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Chapter 1

Introduction

This thesis presents an analysis of empirical and policy issues related to eco-

nomic convergence and risk sharing. While the first part of the thesis is a con-

tribution to the empirical literature on regional convergence, the second part

is concerned with a transfer of techniques originally proposed in the growth

econometrics literature to the macroeconomic literature on aggregate risk shar-

ing. Taken as a whole, my thesis therefore illustrates how recent advances in

growth econometrics are of great service in other areas of economic research.

The thesis consists of four self-contained papers.1 In this Introduction I

put my papers into a larger context. Since the papers cover topics from differ-

ent areas of economic research–such as labor markets, convergence, and risk

sharing–the focus of this Introduction is methodological in nature and eco-

nomic contributions and possible policy implications are deliberately touched

only marginally. These issues are discussed in considerable detail in the respec-

tive chapters.

The various empirical applications presented have in common that the at-

tention is restricted to a domestic setting. As discussed by Hess and van

Wincoop (2000), the analysis of economic interactions across regions within

a country holds great potential for understanding how economic interactions

between countries will evolve as national borders decline in importance. There

are various reasons why regional (or intranational) studies may provide a proper

benchmark for understanding macroeconomic relationships within an econom-

ically integrated geographic area:

‘Policy-imposed barriers to the flow of goods, capital, labor, and

knowledge across intranational borders are generally quite small.

1The first paper ‘Convergence in West German Regional Unemployment Rates’ is co-
authered by my colleague Christian Bayer.

1
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Tariffs, trade quotas, capital controls, and immigration laws do not

apply to intranational borders. Regions within a country share a

common currency, tax system, legal foundations, accounting system,

and language’ (Hess and van Wincoop, 2000, p. 2).

Regional studies on macroeconomic issues are abundant but most of the

literature is still rather separated: some researchers work on growth and con-

vergence, some on labor market issues, some on agglomeration, others on risk

sharing, and still others on labor migration. The book of Hess and vanWincoop

(2000) illustrates how the various contributions can be unified in a new field,

which they refer to as ‘Intranational Macroeconomics’. This thesis presents

a collection of self-contained papers which contribute to this evolving field of

research.

1.1 Part I: Regional Convergence in Germany

There is a large body of empirical research on national and regional economic

growth and convergence. The question whether economies are converging has

attracted the attention of economists and policy makers at least since the last

two decades. Almost all studies of convergence refer explicitly or implicitly to

variants of the neoclassical model of growth, originally set out by Solow (1956)

and Swan (1956), and, following the work of Ramsey (1928), subsequently

refined by Cass (1965) and Koopmans (1965).

According to Solowian-type of growth models, convergence is driven by de-

creasing returns to capital accumulation. This property of the neoclassical pro-

duction function implies that income differences between independent countries

or regions will diminish over time as those countries move to identical steady

states.

The broad literature testing whether countries or regions are converging

is surveyed, among others, in Temple (1999), Durlauf and Quah (1999), Is-

lam (2003), Magrini (2004), Abreu (2005), and several chapters of the recent

Handbook of Economic Growth (Aghion and Durlauf, 2005). Following the

classification suggested by Magrini (2004), two broad approaches to analyzing

convergence can be identified: the ‘regression approach’ and the ‘distribution

dynamics approach’.

Within the regression approach, a variety of methods has been developed

and implemented which I summarize in a chronological order. Starting off from

the seminal contribution of Baumol (1986), the use of cross-sectional growth
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regressions has been popularized by Barro (1991) and Barro and Sala-i-Martin

(1991a, b, 1992). The hypothesis being tested is that, during the adjustment

process to the steady state, the growth rate of an economy over a given pe-

riod of time is inversely related to the initial per-capita income level. Hence,

the question is whether economies with low initial levels of per capita income

experience the fastest growth rates.

Mankiw, Romer, and Weil (1992) generalize this absolute convergence hy-

pothesis by allowing each particular economy to approach its own steady state.

The empirical implication of this notion of conditional convergence is that initial

income differences between independent countries or regions will not necessarily

diminish because convergence occurs to one’s own steady state.

Later, these regressions have been extended to panel data models in order

to control for unobserved heterogeneities and to deal with endogeneity prob-

lems (Islam, 1995, Caselli, Esquivel, and Lefort, 1996, Lee et al. (1998), Bond,

Hoeffler, and Temple, 2001). Another empirical strategy within the regression

approach relies on time-series techniques. As such, time-series tests of conver-

gence are usually carried out using tests for unit roots and cointegration (Evans

and Karras, 1996a, b, Carlino and Mills, 1993, 1996a, b, Bernard and Durlauf,

1995, 1996). Finally, there is an evolving literature that focuses on the conse-

quences of spatial interaction effects on convergence (see for example Rey and

Montuori, 1999, López-Bazo et al., 1999, Niebuhr, 2001).

From the survey article by Magrini (2004) one gets the impression that the

literature is reaching a point of decreasing returns in terms of extending the

regression approach to convergence (see Bode and Rey (2006) for a similar con-

clusion concerning spatial econometric extensions of the regression approach).

In fact, genuine progress seems hard to achieve within the regression approach.

There are at least two major factors which explain this tendency. One factor

is the fundamental critique put forth by Levine and Renelt (1992) and Levine

and Zervos (1993), and the second factor is the critique put forth by Friedman

(1992) and Quah (1993).

Levine and others perform a sensitivity analysis of a huge number of vari-

ables that appeared in cross-country growth regressions. The overall pattern

is that the estimated coefficients are not very robust against a variation in the

set of conditioning variables. The point of Friedman (1992) and Quah (1993) is

more methodological in nature and concentrates on the informative content of

cross-sectional regressions. Their main criticism is that the regression approach

tends to concentrate on the behavior of the representative economy whilst giv-

ing no information on the dynamics of the entire cross-sectional distribution
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of regional incomes. In other words, there is an analogy between regressions

of growth rates over initial levels and Galton’s fallacy of regression towards

the mean. As summarized by Magrini (2004, p. 10), a ‘negative relationship

between growth rates and initial values does not indicate a reduction in the

cross-sectional variance and, moreover, it is also possible to observe a diverging

cross-sectional distribution even when such a negative relationship holds’.

It is this last criticism that has motivated Danny Quah to develop the ‘distri-

bution dynamics approach’ to economic convergence. This approach examines

directly how the cross-sectional distribution of per capita income develops over

time. Although the distributional approach to convergence is not without prob-

lems of its own, the overall conclusion of the survey article by Magrini (2004)

is that

‘[...] the distributional approach to convergence–particularly

when based on nonparametric stochastic kernel estimations–appears

to be generally more informative than convergence empirics within

the regression approach, and therefore represents a more promising

way forward’ (Magrini, 2004, p. 3).

In Part I of my thesis I use methods from both, the regression approach

and the distribution dynamics approach to analyze regional convergence in

Germany. The essays presented in Chapters 2 and 3 do not aim at providing

an overview of the key developments in the study of regional convergence, nor

do they attempt to provide a balanced view of the literature. Rather, I discuss

and extend the self-contained empirical studies of Bayer and Jüßen (2006) and

Jüßen (2006a).

Chapter 2 presents the paper ‘Convergence in West German Regional Un-
employment Rates’ published in Bayer and Jüßen (2006). According to the

above classification of convergence empirics this paper belongs to the regression

approach. Specifically, we use a time-series approach to economic convergence.

There is a clear economic motivation to stick to this empirical strategy: One

central aspect of this paper is to account for a structural break in the data series

employed and the time-series approach is a powerful tool to address this issue.

Moreover, Bernard and Durlauf (1996) illustrate that this approach appears to

resort a stricter notion of convergence than cross-sectional analyses.2

2In many cases, the lack of adequately extended series of data at the regional level hampers
the general application of the time-series approach. The data series employed in Bayer and
Juessen (2006) have the particular advantage of covering a comparatively long period of time,
namely from 1960-2002.
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One novelty of Bayer and Jüßen’s (2006) paper is that it extends the es-

tablished time-series approach to another area in economics. While most stud-

ies have focused on convergence in per capita output or related productivity

measures, we borrow the techniques from the growth convergence literature

to examine the evolution of regional disparities in unemployment rates within

a country, a topic that has gained much attention since the seminal paper of

Blanchard and Katz (1992). For Germany, our study is the first one analyzing

the convergence of regional unemployment rates at the federal state level.

Differences in regional unemployment rates are often used to describe re-

gional economic inequality. In our paper we paper ask whether changes in

regional unemployment differences in West Germany are persistent over time.

Understanding the persistency of regional unemployment differences helps us

to asses how effective regional policy can be. While univariate tests suggest

that changes in unemployment differences are persistent, more powerful panel

tests lend some support to the hypothesis that regional unemployment rates

converge. However, these tests reveal a moderate speed of convergence at best.

Since there is a structural break following the second oil crisis, we also employ

tests that allow for such a break. This provides evidence for both, convergence

and quick adjustment to an equilibrium distribution of regional unemployment

rates that is subject to a structural break.

Our finding of structural breaks has important implications for policies tar-

geted at regional unemployment rates. If there is regime-wise conditional con-

vergence and fast equilibrium adjustment, then this implies on the one hand

that small government interventions loose their effect quickly as unemployment

rates adjust back to their equilibrium levels. On the other hand, large inter-

ventions might move the economy from one equilibrium to the other. Hence,

policy intervention needs to take the form of a substantial regime shift.

In Chapter 3 I move to the alternative approach to convergence, namely
that of distribution dynamics. As discussed above, one fundamental criticism

of the regression approach is that it tends to concentrate on the behavior of

a representative economy, whilst ignoring the dynamics of the entire cross-

sectional distribution. Therefore, proponents of the regression approach suggest

to extend cross-country growth regressions by additionally examining the de-

velopment of dispersion of per capita income levels or growth rates (Barro and

Sala-i-Martin, 1991). If the dispersion of the cross-section income distribution

is declining over time, σ-convergence is said to hold (σ is the notation for the

standard deviation of the income distribution). Friedman (1992) and Cannon

and Duck (2000) show how the concept of σ-convergence can be applied in a
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regression framework.

The overall conclusion of the survey articles by Durlauf, Johnson, and Tem-

ple (2004) and Magrini (2004) is, however, that existing formulations of σ-

convergence are not fully satisfactory. There are at least three major reasons

for this. Firstly, there is no straightforward way to implement a notion of

conditional σ-convergence. Secondly, analyzing the change of cross-sectional

dispersion as measured by standard deviation or coefficient of variation means

focusing on only one single moment of the underlying distribution. Thirdly,

a constant standard deviation is consistent with very different dynamics rang-

ing from ‘criss-crossing and leap-frogging to persistent inequality and poverty

traps’ (Magrini, 2004, p. 32). Further problems concerning the interpretation

of tests of σ-convergence are pointed out by Bliss (1999, 2000).

Danny Quah has developed an alternative approach to analyzing conver-

gence that overcomes the discussed limitations of the β- and σ-convergence

concepts. It is widely accepted that his distribution dynamics approach rep-

resents a radical departure from the regression approach. Instead of focusing

on single moments of the underlying (output or income) distribution as it is

the case for traditional β- and σ-convergence approaches, Quah suggests to

examine directly how the entire cross-sectional distribution changes over time.

This innovative approach is able to illustrate the change in the shape of the

income distribution and is additionally informative about the degree of mobil-

ity of individual countries or regions in the ranking of incomes. These mobility

patterns are referred to as ‘intra-distribution dynamics’.

To illustrate the multiplicity of studies which adopt Quah’s techniques, Ta-

ble 1.1 presents a list of recent papers which use the distribution dynamics

approach to analyze growth and convergence in various countries and regions.3

My paper ‘A Distribution Dynamics Approach to Regional GDP Convergence

in Reunified Germany’ (Jüßen, 2006a) complements these studies by examin-

ing convergence of GDP per worker across German labor market regions during

1992 to 2002.

While there are several studies analyzing regional convergence in West Ger-

many4, empirical evidence regarding reunified Germany is still scarce. Kos-

3This list may be incomplete and does not comprise Quah’s own contributions. Some
notable excpetions which use Quah’s techniques in another area of economic research are the
studies of Overman and Puga (2002) and Lopéz-Bazo, del Barrio, and Artis (2005), which
assign Quah’s ideas to a labor market framework.

4See Seitz (1995), Schalk and Untiedt (1996), Kellermann (1997), Bohl (1998), Funke
and Strulik (1999) and Niebuhr (2001). In general, these studies do find evidence for both,
absolute and conditional convergence in West Germany.
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Table 1.1: Studies which use Quah’s distribution dynamics approach in the field of
growth and convergence

Study Uses data for... Field of research

Andrade et al. (2004) Brazilian municipalities Output p er cap ita convergence

Bandyopadhyay (2002, 2004) Ind ian states Income p er capita convergence

Epstein , How lett, and Schu lze (2003) OECD countries GDP convergence

F iaschi and Lavezzi (2004) 15 countries Long-run output growth

Fotopou los (2004) EU -15, NUTS 2 regions Labor productiv ity convergence

Johnson (2000) US federal states Income p er capita convergence

Johnson (2005) Countries in Penn World Tab les Convergence in output p er capita , TFP,

cap ita l-output ratio , human capita l p er worker

Jüßen (2006a) German lab or markets Output p er worker convergence

Kang (2004) Japanes prefectures Income p er capita convergence

Krem er, Onatski, and Sto ck (2001) 140 countries, Penn World Tab les Output convergence

López-Bazo et al. (1999) EU regions Output p er cap ita convergence

Magrin i (2004) EU NUTS and functional regions Income convergence

Maza and V illaverde (2004) EU NUTS 2 regions Output p er cap ita convergence

Mossi et a l. (2003) Brazilian states Income p er capita convergence

P ittau and Zelli (2004) EU -12 regions Household and size-ad justed income convergence

P ittau and Zelli (2005) Europ ean regions GDP per capita convergence

P ittau (2005) Europ ean regions GDP per capita convergence

Tortosa-Ausina et a l. (2005) Span ish provinces Convergence in output, TFP, capita l intensity

feld, Eckey, and Dreger (2002) and Kosfeld and Lauridsen (2004) adopt spatial

econometric techniques to analyze convergence in reunified Germany. Since pro-

nounced East-West disparities are a well-documented fact in reunified Germany

(Barell and te Velde, 2000), I extend these regression-based studies by using

nonparametric techniques which are especially useful in uncovering empirical

phenomena like polarization and clustering.

I find that there is evidence for a tendency towards convergence during the

observed period, i.e. regions that were less productive in 1992 (East German

regions) established a higher relative GDP in 2002. It is an advantage of the

empirical approach that it allows one to make predictions about the long-run

distribution of regional production. Regions in reunified Germany will not be-

come equal to one another in terms of GDP per worker if the observed distribu-

tional dynamics remain unchanged. I predict a pronounced polarization in the
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long-run distribution of regional GDP which reflects a long-run heterogeneity

among West and East German regions.

1.2 Part II: Risk Sharing in Germany and the

US

In Part II I approach the effects of openness on regional income differences
and convergence from a completely different perspective, namely that of in-

terregional risk sharing. This part of the thesis consists of two self-contained

papers: the one published in Jüßen (2006b) (‘Interregional Risk Sharing and

Fiscal Redistribution in Reunified Germany’) and my paper ‘Home Bias, Neigh-

borhood Bias, and Incomplete Capital Market Risk Sharing among US Federal

States’ (Jüßen, 2006c). Because some general issues concerning risk sharing are

closely related, both chapters will naturally touch on each of them. Moreover,

there are some redundancies between Chapters 3 and 4 because I use similar

econometric techniques in both chapters.

At the heart of interregional risk sharing stand the fundamental differences

between regional Gross Domestic Product (GDP) and regional income. While

GDP corresponds to a region’s production and hence attributes to a region the

amount of economic production generated within it, income explicitly includes

net factor payments from other regions. Thus, income equals output plus net

factor income flows.

The general idea of risk sharing is that, by holding claims to output pro-

duced in other regions, individuals can smooth away shocks to their own income

caused by variations in their home region’s production. This means that in-

dividuals can share their output risk by diversifying their asset portfolios, i.e.,

via cross-ownership of productive assets. Following the seminal paper of As-

drubali, Sørensen, and Yosha (1996) such insurance is referred to as ‘income

smoothing’ or ‘capital market smoothing’. As long as output across regions is

imperfectly correlated, this kind of income insurance is effective for smoothing

both, permanent and transitory shocks to output (see Becker and Hoffmann,

2006).5

As discussed by Asdrubali, Sørensen, and Yosha (1996) and von Hagen

(2000), in a world with imperfect capital markets, further smoothing of incomes

can be achieved by the fiscal transfer system, which renders disposable income

5Throughout the thesis I use the words ‘risk sharing’, ‘insurance’ and ‘smoothing’ inter-
changeably.
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different from income. For instance, the government may provide risk sharing

via the tax transfer system or by allocating grants and subsidies to economies

which suffer from an economic downturn. This channel of risk sharing is referred

to as ‘federal government smoothing’.

Lastly, individuals may adjust their savings behavior in response to shocks

and further smooth their consumption by borrowing and lending on the credit

market. This ex-post channel is referred to as ‘consumption smoothing’ or

‘credit market smoothing’. According to models of forward looking consumer

behavior (permanent income theory), consumption smoothing can only be ef-

fective if shocks are perceived as transitory. This means that the credit market

is a close substitute for income insurance provided by the capital market if

shocks to output are not very persistent (see Baxter and Crucini, 1995). If

some shocks are not smoothed at all after all three channels of smoothing–i.e.,

after capital market, federal government, and credit market smoothing–full

risk sharing is not achieved.

The important empirical implication of risk sharing theory is closely related

to the key implication of complete financial markets: fluctuations in idiosyn-

cratic marginal utility growth should be independent of idiosyncratic (output)

risk. Therefore, in the presence of complete risk sharing, the coefficient of a

regression of relative consumption growth on relative output growth should be

zero. Similar regressions have been conducted at the microeconomic level, see

for example Mace (1991), Cochrane (1991), and Townsend (1994). The overall

pattern found by these studies is that full risk sharing has to be rejected.

At the macroeconomic level, the issue of (aggregate) risk sharing has been

popularized by Sala-i-Martin and Sachs (1992), von Hagen (1992), Atkeson

and Bayoumi (1993), Obstfeld (1994a, b), Canova and Ravn (1996), Lewis

(1996), and others. The prevalent motivation of these papers is to analyze

the pros and cons of a monetary union and its consequences for macroeconomic

stabilization (see also Eichengreen, 1990). Specifically, the early macroeconomic

risk sharing literature addresses the concern that adverse output shocks to

individual member states of the currency union in Europe can no longer be

blunted by independent monetary policy.

One contribution of particular importance is that of Asdrubali, Sørensen,

and Yosha (1996). This paper shows how to measure the amount of aggregate

risk sharing that is achieved through the various channels discussed above and

applies the proposed method to risk sharing among US federal states. Sørensen,

and Yosha (1998) take this approach to the international economy and analyze

risk sharing among EU and OECD countries. The method developed by As-
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drubali, Sørensen, and Yosha (1996) has been extended by Mélitz and Zumer

(1999), who take differences in demographic and other factors into account and

analyze their consequences for risk sharing. Further work in this topic includes

Hess and Shin (1998), Crucini (1999), Crucini and Hess (2000), Athanasoulis

and Wincoop (2000, 2001), Del Negro (2002), and Kalemli-Ozcan, Sørensen,

and Yosha (2003, 2004). The most recent extension in the macroeconomic lit-

erature on risk sharing is proposed by Becker and Hoffmann (2006), who focus

on dynamic aspects of risk sharing and account for transitory and persistent

components of macroeconomic shocks (see also Asdrubali and Kim, 2004).6

In Chapters 4 and 5 I contribute to the literature on macroeconomic risk

sharing, again by taking an intranational perspective. Regional risk sharing

is one of the themes that has received considerable attention because it is of

utmost importance to understand the extent of capital market integration at

the regional level as compared to the international level, especially against the

background of proceeding European integration.

Both papers presented in Part II are similar in introducing new econometric

techniques for applied work on risk sharing. In the first paper (Chapter 4), I

transfer the distribution dynamics approach to economic convergence to a risk

sharing setting. In the second paper (Chapter 5), I use spatial econometric tech-

niques to analyze local biases in factor income flows among US federal states.

While both empirical methodologies have been extensively used in the fields of

economic growth and convergence, they are–to the best of my knowledge–new

to the risk sharing literature. Therefore, one contribution of the second part

of my thesis is a cross-fertilization between the modern literature on growth

econometrics and the macroeconomic literature on risk sharing.7

In one of his influential papers Danny Quah suggested that his distribution

dynamics approach may turn out to be useful in other areas of economic re-

search, too, in which phenomena like clumping, stratification, and polarization

potentially play a role (Quah, 1996b):

6The literature on aggregate risk sharing is closely related to the literature on interna-
tional real business cycles. Backus, Kehoe, and Kydland (1992), Baxter and Crucini (1995),
and Stockman and Tesar (1995) derive consumption correlations from two-country general
equilibrium models with complete financial markets. In international macroeconomic data,
consumption correlations are found to be substantially lower than predicted by these models.
This finding is referred to as the ‘international consumption correlation puzzle’. Hess and
Shin (1998) provide evidence that this puzzle does also apply for US federal states. However,
Stockman and Tesar (1995) have shown that low consumption correlations may be explained
by preference shocks. Additionally, measurement error may play an important role.

7For a comprehensive survey of the various econometric tools that have been employed to
study economic growth and convergence I refer to Durlauf, Johnson, and Temple (2004).
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‘Examples where these [phenomena] are relevant include indus-

try evolutions; economic geography, location dynamics, and regional

business cycles; consumption risk sharing; asset market comove-

ments; personal income distributions and intergenerational income

mobility; and disaggregate price inflactions’ (Quah, 1996c, p. 117).

In Chapter 4, I take Quah’s general suggestion literally and bring together
the distribution dynamics approach with the macroeconomic literature on risk

sharing. In my paper ‘Interregional Risk Sharing and Fiscal Redistribution

in Reunified Germany’ published in Jüßen (2006b), I suggest a modification

of Quah’s approach to examine two related questions: First, to what extent do

private institutions and the public sector provide insurance against idiosyncratic

shocks to individual regions? Second, to what extent does the public sector

reduce long-term differences between regions?

While the federal government channel is not found to have a stabilizing

effect, private factor income flows provide almost complete insurance against

short-term shocks. A co-movement of income and output is only found for high

and low idiosyncratic output risk. This pattern could not be detected within a

linear regression approach.

In sharp contrast, the fiscal transfer system achieves a substantial reduction

of long-term disparities between regions. If past distribution dynamics continue

operating unchanged in the future, a uni-modal distribution of regional incomes

will not be achieved without redistribution by the public sector. This result

shows that fiscal transfers in reunified Germany are mainly concerned with

redistribution in favor of depressed regions rather than providing insurance

against idiosyncratic shocks.

My paper provides strong evidence that the redistributive policy which is

responsible for the wedge between income and disposable income has no stabi-

lizing effects as a by-product, at least at the disaggregated regional level used

in my paper. Therefore, it is hard to argue that short-term risk sharing is one

justification of the federal transfer mechanism in reunified Germany. Taken as

a whole, my results imply that the public sector provides insurance against that

type of risk which cannot be completely insured on private markets: The risk

of being a permanently poor region.

In Chapter 5 I draw from recent advances in spatial econometric tech-

niques to examine capital market risk sharing among US federal states. Up

until today, researchers have not devoted much effort to adjusting empirical

(or theoretical) risk sharing models to incorporate spatial interdependencies.
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This is surprising because recent advances in spatial static and dynamic panel

data econometrics offer the opportunity for exploiting both, the time-series, the

cross-sectional, and the spatial information of macroeconomic data simultane-

ously (see for example Elhorst, 2003, Anselin, Florax, and Rey, 2004, Korniotis,

2005, Kapoor, Yang, Li, and Tse, 2006, Kelejian, and Prucha, 2006).8

Already the early study of Cochrane (1991) emphasizes that spatial effects

may be of relevance for risk sharing and consumption smoothing. Specifically,

Cochrane (1991, p. 974) concludes that consumption insurance may hold more

closely among groups that are geographically close than it does in society at

large, since by regular contact such groups are better able to work out infor-

mal implementation mechanisms. Similarly, Rose and Engel (2002) find that

consumption insurance between country pairs declines with distance. Spatial

econometric techniques lend themselves as a natural way to model such issues

head-on.

One specific application of spatial econometric techniques is presented in

Chapter 5. In my paper ‘Home Bias, Neighborhood Bias, and Incomplete

Capital Market Risk Sharing among US Federal States’ (Jüßen, 2006c), I show

how spatial models provide a parsimonious approach to address local biases in

factor income flows and their consequences for aggregate risk sharing among

US federal states. My paper extends recent research which has examined the

relationship between the well-documented ‘home bias’ in portfolio holdings and

the degree of risk sharing that is achieved among OECD countries (see Sørensen,

Wu, Yosha, and Zu, 2005, and Artis and Hoffmann, 2005).

At the regional level, we would expect that biases in portfolio holdings man-

ifest themselves in a more complex way than a pure home bias. In particular,

we would expect that regional asset portfolios are characterized by a dispro-

portionate high fraction of assets issued in geographically close areas–but not

necessarily the home region.

Indeed, there is considerable evidence from micro-based studies which an-

alyze individual investment portfolios directly that the home bias within the

US manifests itself in such a complex way. The preference for investing close

to one’s home is related to distance, information asymmetries, and familiarity

biases (see Coval and Moskowitz, 1999, Huberman, 2000, 2001). Therefore, we

may think of the home bias within a country in more general terms as a ‘local

bias’, which may consist of a pure ‘home bias at home’, but also of a ‘neigh-

8As mentioned above, these techniques have been extensively used in the field of regional
economic growth and convergence (see for example the various papers published in the recent
special issue of Papers in Regional Science, edited by Bode and Rey, 2006).
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borhood bias’. I interpret the ‘neighborhood bias’ as a bias which is related

to economic distance and geographical proximity. Obviously, the neighborhood

bias is at odds with the diversification of risk.

In my paper I propose a new approach which allows me to address the

neighborhood bias and its consequences for risk sharing at the regional level:

I extend the standard risk sharing model to a spatial model. One particular

advantage of the spatial model is that it can be estimated using the same

macroeconomic data that is usually used to study risk sharing among US federal

states.9 With the spatial model I examine whether the fluctuation of factor

income flows between states and their neighbors is disproportionately high–in

comparison to a balanced portfolio which assigns fair weights to each others

output.

Factor income flows comprise capital income flows between states, such as

dividends from cross-holdings of productive assets. Therefore, factor income

flows are responsible for the amount of capital market risk sharing that is

achieved. Especially at the regional level, however, factor income flows do also

reflect income flows associated with the factor labor. For instance, if workers

commute to their place of work in another federal state, their output is measured

at their place of work while their income is attributed to their place of residence.

Therefore, I extend my analysis to account for commuter flows across states in

order to test whether a neighborhood bias in factor income flows is indeed a

phenomenon which should be attributed to the capital market (i.e., reflects a

neighborhood bias in portfolio holdings), or if labor income flows also play a

role.

Similar to previous studies, I find that insurance against own idiosyncratic

shocks has increased substantially over time. This means that state-level income

has become more and more buffered against region-specific shocks to GSP. At

the same time, however, factor income flows have become substantially biased

towards neighboring states in recent years. As a consequence, state-level income

co-moves not only with own idiosyncratic output fluctuations, but also with

output growth of neighboring states. Therefore, my study suggests that the

overall amount of income insurance that is achieved in recent years is more

limited than reported in previous studies which did not take the neighborhood

bias into account.
9See for example Asdrubali, Sørensen, and Yosha (1996), Sørensen and Yosha (1998),

Mélitz and Zumer (1999), Athanasoulis and van Wincoop (2001), Asdrubali and Kim (2004),
Asdrubali and Kim (2005), Kalemli-Ozcan, Sørensen, and Yosha (2004), Becker and Hoff-
mann (2006).
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When I incorporate commuter flows into the analysis I find that a ficti-

tious federal state, which is completely isolated from other states in terms of

commuting, is not subject to a neighborhood bias in factor income flows–at

least the statistical significance of the neighborhood bias vanishes for this state.

Thus, the apparent neighborhood bias in factor income flows does not primar-

ily reflect a preference for geographically proximate investments, but rather the

effect of commuting linkages among states. I believe that this result is of ut-

most importance since it also suggests that risk sharing itself is not an issue of

capital markets solely.

With unemployment, growth convergence, and risk sharing the papers pre-

sented in this thesis range across a variety of economic applications. They are

united in the common goal of establishing a cross-fertilization between the mod-

ern literature on growth econometrics and other areas of economic research. I

will come back to this issue in Chapter 6 in which I present some concluding
remarks. Chapter 6 is followed by two Appendices that contain additional
material omitted in the text.



Part I

Regional Convergence in
Germany
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Chapter 2

Convergence in West German
Regional Unemployment Rates

2.1 Introduction

The extensive literature on economic convergence between countries and regions

focuses mostly on per capita income or other related income and productivity

measures. This focus may be fruitfully extended to other areas in economics,

as Quah (1996b, p. 1354) has pointed out:

‘Certainly, understanding economic growth is important. But growth

is only one of many different areas in economics where analyzing

convergence sheds useful insight.’

Following Quah’s general suggestion, this paper borrows techniques from

the literature on growth convergence. We use these techniques to examine the

evolution of regional disparities in unemployment rates within a country, a topic

that has gained much attention since the seminal paper of Blanchard and Katz

(1992).

Unemployment disparities are often perceived as persistent. They are at

the heart of the ‘regional problem’ and in the focus of regional economic policy

(Armstrong and Taylor, 2000). Thus, their persistence has attracted much

attention.1

Persistency itself may reflect stable equilibrium differentials of regional un-

employment rates or may be attributed to the fact that shocks to regional

unemployment rates have long-lasting effects, see Martin (1997). Discriminat-

ing between these two cases is important because policy interventions are more

1See for example Decressin and Fatas (1995) or Obstfeld and Peri (1998).
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likely to be effective in the latter case. On the contrary, if the differences reflect

an equilibrium that has been stable over time, (short-term) policy interventions

are less likely to change this stable equilibrium.

It is thus interesting in particular in the German context to study whether

regional unemployment rates converge to the national average over time. As the

federal government in Germany aims to reduce the gap between unemployment

rates in East and West Germany by granting subsidies and by spending on

public infrastructure, it is of importance to understand how fast convergence

happens.

In order to understand how quickly unemployment rates converge, we em-

ploy aggregated annual data from the ‘Mikrozensus’ database on unemployment

rates for the West German federal states during the period 1960-2002. We an-

alyze convergence using the stochastic approach that was proposed by Bernard

and Durlauf (1995, 1996) and Carlino and Mills (1993, 1996a, b). This means

that our study characterizes the evolution of the gap between the unemploy-

ment rate in a specific federal state and the unemployment rate in Germany as

a whole.

For the US, Blanchard and Katz (1992) have analyzed the dynamics of

regional employment and unemployment. While they do not explicitly find ev-

idence for stationarity of regional unemployment rates, they attribute this to

a power problem of the tests they apply. Indeed, Decressin and Fatas (1995)

and Obstfeld and Peri (1998) provide some evidence that regional unemploy-

ment disparities are a more persistent phenomenon in Europe than in the US.

However, these results have recently been questioned by Rowthorn and Glyn

(2003) who do find substantial persistence also in US regional unemployment

rates. For the UK, by contrast, Martin (1997) finds that regional unemployment

shocks are only short-lived. Yet, he also finds that regional unemployment rates

differ in the long run, which reflects a stable equilibrium distribution around

the national average.

For Germany, our study is the first one analyzing convergence of unem-

ployment rates at the federal state level. There are a number of studies which

examine the related issue of hysteresis for West German unemployment rates:

Balz (1999), Belke (1996), Belke and Göcke (1996), Camarero and Tamarit

(2004), Hansen (1991), and Reutter (2000). However, these studies analyze the

absolute level of aggregate or regional unemployment rates and not relative un-

employment rates as we do. As a consequence, these papers cannot shed much

light on convergence.
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The main results of our study are the following. While univariate tech-

niques which do not account for structural breaks do not provide evidence for

stochastic convergence in relative unemployment rates, more powerful panel-

based methods allow us to infer that there is convergence. At the same time, the

panel-based methods also suggest that the speed of convergence is slow. The

estimated half-life of a shock to regional unemployment is at least 5.6 years.

However, this degree of persistence may be over-estimated. There is a struc-

tural break in the data following the second oil crisis as a graphical analysis

reveals. In order to find out how strongly this break drives our previous results

of non- or slow convergence, we subsequently apply an empirical framework

that is robust to the existence of a structural break. This structural break

is specified as an endogenously determined single level shift in the mean of

the unemployment rate of each federal state relative to Germany as a whole.

Under this specification, we can reject the null hypothesis that shocks to un-

employment differences persist. Rather, the tests give evidence for conditional

convergence in most regions. This conditional convergence means that regional

unemployment rates converge up to a constant difference to the national aver-

age, but this difference is subject to a one-time permanent shift, which occurred

following the second oil crisis. Moreover, allowing for a structural break, the

estimated speed of convergence increases substantially, so that the estimated

half-life goes down from 5.6 to less than 2 years on average. Consequently, per-

sistency in regional unemployment disparities reflects an equilibrium to which

the German economy adjusts quickly.

The remainder of this paper is organized as follows: Section 2 introduces the

theoretical concepts. After describing the data in Section 3, we begin with a

graphical analysis, which serves as a guideline for the rest of the paper. Section

4 provides the analysis of convergence on the basis of univariate and panel unit-

root tests which do not account for structural breaks. This analysis is extended

to the possibility of a structural break in Section 5. Finally, Section 6 discusses

our results and Section 7 concludes.

2.2 Theoretical concepts

When labor markets adjust towards equilibrium in the long run, there will

be convergence of regional unemployment rates, because unemployed workers

take jobs in other areas or because capital flows into low-wage regions to take

advantage of lower labor costs (for details, see Blanchard and Katz, 1992).
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However, if the speed of adjustment is slow, unemployment disparities may

arise during adjustment as a result of negative demand shocks affecting some

regions more than others (Armstrong and Taylor, 2000).

We can test this theory of long-term convergence empirically by using Bernard

and Durlauf’s (1995, 1996) time-series approach. This approach focuses on the

permanence of shocks to relative variables and uses a stochastic definition of

convergence (see also Carlino and Mills, 1993, 1996, a, b).

The idea of Bernard and Durlauf’s test for stochastic convergence can be

explained as follows. Let urit and urjt be the unemployment rates of regions i

and j at time t, respectively. Suppose that region i has a larger unemployment

rate than region j initially, uri0 > urj0. The gap in unemployment between

the two regions is urit − urjt. Define It as the information set available at

period t. Then, Definition 2 in Bernard and Durlauf (1996, p. 165) understands

convergence as the equality of long-term forecasts at any fixed time. This means

∀t : lim
s→∞

E(uri,t+s − urj,t+s|It) = 0. (2.1)

Stochastic convergence implies that regional unemployment differences will al-

ways be transitory in the sense that the long-term forecast of the difference

between any pair of regions tends to zero as the forecast horizon grows.

The important testable implication of this stochastic approach to long-term

convergence is that convergence is present only if shocks to the unemployment

differential are temporary. Hence, the disparities between regions should follow

a stationary process, which means that uri and urj are cointegrated. Without

stationarity, shocks to the relative variable lead to permanent differences.

As such, time-series tests of convergence have typically been implemented

by using unit-root tests. For example, Carlino and Mills (1993) and Evans and

Karras (1996a) apply Dickey-Fuller type tests for the presence of a unit root

in the relative variable. If the series has a unit root, shocks are permanent

and there will be no convergence. Besides precluding stochastic trends (i.e.

unit-roots), long-term convergence also precludes any deterministic trends in

cross-regional differences. In fact, also the mean of the series of unemployment

differences should be zero under the assumption of absolute convergence.

However, the hypothesis of stationarity and zero means might be too strict.

As an example, we can consider regional amenities that lead to wage differ-

entials which compensate workers for differences in the quality of life or for

different regional price levels. If we assume additionally that there is a na-

tional unemployment insurance that pays a fixed unemployment benefit which
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is equal among regions, then there will be persistent differences in unemploy-

ment rates. Because wages are lower in regions rich of amenities, the equal

unemployment benefit leads to higher rates of voluntary unemployment in the

amenity-rich regions. Or to put it differently, the voluntarily unemployed would

move to the amenity-rich regions in this simplistic setting. This results in sta-

ble differences between regional unemployment rates, whereas these differences

just reflect disparities in economic fundamentals, such as differences in natural

endowments.

In such a setting, regional economic policy that wants to reduce inequality

would need to aim at shifting the equilibrium. However, it is unlikely that

short-term policy interventions are actually effective for this purpose, if the

equilibrium has been stable over the past.2

To capture this notion of stable long-term equilibrium differences, we define

conditional convergence as

∀t : lim
s→∞

E(uri,t+s − urj,t+s|It) = constant. (2.2)

This means that uri and urj converge towards a (time-invariant) equilibrium

differential. An empirical test for stochastic conditional convergence is again

related to the time-series properties of relative unemployment rates. Condi-

tional convergence implies that the series is (weakly) level-stationary but it is

not required that the series has a zero mean.3

2.3 Data and graphical analysis

2.3.1 Data

We use data that is aggregated from the German ‘Mikrozensus’ database by the

Federal Statistical Office. The Mikrozensus is an annual collection of household

data for a representative sample of German households. The aggregated data

is available to the scientific user from 1957 onwards, while the microdata is

available only since 1989. For this reason, we use aggregated data at the federal

state level, which is available since 1957.

2See Marston (1985) for a more elaborated theoretical underpinning of the equilibrium
and dis-equilibrium perspective of regional unemployment disparities.

3We can consider the series generated by the autoregressive model ut = φ + ρut−1 + εt
as an example. This series is stationary if |ρ| < 1 and the intercept φ controls the mean of
ut through the relationship E(ut) = µ = φ/(1 − ρ). If u is relative unemployment, we find
conditional convergence if ρ < 1 and unconditional convergence if additionally φ = 0.
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Since there was virtually no unemployment in Germany during the late

1950s, we restrict the data to the period 1960-2002. Moreover, West Berlin is

excluded from the analysis because of its special status before German reunifi-

cation.

The data contains information on the number of employed and on the num-

ber of unemployed persons for each federal state. In the Mikrozensus data, the

term ‘unemployed’ refers to all people without employment contract who search

for a job irrespective of being registered as unemployed or not at the German

Federal Employment Agency. Therefore, the definition of unemployment in our

data differs somewhat from the statistics of the German Federal Employment

Agency, but is more similar to the definition of the unemployment rate used in

other countries, in particular the US.4

Another central advantage of our data is that it spans a long period of

time. The long period of time is important for our analysis for two reasons.

Firstly, we want to find out whether relative unemployment rates exhibit some

form of path dependency or converge alternatively. Obviously, observing the

data over a long time span is crucial for such kind of analysis. Secondly, and

even more importantly, the long time span allows us to assess whether regional

unemployment disparities are subject to structural breaks over time. As it will

turn out, allowing for structural breaks is important both, for our test results

and even more so for the interpretation of the latter.

The unemployment rate (in percentage points) is defined as the number

of unemployed divided by the labor force (‘Erwerbspersonen’) multiplied by

100. Labor force data was also derived from the Mikrozensus. According to

the Mikrozensus definition, the labor force is the sum of the employed and the

unemployed (‘Erwerbstaetige’ and ‘Erwerbslose’).

We denote the unemployment rate for federal state i by uri and the unem-

ployment rate for Germany as a whole (without West-Berlin) by urGer. Time

indices are suppressed for notational convenience. For the period after Ger-

man reunification, 1991-2002, the unemployment rate for Germany, urGer, is

calculated on the basis of data from West German federal states only.

As explained in the previous section, stochastic convergence requires that

relative unemployment rates follow a stationary process. We compute the rel-

ative unemployment rate ui for federal state i as

ui = uri − urGer. (2.3)

4Annual data on registered unemployment at the federal state level is available only since
1974 (depending on the federal state).
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The unemployment rate for Western Germany, urGer, is selected as a reference.

This reflects that unemployment rates for the different federal states do not

evolve differently from the national average if they converge.5

The typical testing strategy for convergence applies some linear model for uit
and a test for the presence of a unit root. Since unemployment rates are relative

numbers and bounded between 0 and 100 percent, also relative unemployment

rates are bounded between -100 and +100 percent. Hence, one may argue that

taking literally the linear model for the differences implies that non-stationarity

cannot take the form of a unit-root property of ui. If ui is non-stationary,

this must stem from a more complicated non-linear dynamics that is path-

dependent (see Amable et al., 1994 and 2005). For example, non-stationarity

could originate from a threshold cointegrated process that is mean reverting

outside a certain range and has a unit root inside this range. Whether one

views such a process as stationary or non-stationary depends on the relevance

of the reflecting boundaries. If the boundaries are close and hit often, describing

the process as stationary is a good approximation. If by contrast the boundaries

are hit seldom within the sample, we may best describe the sample as having

a unit root, since the outside range looses relevance. Applying a unit-root

test to such process reveals the importance of non-stationarity as a property

to describe the sample. In other words, we understand the unit-root property

as a sample property and the relevant question becomes how persistent is the

process (see Blanchard and Summers, 1986).

Keeping this in mind, we apply a linear framework and approximate a test

for non-stationarity by means of a test for a unit root. We may attempt to

assess the appropriateness of the linear framework beforehand by inspecting

how close unemployment differences get to their boundary values. In fact, we

find relative unemployment rates never to be close to the bounds -100 and +100

percent.

2.3.2 Graphical analysis

To get a first impression of the time-series characteristics of ui, we display the

series graphically. Figure 2.1 plots relative unemployment rates during the

period 1960-2002.

It can be seen that the dispersion of unemployment rates has sharply in-

creased in times of recessions (1966/67 and at the beginning of the 1980s)
5Using differences in logs or ratios of unemployment rates has the disadvantage that minor

differences in unemployment rates and rounding errors get inflated by the low aggregate
unemployment rates during the 1960s.
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Figure 2.1: Relative unemployment rates in West Germany, 1960-2002
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Data source: Mikrozensus, West Berlin excluded

parallel to the increase in the aggregate unemployment rate. In the beginning

of the 1960s unemployment was not a problem in Germany, in fact there was

rather a shortage of labor, similarly there is not much of a difference in unem-

ployment rates across states. After 1980 the situation is dramatically different,

the dispersion of unemployment rates sharply increases with the general rise

in unemployment rates. Thereafter, economic differences between the north-

ern and southern part of Germany become apparent. Since the beginning of

the 1980s, the North-German city-states Bremen and Hamburg have the high-

est relative unemployment rates, while Bayern and Baden-Wuerttemberg have

unemployment rates around 2 percentage points below the national average.

At first glance, this makes most of the series look non-stationary. However,

splitting the sample in the period before and after 1980 shows that the lack

of stationarity might just be due to a single structural break that occurred in

the early 1980s after the second oil crisis. In order to illustrate this, Figure

2.2 displays the data for both sub-periods; one ranging from 1960-1979 and

the second from 1980-2002 (Figure 2.2). The series look more stationary now.

Additionally, the two graphs illustrate that the dispersion of relative unemploy-

ment rates is significantly larger during the second sub-period than during the

first one. It seems as if the levels of the series have changed due to a structural

break. Finally, note that there is no apparent deterministic time trend in the

data.
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Figure 2.2: Relative unemployment rates in West Germany, sub-periods 1960-1979
and 1980-2002
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2.4 Unit-root tests without structural breaks

Having displayed the series graphically, we turn to a formal characterization

of the stochastic behavior. The hypothesis being tested is that relative unem-

ployment rates follow a unit-root process. To set the scene, we first employ a

univariate unit-root test without structural breaks. As a next step, we turn to

more powerful panel-based unit-root tests. Later on, we extend the analysis to

allow for structural breaks.

2.4.1 Univariate unit-root tests

As explained in Section 2, tests of convergence can be conducted as Dickey-

Fuller (1979) type tests (ADF tests) based on the difference between the un-

employment rate in federal state i and the unemployment rate for Western

Germany:

∆ui,t = µ+ (ρ− 1)ui,t−1 +
kX

j=1

ςj∆ui,t−j + εi,t, (2.4)

ui,t = uri,t − urGer,t.

If the series contains a unit root (ρ = 1), the proposition for both, absolute

and conditional convergence is violated. The alternative hypothesis is that
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Table 2.1: ADF test for relative unemployment rates (without trend)

Augmented Dickey-Fuller (1979) test

Federal lags Federal lags
State (k) µ̂ ρ̂− 1 p-value State (k) µ̂ ρ̂− 1 p-value

BW 1 -.117 -.083 0.402 NRW 5 .099 -.122 0.440
(.066) (.047) (.061) (.073)

BY 5 -.087 -.066 0.658 RP 0 -.071 -.402 0.027∗∗

(.061) (.054) (.062) (.130)

BRE 0 .283 -.082 0.650 SAAR 3 .321 -.189 0.547
(.201) (.065) (.169) (.128)

HH 3 .176 -.081 0.791 SH 0 .278 -.241 0.187
(.144) (.091) (.133) (.107)

HE 2 -.044 -.219 0.233 urGer 2 .302 -.038 0.729
(.052) (.103) (.191) (.036)

NS 0 .105 -.108 0.509
(.072) (.070)

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
Standard errors in parentheses.

ρ < 1, which implies that the series is stationary. Moreover, absolute (or

unconditional) convergence implies that the constant term, µ, is insignificant.6

The ADF-tests of convergence in relative unemployment rates are reported

Table 2.1, optimal lag lengths, k, have been determined by sequential t−tests as
suggested by Ng and Perron (1995). It can be seen that there are considerable

differences in the time-series properties of relative unemployment rates among

the federal states, but the most important result is that for nearly all federal

states we cannot reject the null hypothesis of a unit root. The unit root is

rejected only for Rheinland-Pfalz.

This means that the ADF tests provide no evidence of stochastic conver-

gence during the period under study. Other studies of convergence often include

6We do not include a deterministic time trend in the regressions since a trend is neither
compatible with long-term convergence nor apparent in our data.
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a deterministic time trend in the ADF regressions. In our setting, the derived

results do not depend on the absence or presence of a trend. If we allow for

a time trend, results do not change. The series for Rheinland-Pfalz remains

(trend) stationary and all other series remain non-stationary.7

2.4.2 Panel unit-root tests

It is well known that unit-root tests such as the ADF test have low power

against stationary alternatives in small samples. Panel-based unit-root tests

have proven to be more powerful, since they exploit the cross-sectional dimen-

sion of the data.

The basic regression for these panel unit-root tests is8

uit = ρiui,t−1 + z0i,tγ + εi,t i = 1, ..., N ; t = 1, ..., T

where zit is the deterministic component and εit is a stationary error term. The

set of exogenous regressors zit could be empty, or include a common constant,

fixed effects, or fixed effects and a time trend.9

The Levin, Lin, and Chu (2002) test (henceforth LLC) assumes that each

individual unit in the panel shares the same autoregressive coefficient: ρi = ρ

for all i. Hence, the power of the single ADF tests is increased not only by

pooling the data but also by exploiting a cross-equation parameter restriction

on the autoregressive parameters.10 The null hypothesis of the LLC test states

that the relative unemployment series of each state contains a unit root, which

is tested against the alternative that all series are stationary.

The panel regressions of the LLC test include constant terms that reflect

fixed effects to control for heterogeneity among cross-sectional units. In our

setting, these fixed effects capture stable differences to the national average to

which regional unemployment rates converge.

Since the LLC test assumes a homogeneous autoregressive coefficient, it has

7We also tried the Dickey-Fuller GLS test proposed by Elliot, Rothenberg, and Stock
(1996). The qualitative results are the same as obtained with conventional ADF tests.
Choosing the lag length according to information criteria does neither change the results.
Also Phillips and Perron (1988) tests and Kwiatkowski, Phillips, Schmidt, and Shin (1992)
(KPSS) tests yield qualitatively similar results. Detailed results are presented in Appendix
A.

8See Baltagi (2001) for an overview of econometric methods for non-stationary panel data.
9In the more general case, when the error disturbances εi,t are serially correlated, the

serial correlation can be corrected by including lagged terms similar to the ADF procedure.
10The LLC test statistic converges more rapidly with respect to the time dimension T than

with respect to the cross-section dimension N. Hence, the LLC test is well-suited for our
dataset with N = 10 and T = 43.
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Table 2.2: Levin, Lin, and Chu and Breitung and Meyer tests for a unit root in
relative unemployment rates

Levin, Lin, and Chu (2002) test Breitung and Meyer (1994) test

k Obs. ρ̂− 1 t∗1 P > t∗ k Obs. ρ̂− 1 t∗1 P > t∗

est.2 adj.2

0 420 -0.116 -1.850 0.032∗∗ 0 420 -0.048 -0.096 -2.510 0.006∗∗∗

1 410 -0.112 -1.643 0.050∗∗ 1 410 -0.040 -0.079 -1.980 0.024∗∗

2 400 -0.117 -1.307 0.096∗ 2 400 -0.040 -0.081 -1.938 0.026∗∗

3 390 -0.096 -0.013 0.495 3 390 -0.013 -0.026 -0.617 0.269

4 380 -0.101 -0.026 0.490 4 380 -0.017 -0.034 -0.772 0.220

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
1 t∗ is distributed standard normal under the null.
2 The estimate of ρ is unbiased under the null but biased under the alternative
hypothesis, since plim(ρ̂− ρ) = 1−ρ

2
. The column ‘est.’ displays unadjusted

estimates, which are valid under the null hypothesis. The column ‘adj.’ displays the
bias-adjusted estimates, which are valid under the alternative hypothesis. The
t∗−statistic is computed on the basis of the unadjusted estimates, see Breitung and
Meyer (1994).

a straightforward economic interpretation, which is its major advantage. We

can interpret the autoregressive coefficient as a measure of the average speed of

convergence in the sample. The number of years a shock needs to decay by 50%

can be computed as ln 0.5
ln ρ
. Knowing the implied half-life is important, because

it allows us to compare the results of tests with and without a structural break

with respect to the speed of convergence they imply. This interpretational

advantage makes the LLC test our preferred testing procedure, but we consider

alternative testing procedures to check for robustness.

The left-most columns of Table 2.2 summarize the results of the LLC test.

The inclusion of a time trend does not change the results qualitatively. We can

reject the null hypothesis of a unit root safely, if no or only one lag is included

to allow for serial correlation in the error terms. If a second lag is included,

we can still reject the null at the 10 percent level. Moreover, the parameter
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Table 2.3: Pooled AR(1) estimation with fixed effects

Fixed-effects regression

Dependent variable: (uri − urGer)t

constant 0.073 (2.74)∗∗∗

(uri − urGer)t−1 0.880 (36.75)∗∗∗

F(9, 409) = 2.38∗∗ (indiv. effect is zero)

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
The number of observations is 420 (42 years and 10 cross-sectional units).
t-statistics in parentheses.
R2 within is 0.79.

estimate for the autoregressive coefficient does not change substantially across

the different specifications. If three or more lags are included, we cannot reject

the null hypothesis anymore. Since the univariate ADF tests of the previous

section suggest an average optimal lag length of roughly 2, we suppose that

the model specification with two lags is most preferable. To corroborate this

hypothesis, we consider LLC tests with heterogeneous lag lengths further below

and select the number of lags also according to information criteria.

The parameter estimate (ρ̂ − 1) = −0.117 implies an autoregressive pa-
rameter of 0.883. This in turn means that the half-life of a shock to relative

unemployment rates is 5.57 years. This seems a moderate degree of persistence.

A testing procedure similar to the LLC test is the one proposed by Breitung

and Meyer (1994). This test also assumes a homogeneous autoregressive coef-

ficient.11 For the Breitung and Meyer (1994) test, a similar pattern emerges as

for the LLC test, see the right-hand side of Table 2.2. If we use less than three

lags, we can reject the null hypothesis of non-stationarity. Indeed, the bias-

adjusted estimate for ρ is close to the one implied by the LLC test. However,

the asymptotic properties of the Breitung and Meyer (1994) test are primarily

based on the size of the cross-sectional dimension. Therefore, the test results

11The Breitung and Meyer (1994) test has been extended to allow for a deterministic time
trend by Breitung (2000).
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have to be interpreted with care and the LLC test seems to be preferable.

Having shown that the time series for relative unemployment rates are

jointly stationary, we estimate a simple AR(1) fixed-effects model. This allows

us to formally test for unconditional convergence by testing the joint signifi-

cance of the fixed-effects. The fixed-effects estimation is reported in Table 2.3.

The F−test that all unit effects are zero is reported in the last row of the table.
Since we have to reject the hypothesis that all fixed effects are insignificant, we

find no evidence for unconditional convergence of regional unemployment rates.

Both, the LLC test and the Breitung and Meyer test impose the constraint

that ρ is homogeneous across cross-sectional units. While this constraint en-

ables us to interpret the test statistics in economic terms, it may be too restric-

tive from a statistical point of view. Im, Peasaran, and Shin (2003) (henceforth

IPS) propose an alternative testing procedure, which allows for heterogeneous

ρi. This means that the speed of convergence may differ among regions. While

the null hypothesis of the IPS test is the same as for the LLC test, the alter-

native hypothesis is more flexible. It states that at least one of the series is

stationary but not necessarily all. The results of the IPS tests are reported in

the left-most columns of Table 2.4. By and large, we find a similar pattern

as with the LLC test. Again, the inclusion of a time trend does not alter our

findings.

Similar to the IPS test, also the unit-root test by Sarno and Taylor (1998)

allows for heterogeneous ρi. Additionally, it exploits contemporaneous correla-

tions among the disturbances of the ADF regressions and uses a SUR-estimator

for the test. Accordingly, if there is cross-sectional dependence, this estimator

gains precision compared to the IPS test. On the basis of the Sarno and Taylor

(1998) test, we can reject the null-hypothesis of a unit-root at all lag length

considered, see the right-hand side columns of Table 2.4.

In order to find out whether our results of the panel-based tests are exceed-

ingly sensitive to the choice of a model specification with a homogeneous lag

length smaller than 3, we determine the optimal lag lengths for each state sep-

arately using three alternative criteria. The first criterion is Ng and Perron’s

(1995) sequential t-testing method, the second selection method is the Akaike

information criterion (AIC) and the third one is the Schwartz criterion (BIC).

For brevity, we consider the heterogeneous lag-length specifications only for an

LLC test and an IPS test. Results are reported in Table 2.5. Based on the

AIC, we can no longer reject the hypothesis of a unit root. Both, the BIC and

sequential t−testing allow us to still reject the unit-root hypothesis, though

only at a marginal level of significance for the IPS test.



CHAPTER 2. CONVERGENCE IN UNEMPLOYMENT RATES 30

Table 2.4: Im, Peasaran, and Shin and Sarno and Taylor tests for a unit root in
relative unemployment rates

Im, Pesaran, and Shin (2003) test Sarno and Taylor (1998) test
approximate

Lags Obs. W (t̄)1 P > t̄ Lags Obs. MADF critical value 5%

0 420 -1.958 0.025∗∗ 0 420 47.268∗∗ 22.744

1 410 -1.506 0.066∗ 1 410 45.864∗∗ 22.974

2 400 -1.615 0.053∗ 2 400 44.383∗∗ 23.218

3 390 -0.003 0.499 3 390 31.705∗∗ 23.476

4 380 -0.099 0.461 4 380 36.337∗∗ 23.751

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
1 W (t̄) is distributed standard normal under the null.

For completeness, we also considered Fisher-type tests as suggested by Mad-

dala and Wu (1999) and Choi (2001). Surprisingly, these tests cannot reject

the null hypothesis of a unit-root.12 The result is puzzling insofar as the Fisher-

type tests have been designed to alleviate a potential power problem that has

been attributed to LLC tests.13

Overall and in summary, the panel-based tests show some support for condi-

tional convergence of relative unemployment rates during the period 1960-2002.

However, the estimated speed of convergence is slow at best and differences

in unemployment rates do not disappear completely over time. If the panel-

based tests suggest convergence, then they also suggest that there is a stable

distribution of relative regional unemployment rates, i.e. there is conditional

convergence only.

Though, the graphical analysis of the time series for relative unemployment

rates suggested that there might be a structural break in the means of the series.

12Detailed results are presented in Appendix A.
13However, the gain in power by the Maddala and Wu (1999) test is most pronounced when

a time trend is included into the regressions. In fact, Table 1 in Maddala and Wu (1999)
suggests that the Maddala and Wu (1999) test may be less powerful than the LLC test for
the size of our sample if there is no trend in the data.
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Table 2.5: Levin, Lin, and Chu and Im, Peasaran, and Shin tests for a unit root in
relative unemployment rates with heterogeneous lag lengths

Levin, Lin, and Chu (2002) Im, Pesaran, and Shin (2003)

Criterion Obs. ρ− 1 t∗1 P > t∗ Criterion Obs. W (t̄)2 P > t̄

Seq. t-tests 401 -0.117 -1.478 0.070∗ Seq. t-tests 401 -1.249 0.106

AIC 395 -0.110 -1.226 0.110 AIC 395 -1.173 0.120

BIC 411 -0.109 -1.541 0.062∗ BIC 411 -1.339 0.090∗

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
1 t∗ is distributed standard normal under the null.
2 W (t̄) is distributed standard normal under the null.

Hence, our conclusion of sluggish convergence may be premature. If there is

a structural break indeed, the estimated degree of persistence will be biased

upwards. The interesting question is whether accounting for the structural

break allows us to reject the unit-root hypothesis more clearly and changes the

estimated speed of convergence substantially.

2.5 Unit-root tests with structural breaks

As displayed in Figure 2.1, the relative unemployment rates for the federal states

seem to change permanently about 1980. After 1980, the northern regions,

especially the city-states Bremen and Hamburg, exhibit a higher level of un-

employment, while the southern states, e.g. Bayern and Baden-Wuerttemberg,

experience below average unemployment.

This observation calls for the inclusion of a structural break in the analysis.

It also explains why relative unemployment rates are only found to converge

conditionally. Absolute convergence implies a zero mean of the relative un-

employment series at all times, so that there cannot be structural change. By

contrast, conditional convergence implies an equilibrium relationship of regional

unemployment rates and the stationarity of their distribution. If the equilib-

rium relation is non-unique, a major shock may shift the economy from one
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equilibrium to the other and relative unemployment rates are only regime-wise

stationary. With this regime-wise stationarity, conditional convergence with a

structural break implies on the one hand that there is an equilibrium relation-

ship between the unemployment rates of the various states in the absence of

major shocks, i.e. regional shocks have no persistent effect. On the other hand,

a permanent change of the equilibrium relationship occurs when the regime

shifts because of a one-time major shock. To put it simple, if we find evidence

for a structural break and convergence, then only very few regional shocks have

persistent effects, most of them do not.

Although a theoretical explanation of an apparent level shift is interesting

and important (Hansen, 2001), we only try to find the structural break and test

for convergence in this paper. A theoretical explanation could for example be

based on induced technological change, hysteresis effects, differences in regional

specialization, or differences in union density and bargaining power, see Martin

(1997) for further examples. We will come back to this issue in Section 6.

2.5.1 Test procedure

Since we do not specify a structural model for the regime shift, we go back

to the univariate time-series approach but extend the model to allow for a

one-time level shift. The timing of the level shift, i.e. the structural break, is

determined endogenously and data-dependent. This approach follows the test-

ing procedure introduced by Perron (1990), who has shown that conventional

ADF tests perform poorly when there is a structural break in the means of

the series. Unless the break is accounted for, a conventional unit-root test will

falsely suggest non-stationarity of data that is generated by a stationary process

which is subject to a structural break. This suggests that the univariate tests

presented in Section 4 may have been unable to reject the unit-root hypothesis

because of a permanent change in the level of the series about 1980. Similarly,

this structural break may also drive the moderate speed of convergence we find

on the basis of the panel-based tests.

The original approach proposed by Perron (1990) requires the break date

to be known to test for a unit root in the presence of a structural break. Since

we do not want to specify a certain break date a priori, we employ the Perron

and Vogelsang (1992) test instead which determines the breaking date data-

dependent.

Perron and Vogelsang (1992) propose two alternative models to describe the

transition of the time series from the old to the new level. The first alterna-
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tive, labelled ‘additive outlier model’ (AO), assumes the transition to happen

instantaneously after the break has occurred. The second alternative, the ‘in-

novational outlier model’ (IO), assumes the break to affect the time series just

as temporary shocks to the series. Hence, the adjustment to a new equilibrium

occurs slowly over time in this model. The graphical analysis in Section 3 sug-

gested that adjustment after a level shift needs some years to take effect and

does not occur instantaneously (see Figure 2.1). Consequently, the IO model

is more appropriate for our data.14

The IO model of the Perron and Vogelsang (1992) test can be described as

follows. Let Tb denote the date of the break with 1 < Tb < T, where T is the

sample size. The null hypothesis is specified as

ui,t = ui,t−1 + ψ(L)(et + θD(TB)t), t = 2, ..., T (2.5)

where ψ(L) defines the moving average representation of the ARMA noise func-

tion. The dummy variable D(TB)t is set to 1 if t = Tb + 1 and 0 otherwise.

The dummy D(TB)t is a one-off impulse dummy which changes the level of

the series after the break by θ under the null hypothesis of a unit root. The

long-term impact of the level change is given by ψ(1)θ.

Under the alternative hypothesis of stationarity, the model is represented

by

ui,t = a+ φ(L)(et + δDUt), t = 2, ..., T (2.6)

where φ(L) defines the moving average representation of the ARMA noise func-

tion under the stationary alternative. The dummy variable DUt is equal to 1 if

t > Tb and 0 otherwise. Hence, the expected value of ui,t becomes (a+ φ(1)δ)

under the stationary alternative in the long run after the break date. As sug-

gested by Perron and Vogelsang (1992), models (2.5) and (2.6) can be nested

and approximated by the finite-order autoregressive model

ui,t = µ+δDUt+θD(TB)t+ρui,t−1+
kX

j=1

ςj∆ui,t−j+εi,t, t = k+2, ..., T (2.7)

Similarly to the augmented Dickey-Fuller regression, lags of first-differences,

∆ui,t−j, are included on the right-hand side of the equation. Model (2.7) can be

estimated by OLS. Under the null hypothesis of a unit root, the autoregressive

14This finding is also in line with the general remark of Hansen (2001), who argues that
a structural break is unlikely to be immediate. Nonetheless, we also tried the AO model,
but as expected, its performance turned out to be inferior compared to the IO model. This
means that the AO model rejects the null hypothesis in fewer cases.
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parameter ρ is equal to 1, which implies δ = µ = 0 if there is no time trend.

Since we do not specify the break date Tb beforehand, we need an empiri-

cal strategy to estimate Tb along with the other parameters of (2.7). For this

estimation, there are two options. Under both options, one first performs re-

gression (2.7) for all possible breaking dates. Then, under the first option, the

break date is chosen to minimize the t-statistic on (ρ− 1). In other words, this
option selects the break date to provide most evidence against the random walk

hypothesis.

The alternative option identifies the break point as the value of Tb that

maximizes the t-statistic (in absolute terms) on the coefficient associated with

the change in the mean, δ. In other words, this option chooses the break date

to capture the most significant change in the series.

Perron and Vogelsang (1992) derive asymptotic distributions of the test

statistics and finite-sample critical values for typical sample sizes. In order to

obtain critical values that correspond exactly to our sample size of T = 43 and

a maximum lag length of kmax = 8, we perform 5000 replications of a Monte-

Carlo experiment to simulate the unknown distribution of ρ. There are various

procedures to select the appropriate order k of the estimated autoregressions

and each procedure influences the distribution of ρ under the null hypothe-

sis. Most prominent procedures are Ng and Perron’s (1995) sequential t−test,
Akaike’s information criterion (AIC), and the Schwartz-criterion (BIC).

2.5.2 Test results

Table 2.6 summarizes the results of the Perron and Vogelsang (1992) unit-root

tests obtained by minimizing the t-statistic on (ρ− 1) over all possible break
points. The augmentation lag length has been determined by using sequential

t−tests.
In seven out of ten cases, we are able to reject the null hypothesis of a

unit root in favor of regime-wise stationarity at least at the 10 percent level

of significance. Recall that the univariate unit-root tests without structural

breaks rejected the random walk hypothesis only for one federal state. For

three of the ten federal states we still cannot reject the null hypothesis of a

random walk even after accounting for a structural break. These states are

Baden-Wuerttemberg, Niedersachsen, and Schleswig-Holstein. However, the

non-rejection seems to be due to a lack of power as point estimates for ρ range

from 0.5 to 0.7. The weak power of the test can also be seen if we look at the

opposite extreme cases. Although the estimates of ρ for Bremen and Hessen are
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virtually zero, the test rejects the hypothesis of ρ = 1 only at the 5 or even 10

percent level of significance. However, we do not need to worry too much about

a potential problem of low power, because we are in fact able to reject the null

hypothesis in seven out of ten cases. If the power problem were effective in our

sample, a potential way to increase the power would be to exploit the panel

dimension again.

The data-dependent choice of the break date mostly coincides with the a

priori assumption that the second oil crisis and the following recession had a

huge and persistent impact on relative unemployment rates. For all but three

series, the chosen break date falls into the period of 1978-1982.

The three states for which the estimated break date falls outside this pe-

riod are Rheinland-Pfalz, Hessen, and Schleswig-Holstein. For Rheinland-Pfalz,

the ADF test without structural break already rejected the unit root. For

Schleswig-Holstein, the estimated break date coincides with the first oil crisis,

but the unit root cannot be rejected. Only for Hessen, the break date is hard

to interpret. It could be German reunification of 1989/90 that affects Hessen

with a three year time-lag in 1993. But since we cannot give a clear-cut expla-

nation for the break date in economic terms, we may view the test results for

Hessen–including the rejection of the unit root–with reservation.

The unemployment rate for Germany as a whole remains non-stationary

even after accounting for a structural change in the level. This result is in line

with the findings of Papell, Murray, and Ghiblawi (2000).15

These results are relatively robust with respect to the two different methods

to determine the break point. The two methods do lead to different estimates

of break-points and/or a different number of augmentation lags in only two

cases. For Niedersachsen, the alternative δ−method estimates the break point
to be 1979 instead of 1978 without a change in the qualitative result of non-

stationarity. For Rheinland-Pfalz, the δ−method yields 8 augmentation lags
and can no longer reject non-stationarity. However, this again reflects low

power as we could already reject non-stationarity for Rheinland-Pfalz using the

ADF test.

Although Perron and Vogelsang (1992) recommend sequential t-testing, we

check the robustness of the results to alternative methods of lag-length selection.

Both, the AIC and the BIC tend to choose shorter lag length than sequential

15Papell, Murray, and Ghiblawi (2000) analyze hysteresis in OECD unemployment rates.
They adopt unit-root tests with multiple structural breaks and show that the West German
unemployment rate is non-stationary.
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Table 2.6: Perron and Vogelsang unit-root tests, lag length selected by sequential
t-tests

Perron and Vogelsang (1992) test

Fed. Tb
1 k 2 (ρ̂− 1) δ̂ Fed. Tb

1 k 2 (ρ̂− 1) δ̂

State State

BW 80 6 -0.51 -0.69 NRW 80 6 -0.72∗∗ 0.78
(-4.23) (-3.76) (-5.54) (5.05)

BY 81 5 -0.70∗∗ -1.08 RP 70 0 -0.62∗ -0.36
(-5.03) (-4.81) (-4.72) (-2.75)

BRE 82 5 -0.95∗∗ 3.75 SAAR 78 2 -0.59∗∗ 2.06
(-4.99) (4.78) (-5.21) (4.56)

HH 82 1 -0.73∗∗ 1.75 SH 72 0 -0.40 0.39
(-5.22) (4.96) (-3.36) (2.37)

HE 93 4 -0.95∗ 0.75 urGer 79 6 -0.35 1.94
(-4.60) (3.57) (-3.67) (3.53)

NS 78 2 -0.31 0.27
(-3.51) (2.30)

Critical Values2,3 1% 2.5% 5% 10%
Tb chosen by min. t(ρ̂−1) 1 -5.61 -5.25 -4.91 -4.53

*,**,*** significant at the 10, 5, and 1 percent levels, respectively. t—statistics
in parenthesis.
1 Tb, k, ρ, θ are obtained by minimizing the t-statistic on (ρ̂− 1) .
2 Lag length k chosen according to a significance test on the last included lag,
given a pre-specified maximum of k = 8.
3 Obtained from the empirical distribution of 5000 replications of a Monte
Carlo experiment.
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t-testing, but the estimated break points remain very similar.16

Only for Hessen, we cannot reject the unit root on the basis of an informa-

tion criterion, but could reject the unit root under sequential t-testing.17 This

confirms our previous warrant concerning the test results for Hessen for which

the estimated break date was not intuitive.

Also the results for Bayern and Bremen change under the AIC and BIC, but

only quantitatively. The levels of significance pejorate somewhat (from 5% to

10% level). However, this is only due to a marginal change of significance from

below 5% to slightly above this level. This can be illustrated by plugging-in the

estimated t-values in the simulated distribution obtained by the Monte-Carlo

experiment. For the BIC, for example, we get approximate p−values of 6.2%
and 5.4% for Bayern and Bremen, respectively.

To further test the robustness of our results, we also tried unit-root tests

which allow for a break both in the intercept and in the trend (Perron, 1997,

Zivot and Andrews, 1992). Allowing for breaks in the time trend provides little

additional evidence against the unit-root hypothesis. The unit-root hypothesis

cannot be rejected at a higher level of significance because the power of the

tests declines when unnecessary breaks are included.

2.5.3 Speed of convergence

It has been the moderate speed of convergence, which we have inferred from

the panel-based unit-root tests, that has motivated us to apply a test which

allows for a structural break. To show that the estimated speed of convergence

is substantially affected by the structural break, we analyze the half-life of

a shock to relative unemployment rates implied by the results of the Perron

and Vogelsang (1992) test. This, of course, makes sense only for those regions

for which non-stationarity could be rejected. For those states for which the

unit-root hypothesis cannot be rejected, shocks have a persistent effect and the

implied half-life is infinite.

For those series which are found to be stationary by the Perron and Vo-

gelsang (1992) regressions, we generate a moving-average representation of the

estimated autoregressive process that includes the augmentation lags. This

moving-average representation is used to compute impulse-response functions

and we define the half-life of a shock as the date at which the initial impulse

16Detailed results are presented in Appendix A.
17The lag-length selection criterion influences the distribution of the t-statistics under the

null hypothesis of non-stationarity. Therefore, we have simulated the distributions for each
criterion by Monte-Carlo experiments.
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Table 2.7: Half-lifes (in years) of shocks to relative unemployment rates, computed
from impulse-response functions based on regression results as reported in
Table 2.6

Federal State BY BRE HH HE NRW RP SAAR

Half-life 2 1 2 1 3 1 1

Note: Three federal states are omitted, for which the relative unemployment
series were found to be non-stationary.

has lost at least half of its effect for the first time.

The estimated half-lifes are reported in Table 2.7. While the implied half-

life is 5.6 years when the results of the LLC test are used, the half-lifes go down

to between 1 and 3 years when we include a structural break. Consequently,

measured persistence is substantially biased upwards if the structural break is

omitted.

2.6 Interpretation and discussion

Although it is hard to fix a clear theoretical underpinning for our finding of

regime-wise convergence, a potential explanation could be hysteresis.18 As a

theory, hysteresis usually refers to the absolute levels of unemployment and

is associated with the existence of multiple equilibria. The multiple equilibria

manifest in non-linear, non-stationary behavior of unemployment, which dis-

plays a high degree of persistence in turn, e.g. unit-root or close to unit-root

behavior.19 Instead of testing for high persistency, a more direct approach

were a test for structural breaks which represent endogenous shifts from one

equilibrium to the other, as for example in the ‘coconut’ model of Diamond

(1982).

However, Amable et al. (1991) and Cross (1994) have challenged the lat-

ter strategy building on the ideas of Krasnosel’skii and Pokrovskii (1989) and

Mayergoyz (1991). They point out that it also depends on the degree of het-

erogeneity at the micro level, whether hysteretic micro behavior manifests itself

18We thank an anonymous referee for suggesting this link.
19See Blanchard and Summers (1986), Roed (1997), Amable et al. (1994), Amable et al.

(2005).
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in structural breaks at the macro level, or in more general forms of non-linear

persistent time-series behavior. If the hysteretic forces are heterogeneous at

the micro level, aggregate behavior is smooth, but non-linear and persistent.

If there is homogeneity at the micro level, however, hysteresis should result

in structural breaks. In any case, hysteresis implies that the distribution of

relative unemployment rates is not stable over time.20

We do find evidence for a change in equilibrium following the second oil cri-

sis. Our test results overall–low persistency with structural breaks and high

persistency without structural breaks–may thus suggest some form of hystere-

sis driving relative unemployment rates in West Germany, if microeconomic

agents are relatively homogeneous with respect to their employment decisions

(‘strong macroeconomic hysteresis’, see Cross, 1994 and Amable et al., 1991).

An alternative explanation for these patterns would be a permanent shift

of exogenous parameters that determine the equilibrium (Roed, 1997, p. 394)

instead of an endogenous change from one equilibrium to the other as proposed

by hysteresis theory. Whether the change in equilibrium forms endogenously

or is due to an exogenous and permanent shift of deep parameters can hardly

be discriminated on the basis of our univariate analysis.21

Although the literature has typically stressed the difference between exoge-

nous change and hysteresis (Roed, 1997, p. 406), both have similar implications

for regional policy against the background of our results. Irrespective of how

one motivates the permanence of the change in the 1980s structurally, one can

expect small government interventions to loose their effect quickly. We find that

relative unemployment rates adjust quickly to their equilibrium levels, but in

exceptional cases the economy might move from one equilibrium to the other.

Consequently, a policy intervention needs to take the form of a substantial in-

tervention or a substantial change in politically set parameters in the case of

hysteresis or structural change, respectively.

The question whether hysteresis or structural change is driving our results,

hence, determines merely the aim and the means of the substantial policy in-

tervention. It has no influence on the suggested size of the intervention, which

has always to be substantial to be effective. We cannot tell which policies are

actually likely to reduce relative unemployment dispersion, but most policies

20Belke and Göcke (2005) extend this argument to the role of uncertainty in hysteresis.
For a survey, see Göcke (2002), which provides an overview of the concepts of hysteresis and
their implications for applied economic studies.
21A possible way to discriminate would be to analyze the employment behavior at the

micro and macro level simultaneously, but this data is not available for the long period of
time we want to study.
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that aim at reducing relative unemployment differences are unlikely to make

permanent contributions to social welfare because they are simply to small.

One might argue that this conclusion is misleading since we ignore the

endogeneity of regional policy. Such policy endogeneity may result in mean-

reverting behavior of relative unemployment rates although these rates would be

non-stationary in the absence of regional policy. In such setting, regional policy

in fact contributes substantially to social welfare by stabilizing the economy and

our conclusion above would be just turned on its head.22

However, this more optimistic view of regional policy has a hard time to

explain why we only find conditional convergence with a structural break. If

regional policy were indeed fully effective in reducing the dispersion of unem-

ployment, then one would expect that policy were able to eliminate regional

differences completely. In other words, one would have to construct complicated

reasoning to justify why the aim of policy should be to obtain an equilibrium

dispersion of unemployment in which some states have permanently higher

unemployment rates than others. Moreover, this reasoning would need to ex-

plain why this dispersion changed in the 1980s. One such explanation could

be different costs of regional employment policy. That is, jobs are permanently

attracted more cheaply by government intervention in the low unemployment

states, e.g. Bayern. However, in this case it must be that the marginal costs

of job attraction have changed after the second oil crisis for some states, but

not for others. Overall, we find this explanation less intuitive than the simple

presumption that regional employment policy cannot permanently attract jobs

unless it changes significantly the fundamental economic parameters.

Consequently, this leads us to conjecture that the stabilizing effect of (small

but constant) policy interventions must be limited even taking into account

the problem of policy endogeneity. Nonetheless, we may arrive at a more qual-

ified result with a deeper analysis using more detailed multivariate data or

microdata. Yet, for Germany, there is no longitudinal microdata of which the

time-span is large enough to cover the second oil crisis. Also at the regional

level, there is hardly data that may help to shed more light on the issue of

policy endogeneity and covers our sample period from 1960 until 2002.

22We thank an anonymous referee for pointing this out to us.
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2.7 Conclusion

The question of this paper was whether there are forces that lead to conver-

gence in the levels of regional unemployment rates over time. We used German

regional data on unemployment aggregated from the Mikrozensus database cov-

ering the period 1960-2002 and performed univariate as well as panel unit-root

tests to examine the hypothesis of stochastic convergence. On the basis of uni-

variate ADF tests the hypothesis of non-convergence cannot be rejected. But

using more powerful panel unit-root tests, we found some evidence for con-

ditional convergence in regional unemployment rates. They converge up to a

stable equilibrium distribution. Yet, the panel-based tests imply a moderate

speed of convergence at best.

Since the graphical analysis of the series suggested the presence of a shift

in the equilibrium differential of regional unemployment rates after the sec-

ond oil crisis, we extended the convergence tests to allow for such a shift. We

employed the univariate unit-root test of Perron and Vogelsang (1992) that in-

cludes a level shift in the series analyzed. In contrast to the univariate ADF test,

the non-convergence hypothesis could be rejected for seven out of ten federal

states. Moreover, the estimated speed of convergence increased substantially

in comparison to the results of the panel-based tests. Consequently, regional

unemployment rates are found to converge quickly to a constant difference to

the national average, but this difference is not the same for the two regimes

before and after the second oil crisis.

On the side of the econometric analysis, our paper, like many others, pro-

vides once more evidence of the low power of univariate tests in small samples.

This problem is especially apparent in the setting with a structural break and

we have dealt with it in two ways: including the panel dimension and accounting

for the structural break.

The structural break following the second oil crisis reveals the importance of

using for our analysis a database that spans a long time-frame. While a shorter

series of higher frequency, e.g. monthly data, may be more powerful to quantify

the exact speed of convergence in the absence of structural breaks, it would be

unable to uncover structural change itself. We have seen the importance of

structural breaks for both, the empirical results and their interpretation. For

example, structural breaks may allow us to discriminate between different types

of hysteresis.

In turn, the finding of structural breaks has important implications for poli-

cies targeted at regional unemployment rates. If there is regime-wise conditional
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convergence and fast equilibrium adjustment, then this implies on the one hand

that small government interventions loose their effect quickly as unemployment

rates adjust back to their equilibrium levels. On the other hand, the result

means that large interventions might move the economy from one equilibrium

to the other. Hence, policy intervention needs to take the form of a substantial

regime shift.



Chapter 3

A Distribution Dynamics
Approach to Regional GDP
Convergence in Reunified
Germany

3.1 Introduction

This paper presents an empirical study of GDP per worker convergence across

German labor market regions during 1992 to 2002 using nonparametric tech-

niques. The nonparametric methodology originally introduced by Quah (1993,

1996a, b, c, 1997, 2001) studies how the entire cross-sectional distribution of

relative GDP evolves over time and is therefore not limited to an analysis of

single moments of the underlying distribution as it is the case for traditional

β- and σ-convergence approaches. Further advantages of the empirical strat-

egy used in this paper are that growth and distribution are considered jointly

and that it allows for an out-of-sample extrapolation of the observed distribu-

tion dynamics. Our extrapolation exercise follows recent developments in the

convergence literature as proposed by Johnson (2000, 2005) and others.

The convergence hypothesis states that poor economies catch up with rich

ones. This topic is important for Germany because mitigating regional dispar-

ities is regarded as a fundamental objective of German (and European) policy,

especially in light of East-West differentials in reunified Germany. At the heart

of the debate about regional inequality stands a fundamental controversy about

whether or not a process of economic homogenization has taken or will take

place in reunified Germany.

43
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This study uses GDP data to contribute statistical evidence to the debate

about regional inequality in Germany. One reason to focus on convergence in

GDP is that policy does formulate its aims with respect to GDP. For example,

the main objective of EU regional policy is to promote the development of re-

gions whose per capita GDP is below 75% of the EU average and approximately

70% of total EU regional expenditure is spent for making regions more equal

in terms of output (Overman and Puga, 2002).1

In order to mitigate regional disparities in GDP, disadvantaged regions in

Germany are allocated funds from the European Structural Funds and the Ger-

man ‘Gemeinschaftsaufgabe Verbesserung der regionalen Wirtschaftsstruktur’

(GRW). The GRW is the guideline for German regional policy and advocates a

supply-side policy supporting growth in order to eliminate regional differences.

For the allocation of subsidies the GRW has defined 271 regional labor mar-

kets. This paper addresses GDP convergence at the level of these labor market

regions.

Ideally, we would analyze convergence of real GDP. Unfortunately, data lim-

itations prevent us from calculating output measures adjusted for cost-of-living,

a shortcoming which also applies for most studies on regional convergence in

other countries. Nevertheless, we believe that the present study provides im-

portant insights for assessing the development of the regional GDP distribution

in reunified Germany.

A particular feature of the approach taken in this paper is that it allows one

to make predictions about the long-run distribution of regional GDP. This is an

important aspect because it gives a rough estimate about the long-term outcome

given that the convergence process remains the same over time. Using the more

technical terminology of the distribution dynamics approach, we investigate

what will happen to the German regional GDP per worker distribution if the

observed distributional dynamics remained unchanged.

The main results of this study are the following. There is evidence for a

tendency towards convergence during the period we study, i.e. regions that were

less productive in 1992 have a higher relative GDP in 2002. The convergence

process is driven mainly by the catching up of East German regions in relative

terms.

Concerning the long-run distribution of regional GDP, however, this study

provides discouraging evidence. The ergodic density we calculate on the ba-

1Since 1994, the East German federal states (excluding East-Berlin) are objective 1 devel-
opment areas and they will receive subsidies totalling 19.229 million Euro until today (Eckey,
2001).
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sis of our estimates is characterized by pronounced polarization. This finding

illustrates that it is unlikely that German labor market regions will converge

towards equality in terms of GDP per worker. Rather, there are two basins

of attraction in the long-run distribution of regional GDP, one at a GDP per

worker close to the national average value and one at a significantly lower

level (73% percent of the German-wide average). A separate analysis of the

West and East German economies provides evidence that the polarization in

the long-run GDP per worker distribution reflects a long-term heterogeneity

among West and East German regions.

Overall, the analysis reveals a tendency towards convergence on the one

hand but also persistent polarization between the GDP per worker of East

and West German regions on the other hand. This means that there clearly

has been a catching-up process during the past period we can observe. But

this catching-up process does not result in a unimodal distribution of GDP per

worker in the long run. Rather, the distributional dynamics manifest themselves

as polarization if these dynamics continue operating unchanged in the future.

That regional inequality in GDP per worker is likely to persist rather than

decrease in the future is an alarming result which is of particular importance

against the background of substantial regional policy expenditures taken in the

last decade.

The remainder of this paper is organized as follows. The literature is briefly

discussed in Section 2. Section 3 introduces the data employed. The empirical

analysis is presented in Section 4 and the last section concludes. Technical

details of the estimation procedure are presented in Appendix B.

3.2 Literature

As for most other regional convergence studies, the theoretical framework of the

empirical analysis is the neoclassical growth model which suggests that regional

per capita output within a country converge to the same long-run steady-state

(see Magrini, 2004 and Durlauf, Johnson, and Temple, 2005 for recent sur-

veys of the large literature). However, regions are by no means small closed

economies but instead are highly integrated in terms of mobility of goods, cap-

ital, and labor. Hence, in a regional context the neoclassical growth model for

closed economies does not appear to be the best framework for convergence

studies. Barro, Mankiw, and Sala-i-Martin (1995) have extended the neoclassi-

cal growth model for partial factor mobility and show that the basic prediction
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of convergence is not altered in this setting. For an elaborate analysis of the

role of labor mobility in the convergence process we refer to Razin and Yuen

(1997). By contrast, new theories of industrial location, trade, and integration

(see Fujita, Krugman, and Venables, 2000) and most models of the new growth

theory cast doubts on the neoclassical optimistic prediction of convergence.

While it is quite clear in theory what economic convergence means, empirical

measurement of convergence is not a trivial task. In recent years, a number

of alternative strategies have been suggested, e.g. traditional cross-sectional

regressions of β- and σ-convergence, panel data models, and time-series tests

(see the review of Magrini (2004) for a survey focusing on regional convergence

studies).

There are several studies which apply these techniques to analyze regional

convergence in West Germany and in general, the studies do find evidence for

both, absolute and conditional convergence. Empirical evidence regarding re-

unified Germany is still scarce. A potential reason for this has been pointed out

by Kosfeld, Eckey, and Dreger (2002) who state that regionally disaggregated

data on economic growth have only recently become available.

Most studies for reunified Germany are limited to an analysis of convergence

between the Eastern and Western part of the country.2 Although some authors

are more pessimistic than others about convergence, the general result is that

‘East German labor productivity has converged on that in West Germany more

slowly than was initially thought but faster than would have been expected on

the basis of studies of convergence such as Barro and Sala-i-Martin (1991)’

(Barell and te Velde, 2000, p. 272).

Our paper is a contribution to the literature which addresses regional con-

vergence in reunified Germany at a disaggregated geographic level. Using a

spatial econometric approach to β-convergence, Kosfeld, Eckey, and Dreger

(2002) find clear evidence for both, GDP per capita and labor productivity

convergence during the period 1992 to 2000. Kosfeld and Lauridsen (2004)

adopt a cross-sectional spatial econometric adjustment model which is based

on the concept of spatial error-correction. They find only weak evidence for

conditional convergence in the year 2000.

One shortcoming of the β-convergence approach is that, by focusing on the

average behavior of a representative region, it suppresses the cross-section dy-

namics one wishes to investigate (see Quah, 1996a, b, c, 1997). This criticism

also holds for spatial econometric extensions of the β-convergence approach.

2See Hallett and Ma (1993), Burda and Funke (1995), Funke and Strulik (2000) and
Barrell and te Velde (2000).
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One possibility to overcome the limits of the β-convergence method is to es-

timate the entire GDP distribution and its dynamics over time. Only this

method allows one to uncover empirical phenomena such as persistence and the

formation of convergence clubs. Since pronounced East-West disparities are a

well-documented fact in reunified Germany (see Barell and te Velde, 2000), it

appears promising to adopt the distribution dynamics approach to Germany,

which has not been done yet in the literature.

3.3 Data

Germany’s official statistics provide GDP data for disaggregated administra-

tively defined regions (counties). A regional economic analysis based on these

county data can be misleading because the borders of German counties are de-

termined by political and historical rather than economic reasons. Therefore,

we aggregate counties to so-called local labor market regions, which are the

target areas for the most important regional policy program in Germany, the

GRW. We use data for 439 German counties to define 271 labor market regions,

so that center and hinterland of labor markets are adequately integrated on the

basis of commuter flows.

Empirical growth studies use either GDP per capita and/or GDP per worker

as a dependent variable. Since most theoretical growth models are based on

production functions, their implications relate more closely to GDP per worker

than GDP per capita (Durlauf, Johnson, and Temple, 2005). In general, GDP

per worker is a more accurate index of average labor productivity than GDP

per capita. Moreover, at a disaggregated regional level, GDP per capita data

are less informative than their per worker equivalents due to possible distortions

caused by commuter flows. If workers live in one region and commute to work

in another region, the GDP per capita variable is subject to a bias because

GDP is measured at the workplace while population data refer to the place

of residence.3 By contrast, data on total employment refer to the workplace

at which GDP is measured. For these reasons, we focus on GDP per total

employment, i.e. GDP per worker.

The raw GDP data at the county level are taken from the National Ac-

counts of the Federal States compiled by the Statistical State Office Baden-

Wuerttemberg and are measured in current prices. Regional price indices at

the county level or at the level of labor market regions are not available. Total

3The aggregation of counties to labor market regions picks up only the most important
commuting linkages.



CHAPTER 3. REGIONAL GDP CONVERGENCE IN GERMANY 48

 
< 0.69
0.7 - 0.89
0.9 - 1.09
1.1 - 1.29
> 1.3 

Figure 3.1: GDP per worker across German labor market regions, relative to the
German-wide average GDP per worker. Left: 1992, right: 2002.

employment data are reported by the Federal Office for Building and Regional

Planning. The time period under study ranges from 1992 to 2002.4

The key variable in our econometric analysis is relative GDP per worker,

which means that regional GDP per worker data are normalized by the labor

force weighted national average GDP per worker. This normalization allows

us to abstract from the growth of the German economy during the period

under study and it also accounts for common changes in inflation. It should be

noted that the distribution of relative GDP per worker has the same shape as

compared to the distribution of GDP per worker itself.

Our estimations are based on data for all regions. Potentially outlying

data points represent regions which performed either extremely well or poor

and from an economic point of view it is not appealing to simply delete these

observations (Quah, 1997). As a robustness test, however, we will check if the

estimated distributional dynamics are heavily affected by potentially outlying

data points. It turns out that this is not the case. The complete sample consists

of 271 German labor market regions which are observed for 11 years.

As a starting point, we document regional disparities in relative GDP per

worker, for 1992 and 2002. Figure 3.1 illustrates the apparent East-West dis-

parities in reunified Germany. It is instructive to compare relative production

4There are no data for 1993. In the empirical analysis, it does not make a significant
difference whether we exclude the year 1993 or linearly interpolate the data for 1993.
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in labor market regions with extreme values. The average relative GDP in the

ten most productive regions is 1.31 in 1992 and 1.28 a decade later. The ten

least productive regions have an average of only 0.45 in 1992 and 0.65 times the

German average in 2002. These numbers clearly illustrate that regional dispar-

ities are still very pronounced in reunified Germany but they also suggest that

a certain amount of catching up has taken place.

In order to get a first impression of the dynamics of regional inequalities we

ranked the regions in descending order in terms of their 1992 positions. Then,

we calculated the Spearman rank correlation coefficient in order to assess if

the position in the league table of GDP in 1992 is a good predictor of that

position in 2002. The coefficient takes a value of 0.86 (significant at the 1%

level) indicating that the dominant pattern is persistence but there is also some

mobility in relative positions.

In the remainder of this paper it is analyzed if regional disparities in produc-

tion continue to persist, particularly if they do so after a decade of substantial

regional policy expenditures.

3.4 Empirical analysis

In a first step of the empirical analysis we estimate density functions of relative

GDP per worker for different years. By evaluating whether unimodality in the

densities of the distributions is present or not, this procedure is a test of the

convergence hypothesis. For example, if one starts with a bi- or multimodal

density at a given point in time (e.g. a group of very productive and a group of

less productive regions), convergence would imply a tendency of the distribution

to move towards unimodality (Bianchi, 1997).

In a second step we estimate transition probabilities to analyze mobility

within the GDP distributions. We examine how a given individual of the dis-

tribution at a given point in time transits to another part of the distribution

in the future. In other words, we analyze if regions move up or down in the

ranking of GDP per worker.

Thereafter, we calculate the ergodic or invariant density of relative GDP

per worker implied by the estimated transition probabilities. This exercise of

out-of-sample extrapolation allows us to make long-run predictions on the GDP

distribution in reunified Germany.
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3.4.1 Density functions of relative GDP

Nonparametric kernel techniques (see Silverman, 1986 and Pagan and Ullah,

1999) are used to analyze the shape of the distribution of German relative GDP

for two different years, 1992 and 2002. One advantage of the nonparametric

approach is that one does not have to assume any particular form about the

density shape because the densities are estimated from the data. These esti-

mated densities can be interpreted as the continuous equivalent of a histogram,

where the number of intervals tends to the continuum.5

A crucial point in nonparametric econometrics is the choice of the band-

width. The larger the value of the bandwidth, the smoother is the density

estimate. Besides the problem of choosing the most appropriate bandwidth,

further problems may arise if the bandwidth is assumed to be fixed over all data

points. It can be shown that an estimation with fixed bandwidth may result in

undersmoothing in areas with only few observations and in oversmoothing in

others. This means that kernels estimated using a fixed bandwidth are heavily

affected by noise in regions of low density and are otherwise unable to detect

all distribution details in regions where data concentrate. In particular, these

problems arise if the underlying density is multimodal. Since the German GDP

distribution is possibly characterized by multiple modes (e.g. East and West),

we employ nonparametric techniques which allow for a varying rather than fixed

bandwidth.

Such kernel techniques with flexible bandwidth are called adaptive kernels

(see Silverman, 1986 and Pagan and Ullah, 1999). An adaptive kernel estimator

adapts to the sparseness of the data by varying the bandwidth inversely with

the density. This means that a broader bandwidth is used for observations

located in regions with low density, and vice versa. Thus, adaptive kernels are

able to recover more details of the density where data concentrate because the

window width decreases at those regions while it increases in areas of only low

data densities.

A two-step procedure is used to estimate adaptive kernels. First, an initial

(or pilot) estimate of the probability density function with fixed bandwidth is

computed. This pilot estimate is used to evaluate whether an observation is

located in a region of comparatively low or high density. The adaption of the

bandwidth for each sample point is computed by multiplying the fixed pilot

bandwidth with so called local bandwidth factors (for technical details we refer

5The following brief discussion of adaptive kernel methods is based on the overview in van
Kerm (2003).
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Figure 3.2: Densities of relative GDP per worker across 271 German labor market
regions, 1992 and 2002.

to Appendix B.1).

Still an open question is how to select the bandwidth of the pilot estimate.

Among several possibilities to select, we choose the smoothing parameter using

Silverman’s (1986, Section 3.4.2) rule of thumb. Specifically, we use the adap-

tive rule of thumb. In order to check the robustness of our results with respect

to the bandwidth criterion, we alternatively employ the Sheather and Jones

(1991) plug-in method for the estimation of our final specification in Section

3.4.4.

Figure 3.2 shows the density functions of relative GDP per worker for the

initial and final year of the sample period estimated using a Gaussian kernel.

The densities have been normalized so that the sum of the points at which the

density is evaluated is one. This allows us to interpret the normalized densities

as showing the probability of a realization in the grid interval.6

In 1992, the GDP distribution is clearly bimodal. The first mode is at a

relative GDP of 0.52 and the second mode coincides with average GDP per

worker (1.00). Hence, regions in the productive cluster have twice the GDP

per worker of those in the other group.7 We suppose that the cluster of less

6All computations in this paper were performed using MATLAB.
7One could perform bootstrap multimodality tests as in Bianchi (1997) to formally test

for two peaks, but we believe the figure speaks for itself and there are no doubts about the
presence of exactly two peaks.
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productive regions in 1992 is mainly formed by regions located in the new

federal states because of their low GDP levels after German reunification. This

issue will be addressed below.

A decade later, in 2002, the density has changed substantially. The two

peaks of the distribution correspond to 0.75 and 0.93 times the German GDP

per worker. Possibly, the left peak is not a significant mode in the distribution

anymore. That much is certain, there is considerably weaker evidence for a

clustering of less productive regions in comparison to 1992. It seems as if

most unproductive regions have increased their relative GDP. The apparent

tendency towards convergence is reflected by the distance between the peaks,

which decreases from 0.48 in 1992 to 0.18 in 2002.

To illustrate further the convergence between German labor market regions,

we compare the standard deviations of the two density functions. If there is

convergence, the dispersion of the density should decline over time. In 1992, the

standard deviation is 0.236 and it decreases to 0.138 a decade later, indicating

that the relative GDP per worker distribution has become more equal over time.

Since we suppose that the observed tendency towards convergence in reuni-

fied Germany is primarily driven by the catching-up process of East German

regions, it is instructive to analyze the shapes of the GDP distribution for West-

and East German regions separately. This experiment allows us to assess if

there is also convergence within the Western part of Germany.

Figure 3.3 shows the kernel-smoothed densities of relative GDP per worker

for the Western and Eastern part of Germany separately.8 We evaluated the

densities for West and East German regions at the same values, so that the two

graphs can be compared in one figure.

Consider first the densities of East German GDP per worker. In 1992, the

peak of the distribution is at 52% of the German average. As expected, this

mode corresponds to the left peak in the distribution of all German regions as

displayed in Figure 3.2 and provides evidence that the cluster of unproductive

regions in Figure 3.2 is mainly formed by East German regions. In 2002, the

whole distribution has shifted to the right; the peak is now at 74% of the

German average. These numbers illustrate that, although East German labor

market regions have increased their relative GDP per worker over time, they

still have considerably lower levels of GDP per worker than the national average.

This finding is well compatible with other studies, such as Barell and te Velde

8There are 205 West German and 66 East German labor market regions. Berlin is treated
as a West German region.
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Figure 3.3: Densities of relative GDP per worker for West- and East German regions
separately, 1992 and 2002.

(2000).

While the location of the entire density of East German regions has shifted

to the right without changing its external shape, the density shape of West

German regions has changed over the ten-year horizon. There is evidence for

a reduction of disparities across West German regions, as indicated by the

bimodal density in 1992 which has changed to a unimodal density in 2002. In

1992, the peak with the highest density corresponds to 1.02 times the German

average and it decreases to 0.93 in 2002. Nearly the same peaks were obtained

for the GDP distribution of all German regions as displayed in Figure 3.2. This

confirms the presumption that the West German regions cluster together in the

center of the distribution of all German regions.

The results of this section suggest that there has been a tendency towards

convergence across German labor market regions during the past period we can

observe. The convergence process, however, is not finished in 2002 and there

are still substantial regional disparities, especially between the East and the

West. The question arises if the past tendency towards convergence actually

manifests itself in the future as long-term convergence towards a unimodal GDP

distribution. This question is investigated in the next two sections.
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3.4.2 Intradistribution mobility

Thus far, we have analyzed the shapes of relative GDP distributions for two

different years. Obviously, the densities have fluctuated but we could not say

anything about movements of individual regions in the distribution. However,

for describing convergence it is important to have information on how regions

move within the distribution. Generally, a broad range of such intradistribu-

tion mobility is possible, for example, over time some initially rich regions fall

behind; poor regions overtake rich ones; and groups of regions, beginning at

similar levels of development, eventually diverge (Quah, 1996a).

In this section we analyze intradistribution mobility by estimating a proba-

bility model of transitions which captures the distribution’s law of motion (see

Quah, 1993, 1996a, b, c, 1997). This means that we examine how a given indi-

vidual of the distribution at time t (e.g. 1992 or some other year) transits to

another part of the distribution by the time t+ τ (e.g. 2002).

One possibility to examine transition probabilities is to discretize the GDP

space and then count the observed transitions out of and into distinct discrete

cells of a Markov transition probability matrix (Quah, 1993). However, Bulli

(2001) has shown that an arbitrary discretization of the state space alters the

probabilistic properties of the data. A better approach is to use no discretization

but instead allowing the number of cells of the Markov transition probability

matrix to tend to infinity (Quah, 1997). In this continuous case, the transition

probability ‘matrix’ becomes a stochastic kernel. Such a kernel is a huge non-

negative matrix whose rows integrate to unity, satisfying regularity conditions

to ensure that a limiting distribution exists (Quah, 2001).

Assuming that the process describing the evolution of the distribution is

time-invariant and first-order Markov, the relationship between two distribu-

tions at different points in time can be written as9

ft+τ (z) =

Z ∞

0

gτ(z|x)ft(x)dx, (3.1)

where gτ(z|x) is the τ−period ahead density of z (e.g. GDP today) conditional
on x (e.g. GDP in some base year). The stochastic kernel gτ(z|x) encodes all
information about the evolution of the sequence of distributions over time and

maps the distribution from period t to period t+ τ . The kernel is a conditional

density and shows the probability that a given region transits to a certain state

9This simplified presentation of Quah’s (1997) methodology was proposed by Johnson
(2000, 2005). It can also be found in Durlauf, Johnson, and Temple (2005).
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of relative GDP given that it is in a certain state in the starting period.

As in model specifications used in previous studies, the distribution in time

t+ τ depends only on t and not on the distribution prior to t. This assumption

is made because a Markov chain of higher order results in a higher dimensional

state space which is computationally much more difficult to handle.

It was mentioned earlier that one advantage of the continuous kernel ap-

proach used in this paper is to avoid an arbitrary discretization of the state

space. This feature, however, comes at cost: The researcher needs a lot of

observations in order to get reliable estimates of the distributional dynamics.

To illustrate this point, recall that the continuous transition probability

kernel gτ (z|x) is a conditional density. In a first step to estimate the kernel,
one has to estimate the joint density of z and x. Then, the marginal density

of x is computed by integrating over z. The ratio of the joint density to the

marginal density provides the estimate of gτ(z|x). Since the density gτ(z|x)
has to be evaluated at two dimensions (i.e. at the beginning and end of the

transition period), the precision of the estimation decreases dramatically if the

sample size is hold constant. Effectively, this bivariate density is estimated as

precisely as an univariate density only if the number of observations is squared.

If there are only a few observed transitions, then a small sample bias–

which generally applies to all kernel density estimates–becomes more and more

pronounced. In our nonparametric model, a small sample bias manifests itself

as a bias towards a normal distribution. These considerations illustrate that

the researcher needs a large number of observed transitions in order to detect

non-normal distributional patterns in the kernel such as bi- or multimodality.

An efficient estimation using the largest available sample size is therefore

based on annual transitions instead of transitions of multiple frequency (e.g.

ten-year transitions). Quah strongly recommends this procedure because tak-

ing transition steps with long time intervals instead of annual frequencies is

likely to be ‘correspondingly noisy, with even fewer observations informing the

estimate’ (Quah 2001, p. 308). In our application, the pooled sample of one-

year transitions consists of 2710 observations (271 labor market regions times

10 observed transitions), which should be sufficient for the nonparametric ap-

proach.

Distributional dynamics for longer time horizons than one year can then be

illustrated by multiplying the estimated one-year transition probability kernel

by itself. For example, a ten-year transition step is obtained by multiplying

the one-year transition probabilities ten times. This procedure is taken as our

point of departure and afterwards we will test for the robustness of the derived
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Figure 3.4: Surface and contour plots of g1(z|x) and g10(z|x). Left: yearly transi-
tions between 1992 and 2002. Right: Ten-year transitions (obtained by
multiplying the one-year transition probabilities ten times).

results.

As for the univariate estimations discussed in the last section, adaptive

kernel techniques are employed to estimate the transition probability kernel

g1(z|x) (for technical details we refer to Appendix B.2). The varying bandwidth
in the adaptive procedure has the desirable effect of eliminating spurious noise

at the left and right end of the joint distribution.

The estimation results are summarized in Figure 3.4. While the left figures

show the mobility patterns of one-year transitions, the right figures illustrate

ten-year transitions, which are obtained by multiplying the one-year transi-

tions ten times. For both transition intervals, the upper panels display three-

dimensional plots of the transition probability kernels gτ(z|x). In these graphs,
the vertical axis measures the density for each pair of points in the state space.

The lines that run parallel to the t+ τ axis show the probability of transiting

from the corresponding point at the t axis to any other point one year and ten
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years ahead, respectively.

The dynamics of the regional GDP distribution can be seen more clearly

from contour plots of the surface of the bi-dimensional densities, as displayed

in the lower panels of Figure 3.4. The thin lines in the figures connect points

at the same density on the three-dimensional graphs.

To interpret the figures, recall that one can recover the probability density

function associated with any point in the t axis by slicing across the figure

from this specific point, parallel to the t + τ axis. This projection is similar

to one single row of a Markov transition matrix in which all entries sum up to

one (Andrade et al., 2004). If all probability mass were concentrated around

the 45◦-diagonal there would be complete persistence (no mobility) in the dis-

tribution because different parts of the distribution remain where they begin.

By contrast, convergence manifests itself in the kernel if most probability mass

were concentrated parallel to the t axis (at a value of 1 for relative GDP at the

end of the transition period (t+ τ axis)).

From the left column of Figure 3.4 it can be seen that the dominant feature

of one-year transitions is persistence because most of the mass of the kernel is

concentrated around the main diagonal. This pattern reflects that large move-

ments in the GDP distributions are not expected year-after-year. However, a

graphical examination suggests that even one-year transitions display a cer-

tain degree of mobility. For initially unproductive regions there is a shift of

the probability mass towards higher relative GDP levels. Just the other way

round, regions with extremely high levels of GDP per worker in the starting

period tend to have decreasing GDP per worker.

This pattern already visible for one-year transitions becomes more evident

from the right column of Figure 3.4, in which ten-year transitions are illus-

trated. Most of the mass of the conditional distribution lies below the 45◦ line

for values of relative GDP less than 1 in the starting period and above the line

for values greater than 1. This means that regions with GDP per worker below

the German average in the starting period tend to have increasing relative GDP

over a 10-year horizon. Similarly, regions with GDP per worker above the aver-

age tend to have decreasing relative GDP. These intra-distributional mobility

patterns are consistent with a tendency towards convergence and confirm the

results of the previous univariate density analysis.

However, besides revealing a tendency towards convergence, another distinct

pattern of the ten-year transition probability kernel is an apparent vanishing

of the middle class. The shape of the transition probability kernel for 10-year

transitions indicates that the distribution’s law of motion is not compatible with
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convergence towards a single point mass (e.g. towards national average GDP

per worker). Rather, the density shape indicates that labor market regions

congregate at two basins of attractions: One cluster of regions is characterized

by a low level of relative productivity and another probability peak is at GDP

per worker levels close to the national average.

So far we have examined the local maxima in the conditional density only

by eye. This gives only a rough impression of the long-term outcome of the

distributional dynamics. In order to perform a more formal analysis of the

long-run distribution of regional GDP we calculate the density of the ergodic

distribution implied by the estimated transition probabilities.

3.4.3 Long-term analysis

If it is assumed that the law of motion of the distribution which is estimated

from past data is stable over time the transition probabilities gτ(z|x) can be
projected further into the future to calculate the implied ergodic or long-run

density function of relative GDP (so long as it exists). The long-run density,

f∞(z), is the solution to

f∞(z) =

Z ∞

0

gτ(z|x)f∞(x)dx. (3.2)

If there is long-run convergence towards average GDP per worker, the ergodic

density should be unimodal with a mean close to one. By contrast, multiple

peaks in the ergodic distribution are usually interpreted as evidence of ‘conver-

gence clubs’ in the long run. Then, some regions catch up with one another

but only within particular subgroups (Baumol, 1986).

We suggest two methods to solve for the ergodic density, f∞(z) = f∞(x).

An intuitive approach is to multiply the transition probability kernel gτ(z|x)
many times by itself until the density has converged, which means, until all rows

of the transition probability kernel are equal. Using this iterative procedure,

observed transition probabilities are projected further into the future.

The second way is related to an eigenvector and eigenvalue problem. John-

son (2005) has shown that the stationary distribution can be represented as an

eigenvector of gτ(z|x) corresponding to the eigenvector one.10 Both approaches
10For an elaborate presentation of this idea, see the webappendix of Johnson (2005),

downloadable from http://irving.vassar.edu/faculty/pj/pj.htm. The author ex-

plains how to solve numerically for f∞(z) =

bZ
a

gτ (z|x)f∞(x)dx, where a and b define the
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yield the same result.

An important aspect of the limiting distribution is that it is, by construction,

independent of the starting positions of particular regions (Quah, 2001). It

shows the likelihood of becoming a less productive, mildly productive, or very

productive region independent of the starting value of relative GDP per worker.

Therefore, one has to keep in mind that the ergodic density does not allow

inference which labor market regions form the different clusters (if there are

any). This issue is addressed afterwards by estimating separate laws of motion

of the West and East German economies, respectively.

Moreover, the notion of the ergodic density assumes that the observed law

of motion of the distribution is stable over time. This means that one can

interpret the long-run density only as showing the likely outcome given that the

realized transitions characterize future developments. Using the terminology of

the distribution dynamics approach, the ergodic density should be interpreted

as the likely long-term outcome given that the observed distributional dynamics

(which may be influenced by various factors) remain unchanged.

The ergodic density implied by g1(z|x) (yearly transitions between 1992
and 2002, see Figure 3.4) is displayed as the bold line in Figure 3.5. The

shape of the ergodic density function provides evidence for a tendency of the

cross-regional GDP distribution to converge to a long-run distribution having

two clusters, an outcome which can be called polarization (Quah, 1997). This

means that the calculated ergodic density lacks an optimistic view of long-

run convergence towards a unimodal GDP distribution. The left mode in the

density is at a relative GDP per worker of only 73% of the national average.

Becoming a region with 92% of average GDP per worker is associated with the

highest likelihood. This result of long-term polarization is well in line with the

graphical examination of the transition probability kernel presented in the last

section.

It is instructive to compare the ergodic outcome with today’s (2002) point-

in-time distribution. This distribution is displayed as the thin line in Figure

3.5 (evaluated at the same equi-spaced grid points). While actual densities at

a given point in time may reflect a (historical) disequilibrium due to structural

shocks in the past, the ergodic density shows a future equilibrium in the absence

interval where the density is evaluated. In the numerical implementation, the stochastic
transition probability kernel gτ (z|x) is estimated as a p× p matrix Q, where p is the number
of grid points at which the conditional density is evaluated. If the largest eigenvalue of this
matrix is unity then the Markov process is ergodic. The left eigenvector φ corresponding to
this eigenvalue has the property φ = Qφ and φ is the implied ergodic density.
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Figure 3.5: Bold line: Ergodic density of relative GDP per worker, calculated on the
basis of g1(z|x) (yearly transitions between 1992-2002). Thin line: Actual
density of relative GDP per worker in 2002.

of structural changes. A comparison of both densities gives an idea to what

extent the actual density already resembles the external shape of the long-term

outcome.

For relative GDP greater than 0.92 times the German average (the right

peak) the two densities look very similar. Hence, in this part of the distribution

the shape of the cross-sectional distribution in 2002 already mimics the long-

run equilibrium. The most striking difference to the actual distribution in 2002

is that the long-run distribution shows an even more pronounced clustering of

regions with below average GDP per worker. In other words, multimodality is

less pronounced in the actual point-in-time distribution of the year 2002.

The twin-peaked shape of the ergodic density shows the advantage of the

nonparametric approach used in this paper. A traditional analysis of σ-convergence

typically measures the dispersion of the cross-sectional distribution by the evo-

lution of the standard deviation of relative GDP over time. Such an analysis is

problematic if distributions are not unimodal as in our application. Similarly, a

traditional analysis of β-convergence does not take higher moments of the GDP

distribution into account, which have to be estimated for proper inference in

our setting.

The central result of our long-term analysis is that the long-run distribution

of relative GDP per worker in reunified Germany is characterized by polariza-
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tion if the past distributional dynamics continue operating unchanged in the

future. In the next sub-section we present extensive robustness tests of this

strong result and we address the question whether the peaks reflect a cluster-

ing of West and East German regions, respectively.

3.4.4 Robustness tests

It is well-known that the catching-up process of East German regions slowed

down considerably in the second half of the last decade (see Eckey, 2001 and

Barell and te Velde, 2000 for a detailed discussion). For instance, Kosfeld

and Lauridsen (2004) attribute the lack of significant conditional convergence

obtained in their cross-sectional study referring to the year 2000 to the ap-

parent convergence slowdown. Therefore, one might argue that a long-term

forecast based on the period 1992-2002 is even likely to overstate the extent of

convergence because the comparatively fast initial catching-up process of East

German regions in the first years after German reunification is unlikely to be

representative for future periods. Therefore, we exclude the first years after

German reunification from the analysis, which were turbulent years after the

political turn, and estimate the long-run distribution using data for the more

stable period 1994-2002 only. As we would expect, our previous result of po-
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larization is confirmed under this specification (see Figure 3.6 for a summary

of the alternative estimation results discussed in this sub-section).

Moreover, we check if the estimated distributional dynamics which underlie

the long-run density are heavily influenced by outlying data points. As simple

tests, we exclude the regions with the 5 (10) highest and 5 (10) lowest values

of relative GDP per worker in 1992 from the analysis (in all years). Both, the

estimated long-run densities, and the actual point-in-time distributions (not

reported) of these sub-samples do not change significantly and the peaks of the

ergodic densities are similar as for the whole set of regions (see Figure 3.6).

Another sensitive point in our analysis might be the assumed frequency of

transitions. For this reason, we test if the twin-peaked outcome of the long-run

density is heavily dependent on the use of annual transitions. Again, it turns out

that the results are robust. We tried using two-year and three-year transitions.

In both cases, the ergodic density shows a similar pattern of polarization (see

Figure 3.6).

Finally, we test if our results are exceedingly sensitive to the employed

method to select the bandwidth of the pilot density estimate in the adaptive

procedure. It has been shown that the plug-in procedure suggested by Sheather

and Jones (1991) performs consistently well over a wide range of density shapes.

As an alternative to Silverman’s (1986) adaptive rule of thumb we select the

optimal bandwidth of the pilot density according to this criterion. From Figure

3.6 it can be seen that our results are not very sensitive to the bandwidth

selection method.

We also smoothed the data by using a logarithmic transformation of the

relative GDP per worker variable. The logarithmic transformation, which is

frequently applied in related studies, affects the shape of the density distribution

of the original data. The results obtained with the log-transformed data are very

similar to our preferred specification reported above. The left peak corresponds

to exp(−0.3131) = 0.7312 and the right peak to exp(−0.0707) = 0.9317 times
the national average GDP per worker (the figure is available from the author

on request).

Thus far, we have assumed that all German regions evolve according to

a common law of motion. One might argue, however, that the transitional

dynamics of West and East German regions are fundamentally different. Simi-

larly, the two clusters in the ergodic density may reflect a long-term difference

between East and West German regions, respectively.

As mentioned above, the bimodal ergodic density may not be interpreted as
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showing long-run clusters of East and West German regions if a common law

of motion is assumed. This interpretation is not correct because the stationary

distribution is by construction independent of the starting positions of particu-

lar regions. In order to infer whether the two clusters in fact reflect long-term

East-West disparities we estimate separate laws of motion of the West and East

German GDP distributions and compare the implied ergodic densities.11

Figure 3.7 (upper panel) provides strong evidence that the bimodal outcome

of the long-run GDP per worker distribution of all German regions indeed

reflects long-term disparities between West and East German regions. Both

ergodic densities are unimodal. The peak of the West German distribution is

at 91% of the German average while it is at 74% for East German regions.

These peaks are very similar to the peaks obtained in the estimations in which

a common law of motion was assumed (0.73 and 0.92, see Figure 3.5).

The separate analysis shows that West and East German regions converge

to different levels of relative GDP per worker if the past laws of motion of

both distributions continue operating unchanged in the future. It provides

discouraging evidence that East German regions will stay considerably less

productive than West German ones even in the long run, a finding which is

of particular importance against the background of a decade of substantial

regional policy expenditures.

A natural second step in the separate analysis is to formulate regional GDP

per worker relative to the West and East German (labor force weighted) average

GDP per worker, respectively, instead of relative to the national average GDP

per worker. From the lower panel of Figure 3.7 it can be seen that East German

regions form a more homogenous group than West German ones. For an East

German region, the likelihood is highest to become a region with the average

East German GDP per worker. Or to put it differently, most East German

regions will end up with the same (comparatively low) level of GDP per worker.

11At first glance, another straightforward way to account for heterogeneity among regions
would be to introduce fixed effects in the estimations. We believe, however, that there are
both, economic as well as econometric reasons not to include fixed effects in our application.
From an economic point of view it is not clear why the analysis should allow for the possibility
that some (e.g. East German) regions possibly converge to significantly lower levels of relative
GDP than other regions in Germany, in particular if a long-term perspective is chosen.
Rather, differences in per capita output should only be transitory if absolute convergence
holds. From an econometric point of view, the inclusion of fixed effects (i.e. using within-
transformed data) causes similar problems as in parametric dynamic panel data models with
a lagged dependent variable, i.e. some kind of Nickel (1981) bias. It is beyond the scope
of this paper to extend the distribution dynamics framework to allow for fixed effects, a
modification which seems a promising task for future research. To the best of our knowledge,
there is no study at all which allows for unobserved heterogeneity across regions within the
distribution dynamics framework.
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Figure 3.7: Separate analysis of the West and East German economies. Top: Implied
ergodic densities of West and East German GDP per worker relative to
the German-wide average GDP per worker. Bottom: Implied ergodic
densities of West and East German GDP per worker relative to the West
and East German average GDP per worker, respectively.

By contrast, there is more variation in the long-run distribution of West German

regional GDP per worker. This ergodic density has longer tails than the one

for East German regions which implies that in the long run there are also

some comparatively unproductive as well as very productive regions in the

Western part of Germany. These findings are well compatible with the map of

German labor market regions presented in Figure 3.1. The map illustrates that

in 2002, there are very productive, mildly productive, as well as comparatively

unproductive regions in the Western part of Germany, while there are less

disparities within the new federal states.

3.5 Conclusion

This paper has provided evidence for a tendency towards convergence across

labor market regions in reunified Germany during 1992 to 2002. Very unpro-

ductive regions in 1992 tend to have increasing GDP per worker while extremely

productive regions tend to have decreasing GDP per worker. Convergence is
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driven mainly by the catching-up process of East German regions in relative

terms. However, despite the trend towards convergence, substantial regional

disparities persist. According to our long-turn analysis, German regions are

unlikely to converge towards equality in terms of GDP per worker. Rather,

the long-run estimates suggest that there will be pronounced disparities also

in the future. These disparities reflect long-term differences between West and

East German regions as a separate analysis revealed. One should keep in mind,

however, that an analysis for reunified Germany suffers from the comparatively

short sample period available.

The separate analysis revealed that the distributional dynamics of West and

East German regions differ. Therefore, we have to critically ask ourselves if our

specification using pooled data is a reliable analysis of the German economy as

a whole.

Strictly speaking, the specification using pooled data is not appropriate

when East and West German regions evolve according to separate laws of mo-

tion. Then, the separate analysis would be more appropriate. In the extreme

case, the process for the pooled data would not be ergodic if the two laws of

motion were indeed completely separated. The concept of an ergodic density

for the pooled data is therefore only meaningful if we assume that there is a

certain (possibly very low) probability that East German regions may exchange

their position with West German ones in the long run.

Our empirical finding of pronounced polarization in the ergodic density

for the pooled data stands in stark contrast to the optimistic expectation of

absolute convergence which implies that ultimately there will be convergence

towards a single point mass in the (unimodal) GDP distribution. However, as

emphasized by Durlauf, Johnson, and Temple (2005), there has been relatively

little formal effort to explore the implications of findings such as twin-peaks for

the empirical salience of alternative growth theories.

Specifically, the univariate and descriptive approach taken in this paper

does not allow us to distinguish between neoclassical conditional convergence

and club convergence. As Quah (1997) and others have shown, it is possible to

extend the distribution dynamics approach to allow for conditioning variables.

In particular, one would like to conduct a conditional analysis to the residuals

from a human capital augmented Solow model and see whether the results of

the conditional analysis of the distribution dynamics of the residuals mimic

that of the unconditional analysis. This way, we could link the finding of

polarization to the literature on nonlinearities and β-convergence (see Durlauf
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and Johnson, 1995 and Liu and Stengos, 1999).12 Such multivariate approach

seems the natural extension of our separate analysis of the East and West

German economies.

However, time-series data on investment rates as measures of regional sav-

ings are not available at the disaggregation level required (see the discussion

in Kosfeld, Eckey, and Dreger, 2002).13 Investment in human capital is even

more difficult to measure. Kosfeld, Eckey, and Dreger (2002) use a comprehen-

sive human capital indicator which is available only for most recent years. An

imperfect proxy for the human capital variable would be to use data on quali-

fications which are available for the subset of employees bounded to the social

security system, but only since 1996 (apart from Brandenburg). These con-

siderations illustrate that a conditioning analysis involves many new problems

and challenges. Therefore, we leave the analysis of conditional convergence to

further research.

12We would like to thank an anonymous referee for suggesting this link.
13Kosfeld, Eckey, and Dreger (2002) suggest to use data on newly established businesses

but these data are only available for 1998 onwards.
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Chapter 4

Interregional Risk Sharing and
Fiscal Redistribution in
Reunified Germany

4.1 Introduction

At the heart of interregional risk sharing stand the fundamental differences

between regional Gross Domestic Product (GDP), income, disposable income,

and consumption. While GDP corresponds to a region’s production, income

explicitly includes net factor payments from other regions. By holding claims

to output in other regions, individuals can smooth away idiosyncratic shocks

to income caused by variations in their home region’s production. Following

Asdrubali, Sørensen, and Yosha (1996) (henceforth ASY) such insurance is

referred to as ‘income smoothing’ or ‘capital market smoothing’. As discussed

by ASY (1996) and von Hagen (2000), in a world with imperfect capital markets,

further smoothing of incomes can be achieved by the fiscal transfer system,

which renders disposable income different from income. This channel of risk

sharing is referred to as ‘federal government smoothing’. In the extreme case

of full risk sharing after capital market and federal government smoothing,

idiosyncratic shocks to production do not affect disposable income at all. The

desirable effect of this stabilization is that regions can achieve a smooth stream

of intertemporal consumption.1

In most economies, fiscal transfers are not primarily intended to provide

1A region can further smooth its consumption by borrowing and lending on the credit
market. Since consumption data are not available at the disaggregated regional level used
in this paper, such ex post channel of ‘consumption smoothing’ or ‘credit market smoothing’
(see ASY, 1996 and Becker and Hoffmann, 2006) is not considered.

68
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short-term risk sharing. Although fiscal transfers may turn out to have stabiliz-

ing effects, the main justification of transfers is to provide systematic and long-

term redistribution from persistently rich to persistently poor regions. This

is made explicit in the German constitution, which states that the main goal

of the fiscal transfer system is to create and secure uniform living standards

throughout Germany. In general, any persistent disparities in levels of relative

economic prosperity may result from different shocks but also from permanent

heterogeneity among regions.

Similar to the smoothing of output shocks by private markets, the smoothing

of persistent initial disparities by fiscal redistribution can also be interpreted as

a kind of insurance. Rather than providing insurance against shocks, this kind

of risk sharing refers to an insurance against unfavorable initial conditions. It is

an insurance in a Rawlsian sense, an insurance taken behind a veil of ignorance.

Behind a veil of ignorance, individuals could be born in a rich as well as poor

region. In the absence of sizeable regional migration, the risk of being born

in a poor region can be insured against by redistribution of income by public

institutions. The market, by contrast, is not expected to provide sufficient

insurance against unfavorable initial conditions.

This implies that one has to distinguish between two kinds of risk shar-

ing: Firstly, private markets and the public sector provide insurance against

idiosyncratic shocks to regional output. Secondly, the public sector aims at

reducing level disparities between regions which may result from permanent

heterogeneity rather than from short-term shocks.

This paper provides new empirical evidence on both kinds of risk sharing in

reunified Germany. One novelty of our study is that it introduces new empirical

techniques into the risk sharing literature which rely on nonparametric density

estimation. The short term and stabilizing effect of interregional risk sharing is

analyzed by conditioning the densities of first-differenced income and disposable

income on shocks to regional output. This conditioning allows one to assess

if shocks to production are transmitted to shocks to income and disposable

income. An advantage of the proposed methodology is that one can address the

question of whether the relationship between the different risk sharing channels

and idiosyncratic output shocks is more complex than captured by a linear

regression model as proposed by ASY (1996). For example, a nonparametric

approach may turn out to be useful if high risks are harder to insure than

moderate risks.

In order to analyze if redistribution of the public sector contributes to a

reduction of level disparities between regions, we adopt a continuous state space
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method to estimate the transition dynamics and calculate the implied long-run

distributions of regional output, income, and disposable income. By comparing

the shapes of the long-run distributions we can assess the extent of smoothing of

disparities between regions achieved by private factor income flows and public

interregional transfers.

The techniques employed are borrowed from the growth econometrics liter-

ature and were first introduced by Danny Quah in a number of seminal papers

to analyze convergence between countries and regions (Quah, 1996a, b, c, 1997,

2001). This so called ‘distribution dynamics’ approach facilitates an analysis of

evolving distributions which extends panel data and time-series methods and is

especially useful in uncovering empirical phenomena like clumping, stratifica-

tion, and polarization. As already pointed out by Quah himself (Quah 1996c,

p. 117), risk sharing is one example where these phenomena are relevant. Sur-

prisingly, the techniques from the growth econometrics literature have not been

transferred yet to a risk sharing framework. Our study is the first assigning

Quah’s ideas to the risk sharing literature by explicitly distinguishing between

the distribution dynamics of output, income, and disposable income.

While previous studies for (West) Germany have examined regional risk

sharing at the level of the West German federal states (Hepp and von Hagen,

2000, Kellermann, 2001, Buettner, 2002), our study provides a regionally disag-

gregated analysis at the level of 271 functionally defined labor market regions.

For reunified Germany, ours is the first study analyzing interregional risk shar-

ing, most likely because appropriate data have only recently become available.

The case for reunified Germany is particularly interesting because there are

substantial interregional transfers aimed at reducing regional disparities, espe-

cially between the Eastern and Western part of the country. These transfers

potentially provide insurance of idiosyncratic regional risk.2

Before we proceed to present the data and the econometric model, we pro-

vide a preview of our results. The results of the short-term risk sharing analysis

are surprisingly clear-cut: Shocks to regional output are found to be almost

uncorrelated to changes in regional income, a finding which provides strong ev-

idence of almost complete risk sharing after income smoothing. The fact that

regional income does not co-move with output implies that there is no scope

for further smoothing of income shocks by the federal government. Indeed,

2In Germany, there is an explicit, formula-based arrangement for tax revenue sharing
and transfers among German federal states which is defined by the German constitution.
Moreover, there are separate arrangements for fiscal equalization at the municipal level in all
federal states (Hepp and von Hagen, 2000).
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the estimation results show that fiscal transfers, which are responsible for the

wedge between income and disposable income, provide no additional insurance

of idiosyncratic shocks.

Concerning the long-term redistributive properties of fiscal transfers we find

that the variance reduction achieved by the fiscal transfer system is substantial.

In the long run, the probability that German regions deviate from the average

level of disposable income per capita is comparatively low. Since redistribu-

tion by the public sector is necessary to achieve a uni-modal distribution of

regional incomes, we conclude that the fiscal transfer system reduces dispar-

ities between regions significantly. However, this redistributive policy has no

short-term stabilizing effects as a by-product.

This paper is structured as follows: The data are introduced in Section

2. Section 3 focuses on the short-term stabilizing effects of interregional risk

sharing. The distribution dynamics analysis of long-term disparities between

regions is presented in Section 4. A brief discussion of our empirical approach

is presented in Section 5. The last section presents our conclusions.

4.2 Data

In order to gain an understanding of regional risk sharing it is necessary to

measure the regional economies carefully. Recently, detailed data for reunified

Germany have become available, which facilitate a regionally disaggregated

analysis at the level of 439 counties. The institution for measuring the counties’

economic activity is the National Accounts of the Federal States compiled by

the Statistical State Office Baden-Wuerttemberg. Our analysis of interregional

risk sharing takes data on GDP, (primary) income, and disposable income into

account.3

Gross Domestic Product (GDP) is measured in market prices and quantifies

the amount of economic production of a particular region. In contrast to Gross

National Product (GNP), GDP excludes interregional income transfers and

hence attributes to a region the products generated within it, rather than the

incomes received in it.

The income figure used in this study is the so-called primary income of

private households.4 It consists of the received compensation of employees, the

3All data can be downloaded from:
http://www.statistik-portal.de/Statistik-Portal/publ.asp.

4GNP data for German counties are not available. Moreover, there are no income data
for other sectors.
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incomes of the self-employed, and property income, e.g. interest on wealth. In

contrast to GDP, primary income includes net factor payments (interregional

income transfers) from other regions. A priori, the difference between regional

GDP and income can be expected to be substantial because regions within a

country are highly integrated.

Disposable income is defined as the amount of households’ total income left

after taxes, plus any transfer payments and grants received from the federal

government. We denote the overall balance of levied taxes (e.g. income tax),

contributions (e.g. social insurance contributions) and received transfers (e.g.

pensions, unemployment benefits, social welfare) as net fiscal transfer. Dis-

posable income is obtained from primary income by substracting the net fiscal

transfer.5 This income figure determines how much private households can con-

sume and save and it is often seen as an indicator of the standard of living in

a region.6

Since regions differ in size, aggregate measures of output, income, and dis-

posable income need to be normalized by an appropriate reference variable.

Usually, total population or total employment are used as a reference.

For income and disposable income, total population is the appropriate ref-

erence because income is measured at the place of residence instead of at the

workplace. In contrast, total employment appears to be the more appropri-

ate reference for data on production, because both, GDP and the number of

employed people refer to the workplace.7

This difference between data referring to the place of residence and to the

workplace might cause problems in our analysis of interregional risk sharing

because regions within a country are integrated by commuter flows. If com-

muting linkages between regions are not accounted for in the employed data,

5Previous studies on interregional risk sharing and fiscal federalism distinguish between the
smoothing effects of different levels of the fiscal equalization system such as taxes, transfers,
and grants (Sørensen and Yosha, 1999, Buettner, 2002). Unfortunately, it is not possible
to analyze the composition of federal government smoothing at the fine level of regional
aggregation used in this paper because these data are not available. Nevertheless, one still
can compare incomes before and after redistribution of the fiscal sector, i.e. income versus
disposable income.

6Official statistics does not report data on consumption at the county level. Therefore,
working with disposable income data is the best we can do. It is well-known from other
countries that even if consumption data are available they are frequently measured imprecisely
and noisily (ASY, 1996). Moreover, as argued by Athanasoulis and van Wincoop (2001), over
longer horizons one can expect consumption growth to closely follow the growth rate of income
after risk sharing. Unfortunately, official statistics does not provide regional price indices at
the county level.

7Population or employment data disaggregated for age groups are not available for the
whole time period under study.
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a properly specified risk sharing model needs to isolate the smoothing effects

of commuting and suburbanization from other channels such as capital mar-

ket and federal government smoothing. A further problem associated with the

use of disaggregated county data is that the borders of German counties are

determined by political and historical rather than economic reasons.

For these reasons we aggregate counties to local labor market regions which

are the target areas for the most important regional policy program in Ger-

many, the so called GRW (German ‘Gemeinschaftsaufgabe Verbesserung der

regionalen Wirtschaftsstruktur’). We use data for 439 German counties to de-

fine 271 labor market regions, so that center and hinterland of labor markets are

adequately integrated on the basis of commuter flows. Due to this aggregation

the employed data on GDP, income, and disposable income already account for

the most important commuting linkages between regions and we can express all

variables in terms of per capita as is usually done in the risk sharing literature.8

To account for the potential role of German-wide shocks (time-specific ef-

fects) that may create uninsurable output variability, we have formulated the

data for each labor market region relative to the German-wide aggregate. This

normalization also accounts for common changes in inflation. The key variables

in our study are the region’s logarithmic or percentage deviations from the na-

tional average per capita values of production, income, and disposable income.

To save on notation, we denote relative variables with lower-case letters, so

relative output per capita is gdp = log GDP
GDP∗ , relative income is inc = log

INC
INC∗ ,

and relative disposable income is dinc = log DINC
DINC∗ , whereas the variables indi-

cated with a star denote the population-weighted national average values. In

the following, we use the term ‘relative’ as equivalent to ‘idiosyncratic’.

These relative variables do not only reflect the influence of shocks but also

include the permanent heterogeneity among regions. This means that the levels

of gdp, inc, and dinc include the fixed effect of each region. In order to measure

idiosyncratic shocks, we will work with first differences of our key variables gdp,

inc, and dinc which by construction no longer include the fixed effects of the

variables in levels. The first differences of the relative variables measure the

deviation of a region’s growth rate from the average growth rate in Germany

as a whole.

The empirical analysis employs annual data in the period from 1995 to

2002. Data from earlier years are only available for GDP but not for primary

8Since all our measures–output, primary income, and disposable income–are in per
capita terms we often omit ‘per capita’ for the sake of brevity. Population data are reported
by the Federal Office for Building and Regional Planning.
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and disposable income. Thus, our database consists of a balanced panel of 271

regions observed over 8 years.9

4.3 The short-term stabilizing effects of inter-

regional risk sharing

In this section to what extent private markets and the public sector provide

insurance against idiosyncratic shocks to regional output is analyzed. As sum-

marized by Asdrubali and Kim (2004), most of the theoretical literature on risk

sharing considers a world of open endowment economies with complete mar-

kets lasting infinite periods. Each economy is populated by a representative

risk-averse consumer who maximizes his expected utility in the face of an ex-

ogenous stochastic output process. Standard time- and leisure-separable utility

functions imply that every representative agent will insure his future income

stream in any contingency. If markets are complete, agents can pool their risk

and insure fully against the idiosyncratic uncertainty in their resources. Con-

sequently, one important empirical implication of risk sharing theory is that

consumption should not co-move with idiosyncratic variables, such as regional

output. Rather, changes in consumption should move parallel to aggregate

changes in consumption (given that preference shocks and measurement error

are absent).10

The study of risk sharing channels was introduced by ASY (1996) and adds

to the analysis the correlation between GDP and additional national accounts

measures, such as income, disposable income, and ultimately consumption. As

discussed in the last section, we can only work with data on disposable income

because consumption data are not available at the disaggregated regional level

used in this paper. We follow the ideas of ASY (1996) and Sørensen and Yosha

(1998) and consider the following identity of per capita output, income, and

disposable income:11:

gdpi = (gdpi − inci) + (inci − dinci) + (dinci) . (4.1)

In order to obtain a simple measure of smoothing from the identity, one ma-

9The database only covers a rather short time period but one has to keep in mind that a
richer database is simply not available for reunified Germany.
10For more details on risk sharing theories we refer to Cochrane (1991), Sørensen and Yosha

(1998), Crucini (1999), and Crucini and Hess (2000).
11The decomposition suggested in the cited studies also includes consumption consi and

reads as (in logs): gdpi = gdpi − inci + inci − dinci + dinci − consi + consi.
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nipulates it by taking differences and multiplying both sides by ∆gdpi :

∆gdpi·∆gdpi = (∆gdpi −∆inci)·∆gdpi+(∆inci −∆dinci)·∆gdpi+(∆dinci)·∆gdpi.

(4.2)

Finally, one takes expectations and arrives at the following decomposition of

the cross-sectional variance in∆gdp (see ASY, 1996, Sørensen and Yosha, 1998,

and Mélitz and Zumer, 1999 for further details):

var {∆gdpi} = cov {∆gdpi,∆gdpi −∆inci} (4.3)

+cov {∆gdpi,∆inci −∆dinci}
+cov {∆gdpi,∆dinci} .

Divide by the variance of ∆gdpi to get

1 = βC + βG + βU , (4.4)

where βC is the ordinary least squares estimate of the slope in the regression

of (∆gdpi−∆inci) on ∆gdpi. The dependent variable (∆gdpi−∆inci) reflects

changes in capital income flows between regions (e.g. equity returns) and βC

is interpreted as the percentage of smoothing of a GDP shock carried out by

capital markets.12

Similarly, the coefficient βG is the slope in the regression of (∆inci−∆dinci)

on ∆gdpi. The (∆inci −∆dinci) differential measures the net change in fiscal

transfers and we can interpret βG as the percentage of smoothing of a GDP

shock carried out by the federal government. Finally, βU is the coefficient in

the regression of ∆dinci on ∆gdpi and measures the amount not smoothed. In

practice, the third regression needs not be estimated because the β coefficients

sum to unity.

At the practical level, the typical parametric risk sharing regressions implied

by the variance decomposition method are specified as panel regressions and

12One has to keep in mind that the gdp− inc differential also captures retained earnings.
There are no data available which can be used to disentangle the effects. Athanasoulis and
van Wincoop (2001) argue that retained earnings do not alter the economic interpretation
of capital market risk sharing substantially because retained earnings reflect an investment
that contributes to dividends in the future.
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can be summarized as follows (all variables are in stacked form):

∆gdp−∆inc = βC∆gdp+ u1 (4.5)

∆inc−∆dinc = βG∆gdp+ u2,

whereas βC and βG measure the average degree of capital market and federal

government smoothing, respectively. The β coefficients will be weighted aver-

ages of the year-by-year cross-sectional regressions (see ASY, 1996, footnote 5).

In both regressions, the right-hand side variable is the idiosyncratic shock to

output and the slope parameters measure the percentage of shocks to output

which are absorbed at each level of smoothing. Full risk sharing is present if

βC and βG sum to unity.13

This paper suggests an alternative method of analyzing risk sharing which

is based on nonparametric density estimation as proposed by Quah (1997) in

the context of convergence studies. Our basic idea is to combine ASY’s (1996)

regression specification as summarized in (4.5) and Quah’s (1997) distribution

dynamics approach.

Quah’s original approach is concerned with mapping whole distributions

sequentially in time. This procedure will turn out to be especially useful in

estimating the long-term redistributive effects of interregional risk sharing and

is introduced in more detail in the next section. In this section, we suggest

a slight modification of Quah’s dynamic approach to analyze the short-term

stabilizing effects of risk sharing.

By estimating the conditional densities f(∆gdp−∆inc|∆gdp) and f(∆inc−
∆dinc|∆gdp) we can test if shocks to regional output are transmitted to shocks

to income and disposable income. This means that instead of mapping the

distributions of single variables (gdp, inc, and dinc) sequentially in time,14

we estimate the (contemporaneous) conditional densities of variables in first

differences. These densities show the likelihood of changes in private factor

income flows (or net fiscal transfers, respectively) given that a region is subject

to an idiosyncratic shock to its production. In a nutshell, such analysis is

the nonparametric equivalent à la Quah (1997) to the parametric risk sharing

regressions as displayed in (4.5). To compare the results obtained with our

method to those of linear techniques we will also perform a simple regression-

13This can be seen more clearly by rewriting the first regression∆gdp−∆inc = βC∆gdp+u1
as∆inc = (1−βC)∆gdp+u1. If βC equals 1, income does not co-move with output. Similarly,
if full risk sharing is achieved at the federal government level, dinc should not co-move with
gdp. As in previous studies, we do not impose any restrictions on the estimated coefficients.
14This will be done in the next section.
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Figure 4.1: Contour plot of f(∆gdp−∆inc|∆gdp) (capital market smoothing of idio-
syncratic output shocks)

based risk sharing analysis.

The conditional densities f(∆gdp−∆inc|∆gdp) and f(∆inc−∆dinc|∆gdp)

are estimated using adaptive kernel techniques (Silverman, 1986, Pagan and

Ullah, 1999).15 We briefly explain how to estimate the conditional densities

using the density f(∆gdp − ∆inc|∆gdp) as an example. First, we have to

estimate the joint density of (∆gdp − ∆inc) and ∆gdp using adaptive kernel

techniques. Then, we compute the marginal density of ∆gdp by integrating

over (∆gdp − ∆inc). The ratio of the joint density to the marginal density

provides the estimate of f(∆gdp−∆inc|∆gdp).

Figures 4.1 and 4.2 show the contour plots of the surface of the conditional

densities f(∆gdp − ∆inc|∆gdp) and f(∆inc − ∆dinc|∆gdp) which were esti-

mated using pooled data for all years (1897 observations). The thin lines in

Figures 4.1 and 4.2 connect points at the same density on the three-dimensional

15Adaptive estimators with a varying rather than fixed bandwidth have the desirable effect
of separating different modes of the density more clearly. The adaptive kernel estimator
adapts to the sparseness of the data by varying the bandwidth inversely with the density.
This means that a broader bandwidth is used for observations located in regions with low
density, and vice versa. Thus, adaptive estimators are able to recover more details of the
density where data concentrate because the window width decreases in those regions while it
increases in areas of only low data densities. Silverman’s (1986, Section 3.4.2) rule of thumb
is used to determine the bandwidth of the pilot density estimate in the two-step adaptive
kernel estimation. All computations are performed using MATLAB.
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graph of the conditional densities (output omitted). The displayed regression

lines will be explained later.

To illustrate how to interpret the figures, we can consider the conditional

density f(∆gdp −∆inc|∆gdp) as an example (Figure 4.1). If all mass of this

density were concentrated only parallel to the ∆gdp axis at a value of 0 for

(∆gdp− ∆inc), idiosyncratic output shocks would not be insured at all. Such

density shape would indicate that given that a region has a certain output

shock, there would be a high likelihood that this shock were perfectly transmit-

ted to a change in income of similar magnitude. Risk sharing would be absent

because there would be no adjustment in net factor income flows between re-

gions (∆gdp − ∆inc) in response to an idiosyncratic output shock ∆gdp. In

other words, there would be no difference between the change in relative output

and the change in relative income, regardless of the size of shocks to output.

In contrast, perfect risk sharing already at the capital market level man-

ifests itself in the kernel if most probability mass were concentrated around

the 45◦-diagonal. In this case, relative income would not co-move with relative

output. To examine the smoothing effects of the federal government, the shape

of the conditional density f(∆inc−∆dinc|∆gdp) as displayed in Figure 4.2 is

interpreted analogously.

Figure 4.1 provides strong evidence of almost complete risk sharing after

capital market smoothing. Most of the mass of the conditional density is con-

centrated around the main diagonal which indicates that shocks to regional pro-

duction have no substantial influence on changes in income. This means that

shocks to output ∆gdp induce a change in factor income flows (∆gdp−∆inc)

in the same direction and of similar magnitude. However, the shape of the

density also suggests that large positive or negative output shocks are partly

transmitted to changes in income.16 This visual impression will be confirmed

below.

By sharp contrast, there is almost no evidence for a smoothing effect of

the federal government (Figure 4.2). Since the mass of the conditional density

f(∆inc − ∆dinc|∆gdp) is concentrated parallel to the ∆gdp axis there is no

evidence for an additional insurance effect of the public sector. In other words,

shocks to regional output ∆gdp do not induce a change in net fiscal transfers

(∆inc−∆dinc).

In order to test if these strong results are confirmed by a parametric re-

gression analysis, we also estimate the risk sharing regressions (4.5). If βC is

16With (absolutely) large shocks we mean those values of ∆gdp which are close to the left
or right boundary of the grid interval.
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Figure 4.2: Contour plot of f(∆inc − ∆dinc|∆gdp) (federal government smoothing
of idiosyncratic output shocks)

estimated close to 1 and βG close to zero (or insignificant), we would obtain a

similar pattern of almost complete risk sharing after capital market smoothing

and virtually no risk sharing after federal government smoothing.

Indeed, this is the pattern found in the data (see Table 4.1). While a simple

OLS regression yields an estimate of βC = 0.937, the estimated coefficient for βG
is found to be negative (−0.019).17 The results of this estimation indicate that
only 8% of idiosyncratic output shocks are not smoothed after both channels

of risk sharing. The federal government, however, is found to have a (slight)

destabilizing function. Hence, the results of the parametric regression analysis

are well in line with our nonparametric density analysis.

The examination of Figure 4.1 suggests that a parametric regression ap-

proach possibly hides important information which could be detected in a non-

parametric regression framework. Fortunately, the estimated conditional den-

sities f(∆gdp − ∆inc|∆gdp) and f(∆inc − ∆dinc|∆gdp) already incorporate

a simple nonparametric regression. We simply have to multiply the estimated

conditional densities with the grid points at which the density was evaluated.18

17Both coefficients are significantly different from zero at the 1% level. Controlling for
region-specific fixed-effects in the idiosyncratic growth rates by removing region-specific
means from all variables has close to no influence on the estimation results obtained with
plain OLS.
18The same equi-spaced grid is used on both axis. A deeper nonparametric regression
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Table 4.1: OLS estimates of risk sharing channels (percent)

1996-2002

Capital markets (βC) 0.937 (0.007)

Federal government (βG) -0.019 (0.005)

Not smoothed (βU) 0.0821

Percentage of shocks to Gross Domestic Product absorbed at each level of
smoothing. Standard errors are in parentheses. Number of observations: 1897.
1Calculated as 1− βC − βG

In order to facilitate a comparison of a) the nonparametric conditional den-

sity approach, b) the parametric regression approach, and c) the nonparametric

regression approach, we display both regression lines in the same graph as the

conditional densities.

From Figure 4.1 it can be seen that the nonparametric regression indeed

reveals some nonlinearities which cannot be detected with the linear model.

The shape of the nonparametric regression indicates that moderate risks are

almost completely insured. However, large positive or negative shocks on the

grid interval are partly transmitted to changes in income. This pattern indicates

that these risks are harder to insure on the capital market than small risks.

The shape of the conditional density and the nonparametric regression line

show the advantage of the nonparametric approach suggested in this paper. As

argued by Danny Quah in the context of convergence studies, by focusing on the

average behavior of a representative region, a linear regression model potentially

suppresses important distributional patterns the researcher is interested in (see

the arguments in Quah, 1996a, 1997). Our results suggest that this problem

may also apply for interregional risk sharing studies. In our application, the

linear regression for capital market smoothing is flatter than the nonparametric

regression. Hence, the linear framework overstates the degree of risk sharing

for those risks which are measured on the grid interval.

analysis (e.g. local polynomial regression or average derivative estimation) is beyond the scope
of this paper. Such analysis could shed more light on the exact nature of the nonlinearities
detected with our simple nonparametric regression, which is motivated by Quah’s distribution
dynamics approach.



CHAPTER 4. RISK SHARING AND FISCAL REDISTRIBUTION 81

For federal government smoothing (Figure 4.2), however, the nonparametric

regression is not substantially different from the linear regression line.

That much is certain, the most important feature is that both the nonpara-

metric as well as the parametric approach suggest a consistent result concern-

ing short-term interregional risk sharing: While private markets provide almost

complete insurance against shocks, the federal government does not contribute

to a stabilization of regional incomes. According to the results of our estimation,

fiscal transfers in reunified Germany can hardly be justified with reference to

a potential stabilizing effect on regional incomes. Such insurance effect cannot

be found in the data.

However, as discussed in the Introduction, fiscal transfers are not only in-

tended for stabilization, but mainly for long-term redistribution. We argued

that such redistribution can also be interpreted as a kind of risk sharing: Rather

than being concerned with the smoothing of idiosyncratic shocks, the public

sector can provide a smoothing of permanent heterogeneity among regions. In

order to analyze if fiscal transfers achieve a long-term reduction of regional

disparities by systematic redistribution of incomes, we analyze the distribution

dynamics of relative output, income, and disposable income. In contrast to the

short-term risk sharing analysis performed in this section, a long-term analysis

of risk sharing is concerned with the levels of relative variables rather than their

first differences.

4.4 The long-term redistributive effects of in-

terregional risk sharing

In this section we analyze to what extent the public sector reduces long-term

differences in the relative position of a region, reflecting its economic devel-

opment relative to the national average. In other words, we provide evidence

whether long-term differences in relative production are also reflected in long-

term differences in income and disposable income. To do so, we adopt the

distribution dynamics approach to economic convergence which was proposed

by Quah (1997).

In a first step, we estimate a probability model of transitions which cap-

tures a distribution’s law of motion. This means that we examine how a given

individual of the distribution of gdp, inc, and dinc at time t transits to another

part of the distribution by the time t + τ . In a second step, we follow recent

developments in the growth convergence literature (Johnson, 2000, 2005) and
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calculate the densities of the implied ergodic distributions on the basis of the

estimated distributional dynamics in a continuous framework. As explained

below, a comparison of the ergodic densities of gdp, inc and dinc allows one to

assess the degree of (level) smoothing achieved by private and fiscal institutions.

4.4.1 Estimating distribution dynamics and the implied

ergodic density

One possibility of estimating transition probabilities is to discretize the state

space and then count the observed transitions out of and into distinct discrete

cells of a Markov transition probability matrix (Quah, 1993). However, Bulli

(2001) has shown that an arbitrary discretization of the state space alters the

probabilistic properties of the data. A better approach is to use no discretization

but instead to allow the number of cells of the Markov transition probability

matrix to tend to infinity (Quah, 1997). In this continuous case, the transition

probability ‘matrix’ becomes a stochastic kernel. Such a kernel is a huge non-

negative matrix whose rows sum to unity, satisfying regularity conditions to

ensure that a limiting distribution exists (Quah, 2001).

To estimate the transition dynamics of gdp, inc, and dinc in a continuous

framework, we suppose that the distribution of a variable x can be described by

the density function ft(x), where x is variously gdp, inc, and dinc.19 In general,

this distribution will evolve over time so that the density prevailing at time t+τ

for τ > 0 is ft+τ(x). Assuming that the process describing the evolution of the

distribution is time-invariant and first-order Markov, the relationship between

the two densities can be written as

ft+τ (z) =

Z ∞

0

gτ(z|x)ft(x)dx, (4.6)

where gτ(z|x) is the τ−period ahead density of z conditional on x. For example,
z could be relative GDP in 2002 and x the same variable in 1995. The transition

probabilities gτ(z|x) encode all information about the evolution of the sequence
of distributions over time and map the distribution from period t to period t+τ .

Similar to the last section, the stochastic kernel gτ(z|x) is a conditional
density. However, there is an important difference between the conditional

densities gτ(z|x) for gdp, inc, and dinc and the conditional densities f(∆gdp−
∆inc|∆gdp) and f(∆inc − ∆dinc|∆gdp). The former densities map a single

19This simplified presentation of Quah’s (1997) methodology was proposed by Johnson
(2000, 2005).
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variable sequentially in time. This means that the kernel gτ(z|x) shows the
probability that a given region transits to a certain state of relative GDP (in-

come, disposable income) given that it is in a certain state of relative GDP

(income, disposable income) in the starting period.

The estimated transition probability kernel gτ(z|x) describes the distribu-
tion’s law of motion. If one assumes that this law of motion is stable over time,

the transition probabilities can be projected further into the future, to calcu-

late the implied stationary (or ergodic) distribution. While actual densities at

a given point in time may reflect a (historical) disequilibrium due to structural

shocks in the past, the ergodic density shows a future equilibrium in the absence

of structural changes. An analysis of the long-term properties of risk sharing is

therefore concerned with the ergodic rather than actual point-in-time densities.

Given an estimate for gτ(z|x), the implied long-run density f∞(z), given

that it exists, is the solution to

f∞(z) =

Z ∞

0

gτ(z|x)f∞(x)dx. (4.7)

We suggest two methods to solve for the ergodic density, f∞(z) = f∞(x). An

intuitive approach is to multiply the transition probability kernel gτ(z|x) mul-
tiple times by itself until the density has converged, which means, until all rows

of the transition probability kernel are equal. Using this iterative procedure,

observed transition probabilities are projected further into the future.

The second way is related to an eigenvector and eigenvalue problem. John-

son (2005) has shown that the stationary distribution can be represented as an

eigenvector of gτ (z|x) corresponding to the eigenvector one.20 We checked that
both approaches yield the same result.

Before introducing the economic interpretation of the ergodic densities of

gdp, inc, and dinc it is important to note that the limiting distribution is, by

construction, independent of initial conditions. This property becomes evident

if one recalls that the ergodic density can be calculated by multiplying the

20For an elaborate presentation of this idea see the webappendix of Johnson (2005),
downloadable from http://irving.vassar.edu/faculty/pj/pj.htm. The author ex-

plains how to solve numerically for f∞(z) =

bZ
a

gτ (z|x)f∞(x)dx, where a and b define the

interval where the density is evaluated. In the numerical implementation, the stochastic
transition probability kernel gτ (z|x) is estimated as a p× p matrix Q, where p is the number
of grid points at which the conditional density is evaluated. If the largest eigenvalue of this
matrix is unity then the Markov chain is ergodic. The left eigenvector φ corresponding to
this eigenvalue has the property φ = Qφ and φ is the implied ergodic density.
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distribution’s law of motion multiple times by itself. If there are sufficient

iterations the influence of the starting positions of particular regions becomes

more and more negligible.

Keeping this important property in mind, one can interpret the ergodic

density from the perspective of a single region. The underlying assumption of

the ergodic density is that a single region has moved many times between the

states of the Markov chain according to the unchanged law of motion gτ (z|x).
By construction, the ergodic density shows how often the region realizes the

distinct states, asymptotically independent of the starting position of the par-

ticular region. This means that for a single region, the ergodic density shows

the likelihood of certain outcomes.

For example, if the density of the ergodic distribution of one of our relative

variables is uni-modal with a peak at 0 (in logs), there is a very high likelihood

that a region realizes the average outcome. In other words, such pattern of the

ergodic density would imply that in the long run the likelihood is highest that

a region becomes one with an average outcome.

Besides the number of distinct peaks, one also has to examine the dispersion

of the ergodic density. If the dispersion is small it is unlikely that extreme values

are realized. By contrast, a large standard deviation indicates a pronounced

variation.

A comparison of the implied long-run distributions of relative output, in-

come, and disposable income allows one to assess the extent of smoothing

achieved by private and public interregional transfers. One could also say that

the ergodic distributions show the ‘risk’ of becoming a poor or rich region in

terms of gdp, inc, and dinc. To illustrate this, consider an extreme case. If

regions were not integrated by factor movements and if there were no fiscal

transfer system, regions would be completely isolated and there would be no

interregional risk sharing. In such a setting, differences in production would

be fully mirrored in both, income as well as disposable income. Consequently,

the shape of the ergodic densities of gdp, inc, and dinc would be equal. By

contrast, if private institutions absorb differences in regional production and if

there is significant redistribution of regional incomes by the public sector, the

long-run distributions of output, income, and disposable income will differ.

In our methodological framework of distribution dynamics one finds ev-

idence for a reduction of disparities achieved by risk sharing if the ergodic

density of relative income has smaller dispersion than the ergodic density of

relative output. Similarly, the extent of redistribution achieved by the federal

government is revealed by the shape of the ergodic density of dinc in comparison
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to inc. The former density should have a smaller dispersion than the latter.

If there is a large cross-section of regions, the ergodic densities also have a

cross-sectional interpretation. If it is assumed that the distribution of a cross-

section of regions has evolved for a very long time according to the unchanged

law of motion gτ(z|x), the influence of the starting positions of different regions
will have vanished. In such a setting, the ergodic density shows the shape of

the distribution if past dynamics continue operating unchanged in the future.

For example, suppose that the ergodic density of the relative income variable

turns out to be bi-modal; one peak corresponds to a high relative income and

the other one to a low income. This pattern would imply that in the long

run there are both, relatively rich as well as poor regions in the cross-section.

Hence, one would find evidence for the existence of inequality in the long run

which usually is referred to as ‘convergence clubs’.

4.4.2 Estimation results

The estimated distribution dynamics of gdp, inc, and dinc are based on one-

year transitions taking place between 1995 and 2002. This means that we

pool the observed transitions 1995-1996, 1996-1997 and so on. The use of

annual transitions instead of longer time intervals is strongly recommended by

Quah because taking transition steps with long time intervals instead of annual

frequencies is likely to be ‘correspondingly noisy, with even fewer observations

informing the estimate’ (Quah, 2001, p. 308). The sample consists of 1897

observations (271 labor market regions multiplied by 7 observed transitions).

Based on the estimated transition probability kernels gτ(z|x) (see equation
(4.6)) we calculate the ergodic densities of regional output, income, and dispos-

able income (see equation (4.7)).21 Figure 4.3 displays the estimation results.

All densities have been normalized so that the densities show the likelihood of

a realization of gdp, inc, and dinc in the grid interval.

4.4.2.1 GDP vs. income

Although private markets are not expected to provide substantial insurance

against unfavorable initial conditions, it is nevertheless instructive to compare

the long-run distributions of output (gdp) and income (inc). As the literature

points out, the capital market may provide insurance, not only against tran-

21The transition probability kernels gτ (z|x) are conditional densities. To estimate these
densities we can use the same econometric toolkit as developed in the last section. Again,
we use adaptive kernel techniques.
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Figure 4.3: Ergodic densities of relative output, income, and disposable income, cal-
culated on the basis of g1(z|x) for gdp, inc, and dinc (yearly transitions
between 1995-2002)

sitory, but also against permanent shocks (Becker and Hoffmann, 2006).22 If

stochastic shocks to output and income differ, it is well possible that the long-

run distribution of income is smoother than the output distribution. Moreover,

convergence in income may be expected to occur faster than convergence in

output, because convergence in income can be achieved by trade in financial

assets. By contrast, convergence in output requires a flow of productive factors

themselves.

Indeed, there is some evidence for these hypotheses. Both densities (gdp

vs. inc) show a three-peaked pattern. However, the peaks of the relative GDP

distribution are located at lower values than the peaks of the relative income

distribution. For the relative GDP distribution, the peaks correspond to 60%,

78%, and 93% of the German average while they correspond to 67%, 89%, and

101% for the relative income distribution. This means that a single region faces

a higher likelihood of realizing a low value of relative production than realizing

a low value of relative income. Hence, the shapes of the ergodic densities

suggest that in the long run there are fewer differences in regional income than

22The methodology suggested in the last section cannot distinguish between transitory and
permanent shocks. Such distinction would require a cointegrated VAR framework. Due to the
short time-period spanned by our database for reunified Germany, a sophisticated analysis
of the persistence of shocks is not possible.
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in regional output. This pattern is consistent with a certain smoothing effect

of capital market linkages even if the variables are formulated in levels rather

than in first differences as in the last section.

To further illustrate that the income distribution is smoother than the GDP

distribution we compare the standard deviations of the two distributions. Since

there are no sample observations of the ergodic density, one has to calculate the

standard deviation directly from the estimated density. The standard deviation

of the relative output distribution is 0.246 while it is 0.190 for the relative

income distribution.

Taking a cross-sectional perspective of economic convergence, the multi-

modal pattern of both gdp and inc indicates that German labor market regions

will not become equal to one another in terms of output or income. Rather,

there will be convergence clubs of both regional output and income if the past

dynamics of the regional distributions remain unchanged. Since the market

does not fully equalize regional income disparities, there can be scope for fur-

ther income smoothing provided by fiscal redistribution.

4.4.2.2 Income vs. disposable income

To analyze the long-term redistributive function of fiscal transfers we compare

the ergodic densities of income (inc) and disposable income (dinc).

As can be seen from Figure 4.3 , the long-run distribution of disposable

income is strongly uni-modal with a peak corresponding to 93% percent of the

German average. This means that becoming a region with a slightly below-

average disposable income is associated with the highest likelihood. Remark-

ably, in the long run, the probability that a region has a disposable income

smaller than about 0.75 times the German average (-0.3 in logs) is effectively

zero.

The shape of the ergodic density of dinc suggests that German regions do not

deviate much from the average disposable income per capita. The figure clearly

illustrates that the ergodic distribution of disposable income has considerably

smaller dispersion than the income distribution. The standard deviation of the

former is 0.098 while it is 0.190 for the latter. These numbers show that the

variance reduction achieved by the fiscal transfer system is substantial. About

half of the dispersion of the income distribution is smoothed away by the federal

government.

For the cross-section of regions we find strong evidence of long-term conver-
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gence of disposable income because there are no convergence clubs apparent.23

The persistent polarization in regional output and income is not transmitted to

the long-run distribution of disposable income. This finding implies that fiscal

redistribution strongly contributes to an equalization of incomes among regions

in reunified Germany. To put it differently, income smoothing by federal fiscal

institutions is necessary to achieve a uni-modal distribution of regional incomes.

On the side of the econometrics, the estimated shape of the densities of the

long-run distributions of gdp, inc, and dinc show the advantage of the nonpara-

metric approach proposed in this paper. Obviously, the distribution patterns

are non-normal. A standard parametric regression analysis could not detect

the long-term polarization outcome in gdp and inc. Therefore, this paper has

shown that Quah’s (1997) distribution dynamics approach is not only a powerful

framework to analyze GDP convergence or divergence but it is also extremely

useful to discriminate between the long-run outcomes of output, income, and

disposable income.

4.5 Discussion

Besides having provided new empirical evidence on interregional risk sharing in

reunified Germany, another contribution of this paper is to have introduced new

empirical techniques into the risk sharing literature inspired by established tech-

niques originally proposed in the growth econometrics literature. We think that

the application of the distribution dynamics approach in a risk sharing frame-

work is an advance in itself and it would be interesting to compare the results

for Germany with other countries. In order to point out potential drawbacks

and opportunities of the distribution dynamics framework to other researchers,

we present a critical discussion of our analysis before we summarize our main

results.

One caveat of our analysis is that we did not directly examine the effects

of labor mobility on smoothing of GDP shocks. Interregional smoothing of

earnings can be the result of commuting across the borders of a region (ASY,

1996) and commuters income may also make up a fraction of the smoothing

effect attributed to the capital market. Therefore, it is an important task for

future research to incorporate commuter flows in the risk sharing framework,

an issue which has gained only minor attention in the literature so far.

23The term ‘convergence’ should not be interpreted as a dynamic catching-up process
of poor regions. Rather, ‘convergence’ of disposable income only refers to a reduction of
disparities through systematic redistribution by the public sector.
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Moreover, due to the short time period available for reunified Germany, we

did not examine the time-series properties of the data used. For other countries,

however, longer time series are available and researchers should carefully exam-

ine the persistence the data display. The concept of distribution dynamics is

only applicable if the employed relative variables are stationary. In other words,

if the absolute per capita levels of regional output, income, and disposable in-

come are integrated processes, one has to assume that there is a cointegrating

relationship between regional variables and the respective national average val-

ues with cointegrating vector (1,−1). Only if there is such long-run relationship
between regional and aggregate variables, can one interpret the ergodic densi-

ties of relative variables also in terms of a cointegrating relationship, as we did

in the present paper. By contrast, if the relative data series are integrated

processes, an ergodic density in the sense of a long-run equilibrium simply does

not exist because a non-stationary series is not ergodic.

Another important aspect is that our analysis does not account for spatial

effects. Throughout the present paper the cross-sectional observations on re-

gional output, income, and disposable income were treated as if they represent

a random sample, that is, a collection of observations from independent and

identically distributed random variables. In reality, however, regional data of-

ten display a high degree of spatial autocorrelation as well as various forms

of spatial heterogeneity. Unfortunately, there is no study as of today which

explores the implications that spatial effects can hold for the application of the

continuous variant of the distribution dynamics approach used in this paper.

Of course, there are alternative estimation strategies which could be used to

overcome the discussed limitations of the nonparametric distribution dynamics

approach. For example, there are both panel data and time-series models that

can account for spatial inter-dependence. The advantage of the approach pur-

sued in the present paper comes about if the distribution is not single-peaked

and high moments have to be estimated for proper inference. We fully agree

with Rey and Dev’s (2006) call that ‘a fruitful avenue of future research is

adopting a perspective where the outputs from the spatial econometric analy-

sis become inputs into a higher order study in which the dynamics of both

the income distribution and the level of spatial clustering are treated jointly’.

The methodological issues on spatial regional income convergence examined in

Rey (2001), Egger and Pfaffermayr (2006), and Rey and Dev (2006) can have

relevance for the study of interregional risk sharing, especially the recent devel-

opments in the analysis of spatial σ-convergence. The cited studies may serve as

a starting point to develop a unified modelling strategy for spatial dependence
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and the dynamics of the whole income distribution.

However, before adopting spatial econometric techniques to the issue of risk

sharing, researchers should extend existing theoretical models to directly in-

corporate spatial linkages of capital, federal government, and credit market

smoothing, so that testable empirical implications can be derived from a sound

theoretical basis. In growth theory, the connection between spatial economet-

ric techniques and theoretical (structural) models including spatial linkages is

beginning to attract increased attention (see for example Fingleton and López-

Bazo, 2006). For the issue of risk sharing, we leave these interesting tasks to

future research.

4.6 Conclusion

This paper focused on two related questions: First, to what extent do private

institutions and the public sector provide insurance against idiosyncratic output

shocks to individual regions? Second, to what extent do private institutions and

the public sector reduce long-term differences in the relative position of a region

reflecting its economic development relative to the national average?

It is unnecessary to emphasize that the aim of this study was not to draw

conclusions about whether the existing federal transfer system redistributes too

much or too little. Moreover, it is beyond the scope of this paper to analyze any

negative incentive effects that can result from the fiscal transfer system. In-

stead, we were only interested in analyzing the stabilizing effects and predicting

the long-term redistributive effects of fiscal transfers in reunified Germany.

Our empirical results suggest that private factor income flows provide almost

complete insurance against region-specific shocks. A co-movement of income

and output is only found for high and low idiosyncratic output risk. This

pattern could not be detected within a linear regression approach which, in

our application, tends to overstate the degree of insurance provided by private

markets.

By sharp contrast, the federal government channel is not found to have a

stabilizing effect on regional incomes. Rather than providing insurance against

idiosyncratic shocks, fiscal transfers in reunified Germany are mainly concerned

with redistribution in favor of depressed regions. The fiscal transfer system

achieves a substantial reduction of long-term disparities between regions. If past

distribution dynamics continue operating unchanged in the future, a uni-modal

distribution of regional incomes will not be achieved without redistribution by
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the public sector. These findings imply that the public sector provides insurance

against that type of risk which cannot be completely insured on private markets:

The risk of being a permanently poor region.

Our paper shows that the patterns of short-term risk sharing (smoothing of

shocks) and long-term redistribution of the public sector (smoothing of differ-

ences in levels) can differ substantially. Under the current law in Germany, it is

hard to argue that short-term risk sharing is the main justification of the fed-

eral transfer mechanism. Though, previous studies on interregional risk sharing

argue that even a redistributive policy may turn out to have stabilizing effects.

In the US, 13 percent of shocks to gross state product are smoothed by the

federal government (ASY, 1996). Using a similar approach as ASY (1996) to

estimate the smoothing of state-specific shocks to West German states from

1970 to 1997, Buettner (2002) finds that the share of shocks to state income

absorbed by fiscal flows is roughly at the same level as in the US. In reunified

Germany, however, stabilization is not a by-product of fiscal redistribution at

all, at least at the disaggregated regional level used in this paper.



Chapter 5

Home Bias, Neighborhood Bias,
and Incomplete Capital Market
Risk Sharing among US Federal
States

5.1 Introduction

The gains from international diversification are well-documented.1 If agents

have access to a complete market for financial assets, then they can, by pooling

their risk, insure fully against the idiosyncratic uncertainty in their resources.

At the macroeconomic level, the idiosyncratic uncertainty in resources is re-

flected by fluctuations in idiosyncratic output. Aggregate output risk, by con-

trast, cannot be insured at the capital market. In the extreme case of full

insurance against idiosyncratic output risk, the value of output is fully pooled

through cross-ownership of productive assets and all agents hold an identical

‘world’ mutual fund of securities to insure against idiosyncratic output fluctu-

ations.

At the macroeconomic level, we may think of the ‘world’ mutual fund as a

perfectly diversified portfolio of so-called Shiller-securities, following the ideas

brought forward by Shiller (1993). Shiller-securities have returns that are di-

rectly linked to the growth of output, which means that these assets comprise

perpetual claims to the entire output stream of a country or region. Countries

or regions can then sell the right to their own output and invest the proceed in

1See for example Grubel (1968), Solnik (1974), Eldor, Pines, and Schwartz (1988), De-
Santis and Gerard (1997), and Shawky, Kuemzel, and Mikhail (1997).
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claims to output of other countries (Sørensen, Wu, Yosha, and Zu, 2005). If each

country is going short in the claims to its own output, output risk is shared via

the identical ‘world’ mutual fund of Shiller-securities (Kalemli-Ozcan, Sørensen,

and Yosha, 2004).

It is, however, observed that investors tend to ignore foreign investment

opportunities. This means that actual portfolios deviate substantially from

the benchmark of the perfectly diversified fund of Shiller-securities. There is a

strong preference for domestic equities, which is at odds with the diversification

of risk. This observation is referred to as the ‘home bias’ puzzle in equity

holdings, see for example French and Poterba (1991), Tesar and Werner (1995),

and Lewis (1999). At the same time, it is well-documented that international

risk sharing among OECD countries is rather scarce, see for example Sørensen

and Yosha (1998), Asdrubali and Kim (2004), or Becker and Hoffmann (2006).

Recent research by Sørensen, Wu, Yosha, and Zu (2005) and Artis and Hoff-

mann (2005) has shown that the ‘home bias’ puzzle is directly related to the

apparent lack of international risk sharing. These papers show that risk sharing

from international cross-ownership of assets is higher in countries that hold a

higher amount of foreign equity, i.e., countries that are subject to less home

bias enjoy more risk sharing. Hence, the apparent home bias in international

investment portfolios is one explanation why risk sharing among OECD coun-

tries is only scarce–in fact, the channel of capital market risk sharing has been

virtually absent until the early 1990s.

At the regional level, we would expect that biases in capital income flows

manifest themselves in a more complex way than a pure home bias. In par-

ticular, we would expect that regional asset portfolios are characterized by a

disproportionate high fraction of assets issued in geographically close areas–

but not necessarily the home region.

Indeed, there is considerable evidence from micro-based studies which ana-

lyze individual investment portfolios directly that the home bias within a coun-

try manifests itself in such a complex way (see Coval and Moskowitz, 1999, and

Huberman, 2001). Therefore, we may think of the home bias within a country

in more general terms as a ‘local bias’, which may consist of a pure ‘home bias

at home’, but also of a ‘neighborhood bias’. We interpret this ‘neighborhood

bias’ as a bias which is related to economic distance and geographical proxim-

ity. The aim of this paper is to examine a potential neighborhood bias within

the US and its consequence for the overall amount of income risk sharing that
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is achieved among US federal states.2

In the presence of both, a home bias ‘at home’, but also a ‘neighborhood

bias’, the home state’s idiosyncratic income does not only co-move with idio-

syncratic output shocks to the home state, but also with shocks that hit neigh-

boring states. Taking into account a potential neighborhood bias in capital

income flows may lead to a more qualified picture of capital market risk shar-

ing within the US. Even if own idiosyncratic output shocks are comparatively

well insured–as it has been suggested by previous studies–the welfare effects

of income fluctuations caused by output shocks in geographically close states

may be non-negligible if there is a pronounced neighborhood bias.

Unfortunately, a direct-attack approach to estimating the home bias and

neighborhood bias across US federal states is not possible. Data on the compo-

sition of regional asset holdings across US federal states is simply not available–

as it is not for many other countries. Going back to the micro-level and ana-

lyzing individual asset holdings directly seems not a proper solution since our

interest is not only in regional portfolio diversification, but also in its conse-

quences for aggregate (regional) risk sharing.

Instead, we propose an alternative solution which allows us to address the

neighborhood bias and risk sharing at the regional level: we extend the stan-

dard risk sharing model to a spatial model. One particular advantage of the

spatial modelling strategy is that we can estimate our model using the same

macroeconomic data that is usually used to study risk sharing among US federal

states.3

This spatial model allows us to examine whether the fluctuation of factor

income flows between states and their neighbors is disproportionately high–in

comparison to a balanced portfolio which assigns fair weights to each others

output. Or to put it differently, we take the perspective of an average fed-

eral state and provide evidence whether its neighbor’s output fluctuation also

constitutes a risk factor which is transmitted to the home state’s idiosyncratic

income via factor income flows.4

2In the next section, we discuss the issues of home bias, neighborhood bias, and capital
market risk sharing in more detail. We also present some theoretical considerations which
have been put forth to explain the home bias phenomenon and which should similarly apply
for the phenomenon of a neighborhood bias.

3See for example Asdrubali, Sørensen, and Yosha (1996), Sørensen and Yosha (1998),
Mélitz and Zumer (1999), Athanasoulis and van Wincoop (2001), Asdrubali and Kim (2004),
Asdrubali and Kim (2005), Kalemli-Ozcan, Sørensen, and Yosha (2004), Becker and Hoff-
mann (2006).

4On the one hand, a neighborhood bias may constitute additional risk but at the same
time it may also induce additional insurance, because a limited amount of diversification
takes places. We will take this ambiguous role of the neighborhood bias into account.
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Factor income flows comprise capital income flows between states, such as

dividends from cross-holdings of productive assets. Therefore, factor income

flows determine the amount of capital market risk sharing that is achieved.

Especially at the regional level, however, factor income flows do also reflect

income flows associated with the factor labor. For instance, if workers commute

to their place of work in another federal state, their output is measured at

their place of work while their income is attributed to their place of residence.

Therefore, our analysis will account for commuter flows across states in order to

test whether a neighborhood bias in factor income flows is indeed a phenomenon

which should be attributed to the capital market (i.e., reflects a neighborhood

bias in portfolio holdings), or if labor income flows also play a role.

The aims of this paper are therefore twofold. Firstly, we want to quantify

how strongly a potential neighborhood bias in factor income flows influences the

overall amount of income insurance that is achieved among US federal states.

Secondly, we want to examine which economic factors drive the neighborhood

bias in factor income flows.

The paper is structured as follows. In the next section we present a brief

introduction to the issue of capital market risk sharing and we motivate our

analysis of local biases from a theoretical point of view. Our spatial model

of capital market risk sharing is presented in the third section. In the fourth

section, we estimate the neighborhood bias in factor income flows among US

federal states and its consequences for the overall degree of income risk sharing.

Thereafter, we extend the analysis to include commuter flows in order to test

whether the neighborhood bias can be explained by commuting across state-

borders. In Section 6, we discuss some extensions for future work. The last

section summarizes our main findings.

5.2 Risk sharing, factor income flows, and local

biases

5.2.1 Risk sharing through factor income flows

At the heart of interregional risk sharing stand the fundamental differences be-

tween state-level Gross Domestic Product (GSP) and state-level income. While

GSP corresponds to a state’s production and hence attributes to a state the

amount of economic production generated within it, income explicitly includes

net factor payments from other states. Thus, income equals output plus net
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factor income flows.

The general idea of capital market risk sharing is that, by holding claims

to output produced in other regions, individuals can smooth away shocks to

their own income caused by variations in their home region’s production. This

means that individuals can share their output risk by diversifying their asset

portfolios, i.e., via cross-ownership of productive assets.

There is a substantial literature studying the amount of risk sharing within

the US.5 The overall pattern of risk sharing among US federal states is generally

found to be much richer than that for international risk sharing. Most studies

agree that in the US, a considerable amount of income smoothing takes place via

capital markets, indicating that much of a state’s product is owned by residents

of other states. This cross-ownership of productive assets provides important

hedging against idiosyncratic output shocks. Previous studies report that, on

average, almost 40%-50% of an idiosyncratic shock to output is smoothed via

cross-state capital income flows.

In the National Accounts data, cross-state capital income flows are reflected

as the difference between GSP and income. However, the difference between

GSP and income also reflects retained earnings in the form of capital depre-

ciation and corporate saving, and commuters income. Athanasoulis and van

Wincoop (2001) argue that retained earnings do not alter the economic inter-

pretation of capital market risk sharing substantially because retained earnings

reflect an investment that contributes to dividends in the future.

However, claims to labor income (and also other non-tradable output com-

ponents) can hardly be insured at the capital market. Especially at the regional

level, commuting across state borders is also a way of hedging idiosyncratic out-

put risk because it allows individuals to insure their human capital risk. For

instance, if workers commute from their place of living to their place of work

in a neighboring federal state, they contribute to the output of the neighboring

state while their income crosses state borders. In other words, output is mea-

sured at the place of work, while income is measured at the place of residence.

This means that the wedge between output and income is not driven by capital

markets solely.6 At the same time, this means that a potential neighborhood

bias in factor income flows does not necessarily reflect a neighborhood bias in

5For a recent overview we refer to Kalemli-Ozcan, Sørensen, and Yosha (2004). For more
details, see the cited studies in footnote 3.

6According to the author’s view, this aspect has been largely ignored in the literature.
While commuter flows may be of minor importance for the international economy, they should
not be ignored in the context of an interregional study. As it will turn out, risk sharing among
US federal states is indeed driven substantially by commuter flows.



CHAPTER 5. HOME BIAS AND NEIGHBORHOOD BIAS 97

portfolio holdings.

Keeping this important point in mind, we turn to a deeper discussion of the

issues of risk sharing and biases in capital income flows, because these issues

have been examined in considerable detail in the literature–in contrast to the

issue of risk sharing through commuting.

5.2.2 Risk sharing and biases in capital income flows

A general interpretation of capital income flows between regions is that individ-

uals own claims to output produced in other regions. The risk sharing literature

(see for example Artis and Hoffmann, 2005) refers to these perpetual claims to

the state’s entire output stream as Shiller-securities (Shiller, 1993), which have

returns that are directly linked to the growth of GSP in a state. Although

Shiller-securities are not actually traded in reality, many assets in real-life can

be thought of having very similar properties, see Artis and Hoffmann (2005)

and Sørensen, Wu, Yosha, and Zu (2005) for brief discussions.

A non-exclusive list of financial instruments through which diversification

can occur in reality includes corporate equity, direct investment, real estate,

bank deposits, trade on forward markets, and investment in bonds and shares.

For instance, if mutual funds or pension funds in one region invest in other

regions, the income of the citizens in that state includes factor income from

other regions and will partly co-move with the output in other regions. Another

example is that if financial intermediaries in one state lend to firms in other

states, the flow of interest payments smooths the income of citizens in the

lending state (these examples have been taken from Kalemli-Ozcan, Sørensen,

and Yosha, 2004, p. 5).

In a world with full information, no moral hazard, no trading cost, and the

same degree of risk aversion across agents, all agents should hold an identical

‘world’ mutual fund of Shiller-securities to insure against idiosyncratic output

uncertainty. The financial literature typically motivates this ‘world’ market

portfolio from the benchmark of the international Capital Asset Pricing Model

(CAPM). In terms of the CAPM, the identical market portfolio implies that all

agents have similar mean-variance utility trade-offs (see Sørensen, Wu, Yosha,

and Zu (2005) and Huberman (2000) for a brief survey of the literature on

CAPMs).

Clearly, this world portfolio–or US-wide portfolio in our setting–is the

optimally diversified portfolio. If agents hold this optimal portfolio of Shiller-

securities, a state’s income is then just the weighted average of all per capita
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output, whereas the weights capture the size of the population in the different

states. This weighting reflects that it is optimal to own more claims to the per

capita output of larger states than to the per capita output of smaller states.

With CRRA utility and a common intertemporal discount factor for all federal

states, perfect income risk sharing implies that state-level income per capita is

a constant fraction of aggregate income in the US as a whole–independent of

uncertainty.

In a nutshell, the central empirical implication of full capital market risk

sharing is that the value of idiosyncratic output per capita is fully pooled

through financial cross-ownership, i.e., through capital income flows across state

borders, and this pooling should be independent of neighboring relationships

among states.7

However, if there is a local bias in portfolio holdings–either in the form

of home bias or neighborhood bias–full risk sharing is not achieved. Clearly,

some explanations which have been put forth to explain the home bias are

unique to the international economy. For instance, when capital crosses political

and monetary boundaries, it faces exchange rate fluctuation and variation in

regulation, culture, taxation, and sovereign risk.8 Within the US, by contrast,

there is relatively little variation in regulation, taxation, and political risk.

As emphasized by Coval and Moskowitz (1999), however, not all home bias

explanations are unique to the international economy. Most prominent fric-

tions which also arise even in the absence of country borders are information

asymmetries, the concern for hedging non-tradable goods, and familiarity biases

which are related to behavioral explanations. Since those frictions are related

to geographic distance one would expect that they should also play an impor-

tant role for the neighborhood bias, i.e., for a local bias in portfolio holdings

which is related to economic distance and geographical proximity.

For instance, investors may have superior access to information about firms

located near to them or about local economic conditions. For the home bias in

international capital markets, such asymmetric information-based explanations

have been offered, among others, by Coval (1996), Brennan and Cao (1997),

Zhou (1998), Hatchondo (2004), and Ahearne, Griever, and Wanrock (2004).

7If idiosyncratic output risk is not fully shared through capital market linkages, there
is scope for further consumption smoothing through savings behavior. This intertemporal
consumption smoothing may further buffer consumption from income fluctuations (see for
example Becker and Hoffmann, 2006, and Artis and Hoffmann, 2005). In this paper the focus
is on capital market risk sharing. The issue of credit market risk sharing is left to future
research, see the outlook in the Section 7.

8See Lewis (1999), Huberman (2000), and Karolyi and Stulz (2003) for extensive discus-
sions why actual portfolios may deviate from the benchmark of the international CAPM.
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The empirical studies of Portes and Rey (2000, 2005) also suggest that infor-

mation asymmetries across countries are a major source of home bias effects,

and that capital flows are affected by both, geographic distance and informa-

tional proximity. Similarly, Tesar and Werner (1995, p. 485) summarize that

‘geographic proximity seems to be an important ingredient in the international

portfolio allocation decision’. In line with this, Kilka and Weber (2001) show

that investors tend to perceive the domestic market as less volatile than foreign

markets.

These factors should be of particular importance within a domestic setting.

Indeed, the seminal paper of Coval and Moskowitz (1999) finds that US invest-

ment managers exhibit a strong preference for locally headquartered firms and

that US investors hold more than a proportional amount of assets issued in the

geographical region close to them. Specifically, distance is found to play an

important role in determining the composition of asset portfolios. Therefore,

Coval and Moskowitz (1999) suggest that an information advantage in local

stocks is also an explanation for the preference for geographically proximate

investments within the US.9

Huberman (2000, 2001) argues that a cognitive bias for the familiar may

play an important role in explaining local biases in the US. The preference

for investing close to one’s home may be driven by a psychological desire to

invest in local companies. Possibly, agents simply feel comfortable investing in

a business that is visible to them and therefore overweigh investments close to

their place of living. Moreover, investors may have to learn about risk sharing

and therefore try to gain experience by buying assets which are closely related

to their home region. In line with this, Strong and Xu (2003) find that fund

managers are relatively more optimistic about investment possibilities in their

home markets.10

Against the background of these theoretical considerations, an analysis of

a potential neighborhood bias in capital income flows appears interesting even

without introducing a formal theoretical model. This makes the focus of this

9However, Huberman (2000) criticizes arguments based on asymmetric information.
Specifically, Huberman points out that uninformed investors can still buy an index of the
equities about which they know very little. Moreover, superior information is usually short-
lived. Lastly, being better informed will induce many ‘buy’ opportunities, but also many
‘sell’ opportunities.
10An alternative explanation for local bias is that individuals try to hedge non-traded

goods by holding local assets. By holding proximate investments, individuals can hedge
against price increases in local services or in non-traded goods. However, researchers have
not found much evidence for this hypothesis, see Cooper and Kaplanis (1994) and Pesenti
and van Wincoop (2000).
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paper an empirical one. In particular, we want to quantify how strongly a

potential neighborhood bias influences the overall amount of risk sharing that

is achieved among US federal states.

5.3 A spatial model of capital market risk shar-

ing

5.3.1 Summary of the empirical strategy

Before we formalize our empirical model to measure risk sharing and a potential

neighborhood bias in factor income flows, we summarize the general idea of our

approach.

If idiosyncratic output risk is fully shared among a group of regions, then

a region’s income should be affected only by aggregate fluctuations in output.

Other things such as an idiosyncratic shock that hits the region’s output or

idiosyncratic shocks to other regions should not be transmitted to idiosyncratic

income. In our empirical model we allow for both, output shocks that hit the

home region and output shocks to neighboring regions. The latter shocks are

measured by the weighted average output fluctuation in neighboring states–in

idiosyncratic and per capita terms.

The test for no local bias towards these neighboring states is then straight-

forward. If factor income flows are not subject to a neighborhood bias, i.e., if

agents prefer a balanced and diversified portfolio, then any change in idiosyn-

cratic output of neighboring states should have no influence on idiosyncratic

income of the home state.

For instance, if idiosyncratic output growth of neighboring states is positive,

factor income flows to the home state and hence the home state’s income in-

crease due to increased returns of Shiller-securities issued in those neighboring

states–but this effect shows only part of the picture. The positive idiosyn-

cratic output growth of neighbors must by construction be offset by a negative

idiosyncratic output growth of other, non-neighboring states.11

Under the assumption that the cross-ownership of productive assets is bal-

anced, both effects cancel out and the idiosyncratic income of the home state

remains unchanged. If, by contrast, we find a positive effect of the increase in

neighbor’s idiosyncratic output on the home states’ idiosyncratic income, this

11Holding constant aggregate risk, the sum of idiosyncratic ouput risk equals zero by con-
struction (accounting for population weights).
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implies that the citizens of the home state own a disproportionate large fraction

of claims to output produced in neighboring states.12

5.3.2 Model specification

Let incit and gspit denote state i’s year t real per capita income and output,

respectively. The real and population-weighted average per capita income and

output for the US as a whole are denoted as inc∗t and gsp∗t . All data has been

transformed to real figures by dividing by the US-wide Consumer Price Index

(CPI).

The key variables in our study are the state’s logarithmic or percentage de-

viations from the US-wide average per capita values of production and income:

yt = log incit − log inc∗t
xt = log gspit − log gsp∗t .

To keep the notation as simple as possible we omit the index i for the states

and denote stacked vectors as yt and xt (instead of yit and xit). Throughout

the paper, we refer to the variables yt and xt as ‘relative’ or ‘idiosyncratic’

variables.

A direct approach to measuring risk sharing at the regional level is to con-

sider the following set of cross-sectional regressions (one regression for each year

t):

∆yt = αt + βK,t∆xt + εt, (5.1)

where αt denotes a constant term and εt a white-noise error term (also in

stacked form).13 The risk sharing coefficient βK,t measures the average co-

movement of the regions’ idiosyncratic income growth with their idiosyncratic

output growth in year t. The smaller the co-movement, the more income is

buffered against own output fluctuations. If income smoothing is perfect then

idiosyncratic income yt does not co-move with idiosyncratic output xt at all

and the coefficient βK,t takes the value 0. In the situation with no risk sharing,

income moves one-to-one with output and βK,t = 1. We follow the literature in

defining (1− βK,t) as our measure of risk sharing through interregional factor

income flows. Thus, if no state-specific risk is hedged we find
¡
1− βK,t

¢
= 0.

12The effect of commuter flows will be taken into account in the next section.
13This risk sharing regression or similar variants have been conducted, among others, by

Asdrubali, Sørensen, and Yosha (1996), Sørensen and Yosha (1998), Mélitz and Zumer (1999),
Becker and Hoffmann (2006), and Sørensen, Wu, Yosha, and Zu (2005).
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It is also possible to pool the data and to estimate equation (5.1) as a panel

data model:

∆yt = πi + βK∆xt + εt. (5.2)

In equation (5.2), πi denotes fixed effects which capture unobserved heterogene-

ity among states, e.g. non time-varying differences in growth performances.14

The common slope parameter βK–more precisely (1− βK)– can be inter-

preted as the average amount of capital market risk sharing during the sample

period, see the paper of Asdrubali, Sørensen, and Yosha (1996) for a discussion.

The novelty of this paper is to consider an extended risk sharing regression

which also takes into account the effect of the idiosyncratic output growth of

neighboring states. This spatial extension of the risk sharing regressions (5.1)

and (5.2) allows us to shed light on a potential neighborhood bias in factor

income flows.

The cross-sectional variant of our spatial risk sharing model reads as:

∆yt = βK,t∆xt + βN,t∆x̃t + ut, (5.3)

ut = ρtWut + εt.

The additional regressor ∆x̃t is designed to measure the weighted average idio-

syncratic output shock (in per capita terms) in neighboring states. To illustrate

how this variable is constructed, we can consider as an example one element k

of the vector x̃t.

Dropping the time index t for simplicity, this element x̃k can be written as

x̃k =

X
i�Nk

bi · xiX
j�Nk

bj
. (5.4)

In this expression, Nk comprises all states which are neighbors to state k. The

term bi denotes the population size of state i. Hence, the numerator
X
i�Nk

bi ·xi is

the sum of (idiosyncratic) output produced in neighboring states–in absolute,

not in per capita terms. The total idiosyncratic output of neighboring states is

divided by the total population in those states. Thus, the variable∆x̃k measures

the average idiosyncratic output change in neighboring states, expressed in per

capita terms. As we will explain in more detail below, we will test the hypothesis

14There is no need to include time fixed-effects because our variables are already formulated
relative to the national average.
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that βN,t = 0. If βN,t 6= 0, this means that factor income flows between states
are subject to a neighborhood bias.

The regressor ∆x̃t is a so-called ‘spatial lag’ of ∆xt. We draw from spatial

econometric techniques to compute (5.4). Usually, a spatial lag of some vari-

able is computed by pre-multiplying this variable by a matrix W. The matrix

W is a known i × i spatial weighting matrix which contains the neighboring

relationships among the i regions. In the simplest case, the matrix W defines

the binary contiguity relationships of neighbors. This means that in the matrix

W values of unity are placed in positions i, j, where j indicates regions that

have borders touching region i.

We experiment with several possibilities to construct the contiguity matrix

W . A common method is based on polygon centroid coordinates. These coor-

dinates can be used to produce an adjacency matrix from so called ‘Delaunay

triangles’. Another possibility to construct W is to find a certain number of

nearest neighbors to each region. In any case, the matrixW has entries of zeros

for non-neighbors and ones for neighbors, with zeros on the main diagonal.

In order to match the definition (5.4) of x̃k we additionally have to assign

population-based geographic weights to each neighbor. This means that larger

neighboring states must be given more weight than smaller ones. To illustrate

the need for a proper weighting we can consider the neighboring relationships

for a specific state, say Nevada, as an example. Assume that the neighborhood

criterion has assigned five neighbors to Nevada. If we were not to assign popu-

lation weights to each neighbor, we would assume that it is optimal to hold the

same amount of claims to output in each neighboring state, irrespective of the

size of the states. Such investment, however, is not optimal. The neighboring

states with a large population, such as California, should get a large portfolio

weight. Thus, our population-based geographic weights capture the optimal

portfolio weights of Shiller-securities.

We therefore construct a i × i matrix of the state’s population size which

is denoted as Bt. The columns of Bt contain the population size of the states.

All rows of Bt are the same, which means that the row containing the different

population values is stacked one below the other.15 Since the population of each

state changes over time, also the matrix of the state’s population (weights) Bt

is not constant. Therefore, we compute a matrix Bt for each year in the sample.

An element-wise multiplication of the matricesW and Bt yields a weighting

matrix that takes into account the population-weights. By construction, the

15It does not matter whether the matrix Bt contains the absolute population size of the
states or their population weight, i.e. their relative population size. If one uses population
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sum of all population weights is one, but the sum of all population weights for

neighbors is smaller than one, since neighboring states are only a subset of all

US states. Therefore, the last step in constructing the final weighting matrix

is to standardize the element-wise matrix product [WBt] so that the row sums

equal unity.

The matrix product of the standardized matrix [WB] and the regressor xt
then produces an average of the idiosyncratic output shocks of states meeting

the definition of neighbors. This allows us to rewrite our spatial risk sharing

model in terms of the idiosyncratic output shock xt by replacing the spatial lag

∆x̃t with the matrix product [WBt]∆xt :

∆yt = βK,t∆xt + βN,t[WBt]∆xt + ut, (5.5)

ut = ρtWut + εt.

The error term ut is assumed to follow a spatial moving average process. This

error process may capture further spatial autocorrelation which is not elimi-

nated through the inclusion of our spatial regressor [WBt]∆xt. In the next

section we will provide empirical evidence that the spatial error specification

is indeed more appropriate than the assumption of a white noise error process.

In equation (5.5), the parameters to be estimated are βK,t, βN,t and ρt.

If we are not interested in the variation of the point estimates over time

but in quantifying the average amount of risk sharing during a specific sample

period, we can pool the data and estimate the β coefficients and ρ from a panel

data model:

∆yt = πi + βK∆xt + βN [WBt]∆xt + ut, (5.6)

ut = ρWut + εt.

Elhorst (2003) has developed a Maximum-Likelihood estimator for static panel

data models with fixed effects πi and a spatial error process u. We will use this

estimator to estimate (5.6).

weights instead of the absolute population size, equation (5.4) reads as

x̃k =

X
i�Nk

biX
s

bs

· xi

X
l�Nk

blX
s

bs

,

whereas the sum running over the index s contains all states in the sample, not only neighbors
to state k. This definition of x̃k is equivalent to (5.4).
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5.4 Estimating risk sharing and the neighbor-

hood bias

5.4.1 Data

The state-level data used in this study is the same as the data constructed by

Asdrubali, Sørensen, and Yosha (1996) and we refer to their data appendix for

an extensive description on how the data is constructed. This data has also

been used, among others, by Mélitz and Zumer (1999), Crucini and Hess (2000),

Athanasoulis and Wincoop (2001), Asdrubali and Kim (2004a), Asdrubali and

Kim (2004b), Sørensen, Wu, Yosha, and Zu (2005), and most recently by Artis

and Hoffmann (2005) and Becker and Hoffmann (2006). In the meantime, the

database constructed by Asdrubali, Sørensen, and Yosha has been updated.

While the aforementioned papers (those which are already published) use data

for 1963-1990, our estimations refer to the extended sample period 1963-1998.16

One major advantage of this extended data is that it covers the period

which is usually referred to as the ‘globalization period’. After the 1980s, but

especially after the 1990s, international financial markets have become increas-

ingly integrated, see the discussion in Artis and Hoffmann (2005). Hence, we

would also expect a change–in particular, an increase–in risk sharing among

countries, but also among regions. For countries, this relationship has been cor-

roborated by Artis and Hoffmann (2005). For US states, the paper by Kalemli-

Ozcan, Sørensen, and Yosha (2004) provides updated evidence for the extended

sample period 1963-1998. This is also the period of time examined in our paper.

Our empirical analysis takes data on Gross State Product and state income

into account. State income as constructed by Asdrubali, Sørensen, and Yosha

consists of personal income after substracting out all federal transfers and allo-

cating all non-personal taxes to income. Further, income of state governments

that is not derived from personal taxes is also included in state income (see

Kalemli-Ozcan, Sørensen, and Yosha, 2002, footnote 27). Hence, one impor-

tant feature of the income data constructed by Asdrubali, Sørensen, and Yosha

(1996) is that it is adjusted for federal transfers and contributions. For the

exact definition of the variables we refer to the original paper by Asdrubali,

Sørensen, and Yosha (1996). Population data stems from the Bureau of Eco-

nomic Analysis (BEA).

One difference to related studies is that we restrict the analysis to the 48

continental US states because we want to use a consistent concept of neighbors.

16I thank Mathias Hoffman for providing the data to me.
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Previous studies included the full set of states in the analysis (including Hawai,

Alaska, and sometimes Washington D.C.).

For the spatial contiguity matrix W we tried several alternatives which we

have discussed above, i.e. based on physical contiguity, Delaunay trianguliza-

tion, and nearest neighbors. According to some pre-testing, our results are not

exceedingly sensitive to the particular choice for W. For brevity, we will only

present the results obtained with the contiguity matrix based on Delaunay tri-

angles.

5.4.2 Cross-sectional analysis

To set the scene, we estimate the risk sharing models (5.1) and (5.5) year-by-

year from the cross-sections of states. The aim of this exercise is to get a sense

of the variation in the point estimates over time. The non-spatial model (5.1) is

estimated with simple OLS while the spatial model (5.5) is estimated using the

Maximum Likelihood estimator for spatial error models described in Anselin

(1988).17 Thereafter, we pool the data and turn to a panel estimation of models

(5.2) and (5.6).

Figure 5.1 provides an overview about the estimation results of the risk

sharing parameter βK,t, which measures the co-movement of income with own

output shocks. Each sub-plot contains two graphs. The thin line displays the

sequence of βK,t obtained with the non-spatial model (5.1) while the thick line

shows the estimates of βK,t from the spatial model (5.5).

The top panel in Figure 5.1 displays the raw point estimates of βK,t. Since

we are interested in the trend-movements in the series, we smooth the sequence

of point estimates at neighboring time-periods (see the bottom panel in Figure

5.1).

The bottom-left panel displays the smoothed series of βK,t using a Normal

kernel smoother. The bandwidth in the local linear regression has been selected

by using the Ruppert, Sheather, and Wand (1995) Plug-In method.

As an alternative smoothing procedure we use the Hodrick-Prescott (1997)

(HP) filter. Since our data are observed at annual frequencies we use a smooth-

ing parameter of µ = 100 for the HP-filter. This choice for µ is widely accepted

17As a robustness test, we also left out the spatial moving average process in the error term
and estimated the spatial model (5.5) with simple OLS (the spatial regressor [WBt]∆xt does
not cause any problems for OLS since it is assumed to be exogenous). The point estimates
of the β coefficients turned out to be very similar across both estimations. This similarity
reflects that OLS remains an unbiased estimator if the spatial dependence only affects the
error term. The Maximum-Likelihood estimator, however, is more efficient than OLS in the
presence of significant spatial autocorrelation.
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Figure 5.1: Capital market risk sharing of own idiosyncratic output shocks among
US federal states, 1963-1998. Top: raw point estimates of βK,t against
time. Bottom: smoothed sequences of βK,t against time.

in the business cycle literature. However, Ravn and Uhlig (2002) proposed a

different smoothing parameter of µ = 6.25 for yearly data. For the sake of

completeness we tried both values for µ. The remaining two subplots in the

lower panel of Figure 5.1 present the results for the HP-filtered estimates.

Consider first the series of raw point estimates for βK,t (top). It can be seen

that the degree of capital market risk sharing varies considerably over time.

This variation seems to be driven by business cycle fluctuations but a deeper

analysis of this issue is beyond the scope of this paper. Our primary focus will

be on the smoothed series of βK,t.

The graph obtained with the HP-filter and a smoothing parameter of µ =

100 is the smoothest one (middle). The other graphs appear to be somewhat

undersmoothed. Therefore, we regard the results obtained with the HP-filter

and a smoothing parameter of µ = 100 as our preferred ones. It should be

noted that the general pattern of the variation of the point estimates over time

is quite similar across the different procedures to smooth the point estimates.
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In particular, there are two main facts which emerge from Figure 5.1. First,

insurance against own idiosyncratic output fluctuations increases substantially

over time, as reflected by the decline in βK,t. Second, the estimated amount of

risk sharing is very similar across the non-spatial and spatial specifications.

In both models, the (1− βK,t)’s measure the percentage of smoothing of a

state’s GSP shock carried out by capital markets and we expect βK,t = 0 if

there is full risk sharing through capital income flows. If βK,t is taken from

the spatial model (5.5) the parameter has to be interpreted conditional on the

assumption that the idiosyncratic output of neighbors remains unchanged.

In the early 1960s only about 20 percent of an idiosyncratic output shock

is smoothed by capital income flows. Starting off from this low level, interstate

risk sharing has increased substantially over time. Until the 1990s, there has

been a steady positive trend in the risk sharing parameter (1 − βK,t) up to

a level of about 50-60 percent. This means that today only 40 percent of an

idiosyncratic shock to the GSP of individual states are not insured through the

capital market channel.

These estimates are well in line with those numbers which have been re-

ported in previous studies. We can compare our cross-sectional results in par-

ticular to the ones documented in Kalemli-Ozcan, Sørensen, and Yosha (2004).

This paper discusses that the apparent increase in insurance through inter-

state capital income flows is indeed statistically significant and not due to pure

sampling variation.

Concerning our two different models to estimate the sequence of βK,t, we

find that the estimates are quite similar across the non-spatial and spatial

specifications. After the 1980s, the spatial model yields a higher degree of

risk sharing than the non-spatial one, i.e., the βK,t’s for the spatial model are

closer to zero than the ones for the non-spatial model. The overall pattern of

smoothing of own output risk, however, is found to be the same across both

models.

In order to motivate the spatial moving average specification in the error

term of our extended risk sharing model (see equation (5.5)), we analyze the

residuals of the non-spatial model (5.1). We test for spatial autocorrelation in

the residuals εt of each cross-sectional regression by performing a Moran’s I test

on the residuals. To save on space, we only discuss the overall result of this

exercise. In about half of all years (51 percent) the Moran’s I test statistic is

significant at least at the 10 percent level. This means that the null hypothesis

of no spatial autocorrelation is rejected for half of the cross-sectional regressions.

Hence, besides our economic motivation to test for a potential neighborhood
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bias there are also fundamental statistical reasons to account for spatial depen-

dence in models of the type (5.1). The spatial moving average process in the

error term (see equation (5.5)) captures any remaining spatial autocorrelation

which is not eliminated by including the spatial regressor [WBt]∆xt. In most

time periods, the estimate for the spatial autocorrelation coefficient ρ is signif-

icantly different from zero, as we would expect from the test results obtained

with Moran’s I test. We do not report the point estimates for ρ since this nui-

sance parameter is not in the focus of our paper. More details concerning the

magnitude of ρ will become apparent from the panel-based estimations in the

next sub-section.18

The overall picture suggested by the cross-sectional regressions is that, al-

though insurance among US states is considerable, the hypothesis of full risk

sharing (βK,t = 0) is clearly rejected. The still large amount of idiosyncratic

risk which is not diversified indicates that US states are subject to some form

of home bias, in a sense that regional portfolios seem to deviate substantially

from the perfectly diversified portfolio which would lead to perfect risk sharing

and βK,t = 0. An inspection of the parameters βN,t sheds light on the question

whether a potential neighborhood bias in factor income flows constitutes an

additional risk factor which influences the overall degree of income insurance.

Similar to the risk sharing coefficient βK,t, this parameter should be zero if

no neighborhood bias is driving interstate factor income flows. An extreme case

might be helpful to illustrate this. If risk sharing is complete and agents hold

perfectly diversified portfolios of Shiller-securities, for each state income growth

equals the US-wide income growth. Then, both coefficients βK,t and βN,t take

the value 0 simply because the left-hand side of equation (5.5) is always 0.

Figure 5.2 summarizes the estimation results for βN,t obtained with the

spatial risk sharing model (5.5). In order to illustrate the joint development of

βN,t and βK,t over time, we also include the HP-filtered series of βK,t as a thin

line in the graphs.

While the raw point estimates of βN,t fluctuate considerably (top), the

smoothed series (bottom) suggest more clearly that the overall development

of βN,t may be divided into two (or three) sub-periods. During 1963-1980, the

point estimates for βN,t fluctuate around zero and are small in absolute terms.

In fact, for most of these estimates we cannot reject the hypothesis that they

18The finding of spatial dependence in US state-level data is well in line with studies which
focus on the consequences of spatial interaction effects on convergence analyses. For instance,
the study of Rey and Montouri (1999) provides strong evidence of positive spatial dependence
in both, levels and growth rates of income per capita in the US.
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Figure 5.2: Bold line: neighborhood bias in factor income flows among US federal
states, 1963-1998. Thin line: smoothed sequence of βK,t against time,
see Figure 5.1. Top: raw point estimates of βN,t against time. Bottom:
smoothed sequence of βN,t against time.

are zero. Thus, during the first sub-period interstate factor income flows are

not subject to a substantial neighborhood bias. By contrast, the point esti-

mates for βN,t are larger during the second sub-period 1980-1998. What can

also be seen from Figure 5.2 is an increase followed by a decline in βN during

this second sub-period.

5.4.3 Panel-data estimation

We corroborate the preliminary impressions from the cross-sectional analysis

by estimating the panel model (5.6), both for the periods 1963-1980 and 1980-

1998, as well as for the most recent sub-period 1990-1998. This exercise allows

us to boil down the sequence of point estimates into overall averages during

the respective sub-periods. Moreover, the pooled estimation has higher power

than the cross-sectional regressions which makes the test of no neighborhood

bias (βN = 0) more reliable.
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Table 5.1: Spatial risk sharing model with spatial error autocorrelation and fixed
effects, estimated using the estimator developed by Elhorst (2003)

1963-1980 1980-1998

Coeff. t-stat z-Prob. Coeff. t-stat z-Prob.

Own idiosyncratic 0.71 (39.76) (0.00) 0.48 (27.87) (0.00)
output shock: ∆x (βK)

Neighbor’s idiosyncratic -0.02 (-0.63) (0.53) 0.08 (2.22) (0.03)
output shock: [WBt]∆xt (βN)

Overall insurance: βK + βN 0.69 0.56

Spatial autocorrelation 0.44 (10.21) (0.00) 0.35 (7.90) (0.00)
coefficient (ρ)

log-likelihood 2429.502 2706.78
Number of observations 816 912

1990-1998

Coeff. t-stat z-Prob.

Own idiosyncratic 0.45 (14.52) (0.00)
output shock: ∆x (βK)

Neighbor’s idiosyncratic 0.23 (3.53) (0.00)
output shock: [WBt]∆xt (βN)

Overall insurance: βK + βN 0.68

Spatial autocorrelation 0.19 (2.68) (0.00)
coefficient (ρ)

log-likelihood 1314.75
Number of observations 432
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The regression results of the pooled model (5.6) are displayed in Table 5.1.

We estimated the model with the estimator for spatial panels with fixed effects

and spatial error autocorrelation developed by Elhorst (2003).19

The first thing to note is that the spatial autocorrelation coefficient ρ is sta-

tistically different from zero in all estimations. Therefore, the spatial panel esti-

mator employed is indeed a more efficient estimator than simple OLS. Though,

the point estimates of βK and βN reported in Table 5.1 are very similar to an

OLS regression with fixed effects. A candidate interpretation of the nuisance

spatial dependence in the error term is that it results from measurement prob-

lems such as the mismatch between the pattern of regional risk sharing and the

boundaries of US federal states (see Magrini (2004) for a similar argument).

More important is that the results of the panel-data estimations confirm

our previous examination of Figures 5.1 and 5.2. During the first sub-period,

capital market risk sharing was rather scarce. The estimate of βK = 0.71

implies that only about 30% of an own idiosyncratic output shock is smoothed

via this channel. At the same time, the point estimate for βN = −0.02 is not
significantly different from zero, as we would expect from Figure 5.2.

Since we find the parameter βN to be insignificant, there is evidence that

capital market linkages with neighboring states have not been more pronounced

than linkages with other states during the first sub-period. Taken together, the

coefficients βK and βN imply that an idiosyncratic output shock which hits the

representative state is transmitted substantially to a change in the state’s own

income but output shocks to neighboring states do not affect the income of the

home state significantly.

In order to quantify the overall amount of income insurance that is achieved

we can add the coefficients βK and βN (see Table 5.1). This sum measures how

strongly a state’s idiosyncratic income changes if both, the home state and

the neighbors are hit by idiosyncratic shocks. Or to put it differently, we can

interpret the sum of βK and βN as the co-movement of state-level income with

shocks that hit larger geographical areas. During 1963-1980 the influence of βN
is negligible since the parameter is small and insignificant and one arrives at

an overall amount of unsmoothed shocks of 0.69.

During the second sub-period 1980-1998 we find a different picture. As

can be seen from the right-most columns in Table 5.1, the average amount of

risk sharing of an own idiosyncratic output shock is substantially higher and

corresponds to roughly 50 percent. As we could already infer from the graphical

19A MATLAB procedure for this estimator is freely downloadable from the website
www.spatialeconometrics.com.
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analysis before, also the neighborhood bias has increased during this period.

The point estimate for βN is 0.08 and we can reject the hypothesis that the

coefficient is 0.

In order to corroborate that the neighborhood bias has increased substan-

tially over time we also estimate our panel model for the most recent period

1990-1998 only. This period may best reflect the influence of globalization on

risk sharing and neighborhood bias.

From Table 5.1 (bottom) it can be seen that insurance against own idiosyn-

cratic risk is highest during this recent period (βK = 0.45). By sharp contrast,

the co-movement of state-level income with neighbor’s output has increased

substantially. While the coefficient of the spatial lag of the idiosyncratic out-

put shock was insignificant during the first period 1963-1980, it takes a value

of βN = 0.23 in recent years.

These findings indicate that we may have to qualify the overall increase in

income insurance that is achieved during the second sub-period, and especially

during more recent years. If we were to rely solely on a comparison of the

βK ’s over time we would arrive at an impressing increase in capital market risk

sharing from the first (1963-1980: βK = 0.71) to the second sub-period (1980-

1998: βK = 0.48). If we account for spatial linkages among states, however, we

find that the overall amount of income insurance measured by 48%+8% = 56%

is still larger than the insurance achieved during the first period, but the increase

is less pronounced than suggested by the βK’s alone. This picture becomes

even more pronounced during the period 1990-1998. Since the neighborhood

bias has gained substantially in importance, the average federal state is insured

only moderately against shocks that hit a larger geographical area. In fact, the

sum of the βs during the most recent period (1990-1998: βK + βN = 0.68 (!))

is found to be the same as during 1963-1980.

However, this preliminary conclusion neglects one important aspect, namely

to account for the variance of neighbor’s idiosyncratic output risk relative to

one’s own output risk. To illustrate this point we may consider two extreme

cases. If there is no diversification at all, agents hold claims to the output

produced in their own state only and consequently we would find βK = 1

and βN = 0. The other extreme case is that agents hold claims to output in

neighboring states solely. In this scenario it holds that βK = 0 and βN = 1.

Both extreme scenarios have different consequences for the overall effective-

ness of income insurance. In the second scenario of a complete neighborhood

bias one’s income will fluctuate less than in the first scenario of a complete

home bias ‘at home’. The reason is that the output fluctuation of neighbors is
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smaller than the output variability at home. In other words, a disproportionate

high engagement in neighbor’s output stream reduces the variability of income

at home because a limited amount of diversification takes place. In fact, if all

states had independent idiosyncratic risk, investing one more dollar in the out-

put stream of neighboring states (equally split) would reduce the fluctuation of

income at home by a factor 1/Nk, where Nk is the number of neighbors.

In order to account for this effect we scale the coefficient associated with the

neighborhood bias, βN , by the ratio of the standard deviations of neighbor’s

and one’s own output risk. Specifically, we transform the point estimate of βN
as

β̃N =
βN

std (∆xt)
· std ([WBt]∆xt) .

We report the standardized estimates of β̃N for the three sub-periods in

the first row of Table 5.2. As expected, our previous conclusion concerning

the destabilizing effect of the neighborhood bias has to be qualified. Once

we account for the smaller variance of neighbor’s output relative to one’s own

output we arrive at smaller estimates for β̃N .Quite symmetrically, the estimates

decline by roughly one half. Therefore, we note that our estimates reported in

Table 5.1 cast a too damning light on the neighborhood bias.

More important is, however, that we find a similar development of the neigh-

borhood bias over time even if we account for the potential gain in variance

reduction in one’s own income. Specifically, the standardized neighborhood

bias is found to be unimportant during 1963-1980 but it is becoming more pro-

nounced during 1980-1998. Especially during the most recent period 1990-1998,

the magnitude of the (standardized) β̃N coefficient is clearly significant also in

economic terms.

The second row of Table 5.2 displays the overall degree of income insurance

which is achieved once we account for the smaller variance in neighbor’s output

fluctuation, calculated as βK + β̃N . The numbers provide evidence that the

amount of risk sharing during the second sub-period is indeed larger than during

the first one. However, the increase is still less pronounced than suggested by

a comparison of the βK ’s alone. These estimates are replicated in the last row

of Table 5.2 for ease of comparison.

The overall conclusion suggested by our spatial risk sharing model can be

summarized as follows. As also documented by Kalemli-Ozcan, Sørensen, and

Yosha (2004), income fluctuations have indeed become substantially decoupled

from fluctuations in one’s own output. At the same time, state-level income

has become more dependent on neighbor’s output fluctuation than in the past.
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Table 5.2: Standardized estimates of the neighborhood bias

1963-1980 1980-1998 1990-1998

β̃N =
βN

std(∆xt)
· std ([WBt]∆xt) -0.01 0.04 0.12

Overall insurance: βK + β̃N 0.70 0.52 0.57

Own idiosyncratic output shock: βK 0.71 0.48 0.45
[taken from Table 5.1]

The net effect of both developments is a more moderate increase in income

insurance provided by capital markets than documented in previous studies

which do not take the neighborhood bias into account.

5.5 Accounting for commuter flows

Having shown that the neighborhood bias in factor income flows has become

more pronounced over time, a next step in the analysis is to examine which

economic factors drive the development of the neighborhood bias. As we have

discussed in Sections 1 and 2, the neighborhood bias may be driven by capital

income flows, but also by labor income flows. Both income components are

reflected in the wedge between GSP and income.

In order to assess the relative importance of both factors we extend the

analysis to include commuter flows across state borders. The role of commuter

flows has been emphasized in a different area of economic research, namely that

of growth and convergence. A prevalent finding in this literature is that changes

in commuter patterns represents an important source of spatial adjustment

(see Magrini, 2004). Therefore, it is important to examine how much of the

neighborhood bias may be explained by commuter flows.

If workers commute from their place of residence to their place of work in

another federal state, their output is attributed to the GSP of the neighboring

state, while their income is measured at their state of residence. Idiosyncratic

output shocks that hit neighboring states may then be transmitted to the home

state’s income because workers, who commute to their place of work, take their

output produced in other states with them (in the form of income).

To the best of our knowledge, consecutive time-series data on commuter
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flows across US federal states is not available. The only data which is available

are special tabulations from the decennial Censuses of 1960, 1970, 1980, 1990,

and 2000 which show the commuting flows between counties.20

We aggregate the county data for 1990 and 2000 to the federal state level

and compute the flow of commuters into and out of each federal state at both

points in time. Moreover, we compute the net inflow of commuters into each

state. All numbers are normalized by the state’s employment in order to obtain

commuter rates.

For instance, a positive value of the net commuter rate indicates that more

workers commute from neighboring states into that state than in the opposite

direction. In other words, a positive net commuter rate indicates that em-

ployment measured at the workplace is larger than employment measured at

the place of residence. To illustrate the overall commuting patterns among US

federal states Figure 5.3 presents a map of net commuter rates for 1990 and

2000.

We apply two strategies to test whether commuter flows are a candidate

explanation for the high values of βN found in more recent years. Firstly, we

exclude those states from the analysis which are characterized by either very

high or very low net commuter rates. This exercise prevents those states from

dominating our estimate for βN . Secondly, we parametrize βN as a function of

commuter flows.

Concerning the first strategy, we use an ad-hoc rule and exclude those states

from the analysis which fall outside the 10 to 90 percent percentile of net com-

muter rates. We note that our results are robust to using a different thresh-

old. When we use this threshold the number of states included in the analysis

declines substantially from 48 to 38.

To save on space, we only report the estimation results for those periods in

which the coefficient βN was found to be significant, i.e. for 1980-1998 and the

most recent period 1990-1998. From Table 5.3 it can be seen that our previous

point estimates for βN do not change substantially. In particular, we obtain a

large estimate for βN during the period 1990-1998 which is close to the estimate

obtained for the complete sample of states. Therefore, states with very high

inflows or outflows of commuters do not drive our previous finding of a sizeable

neighborhood bias in factor income flows.

20The data for 1990 and 2000 can be downloaded from
http://www.census.gov/population/www/cen2000/commuting.html. We do not have

access to data from earlier years. Data for 1960-1980 will be considered in a later version of
this paper.
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Figure 5.3: Net commuter rates across US federal states, 1990 (top) and 2000 (bot-
tom)
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Table 5.3: Exclude federal states with intensive commuter flows

1980-1998 1990-1998

Coeff. t-stat z-Prob. Coeff. t-stat z-Prob.

Own idiosyncratic 0.49 (28.61) 0.00 0.40 (12.08) 0.00
output shock: ∆x (βK)

Neighbor’s idiosyncratic 0.07 (2.08) 0.04 0.21 (3.32) 0.00
output shock: [WBt]∆xt (βN)

Overall insurance: βK + βN 0.56 0.61

Spatial autocorrelation 0.35 (7.99) 0.00 0.14 (1.98) 0.05
coefficient (ρ)

log-likelihood 2192.07 1051.76
Number of observations 722 342
Number of states 38 38
Number of years 19 9

We provide further evidence by analyzing directly whether states that have

high commuter flows are more or less successful in decoupling their incomes

from the output fluctuation in neighboring states. This means that we relax

the assumption that βN is the same for all federal states. To capture the impact

of commuter flows on our measure of neighborhood bias, we postulate that βN
may vary across states and is given by

βN,k = κ0 (ck,t − c̄t) (5.7)

where ck,t is a vector of data on commuter flows and c̄t is the vector of cross-

sectional means of ck,t. The associated parameter vector is denoted as κ. Before

we discuss how to interpret (5.7) we note that the vector ck,t could contain

different measures of commuter flows. For instance, ck,t may include commuter

flows (rates) into and out of each federal state. Alternatively, we could focus

on the net rate of commuter flows. Lastly, we could emphasize the role of

gross commuter flows rather than net flows by adding commuter flows in both
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directions (see below).

Each of these possibilities to parametrize βN,k has pros and cons and we have

no strong prior which specification is preferable. To set the scene, we start with

a general specification and include both, commuting into and commuting out

of a federal state into the vector ck,t. Thereafter, we turn to an alternative

specification which emphasizes the effect of gross flows. Finally, we consider

commuting out of a federal state only.

For our first parametrization we define commuter rates as

zink,t =
Zin
k,t

Ek,t
and zoutk,t =

Zout
k,t

Ek,t
,

where Zin
k,t measures commuter flows into a state and Z

out
k,t measures commuting

out of a state. Both numbers are normalized by total employment Ek,t, so that

the lower-case variables z measure commuter rates.

Then, we define the parametrization of βN,k as

βN,k = β̄N + κ1(z
in
k,t − z̄int ) + κ2(z

out
k,t − z̄outt ). (5.8)

We note that we do not have a consecutive time-series on commuter flows.

Therefore, we stacked commuter flows in 1990 and 2000 so that the period

1980-1990 is matched with commuter flows in 1990 and the remaining years

between 1990-1998 are matched with commuting data in 2000. Although this

crude procedure is far from being satisfactory, it seems the best we can do at the

moment due to the aforementioned data limitations. We hope that this exercise

provides us at least with an idea of how strongly differences in commuter flows

affect the estimate for βN .

We substract the vectors of cross-sectional means (indicated with an upper-

bar, see equation (5.8)) from each commuter rate. This allows us to interpret

the coefficient β̄N as the cross-sectional average of βN,k. Plugging the relation

(5.8) into (5.6) then yields a panel regression from which the coefficients κ1 and

κ2 can be estimated.

The estimation results are reported in Table 5.4 (top). The most important

finding is that the commuter variables are not statistically significant during

both sub-periods. This finding implies that a federal state which is charac-

terized by above-average commuter flows has a similar degree of neighborhood

bias than a state which is characterized by an average amount of commuter

flows.

As a robustness test we also estimated the panel model without fixed-effects.
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Table 5.4: Impact of commuter flows on the neighborhood bias, Part I

Parametrization I: βN,k = β̄N + κ1(z
in
k,t − z̄int ) + κ2(z

out
k,t − z̄outt )

1980-1998 1990-1998

Coeff. t-stat z-Prob. Coeff. t-stat z-Prob.

Own idiosyncratic 0.49 (27.94) 0.00 0.44 (14.13) 0.00
output shock: βK

Neighbor’s idiosyncratic 0.09 (2.56) 0.01 0.26 (3.89) 0.00
output shock: β̄N

Commuter rate (in): κ1 0.49 (0.27) 0.78 2.46 (0.67) 0.50

Commuter rate (out): κ2 1.63 (1.48) 0.14 1.77 (0.75) 0.45

Spatial autocorrelation 0.35 7.99 0.00 0.19 (2.65) 0.01
coefficient ρ

Parametrization II: βN,k = βN + κ3z
gross
k,t , zgrossk,t =

¡
Zin
k,t + Zout

k,t

¢
/Ek,t

1980-1998 1990-1998

Coeff. t-stat z-Prob. Coeff. t-stat z-Prob.

Own idiosyncratic 0.49 (27.98) 0.00 0.44 (14.19) 0.00
output shock: βK

Neighbor’s idiosyncratic -0.01 (-0.13) 0.90 0.08 (0.78) 0.44
output shock: βN

Gross commuter rate: κ3 1.25 (2.47) 0.01 2.03 (1.99) 0.05

Spatial autocorrelation 0.35 (7.92) 0.00 0.19 (2.65) 0.01
coefficient: ρ
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This exercise illustrates if potential cross-sectional variation in βN,k through

differences in commuter flows becomes significant once we omit the fixed-effects

which also pick up heterogeneity across states. We do not report detailed results

of this exercise because none of the κ coefficients becomes significant even if

fixed-effects are omitted.

Although these findings are important on their own, we should also con-

sider alternative specifications which we believe have a more direct economic

interpretation in our setting. The parametrization according to (5.8) illustrates

whether deviations from average levels of commuter flows have an influence on

the neighborhood parameter βN and we found that this is not the case. It is

also of importance, however, to examine whether the magnitude of βN changes

substantially once a (fictitious) federal state is completely isolated from other

states in terms of commuting. In order to test whether the neighborhood bias

in factor income flows vanishes once commuter flows are (artificially) set to

zero, we consider the following parametrization of βN,k:

βN,k = βN + κ3z
gross
k,t , (5.9)

where the regressor zgrossk,t measures the sum of gross commuter flows (rather

than the net flow). We calculate zgrossk,t as

zgrossk,t =
Zin
k,t + Zout

k,t

Ek,t
.

In this formula, Zin
k,t measures commuter flows into a state, Z

out
k,t measures com-

muter flows out of a state, and Ek,t is total employment of state k at time

t. Different from the previous parametrization we do not subtract the cross-

sectional averages of zgrossk,t . This allows us to interpret the coefficient βN in

equation (5.9) as the amount of neighborhood bias if there were no commuter

flows (at all).

Table 5.4 (bottom) reports the results obtained with this specification. It

can be seen that the results change substantially. The point estimates for βN
become insignificant while the interaction term with the commuter variable

becomes significant in both periods. These estimates suggest that if there were

no commuter flows, there would also be no neighborhood bias in factor income

flows.

However, it might be that the βN coefficient is imprecisely estimated due

to problems of multi-collinearity. In any case, it is important to note that the

point estimate of βN during the period 1990-1998 declines substantially from
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0.23 (see Table 5.1) to 0.08 (see Table 5.4).

In order to illustrate the quantitative effects associated with the parameter

of the interaction term, κ3, we consider a one standard-deviation increase in

gross commuter flows as an example. If the gross commuter rate increases by

one standard deviation this induces an increase in βN of 0.14.

Finally, we consider a parametrization of βN,k which only takes into account

commuter flows out of a federal state. This specification should illustrate most

clearly whether the apparent neighborhood bias in factor income flows essen-

tially reflects commuters income which crosses state borders. If workers com-

mute from their place of residence to their place of work in another federal

state, their output is attributed to the GSP of the neighboring state, while

their income is measured at their state of residence. Hence, idiosyncratic out-

put fluctuations in neighboring states may be transmitted to the home state’s

income because workers commuting to their place of work take their output

produced in other states with them.

To test for this effect (whilst ignoring the effect of commuting into a federal

state) we parametrize the parameter associated with the neighborhood bias as

βN,k = βN + κ4z
out
k,t , (5.10)

where zoutk,t measures the commuter rate out of a state. The results of the

estimation are displayed in Table 5.5.

Again, we find strong evidence that the neighborhood bias is far from being

a phenomenon unique to the capital market. In both sub-periods the interac-

tion term of neighbor’s output shock with the commuter rate is statistically

significant, though only at the 10% level during 1990-1998. The parameter

associated with the neighborhood bias itself becomes insignificant, most likely

due to problems of multi-collinearity.21 Even more important is that its point

estimate declines substantially from 0.23 (see Table 5.1) to 0.11 (see Table 5.5).

This finding provides further evidence that it are commuter flows which explain

a large fraction of the neighborhood bias in factor income flows.

If we look at the quantitative effects, we find that a one standard-deviation

increase in the commuter rate out of a state increases the transmission of neigh-

bor’s output shocks to a state’s idiosyncratic income by 0.19. In other words,

if no workers were commuting into neighboring states at all, the neighborhood

bias would decline to a magnitude of 0.11. A one standard-deviation increase in

21The correlation between neighbor’s idiosyncratic output shock [WBt]∆xt and the inter-
action term is of magnitude 0.8.
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Table 5.5: Impact of commuter flows on the neighborhood bias, Part II

Parametrization III: βN,k = βN + κ4z
out
k,t , zoutk,t =

Zoutk,t

Ek,t

1980-1998 1990-1998

Coeff. t-stat z-Prob. Coeff. t-stat z-Prob.

Own idiosyncratic 0.49 (27.96) 0.00 0.44 (14.28) 0.00
output shock: βK

Neighbor’s idiosyncratic 0.01 (0.13) 0.89 0.11 (1.19) 0.23
output shock: βN

Commuter rate (out): κ4 1.89 (2.47) 0.01 2.94 (1.87) 0.06

Spatial autocorrelation 0.35 (7.90) 0.00 0.19 (2.60) 0.01
coefficient: ρ

the commuter rate would increase the neighborhood bias by further 0.19 units.

5.6 Extensions for future research

In this paper we have established a first link between the literatures on spatial

econometrics and risk sharing. We are convinced that our study suggests a

number of promising directions for further inquiry.

One extension is to measure risk sharing among larger geographical areas

than at the state level. Such experiment can illustrate whether the apparent

neighborhood bias in factor income flows vanishes once state-level data are

aggregated. We would expect that the amount of risk sharing among larger

geographical areas is smaller than suggested by previous studies which used

state-level data and did not account for the neighborhood bias in factor income

flows.

Secondly, it appears promising to take our spatial approach to the interna-

tional economy. We suppose that the neighborhood bias may turn out to be

important, given the vast distances separating investors from potential invest-

ments in the global setting. At the same time, commuter flows between states
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are expected to play a minor role for the international economy.

For the international economy, several studies have documented a gradual

removal of country portfolio home bias in recent years. For instance, Lane

and Milesi-Ferretti (2001, 2003) document a dramatic increase in international

cross-holdings of financial assets. Since data on international asset holdings is

available we could use this data to test how well our spatial model picks up the

development of local biases in investment portfolios over time.

Another step in the analysis might be to re-consider the approach taken

by Artis and Hoffmann (2005). While our model relied solely on output and

income data which have been rendered stationary through first-differencing,

this study demonstrates how to use the information implicit in the levels of

relative consumption and output. The advantage of the level specification is

that it allows one to pick up longer-term trends in the extent of consumption

risk sharing that remain blurred in the first-differenced specification for capital

market risk sharing. Some pre-testing makes us confident that spatial effects are

highly relevant in the levels model. On the side of the econometric analysis, a

spatial risk sharing analysis in levels needs to combine cointegration and spatial

econometric techniques.

5.7 Conclusion

Previous risk sharing studies have analyzed how well income is insured against

idiosyncratic fluctuations in one’s own output. From micro-based studies we

know, however, that regional asset portfolios are characterized by a preference

for geographically proximate investments which is related to distance and in-

formation asymmetries among regions. This implies that output fluctuations in

neighboring states may also exert a destabilizing effect on state-level incomes.

We have referred to this phenomenon as a ‘neighborhood bias’.

The question of this paper has been how strongly a potential neighborhood

bias influences the overall amount of income insurance that is achieved among

US federal states. Or to put it differently, we have examined whether output

fluctuations in neighboring states also constitute risk factors which are trans-

mitted to the home state’s idiosyncratic income via factor income flows. This

paper is the first one that puts local biases in factor income flows into a regional

perspective.

Similar to previous studies, we found that insurance against own idiosyn-

cratic shocks has increased substantially over time. This means that state-level
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income has become more and more buffered against region-specific shocks to

GSP.22 At the same time, however, factor income flows have become substan-

tially biased towards neighboring states in recent years. This means that factor

income flows between states and their neighbors are disproportionately high

in comparison to a portfolio which only takes into account the fraction of a

state’s output. As a consequence, state-level income co-moves not only with

own idiosyncratic output fluctuations, but also with output growth of neigh-

boring states. Therefore, our study suggests that the overall amount of income

insurance is more limited than reported in previous studies which did not take

the neighborhood bias into account.

In a second step, we have examined which economic factors drive the neigh-

borhood bias in factor income flows. There are two candidate explanations for

the neighborhood bias. Firstly, local biases in capital income flows caused by

local biases in portfolio holdings and secondly, commuter flows across state-

borders.

We incorporated commuter flows into the analysis in order to shed light on

the relative importance of both factors. We found that a fictitious federal state

which is completely isolated from other states in terms of commuting is not

subject to a neighborhood bias in factor income flows–at least the statistical

significance of the neighborhood bias vanishes for this state. Thus, the apparent

neighborhood bias in factor income flows does not primarily reflect a preference

for geographically proximate investments, but mainly the effect of commuting

linkages among states. We believe that this result is of utmost importance since

it also suggests that risk sharing itself is not an issue of capital markets solely.

These results were derived by extending the standard risk sharing model to

a spatial model. Besides the empirical results of our estimations, a further con-

tribution of our paper is to have established a first link between the risk sharing

and the spatial econometrics literature. These fields have been unrelated so far.

22Further smoothing of income can be achieved through federal taxes and transfers and
by borrowing and lending at the credit market. These channels were not in the focus of this
paper.
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Concluding Remarks

In this thesis I have presented four self-contained essays on empirical and policy

issues related to economic convergence and risk sharing. My essays contribute

to the emerging literature on ‘Intranational Macroeconomics’ (see Hess and van

Wincoop, 2000), which aims at complementing and extending international

studies by examining the high degree of goods and asset market integration

within a domestic setting. The main results of my papers can be summarized

as follows.

In Chapter 2 I have provided evidence for conditional convergence in re-
gional unemployment rates in West Germany. The equilibrium distribution

of regional unemployment rates was found to be subject to a permanent shift

which occurred after the second oil crisis. The finding of structural breaks and

quick adjustment to equilibrium levels implies that small policy interventions

are unlikely to be effective in reducing the dispersion of unemployment rates.

Rather, policy intervention needs to take the form of a substantial intervention.

Chapter 3 moved the focus to an analysis of regional convergence in reuni-
fied Germany. By examining the density functions of GDP per worker I have

illustrated that East German regions have caught up substantially in the past

decade. In the long-run, however, my finding of a bi-modal ergodic distribution

provides some discouraging evidence that regional polarization in production is

likely to persist if past distribution dynamics continue operating unchanged in

the future.

Yet, one important insight from the theory of aggregate risk sharing is that

disparities in production do not necessarily induce disparities in welfare. The

analysis presented inChapter 4 has shown that disparities in levels of regional
output are reduced by private factor income flows and public interregional trans-

fers. While private factor income flows provide substantial insurance against

126
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idiosyncratic output risk, fiscal transfers are found to contribute significantly

to reducing level disparities in household incomes.

Finally,Chapter 5 examined regional risk sharing among US federal states.
One central result of the analysis is that the increasing amount of insurance

against own idiosyncratic output fluctuations over time is accompanied by an in-

creasing dependence on output fluctuations in geographically proximate states.

A large fraction of this dependence on neighbors output variability may be

explained by better commuting possibilities across state borders.

From a methodological point of view, the central contribution of my thesis

is a cross-fertilization between the modern literature on growth econometrics

and the macroeconomic literature on aggregate risk sharing. The transfer of

insights from one field of macroeconomic research to the other focused on a

transfer of analytical techniques, rather than that it attempted to shed light

on the economic relationships between these topics. In fact, this would have

been necessarily beyond the scope of the individual papers. However, these

concluding remarks allow me to draw a bow from one field of research to the

other.

Typically, the literature on risk sharing is motivated by the belief that sub-

stantial welfare gains can be achieved by risk sharing. As summarized by van

Wincoop (1994) and Athanasoulis and van Wincoop (2000, 2001), the welfare

gains from risk sharing depend on four factors: (i) the risk-free interest rate,

(ii) the risk-adjusted growth rate, (iii) the rate of relative risk aversion, and

(iv) uncertainty about the endowment.

The last of these factors is of particular importance and is in fact closely

related to the question of economic convergence. In other words, one connection

between the fields of risk sharing and convergence is the uncertainty about the

endowment.

Obviously, the uncertainty about the endowment depends on the specific

process for the endowment. Usually, studies on risk sharing assume that the rel-

ative output process displays a high degree of persistency. In fact, the variance

decomposition method suggested by Asdrubali, Sørensen, and Yosha (1996)–

which has become the workhorse for most macroeconomic studies on inter-

and intranational risk sharing–assumes that relative output follows a unit-

root process and is hence unpredictable. The higher the persistency of output

is, the higher are possible welfare gains from sharing output risk. By contrast,

a low degree of persistency in the output process corresponds to shocks being

only transitory, short-lived, and predominantly small in magnitude.
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As illustrated in Chapter 2, also the notion of economic convergence is re-

lated to uncertainty about the endowment, which is again reflected by the time-

series properties of variables employed. As such, time-series tests of convergence

judge convergence by examining how closely macroeconomic time-series can be

approximated by unit-root processes. If relative output follows a unit-root

process than there is no convergence.

These considerations reveal that the risk sharing literature builds implicitly

upon empirical findings which have been established by the convergence liter-

ature, namely the prevalent property of macroeconomic time-series to display

a high degree of persistency. Or to put it differently, there is ample scope for

risk sharing if convergence occurs only slowly over time.

Risk sharing also implies that convergence in income (or consumption)

should occur faster than convergence in output. The reason is that conver-

gence in income can be achieved by flows in factor income, while convergence

in output requires a flow of productive factors themselves. In other words, the

theory of macroeconomic risk sharing suggests that convergence in income can

be achieved by trade in financial assets, while convergence in output requires

trade in real assets.



Bibliography

Abreu, M. (2005). ‘A Meta-analysis of β-convergence: The Legendary 2%.’

Journal of Economic Surveys 19: 389-420.

Aghion, P. and Howitt P. W. (eds.) (2005). Handbook of Economic Growth.

Amsterdam, North Holland.

Ahearne, A. G., Griever, W. L. and Warnock, F. E. (2004). ‘Information

Costs and Home Bias: An analysis of U.S. Holdings of Foreign Equities.’

Journal of International Economics 62: 313-336.

Amable, B., Henry, J., Lordon, F. and Topol, R. (1991). ‘Strong Hysteresis:

An Application to Foreign Trade.’ OFCE Working Paper/Document de

travail no. 9103, Observatoire Francais des Conjonctures Economiques,

Paris.

Amable, B., Henry, J., Lordon, F. and Topol, R. (1994). ‘Strong Hysteresis

versus Zero-Root Dynamics.’ Economics Letters 44: 43-47.

Amable, B., Henry, J., Lordon, F. and Topol, R. (2005). ‘Complex Rema-

nence vs. Simple Persistence: Are Hysteresis and Unit Root Processes

Obervationally Equivalent?’ mimeo.

Anselin, L., Florax, R. J. G. M. and Rey, S. J. (eds.) (2004). Advances in

Spatial Econometrics. Springer, Berlin.

Armstrong, H. and Taylor, J. (2000). Regional Economics and Policy, 3rd.

edn, Blackwell.

Andrade, E., Laurini, M., Madalozzo, R. and Valls Pereira, P. L. (2005).

‘Convergence clubs among Brazilian municipalities.’ Economics Letters

83: 179-184.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Aca-

demic Publishers, Dorddrecht.

129



BIBLIOGRAPHY 130

Artis, M. J. and Hoffmann, M. (2005). ‘The Home Bias and Capital Income

Flows between Countries and Regions.’ mimeo, University of Dortmund.

Asdrubali, P., Sørensen, B. E. and Yosha, O. (1996). ‘Channels of interstate

risk sharing: United States 1963-90.’ Quarterly Journal of Economics

111: 1081-1110.

Asdrubali, P. and Kim, S. (2004). ‘Dynamic risksharing in the United States

and Europe.’ Journal of Monetary Economics 51: 809-836.

Asdrubali, P. and Kim, S. (2005). ‘Incomplete Intertemporal Consumption

Smoothing and Incomplete Risk Sharing.’ mimeo.

Athanasoulis, S. G. and van Wincoop, E. (2000). ‘Growth uncertainty and

risksharing.’ Journal of Monetary Economics 45: 477-505.

Athanasoulis, S. G. and van Wincoop, E. (2001). ‘Risk sharing within the

United States: What do financial markets and fiscal federalism accom-

plish?’ Review of Economics and Statistics 83: 688-698.

Atkeson, A. and Bayoumi, P. R. (1993). ‘Do Private Capital Markets Insure

Regional Risks? Evidence from the United States and Europe.’ Open

Economics Review 4: 303-324.

Azariadis, C. and Drazen, A. (1990). ‘Threshold Externalities in Economic

Development.’ Quarterly Journal of Economics 105: 501-526.

Baltagi, B. H. (2001). Econometric Analysis of Panel Data, John Wiley &

Sons.

Balz, C. (1999). ‘Hysteresis auf europäischen Arbeitsmärkten. Neue em-

pirische Ergebnisse auf der Basis multivariater Einheitswurzeltests.’ Kon-

junkturpolitik 45: 221-239.

Bandyopadhyay, S. (2002). ‘Convergence Club Empirics: Some Dynamics and

Explanations of Unequal Economic Growth across Indian states.’ DARP

Discussion Paper No. 69., STICERD, London School of Economics.

Bandyopadhyay, S. (2004). ‘Twin Peaks: Distribution Dynamics of Economic

Growth across Indian States.’ In: Shorrocks, A. and van der Hoeven, R.

(eds.), Growth, Inequality and Poverty: Prospects for Pro-Poor Growth.

Oxford University Press.



BIBLIOGRAPHY 131

Barrell, R. and te Velde, D. W. (2000). ‘Catching-up of East German labor

Productivity in the 1990s.’ German Economic Review 1: 271-297.

Barro, R. J. (1991a). ‘Economic Growth in a Cross Section of Countries.’

Quarterly Journal of Economics 106: 407-443.

Barro, R. J. and Sala-i-Martin, X. (1991b). ‘Convergence across States and

Regions.’ Brooking Papers on Economic Activity 1: 107-182.

Barro, R. J. and Sala-i-Martin, X. (1992). ‘Convergence.’ Journal of Political

Economy 100: 223-251.

Barro, R. J., Mankiw, N. G. and Sala-i-Martin, X. (1995). ‘Capital Mobility

in Neoclassical Models of Growth.’ American Economic Review 85: 103-

115.

Baxter, M. and Crucini, M. (1995). ‘Business Cycles and the Asset Structure

of Foreign Trade.’ International Economic Review 36: 821-854.

Bayer, C. and Jüßen, F. (2006). ‘Convergence in West German Regional

Unemployment Rates.’ Forthcoming in German Economic Review.

Becker, S. and Hoffmann, M. (2006). ‘Intra- and International Risk-Sharing

in the Short Run and the Long Run.’ European Economic Review 50:

777-806.

Belke, A. (1996). ‘Testing for Unit Roots in West German and U.S. Unemploy-

ment Rates: Do ‘Great Crashes’ Cause Trend Breaks?’ Konjunkturpolitik

42: 327-360.

Belke, A. and Göcke, M. (1996). ‘Cointegration and Structural Breaks in

German Employment, An Error Correction Interpretation.’ Jahrbücher

für Nationalökonomie und Statistik 216: 129-152.

Belke, A. and Göcke, M. (2005). ‘Real Options Effects on Employment: Does

Exchange Rate Uncertainty Matter for Aggregation?’ German Economic

Review 6: 185-203.

Bernard, A. and Durlauf, S. (1995). ‘Convergence in international output.’

Journal of Applied Econometrics 10: 97-108.

Bernard, A. and Durlauf, S. (1996). ‘Interpreting tests of the convergence

hypothesis.’ Journal of Econometrics 71: 161-73.



BIBLIOGRAPHY 132

Bianchi, M. (1997). ‘Testing for convergence: evidence from non-parametric

multimodality tests.’ Journal of Applied Econometrics 12: 393-409.

Blanchard, O. J. and Katz, L. (1992). ‘Regional Evolutions.’ Brookings Papers

on Economic Activity 1: 1-75.

Blanchard, O. J. and Summers, L. H. (1989). ‘Hysteresis and the European

unemployment problem.’ NBER Macroeconomics Annual 1986 (ed. Fis-

cher, S.), MIT Press, Cambridge (MA)..

Bliss, C. (1999). ‘Galton’s Fallacy and Economic Convergence.’ Oxford Eco-

nomic Papers 51: 4-14.

Bliss, C. (2000). ‘Galton’s Fallacy and Economic Convergence: A Reply to

Cannon and Duck.’ Oxford Economic Papers 52: 420-422.

Bode, E. and Rey, S. (2006). ‘Introduction to the special issue "The Spa-

tial Dimension of Economic Growth and Convergence"’. Forthcoming in

Papers in Regional Science.

Bohl, M. T. (1998). ‘Konvergenz westdeutscher Regionen? Neue empirische

Ergebnisse auf der Basis von Panel-Einheitswurzeltests.’ Konjunkturpoli-

tik 44: 82-99.

Bond, S., Hoeffler, H. and Temple, J. (2001). ‘GMM Estimation of Empirical

Growth Models.’ CEPR Discussion Paper No. 3048.

Breitung, J. andMeyer, W. (1994). ‘Testing for Unit Roots in Panel Data: Are

wages on different bargaining levels cointegrated?’ Applied Economics 26:

353-361.

Breitung, J. (2000). ‘The Local Power of Some Unit Root Tests for Panel

Data.’ In: Baltagi, B. (ed.), Nonstationary Panels, Panel Cointegration,

and Dynamic Panels, Advances in Econometrics, Vol. 15, JAI, Amster-

dam: 161-178.

Brennan, M. and Cao, H. (1997). ‘International Portfolio Investment Flows.’

Journal of Finance 52: 1851-1880.

Buettner, T. (2002). ‘Fiscal federalism and interstate risk sharing: empirical

evidence from Germany’. Economics Letters 74: 195-202.

Bulli, S. (2001). ‘Distribution Dynamics and Cross-Country Convergence: A

New Approach.’ Scottish Journal of Political Economy 48: 226-243.



BIBLIOGRAPHY 133

Burda, M. and Funke, M. (1995). ‘Eastern Germany: Can’t We Be More
Optimistic?’ IFO Studien 41: 327-345.

Camarero, M. and Tamarit, C. (2004). ‘Hysteresis vs. natural rate of un-

employment: new evidence for OECD countries.’ Economics Letters 84:

413-417.

Canova, F. and Ravn, M. (1996). ‘International Consumption Risk Sharing.’

International Economic Review 37: 573-601.

Cannon, E. and Duck, N. (2000). ‘Galton’s Fallacy and Economic Conver-

gence.’ Oxford Economic Papers 53: 415-419.

Carlino, G. and Mills, L. (1993). ‘Are US regional incomes converging?’ Jour-

nal of Monetary Economics 32: 335-346.

Carlino, G. and Mills, L. (1996a). ‘Testing Neoclassical Convergence in Re-

gional Incomes and Earnings.’ Regional Science and Urban Economics

26: 565-590.

Carlino, G. and Mills, L. (1996b). ‘Convergence and the U.S. States: a Time-

Series Analysis.’ Journal of Regional Science 36: 587-616.

Caselli, F., Esquivel, G. and Lefort, F. (1996). ‘Reopening the Convergence

Debate: A New Look at Cross-country Growth Empirics.’ Journal of

Economic Growth 1: 363-389.

Cass, D. (1965). ‘Optimum Growth in an Aggregative Model of Capital Ac-

cumulation.’ Review of Economic Studies 32: 233-240.

Choi, I. (2001). ‘Unit root tests for panel data.’ Journal of International

Money and Finance 20: 249-272.

Cochrane, J. H. (1991). ‘A simple test of consumption insurance.’ Journal of

Political Economy 99: 957-976.

Cooper, I. and Kaplanis, E. (1994). ‘Home bias in equity portfolios, infla-

tion hedging, and international capital market equilibrium.’ Review of

Financial Studies 7: 45-60.

Coval, J. D. and Moskowitz, T. J. (1999). ‘Home bias at home: Local equity

preference in domestic portfolios.’ Journal of Finance 54: 2045-2074.



BIBLIOGRAPHY 134

Coval, J. D. (2003). ‘International capital flows when investors have local

information.’ Harvard Business School Working Paper 04-026.

Cross, R. (1994). ‘The Macroeconomic Consequences of Discontinuous Adjust-

ment: Selective Memory of Non-Dominated Extrema.’ Scottish Journal

of Political Economy 41: 212-221.

Crucini, M. J. (1999). ‘On international and national dimensions of risk shar-

ing.’ Review of Economics and Statistics 81: 73-84.

Crucini, M. J. and Hess, G. D. (2000). ‘International and intranational risk

sharing.’ In: Hess, G. D. and van Wincoop, E. (eds.), Intranational

Macroeconomics. Cambridge University Press, Cambridge.

Decressin, J. and Fatas, A. (1995). ‘Regional Labor Market Dynamics in

Europe.’ European Economic Review 39: 1627-1655.

Del Negro, M. (2002). ‘Asymmetric shocks among U.S. states.’ Journal of

International Economics 56: 273-297.

De Santis, G. and Gerard, B. (1997). ‘International asset pricing and portfolio

diversification with time-varying risk.’ Journal of Finance 52: 1881-1912.

Desgoits, A. (1999). ‘Patterns of economic development and the formation of

convergence clubs.’ Journal of Economic Growth 4: 305-330.

Diamond, P. A. (1982). ‘Aggregate demand management in search equilib-

rium.’ Journal of Political Economy 90: 881-894.

Dickey, D. and Fuller, W. (1979). ‘Distribution of the Estimates for Autore-

gressive Time Series With Unit Root.’ Journal of the American Statistical

Association 74: 427-431.

Durlauf, S. N. and Quah, D. T. (1999). ‘The New Empirics of Economic

Growth.’ In: Taylor, J. and Woodford, M. (eds.), Handbook of Macroeco-

nomics, Amsterdam, North-Holland, Amsterdam.

Durlauf, S. D. and Johnson, P. A. (1999). ‘Multiple Regimes and Cross-

Country Growth Behavior.’ Journal of Applied Econometrics 10: 365-

384.

Durlauf, S., Johnson, P. and Temple, J. (2005). ‘Growth Econometrics.’ In

Aghion, P. and Durlauf, S. N. (eds.), Handbook of Economic Growth.Volume

1A, North-Holland, Elsevier, Amsterdam: 555-677.



BIBLIOGRAPHY 135

Eckey, H.-F. (2001). ‘Der wirtschaftliche Entwicklungsstand in den Regionen

des Vereinigten Deutschlands.’ Volkswirtschaftliche Diskussionsbeiträge

Universität Kassel 20/01, ISSN 1615-2751.

Eldor, R., Pines, D. and Schwartz, A. (1988). ‘Home asset preference and

productivity shocks.’ Journal of International Economics 25: 165-176.

Elhorst, J. P. (2003). ‘Specification and Estimation of Spatial Panel Data

Models.’ International Regional Science Review 26: 244-268.

Egger, P. and Pfaffermayr, M. (2006). ‘On the Role of Regional Spillovers

for Beta- and Sigma-Convergence.’ Forthcoming in Papers in Regional

Science.

Eichengreen, B. (1990). ‘One Money for Europe? Lessons from the U.S.

Currency Union.’ Economic Policy 10: 117-187.

Elliot, G., Rothenberg, T. and Stock, J. H. (1996). ‘Efficient tests for an

autoregressive unit root.’ Econometrica 64: 813-836.

Epstein, P., Howlett, P. and Schulze, M.-S. (2003). ‘Distribution dynam-

ics: stratification, polarisation, and convergence among OECD economies,

1870-1992.’ Explorations in Economic History 40: 78-97.

Evans, P. and Karras, G. (1996a). ‘Convergence Revisited.’ Journal of Mon-

etary Economics 37: 249-265.

Evans, P. and Karras, G. (1996b). ‘Do Economies Converge? Evidence from

a Panel of US States.’ Review of Economics and Statistics 78: 384-388.

Fiaschi, D. and Lavezzi, M. (2004). ‘Nonlinear growth in a long-run perspec-

tive.’ Applied Economics Letters 11: 101-104.

Fingleton, B. and López-Bazo, E. (2006). ‘Empirical Growth Models with

Spatial Effects.’ Forthcoming in Papers in Regional Science.

Fotopoulos, G. (2005). ‘Twin-Peaks in E.U. Regional Productivity Dynamics:

A Nonparametric Analysis.’ mimeo.

French, K. and Poterba, J. (1991). ‘Investor diversification and international

equity markets.’ American Economic Review 81: 222-226.

Friedman, M. (1992). ‘Do Old Fallacies Ever Die?’ Journal of Economic

Literature 30: 2129-2132.



BIBLIOGRAPHY 136

Fujita, M., Krugman, P. R. and Venables, A. (2000). The Spatial Economy.

MIT Press.

Funke, M. and Strulik, H. (2000). ‘Regional Growth in West Germany: Con-

vergence and Divergence?’ Economic Modelling 16: 489-502.

Funke, M. and Strulik, H. (2000). ‘Growth and Convergence in a Two-Region
Model of Unified Germany.’ German Economic Review 1: 363-384.

Hallett, H. A. J. and Ma, Y. (1993). ‘East Germany, West Germany and their

Mezzogiorno Problem: A Parable for European Economic Integration.’

Economic Journal 103: 416-428.

Göcke, M. (2002). ‘Various Concepts of Hysteresis Applied in Economics.’

Journal of Economic Surveys 16: 167-188.

Grubel, H. G. (1968). ‘Internationally diversified portfolios.’ American Eco-

nomic Review 58: 1299-1314.

Hansen, G. (1991). ‘Hysteresis und Arbeitslosigkeit.’ Jahrbücher für Nation-

alökonomie und Statistik 208: 272-298.

Hansen, B. E. (2001). ‘The New Econometrics of Structural Change: Dating

Breaks in U.S. Labor Productivity.’ Journal of Economic Perspectives

15: 117-128.

Hatchondo, J. C. (2004). ‘Asymmetric Information and the Lack of Interna-

tional Portfolio Diversification.’ mimeo.

Hepp, R. and von Hagen, J. (2000). ‘Regional Risksharing and Redistribution

in the German Federation.’ ZEI Working Paper B 15.

Hess, G. D. and Shin, K. (1998). ‘Intranational Business Cycles in the United

States.’ Journal of International Economics 44: 289-313.

Hess, G. D. and van Wincoop, E. (eds.) (2000). Intranational Macroeco-

nomics. Cambridge University Press, Cambridge.

Hobijn, B., Franses, P. H. and Ooms, M. (1998). ‘Generalizations of the KPSS-

test for stationarity.’ Econometric Institute Report, no. 9802/A, Erasmus

University, Rotterdam.

Hodrick, R. and Prescott, E. (1997). ‘Post-war U.S. business cycles: An

empirical investigation.’ Journal of Money, Credit and Banking 29: 1-16.



BIBLIOGRAPHY 137

Huberman, G. (2000). ‘Home bias in equity markets: International and intra-

national evidence.’ In: Hess, G. D., van Wincoop, E. (eds.), Intranational

Macroeconomics. Cambridge University Press, Cambridge.

Huberman, G. (2001). ‘Familiarity Breeds Investment.’ Review of Financial

Studies 14: 659-680.

Im, K. S., Pesaran, M. H. and Shin, Y. (2003). ‘Testing for Unit Roots in

Heterogeneous Panels.’ Journal of Econometrics 115: 53-74.

Islam, N. (1995). ‘Growth Empirics: A Panel Data Approach.’ Quarterly

Journal of Economics 110: 1127-1170.

Islam, N. (2003). ‘What Have We Learnt from the Convergence Debate?’

Journal of Economic Growth 17: 309-362.

Johnson, P. A. (2000). ‘A nonparametric analysis of income convergence across

the US states.’ Economics Letters 69: 219-223.

Johnson, P. A. (2005). ‘A continuous state space approach to ‘Convergence

by Parts’.’ Economics Letters 86: 317-321.

Jüßen, F. (2006a). ‘A Distribution Dynamics Approach to Regional GDP

Convergence in Reunified Germany.’ mimeo.

Jüßen, F. (2006b). ‘Interregional Risk Sharing and Fiscal Redistribution in

Reunified Germany.’ Forthcoming in Papers in Regional Science.

Jüßen, F. (2006c). ‘Home Bias, Neighborhood Bias, and Incomplete Capital

Market Risk Sharing among US Federal States.’ mimeo.

Kalemli-Ozcan, S., Sørensen, B. E. and Yosha, O. (2003). ‘Risk Sharing and

Industrial Specialization: Regional and International Evidence.’ Ameri-

can Economic Review 93: 903-918.

Kalemli-Ozcan, S., Sørensen, B. E. and Yosha, O. (2004). ‘Asymmetric Shocks

and Risk Sharing in a Monetary Union: Updated Evidence and Policy Im-

plications for Europe.’ In: Who will Own Europe? The Internationaliza-

tion of Asset Ownership in the EU Today and in the Future. Cambridge

University Press.

Kang, S. J. (2004). ‘The evolution of regional income distribution in Japan.’

Applied Economics 36: 253-259.



BIBLIOGRAPHY 138

Kapoor, M., Kelejian, H. H., and Prucha, I. (2006). ‘Panel Data Models

with Spatially Correlated Error Components.’ Forthcoming in Journal of

Econometrics.

Karolyi, G. A. and Stulz, R. M. (2003). ‘Are Financial Assets Priced Locally or

Globally?’ In: Constantinides, M. H. and Stulz, R. (eds.), The Handbook

of the Economics of Finance. North Holland, New York.

Kellermann, K. (1997). ‘Finanzpolitik und regionale Konvergenz der Arbeit-

sproduktivitäten un der Bundesrepublik Deutschland.’ Finanzarchiv 54:

232-260.

Kellermann, K. (2001). ‘Interregionales Risk Sharing zwischen den deutschen

Bundesländern.’ Applied Economics Quarterly 47 (former Konjunktur-

politik, in German): 271-291.

Kilka, M. and Weber, M. (2000). ‘Home Bias in International Stock Returns

Expectations’. Journal of Psychology and Financial Markets 1: 176-193.

Koopmans, T. (1965). ‘On the Concept of Optimal Economic Growth.’ In:

The Econometric Approach to Development Planning, Amsterdam, North-

Holland.

Kosfeld, R., Eckey, H.-F. and Dreger, C. (2002). ‘Regional convergence in

unified Germany: A spatial econometric perspective.’ In Dreger, C. and

Galler, H. (eds.), Advances in macroeconometric modeling, Papers and

Proceedings of the 3rd IWH Workshop in Macroeconometrics. Nomos,

Baden-Baden.

Kosfeld, R. and Lauridsen, J. (2004). ‘Dynamic Spatial Modelling of Regional

Convergence Processes.’ Empirical Economics 29: 705-722.

Krasnosel’skii, M. A. and Pokrovskii, A. W. (1989). Systems with Hysteresis,

Berlin, Springer Verlag.

Kremer, M., Onatski, A. and Stock, J. (1999). ‘Searching for prosperity’.

Carnegie-Rochester Conference Series on Public Policy 55: 275-303.

Krugmann, P. (1991a). Geography and Trade. MIT Press, Cambridge (MA).

Krugmann, P. (1991b). ‘Increasing Returns and Economic Geography.’ Jour-

nal of Political Economy 99: 483-499.



BIBLIOGRAPHY 139

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y. (1992). ‘Testing

the null hypothesis of stationarity against the alternative of a unit root:

How sure are we that economic time series have a unit root?’ Journal of

Econometrics 54: 159-178.

Lane, P. D. and Milesi-Ferretti, G. M. (2001). ‘The External Wealth of Na-

tions: Measures of Foreign Assets and Liabilities for Industrial and De-

veloping Nations.’ Journal of International Economics 55: 263-294.

Lane, P. D. and Milesi-Ferretti, G. M. (2003). ‘International Financial Inte-

gration.’ CEPR Discussion Papers No. 3769.

Lee, M., Longmire, R., Mátyás, L. and Harris, M. (1998). ‘Growth conver-

gence: some panel data evidence.’ Applied Economics 30: 907-912.

Levin, A., Lin, C. F. and Chu, C. S. J. (2002). ‘Unit Root Tests in Panel Data:

Asymptotic and Finite Sample Properties.’ Journal of Econometrics 108:

1-24.

Levine, R. and Renelt, D. (1992). ‘A Sensitivity Analysis of Cross-Country

Growth Regressions.’ American Economic Review 82: 942-963.

Levine, R. and Zervos S. J. (1993). ‘What We Have Learned about Policy and

Growth from Cross-Country Regressions.’ American Economic Review

Papers and Proceedings 83: 426-430.

Lewis, K. (1996). ‘What Can Explain the Apparent Lack of International

Consumption Risk Sharing?’ Journal of Political Economy 104: 267-297.

Lewis, K. K. (1999). ‘Trying to Explain Home Bias in Equities and Consump-

tion.’ Journal of Economic Literature 37: 571-608.

Liu, Z. and Stengos, T. (1999). ‘Non-linearities in Cross Country Growth

Regressions: A Semiparametric Approach.’ Journal of Applied Econo-

metrics 14: 527-538.

López-Bazo, E., Vayá E., Mora, A. J. and Suriñach, J. (1999). ‘Regional Eco-

nomic Dynamics and Convergence in the European Union.’ Annals of

Regional Science 33: 343-370.

Mace, B. (1991). ‘Full Insurance in the Presence of Aggregate Uncertainty.’

Journal of Political Economy 99: 928-956.



BIBLIOGRAPHY 140

Maddala, G. S. and Wu, S. (1999). ‘A comparative Study of unit Root tests

with panel data and a new simple test.’ Oxford Bulletin of Economics

and Statistics 61: 631-652.

Magrini, S. (2004). ‘Regional (Di)Convergence.’ In: Henderson, V. and

Thisse, J.-F. (eds.), Handbook of Urban and Regional Economics, Volume

4, Amsterdam, New York and Oxford, Elsevier Science, North Holland.

Mankiw, G. N., Romer, D. and Weil, D. N. (1992). ‘A Contribution to the

Empirics of Economic Growth.’ Quarterly Journal of Economics 107:

407-437.

Marston, S. T. (1985). ‘Two views of the geographic distribution of unem-

ployment.’ Quarterly Journal of Economics 100: 57-79.

Martin, R. (1997). ‘Regional Unemployment Disparities and their Dynamics.’

Regional Studies 31: 237-252.

Mayergoyz, I. D. (1991). Mathematical Models of Hysteresis. Berlin, Springer

Verlag.

Maza, A. and Villaverde, J. (2004). ‘Regional disparities in the EU: mobility

and polarisation.’ Applied Economics Letters 11: 517-522.

Mélitz, J. and Zumer, F. (1999). ‘Interregional and international risk-sharing

and lessons for EMU.’ Carnegie-Rochester Conference Series on Public

Policy 51: 149-188.

Mossi, M. B., Aroca, P., Fernández, I. J. and Azzoni, C. R. (2003). ‘Growth

Dynamics and Space in Brazil’. International Regional Science Review

26: 393-418.

Newey, W. and West, K. D. (1994). ‘Automatic Lag Selection in Covariance

Matrix Estimation.’ Review of Economic Studies 61: 631—653.

Niebuhr, A. (2001). ‘Convergence and the effects of Spatial Interaction.’

Jahrbuch für Regionalwissenschaft 21: 113-133.

Ng, S. and Perron, P. (1995). ‘Unit root tests in ARMA models with data

dependent methods for the selection of the truncation lag’. Journal of the

American Statistical Association 90, 268-281.

Nickel, S. (1981). ‘Biases in Dynamic Models with Fixed Effects.’ Economet-

rica 49: 1417-1426.



BIBLIOGRAPHY 141

Obstfeld, M. (1994a). ‘Risk-Taking, Global Diversification, and Growth.’

American Economic Review 84: 1310-1329.

Obstfeld, M. (1994b). ‘Are Industrial-Country Consumption Risks Globally

Diversifed?’ In: Leiderman, L. and Razin, A. (eds.), Capital Mobility:

The Impact on Consumption, Investment, and Growth. Cambridge Uni-

versity Press, New York.

Obstfeld, M. and Peri, G. (1998). ‘Asymmetric shocks: Regional non-adjustment

and fiscal policy.’ Economic Policy 26: 207-259.

Overman, H. G. and Puga, D. (2002). ‘Unemployment Clusters Across Eu-
rope’s Regions and Countries.’ Economic Policy 17: 115-147.

Pagan, A. and Ullah, A. (1999). ‘Nonparametric Econometrics.’ Cambridge

University Press, New York.

Papell, D. H., Murray, C. J. and Ghiblawi, H. (2000). ‘The Structure of

Unemployment.’ The Review of Economics and Statistics 82: 309-315.

Perron, P. (1990). ‘Testing for a Unit Root in a Time Series Regression with

a Changing Mean.’ Journal of Business and Economic Statistics 8: 153-

162.

Perron, P. and Vogelsang, T. J. (1992). ‘Nonstationarity and Level Shifts

With an Application to Purchasing Power Parity.’ Journal of Business

and Economic Statistics 10: 301-320.

Perron, P. (1997). ‘Further evidence on breaking trend functions in macroeco-

nomic variables.’ Journal of Econometrics 80: 355-385.

Pesenti, P. and van Wincoop, E. (2000). ‘Can nontradables generate substan-

tial home bias?’ Journal of Money, Credit and Banking 34: 25-50.

Phillips, P. C. B. and Perron, P. (1988). ‘Testing for a unit root in the time

series regression.’ Biometrika 75: 335-346.

Pittau, M. G. and Zelli, R. (2004). ‘Testing for changes in the shape of income

distribution: Italian evidence in the 1990s from kernel density estimates.’

Empirical Economics 29: 415-430.

Pittau, M. G. and Zelli, R. (2005). ‘Empirical Evidence of Income Dynamics

Across EU Regions.’ Forthcoming in Journal of Applied Econometrics.



BIBLIOGRAPHY 142

Pittau, M. G. (2005). ‘Fitting Regional Income Distributions in the European

Union.’ Oxford Bulletin of Economics and Statistics 67: 135-161.

Portes, R. and Rey, H. (2000). ‘The Determinants of Cross-Border Equity

Flows: The Geography of Information.’ Center for International and

Development Economics Research, Working Paper Series 1011.

Portes, R. and Rey, H. (2005). ‘The determinants of cross-border equity flows.’

Journal of International Economics 65: 269-296.

Quah, D. T. (1993). ‘Galton’s Fallacy and Tests of the Convergence Hypoth-

esis.’ Scandinavian Journal of Economics 95: 427-443.

Quah, D. T. (1996a). ‘Twin Peaks: Growth and Convergence in Models of

Distribution Dynamics.’ The Economic Journal 106: 1045-1055.

Quah, D. (1996b), ‘Empirics for economic growth and convergence.’ European

Economic Review 40: 1353-1375.

Quah, D. T. (1996c). ‘Convergence Empirics Across Economies with (Some)

Capital Mobility.’ Journal of Economic Growth 1: 95-124.

Quah, D. T. (1997). ‘Empirics for Growth and Distribution: Stratification,

Polarization, and Convergence Clubs.’ Journal of Economic Growth 2:

27-59.

Quah, D. T. (2001). ‘Searching for prosperity: A comment.’ Carnergie-

Rochester Conference Series on Public Policy 55: 305-319.

Ramsey, F. (1928). ‘A Mathematical Theory of Saving’. Economic Journal

38: 543-559.

Ravn, M. O. and Uhlig, H. (2002). ‘On Adjusting the Hodrick-Prescott Filter

for the Frequency of Observations.’ Review of Economics and Statistics

84: 371-376.

Razin, A. and Yuen, C.-W. (1997). ‘Income convergence within an Economic

Union: the role of factor mobility and coordination.’ Journal of Public

Economics 66: 225-245.

Reutter, M. (2000). ‘Hysteresis in West German Unemployment Reconsid-

ered.’ CESifo Working Paper 240.



BIBLIOGRAPHY 143

Rey S. J. and Montuori, B. D. (1999). ‘US Regional Income Convergence: A

Spatial Econometric Perspective.’ Regional Studies 33: 143-156.

Rey, S. J. (2001). ‘Spatial Dependence in the Evolution of Regional Income

Distributions’. In: Getis, A., Mur, J. and Zoeller, H. (eds.) Spatial

Econometrics and Spatial Statistics. Palgrave, Hampshire.

Rey, S. J. and Dev, B. (2006). ‘σ−Convergence in the Presence of Spatial
Effects.’ Forthcoming in Papers in Regional Science.

Roed, K. (1997). ‘Hysteresis in Unemployment.’ Journal of Economic Surveys

11: 389-418.

Rose, A. K. and Engel, C. (2002). ‘Currency Unions and International Inte-

gration.’ Journal of Money, Credit, and Banking 34: 1067-1089.

Rowthorn, R. and Glyn, A. (2003). ‘Convergence and Stability in US Regional

Employment.’ mimeo, Cambridge University.

Ruppert, D., Sheather, S. J. andWand, M. P. (1995). ‘An Effective Bandwidth

Selector for Local Least Squares Regression.’ Journal of the American

Statistical Association 90: 1257-1270.

Sala-i-Martin, X. and Sachs, J. (1992). ‘Fiscal Federalism and Optimum Cur-

rency Areas: Evidence for Europe from the United States.’ In: Canzoneri,

M., Masson, P. and Grilli, V. (eds.), Establishing A Central Bank: Issues

in Europe and Lessons from the U.S.. Cambridge University Press, Lon-

don, U.K.

Sarno, L. and Taylor, M. P. (1998). ‘Real exchange rates under the current

float: unequivocal evidence of mean reversion.’ Economics Letters 60:

131-137.

Schalk, H. J. and Untiedt, G. (1996). ‘Technologie im neoklassischen Wach-

stumsmodell: Effekte auf Wachstum und Konvergenz.’ Jahrbücher für

Nationalökonomie und Statistik 215: 562-585.

Seitz, H. (1995). ‘Konvergenz: Theoretische Aspekte und empirische Befunde

für westdeutsche Regionen.’ Konjunkturpolitik 41: 168-198.

Shawky, H. A., Kuemzel, R. and Mikhail, A. D. (1997). ‘International port-

folio diversification: A synthesis and an update.’ International Financial

Markets, Institution, and Money 7: 303-327.



BIBLIOGRAPHY 144

Sheather, S. J. and Jones, M. C. (1991). ‘A reliable data-based bandwidth se-

lection method for kernel density estimation.’ Journal of Royal Statistical

Society B 53: 683-690.

Shiller, R. J. (1993). ‘Macro Markets: creating institutions for managing so-

ciety’s largest economic risk’. Clarendon Lectures in Economics Series,

Oxford University Press.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.

Chapman and Hall, New York.

Solnik, B. (1974). ‘An equilibrium model of the international capital market.’

Journal of Economic Theory 8: 500-524.

Solow, R. M. (1956). ‘A Contribution to the Theory of Economic Growth.’

Quarterly Journal of Economics 70: 65-94.

Sørensen, B. E. and Yosha, O. (1998). ‘International risk sharing and Eu-

ropean monetary unification.’ Journal of International Economics 45:

211-238.

Sørensen, B. E. and Yosha, O. (1999). ‘Federal insurance of US states: an em-

pirical investigation.’ In: Razin, A. and Sadka, E. (eds.), The Economics

of Globalization: Policy Perspectives from Public Economics. Cambridge

University Press, Cambridge.

Sørensen, B. E., Wu, Y.-T., Yosha, O. and Zu, Y. (2005). ‘Home Bias and

International Risk Sharing: Twin Puzzles Separated at Birth.’ CEPR

Discussion Paper Series No. 5113.

Stockman, A. C. and Dellas, H. (1989). ‘International portfolio nondiversifi-

cation and exchange rate variability.’ Journal of International Economics

26: 271-289.

Stockman, A. C. and Tesar, L. (1995). ‘Tastes and Technology in a Two-

CountryModel of the Business Cycle: Explaining International Co-Movements.’

American Economic Review 85: 168-185.

Strong, N. and Xu, X. (2003). ‘Understanding the Equity Home Bias: Evi-

dence from Survey Data.’ Review of Economics and Statistics 85: 307-

312.



BIBLIOGRAPHY 145

Swan, T. W. (1956). ‘Economic Growth and Capital Accumulation.’ Eco-

nomic Record 32: 334-361.

Temple, J. (1999). ‘The New Growth Evidence.’ Journal of Economic Liter-

ature 37: 112-156.

Tesar, L. and Werner, I. (1995). ‘Home bias and high turnover.’ Journal of

International Money and Finance 14: 467-493.

Tortosa-Ausina, E., Pérez, F., Mas, M. and Goerlich, F. J. (2005). ‘Growth

and Convergence Profiles in the Spanish Provinces (1965-1997).’ Journal

of Regional Science 45: 147-182.

Townsend, R. M. (1994). ‘Risk and Insurance in Village India.’ Econometrica

62: 539-591.

van Kerm, P. (2003). ‘Adaptive kernel density estimation.’ Stata Journal 3:

148-156.

van Wincoop, E. (1999). ‘How big are potential welfare gains from interna-

tional risksharing.’ Journal of International Economics 47: 109-135.

von Hagen, J. (1992). ‘Fiscal Arrangements in a Monetary Union: Evidence

from the U.S..’ In: Fair, D. and de Boissieu, C. (eds.), Fiscal Policy,

Taxation, and the Financial System in an Increasingly Integrated Europe.

Kluwer, Boston, MA.

von Hagen, J. (2000). ‘Fiscal Policy and Intranational Risk Sharing.’ In:

Hess, G. D. and van Wincoop, E. (eds), Intranational Macroeconomics.

Cambridge University Press, Cambridge.

Yang, Z., Li, C., and Tse, Y. K. (2006). ‘Functional form and spatial depen-

dence in dynamic panels.’ Economics Letters 91: 138-145.

Zhou, C. (1998). ‘Dynamic portfolio choice and asset pricing with differential

information.’ Journal of Economic Dynamics and Control 22: 1027-1051.

Zivot, E. and Andrews, D. (1992). ‘Further evidence on the Great Crash, the

oil price shock and the unit root hypothesis.’ Journal of Business and

Economic Statistics 10: 251-270.



Appendix A

Appendix to Chapter 2

Univariate tests Since the literature is inconclusive which unit-root test has

the best sampling properties, we have considered the Phillips and Perron (1988)

test as an alternative to the ADF test. As it can be seen from Table (A.1), the

results obtained with the Phillips and Perron (1988) tests agree with the ADF

tests for all federal states. We can reject the null hypothesis of non-stationarity

only for one series (Rheinland-Pfalz).

To further examine the robustness of the results obtained with univariate

tests, we have employed the KPSS (1992) test for stationarity. The KPSS test

differs from the ADF or Phillips and Perron tests by having a null hypothesis

of stationarity.1

Table A.2 summarizes the results of the KPSS test. The qualitative results

are well compatible with the results of the ADF and Phillips and Perron tests.

There is only one federal state (Hessen), for which the null hypothesis of station-

arity can only be rejected at the 10 percent level. For all other federal states,

we can reject the null at least at the 5 percent level of significance. Surprisingly,

the series for Rheinland-Pfalz, which was found to be stationary according to

the ADF and Phillips and Perron tests, is found to be non-stationary by the

KPSS test.

Panel-based tests As can be seen from Table A.3, the Fisher-type tests

show a different pattern than the LLC, IPS, and Breitung and Meyer tests.

According to these tests the data is non-stationary. These results indicate that

the overall results obtained with the panel-based tests are somehow ambiguous.

1To determine the optimal number of lags in the KPSS regression, we used the automatic
bandwidth selection procedure proposed by Newey and West (1994). The autocovariance
function was weighted by the Quadratic Spectral kernel. According to Hobijn, Franses, and
Ooms (1998), the combination of the automatic bandwidth selection option and the Quadratic
Spectral kernel yields the best small sample test performance.
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Table A.1: Phillips and Perron test for relative unemployment rates (without trend)

Federal Phillips-Perron
State µ̂ ρ̂ p-value

BW -.101 .942 0.538
(.071) (.051)

BY -.074 .958 0.761
(.051) (.045)

BRE .283 .918 0.735
(.201) (.065)

HH .188 .875 0.559
(.134) (.080)

HE -.032 .808 0.211
(.050) (.093)

NS .105 .892 0.362
(.072) (.070)

Federal Phillips-Perron
State µ̂ ρ̂ p-value

NRW .083 .908 0.577
(.055) (.064

RP -.070 .599 0.034∗∗

(.062) (.130)

SAAR .361∗∗ .702 0.150
(.157) (.112)

SH .278∗∗ .759 0.186
(.133) (.107)

urGer .312∗ .965 0.730
(.197) (.037)

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
Standard errors in parentheses.
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Table A.2: KPSS tests for level stationarity of relative unemployment rates

KPSS-test (1992)

Federal lag test Federal lag test
State statistic State statistic

BW 2 .892∗∗∗ NRW 2 1.04∗∗∗

BY 2 1.37∗∗∗ RP 2 0.765∗∗∗

BRE 2 1.33∗∗∗ SAAR 2 1.23∗∗∗

HH 2 1.22∗∗∗ SH 2 0.588∗∗

HE 2 .401∗ urGer 2 1.51∗∗∗

NS 2 .645∗∗

critical values for H0

1% 2.5% 5% 10%

0.739 0.574 0.463 0.347

taken from KPSS (1992)

*,**,*** significant at the 10, 5 and 1 percent levels, respectively.
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Table A.3: Madalla and Wu and Choi tests for a unit root in relative unemployment
rates

Maddala and Wu (1999) test Choi (2001)

Lags Obs. χ2 (20)a P > X Lags Obs. χ2 (20)a P > X

0 420 24.26 0.23 0 420 24.26 0.23

1 410 20.33 0.44 1 410 23.98 0.24

2 400 20.60 0.42 2 400 24.77 0.21

3 390 15.41 0.75 3 390 23.72 0.25

4 380 15.77 0.73 4 380 24.01 0.24

*,**,*** significant at the 10, 5, and 1 percent levels, respectively.
a The test statistic is distributed Chi-squared under the null.

Nonetheless, the weaker rejection of the unit-root hypothesis rather strengthens

our main claim. This is that one needs to take into account a structural break

in the data around 1980 to properly specify the model. Concerning the panel-

based tests, the overall conclusion we arrive at is that these tests suggest a slow

speed of convergence at best.

Structural break tests We also checked the robustness of the results ob-

tained with the structural break tests with respect to the lag-length selection.

We tried AIC and BIC to select the lag length as an alternative to the Ng and

Perron (1995) sequential t-test method which we use in the paper. The results

are summarized in Tables A.4 and A.5.

Both information criteria tend to choose shorter lag lengths, but the esti-

mated break points remain very similar. Most importantly, there is only one

federal state for which we cannot reject the unit-root hypothesis on the ba-

sis of an information criterion, but could reject the unit root under sequential

t−testing. This state is Hessen, for which the initially estimated break point
was 1993. We discussed this break date as being hard to interpret and therefore

we do not worry too much about this change.

For Bayern and Bremen, the levels of significance pejorate somewhat (from
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5% to 10% level), but if we look at the p-values, we see that this is due to

a marginal change from marginally below 5% to slightly above this level of

significance. For example, the p-values for Bayern and Bremen under the BIC

are 6.18% and 5.44%, respectively.

In particular, the estimated half-lifes of shocks do not increase by using a

different lag selection criterion. In fact, the only change is that under BIC

the estimated half-life of a shock decreases from 2 to 1 years for Hamburg.

In summary, also the tests based on information criteria provide evidence for

substantial mean reversion, once we control for a structural break.
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Table A.4: Perron-Vogelsang unit-root tests, lag length selected by AIC

Perron and Vogelsang (1992) test

Fed. Tb
2 k 1 (ρ̂− 1) δ̂ Fed. Tb

2 k 1 (ρ̂− 1) δ̂

State State

BW 79 1 -0.20 -0.27 NRW 80 6 -0.72∗∗ 0.78
(−2.95) (−2.31) (-5.54) (5.05)

BY 80 0 -0.48∗ -0.79 RP 70 0 -0.62∗ -0.36
(-4.64) (-4.54) (-4.72) (-2.75)

BRE 82 0 -0.7∗ 2.88 SAAR 75 0 -0.77∗∗ 1.23
(-4.72) (4.49) (-5.36) (4.32)

HH 82 1 -0.73∗∗ 1.75 SH 72 0 -0.40 0.39
(-5.22) (4.96) (-3.36) (2.37)

HE 88 0 -0.37 0.32 urGer 79 1 -0.29 1.68
(-3.54) (2.82) (-4.32) (4.02)

NS 78 2 -0.31 0.27
(-3.51) (2.30)

Critical Values1,3 1% 2.5% 5% 10%
Tb chosen by min. t(ρ̂−1) 2 -5.86 -5.37 -4.99 -4.55

*,**,*** significant at the 10, 5, and 1 percent levels, respectively. t—statistics
in parenthesis.
1 Lag length k chosen according to AIC, given a pre-specified maximum of
k = 8;

2 Tb, k, ρ, θ are obtained by minimizing the t-statistic on (ρ̂− 1) ;
3 Obtained from the empirical distribution of 5000 replications of a Monte
Carlo experiment.
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Table A.5: Perron-Vogelsang unit-root tests, lag length selected by BIC

Perron and Vogelsang (1992) test

Fed. Tb
2 k 1 (ρ̂− 1) δ̂ Fed. Tb

2 k 1 (ρ̂− 1) δ̂

State State

BW 79 1 -0.20 -0.27 NRW 80 5 -0.58∗∗ 0.63
(−2.95) (−2.31) (-5.04) (4.50)

BY 80 0 -0.48∗ -0.79 RP 70 0 -0.62∗ -0.36
(-4.64) (-4.54) (-4.72) (-2.75)

BRE 82 0 -0.70∗ 2.88 SAAR 75 0 -0.77∗∗ 1.23
(-4.72) (4.49) (-5.36) (4.32)

HH 83 1 -0.86∗∗ 2.04 SH 72 0 -0.40 0.39
(-5.14) (4.78) (-3.36) (2.37)

HE 88 0 -0.37 0.32 urGer 79 1 -0.29 1.68
(-3.54) (2.82) (-4.32) (4.02)

NS 79 0 -0.21 0.23
(-2.37) (1.86)

Critical Values1,3 1% 2.5% 5% 10%
Tb chosen by min. t(ρ̂−1) 2 -5.61 -5.25 -4.91 -4.53

*,**,*** significant at the 10, 5, and 1 percent levels, respectively. t—statistics
in parenthesis.
1 Lag length k chosen according to BIC, given a pre-specified maximum of
k = 8;

2 Tb, k, ρ, θ are obtained by minimizing the t-statistic on (ρ̂− 1) ;
3 Obtained from the empirical distribution of 5000 replications of a Monte
Carlo experiment.
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Appendix to Chapter 3

B.1 Univariate adaptive kernel estimation

Consider a random variable Y with realizations Yi, i = 1, 2, 3, ..., n. In our

application, Y is regional relative GDP per worker in a given year. This variable

has a density, f(Y ), which we want to estimate from the sample. Following

Silverman (1986) and the concise overview in Van Kerm (2003), the following

algorithm is used to estimate adaptive kernel densities:

1. Calculate a pilot kernel density estimate, f̂K(y), using a fixed bandwidth

h and a kernel function K, evaluated at some equi-spaced grid points y :

f̂K(y) =
1

nh

nX
i=1

K

µ
y − Yi
h

¶
.

The fixed bandwidth h is chosen to be

h = 0.9An−1/5, (B.1)

where A = min(standard deviation, interquartile range/1.34). This band-

width criterion has been recommended by Silverman (1986, p. 48).

A Gaussian kernel function is used for K (Silverman, 1986, p. 43):

K

µ
y − Yi
h

¶
=

1√
2π

e−0.5(
y−Yi
h )

2

. (B.2)

It is widely accepted that the choice of the kernel function is not a crucial

issue and has no substantial influence on the results.

153



APPENDIX B. APPENDIX TO CHAPTER 3 154

2. At each observation Yi, calculate a local bandwidth factor, λi, that is

inversely related to the pilot density estimate

λi = λ(Yi) =

(
f̃ε

f̂K(Yi)

)1/2
, (B.3)

where

f̃ε =

(
nY
i=1

f̂K(Yi)

)1/n
is the geometric mean of f̂K(Yi). The local bandwidth factors are propor-

tional to the square root of the underlying density functions at the sample

points and have unit geometric mean.

3. The local bandwidth factors λi multiply the fixed bandwidth h to calcu-

late the adaptive kernel f̂A(y) :

f̂A(y) =
1

nh

nX
i=1

1

λi
K

µ
y − Yi
λih

¶
,

where K is the Gaussian kernel function

K

µ
y − Yi
λih

¶
=

1√
2π

e
−0.5 y−Yi

λih

2

. (B.4)

Finally, we normalize the density f̂A(y) so that the sum of the points

at which the density is evaluated is one. This allows us to interpret the

normalized densities as showing the probability of a realization of Y in

the grid interval.

B.2 Bivariate adaptive kernel estimation

As described in Section 3.4.2, the stochastic kernel gτ(z|x) is estimated by
dividing the joint density of z and x by the marginal density of x. The following

algorithm is used:

1. Estimate the joint density of z and x using a product Gaussian kernel

and an equi-spaced square grid. The calculation of a Gaussian product

kernel is straightforward because one can simply multiply two univariate
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Gaussian kernels to obtain the product kernel for the joint density:

f̂K(x, z) =
1

n

nX
i=1

1

hx
√
2π

e−0.5(
x−xi
hx
)
2 1

hz
√
2π

e−0.5(
z−zi
hz
)
2

,

where hx and hz are the bandwidths calculated using (B.1) separately in

each dimension.

2. Along the lines of Appendix B.1, calculate local bandwidth factors λi
that are inversely related to the joint density estimate f̂K(x, z). As in the

univariate case, the local bandwidth factors λi are multiplied with the

fixed bandwidths hx and hz to estimate the adaptive (joint) density of z

and x, f̂A(x, z).

3. To get an estimate for the marginal distribution of x, the joint density

f̂A(x, z) is (numerically) integrated over z :

f̂(x) =

∞Z
−∞

f̂A(x, z)dz.

4. The final estimate for gτ(z|x) is obtained by dividing the joint density by
the marginal density:

ĝτ (z|x) =
f̂A(x, z)

f̂(x)
.

B.3 Standard deviation of the ergodic density

To estimate the standard deviation of the ergodic density, first define the ex-

pected value, ȳ:

ȳ =

pX
i=1

yi ·
f̂A(yi)
pX

j=1

f̂A(yj)

,

where the yis are the equi-spaced grid points and p is the number of grid points.

In this formula, the density f̂A(y) is normalized so that the sum of the points

at which the density is evaluated is one.
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The standard deviation, σ̂, is then calculated as

σ̂ =

vuuuuut
pX

i=1

(yi − ȳ)2 · f̂A(yi)
pX

j=1

f̂A(yj)

. (B.5)

If the grid is chosen finer and finer the standard deviation σ̂ converges to the

theoretical moment.
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