therefore can lead to unphysical artefacts. We are able to
explicitly renormalize the equations of motion with quantum back-reaction being present.
We are using a resummation scheme of one-loop bubble diagrams that is generalized from
the equilibrium case to the more general nonequilibrium situation. The strategy is similar
to the one in Ref. [192], used for the O(N) model, but goes beyond it, mainly due to the
non-diagonalizable coupling of the fields. It should be stressed that it is not immediately
obvious how renormalization of theories, like the one discussed here, proceeds. The basic
Lagrangian has no continuous symmetries and in the way it is constructed one of the field
has a quartic self-coupling while the other field does not. With the strategy to be presented
here there remain no ambiguities.

9.2 Lagrange density

A general Lagrange density for a N component field Φ = (Φ1, . . . ,ΦN) is given by

L(x) =
1

2
∂µΦi(x)∂µΦi(x) − V (x) , (9.1)

V (x) =
1

2
m2

ijΦ
i(x)Φj(x) +

1

4!
λijklΦ

i(x)Φj(x)Φk(x)Φl(x) , (9.2)

where a summation over i, j, k, l is understood and we have introduced a coupling constant
matrix (λijkl) and a mass matrix (m2

ij).

1When using 2PI resummation techniques, thermalization has been demonstrated for simple low di-
mensional systems or using lattice regularization techniques [181, 185, 186, 189]. If the quantum fields are
spatially inhomogeneous thermalization has also been observed [190].
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The classical expectation values (order parameters) of the fields Φi are defined as

〈
Φi(x)

〉
= φi(x) . (9.3)

Depending on the values of the coupling constants λijkl and the mass parameters m2
ij

the Lagrangian in Eq. (9.1) includes chaotic inflation, hybrid inflation as well as small-
field inflation models. We will develop and present a particular approximation for the
nonequilibrium dynamics in the hybrid model on the basis of this more general Lagrangian.

9.3 Reducible and irreducible Feynman diagrams

Within relativistic quantum field theory effective actions are conveniently expressed with
the help of N -particle irreducible Feynman diagrams. We define: A diagram that does
not fall apart if N (arbitrary) propagator lines are cut is called N -particle irreducible. A
diagram is connected if there are no isolated interaction vertices. We will mostly refer
to 2PI (two-particle irreducible) effective actions or diagrams. In general a meaningful
maximum value for N is given by the interaction vertices of interest.

A diagram that does not fall apart if two propagator lines meeting at the same point are
cut is called two-particle point-irreducible (2PPI). Both sets of diagrams (2PPI and 2PI)
are of course infinitely large. Yet there are two-particle reducible (2PR) diagrams which
are not two-particle point-reducible (2PPR).

In Fig. 9.1(a) we display an example for a diagram that is both 2PR and 2PPR. The
solid lines in this figure represent the propagators, while dashed lines denote a coupling to
an external classical field. On the vertex at the bottom of this diagram two propagator lines
meet. If we cut these lines the diagram is disconnected. The diagram in Fig. 9.1(b) is still
2PR but 2PPI. We can cut two arbitrary lines that meet at the same point and the diagram
does not fall apart. Each interaction vertex in Fig. 9.1(b) has three propagator lines. In
other words, a diagram is 2PPI if each interaction vertex is reached by at least three
propagator lines, while such a condition is not sufficient for characterizing 2PI diagrams.
Finally, the diagram shown in Fig. 9.1(c) is both 2PI and 2PPI. We can cut any of the
lines and the diagram remains connected. The difference between reducible and irreducible
diagrams will be essential for the construction of an effective action as well as for the
discussions on resummation and renormalization.

9.4 The 2PPI resummation scheme

The 2PPI resummation scheme has been originally developed for finite temperature quan-
tum field theory by Verschelde and Collaborators [85, 187, 188, 193, 194]. In order to
generalize the scheme to the nonequilibrium situation we use a strategy similar to the one
in [192], there used for the O(N) model. We have to extent the calculations further due
to non-diagonalizable coupling of the fields and we have to establish a more rigorous con-
nection between effective counter terms and the standard counter term Lagrangian [85].
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(a) (b)

(c)

Figure 9.1: Different reducible and irreducible diagrams. The solid lines denote propaga-
tors, the dashed lines represent a coupling to an external classical field. (a) This diagram is
both 2PR and 2PPR. Such diagrams are thus implicitly contained in the various effective
actions. (b) This ladder-type diagram is 2PR but 2PPI. In 2PI effective actions such dia-
grams are implicitly contained, while in the 2PPI scheme we would have to them explicitly
into account. (c) This sunset-type diagram is both 2PI and 2PPI. Such diagrams are not
implicitly contained in the effective actions.

Compared to the O(N) case there is no continuous global symmetry assumed, therefore
renormalization proceeds slightly different.

9.4.1 Effective action

The basic quantities in the 2PPI resummation scheme are the mean fields φi and local
propagator insertions ∆ij. The local insertions in the propagator are resummed via a
Schwinger-Dyson or gap equation. The Green’s function G fulfills the local equation

(G−1)ij(x, x
′) = i

[
�δij + M2

ij(x)
]
δ(D)(x− x′) , (9.4)

where M2
ij is a variational mass parameter explained below and G−1 denotes the inverse

propagator. In the context of nonequilibrium quantum field theory, Eq. (9.4) represents
the dynamical equation for the quantum fluctuations. Via the resummation the mass
parameter M2

ij depends on G and φ. Compared to the 2PI (or more general NPI) schemes
the non-local self-energy is reduced to a local self-energy. The most important feature in
the 2PPI scheme—also known from the LO in a 1/N expansion—is that the dynamical
equation for the propagator G is only an ordinary differential equation rather than a partial
differential equation. This greatly simplifies numerical computations. We will elaborate
on the shortcomings of this approach when discussing the results in Sec. 11.
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The 2PPI effective action for the general potential in Eq. (9.2) can be written as (see,
e.g., Ref. [85, 193])

Γ[φi,∆ij] = S[φi] + Γ2PPI[φi,M2
ij] +

1

8
λijkl

∫
dDx∆ij(x)∆kl(x) , (9.5)

where D is the number of space-time dimensions and the relation between ∆ij and M2
ij is

given by

∆ij(x) = −2
δΓ2PPI

δM2
ij(x)

. (9.6)

The term proportional to an integral over ∆ij(x)∆kl(x) in Eq. (9.5) corrects the double
counting of bubble graphs.

The masses M2
ij(x) have to fulfill the so-called gap equations

M2
ij(x) = m2

ij +
1

2
λijkl

[
φk(x)φl(x) + ∆kl(x)

]
. (9.7)

The term Γ2PPI[φi,M2
ij] denotes the infinite sum over all 2PPI diagrams.

The classical action S[φi] is given by

S[φi] =

∫
dDx

[
1

2
∂µφ

i(x)∂µφi(x) − 1

2
m2

ijφ
i(x)φj(x) +

1

4!
λijklφ

i(x)φj(x)φk(x)φl(x)

]
.

(9.8)

9.4.2 Mode functions

In the following we will assume spatially homogeneous fields. The classical fields then obey
φi(t, x) ≡ φi(t) and the Green’s functions can be expressed via their Fourier components

Gij(t, t
′;x,x′) =

∫
dD−1p

(2π)D−1
eip·(x−x

′)Gij(t, t
′;p) . (9.9)

Since the 2PPI formalism resums local self energy insertions in the Green’s function,
Gij(t, t

′;p) can be rewritten in terms of mode functions fi(t;p) and fj(t
′;p), leading to a

diagonal Wronskian matrix. The Green’s function reads

Gij(t, t
′;p) =

2∑

α=1

1

2ωα

[
fα

i (t; p)f ∗α
j (t′; p)Θ(t− t′) + fα

i (t′; p)f ∗α
j (t; p)Θ(t′ − t)

]
,

(9.10)

where the mode functions satisfy

f̈α
i (t; p) +

[
p2δij + M2

ij(t)
]
fα

j (t; p) = 0 . (9.11)
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The fundamental solutions of this system of coupled differential equations will be labeled
with Greek letters (α, β, . . .). Hence, there are 2i different complex mode functions.

In Eq. (9.10) we have introduced the quantities ωα defined as

ωα =
√

p2 +m2
0, α . (9.12)

They will be explained below, as they depend on the initial conditions via the initial masses
m2

0, α.
The decomposition of G in mode functions is very useful, both numerically and analyt-

ically. The major numerical simplification compared to the 2PI or NPI schemes is that we
have to solve only ordinary differential equations. We reduce the storage requirements by a
factorization of functions of two time arguments in two functions with one time argument.
In contrast to 2PI schemes this feature remains beyond leading order in a loop expansion
or in a 1/N expansion. For the analytical calculations we directly benefit from the achieve-
ments of expansions of the mode functions as been previously developed in various other
models (see, e.g., Ref. [76, 177, 191]). Such expansions allow a clear separation of diver-
gent and finite parts in the propagator insertions and thus simplify renormalization. The
remaining task in this work is the generalization to nonequilibrium quantum field theory
in the presence of non-diagonalizable couplings and back-reaction of the quantum fields.

9.4.3 Loop expansion

The infinite sum of two-particle point-irreducible diagrams in Γ2PPI can be truncated in
several ways. If the original Lagrangian consisting of N fields is invariant under global
O(N) transformations2, one may use 1/N expansion techniques. The leading order in a
1/N expansion is also called large-N . As long as N is not small, higher order corrections
are comfortably suppressed by inverse powers of N .

Since we cannot assume an O(N) symmetry in general—the hybrid model does not
have it—, we will discuss a loop expansion here. The loop expansion can be denoted as

Γ2PPI =
∞∑

`=1

Γ(`) = Γ(1) + Γ(2) + . . . , (9.13)

where the index ` = 1, 2, . . . corresponds to the number of loops in a 2PPI diagram. The
control parameter in a loop expansion is ~. 3

The dots in the last equation indicate all contributions beyond the two-loop order. The
fluctuation integrals ∆ij are expanded in an analogous way as

∆ij(t) = ∆
(1)
ij (t) + ∆

(2)
ij (t) + . . . . (9.14)

The one-loop order in the 2PPI loop expansion is equivalent to the Hartree approximation,
as already stated above.

2The Lagrangian in Eq. (9.1) is O(N) invariant if all masses and coupling constants are equal.
3Note that higher loop diagrams also involve smaller symmetry factors and higher powers in 1/(2π)3.
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Zero-loop—classical approximation

To zero-loop order we discard the term Γ2PPI completely, which leads to ∆ij = 0 and
δΓ2PPI/δφi = 0. In this approximation there are no quantum fluctuations at all included.

One-loop—Hartree type approximation

The one-loop approximation is identical to what we might call Hartree approximation.
Since a Hartree type factorization has not been the starting point here, it would be better
to speak about one-loop bubble-resummations in our case.

The sum of all 2PPI diagrams is truncated at Γ2PPI ≈ Γ(1) with (see the diagram in
Fig. 9.2)

Γ(1)[M2
ij] =

i

2
Tr ln

[
G−1

]
. (9.15)

We have introduced a matrix

G = (Gij)i,j=1,...N . (9.16)

G

Figure 9.2: One-loop bubble diagram representing leading-order approximation that
may also be called Hartree approximation. The line denotes a propagator G as given
by Eq. (9.16).

The functional derivative of Γ(1) with respect to M2
ij gives the tadpole insertions

∆
(1)
ij (t) =

1

2

∫
dD−1p

(2π)D−1

[
Gij(t, t;p) +Gji(t, t;p)

]
(9.17)

=

2∑

α=1

∫
dD−1p

(2π)D−1

1

2ωα
Re
[
fα

i (t; p)fα ∗
j (t; p)

]
. (9.18)

The momentum integrations in the quantities ∆(1) are divergent and thus have to be
renormalized properly. We will discuss this issue in the next section.
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Two-loop—sunset diagrams

The only two-loop diagram appearing is the sunset diagram displayed in Fig. 9.3. This sun-
set graph leads to time integrations over the past of classical and quantum fields (“memory
integrations”) and introduces scattering of the quanta. While it would be interesting to
study how this next-to-leading order diagram affects the dynamics studied here, this is far
beyond the scope of this work.

ϕϕ

G

G

G

Figure 9.3: Two-loop sunset diagram; the solid lines denote the propagator G, the dashed
lines the classical fields ϕ = (φ1, . . . , φN); this diagram is the first contribution that intro-
duces scattering of the quanta.

9.4.4 Renormalization of the 2PPI effective action

We will introduce effective counterterms that render the renormalization procedure simple
and efficient. It is important to connect such effective counterterms to the counterterms in
the original formulation of the 2PPI scheme, since the latter ones follow from a standard
counterterm Lagrangian (see Ref. [85, 187, 188, 193]).

In order to renormalize the general Lagrange density for the model in Eq. (9.1) we
include a counterterm δL

L =
1

2
∂µΦi∂µΦi − 1

2
m2

ijΦ
iΦj − 1

4
λijklΦ

iΦjΦkΦl + δL . (9.19)

We have omitted here the space-time dependence of all fields. As in standard perturbation
theory the counterterm Lagrangian δL is given by

δL =
1

2
δZij∂

µΦi∂µΦj − 1

2
δm2

ijΦ
iΦj − 1

4
δλijklΦ

iΦjΦkΦl . (9.20)

The gap equation for the renormalized effective mass M2
R, ij with mass and coupling con-

stant counterterms is given by

M2
R, ij = m2

ij + δm2
ij +

1

2
(λijkl + δλijkl)

(
φkφl + ∆kl

)
. (9.21)

Verschelde [85] has demonstrated by diagrammatical counting that in the 2PPI scheme the
following relations for the renormalization constants hold, if we take a mass independent
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renormalization scheme4

(δm2)ij = δZ ij;kl
m m2

kl , (9.22)

δλij;kl = λij
pqδZ

pq;kl
m , (9.23)

δZ ij;kl
m = λij

pqδζ
pq;kl . (9.24)

Moreover, at the level of the effective action all renormalization constants may be derived
from a single vacuum counterterm

δEvac =
1

2
M2

ijM2
kl δζ

ij;kl . (9.25)

With the help of the identities in Eqs. (9.22)–(9.24) the gap equations read

M2
R, ij = m2

ij +
1

2
λijkl

(
φkφl + ∆kl

)
+ λijpq δζ

pq;klm2
kl

+
1

2
λijpqλ

pqrs δζrs;kl

(
φkφl + ∆kl

)
(9.26)

≡ m2
ij +

1

2
λijkl

(
φkφl + ∆kl

R

)
, (9.27)

with

λijkl∆
kl
R = λijkl∆

kl + 2λijpqδζ
pq;klm2

kl +
1

2
λijpqλ

pqrs δζrs;kl

(
φkφl + ∆kl

)
. (9.28)

Once the propagator ∆ij is renormalized the gap equations for the masses M2
ij become

finite. In the one-loop 2PPI approximation, i.e., when ∆ij = ∆
(1)
ij , the equations for the

classical fields φi are finite as well. No wave function renormalization is needed.
Although wave function renormalization is indeed not a major complication in the 2PPI

scheme, we have restricted the discussion of renormalization to leading order here, since
we do not aim to go beyond leading order in the numerical calculations either.

Summarizing renormalization in the 2PPI scheme, we simply have to renormalize the
propagator insertion ∆R and all equations of motion will be finite. In the context of
nonequilibrium quantum field theory this implies the separation of the divergent parts
from the finite parts in a time-dependent quantity. Moreover, the independence of the
counterterms on the details of the initial conditions has to be proven.

4E.g., minimal subtraction (MS) or a modified minimal subtraction (MS)
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Renormalized Equations

In this Chapter the renormalized equations of motion are derived. First, the initial condi-
tions and the way of fixing the vacuum have to be discussed. Then we present a method of
isolating the divergencies in all equations. Once the divergencies have been regularized—
which is done using standard dimensional regularization—all dynamical equations can be
renormalized. After renormalization all equations are explicitly finite and thus can be
directly used in numerical simulations without further assumptions.

We have introduced a very general effective action for N scalar fields in the previous
Chapter. This has been necessary in order to take advantage of existing expressions of the
2PPI resummation scheme [85]. The standard hybrid potential in Eq. (3.6) follows from
Eq. (9.2) for the case N = 2 with the identifications

Φ1 = Φ , (10.1)

Φ2 = X , (10.2)

m2
11 = m2 , (10.3)

m2
22 = −λv2 , (10.4)

m2
12 = m2

21 = 0 , (10.5)

λ2222 = 6λ , (10.6)

λPerm(1122) = 2g2 , (10.7)

λ1111 = λ1112 = . . . = λ2221 = 0 . (10.8)

10.1 Initial conditions

The choice of initial conditions is similar to the one in Ref. [86]. We will take a Gaussian
initial density matrix with non-vanishing initial values φ(t = 0) and χ(t = 0) for the
classical field amplitudes. For the renormalization of the equations of motion we need
a properly quantized system at the initial time. In order to satisfy the usual canonical
commutation relations for the creation and annihilation operators of the quantum fields,
we choose a Fock space basis at t = 0. The basic quanta are defined by diagonalizing the
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mass matrix at t = 0 and by choosing canonical initial conditions (see below) for the mode
functions (see, e.g., Refs. [76, 86, 177, 195]).

We define the initial masses m0,α as the eigenvalues of the initial mass matrix Mij(0),
i.e., by the equation

m2
0, αf

α
i (0; p) −M2

ij(0)fα
j (0; p) = 0 . (10.9)

The eigenvalues are given by

m2
0, α =

1

2

{
M2

φφ(0) + M2
χχ(0) ±

√[
M2

φφ(0) −M2
χχ(0)

]2
+ 4M4

φχ(0)

}
. (10.10)

We denote the corresponding eigenvectors by Oiα, where the index α refers to the eigen-
value, and the Latin indices to the components. The canonical initial conditions at t = 0
for the mode functions are

fα
i (0; p) = Oiα , (10.11)

ḟα
i (0; p) = −iωαOiα = −iωαf

α
i (0; p) . (10.12)

The Wronskian matrix of these mode functions is then given by

W (fα
i , f

β
i ) = [fα, ∗

i (0; p)ḟβ
i (0; p) − ḟα, ∗

i (0; p)fβ
i (0; p)] (10.13)

= −i[(ωα + ωβ)OiαOiβ] . (10.14)

As the eigenvectors are orthogonal this matrix is diagonal. Choosing the normalization

OiαOiβ = δαβ , (10.15)

the Wronskian matrix becomes

W (fα
i , f

β
i )α,β=1,2 = −2i

(
ω1 0
0 ω2

)
. (10.16)

If M2
χχ(0) >M2

φφ(0) we can fix the matrix O as

O =

(
cos ϑ sin ϑ
− sinϑ cosϑ

)
, (10.17)

tanϑ =
1

2M2
φχ(0)

{
M2

χχ(0) −M2
φφ(0) +

√[
M2

χχ(0) −M2
φφ(0)

]2
+ 4M4

φχ(0)

}
.

(10.18)

For the opposite case M2
χχ(0) <M2

φφ(0) we should interchange m2
0, 1 with m2

0, 2 and switch
ϑ → −ϑ. Indeed this is important for the numerical implementation. We need three initial
parameters and may either choose {m2

0, 1, m
2
0, 1, tanϑ} or {M2

φφ(0),M2
χχ(0),M2

φχ(0)} as
the set of equations that we numerically iterate.
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10.2 Isolation of the divergencies

From now on we will restrict the discussion to the one-loop bubble-resummation with
Γ2PPI ≈ Γ(1) and thus

∆ij(t) = ∆
(1)
ij (t) , (10.19)

where the propagator insertions ∆
(1)
ij (t) [see Eq. (9.17)] contain the divergent loop integrals.

It is important to separate divergent pieces from the finite ones. The divergent pieces
are not of physical interest. Moreover, we will isolate the divergences in such a way that
standard regularization techniques like dimensional regularization can be used.

A strategy for the isolation of the divergences via the perturbative expansion of the
mode functions in terms of partial integrations has been described in Refs. [76, 191]. We
have summarized what we need in Appendix B.2.

In dimensional regularization with the abbreviation

Lε =
2

ε
− γ + ln 4π (10.20)

we have, using Eq. (B.16) and Eqs. (B.1),(B.4)

∆
(1)
ij (t) =

1

2

∫
dD−1p

(2π)D−1

[
Gij(t, t;p) +Gji(t, t;p)

]

= −
∑

α

[
m2

0, α

16π2

(
Lε − ln

m2
0, α

µ2
+ 1

)
OiαOjα +

1

16π2

(
Lε − ln

m2
0, α

µ2
+ 1

)

+
1

16π2

∑

β

(
m2

0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

)
OiαOjβOlβOkαVkl(t)

]
+ . . .

= − 1

16π2
[Lε + 1]M2

ij(t) +
∑

α

m2
0, α

16π2
OiαOjα ln

m2
0, α

µ2

+
1

16π2

∑

α,β

OiαOjβOlβOkαVkl(t)

(
ln
m2

0, α

µ2
−

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

)

+ . . . , (10.21)

where
∑

αOiαOjαm
2
0, α = M2

ij(0) has been used. The new parameter µ appearing in
Eq. (10.21) is the renormalization scale1 and the potential Vij(t) is defined as

Vij(t) = M2
ij(t) −M2

ij(0) . (10.22)

1We will take µ = λv which is the only natural mass scale present. Usually a renormalization scale
dependence is not studied in the context of nonequilibrium quantum field theory.
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We can define the finite part of ∆
(1)
ij by a subtraction as [see Eq. (B.16)]

∆
(1)
ij,fin(t) =

∫
dD−1p

(2π)D−1

∑

α,β

1

2ωα

{
Re
[
fα

i (t; p)fα, ∗
j (t; p)

]
δαβ

−OiαOjαδαβ +
1

ωβ(ωα + ωβ)
OiαOjβOlβOkαVkl(t)

}
. (10.23)

The momentum integrations in this expression are convergent, because the subtracted
terms cancel exactly the divergent parts (see Appendix B.2). There are still some finite

contributions from the divergent part of ∆
(1)
ij [see. Eq. (10.21)]. These parts are important

and removing them is not allowed because of the dependence on the initial conditions. In
order to simplify the notation it is useful to define the following quantities

C0
ij =

1

16π2

∑

α

OiαOjαm
2
0, α ln

m2
0, α

µ2
, (10.24)

Ck`
ij =

1

16π2

∑

α,β

OiαOjβOkαO`β

(
ln
m2

0, α

µ2
−

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

)
, (10.25)

and

C1
ij := C11

ij , C2
ij := C22

ij , C3
ij := C12

ij + C21
ji . (10.26)

The constants C0
ij are important for the renormalization of the initial conditions, because

they appear without the quantity V(t) that is zero at t = 0. Note that all constants Ck
ij

contain only the three quantities related to the initial conditions.
The full one-loop bubble-resummed insertion ∆

(1)
ij takes a simple form given by

∆
(1)
ij (t) = ∆

(1)
ij,fin(t) −

1

16π2
[Lε + 1]M2

ij(t) + C0
ij

+C1
ij

[
M2

φφ(t) −M2
φφ(0)

]
+ C2

ij

[
M2

χχ(t) −M2
χχ(0)

]

+C3
ij

[
M2

φχ(t) −M2
φχ(0)

]
. (10.27)

The divergent part of ∆
(1)
ij can be defined as

∆
(1)
ij,div(t) = − 1

16π2
[Lε + 1]M2

ij(t) . (10.28)

Note that ∆
(1)
ij,div(t) is directly proportional to M2

ij, i.e., with a uniform factor for all

combinations of i and j. In particular ∆
(1)
ij,div(t) is independent of the masses m2

0, α and the
matrix Oij and thereby of the initial conditions. However, the different finite parts depend
on the initial conditions via the constants Cn

ij and involve all components of the effective
mass matrix M2

ij. The independence of the divergent pieces on the initial conditions is
analogous to the independence on the temperature in the context of finite temperature
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quantum field theory. The fact that the divergent term is proportional to Mij(t), a term
that is time-dependent, does not mean that we need time-dependent counterterms, but
simply reflects the fact that effectively the resummation scheme has to treat the bare part
and the counterterm part of the original Lagrangian on equal footing. Counterterms are
likewise resummed. In the next section we will see that the counterterms are not simply
perturbative.

10.3 Renormalized effective action with suitable ef-

fective counterterms

First, we write down the unrenormalized effective action. With the help of the identifica-
tions in Eq. (10.1)–(10.8) the 2PPI effective action for the hybrid potential in Eq. (3.6)
reads

Γ[φ, χ,∆
(1)
φφ ,∆

(1)
φχ ,∆

(1)
χχ] = S[φ, χ] + Γ(1)

[
M2

φφ,M2
φχ,M2

χχ

]

+
g2

2

∫
dDx

{
∆

(1)
φφ(x)∆(1)

χχ(x) + 2[∆
(1)
φχ(x)]2

}

+
3λ

4

∫
dDx[∆(1)

χχ(x)]2 . (10.29)

The unrenormalized gap equations for the masses M2 are given by

M2
φφ(x) = m2 + g2

[
χ2(x) + ∆(1)

χχ(x)
]
, (10.30)

M2
χχ(x) = −λv2 + 3λ

[
χ2(x) + ∆(1)

χχ(x)
]
+ g2

[
φ2(x) + ∆

(1)
φφ(x)

]
, (10.31)

M2
φχ(x) = 2g2

[
φ(x)χ(x) + ∆

(1)
φχ(x)

]
= M2

χφ(x) . (10.32)

Inverting the gap equations leads to

∆
(1)
φφ(x) =

1

g2

{
M2

χχ(x) + λv2 − 3λ

g2

[
M2

φφ(x) −m2
]}

− φ2(x) , (10.33)

∆(1)
χχ(x) =

1

g2

[
M2

φφ(x) −m2
]
− χ2(x) , (10.34)

∆
(1)
φχ(x) =

1

2g2
M2

φχ(x) − φ(x)χ(x) = ∆
(1)
χφ(x) . (10.35)
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The unrenormalized effective action can therefore be expressed without the ∆s, i.e.,

Γ
[
φ, χ,M2

φφ,M2
χχ,M2

φχ

]
=

∫
dDx

{
1

2
∂µφ(x)∂µφ(x) +

1

2
∂µχ(x)∂µχ(x)

−1

2
M2

φφ(x)φ
2(x) + g2φ2(x)χ2(x) − 1

2
M2

χχ(x)χ2(x)

+
λ

2
χ4(x) − λ

4
v4 −M2

φχ(x)φ(x)χ(x) − 3λ

4g4

[
M2

φφ(x) −m2
]2

+
1

2g2

[
M2

φφ(x) −m2
] [

M2
χχ(x) + λv2

]
+

1

4g2

[
M2

φχ(x)
]2
}

+Γ(1)
[
M2

φφ,M2
φχ,M2

χχ

]
. (10.36)

In the previous subsection we were able to isolate the divergent parts in Eq. (10.27).
The divergences were found to be proportional to the effective masses M2

ij.
In order to calculate the renormalized effective action it is convenient to define effective

mass counter terms. As elucidated in Sec. 9.4.4 all counterterms needed can be derived
from a single vacuum counter term involving the variational masses times a divergent
constant [see Eq. (9.25)]. More precisely, the 2PPI formalism establishes a one-to-one
mapping between effective counterterms that are useful on the level of effective actions
and the standard counterterm Lagrangian.

Let us define a vacuum energy counterterm of the general form

δM4 = δξφφ

(
M2

φφ

)2
+ δξχχ

(
M2

χχ

)2
+ 2 δξφχ

(
M2

φχ

)2
. (10.37)

With the proper choice of the constants δξ—to be fixed in the following—the effective
action in Eq. (10.36) becomes renormalized, i.e.,

ΓR

[
φ, χ,M2

φφ,M2
χχ,M2

φχ

]
= Γ

[
φ, χ,M2

φφ,M2
χχ,M2

φχ

]
+ δM4 . (10.38)

With the introduced effective mass counterterms the renormalized gap equations take the
form

M2
R, φφ(t) = m2 + g2

[
χ2(t) + ∆(1)

χχ(t)
]
− 4g2 δξχχM2

R,χχ(t) , (10.39)

M2
R, χχ(t) = −λv2 + g2

[
φ2(t) + ∆

(1)
φφ(t)

]
+ 3λ

[
χ2(t) + ∆(1)

χχ(t)
]

−4g2 δξφφM2
R, φφ(t) − 12λ δξχχM2

R, χχ(t) , (10.40)

M2
R, φχ(t) = 2g2

[
φ(t)χ(t) + ∆

(1)
φχ(t)

]
− 8g2 δξφχM2

R, φχ(t) . (10.41)

Even if we did not know expressions for the divergent part of ∆
(1)
ij we would immediately

conclude that any possible divergence has to be proportional to the effective masses, pre-
cisely what has been found in Eq. (10.28). The gap equations become finite if we fix the
constants δξ to be

δξφφ = δξχχ = δξφχ = − 1

64π2
[Lε + 1] (10.42)

= − 1

64π2

(
2

ε
− γ + 1 + ln 4π

)
. (10.43)
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This choice of δξ corresponds to a MS prescription. In particular, the renormalization
scheme is mass independent. We will write down the final set of gap equations in the next
section.

It should also be noted that we could easily calculate the nonperturbatively fixed stan-
dard counterterms δm2, δv2, δg2 and δλ explicitly, insofar the renormalized gap equations
just form a coupled system of equations. However, we think that this would not be very
enlightening, because the final expressions would be quite lengthy. Moreover, they are not
needed explicitly.

10.4 Equations of motion and gap equations

In summary we have to solve in the Hartree approximation the following renormalized
equations of motion numerically. The classical equations of motion are given by

0 = φ̈(t) + M2
R, φφ(t)φ(t) + M2

R, φχ(t)χ(t) − 2g2χ2(t)φ(t) , (10.44)

0 = χ̈(t) + M2
R, χχ(t)χ(t) + M2

R, φχ(t)φ(t) − 2λχ3(t) − 2g2φ2(t)χ(t) , (10.45)

while the equations for the mode functions denote explicitly

0 = f̈α
φ (t; p) + p2fα

φ (t; p) + M2
R, φφ(t)f

α
φ (t; p) + M2

R, φχ(t)fα
χ (t; p) , (10.46)

0 = f̈α
χ (t; p) + p2fα

χ (t; p) + M2
R, χχ(t)fα

χ (t; p) + M2
R, φχ(t)fα

φ (t; p) . (10.47)

In addition we have to solve, at each time step, the 3 × 3 system of renormalized gap
equations given by

M2
R, φφ(t) = m2 + g2

[
χ2(t) + ∆χχ,fin(t)

]
+ g2C0

χχ

+g2C1
χχ

[
M2

R, φφ(t) −M2
R, φφ(0)

]
+ g2C2

χχ

[
M2

R, χχ(t) −M2
R, χχ(0)

]

+g2C3
χχ

[
M2

R, φχ(t) −M2
R, φχ(0)

]
, (10.48)

M2
R, χχ(t) = −λv2 + g2

[
φ2(t) + ∆φφ,fin(t)

]
+ g2C0

φφ + 3λ
[
χ2(t) + ∆χχ,fin(t)

]
+ 3λC0

χχ

+g2C1
φφ

[
M2

R, φφ(t) −M2
R, φφ(0)

]
+ g2C2

φφ

[
M2

R, χχ(t) −M2
R, χχ(0)

]

+g2C3
φφ

[
M2

R, φχ(t) −M2
R, φχ(0)

]
+ 3λC1

χχ

[
M2

R, φφ(t) −M2
R, φφ(0)

]
(10.49)

+3λC2
χχ

[
M2

R, χχ(t) −M2
R, χχ(0)

]
+ 3λC3

χχ

[
M2

R, φχ(t) −M2
R, φχ(0)

]
,

M2
R, φχ(t) = 2g2 [φ(t)χ(t) + ∆φχ,fin(t)] + 2g2C0

φχ

+2g2C1
φχ

[
M2

R, φφ(t) −M2
R, φφ(0)

]
+ 2g2C2

φχ

[
M2

R, χχ(t) −M2
R, χχ(0)

]

+2g2C3
φχ

[
M2

R, φχ(t) −M2
R, φχ(0)

]
. (10.50)

This system of linear equations is similar to the 2×2 system appearing in the O(N)-model
in the Hartree approximation [192]. However, the coefficient matrix can be diagonalized
with a time independent rotation matrix, because it is time independent itself. Such a
rotation matrix is indeed analogous to the factor C = (1+ λ

16π2 ln m2

m2

0

)−1 in the renormaliza-

tion of the O(N)-model in the large-N approximation [177]. Since the resulting rotation
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matrix is a rather lengthy expression and is not of practical use, we do not write it down
here explicitly. In sum, the presence of a rotation matrix or a factor C reflects the non-
perturbative resummation of counterterms and coupling constants. Infinitely high orders
of the coupling constants contribute. This can be seen by expanding the matrix order by
order in the coupling constants.

10.5 Renormalized energy

The 2PPI resummation scheme guarantees that the total energy is conserved. As a cross-
check for the numerical implementation it is thus helpful to have a finite expression for the
energy. Within the one-loop bubble-resummation the contributions to the energy introduce
logarithmic, quadratic and quartic divergences. These divergences have to be compensated
by the already fixed counterterms (Sec. 10.37). We have to find the proper subtraction
terms rendering the energy density finite and we have to calculate the finite pieces.

The zero-loop contribution to the energy is found from all terms except Γ(1) which
contains the loops. This contribution is denoted by E(0) and is given by

E(0)(t) =
1

2
φ̇2(t) +

1

2
M2

φφ(t)φ
2(t) − g2φ2(t)χ2(t) +

1

2
χ̇2(t) +

1

2
M2

χχ(t)χ2(t)

−λ
2
χ4(t) +

λ

4
v4 + M2

φχ(t)φ(t)χ(t) − 1

4g2

[
M2

φχ(t)
]2

+
3λ

4g4

[
M2

φφ(t) −m2
]2 − 1

2g2

[
M2

φφ(t) −m2
] [

M2
χχ(t) + λv2

]
. (10.51)

The contribution of the one-loop bubble graphs (see Fig. 9.2) to the energy is defined by
the relation

dE(1)(t)

dt
= −

δΓ(1)[M2
φφ,M2

χχ,M2
φχ]

δM2
ij(t)

dM2
ij(t)

dt
(10.52)

=
1

2

∫
dD−1p

(2π)D−1
Gij(t, t;p)

dM2
ij(t)

dt
. (10.53)

This equation can be integrated explicitly if we use the equations of motion for the mode
functions fα

i (t; p), yielding

E(1)(t) =
1

2

∫
dD−1p

(2π)D−1

∑

α

1

2ωα

{
ḟα

φ (t; p)ḟα ∗
φ (t; p) + ḟα

χ (t; p)ḟα ∗
χ (t; p)

+
[
p2 + M2

φφ(t)
]
fα

φ (t; p)fα ∗
φ (t; p) +

[
p2 + M2

χχ(t)
]
fα

χ (t; p)fα ∗
χ (t; p)

+2M2
φχ(t)Re

[
fα

φ (t; p)fα ∗
χ (t; p)

]}
. (10.54)

If the effective masses are identified by the renormalized effective masses, then the
zero-loop contribution to the energy [see Eq. (10.51)] is automatically renormalized.
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In the following we use the rotated potential Ṽ defined as

Ṽαβ(t) = OkαVkl(t)Olβ (10.55)

= O1αO1βVφφ(t) +O2αO2βVχχ(t) + (O1αO2β +O2αO1β)Vφχ(t) . (10.56)

According to the expansion of the mode functions in Appendix B.2 the divergent part of
the one-loop contribution from the bubble graphs to the quantum energy is given by [see
Eq. (B.27)]

E(1), div(t) =
1

2

∫
dD−1p

(2π)D−1

∑

α

1

2ωα

[
2ω2

α + Ṽαα(t) −
∑

β

1

2ωβ(ωα + ωβ)
Ṽαβ(t)Ṽαβ(t)

]
.

(10.57)

The first term is quartically divergent. Its renormalization corresponds to a renormalization
of the cosmological constant Λ. Since we do not couple to gravity here, it is therefore
somewhat arbitrary and can be omitted.

If the divergent parts are evaluated in dimensional regularization [using Eqs. (B.1), (B.4)
and (B.8)] the full one-loop contribution in Eq. (10.54) denotes

E(1)(t) = E
(1)
fin (t) +

∑

α

m4
0, α

64π2

[
Lε − ln

m2
0, α

µ2
+

3

2

]
−
∑

α

m2
0, α

32π2
Ṽαα(t)

[
Lε − ln

m2
0, α

µ2
+ 1

]

−
∑

α, β

1

64π2
Ṽαβ(t)Ṽαβ(t)

[
Lε − ln

m2
0, α

µ2
+ 1 +

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

]
, (10.58)

where the finite part has been defined as

E
(1)
fin (t) =

1

2

∫
dD−1p

(2π)D−1

∑

α

1

2ωα

{
ḟα

φ (t; p)ḟα ∗
φ (t; p) + ḟα

χ (t; p)ḟα ∗
χ (t; p)

+
[
p2 + M2

φφ(t)
]
fα

φ (t; p)fα ∗
φ (t; p) +

[
p2 + M2

χχ(t)
]
fα

χ (t; p)fα ∗
χ (t; p)

+2M2
φχ(t)Re

[
fα

φ (t; p)fα ∗
χ (t; p)

]

−2ω2
α − Ṽαα(t) +

∑

β

1

2ωβ(ωα + ωβ)
Ṽαβ(t)Ṽαβ(t)

}
. (10.59)

From the definition of m2
0, α and Ṽαβ(t) we can prove the identity

∑

α

[
m4

0, α − 2m2
0, αṼαα(t) −

∑

β

Ṽαβ(t)Ṽαβ(t)

]
= −M2

ij(t)M2
ij(t) , (10.60)

so that the divergent part becomes very simple. The full fluctuation energy E (1) is then
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given by

E(1)(t) = E
(1)
fin (t) − 1

64π2
[Lε + 1]M2

ij(t)M2
ij(t)

+
∑

α

m4
0, α

64π2

[
− ln

m2
0, α

µ2
+

1

2

]
+
∑

α

m2
0, α

32π2
Ṽαα(t) ln

m2
0, α

µ2

+
∑

α,β

1

64π2
Ṽαβ(t)Ṽαβ(t)

[
ln
m2

0, α

µ2
−

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

]
. (10.61)

The divergent part of E(1) is proportional to M2
ijM2

ij = M4
φφ + M4

χχ + 2M4
φχ, i.e., the

counterterm in Eq. (10.37), as expected.
Finally, the renormalized total energy is given by

Etot = E(0)(t) + E(1)(t) − δM4 (10.62)

= E(0)(t) + E
(1)
fin (t) +

∑

α

m4
0, α

64π2

[
− ln

m2
0, α

µ2
+

1

2

]
+
∑

α

m2
0, α

32π2
Ṽαα(t) ln

m2
0, α

µ2

+
∑

α,β

1

64π2
Ṽαβ(t)Ṽαβ(t)

[
ln
m2

0, α

µ2
−

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

]
. (10.63)

The renormalized energy has a negative sign, because we have added the counterterm δM4

to the effective action Γ, i.e., ΓR = Γ + δM4.
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Results from Numerical Simulations

In this Chapter we present in detail the results from numerical simulations, to investigate
the main features of the dynamics in hybrid models. It turns out that the dynamics is very
rich. We highlight only a few features which we believe are most relevant in the context
of preheating.

In Sec. 11.1 we give some details on the numerical implementation and demonstrate
that numerical errors are well under control. Sec. 11.2 is an overview on the time evolution
of the classical fields and fluctuation integrals in dependence of the parameters chosen. In
Sec. 11.3 we show typical phase-space trajectories that indicate chaotic dynamics. The
late time behavior of the quantities characterizing the phase transition is further analyzed
in Sec. 11.4. In Sec. 11.5 we present the momentum spectra. Possible long-range spatial
correlations between fluctuations are studied in Sec. 11.6. Finally, decoherence is addressed
in Sec. 11.7.

11.1 Numerical implementation

At the initial time of the simulation we have to fix the vacuum state. This is done by
solving the set of nonlinear equations defining the initial masses m2

0, α and the mixing angle
tanϑ using a standard relaxation method.

The equations of motion are given in Eqs. (10.44)–(10.47). Since we only have to solve
ordinary differential equations, we can pick one of the very robust integrators. We take a
fourth-order standard Runge-Kutta integrator, because such integrators offer a very good
compromise between precision and speed. In most simulations we use a time discretization
∆t = 0.0003. The 3× 3 system of linear equations for the renormalized variational masses
M2

R, ij [see Eqs. (10.48)–(10.50)] is solved with Cramer’s rule.
The analytical calculations are very involved and mistakes would show up immediately

in the numerical results. The accuracy of the numerical computations is monitored in two
ways: (1) by verifying that the Wronskian is constant and (2) by verifying that the total
energy is conserved. We can easily verify that the total energy, as given in Eq. (10.63),
is analytically conserved, therefore it is a powerful crosscheck, to see if the numerically

113
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calculated energy is also conserved. In Fig. 11.1 we display a plot of the relative error for
a typical simulation. The total energy is found to be numerically conserved to ∼ 0.1% in
all simulations. Due to the limitations in the accuracy of the integration of the equations
of motion we cannot expect that the numerically calculated energy is exactly constant.
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Figure 11.1: Relative error of the total energy for a typical simulation; due to limitations
in the accuracy of the integration of the equations of motion, small fluctuations of order
∼ 0.1% can be observed; the relative error is larger at initial time due to the initial
singularity [196].

Next, we comment on the numerical implementation of the momentum integrations.
First, we have to discretize the momentum space. We have chosen a non-equidistant
discretization, in particular we take smaller steps for smaller momenta and larger steps
for larger momenta. We use a pragmatic momentum cut-off pmax = 12 and np = 300
independent momenta for the convergent fluctuation integrals in Eqs. (10.23) and (10.59),
which are calculated without further assumptions. We may extent the mode expansion
given in Eq. (B.9) further by using higher order functions, formally written as

fα
i (t; p) = e−iωαt

[
Oiα + h

(1), α
i (t; p) + h

(2), α
i (t; p) + h

(2), α
i (t; p)

]
. (11.1)

Such a decomposition of the mode functions up to terms of second derivative order [with
respect to the potential Vij(t)] can be used to keep the momentum integrals completely
free from subtraction terms (see, e.g., Ref. [76]). However, we observe that the subtraction
used in Eq. (10.23) leads to stable results and is sufficient for calculating the momentum
integrals numerically in our case. In Fig. 11.2 we display the important part of the integrand
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in Eq. (10.23) as a function of p at a fixed time, i.e., the kernel [Refα
i (t, p)fα

j (t, p) −
sub]/2ωα, where “sub” denotes the subtraction terms in Eq. (10.23). In the high p-regime
this integration kernel has to fall of like 1/p5.1 In Fig. 11.2 one can see that indeed
for p & 1 all lines become parallel to the straight dotted line that represents a function
h(p) = 1/p5. This proves that the subtraction terms are of the correct form and lead
to renormalized propagators. Moreover, it is indeed justified to choose pmax = 12 for
the numerical integrations. The value of the integration kernel at pmax = 12 is then small
enough (∼ 10−5) so that the remainder of the integral from pmax to infinity can be neglected.
Again we stress the fact that the loop integrals are finite after renormalization and that
such a pragmatic momentum cut-off is only chosen for numerical convenience.

Note that the energy is more divergent than the propagator insertions, in particular the
degree of divergence is four compared to two. A priori, we expect the propagator insertions
to be much better calculated than the energy density. We have checked that the accuracy
of the total energy improves, if the time discretization ∆t is lowered.
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Figure 11.2: The subtracted mode functions [Refα
i (t, p)fα

j (t, p)− sub]/2ωα are displayed
on a logarithmic scale as a function of the momentum p with ij = φφ (red solid line),
ij = χχ (green dashed line) and ij = φχ (blue dotted line); for high p the subtracted
mode functions are proportional to 1/p5 as indicated by the straight line, demonstrating
the convergence of the momentum integrals.

1The kernel is multiplied by d3p = 4πp2dp. Propagator structures in quantum field theory require an
inverse power 1/p2 ∼ dp/p3 ∼ d3p/p5.
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11.2 Dynamical evolution and dependence on the

parameters

The basic conception in the hybrid model is an efficient energy transfer from the inflaton
to the Higgs degree of freedom mediated by a phase transition and the associated spinodal
regime. It is then a question how these expectations are realized.

We are mainly interested in the following questions:

1. On which time scales and in which form does the energy transfer between the inflaton
and symmetry breaking (Higgs) fields take place?

2. Is it possible to conclude on the structure of the effective Higgs potential after this
energy transfer? Though the system does not go right away into a thermal equilibrium
phase, the behavior at intermediate and late times can be thought as reflecting the
shape of an effective Higgs potential, with a symmetric or broken symmetry structure.

3. Do the spectra for the different quantum modes reflect the mechanism of particle
production?

4. To which extent is the transition to a classical description justified (in a certain
momentum range)?

The answers to these questions obviously depend on the parameters chosen for the
simulations.

In the absence of a fundamental theory hybrid models are taken as effective models for
the preheating stage at the end of cosmic inflation. The mass parameters m2 and v2 and the
coupling constants g and λ are then constrained by the observations of the various CMB
experiments (see, e.g., Refs. [197, 56, 198, 111] for constraints of inflation from first year
WMAP data). In particular the anisotropies of the correlations of temperature fluctuations
in the CMB imply

m2 ' 10−12m2
pl , (11.2)

if v2 = 0, i.e., for a plain m2φ2 chaotic inflation model. A larger inflaton mass would
overestimate the amplitude of scalar (density) perturbations in the CMB. More generally,
for nonzero v, the inflaton mass m has to be chosen very small [73],

m2 � g2v2 . (11.3)

This relation implies that the potential in the φ direction close to χ ≈ 0 is very flat.
Indeed when treating the period after inflation the inflaton mass m2 can be neglected

entirely (see also the discussion in [79]); we have chosen m2 = 0 in the numerical simulations
throughout. As discussed in [73] the couplings λ and g2 can vary over a wide range,
depending on the specific preheating scenario. This is interrelated with the particular
choice of the mass scale v which is chosen to be 1 in the numerical simulations. Since
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we restrict the discussion to Minkowski space-time its absolute physical value is irrelevant
here. Of course this choice enters into the time, momentum, and energy scales.

As a concrete phenomenological model preheating after hybrid inflation can be em-
bedded at least at two manifestly different energy scales. For electroweak preheating
[77, 80, 199, 200, 201], the symmetry breaking field mimics the standard Higgs sector of
the standard model, while ignoring contributions from the gauge and fermion fields. Of
course we would have to generalize the symmetry breaking field to be a complex doublet
in order to represent the SU(2) symmetry breaking Higgs sector. The vacuum expecta-
tion value v in this case would be chosen equal to 246 GeV. The classical Higgs mass is
m2

χ = λv2. If the phase transition at the end of inflation takes place at the scale of a Grand
Unified Theory (GUT), the symmetry breaking field could be, e.g., a very heavy sneutrino,
i.e., the scalar super-partner of one of the light neutrinos. The reheating in such a scenario
would come from the decay of this heavy sneutrino. We will not restrict our study to one
of these two scenarios in the following.

In order to study the influence of the coupling strength g2 and the self-coupling λ on
both the classical and quantum components of the Higgs and the inflaton fields we have
performed simulations with m2 = 0, v2 = 1, λ = 1 fixed, while g2 is equal to 2λ, 0.1λ
and 0.01λ (see Figs. 11.3, 11.4 and 11.5) and for g2 = 2λ with a smaller coupling λ = 0.1
and λ = 0.01. The renormalization scale will be fixed as µ2 = λv2. In Tab. 11.1 we
have listed the different sets of parameters. With these parameter choices we include the
different scenarios studied by other authors [63, 77, 79, 80, 83]. In addition to the mass
and coupling parameters we have to specify initial amplitudes (and initial velocities) for
the classical fields. We have chosen χ(0) = 10−7, i.e., a very small value for the initial
amplitude of the classical Higgs field, in order to trigger the “spontaneous” symmetry
breaking. The initial amplitude for the inflaton field has been fixed for the simulations in
Figs. 11.3–11.5 to φ(0) = 1.697φc = 1.2. With this choice of the initial amplitude there is
a short phase of slow-rolling of the inflaton field until the spinodal regime is entered.

Table 11.1: Sets of parameters used

Set # g2/λ λ m2 v2

1 2 1 0 1
2 2 0.1 0 1
3 2 0.01 0 1
4 0.1 1 0 1
5 0.01 1 0 1

In Figs. 11.3–11.5 we display the time evolution of the classical fields φ(t) and χ(t), of

the variational masses M2
φφ(t), M2

χχ(t) and M2
φχ(t) and of the fluctuation integrals ∆

(1)
φφ(t),

∆
(1)
χχ(t), and ∆

(1)
φχ(t). We observe that in all three cases the Higgs field χ(t) oscillates around
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a nonzero value at later times (see the dashed line in Figs. 11.3a–11.5a), while the inflaton
field oscillates around zero (solid lines in Figs. 11.3a–11.5a).

We have identified three time regimes in the simulations that we want to investigate
further in the following. The regimes are described as follows:

(I) Initial period, end of slow-roll. Here M2
χχ(t) > 0. A phase of featureless rolling of

the inflaton field after the main period of inflation. Quantum fluctuations are almost
negligible.

(II) Early times, spinodal regime, M2
χχ(t) < 0 or oscillating several times around zero.

Spinodal amplification of Higgs quantum fluctuations and exponential growth of χ(t).

(III) Intermediate and late times, M2
χχ(t) > 0 and oscillations of the classical fields.

Excitation of inflaton and mixed quantum fluctuations, parametric resonance bands
in all momentum spectra.

The first period (I) is easy to identify in Figs. 11.3–11.5: only the inflaton decreases with
time in smooth way while the Higgs mean field is still practically zero.

In the early time period (II) the inflaton field passes through zero once or several times,
depending on the coupling g2, see Figs. 11.3–11.5. The period is identified by an increase of
|χ(t)| and ends once χ(t) begins to oscillate in a regular way. A closer analysis shows that
the amplitude of the classical Higgs field growths exponentially. In Fig. 11.6 we display the
absolute value |χ(t)| on a logarithmic scale, for simulations with g2 = 2λ, λ = 1, m2 = 0,
v2 = 1, and χ(0) = 10−7 fixed, while the initial amplitude of the inflaton field, φ(0), is
varied from 1.2 to 1.8. The exponential growth sets in when φ(t) becomes smaller than
the critical value φc [see Eq. (3.10)] and stops when χ(t) reaches the turning point which
is at |χ(t)| ≈ 1. There does not seem to be a systematic trend for the dependence of the
period of growth on φ(0).

The regime (II) can be very short. For the simulation with a small coupling g2 = 0.01λ
the transition to the broken symmetry phase can take place within a single oscillation of
the inflaton field (see Fig. 11.5a).

The intermediate and late time period (III) is characterized by oscillations of both
the inflaton and the Higgs field, with essentially constant period and amplitude (see, e.g.,
Fig. 11.5a). The Higgs mean field may oscillate around a nonzero value, related to a broken
symmetry minimum of an effective potential (see below) or around χ = 0, to be identified
with symmetry restoration. (This will be further analyzed in Sec. 11.4.) We immediately
observe in Figs. 11.3–11.5 that in region (III) the field amplitudes of the classical fields (φ
and χ) and also the amplitudes of the various fluctuation integrals (∆φφ, ∆χχ, and ∆φχ)
remain almost constant as a function of time. Thus, effective dissipative dynamics and fur-
ther production of quanta does not take place. This is different from investigations without
back-reaction of the quanta onto themselves [86] (see also the discussion in Secs. 11.5 and
11.7).

The rich dynamics in the hybrid model is due to the mixing of the coupled fields. In
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Figure 11.3: Time evolution for the simulation with g2 = 2λ. Initial values: φ(0) = 1.2
and χ(0) = 1.0 × 10−7; other parameters: m2 = 0, λ = 1, v2 = 1; we plot as a function
of time (a) the classical fields φ(t)/φc (red solid line) and χ(t)/v (green dashed line), (b)
the effective masses M2

ij(t) with ij = φφ (red solid line), ij = χχ (green dashed line)
and ij = φχ (blue dotted line) (c) the fluctuation integrals ∆ij(t) with ij = φφ (red solid
line), ij = χχ (green dashed line) and ij = φχ (blue dotted line); the vertical dotted lines
indicate the times where t is equal to 19.5, 51.3, and 100.2 (see also Sec. 11.5).
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Figure 11.4: The same as Fig. 11.3 but for g2 = 0.1λ; note that the time axis has a
different range.
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Figure 11.5: The same as Fig. 11.3 but for g2 = 0.01λ. The transition of the symmetry
breaking field χ from the metastable vacuum is completed within less than one oscillation
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Figure 11.6: Time evolution of the absolute value |χ(t)| for simulations with the param-
eters g2 = 2λ, m2 = 0, v2 = 1, and λ = 1 and four different initial values φ(0) equal
to 1.2 (solid line), 1.4 (dashed line), 1.6 (dotted line) and 1.8 (dashed-dotted line); the
corresponding arrows pointing at the t-axis indicate the time when φ(t) drops below φc.
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order to quantify the mixing we define a time-dependent mixing angle as

tanϑ(t) =
1

2M2
φχ(t)

{
M2

χχ(t) −M2
φφ(t) +

√[
M2

χχ(t) −M2
φφ(t)

]2
+ 4M4

φχ(t)

}
.

(11.4)

In Fig. 11.7 we plot ϑ(t) for the simulation in Fig. 11.3. We observe that there are many
oscillations around zero. Obviously the mixing of the field changes drastically with time.
The bigger spikes are due to zeros in M2

φχ(t).
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Figure 11.7: Time dependent mixing angle ϑ(t) (in degree) as defined by Eq. (11.4) for
the simulation in Fig. 11.3; for t . 50 the mixing is roughly zero but increases for later
times; obviously there is a continuous exchange of energy between the coupled fields.

We have also run simulations with smaller values of the Higgs self-coupling constant λ,
namely λ = 0.1 and λ = 0.01 and compared them to the case where λ = 1 (we have fixed
g2 = 2λ in these cases). As long as the Higgs field is trapped in a metastable phase the
coupling constant λ is unimportant. Once the spinodal regime is entered there are still a
couple of oscillations of the inflaton field φ until the Higgs field χ reaches its maximum
value for the first time. We note that this number of oscillations goes slightly down from
∼ 5 for λ = 1 to ∼ 1 for λ = 0.01. However, there is a quite complex dependence on
the other parameters too and it is not the goal of this thesis to explore the full parameter
space in detail. Rather we will take the exemplary value λ = 1 in most cases and focus on
some observables which can be of physical interest.
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11.3 Phase-space trajectories

The dynamics of the classical fields and their respective quantum fluctuations is rather
complicated, mainly due to the coupling of the fields. The reason for complex dynamical
behavior of the system is that the field amplitudes of the various fields can be of the same
order.

In Fig. 11.8 and Fig. 11.9 the phase-space trajectory {φ(t), χ(t)} is shown for two
simulations with identical parameters m2 = 0, v = 1, g2 = 2λ, λ = 1, and χ(0) = 1× 10−7

but slightly different initial energy densities. For the simulation in Fig. 11.8 we have
chosen φ(0) = 1.9 and for Fig. 11.9 φ(0) = 2.1. We have also plotted contour lines for the
corresponding classical potential as defined in Eq. (3.9). We immediately observe that the
classical fields φ(t) and χ(t) do not lie on a simple phase-space trajectory in neither of these
two examples. Moreover, for the simulation in Fig. 11.8 there seems to be an attractor
at φ ≈ 0 and χ ≈ 0.6, while for the simulation in Fig 11.9 the attractor is suspected at
φ ≈ χ ≈ 0. We will analyze in detail in Sec. 11.4 how the dynamics and late time behavior
is affected by the initial energy density [via different values of φ(0)].
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Figure 11.8: The solid line represents the phase-space trajectory of the classical fields φ(t)
and χ(t) for a simulation with φ(0) = 1.9 (other parameters as in Fig. 11.3); the dashed
lines represent contour lines of the classical potential (see Fig. 3.2). The dynamics appears
to be rather chaotic, however, finally the field χ oscillates around a nontrivial minimum
indicating spontaneous symmetry breaking; note that the quantum fluctuations shift the
position of the minimum.

Various authors have also studied the complex dynamics in hybrid models by calculating
Lyaponov exponents (or similar quantities) and found some hints for chaotic dynamics
[202, 203].
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Figure 11.9: The same as Fig. 11.8 but for φ(0) = 2.1; at later time the fields oscillate
around the trivial minimum indicating symmetry restoration.

11.4 Late time averages—Phase transition

The amplitudes of the classical fields φ and χ decrease very slowly, if at all, at late times,
i.e., once they have started to oscillate in a kind of effective potential. Though we make no
attempt to reconstruct such a potential in detail, the oscillations allow to conclude on the
minimum and the range of such an effective potential for both the Higgs and inflaton fields.
In this sense we can speak of a symmetric or broken symmetry phase for the Higgs field, if
the minimum of its effective potential is at χ = 0 and χ 6= 0, respectively. We associate this
minimum with the time average of the Higgs field at late times. The shape of the effective
potential depends here on the energy density (in place of the temperature) and therefore
on the initial value of the inflaton field. The question of spontaneous symmetry breaking
and of the point of the phase transition reduces therefore to finding the dependence of
χ(t→ ∞) on the initial value φ(0).

In order to study this issue we have performed a series of simulations where we have
varied the initial amplitude φ(0) while keeping all the other parameters fixed. In Fig. 11.10
the time evolution of χ(t) for simulations with φ(0) = 1.9, 2.0 and 2.1 is displayed. The
other parameters are g2 = 2λ, λ = 1, v = 1, m = 0 and χ(0) = 10−7.

A first inspection suggests that there is a phase transition between φ(0) = 2.0 and
φ(0) = 2.1, as for the latter simulation the field χ oscillates around zero. From the
simulation with φ(0) = 2.0 in Fig. 11.10 it becomes apparent that the field χ can jump
several times from one “minimum” to the other if φ(0) is close to the critical point of the
phase transition. This is typical for a first-order phase transition and has been observed
in the scalar O(N) model in the Hartree approximation as well [192].

In Fig. 11.11 we display the time averages |χ(∞)| and M2
χχ(∞) as a function of the
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Figure 11.10: Time evolution of χ(t) with parameters as in Fig. 11.6 but for the initial
values φ(0) equal to 1.9 (dashed line), 2.0 (green solid line) and 2.1 (dotted line).

initial amplitude φ(0). The other parameters are fixed to g2 = 2λ, λ = 1, v = 1, m = 0
and χ(0) = 10−7.

A first-order phase transition is signaled by a non-continuous drop of the minimum
value |χ(∞)| and the effective mass M2

χχ from finite (positive) values to zero. This indeed
is the case and we can extract a value for this drop as φdrop ≈ 2.011 ≈ 2.844φc, where φc

denotes the critical value as defined in Eq. (3.10). Close to φdrop the Higgs field may jump
several times from one minimum to zero as it already does for φ = 2.0 (see the solid line in
Fig. 11.10). Since we have neglected space-time expansion in our analysis, we should also
be careful when interpreting such a result with respect to the mechanism how inflation
terminates in the hybrid model. Moreover, the details of this phase transition depend
on the parameters. In Fig. 11.12 we display a corresponding plot of the averaged values
|χ(∞)| and M2

χχ(∞) for simulations with g2 = 0.01. The phase transition is suspected
roughly at φdrop ≈ 28.5 = 2.85φc. Note that we have to go to much later times if the
coupling constant g2 is small.

11.5 Momentum spectra

Using the amplitudes fα
j (t, p) we can define various “power spectra”. One of those is

the integrand of the fluctuation integrals ∆ij(t), i.e., the tadpole contributions. We have
already introduced the kernel

Gij(t, t,p) = 〈Φ̃∗
i (t,p)Φ̃(t,p)〉/V , (11.5)
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Figure 11.12: The same as Fig. 11.11 but for g2 = 0.01λ; other parameters as in Fig. 11.5.
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in terms of which we define the power spectrum of the fluctuation amplitudes

Pij(t, p)

p
= Gij(t, t,p)

p2

2π2
(11.6)

by including the momentum phase space factor.
In Fig. 11.13 we display the momentum spectra of all fluctuations for the simulation

in Fig. 11.3. The plots show the absolute values in the p − t plane as gray-scaled maps.
White points correspond to zero, black points to the maximum value in each case. The
three time regimes described in Sec. 11.2 are clearly visible here. Regime (I) ranges from
t = 0 to t ≈ 20, and is followed by regime (II) up to t ≈ 60. Finally, regime (III) ranges
from t ≈ 60 to the end of the simulation. In Fig. 11.14 we display the same spectra at
selected times t equal to 19.5, 51.3, and 100.2. These time steps are indicated in Fig. 11.3
by vertical dashed lines and in Fig. 11.13 by small arrows.

We have subtracted the free field part and the first order perturbative part of this
kernel, both for Fig. 11.13 and Fig. 11.14, analog to the right hand side of Eq. (10.23).
The free field part rises linearly with momentum; for p = 2, the maximal value used in our
plots, has typical values of 0.05 and would be visible. It makes the tadpole integrals diver-
gent; as discussed above, in our computations this divergence is absorbed by dimensional
regularization and renormalization.

At early and intermediate times the Higgs fluctuations dominate. The inflaton and
mixed fluctuation spectra only appear in the late-time regime, however, they are subdom-
inant even there. At early times, t . 20 the Higgs spectrum is generated by negative
squared masses as in tachyonic preheating or quench scenarios. In Ref. [80] it was found
that the peak in the momentum spectrum pPχχ(t, p) can be fitted by a Gaussian; we
similarly find, at t = 19.5, a spectrum

pPχχ(t, p) ' A exp
[
−B(|p| − C)2

]
(11.7)

with

A = 0.4482 ± 0.0038 , (11.8)

B = 36.1115 ± 0.7131 , (11.9)

C = 0.307995 ± 0.001168 . (11.10)

At intermediate times the smooth peak broadens and decays into spikes, typical of
parametric resonance. Parametric resonance also dominates the shape of the spectra at
late times. As the period and amplitude of oscillation change very slowly, the width of the
spectrum remains almost constant.

11.6 Correlation functions

Many authors have studied spatial correlation functions in the presence of spontaneous
symmetry breaking (see, e.g., Refs. [89, 90]).
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Figure 11.13: Momentum spectra Gij(t, t;p)p2/(2π2) for the simulation in Fig. 11.3.
The x-axis shows the time t and the y-axis the momentum p. The absolute values
|Gij(t, t;p)|p2/(2π2) are visualized by a gray-scale ranging from white for zero to black
in each case. Displayed are: (a) the inflaton fluctuations ij = φφ, (b) Higgs fluctuations
ij = χχ, (c) mixed fluctuations ij = φχ. The small arrows pointing on the x-axis indicate
the times t = 19.5, t = 51.3 and t = 100.2 (see also Fig. 11.14).
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Figure 11.14: Momentum spectra Gij(t, t;p)p2/(2π2) for the simulation in Fig. 11.3 at
the times t = 19.5 (left), t = 51.3 (middle) and t = 100.2 (right).

We define the correlation function between the different fluctuations as

Cij(r, t) =

∫
d3p

(2π)3
eip·xGij(t, t;p) (11.11)

=

∫
d3p

(2π)3
eip·x

∑

α

1

2ωα
Re
[
fα

i (t,p)f ∗α
j (t,p)

]

=
1

2π2 r

∫ ∞

0

dp p sin(pr)
∑

α

1

2ωα

Re
[
fα

i (t,p)f ∗α
j (t,p)

]
. (11.12)

We consider here the correlations of the Higgs fluctuations (i = j = 2), which are displayed
in Fig. 11.15. We observe the correlations to be mainly positive and propagating with
∆r = 2∆t, as also found in the large-N approximation [90]. The propagation with twice
the speed of light can be related to the fact that the quantum fluctuations are correlated
by the mean fields whose influence propagates in opposite space directions. Usually this is
corroborated by a strong decrease of such correlations when the mean field amplitude goes
to zero [192].

11.7 Decoherence

One of the important questions is the justification of using classical instead of quantum
dynamics. In the context of nonequilibrium quantum field theory this has been discussed
in Refs. [87, 88, 204] and applied to the hybrid model in Refs. [84, 80]. We use here the
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(a)

(b)

Figure 11.15: Plotted in the r-t plane is the correlation function rCχχ(r, t); (a) 3D plot
(b) 2D map in which the gray-scale coding indicates values for rCχχ(r, t) between −0.2
(white) and 1.8 (black); the plots are cut in the r-t plane if r > 2t; in this particular
simulation the spinodal regime is entered at t ≈ 20 which initializes the development of
spatial correlations of the Higgs field; the transition of the order parameter χ from the false
vacuum to the stable vacuum is finished at t ≈ 60 indicating the dilution of correlations;
parameters as in Fig. 11.3.
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definitions of Ref. [80], adapted to our normalization. The “classicality” is measured by
the imaginary part F (t,p) of a correlation function,

Fij(t,p) = Im

[
∑

α

fα∗
i (t, p)ḟα

j (t, p)

2ωα(p)

]
. (11.13)

The real part of the bracket is associated with the commutator. The criterion for a classical
description is given by

|Fii| � 1 (no summation over i) . (11.14)

We display the time for the onset of classicality (“decoherence time”) as a function of
momentum p for a simulation with g2 = 2λ in Fig. 11.16 and for a simulation with g2 =
0.01λ in Fig. 11.17. The time tdec is implicitly defined by |Fij(tdec,p)| = 1.
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Figure 11.16: Decoherence time tdec(p) for which a given mode p becomes “classical”
(|Fij(tdec,p)| = 1) for the simulation in Fig. 11.3 with g2 = 2λ; the red solid line represents
the inflaton (i = j = 1) and the green dashed line the Higgs modes (i = j = 2); the dotted
line corresponds to tdec ∝ p2.

As far as the Higgs fluctuations (i = j = 2) are concerned the figures can be compared
to those of Refs. [80, 84]. These authors consider the creation of quantum fluctuations via
the spinodal instability. They assume for the mass of the Higgs fluctuations a behavior
M2

χχ ∝ (t0 − t), where t0 marks the onset of the spinodal regime. That way they simplify
the time evolution without considering any back-reactions (see also Refs. [79, 82, 87]).
In this case the mode functions become Airy functions and the results can be written in
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Figure 11.17: The same as Fig. 11.16 but for g2 = 0.01λ corresponding to the simulation
in Fig. 11.5.

analytic form. The boundary |F (t,p)| = 1 between the classical and quantum regimes
then behaves roughly as t ∝ p2 [79, 80, 84]. As displayed in Fig. 11.16 and 11.17 the
shape of this boundary is quite different in our simulations, the classical regime remains
limited within a fixed momentum band at all times. When we include back-reaction, the
behavior of the mass term is linear in time only in a very limited time interval; furthermore,
due to the inflaton oscillations, the process repeats several times. The limited momentum
band for which the modes can be considered as classical, can be seen as a consequence of
parametric resonance. Due to the lack of strong dissipation the oscillations of the classical
fields persist at late times, and therefore also the resonance band. Whether and for which
time period this is physical or unphysical cannot be determined within the approximation
used here, even though it is certainly more elaborate as previous approaches.

For the inflaton fluctuations, not considered in Ref. [80, 84], the structure of the curves
shows that fluctuations at very small momenta become classical as early as those of the
Higgs field, while those for larger momenta develop at later times. Presumably, this is due
to a stronger role of parametric resonance for the evolution of inflaton fluctuations. Again
the band of momenta for the classical regime remains sharply cut off even at late times.
Concerning the dependence on the parameter g2 the details of the evolution of the inflaton
fluctuations can be slightly different, while the Higgs fluctuations evolve in a similar way.





Chapter 12

Conclusions of Part III

We have studied aspects of the nonequilibrium dynamics in a hybrid inflation model [73].
The hybrid model discussed here corresponds to the original proposal by Linde, using a
double well potential [73].

One important result of our work is the consistent implementation of renormalized equa-
tions in the presence of quantum back-reaction for a fully coupled system of two quantum
fields. We have used a one-loop bubble-resummed approximation. In the semiclassical
one-loop approximation [86, 191], i.e., without quantum back-reaction, it is impossible to
study the false vacuum transition, since the system becomes dynamically unstable, and the
approximation breaks down. We have demonstrated that renormalization in the presence
of quantum back-reaction is conceptionally not complicated, although it leads to involved
calculations. We consider this as an essential achievement of our work, which will also be
important when extending the model further by including the coupling to gravity and to
gauge fields where proper renormalization is indispensable [205]. However, when including
gauge fields, we would have to discuss gauge parameter dependences [206, 207, 208, 209]
which are unavoidable in 2PI resummation schemes. We have also worked with Minkowski
space-time for simplicity. There are no conceptional difficulties to extend the methods
presented here to include space-time expansion via the coupling to gravity. The renor-
malized nonequilibrium dynamics in Friedmann-Robertson-Walker cosmologies and with
simple scalar models has been investigated, e.g., in Refs. [205, 210].

In the hybrid model the inflationary stage ends with a phase transition of a symmetry
breaking field that evolves from a false metastable vacuum phase to a stable vacuum. Our
numerical simulations display the expected transition to a broken symmetry phase if the
initial inflaton amplitude is not too large. A possible intermediate restoration of symmetry
by quantum fluctuations would be followed by a later transition to the broken symmetry
state after further cosmological expansion. Possible consequences like the unwanted for-
mation of topological defects have been discussed in the literature [211, 212, 213, 214].
We found that the phase transition can happen almost instantaneously for small coupling
between the fields, as observed in classical simulations using inhomogeneous fields [63], but
also more slowly for larger coupling. In the latter case the evolution and back-reaction
of quantum fluctuations delays the transition from the metastable vacuum to the stable

135
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vacuum, so that neglecting space-time expansion may no longer be justified.
We have calculated the boundaries between regions where a quantum description is

needed and those where one may have recurse to classical evolution equations. We find
marked differences with respect to previous work in similar models [80, 84], where the
production of quanta is described in a simplified way, using a squared mass of the Higgs
field passing linearly through zero. We find numerically that the back-reaction limits the
classical regime to a low-momentum region fixed for all times. Large excitations of quantum
fluctuations seem to justify the transition to a classical description in this momentum
region. However, one has to keep in mind that finally one wants to end up with an
ensemble described by quantum statistics which is used in the standard thermal history
of the early universe. The classical ensembles suffer from the Rayleigh-Jeans divergence,
which is incompatible with the finite amount of initial energy density. This automatically
forces the fluctuations back to the quantum regime.

For electroweak or GUT-scale preheating the Higgs sector is based on a symmetry group
like SU(N) or SO(N) and will in general have more degrees of freedom. Near the spinodal
point all masses degenerate, and this fact has been used in some studies [80] in the way of
just using nH identical copies of one and the same degree of freedom. However, once the
mean value of the Higgs field departs from zero, there will be a nontrivial mass matrix for
the quantum fluctuations with several massless degrees of freedom, the would-be Goldstone
bosons. It can be expected that this will modify the quantum back-reaction in an essential
way. While this goes beyond the scope of the present investigation, there are some studies
using classical dynamics with more realistic Higgs sectors [63, 83, 215, 216]. Our formalism
allows for a generalization towards more realistic Higgs sectors, albeit with the limitation
of homogeneous background fields.

Though our approximation is certainly more elaborate than previous approaches [80, 84,
86], it lacks an efficient mechanism for dissipation. Once the phase transition is completed,
as indicated by the mean field χ oscillating around a nonzero expectation value, the am-
plitude of the fields φ and χ, as well as of the different fluctuation integrals remains almost
constant as a function of time. This is considered to be a general drawback of leading-order
or mean-field approximations. Production of particles does not proceed efficiently. The
situation would improve, however, even in our approximation, if Goldstone modes were
included [192]. Dissipation via particle production is also found in O(N) models when
using the large-N limit [59]. In more realistic models dissipation may proceed in addition
via fermion and gauge fields, even for tree-level approximations in the fermionic case [195].
Strong dissipative dynamics are also expected in approximations beyond leading-order
or mean-field approximations, i.e., if scattering processes between quantum fluctuations
are included. Recent investigations of various authors are based on next-to-leading order
approximations of the 2PI effective action approach. In Refs. [182, 185] simple 1+1 di-
mensional models have been investigated (see also Refs. [91, 92]). In Refs. [183, 186, 189]
the unrenormalized equations of motion are solved using lattice cut-offs. In these next-to-
leading-order studies the systems under investigation display dissipative dynamics for the
classical fields, as well as the tendency to lose information about the initial state, which is
a prerequisite for thermalization. By today, hybrid models, i.e., models with coupled scalar
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fields, have not been studied at next-to-leading order. However, the general expectation is
that higher order effects become effective only when quantum fluctuations have grown to
sufficient size. In the earlier stages the one-loop bubble-resummed approximation, which
we have used here, should be able to provide reliable information on the dynamics of the
false vacuum transition.





Appendix A

Appendix to Part II

This Appendix covers some formulae for the error control function used in Chap. 5, and
some comments on details of the numerical implementation (Chap. 6).

A.1 Error bounds

A key advantage of the uniform approximation presented in Ref. [42] is the uniform con-
trol over remainder terms. This control is obtained by carefully separating the dominant
influence in the coefficient functions of the ordinary differential equations. Because of this
uniform control, the approach is superior to the earlier results of Langer (for a good de-
scription see Ref. [217]). Additionally, Olver [42] constructs higher order approximations
not present in the original work. In this Appendix we review in detail the general error
formulae given by Olver. The errors in Eqs. (5.17) and (5.18) are bounded by

|ε(1)2n+1, � (b, ξ)|
M(b2/3ξ)

,
|∂ε(1)2n+1, � (b, ξ)/∂ξ|
b2/3N(b2/3ξ)

≤ 2E−1(b2/3ξ) exp

{
2λVξ,β(|ξ|1/2B0)

b

} Vξ,β(|ξ|1/2Bn)

b2n+1
,

(A.1)

|ε(2)2n+1, � (b, ξ)|
M(b2/3ξ)

,
|∂ε(2)2n+1, � (b, ξ)/∂ξ|
u2/3N(b2/3ξ)

≤ 2E(b2/3ξ) exp

{
2λVα,ξ(|ξ|1/2B0)

b

} Vα,ξ(|ξ|1/2Bn)

b2n+1
,

(A.2)
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where M(x) and N(x) are modulus functions, and E(x) is a weight function defined as

M(x) =
√

2Ai(x)Bi(x) for x ≤ c,

M(x) =

√
Ai2(x) + Bi2(x) for x ≥ c, (A.3)

N(x) =

{
Ai′2(x)Bi2(x) + Bi′2(x)Ai2(x)

Ai(x)Bi(x)

}1/2

for x ≥ c,

N(x) =
{

Ai′
2
(x) + Bi′

2
(x)
}1/2

for x ≤ c, (A.4)

E(x) =

√
Bi(x)

Ai(x)
for c ≤ x ≤ ∞,

E(x) = 1 for −∞ ≤ x ≤ c , (A.5)

and c ' −0.36605. Some explicit numerical values of these functions are given in Ref. [42].
The auxiliary quantity λ is defined by

λ = sup
(−∞,∞)

{
π|x|1/2M2(x)

}
. (A.6)

A numerical estimate is λ ' 1.04 [42]. Finally, in Eqs. (A.1) and (A.2), we introduced
the total variation Vα,β(f) of a function over the interval (α, β). The total variation of a
function f(x) over an interval (α, β) is the supremum

Vα,β(f) = sup
{α≤x0<···<xn<···≤β}

n−1∑

s=0

|f(xs+1) − f(xs)|, (A.7)

for unbounded n and all possible subdivisions of the interval, α ≤ x0 < · · · < xn ≤ β. In
case of a compact interval [α, β] one possible subdivision is given by n = 1, x0 = a, and
x1 = b. Hence

Vα,β(f) ≥ |f(β) − f(α)|. (A.8)

Equality holds if f(x) is monotonic over [α, β]. When f(x) is continuously differentiable
in [α, β] we have

Vα,β(f) =

∫ β

α

|f ′(x)|dx. (A.9)

A.2 Numerical implementation details

A.2.1 Momentum discretization

The actual momentum discretization chosen for numerical work is arbitrary but it is a
good idea to adjust the chosen values of the momenta so that the relation

ν̄2(η̄) = k2η̄2 ⇒ g(k, η̄) = 0, (A.10)
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defining the momentum-dependent turning points η̄ = η̄(k) is satisfied exactly, even though
the conformal time is known only at discrete points. This can be done by locking the mo-
mentum discretization to the time discretization, i.e., by guaranteeing that if the time
discretization is given, k discretization points are chosen only if they satisfy Eq. (A.10). Of
course a predefined momentum discretization is unnecessary if we only wish to calculate
power spectra and spectral indices in the uniform approximation; the predefined momen-
tum discretization is used only for initializing the mode functions in the mode-by-mode
approach, where we need the integrals on the left of the turning point.

A.2.2 Spectral indices in the uniform approximation

The integral for the spectral index has a square root singularity at η = η̄ and is handled
specially in the numerical routine. We split the integral appearing in the spectral index
into two parts:

∫ η

η̄

dη′√
g(k, η′)

=

∫ η̄+∆η

η̄

dη′√
g(k, η′)

+

∫ η

η̄+∆η

dη′√
g(k, η′)

,

(A.11)

where ∆η is a small quantity. Note that ∆η is really k-dependent, because the discretization
in η is not equidistant.

In the first integral we can substitute ν2(η) by ν̄2(η̄), i.e., insert the leading order of the
local approximation. The first integral can then be calculated analytically and keeps track
of the inverse square root singularity, while the second integral has no singularity and can
be easily calculated numerically. The quantity ∆η is given by the actual time discretization
in physical time t that we have chosen. It is further required that −2η̄ > ∆η, i.e., ∆η must
be sufficiently small. As η̄(k) → 0− in the limit k → ∞, this relation also constrains the
highest reliable mode for a given time discretization in the exact numerical results. The
first integral gives

∫ η̄+∆η

η̄

dη′√
g(k, η′)

'
∫ η̄+∆η

η̄

dη′√
ν̄2

η′2 − k2
=

1

k

√
−2η̄∆η − ∆η2. (A.12)

In order to avoid calculating the integrals numerically up to η → 0−, we calculate the
remainder of the integral from an asymptotic value ηa, where the integrand is sufficiently
small and we can stop the numerical integration, to η = 0−, assuming that ν2(η) '
ν2(ηa) + 2ν(ηa)ν

′(ηa)(η − ηa). Then we have

−2k2 lim
kη→0−

∫ η

ηa

dη′√
ν2(η)

η′2
− k2

' − 2
√
ν2(ηa) − 2ν(ηa)ν ′(ηa)ηa + 2

√
ν2(ηa) − k2η2

a

− 2ν(ηa)ν
′(ηa)

k

[
arcsin

2ν(ηa)ν
′(ηa)√

∆

− arcsin
2ν(ηa)ν

′(ηa) − 2k2ηa√
∆

]
,(A.13)
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with
∆ = [2ν(ηa)ν

′(ηa)]
2 + 4k2[ν2(ηa) − 2ν(ηa)ν

′(ηa)ηa]. (A.14)

Alternatively, it is possible to convert the evaluation of the spectral index into the
problem of solving a differential equation, rather than evaluating an integral. The limit
kη → 0− in Eq. (5.50) is interchangeable with a conformal time derivative, so that the
physical time derivative of the spectral index reads

ṅS[k, η(t)] = −2k2 1

a(t)
√
gS(η, k)

. (A.15)

In order to avoid the square root singularity the integration starts at η = η̄ + ∆η, so that
the “initial” condition

nS(k, η̄ + ∆η) = 4 − 2k
√

−2η̄∆η − ∆η2 (A.16)

includes the integral in Eq. (A.12). It is understood that the limit kη → 0− is taken when
calculating nS(k). The integration of the differential equation with a high order integrator
is more precise than a standard trapezoidal rule. In contrast, as the discretization in η is
not equidistant, higher order integration schemes would be somewhat more complicated to
implement. However, we have verified that a standard trapezoidal integration rule already
gives sufficiently precise answers. In fact, the local approximation for the spectral index
at leading order is quite close to the numerical nonlocal integral in the cases where the
derivative expansion is valid.

A.2.3 Conversion to physical units

For completeness, we explain here how units are handled in the numerical implementation.
As always, it is convenient to work in dimensionless units, i.e., by choosing ~ = c = 1. In
addition, we set the factor 8πG in the Friedmann equation in the numerical code to unity.
These choices lead to values for the input parameters, e.g., initial conditions and coupling
constants, of order unity. This helps to prevent numerical problems arising from very large
or very small numbers. In order to reconvert the dimensionless units to physical units the
Hubble parameter H has to be rescaled via

Hphys =
√

8πH0H, (A.17)

whereH is the dimensionless Hubble parameter used in the code andH0 = 100h km s−1 Mpc−1.
The rescaled momentum k in physical units hMpc−1 is therefore given by

kphys =
√

8π
h

100ca(0)
k km s−1 Mpc−1, (A.18)

with c = 2.99792458 × 105 km s−1. The initial expansion rate is a(0). Throughout the
paper we have dropped the suffix “phys” implying that all results are given in physical
units.
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Next we discuss the normalization of the amplitude of the power spectrum. The power
spectra for scalar and tensor perturbations as defined in Eqs. (2.51) and (2.52) are dimen-
sionless and therefore not sensitive to the units of k. Their amplitude is determined fully
by the parameters chosen in the inflaton potential V (φ). Since parameters such as the in-
flaton mass m2 in a chaotic m2φ2 model are generally not known, we present the results for
the power spectra with respect to the WMAP normalization where the amplitude of scalar
perturbations is given by |∆R2| = 2.95−9A with A = 0.9 ± 0.1 (at k∗ = 0.05/Mpc), see
Refs. [8, 218]. Using the fact that for a fixed number of e-folds, counted from the horizon
crossing of k∗, the parameters in the monomial potentials simply lead to a global normal-
ization factor [34] we can avoid having very small numbers in the numerical calculations
and just normalize the spectra afterwards. When stating results we give the parameters in
the potential corresponding to the WMAP normalization in each case.
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Appendix to Part III

B.1 Identities for Feynman diagrams

We list some identities for Feynman diagrams which have been used in order to extract the
divergences from the finite parts (see Sec. 10.28). The divergent terms have been expressed
in terms of three-dimensional momentum integrals. These integrals can be converted to
four-dimensional integrals and conventional regularization techniques like dimensional reg-
ularization can be used.

Within dimensional regularization (D = 4 − ε) the following identities (no summation
over Greek indices) hold
∫

dD−1p

(2π)D−1

1

2ωαωβ(ωα + ωβ)
=

∫
dDp

(2π)D

1

(p2 −m2
0, α + io)(p2 −m2

0, β + io)
(B.1)

=
1

16π2

[
Lε − ln

m2
0, α

µ2
+ 1 +

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

]
, (B.2)

and
∫

dD−1p

(2π)D−1

1

2ωα
=

∫
dDp

(2π)D

i

p2 −m2
0, α + io

(B.3)

= −
m2

0, α

16π2

[
Lε − ln

m2
0, α

µ2
+ 1

]
, (B.4)

with

ωα =
√
m2

0, α + p2 , (B.5)

Lε =
2

ε
− γ + ln 4π . (B.6)

The corresponding Feynman diagrams are depicted in Fig. B.1. Note that

lim
m2

0, β
→m2

0, α

[
− ln

m2
0, α

µ2
+ 1 +

m2
0, β

m2
0, α −m2

0, β

ln
m2

0, β

m2
0, α

]
= − ln

m2
0, α

µ2
. (B.7)
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(a) 0, β
2m

m0, α
2

(b)

m0, α
2

Figure B.1: (a) The Feynman diagram with a topology of a fish graph corresponding to
Eq. (B.1) (b) the tadpole type graph corresponding to Eq. (B.4); in both diagrams the
lines denote free propagators with the initial masses m2

0, α and m2
0, β, respectively.

An identity that is needed for the renormalization of the energy is given by

∫
dD−1p

(2π)D−1
ωα =

m4
0, α

32π2

[
Lε − ln

m2
0, α

µ2
+

3

2

]
. (B.8)

B.2 Expansion of the mode functions

In this Section we will present the isolation of the divergences via a perturbative expansion
of the mode functions (see e.g. Refs. [76, 191]) for the case of a coupled system of equations.

Let us split the mode functions fα
i into a free part containing the initial matrix Oij and

higher order terms represented by the reduced mode functions hα
i , i.e.

fα
i (t; p) = e−iωαt [Oiα + hα

i (t; p)] . (B.9)

Here and in the following no summation over Greek indices is meant if not explicitly stated.
If we define a potential

Vij(t) = M2
ij(t) −M2

ij(0) , (B.10)

the differential equation (9.11) is equivalent to the following integral equation:

fα
i (t; p) = e−iωαtOiα +

∫ t

0

dt′Kret
ij (t− t′; p)Vjk(t

′)fα
k (t′; p) .

The retarded kernel of the free equation is given by

Kret
ij (t− t′; p) =

∑

β

i

2ωβ
Θ(t− t′)OiβOjβ

[
eiωβ(t−t′) − e−iωβ(t−t′)

]
. (B.11)



B.2. Expansion of the mode functions 147

Inserting the retarded kernel in the integral equation gives

fα
i (t; p) = e−iωαtOiα +

∫ t

0

dt′
∑

β

i

2ωβ
OiβOjβ

[
eiωβ(t−t′) − e−iωβ(t−t′)

]

×Vjk(t
′)fα

k (t′; p) (B.12)

= e−iωαt

{
Oiα +

∫ t

0

dt′ Vjk(t
′)
∑

β

i

2ωβ
OiβOjβOkα (B.13)

×
[
ei(ωβ+ωα)(t−t′) − e−i(ωβ−ωα)(t−t′)

]}
+ . . . , (B.14)

where in addition the decomposition in Eq. (B.9) has been used. The dots imply the higher
order terms with hα

i that we do not need for the analysis of the divergences here.
By partial integration the divergent contributions can be isolated in the usual way,

fα
i (t;p) = e−iωαt

{
Oiα −

∑

β

1

2ωβ

[
1

ωβ + ωα

+
1

ωβ − ωα

]
OiβOjβOkαVjk(t) (B.15)

+
∑

β

1

2ωβ

[
1

ωβ + ωα

ei(ωβ+ωα)t +
1

ωβ − ωα

e−i(ωβ−ωα)t

]
OiβOjβOkαVjk(0)

+
∑

β

1

2ωβ
OiβOjβOkα

∫ t

0

dt′V̇jk(t
′)

×
[

1

ωβ + ωα
ei(ωβ+ωα)(t−t′) +

1

ωβ − ωα
e−i(ωβ−ωα)(t−t′)

]}
+ . . . .

This expression and its complex conjugate are all that is needed to calculate the divergent
contributions in ∆ij(t). The divergent part of the symmetrized Green’s function follows as

1

2

[
Gij(t, t;p) +Gji(t, t;p)

]div

=
∑

α

1

2ωα

Re

[
fα

i (t; p)fα, ∗
j (t; p)

]div

=
∑

α

1

2ωα

[
OiαOjα +

∑

β

1

2ωβ
OiβOlβOkαOjαVkl(t)

−2ωβ

ω2
β − ω2

α

+
∑

β

1

2ωβ
OiαOlβOkαOjβVkl(t)

−2ωβ

ω2
β − ω2

α

]

=
∑

α

1

2ωα

[
OiαOjα − 1

ωβ(ωα + ωβ)
OiαOjβOlβOkαVkl(t)

]
. (B.16)

The integral of Eq. (B.16) over d3p becomes divergent. We will use them as subtraction

terms in the fluctuation integrals in ∆
(1)
ij (t) and E(1)(t) [see Eqs. (9.17) and Eq. (10.54)].
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The divergences in the energy can be found in an analogous way by inserting f α
i (t, p)

and its time derivative in the one-loop energy part E(1)(t) [see Eq. (10.54)]. However, we
will use an alternative approach in the following.

The one-loop effective action at time t minus the one at t = 0 is given by

Γ̃(1)[M2] =
i

2
tr ln

{
2 + M2(t)

2 + M2(0)

}
, (B.17)

where it is understood that the numerator and denominator are 2 × 2 matrices. This
expression can be expanded locally with respect to V(t) = M2(t) −M2(0) and gradients
thereof. The expansion can be obtained by going to the momentum representation, i.e.,
by expanding with respect to insertions of V(q) and with respect to the external momenta
q = (q0,q). As we do not need an infinite wave function renormalization the divergent
parts are given by the terms of first and second order in V(q).

We introduce

G−1
0,ij(p) =

(
−p2

0 + p2
)
δij + M2

ij(0) , (B.18)

G−1
ij (p) =

(
−p2

0 + p2
)
δij + M2

ij(t) . (B.19)

G0 is not the bare propagator which would be defined at the vacuum expectation values
of φ and χ. We diagonalize the initial mass matrix by an orthogonal transformation

M2(0) = OM̃2(0)OT , (B.20)

or

M2
ij(0) = OiαOjβM̃2

αβ(0) = OiαOjαm
2
0,α . (B.21)

Then also G−1
0,ij becomes diagonal. We likewise introduce

G−1
ij (p) = Oiα

([
−p2

0 + p2 +m2
0,α

]
δαβ + Ṽαβ(t)

)
Ojβ

= OiαG̃
−1
αβ(p)Ojβ , (B.22)

where of course

Ṽαβ(t) = OiαVij(t)Ojβ (B.23)

is no longer diagonal. The effective action, in the approximation where all gradient terms
are neglected, can now be rewritten as

Γ̃(1) ' i

2

∫
d4p

(2π)4
tr ln

{
G0G

−1
}

=

∫
d4p

(2π)4
tr ln

{
1 + G̃0Ṽ(t)

}
. (B.24)
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The first terms in the expansion are

Γ̃(1) ' i

2

∫
d4p

(2π)4

[
∑

α

1

−p2
0 + p2 +m2

0,α + io
Ṽαα(t)

−1

2

∑

αβ

1

−p2
0 + p2 +m2

0,α + io
Ṽαβ(t)

1

−p2
0 + p2 +m2

0,β + io
Ṽβα(t)

]

+O(Ṽ3) (B.25)

The three-dimensional reduction is obtained via Eq. (B.4) and Eq. (B.1). So we find

Γ̃(1) div =

∫
d3p

(2π)3

[∑

α

−Ṽαα(t)

4ωα
− 1

2

∑

αβ

−Ṽαβ(t)Ṽβα(t)

4ωαωβ(ωα + ωβ)

]
. (B.26)

The divergent parts of the fluctuation energy are, therefore,

E
(1)
div =

∫
d3p

(2π)3

[
∑

α

Ṽαα(t)

4ωα
−
∑

αβ

Ṽαβ(t)Ṽβα(t)

8ωαωβ(ωα + ωβ)

]
. (B.27)

As a cross check we may obtain the divergent terms in the fluctuation integrals ∆ij which
are given by

∆
(1) div
ij

2
= − δΓ̃(1) div

δM2
ij(t)

= −δΓ̃
(1) div

δVij(t)
(B.28)

Using Eq. (B.23) we have

δVαβ(t)

δVij(t)
= OiαOjβ (B.29)

and therefore

∆
(1) div
ij =

∫
d3p

(2π)3

[∑

α

1

2ωα

OiαOjα −
∑

αβ

OiαOjβṼβα(t)

2ωαωβ(ωα + ωβ)

]
. (B.30)
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