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1 Introduction

Since the middle of the 1990’s two new fields of biochemical research brought along

great need of methods for statistical analysis: ‘genomics’ and ‘proteomics’. These

two field of research comprise the exploration of the ‘genome’ and the ‘proteome’,

that is the totality of genes and proteins of an organism, respectively. In particular,

a frequent subject of genome and proteome experiments is the exploration of the

‘expression’ levels of genes or proteins. Simplified, the expression of a biomolecule

is its presence in certain cells or biological samples. Scott D. Patterson, one of the

pioneers in the field of proteomics, named ‘data analysis’ to be the ‘Achilles heel

of proteomics’ (cf. Patterson, 2003), and remarked that ‘... our ability to generate

data now outstrips our ability to analyze it.’ What he meant by this statement

is not only the fact that there is a great need of statistical methods to analyse

data from molecular biology experiments but also the fact that the great amount

of data produced in proteomics has to be managed and validated. The same was

pointed out by Tilstone (2003) for the field of genomics. In fact, so-called ‘high

throughput’ technologies, that allow researchers to measure the expression levels of

thousands of genes or proteins at the same time, have meanwhile been established

in biochemical research, and statistics are quite important to make the correct infer-

ences from these data. The difficulty of high-throughput experiments is, however,

that thousands of variables are measured at only a few objects. Marcus and Meyer

(2003) therefore point out the danger of doing proteome experiments with to few

replications.

A lot of statistical methods for the analysis of data from genome experiments have

1



1 Introduction 2

already been developed. However, there has little been done in the statistical analy-

sis of data from proteome experiments. The aim of this work is therefore to transfer

some known statistical methods for the analysis of data from genome experiments

to similar situations in proteome experiments. In addition, new methods for the

analysis of protein expression data are proposed.

To begin with it should be mentioned what the biological and medical interest

behind genomics and proteomics is. The expression levels of genes and proteins

are different in cells from different types of tissues, for example normal and cancer-

ous. Furthermore, the expression levels of genes and proteins strongly depend on

modifications of enzymes (proteins which catalyse chemical reactions) which play

an important role in signal pathways (cf. Lodish et al., 2001). Signal pathways

can be seen as the flows of information between cells. Inhibition or activation of

certain components of a signal pathway influence the expression levels of proteins

and thus influences biological processes like proliferation (division and growth of

cells), differentiation (specialisation of cells) and cell death. An example is given

by the MAPK (mitogen activated protein kinase) signal pathway, a sequence of

signals that are initiated by enzymes. First, the enzyme MAPK is activated by an-

other enzyme, the mitogen, then it moves to the cell nucleus where it regulates the

expression of genes (cf. Morandell et al., 2005). Thus, it controls certain biological

processes like proliferation and differentiation. Another example is the activation

of the enzymes tyrosin kinases (Trk) by special molecules, leading itself to the ac-

tivation of various other pathways like the Ras or MAPK pathways (cf. Sitek et

al., 2005). Other influences on the expression of genes and proteins are also certain

components of nutrition (cf. Schweigert et al., 2005).

Understanding the relations between the expression levels of genes or proteins in

certain types of tissues and the components of signal pathways imbeds the hope to

find starting points for new drugs against cancer or other diseases. It is therefore

of major interest in genome and proteome studies to compare the expression levels
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of genes (or proteins) in cells when certain pathways are activated or not, or when

the cells stem from different types of tissues. Due to the fact that gene and protein

expression also depends on time (e.g. hours after inhibition of a signal pathway),

there is also need for time dependent measurements of expression levels.

Bioanalytical exploration of gene expression can be done by using the DNA mi-

croarrays technology, which allows to measure the expression levels of thousands of

genes at the same time. One of the most frequent problems which are analysed by

using this technology is the comparison of the gene expression in different types of

tissues (e.g. normal and cancerous) or differently treated biological samples (e.g.

treatment and control group). The subsequent statistical analysis for this problem

is done by multiple hypothesis testing. In the context of DNA microarray data,

this means testing for each gene whether it is differentially expressed or not. Var-

ious statistical approaches to this problem have been made. In this work, focus

is set on a nonparametric method for density estimation within a multiple test-

ing procedure for the detection of differentially expressed genes. This procedure

was first introduced by Pan et al. (2001). Important improvements to this proce-

dure were contributed by Zhao and Pan (2003) and Gannoun et al. (2004). Here,

several further proposals for the improvement of this method are made. In partic-

ular, formulas for the calculation of p-values are given and an algorithm for faster

implementation of the method is proposed. Additionally, some properties of this

method, like its statistical power and its computing time, are evaluated. This eval-

uation is done in comparison with another method for the detection of differentially

expressed genes, namely a permutation method. A new R-implementation of the

nonparametric method and a brief introduction of how to use it is presented, too.

Not in the focus of this work, but in the context of DNA microarrays important to

name, is the big range of other statistical methods being applied to analyse microar-

ray data. Prior to the actual analyses, data has always to be preprocessed by several

steps like calibration and normalization. Respective methods have been introduced
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and compared by Huber et al. (2002) and Bolstad et al. (2003). In order to see

which genes have similar expression profiles over all replicates of a DNA microarray

experiment one can group them by hierarchical clustering methods as proposed by

Eisen et al. (1998) and Hastie et al. (2000). A very important goal of analysing

DNA microarray data is the classification of new samples to known disease classes,

e.g. tumor classes. This can be used in making secure diagnoses of the disease

states of new patients. Nguyen and Rocke (2003) propose a classification method

using partial least squares regression, Tibshirani et al. (2002) and Tibshirani et

al. (2003) use a nearest shrunken centroids method to identify subsets of genes

that best characterize certain classes. Also of great interest is to find dependencies

and interactions between genes, i.e. to find gene networks. Friedman et al. (2000)

and Grzegorczyk and Urfer (2004) use Bayesian networks to determine interacting

genes. A review about genetic regulatory systems is given in de Jong (2002).

As mentioned above, the major aim of this work is to adapt statistical methods for

the analysis of gene expression data to be applicable to protein expression data,

too. In general, the structure of both data types is very similar. However, there

emerge several specific problems in protein expression data, like outliers in repeated

measurements or missing values. Knowing how to handle these problems, allows

then the application of the manifold statistical methods for DNA microarray data

to protein expression data. Protein expression data can be risen by divers bioan-

alytical technologies, depending on the biological question and the set of proteins

one wants to analyse. Here, protein expression data from two-dimensional gel elec-

trophoresis and from mass spectrometry are analysed.

Two-dimensional gel electrophoresis (2-DE) is one of the most common techniques

that biochemists use for measuring the expression levels of proteins. A frequent goal

of 2-DE experiments is to find differences in the expression profiles of proteomes in

different tissues (cf. Knowles et al., 2003) or in tissues in which certain signal path-



1 Introduction 5

ways were either activated or not (cf. Sitek et al., 2005). Hence, similar to DNA

microarray experiments, tests are carried out for each single protein of the observed

proteome, testing whether there is a differential expression or not. However, up to

now, this is mostly done without adjustment for multiple hypothesis testing (cf.

Zhan and Desiderio, 2003). In fact, multiple hypothesis adjustment seems to be

a problem in such experiments, because the true number of observed proteins is

not known. This is due to the fact that contaminations on the 2-D gels are taken

as protein spots by common image analysis softwares. The measurements of these

spots are also included in the data and thus are falsely included in the analyses,

too. In this work, the problem of multiple hypothesis testing in 2-DE experiments

is discussed and a proposition is made how to handle this problem.

In addition, in most 2-DE experiments, the single proteins are analysed with differ-

ent sample sizes due to missing values in 2-DE data sets. Up to now, the existence

of missing values in 2-DE data was neither mentioned in literature nor were there

any proposals of how to handle such incomplete data sets. Missing values were

also a problem in data from DNA microarray experiments, but the amount of miss-

ing values wasn’t as big as in 2-DE experiments. Methods for the estimation of

missing values in microarray data were for example proposed in Troyanskaya et

al. (2001). Here, methods for the estimation of missing values in gene expression

data are adapted to protein expression data. In particular, the estimation error for

this methods is evaluated when having not only 5% of missing values (like in DNA

microarray data), but 20-30%.

As mentioned above, protein expression often depends also on the time after activa-

tion of a certain associated signal pathway. Such situations are usually investigated

by measuring protein expression at a small couple of subsequent times, yielding lon-

gitudinal data. In this work, a corrected analysis of variance model for longitudinal

data, originally given in Diggle et al. (1994), is proposed for the analysis of time

dependent protein expression data from 2-DE.
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Besides 2-DE, another technology for measuring protein expression is mass spec-

trometry (MS). Often, the samples from each patient are measured repeatedly in a

MS experiment, resulting in more than one mass spectrum per sample. However,

up to now, these repeated measurements are treated as independent samples. Fur-

thermore, outliers in these measurements can only be detected by visual judgement

of MS practitioners involving the drawback of subjective decisions. In this work, a

new approach to detect outliers by a standardised statistical method is presented

as well as a proposal of how to summarise all mass spectra from the sample of the

same patient.

Combined with a magnetic beads technique, which allows the selection of certain

proteins (cf. Zhang et al., 2004), MS experiments often result in data sets with less

variables than in DNA microarray data, usually only a few hundreds or even less

than hundred. Whether this plays a role when applying the above named nonpara-

metric method for the detection of differentially expressed proteins to MS data, will

be discussed here, too.

This work is organised as follows. Chapter 2 gives a necessary overview of the

biology of gene and protein expression, the bioanalytical instruments and the data

structures that results from experiments with DNA microarrays, 2-DE and MS.

Especially the biological terms like ‘gene expression’, ‘genome’ and ‘proteome’ are

explained more detailed. Subsequent, in chapter 3, the nonparametric analysis of

differentially expressed genes is explained and the properties of this method are

evaluated. This is followed by chapter 4, where methods for the analysis of protein

expression data from 2-DE experiments are detailed, that is the estimation of miss-

ing values and the analysis of time dependent protein expression data. Chapter 5

focuses on data obtained from MS experiments, specifically on how to detect out-

liers in such data and how to use them for the detection of differentially expressed

proteins. Finally, the results are summarised and an outlook for further research

activities is given in chapter 6.



2 Data from Bioanalytical

Instruments and Their

Preprocessing

The aim of molecular biology is to understand the molecular processes of organic

cells, e.g. signal pathways, and the structures of cellular components like genes

or proteins. Cognition from molecular biology research is important for the un-

derstanding of diseases and the development of new drugs. Several instruments

from the area of analytical chemistry have been adapted to measure the amount of

certain biomolecules within cells yielding a lot of data to be analysed by statistical

methods. This chapter focuses on the technical procedures of bioanalytical tools

which are used to measure gene or protein ‘expression’. Gene expression can be

measured with DNA microarrays, protein expression can either be measured by

mass spectrometry or by two-dimensional gel electrophoresis. Understanding how

these instruments work is necessary for the correct interpretation of the data which

result from experiments with these technological tools. The specific characteristic

of such data is that values for a great number of variables (often a few thousand)

are observed upon only a few (five to twenty) numbers of objects. (Data from mass

spectrometry experiments can also consist of only 50-500 variables).

In section 2.1, a brief introduction about the role that genes and proteins play

within organisms is given. In particular, the structure of the DNA, the process of

7
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protein synthesis and the terms gene and protein expression are explained. Sec-

tion 2.2 presents the DNA microarray technology and the calculation of respective

expression measures. In section 2.3, two-dimensional gel electrophoresis and some

preprocessing steps for respective data is detailed. Finally, mass spectrometry and

its resulting data structures are discussed in section 2.4.

2.1 Gene and Protein Expression

Functioning, growth and look of organisms are due to specific ‘programs’ which are

coded by genes. Genes can be seen as certain sections on DNA-molecules (DNA =

Deoxyribonucleic Acid). The specific structure of a gene represents the code for a

protein or a part of one. Proteins are the building material of cells and determine

therefore the structure of tissues and organisms. Furthermore, they control cellular

processes and catalyse chemical reactions. The structure of the DNA and the

process of protein synthesis are described in the following two subsections.

2.1.1 DNA, the Construction Plan of Organisms

Eucaryotic organisms contain their complete genetic material in the nucleus of their

cells, namely in the form of chromosomes which are made up of DNA. The smallest

unit of a DNA-molecule is a nucleotide which consists of a deoxyribose sugar, a

phosphate group and a nitrogenous base. Long sequences of nucleotides are called

DNA, where the phosphate group of each nucleotide binds to the sugar molecule

of the next nucleotide. Small sequences of around ten to thirty nucleotides are

called oligonucleotides (they are used for the so called oligonucleotide microarrays).

The base molecule, which is bound to the sugar molecule, can either be adenine,

guanine, thymine or cytosine. A chromosome is primarily the combination of two

complementary DNA strands. Figure 2.1 displays a section of such a DNA double

strand. The interface of the two DNA strands are base pairs, where adenine binds

with thymine and guanine with cytosine. This complementary structure is used by
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Figure 2.1: Extract from two complementary DNA strands, with P = phosphate,

S = sugar, A = adenine, G = guanine, C = cytosine and T = thymine.

The anatomy of the molecules causes the DNA to have the shape of a

helix.

the DNA microarray technology, as will be seen in section 2.2. A certain section

of the base sequence of a single DNA strand can be seen as a gene. This sequence

is the code for a certain protein or a part of one. It should be remarked that not

each gene codes for only one protein (sometimes, combinations of genes code for

a protein). A human cell nucleus contains 46 chromosomes with a total of around

25.000 genes. The totality of all genes of an organism is called its ‘genome’. A

much greater number is that of the proteins that can be synthesised by the human

genome. At present, this number is estimated to lie between 500.000 to 1.000.000.

Similar to the genome the totality of these proteins is called the ‘proteome’. The

respective research fields are called ‘genomics’ and ‘proteomics’.

2.1.2 The Process of Protein Synthesis

A simplified representation of the process of protein synthesis can be given by its two

main steps ‘DNA transcription’ and ‘mRNA translation’. At the transcription step,

a section of a single DNA strand that represents a certain gene is transcribed into a

complementary, single stranded mRNA-molecule (mRNA = messenger Ribonucleic

Acid). This molecule is also called the transcript RNA and is the construction plan

for a protein or a part of one. mRNA-molecules differ from DNA-molecules only by

having the sugar ribose instead of the sugar deoxyribose and the base uracil instead
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of the base thymine. This mRNA strand leaves the nucleus through the nucleus

pores into the cell plasm. The place where this mRNA molecule is translated into

a protein is called ribosome, one of the cell organelles. The mRNA strand adsorbs

at the ribosome and the translation step takes place. Any triplet of bases on the

mRNA molecule codes for a certain amino acid. A series of amino acids builds a

peptide. Peptides with more than 100 amino acids are proteins. The translation

and transcription processes are controlled by proteins themselves. Figure 2.2 dis-

plays this simplified version of the process of protein synthesis. A more detailed

Figure 2.2: Main steps of protein synthesis: transcription of DNA within the nu-

cleus and translation of mRNA at a ribosome.

representation of the process of protein synthesis is given for example in Lorkowski

and Cullen (2001).

If the respective mRNA for a certain gene is located within the cell plasm and

is thus able to adsorb at a ribosome to start the protein synthesis, this gene is

called ‘expressed’. The more translatable mRNA exists in the cell plasm the higher

is the expression level of this gene. Equally, a protein is called expressed if it has

been synthesised and is located within the cell plasm, too. The expression level of a

certain gene or protein depends on the cell type and the cell state. If one wants to
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know how much of a certain gene or protein is expressed in a certain cell type, the

amount of translatable mRNA outside the cell nucleus or the amount of expressed

proteins has to be measured. DNA microarrays can be employed to measure the

expression levels of thousands of genes at the same time. Expression levels of pro-

teins can simultaneously be measured either by two-dimensional gel electrophoresis

or by mass spectrometry.

2.2 Oligonucleotide Microarrays

The most commonly used types of DNA microarrays are ‘cDNA microarrays’ and

‘high density oligonucleotide microarrays’. The latter ones were developed by the

Affymetrix Inc. (California) and will be described in the following subsection. For

a description of cDNA arrays compare for example Brown and Botstein (1999) and

Schulze and Downward (2001).

2.2.1 Measuring Gene Expression with DNA Microarrays

In the first step of a DNA microarray experiment, a glass or silicon chip is sec-

tioned by a grid, where each unit is designated for one gene. The newest gen-

eration of oligonucleotide microarrays provides grid sections for each gene of the

human genome. Around 10.000 single stranded DNA molecules, or more precisely

oligonucleotides, that represent a certain gene are immobilised on the respective

grid unit. Next, the expressed genes (single stranded mRNA molecules) are ex-

tracted from the cells of interest. These molecules are now tagged by a fluorescent

dye and applied to the prepared chip (compare figure 2.3). Because of the com-

plementary structure of DNA and mRNA the single stranded mRNA molecules

from the cell sample bind to the single stranded DNA molecules on the chip. This

binding process is also called hybridisation. The more molecules of a certain gene

are expressed in the sample the more mRNA molecules are hybridised to the DNA

on the respective grid unit of the chip. Hence, the grid unit for this gene on the
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Figure 2.3: Scheme of the workflow of DNA microarray experiments. mRNA binds

to complementary DNA at grid units a and c due to complementary

bases but not at unit b.

chip gets marked by the dye, too. The strength of the fluorescence at this grid unit

can be seen as a measure for the expression level of this particular gene. Using

a confocal laser scanner the image of the complete chip is scanned. An example

of such an image is given in figure 2.4. More details on oligonucleotide microar-

rays can also be found in Schulze and Downward (2001) and in Nguyen et al. (2002).

For each grid unit on the array, the scanned image contains an area of 8 times 8 pix-

els. An image analysis software automatically determines those pixels which belong

to the actual hybridisation area and those which belong to the chip background. A

difference between the actual hybridisation spot and the background noise is cal-

culated and yields the fluorescence value for this grid unit (cf. Affymetrix, 2001).

The difference when using cDNA microarrays is, that not one but two indepen-

dent samples (tagged with different dyes) are applied to the same cDNA array.
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Figure 2.4: Image from a DNA microarray, scanned by a laser scanner. The image

contains 8 times 8 pixels per grid unit. The fluorescence intensity within

a grid unit is a measure of expression for the respective gene.

2.2.2 Calculation of Expression Values

The most common oligonucleotide microarray is the Affymetrix’s GeneChip R©. The

analyses in this work are based on measurements taken with this chip. In order

to get reliable expression values, each gene is represented on 40 grid units on the

GeneChip R©. From the respective 40 fluorescence values one single expression value

has to be derived. To be more precise, each gene is represented as a probe set, con-

taining 20 probe pairs. A probe pair consists of two grid units, where one, called

the Perfect Match (PM), contains single stranded DNA molecules from the respec-

tive gene and the other one, called the Mismatch (MM), has the same sequence,

except for the difference of one base. Under ideal conditions, there should be no

hybridisation at the MM sections (because of the one exchanged base) and the MM

values should be zero. In reality, however, there are some hybridisations at the

MM, because of some modifications of the mRNA molecules. To summarise the

values of a probe set to one single expression value for the respective gene, Irizarry

et al. (2003) review a couple of measures of expression. One expression value for

gene i on array j is for example given by the average difference (called AvDiff) of

the the PM and MM values:

AvDiff = average{dv = (PMv −MMv)|v = 1, ..., 20}. (2.1)
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However, this linear measure has the disadvantage that differences from high fluo-

rescence values are overestimated. Another measure of expression that is based on

a statistical model for the PM and MM values was proposed by Li and Wong (2001).

The expression measures used for the analyses in this work are the so called ‘signal’-

values which are calculated by the Affymetrix’s software MAS 5.0 (cf. Affymetrix,

2001). Their calculation algorithm is explained in Affymetrix (2002) and proceeds

in five steps. First, the MM and PM intensities are corrected from background

noise. Second, an ideal mismatch is calculated and subtracted to adjust the PM

intensity. Third, the adjusted PM intensities are log-transformed to stabilise the

variance. Fourth, the Tukey’s biweight estimator (cf. Huber, 1981) is used to pro-

vide a robust mean for the resulting values. Finally, the signal-value is scaled using

a trimmed mean.

The resulting signal values of a replicated microarray experiment can be repre-

sented in a r × n-matrix with the genes in the rows and the arrays in the columns

(cf. table 2.1). For each signal value, MAS 5.0 also derives the so called detection

Gene Array 1 detection- . . . Array n detection-

p-value p-value

Gene 1 362.92 0.00011 . . . 911.86 0.00017

Gene 2 2219.46 0.00004 . . . 4401.18 0.00004
...

...
...

. . .
...

...

Gene r 2036.66 0.00004 . . . 4096.52 0.99961

Table 2.1: Extract of gene expression data from a DNA microarray experiment with

the genes in the rows, the arrays in the columns and the expression values

with their respective detection p-values as entries.

p-value that reflects the reliability of this value (cf. Affymetrix, 2001b). Only genes

with small detection p-values should be taken for the actual statistical analyses. For



2 Data from Bioanalytical Instruments and Their Preprocessing 15

a given probe set, a two step algorithm determines the respective detection p-value.

First, the ‘discrimination score’ R is calculated for each probe pair of a probe set:

Rv = (PMv −MMv)/(PMv + MMv), (2.2)

with v = 1, ..., 20. The values of R are then tested against a user-definable threshold

θ using the one-sided Wilcoxon’s signed rank test (cf. Lehmann, 1986). Increasing

θ reduces the number of genes which are falsely retained for further analyses, but

may also reduce the number of genes which should rather be retained.

2.3 Two-Dimensional Difference Gel Electrophoresis

(2-D DIGE)

2.3.1 Measuring Protein Expression with 2-D DIGE

Two-dimensional gel electrophoresis separates the proteins of a mixture by their

charge z and their mass m to distinct spots. Currently, the two-dimensional gel

electrophoresis is the separation method with highest resolution power for protein

samples. Up to 10.000 proteins can be separated in one gel and therefore are acces-

sible for quantitative analysis (cf. Klose and Kobalz, 1995). The proteins, tagged

by a fluorescent dye, cause spots of different size on the two-dimensional gel (see

figure 2.5). The size of each spot can be regarded as a measure of expression for its

respective protein. An improvement of two-dimensional gel electrophoresis is given

by the so-called ‘difference gel electrophoresis’ (2-D DIGE), developed by Amer-

sham Biosciences (Sweden), which enables the user to put up to three different

protein samples on the same gel. These different samples are labelled by differ-

ent dyes (Cy2, Cy3 and Cy5). After separation the proteins are detected using a

confocal fluorescence scanner, where the emission wavelengths are chosen specifi-

cally for each of the dyes. An image analysis software automatically determines

the boundaries and sizes of the spots. Usually, a 2-D DIGE experiment is designed

such that n independent replications of treatment and control samples are put on n
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Figure 2.5: Image of a 2-D gel, scanned by a confocal fluorescence scanner. The

spots represent the dye-labelled proteins, their sizes are used as mea-

sures of expression.

gels, where treatment j and control j are put on the same gel j (j = 1, ..., n). The

internal standard, a mixture of same amounts of all n treatment and all n control

samples, is also put on each gel (see table 2.2).

Gel 1 . . . Gel n

spot protein treat. contr. stand. . . . treat. contr. stand.

spot 1 protein 1 23.1 24.7 29.3 . . . 13.4 13.8 14.3

spot 2 protein 2 15.2 11.2 20.6 . . . 10.3 11.7 12.5
...

...
...

...
...

. . .
...

...
...

spot r protein r 34.8 42.0 48.1 . . . 47.9 43.9 44.4

Table 2.2: Protein expression data from a 2-D DIGE experiment. Each spot on a 2-

DIGE gel is usually associated with one protein and yields three values:

treatment, control and internal standard.
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2.3.2 Calibration, Normalisation and Standardisation of 2-D

DIGE Data

Before starting the actual statistical analysis of expression values from a 2-D DIGE

experiment several preprocessing steps are required. In this section we examine

procedures for calibration, normalisation and standardisation of such expression

values. In particular, we evaluate the performance of the preprocessing methods

that were proposed by Karp et al. (2004). These methods were also discussed

in Jung et al. (2005, 2006) and in Sitek et al. (2006). The analyses in this sec-

tion are based on expression measurements taken within a tumor study. For this

study, samples were taken from five independent biological replicates at five differ-

ent times. Thus, 25 gels were prepared. We call this study the ‘TrkA experiment’

in this section, details will be discussed in chapter 4.

The first preprocessing step is the calibration of the replicated gels. An impres-

sion of the necessity of calibration can be received from figure 2.6, where the raw

background subtracted spot volumes (detected from a 2-D DIGE gel by an image

analysis software) of the Cy2, Cy3 and Cy5 labelled samples are plotted against

each other. The plots show linear dependencies between the different labelled sam-
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Figure 2.6: Raw background subtracted spot volumes of the Cy2, Cy3 and Cy5

labelled samples plotted against each other.

ples. However, the point clouds appear not on the line of gradient unity and the

difference of the different labelled spots increases with increasing spot intensity.
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Hence, it can be assumed that the scatter is not only due to biological variation

but also to some dye effect. To remove this technical variation given by these dye

effects Karp et al. (2004) and Kreil et al. (2004) proposed to use the calibration

model

yih = ah + bhỹih, (2.3)

separately for each gel, with i = 1, ..., r and h = 1, 2, 3, where ỹih is the measured

background subtracted spot volume of the ith spot from the sample that has been

labelled with the hth dye. The calibrated value of this spot volume is yih. The dye

effects are adjusted by the scaling factors bh and the additive offsets ah compen-

sate for any constant additive bias present after background subtraction. Here, we

assume, that the internal standard was labelled with Cy2 (h = 1), the treatment

with Cy3 (h = 2) and the control with Cy5 (h = 3). This calibration model was

originally developed by Huber et al. (2002) for the calibration of DNA microarrays.

A corresponding software package, called ’vsn’, for the open source statistic soft-

ware R (available at http://cran.r-project.org) uses a robust version of maximum

likelihood estimation for the estimation of the model parameters. We will call this

preprocessing method the ‘vsn-method’, here. After calibration the spot volumes

scatter around the line of gradient unity (see figure 2.7) and the scatter should now

represent only the biological variation. This calibration method raises the question
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Figure 2.7: Spot volumes, calibrated by the vsn-method, of the Cy2, Cy3 and Cy5

labelled samples plotted against each other.

whether the dye effects are the same for all gels. We analyse this question by com-
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paring the estimated parameters when calibrating each gel of the TrkA experiment.

Table 2.3 shows the mean and its percentage deviation of the calibration factors

and offsets for all gels of this experiment. As we can see, the percentage deviations

h µ1 =mean(ah) deviation(µ1) µ2 =mean(bh) deviation(µ2)

1 0.0006 128.0% 4.45 166.7%

2 0.0003 134.3% 6.67 155.1%

3 0.0001 125.8% 7.34 154.9%

Table 2.3: The mean and its percentage deviation of the calibration factors and

offsets, respectively, when using calibration model 2.3 for each gel of the

TrkA experiment.

from the means are higher than 100 % for each parameter, so there are obviously

different dye effects for each gel. Hence, the calibration has to be done separately

for each gel in the TrkA experiment. However, this observation should be validated

in other experiments.

The next preprocessing step includes normalisation and variance stabilisation. In

figure 2.7 it can be seen that the deviation of the spot volumes from the different

labelled samples calibrated by the vsn-methods is bigger for big values than the de-

viation for small values. With the calibrated expression values from all five gels that

have been prepared with the samples taken at time five of the TrkA experiment,

one can calculate the mean and the variance of each spot. There were 1910 spots in

these gels. The ranks of the means are plotted against the variances in figure 2.8a.

Here, it can be seen that the variance for big values is higher than the variance for

small values. Within the standardisation process (see below) the internal standard

is subtracted from the treatment and from the control, respectively. That means,

that one has to stabilise the variance, because differences obtained from spot vol-

umes with a big variance have another quality than differences obtained from spot

volumes with a small variance. One can either apply the logarithm or the arsinh
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Figure 2.8: Rank of the mean versus the variance of a) the calibrated spot volumes,

b) the calibrated and log-transformed spot volumes and c) the calibrated

and asinh-transformed spot volumes.

(=area sine hyperbolicus) on the calibrated values to get a uniformly distributed

variance. Figure 2.9 shows the calibrated spot volumes with the logarithm applied

on them. However, the logarithm goes very fast to -∞ for small values and can thus
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Figure 2.9: Spot volumes, calibrated and log-transformed, of the Cy2, Cy3 and Cy5

labelled samples plotted against each other.

cause a bias for small values. Instead of the logarithm one can also use the arsinh.

This is a function that is similar to the logarithm but smoother for small values

(see figure 2.10). The relationship between the two functions can be expressed by

lim
ξ→∞

(arsinhξ − logξ − log2) = 0. (2.4)

The calibrated and arsinh-transformed values are plotted in figure 2.11. The ef-

fect of these transformations on the variance-mean-dependencies can be seen in

figure 2.8. Figures 2.8 b and c show that after applying the logarithm or the asinh
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Figure 2.10: Graphs of the asinh(x) (solid line) and the logarithm(x) (dashed line).
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Figure 2.11: Spot volumes, calibrated and arsinh-transformed, of the Cy2, Cy3 and

Cy5 labelled samples plotted against each other.

on the calibrated values the variance doesn’t depend on the mean any more.

The last preprocessing step is the standardisation. The benefit of the DIGE method

is to have an internal standard on each gel. The internal standard is a sample con-

sisting of aliquots from all other samples of the experiment. Subtracting the values

of the internal standard from the treatment and control values, respectively, brings

all gels on the same level and reduces thus the gel-to-gel variance. The complete

preprocessing way for the treatment value for spot i is thus given by either

xi = log(a2 + b2ỹi2)− log(a1 + b1ỹi1), (2.5)
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or by

xi = asinh(a2 + b2ỹi2)− asinh(a1 + b1ỹi1). (2.6)

Similarly, the preprocessed control values are given by

xi = log(a3 + b3ỹi3)− log(a1 + b1ỹi1), (2.7)

or by

xi = asinh(a3 + b3ỹi3)− asinh(a1 + b1ỹi1). (2.8)

In figure 2.12 the density histogram of the vsn-processed and standardised values for

the treatment values is given. This distribution is symmetric and nearly normally
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Figure 2.12: a) Density histogram of the preprocessed spot volumes from the treat-

ment sample. b) QQ-plot of these values.

distributed as can also be seen in the QQ-plot.

2.4 Mass Spectrometry

Within proteomics, mass spectrometry (MS) covers a broad range of applications

(cf. Aebersold and Goodlett, 2001), including for example protein identification

(cf. Nesvizhskii et al., 2003), protein quantification (cf. Gygi et al., 1999) and

the analysis of post-translational modifications (cf. Weckwerth et al., 2000). In

general, mass spectrometry is used to determine the frequency of the ions of any

analyte. This may not only be a protein but also a peptide. An ion is a posi-

tively or negatively charged atom or molecule. The most common instruments for
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mass spectrometry are electrospray ionization (ESI) or matrix-assisted laser des-

orption/ionization (MALDI) mass spectrometers. The latter one in combination

with a time-of-flight (TOF) mass analyser is described in the following subsection.

2.4.1 Measuring Protein Expression with MS

A simplified illustration of MALDI-TOF MS is given in figure 2.13. In the first

Figure 2.13: Workflow of Matrix-Assisted Laser Desorption/Ionization Time-Of-

Flight mass spectrometry (graphic modified from Pusch et al., 2003).

step, the analyte is embedded into a crystalline matrix. Next, ions of the analyte

are dissolved from the matrix by laser bombardment and accelerated by an electric

field. These ions enter a field-free flight tube. At the end of the tube, the impact

of the ions is detected and the time of flight is derived. From the time of flight of

an ion the m/z-ratio can be determined, were m is the mass of the ion and z is the

number of its charges. Theoretically, this mass-to-charge ratio is obtained by

m

z
=

2 · e · U · t2
s2

, (2.9)

were e 1 is the elementary charge, U is the acceleration voltage, t is the time of

flight and s is the length of the flight tube. In practice, however, the equation has

1The elementary charge e = 1.6021 · 10−19C is smallest detectable electric charge.
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to be extended by an offset for t and some higher-order terms. The detector, mostly

an electron multiplier, also determines the abundance of an ion with the respec-

tive m/z ratio. With the m/z ratios and the abundance values the mass spectrum

of the analyte can be plotted (cf. figure 2.14). A more detailed explanation of
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Figure 2.14: Example of a raw mass spectrum with the m/z ratios on the abscissa

and the signal intensity on the ordinate.

MALDI-TOF mass spectrometry is given in Pusch et al. (2003).

In the context of protein mixtures, each protein or peptide is represented by a

certain m/z value. Hence, the detected abundance of a certain ion with its specific

mass-to-charge ratio m/z can be seen as a measure of expression for the respective

ionised protein or peptide. Because the raw mass spectrum is nearly a continuous

representation of m/z ratios the intensity values for a certain m/z area are sum-

marised as the proteins abundance. Within the data sets analysed in this work,

the intensities for the raw spectra were measured with a distance of about 0.1

between the current and the next m/z-value. The calibration of spectra and the

determination of the abundance values is discussed in the following subsection.
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2.4.2 Determination of Peak Intensities from a Mass Spectrum

All spectra that result from a MS experiment have to be preprocessed (cf. Vil-

lanueva et al., 2005 and Jeffries, 2005). This preprocessing takes place in three

main steps: calibration, peak finding and expression calculation. Calibration in-

cludes some baseline subtraction as well as an alignment of the m/z-values. The

alignment algorithm shifts the m/z-values of all spectra to the right or left respec-

tive to a reference spectrum. The peak finding works as follows. A peak can be

seen as the intensity values between two minima of the raw mass spectra. Hence,

peak finding means to determine the starting and ending m/z-values of all peaks.

A problem within this procedure is that sometimes the peaks for certain proteins

do overlap. For each peak some centroid m/z-value between the start and end

point is reported as reference value. The expression values are determined by ei-

ther taking the maximum intensity value of a peak, the sum of all intensity values

within the peak range (cf. RheaCorporation, 1995) or by deriving the area under

the curve within the peak range (e.g. by numerical integration). These summarised

peak values can then be represented by a bar plot (see figure 2.15). Also a tabular
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Figure 2.15: Bar plot of preprocessed mass spectrum. Intensities of extracted peaks

are plotted against a reference m/z-values.

representation of the measurements can be given like in table 2.4, were the rows
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represent proteins (or their respective m/z ratios) and the columns the calibrated

spectra.

m/z-value protein spectrum 1 . . . spectrum n

1016.099 protein 1 33.0215 . . . 29.0537

1041.409 protein 2 44.7988 . . . 28.5214
...

...
...

. . .
...

9158.490 protein r 40.0333 . . . 26.8359

Table 2.4: Extract of protein expression data from a mass spectrometry experiment.

Each protein has a specific m/z ratio.



3 Analysis of Gene Expression Data

In chapter 2.2, we have seen how DNA microarrays are applied to measure the ex-

pression levels of genes and which steps are necessary to preprocess data from DNA

microarray experiments. Here, the focus will be turned on the statistical analysis

of such DNA microarray data. In section 3.1, a nonparametric method for the de-

tection of differentially expressed genes is given. A software implementation of this

method is presented in section 3.2, as well as a brief introduction of how to use the

functions of this implementation. The performance of the nonparametric method

is evaluated in section 3.3. In section 3.4, finally, the software implementation is

used for the analysis of gene expression data that have been collected from normal

and cancerous kidney tissues.

3.1 Detection of Differentially Expressed Genes

In many genome studies interest lies on the comparison of the expression profiles

of genomes in different types of tissue (e.g. normal and cancerous) or in differ-

ent treated biological samples (e.g. from treatment group and control group). To

be more precise, the goal is to find those genes which are differentially expressed

between these different tissues or samples. Since DNA microarrays have been es-

tablished as the fundamental instrument of genome research, several approaches

for the detection of differentially expressed genes were published. The ‘significance

analysis of microarrays’ (SAM), described by Tusher et al. (2001), assigns a score

to each gene on the basis of change in gene expression relative to the standard

27
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deviation of repeated measurements. Genes with scores greater than an adjustable

threshold are called significant. Efron et al. (2001) introduced a nonparametric

‘empirical Bayes’ (EB) method. This method also assigns a score to each gene and

models the distribution of these scores by a mixture model. This model combines

the density of the scores for differentially expressed genes with the density of the

scores for non-differentially expressed genes. Based on this idea, the ‘mixture model

method’ (MMM) of Pan et al. (2001) uses these two densities for the construction

of a likelihood ratio statistic to identify the significant genes. A fully nonparametric

approach is given by Gannoun et al. (2002) and Gannoun et al. (2004), who esti-

mate the densities of the test statistics by nonparametric kernel estimation. This

approach allows a very fast implementation, because no bootstrap is necessary like

with the above named methods. A completely different approach was proposed

by Pepe et al. (2003), who use Receiver Operating Characteristic (ROC) curves

to directly compare the distribution of each gene in the treatment and the con-

trol group, respectively. Rajagopalan (2003) compares methods which are directly

based on the PM and MM values (cf. section 2.2.2).

In Jung et al. (2006b) a renewed approach to Gannoun’s fully nonparametric

approach was presented. This approach is detailed in this section. A review of

other nonparametric methods is given in Troyanskaya et al. (2003).

3.1.1 Multiple Hypotheses Testing

The concrete data situation when searching for differentially expressed genes is

the following. Suppose, r genes on n arrays have been observed in a DNA mi-

croarray experiment. The expression level of gene i on array j is then denoted

by xij, with i = 1, ..., r and j = 1, ..., n. The expression level can for example be

the ‘signal’-intensity calculated by the Affymetrix’s software MAS 5.0 (cf. section

2.2.2). Suppose further, that n = n1 + n2, where the expression values of the first

n1 arrays were obtained from the treatment samples and the expression values of
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the last n2 arrays were obtained from the control samples. The specified situation

is displayed in table 3.1. In the statistical analysis of DNA microarray experiments

treatment control

array1 . . . arrayn1 arrayn1+1 . . . arrayn1+n2

gene 1 x11 . . . x1n1 x1n1+1 . . . x1n1+n2

...
...

...
...

...

gene r xr1 . . . xrn1 xrn1+1 . . . xrn1+n2

Table 3.1: Gene expression data from r genes in n1 treatment arrays and n2 control

arrays.

a test is carried out for each single gene, testing whether this gene is differentially

expressed or not, raising the problem of multiple hypotheses testing. For each gene

i the null hypothesis that there is no differential expression is tested against the

alternative hypothesis that there is an expression change. Having observed the ex-

pression levels of r genes simultaneously this multiple testing procedure can result

in a 2 × 2 contingency table (see table 3.2). This table illustrates also the general

TEST DECISION

gene is not gene is

diff. expressed diff. expressed

REALITY gene is not e1 (true e2 (type I e1 + e2

diff. expressed decisions) errors)

gene is e3 (type II e4 (true e3 + e4

diff. expressed errors) decisions)

e1 + e3 e2 + e4 r

Table 3.2: Possible result when testing r genes simultaneously for differential ex-

pression.

problem of statistical hypothesis testing, that is the test decision can diverge from

the real situation, leading to a type I or a type II error. Of course, when testing
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r genes simultaneously, it is desired to have only small numbers e2 and e3 of type

I and type II errors, respectively. The probability for a type I error is controlled

by the fixed level α of the entire testing procedure. (Control of the probability for

a type II error is discussed in section 3.3). In a single hypothesis test it is often

desired to keep P (type I error) ≤ α. In the case of multiple hypotheses testing how-

ever, it is desired to control the family-wise error rate (FWER) which is defined as

P (number e2 of type I errors ≥ 1). In order to guarantee that P (e2 ≥ 1) ≤ α, one

can use for example the Bonferroni correction, that is testing each single hypothesis

at the nominal significance level α∗ = α/r. The parameter α is called the global

significance level of the entire multiple testing procedure.

Besides the FWER, the false discovery rate (FDR) (cf. Benjamini and Hochberg,

1995) is a widespread error rate which is often desired to be controlled in multi-

ple hypotheses testing. It is defined as the expectation of the ratio e2/(e2 + e4)

if (e2 + e4) > 0 and as 0 if (e2 + e4) = 0. The advantage of controlling the FDR

over controlling the FWER is that it is less ‘conservative’. A testing procedure is

called conservative, if the real α-level falls below the α-level that has been fixed

before the experiment. A conservative testing procedure has also the disadvantage

that the probability for a type II error increases. However, having r p-values from

a multiple testing procedure which controls the FWER it is possible to derive the

so-called q-values to control the FDR (cf. Storey and Tibshirani, 2003, and Storey,

2003). More details on multiple hypotheses testing can be found in Shaffer (1995)

and Dudoit et al. (2003).

3.1.2 Nonparametric Approach for Replicated Microarray

Experiments

For the multiple testing procedure the expression of gene i on array j can be

modelled as

xij = βi + µiγj + εij (3.1)
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where γj = 1 for 1 ≤ j ≤ n1 and γj = 0 for n1 +1 ≤ j ≤ n, and εij are independent

random errors with a symmetric distribution about 0. The mean expression levels

for gene i under the two conditions are then βi + µi and βi, respectively. Hence,

determining whether gene i is differentially expressed, is equivalent to testing the

null hypothesis H0i : µi = 0 against the alternative H1i : µi 6= 0.

Testing the r null hypotheses by simple t-tests would not be appropriate, since

t-tests are restricted by the assumption that the data are normally distributed.

Microarray data however, often have a different than the normal distribution. In-

stead of t-tests, a mixture model can be applied. The idea of this mixture model is

to have not only a t-test statistic Zi (for each gene i = 1, ..., r) but also a second null

statistic zi (i = 1, ..., r) which has under the global null hypothesis H0 (none of the

genes is differentially expressed) the same distribution as the Zi’s. Although test

statistics are usually denoted by capital letters, the null statistics zi are denoted by

lower case letters, here, because this was also done in all other publications of this

nonparametric approach.

Denote the density of all Zi’s by f(Z), the density of the Zi’s for only those genes

which are differentially expressed by f1(Z) and the distribution of all zi’s by f0(z).

Further, denote w1 as the probability that a gene is expressed differentially and

w0 = 1 − w1 as the probability that a gene is not expressed differentially. The

density of the Zi’s for all genes can then be expressed by the mixture model

f = w0f0 + w1f1. (3.2)

Using Bayes’ formula (cf. Mood et al., 1974) the probability that gene i is not

expressed differentially, given its statistic Zi, is

w0(Zi) =
w0f0(Zi)

w0f0(Zi) + w1f1(Zi)
=

w0f0(Zi)

f(Zi)
, (3.3)

and the probability that gene i is expressed differentially, given Zi, is

w1(Zi) = 1− w0f0(Zi)

f(Zi)
. (3.4)
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It can be seen that the probability for differential expression increases when the

likelihood ratio

LR(Z) = f0(Z)/f(Z) (3.5)

decreases. Under the global null-hypothesis, where Zi and zi have the same distrib-

ution, the likelihood ratio becomes big and the probability for differential expression

becomes small.

A cut-off point c for LR(Z) can be found by solving the following equation

α

r
=

∫

LR(z)<c

f0(z)dz, (3.6)

where the left hand side represents the Bonferroni adjusted significance level. The

set of differentially expressed genes is then given by all genes i for which LR(Zi) < c.

Denoting {A = Z : LR(Zi) < c}, equation 3.6 can be rewritten as

α

r
=

∫

A

f0(z)dz ≈
Z̃1∫

−∞
f0(z)dz +

∞∫

Z̃2

f0(z)dz. (3.7)

From this one can specify the set of differentially expressed genes also by the rejec-

tion region for the Zi’s:

{Z : Z < Z̃1 or Z > Z̃2}. (3.8)

Two statistics Zi and zi which satisfy the above requirements have been proposed

by Zhao and Pan (2003). They are constructed as follows.

Zi =
X̄i(1) − X̄i(2)√

s2
i(1)/l1 + s2

i(2)/l2
, (3.9)

where

X̄i(1) =

∑n1
j=1 xij

n1

, X̄i(2) =

∑n
j=n1+1 xij

n2

, (3.10)

are the sample means of the expression levels of gene i in the different groups, and

s2
i(1) =

∑l1
l=1 (yil − Ȳi(1))

2

l1 − 1
, s2

i(2) =

∑l1+l2
l=l1+1 (yil − Ȳi(2))

2

l2 − 1
, (3.11)
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are modified sample variances, with

Ȳi(1) =

∑l1
l=1 yil

l1
, Ȳi(2) =

∑l1+l2
l=l1+1 yil

l2
, (3.12)

and l1 = n1/2, l2 = n2/2, and

yil = (xil − xi,l1+l)/2 (3.13)

for l = 1, ..., l1, and

yil = (xi,l1+l − xi,l1+l2+l)/2 (3.14)

for l = l1 + 1, ..., l1 + l2. With (3.8) and (3.9) the null statistic is given by

zi =
Ȳi(1) − Ȳi(2)√

s2
i(1)/l1 + s2

i(2)/l2
. (3.15)

Under H0, both statistics Zi and zi have the same distribution. This can be proved

by recalling, that under H0i : µi = 0 the expression level of gene i is βi + εij for all

arrays in both groups (j = 1, ..., n), and that the distribution of the random errors

εij is symmetric about 0. Setting xij = βi + εij in (3.10), (3.13) and (3.15), it can

be seen, that under H0 the distributions of Zi and zi are the same.

A restriction of these two statistics is, however, that both are based on the mea-

surements of an even number of DNA microarrays.

A further requirement for Zi and zi to have the same distribution under H0 is

that numerators and denominators of each are independent. This is given for the

above stated statistics but was not the case for the statistics used in Gannoun et

al. (2004). However, the statistics used here result in some loss of power for the

testing procedure.

In order to solve equation (3.6) an estimate ̂LR(Z) for the likelihood ratio is

required. Therefor, one first estimates the densities f and f0 of Zi and zi by

nonparametric kernel estimation

fr(z) =
1

rhr

r∑

i=1

K(
z − Zi

hr

) (3.16)
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and

f0r(z) =
1

rh0r

r∑

i=1

K(
z − zi

h0r

) (3.17)

with kernel function K and the bandwidths:

hr = σ̂rr
−1/5 and h0r = σ̂0rr

−1/5

where σ̂r and σ̂0r denote the empirical standard deviation of the Zi’s and the zi’s,

respectively. As kernel function one can use for example the Gaussian density. In

that case one should multiply the bandwidths by the factor 1.144 which minimizes

the integrated mean square error

IMSE(fr(z), f(z)) =

∞∫

−∞
E{[fr(z)− f(z)]2}dz (3.18)

of fk(z) (cf. Terrell, 1990).

Another useful approach to estimate the null distribution of the test statistic is

given in Guo and Pan (2004) who construct weighted permutation scores, using

posterior probabilities of having no differential expression. Genes are weighted by

these posterior probabilities.

With the kernel density estimates an estimate ̂LR(Z) = f0r(Z)/fr(Z) for the like-

lihood ratio can be obtained and one can thus solve equation 3.6. The practical

solution of equation 3.6 can be done by using numerical integration (e.g. trape-

zoidal rule) to calculate the integral (cf. Davis and Rabinowitz, 1984) and by the

iteration algorithm given in the next section.

3.1.3 Iteration Algorithm for the Cut-Off Point

The cut-off point c from equation 3.6 can be determined by an iterative algorithm

where the true c levels off between a lower bound ca and an upper bound cb. The

algorithm starts with ca = 0 and cb = max( ̂LR(Z)). To determine c, the following

steps should be repeated until a break-off criterion has been reached:
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1. c = (ca + cb)/2.

2. Calculate the integral

I =
∫

LR(z)<c

f0(z)dz

on the right hand side of equation 3.6, e.g. by numerical integration.

3. If I < α/r, set cb = c

4. If I > α/r, set ca = c

As break-off criterion the difference |I−α/r| should be used. Usually, this difference

becomes small enough (around 10−7) after about 20 to 30 runs of the above four

steps. Thus, this iteration algorithm leads to a little over- or underplacement of

α/r. But, according to experience, a difference of around 10−7 doesn’t influence

the set of differentially expressed genes determined by the nonparametric method.

3.1.4 Calculation of p-Values within Nonparametric Approach

Having determined differentially expressed genes in different types of tissues or in

a treatment and control group, it can also be of interest to rank these genes by the

strength of their differential expression. Oftentimes, there are some few hundred

of significant genes. Ranking them has the benefit that further research can be

concentrated on the most significant genes, saving time and money. One possibility

to do this is to calculate the p-values for each single test of the multiple testing

procedure. Here, the unadjusted p-values are considered first. They are defined as

the smallest possible nominal significance level α∗ for which the null hypothesis of a

single test would just be rejected. The smaller the p-value the stronger the evidence

against the null hypothesis. Hence, one can order the differentially expressed genes

by their respective p-values.

The r unadjusted p-values for the multiple testing procedure of the previous sec-

tion can be calculated as follows. For gene i the p-value can be obtained by a
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modification of equation (3.6):

pi =
∫

L̂Z(Z)<c(i)

f0r(z)dz, (3.19)

where c(i) =: L̂Z(Zi). I.e., when the data for gene i results in the value Zi, the

smallest possible significance level for which the null hypothesis would be rejected

is given by pi.

It is also possible to use adjusted p-values. The adjusted p-value p̃i for gene i

is defined as the smallest possible global significance level α of the multiple testing

procedure for which H0i would just be rejected. Using the Bonferroni method to

control the FWER the adjusted p-value for gene i can be obtained by

p̃i = min(rpi, 1). (3.20)

Other p-value adjustments, for example to control the FDR, can be found in Dudoit

et al. (2003). Having calculated the p-values the differentially expressed genes can

also be determined by calling all genes significant that have adjusted p-values less

than or equal α.

3.1.5 Power Calculations for Sample Size Planning

Important for DNA microarray experiments is the question of how many arrays

should be used to make the subsequent statistical results reliable. This question

concerns not only the high costs of DNA microarrays but also the ethical aspect of

taking tissue samples from patients. Pan et al. (2002) proposed to plan sample sizes

for the above given nonparametric method by power calculations. Their approach

will be detailed in this subsection. The power of a statistical test is the probability

of rejecting the null hypothesis. It should be very high when the null hypothesis

isn’t true. Therefore, one calculates the power of the nonparametric method for

different sample sizes and decides for that sample size which results in the largest

power.
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Because the power also depends very strongly on the specific data one wants to

investigate, power calculations are usually based on some pilot data. Let’s start

the calculations with the expression values of κ = n/2 arrays from each group.

With these data, the densities fr(z) and f0r(z) as well as the rejection region

{Z : Z < Z̃1 or Z > Z̃2} of the nonparametric method are determined. Now, the

power function is given by

p(δ, α) =

δ−Z̃1∫

−∞
f0,r(z)dz +

∞∫

δ+Z̃2

f0,r(z)dz, (3.21)

where δ is the magnitude of expression change. The power can then be plotted

against δ. If the power for a certain δ of interest is too small one can determine

the power function for any number κ · k (k ≥ 2) of replicates until the power is big

enough. The power function for κ · k replicates per group can be determined by

the following steps. Estimate the scores zκ·k,i (these denote the zi’s based on κ · k
replicates per group) by

zκ·k,i =
1

k

k∑

j=1

z
(j)
κ,i (3.22)

where z
(j)
κ,i (j = 1, 2, ..., k) are k independent realisations of zκ,i (zi’s based on κ

replicates per group). Now, one estimates the density of the zκ·k,i’s by kernel esti-

mation, determines the new rejection region and calculates the new power function.

When all power functions for possible κ · k have been obtained, one can determine

an appropriate number of replicates.

3.2 Implementation of the Nonparametric Method

In Jung et al. (2006b) the R-package ‘degenes’ (=differentially expressed genes)

with an implementation of the nonparametric method was presented (cf. appendix

A). R is an open source statistic software (available at http://www.r-project.org/).

It is assumed, that the reader is familiar to the R environment. The implementation

provides functions for the data import, the determination of differentially expressed
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genes as well as for the sample size determination for replicated DNA microarray

experiments.

3.2.1 Data Import

For the problem of determining genes with different expression under two different

conditions, two data sets are required. In general, two matrices of expression val-

ues, with the genes in the rows and the arrays in the columns, have to be read into

the working space of the R environment.

In the special case that the data sets are .txt-files, including the names of the

genes in the first column, one can use the function read.values. There may also

be the column names in the first row:

array1 array2 . . . arrayn

gene1 439.60 448.24 . . . 501.30

gene2 2660.14 2726.31 . . . 2378.56
...

...
...

...
...

gener 53.54 63.11 . . . 71.41

In that case, the data can be imported as follows:

R> treatment <- read.values(".../file1.txt", h)

R> control <- read.values(".../file2.txt", h)

Here, file1.txt contains the values of the treatment group and file2.txt the

data of the control group. In order to skip the column names in the first row, the

parameter h has to be set to 1 if there are row names in the .txt-files and 0 if there

are no row names.

Another special case is the existence of ‘detection p-values’ in the data sets, which

indicate whether an expression value could be regarded as reliable according to the

PM and MM values (cf. Affymetrix, 2001). The data is arranged as in the following

matrix, then:
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array1 pvalue array2 pvalue . . . arrayn pvalue

gene1 439.60 0.0113 448.24 0.0213 . . . 501.30 0.2124

gene2 2660.14 0.2347 2726.31 0.3269 . . . 2378.56 0.3291
...

...
...

...
...

...
...

...

gener 53.54 0.0014 63.11 0.0083 . . . 71.41 0.0002

In that case, one has to determine those genes for which reliable expression values

exist first. The function common.genes filters all genes in that way that only genes

for which the median of the p-values in at least one of the two groups is less than

0.05 are retained for the analysis. To apply this function type:

R> g <- common.genes(".../file1.txt", ".../file2.txt", h1,

h2)

The parameters h1 and h2 have to be set to 0 or 1 if there are row names in the

first and second .txt-file, respectively, or if there are no row names. The vector g

represents the indices of only those genes used in the further analysis. After the

filtration about 30-40% of the original data will usually be deleted. The data can

then be imported by typing:

R> treatment <- read.values("C:/.../file1.txt", g, h, pval=TRUE)

R> control <- read.values("C:/.../file2.txt", g, h, pval=TRUE)

If the expression values are distributed lognormal one should take logarithms of

them (e.g. R> treatment <- log(treatment)).

3.2.2 Determination of the Differentially Expressed Genes

After reading the data into the working space, the differentially expressed genes

can be calculated by using the function deg:

R> genes.table <- deg(treatment, control, ref, alpha)

Here, the parameter ref is the percentage of artificial observations to be created

(e.g. set ref=0.005 for 0.5%). Artificial observations can be used to improve
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the kernel estimation in the case that there are only a few number of genes to be

tested. It should be set to zero for data sets with more than 500 genes. Details

on the calculation of artificial observations are given in section 5.2. The parameter

alpha specifies the global significance level α. The results of deg can be printed

by typing genes.table.

R> genes.table

$values

[1] 330 489 495 ...

If the expression values were filtered before using the function deg() (in the case

of detection p-values in the data set), the user has to return the indices from the

vector g and retrieves the indices of the differentially expressed genes in the original

data set by typing:

R> g[genes.table$values]

To calculate the p-values the function pvalue can be used. Type for example

R> pv <- pvalue(treatment, control, ref, alpha)

The parameters are the same as for the function deg, here. The result of the

function pvalue is a list ($unadjusted, $adjusted) containing the unadjusted

and the adjusted p-values.

A ranking list of the significant genes ordered by their unadjusted p-values can be

obtained by

R> pv.values <- pv$unadjusted[genes.table$values]

R> genes.list <- cbind(genes.table$values[order(pv.values)],

pv.values[order(pv.values)])

3.2.3 Determination of the Necessary Sample Size

If some pilot data, taken from earlier studies, are available, it is possible to de-

termine the necessary sample size for future studies (cf. subsection 3.1.5). The
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algorithm used here starts with κ = n/2 arrays under each condition (or group)

and calculates the power function for the above given multiple testing procedure.

The user should make sure that κ is an even number. The data have to be im-

ported as described in section 3.2.1. Now, the power function for the multiple

testing procedure with κ arrays for each condition can be calculated as follows:

R> power.plot(treatment, control, ref, alpha)

Parameters are the same as in the functions deg and pvalue. This will produce a

graph sheet with the expression change δ on the x-axis and the power on the y-axis.

Next, for any k > 2 one can calculate the power function for κ · k arrays by typing:

R> zmk(k, treatment, control, ref, alpha)

When all power functions, for possible κ · k replicates have been obtained, one can

determine an appropriate number of replicates by considering the desired power,

the global significance level and the targeted expression changes.

Investigations and recommendations about the necessary sample size for microar-

ray experiments are also given in Pavlidis et al. (2003). An approach to determine

the optimal sample size with respect to the FDR was proposed by Müller et al.

(2004).

3.3 Performance of the Nonparametric Method

3.3.1 Average Power

In section 3.1.1, the error types of multiple testing procedures were discussed. While

the probability α for the FWER or the FDR is given by the global significance

level of the procedure, the probability β for the type II error depends on several

characteristics of the data and the statistical method as well as on user defined

requirements. Specifically, these are a) the α-level, b) the variance σ2 of the data,
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b) the sample size n, d) the type of testing procedure and e) the magnitude δ of

differential expression to be detected. Of course, in the case of multiple hypothesis

testing, it is not of interest to have a small probability β for the type II error but

to have a small type II error rate (similar as the type I error rates FWER and

FDR). One common type II error rate is the average probability of a type II error

within the multiple testing procedure. In order to keep this error rate small one

seeks for testing procedures which have a high average power. The average power is

the average probability of rejecting a false null hypothesis (e.g. calling a significant

gene significant). In this section the average power of the nonparametric method

is compared to a permutation test (see appendix B). Both methods control the

FWER. The average power for the two methods was determined by a simulation

study with the following steps (cf. Dudoit et al. 2003).

1. Expression values from r = 10000 genes in a treatment and control group

were generated. For 9900 genes the expression values were generated ran-

domly from a N(0, 0.2)-distribution. For the remaining 100 genes the expres-

sion values were generated randomly from a N(0, 0.2)-distribution within the

control group and from a N(δ, 0.2)-distribution within the treatment group,

were δ is the magnitude of differential expression. These settings reflect the

situation of many real data sets from microarray experiments.

2. The two multiple testing procedures were applied to the data and the number

e3 of type II errors was recorded as well as the numer e4 of correctly rejected

null hypothesis. As global significance level α = 0.05 was chosen.

For each expression change δ of interest steps 1 and 2 were repeated B̃ = 10 times

and the average power was derived by

Average power = 1−
∑B̃

b=1 eb
3/(e

b
3 + eb

4)

B̃
, (3.23)

where eb
3 =(number of type II errors whithin the bth run) and eb

4 =(number of

correctly rejected null hypothesis whithin the bth run).
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In a first flow, the simulated data consisted of 6 arrays for each group, in a second

flow, expression values were simulated for 12 arrays for each group. The average

power with respect to the expression change δ is plotted in figure 3.1 for the non-

parametric method and in figure 3.2 for the permutation test. From these plots it
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Figure 3.1: Average power for the nonparametric method with different sample

sizes.

can be seen, that the power increases when the expression change δ increases, too.

This is a plausible effect, because a big expression change is more easy to detect

than a small one. It should be noted that for δ = 0 the average power is equal to

the nominal testing level α∗ = α/r. The graphs also show that the average power

increases with the number of observations. Altogether, the permutation test has a

higher power than the nonparametric method.

3.3.2 Computing Time

Data that have been collected by bioanalytical high-throughput instruments are

usually multi-dimensional with a high number of variables. Not until the develop-

ment of a new and very fast generation of computer processors at the beginning of

this decade rendered the analysis of gene expression data possible with comfortable
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Figure 3.2: Average power for the permutation procedure with different sample

sizes.

computing times. However, it is still worth to compare statistical methods by their

computing time. In this section the computing time of the R-implementation of the

nonparametric method (see section 3.2) is compared with an R-implementation of

the permutation method (see appendix B). Both implementations were applied to

a real data set of expression values from 10521 genes with 14 arrays of a treatment

and control group, respectively. The computations were carried out on a computer

with an AMD Athlon 2000+ processor with 1.67 GHz. The computing time for the

nonparametric method was 1 minute and 9 seconds. The run of the permutation

procedure took much longer, namely 34 minutes and 41 seconds. There are certainly

faster implementations of the permutation procedure. But repetitive execution of

tests for a large number of permutations will take a lot of time, independent of the

implementation.

3.3.3 Breakdown of the Nonparametric Method

In the case that there are no differentially expressed genes in the data set the the-

oretical distribution of the Zi and the zi is the same. Hence, the likelihood ratio

LR(Z) = f0Z/f(Z) = 1 for all Z. That means, that equation 3.6 can’t be solved,
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then, and the nonparametric testing procedure breaks. However, to be able to re-

port a result, the cut-off point c should be set zero in that situation. If c = 0, none of

the LR(Zi) is smaller than c and none of the genes is called differentially expressed.

It should be remarked, that in the case of this breakdown of the nonparametric

method, it is also not possible to derive p-values as explained in section 3.1.3. The

parameter c(i) should be set arbitrary bigger than one and the integral in equa-

tion 3.19 will be calculated from -∞ to ∞. The p-value for each gene will then be

equal one.

3.3.4 Conclusions

We have seen in section 3.3.1 that the nonparametric testing procedure has overall a

lower power than the permutation algorithm. On the other hand, the nonparametric

method is very fast, as was discussed in section 3.3.2. Based on these insights, it

can be recommended to use the nonparametric method to get first results and

impressions from the data. For exact results one should also take the time to

run the permutation algorithm. In addition, it is also possible to improve the

power of both methods by converting the p-values into so called q-values and to

control thus the FDR (cf. Storey and Tibshirani, 2003). In the case that there are

no differentially expressed genes, one should incorporate the recommendations of

section 3.3.3.

3.4 Example: Comparison of Normal and Cancerous

Kidney Tissues

In Jung et al. (2006b), the software implementation of the nonparametric method

(see section 3.2 and appendix A) was applied to gene expression data that were ob-

tained from an examination of kidney-mRNA using the Affymetrix U-133A GeneChip R©.
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This DNA microarray allows to measure the expression levels of about 22.000 hu-

man genes simultaneously. The expression levels for one of the two data sets to be

compared were obtained from tissues of kidney tumors, the expression levels for the

other one were obtained from normal kidney tissues. Each of the two data sets con-

sisted of the expression levels from 14 arrays. At first, the function common.genes()

was used to discard those genes, for which the median of the detection p-values in

at least one of the two groups was greater than or equal 0.05. Thereby, r =10521

genes remained for the actual analysis. Hence, the nominal significance level for

each single test was α∗ = 0.05/10521 = 4.7524 ∗ 10−6. After reading the ex-

pression values into the working space of the R-environment (by using the function

read.values()), the function deg() was applied to find the differentially expressed

genes between the two tissue types. This function calculates first the values of the

two statistics Zi and zi (see equations 3.9 and 3.15, respectively). Next, the densi-

ties fr(z) and f0r(z) of the distributions of these statistics are determined by kernel

estimation (see equations 3.16 and 3.17). The graphs of these densities is plotted in

figure 3.3. The likelihood ratio LR(z) (see equation 3.5), i.e. is the quotient of the
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Figure 3.3: Density estimates f0n and fn of the distributions of the statistics Zi and

zi, respectively.

both densities, is plotted in figure 3.4. Using the iteration algorithm from section
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Figure 3.4: Likelihood ratio LR(z).

3.1.3, the cut-off point c is determined as a solution of equation equation 3.6. This

cut-off point c specifies the region on the z-axis were the integral in equation 3.6

has to be calculated, that is those z with LR(z) < c. Here, this region is given by

(−∞,−6.17) and (5.43,∞), as can be seen in figure 3.5. The integral from equation
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Figure 3.5: Likelihood ratio LR(z) with cut-off point c.

3.6 over this region is illustrated in figure 3.6. Now, the function deg determined

339 genes for which LR(Zi) < c, that is 339 gene were determined to be expressed
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Figure 3.6: Illustration of the integral from equation 3.6.

differentially. Table 3.3 displays the top 10 differentially expressed genes, ordered

by their adjusted p-values. These p-values were calculated by the function pvalue.

Here, the row numbers refer to the original data matrix with about 22.000 genes,

the name is Affymetrix’s gene name. The complete set of differentially expressed

genes is listed in appendix C.

Now, the kidney data are used to determine an appropriate number of replicates

for future experiments. Therefore, power functions based on different numbers of

replicates are calculated as described in 3.1.5 and 3.2.3. The result is illustrated in

figure 3.7. As one can see, the power increases strongly by doubling the number of

arrays from 10 to 20. But the gain in power is only less by adding again 10 more

replicates.
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rank row-no. name p-value

1 17678 217773 s at > 0

2 18389 218484 at > 0

3 19262 219358 s at 5.32*10−260

4 3108 203039 s at 8.10*10−257

5 17888 217983 s at 3.64*10−211

6 17889 217984 at 2.12*10−204

7 1247 201178 at 1.83*10−171

8 1047 200978 at 6.09*10−160

9 973 200904 at 3.41*10−131

10 11613 211671 s at 2.31*10−126

Table 3.3: Top 10 differentially expressed genes in kidney data.
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Figure 3.7: Power of the nonparametric method in reference to the expression

change δ and for different sample sizes.



4 Analysis of Protein Expression

Data from 2-D DIGE Experiments

As mentioned in the introduction, most of the questions that were posed to gene

expression data from DNA mciroarray experiments have also to be answered in

analyses of protein expression data. Furthermore, the statistical methods that can

be used to answer these questions are similar for gene and protein expression data,

respectively. However, in several cases some adaptions to the methods or the data

have to be made. In section 2.3, the application of two-dimensional difference gel

electrophoresis (2-D DIGE) for measuring protein expression was explained, as well

as the preprocessing of 2-D DIGE data. Here, the focus will be turned on missing

values in such data and on the analysis of time-dependent protein expression data.

The first subject of this chapter will be the estimation of missing values. Data

sets obtained from experiments with 2-D gel electrophoresis often contain a lot of

missing values, because these experiments are usually carried out with replications

of gels and not each protein spot appears on each gel, due to technical nuisances.

This drawback makes the transfer of known methods for gene expression data, or the

general application of multivariate methods, to 2-D DIGE data more complicated.

The estimation of missing values will be discussed in section 4.1. Furthermore,

protein expression is often measured repeatedly over several times. The question

is then to find significant differences in the temporal course of differently treated

samples. For this purpose, a model for the analysis of time dependent protein

50
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expression data will be introduced in section 4.2. Additionally, the problem of mul-

tiple hypothesis testing in 2-D DIGE experiments will be discussed in section 4.3.

The methods in this chapter are explained for the special case of experiments with

2-D DIGE experiments, but they are also applicable to other forms of 2-D gel

electrophoresis experiments.

4.1 Missing Values in 2-D DIGE Data

Like DNA microarrays experiments, 2-D DIGE experiments should be done with

replications. That is each sample is applied to more than one gel in order to be able

to asses the technical variations. A problem of replicating 2-D gels is, however, that

not each protein spot appears on each gel. Table 4.1 displays the amounts of de-

tected protein spots on the gels from a 2-D DIGE experiment with five replications.

In this experiment, there have 1057 spots been detected on gel no. 1 and 1267 on

Gel no. 1 2 3 4 5

# spots 1057 1267 1226 1792 1138

# joint spots 1057 650 470 417 330

Table 4.1: Numbers of detected protein spots on five 2-D gels that were prepared

with the same biological sample. The last row contains the portion of

jointly detected spots from gel 1 up to the gel in the respective column.

gel no. 2, but there is only an intersection of 650 spots which appear jointly on

both gels. After five replications there remain only 330 spots which have in fact five

values available for the statistical analysis. The number of jointly existent spots

decreases still more when measuring protein expression over several points in time.

Many statistical methods, however, need complete data sets, especially those for

multivariate data. These methods could also be applied to protein expression data

if the data sets were complete. One possible method to overcome this problem is

to estimate the missing values by using the available ones. In Jung et al. (2005,
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2006a), methods for the estimation of missing values in 2-D DIGE data were eval-

uated. These methods have already been applied to incomplete DNA microarray

data, but not with such great amounts of missing values. Unlike with data from

DNA microarrays, where the number of missing values is mostly around 5-15%,

2-D DIGE data contains mostly around 20-30% of missing values. The application

of these methods to 2-D DIGE data is thus a complete new challenge.

To begin with, some notations are given. Let X be the r × n matrix of pro-

tein expression values from a 2-D DIGE experiment, where the rows are referred

to protein spots and the columns are referred to replications (gels). Hence, xij is

the expression value of protein i on gel j, with i = 1, ..., r and j = 1, ..., n, as given

below.

X =




x11 . . . x1n

...
...

xi1 xij xin

...
...

xr1 . . . xrn




(4.1)

In the following subsections, let this matrix represent the preprocessed data, i.e.

after calibration, normalisation and standardisation. Furthermore, X could either

represent the matrix of the preprocessed values from the treatment or from the

control. Although treatment and control matrices have missing values at the same

positions in 2-D DIGE data – because both samples are applied to the same gel –

the estimation of the missing values is done separately for both matrices.

4.1.1 Row Mean Method

Obviously, the most simple technique to estimate a missing value in the context

of 2-D DIGE data is given by the row mean method. Let Xi = (xi1, ..., xin)T be

the ith row of X where one or more values are missing. Within Xi, let Qi be

the set of non missing values. These values are denoted by x′iu, u = 1, ..., v, and
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X ′
i = (x′i1, ..., x

′
iv)

T . If xij belongs to the set of missing values in Xi the row mean

estimator for this value is then given by the average of X ′
i, that is

x̂ij =
1

v

v∑

r=1

x′iu (4.2)

This estimator only includes the non missing values of the same protein were the

value xij is missing.

4.1.2 k Nearest Neighbor Method

A more elaborate technique is given by using the k nearest neighbor method. This

method was proposed by Troyanskaya et al. (2001) for the estimation of missing

values in DNA microarray data. This technique makes use of the fact that some

proteins have similar expression profiles due to similar biological functions. There-

fore, available values from other proteins than the protein with the missing value

are applied for the estimation. To specify what is meant by similar expression

profile in the statistical or mathematical sense one can define distances between

each pair of proteins. These distances can be derived by using the available values

from the proteins of each pair. In the following, three distances between each pair

(Xi = (xi1, ..., xin)T , Xi′ = (xi′1, ..., xi′n)T ) of rows of X are defined. The Euclidean

distance is given by

d1(Xi, Xi′) = (4.3)

=
√

(xi1 − xi′1)2 + (xi2 − xi′2)2 + . . . (xin − xi′n)2,

the Chebyshev distance is given by

d2(Xi, Xi′) = sup|xij − xi′j|, (4.4)

with j = 1, . . . , n, and the Mahalanobis distance is given by

d3(Xi, Xi′) =
√

(Xi −Xi′)T A−1(Xi −Xi′), (4.5)

where A is the empirical covariance matrix of the n gels.
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The principle of the k nearest neighbor method is now the following. For row

Xi the k nearest neighbors are those rows of X with the k smallest distances to Xi.

More details on the k nearest neighbor method can be found in Ripley (1996). This

method was also used in nonparametric estimation of the density (see for exam-

ple Rosenblatt, 1979) and regression (see for example Devroye, 1978) as well as in

classification problems (see for example Ketskemety, 2004). With the above given

notations missing values can be estimated as follows. Let Xi be the row where the

value xij is missing. Let Qi be the set of non missing values of Xi. We denote these

values again by x′iu, u = 1, ..., v, and X ′
i = (x′i1, ..., x

′
iv)

T . Let Xs, s 6= i, be the row s

of the Matrix X. Suppose that xsj is available and at least v other xsu are available,

too, in the same columns as in Xi. One can then denote X ′
s = (x′s1, ..., x

′
sv)

T and

make the

Definition 4.1 Xi and Xs are neighbors if d(X ′
i, X

′
s) is small.

and

Definition 4.2 The k rows Xs (s 6= i) with the k smallest distances to

Xi are the k nearest neighbors to Xi.

To estimate the missing value xij let xs1j, xs2j, ..., xskj be the xsj such that Xs be-

longs to the k nearest neighbors of Xi. The missing value xij can now be estimated

by the mean

x̂mean
ij =

1

k

k∑

l=1

xslj, (4.6)

a weighted mean

x̂wmean
ij =

1

k

k∑

l=1

wisl
xslj, (4.7)

with

wisl
=

1

d(X ′
i, X

′
sl
)

k∑
l′=1

1
d(X′

i,X
′
sl′ )

, (4.8)

or by the median

x̂median
ij = median(xs1j, xs2j, ..., xskj). (4.9)
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4.1.3 Principal Component Regression

Another possibility of missing values estimation is given by using principal com-

ponent (PC) regression. This approach reflects not only the relationship between

pairs of proteins but between a greater set of proteins. Consider again to have the

matrix X of expression values from r proteins in n samples. Furthermore, let X̃

be the (r − 1)× n matrix X without row i and Xi the ith row. It is assumed that

there is a biological relationship between all proteins that can be described by a

linear model. That is the rows of X̃ can be seen as the independent variables and

Xi as the dependent variable of the linear model

Xi = X̃T · b + e, (4.10)

where the vector b = (b1, ..., br−1)
T contains the regression coefficients and e =

(e1, ..., en)T is the error vector. The idea of estimating missing values by regression

is to use the set Qi of non missing values of Xi and the respective columns of X̃ to

determine the regression coefficients b. The missing value xij can then be estimated

by

x̂ij = X̃T
j · b (4.11)

where X̃j is the jth column of X̃.

However, in the case that there are more variables than observations, there is

an infinite number of solutions b which all fit equation 4.10. This is usually given

for protein expression data from 2-D DIGE experiments, because the expression

of hundreds or thousands of proteins are measured on only a few gels. Thus, a

reduction of dimensionality is necessary. One possibility to reduce the dimension

is to apply PC analysis (cf. Johnson and Wichern, 2002). In terms of the 2-D gel

data, the idea of PC analysis is to extract uncorrelated principal components from

the rows of X̃ by linear transformations

Yi = ai,1X̃
T
1 + ai,2X̃

T
2 + ... + ai,r−1X̃

T
r−1, (4.12)
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with i = 1, ..., r−1. The first principal component is then given by that Y1 that max-

imises V ar(Y1) subject to the constraint aT
1 a1 = 1, where a1 = (a1,1, a1,2, ..., a1,r−1)

T .

The ith principal component is given by that linear combination Yi that maximizes

V ar(Yi) subject to the constraint a′iai = 1 and Cov(Yk, Yi) = 0 for k < i, where

ai = (ai,1, ai,2, ..., ai,r−1)
T . All linear combinations Yi can now be summarised in a

(r − 1)× n matrix Y with the principal components in its rows.

These principal components can also be used as independent variables and Xi as

dependent variable and one can again built a linear model:

Xi = Y T · b′ + e′. (4.13)

In this model there are still more variables than observations. But dimension can

now be reduced by using only the first k principal components of X̃, that is the

rows of Y , as independent variables, where k ≤ n. Because n is mostly very small

in 2-D gel experiments it is recommended to use k = n principal components. If

we denote Y (k) as the k × n matrix with the first k = n principal components in

its rows, model 4.13 becomes

Xi = Y (k)T · b′′ + e′′. (4.14)

Using only the available values from Xi and the respective columns of Y (k) one can

obtain an estimate b̂′′ for b′′. The missing value xij can then be estimated by

x̂ij = Y
(k)T
j · b̂′′, (4.15)

where Y
(k)
j is the jth columns of Y (k).

Another, even more robust, regression method which would also imply the covari-

ance structure between Xi and X̃ is given by partial least squares (PLS) regression

(cf. Geladi and Kowalski, 1986, Frank and Friedman, 1993, and Abdi, 2003). This

method was also used for the estimation of missing data in DNA microarray exper-

iments by Nguyen et al. (2004) and Brás and Menezes (2006).



4 Analysis of Protein Expression Data from 2-D DIGE Experiments 57

4.1.4 Evaluation of Missing Values Estimation

The three methods (row mean, k nearest neighbor and PC regression) for the

estimation of missing values were evaluated as follows. From a real data set of

expression values from a 2-D DIGE experiment, the rows and columns with missing

values were removed. Thus, a complete matrix A with r = 526 rows and n = 5

columns remained. From this data set, four incomplete data matrices B were

generated, with 5, 10, 20 and 30 % of randomly chosen artificial missing values,

respectively. The estimation methods were applied to each of these incomplete

matrices and resulted in new, complete matrices C. To evaluate the results, each

of the matrices C was compared to original matrix A by the normalised root mean

square (RMS) error:

normalised RMS error (A, C)=

√
r∑

i=1

n∑
j=1

(Aij − Cij)2/(r ∗ n)

r∑
i=1

n∑
j=1

Aij/(r ∗ n)
. (4.16)

The normalised RMS error * 100 gives the average percentage deviation of the en-

tries of C to the entries of A. The resulting errors according to each method and

each portion of missing values are displayed in table 4.2. The PC regression was

carried out by using k = n principal components.

proportion of 5% 10% 20% 30%

missing values

row mean method 0.13 0.19 0.26 0.32

knn method 0.02 0.04 0.05 0.07

PC regression 0.10 0.07 0.11 0.34

Table 4.2: Normalised RMS error when applying the three methods to the incom-

plete data sets. The error for the k nearest neighbor method is the

minimum that was achieved by this method.
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The error for the k nearest neighbor method depends on the number k of neigh-

bors, the distance measure between the protein pairs and the actual estimator. To

compare the impacts of these parameters to the normalised RMS error one can plot

a curve of this error in dependence of k and with different settings of estimators

and distances. Figure 4.1a represents the normalised RMS error curves for different

percentages of missing values. As distance measure the Euclidean distance and as
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Figure 4.1: a) Normalized RMS errors in dependence of k. The knn method applied

a) to data with different proportions of missing values, b) with different

distance measures and c) with different missing values estimators.

estimator the mean were used, here. One can see that error increases with increas-

ing fractions of missing values. The curves have their minimum between five and

twenty neighbors. The error curves for the different distance measures are displayed

in figure 4.1b. Here, the k nearest neighbor method was applied to a data set with

30% of missing values and with the mean as estimator. The best performance is

shown by the Euclidean distance followed by the Mahalanobis and the Chebyshev

distance. However, the differences are not very big. Figure 4.1c finally shows the

error curves for the different estimators, where the k nearest neighbor method was

again applied with the Euclidean distance to the data set with 30% of missing val-

ues. As can be seen, the influence of the type of estimator isn’t to big here, too.

The best performance shows the mean. Similar results as in these three plots can

also be observed for other combinations of estimators and distance measures. More

error curves are displayed in appendix C.
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4.1.5 Consideration of the Missing Values Problem in Sample

Size Planning

The existence of missing values in 2-D gel data should also be considered in sample

size planning for such experiments. As has been shown in section 4.1, the number

of jointly existent protein spots on a series of replicated 2-D gels decreases with an

increasing number of replicates. On the other hand, the power of statistical tests

increases with an increasing number of replicates. Hence, there has always to be

made a compromise between a desired statistical power and the number of proteins

that remain for the analyses. The concrete planning should always be made in close

cooperation of statisticians and biochemists.

4.2 Analysis of Time Dependent 2-D DIGE Data

A frequent problem in 2-D DIGE experiments is the comparison of the temporal

courses of the protein expression in treated and untreated samples. In such exper-

iments, protein expression is usually not measured at a great number of times but

only at a few ones, say five to ten. Thus, the resulting data can be analysed by

using analysis of variance (ANOVA) methods for longitudinal data. An outline of

the design for a time dependent 2-D DIGE experiment is shown in table 4.3. It

replication 1 replication 2 . . . replication n

time 1 gel11 gel12 . . . gel1n

time 2 gel21 gel22 . . . gel2n

...
...

...
. . .

...

time T gelT1 gelT2 . . . gelTn

Table 4.3: Design of a time dependent 2-D DIGE experiment with n gels at T times.

should be remarked, here, that n is the number of replications for each, treatment

and control, because both are applied to the same gel in the 2-D DIGE technology.
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In this section, a mixed linear model and respective F -tests for the detection of

treatment/time-interactions and treatment effects in such experiments are pro-

posed. Furthermore, F -tests for the analysis of times are presented.

4.2.1 A Mixed Model for Longitudinal Data

A method that reflects the concrete situation of a time dependent 2-D DIGE ex-

periment like in table 4.3 is for example given in Diggle et al. (1994). In Jung et

al. (2005) it was first proposed to apply this method when having such a situation.

The analysis has to be done separately for each spot which has been detected on

each of the T · n gels. To begin with, denote ygjt as the standardised expression

value for the current protein on the jth gel replication at the tth time and within

the gth group, where j = 1, ..., n, t = 1, ..., T and g = 1, ..., G. In a 2-D DIGE

experiment, the number G of groups is usually 2, namely treatment and control.

The design for such an experiment can be seen as a kind of split-plot design, with

two main plots representing the two groups. The sub plots are the replications.

Hence, this is also a hierarchical design, because each replication belongs either to

the treatment or control group. Furthermore, the T levels of the time factor are

not randomised to the replications in the usual sense, of course. Since the same

protein is analysed over the time the model should heed the time-dependence of

the measurements. This is given for the following model:

ygjt = βg + γgt + Ugj + Zgjt, (4.17)

where βg is the main effect of the gth group, γgt is the interaction between group and

time, Ugj ∼ N(0, ν2) is the random effect of the jth replication and Zgjt ∼ N(0, σ2)

are the random errors. With these distribution assumptions for the random effects,
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the vector Ygj = (Ygj1, Ygj2, ..., Ygjt) is normally distributed with covariance matrix

V = σ2




1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 1




+ ν2




1 . . . . . . 1
...

...
...

...

1 . . . . . . 1




, (4.18)

where I and J are of size t× t. That means that the correlation between two points

in time is given by

ρ = ν2/(ν2 + σ2). (4.19)

The situation of equation (4.18) that the variances are equal and that all covari-

ances are equal is called ‘compound symmetry’ (cf. Glantz and Slinker, 2000).

The most frequent question that occurs in 2-D DIGE experiments is whether there

is an interaction between time and treatment in the protein expression. Such an

interaction exists when the temporal courses of treatment and control are not par-

allel. A statistical test that examines this problem is given by testing with respect

to model 4.17 the null hypothesis γgt = γt for g = 1, ..., G and for t = 1, ..., T . This

null hypothesis reflects the situation that the mean response profiles of the groups

are parallel. A test statistic for this hypothesis is given by

F1 =
ISS2/[(G− 1)(T − 1)]

RSS2/[(G ∗ n−G)(T − 1)]
. (4.20)

The ANOVA table 4.4 presents the sums of squares used in F1. With the above

satisfied assumptions for the error terms in model 4.17 and of compound symmetry,

F1 follows an F -distribution with (G− 1) · (T − 1) and (G ·n−G) · (T − 1) degrees

of freedom (cf. Crowder and Hand, 1995). A respective p-value for this test can be

calculated by

p(F1) = 1− F(G−1)(T−1),(G·n−G)(T−1)(F1), (4.21)

where F is the distribution function of the F -distribution.
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Another problem to be analysed in 2-D DIGE experiments is to test the null hy-

pothesis that there is no treatment effect, i.e. testing βg = β for g = 1, 2, meaning

that the mean temporal course for the expression of the current protein in the

treated and untreated samples are on the same level. The respective F -statistic for

testing this hypothesis is given by

F2 =
BTSS1/(G− 1)

RSS1/(G · n−G)
. (4.22)

Under the above assumptions, F2 is F -distributed with (G − 1) and (G · n − G)

degrees of freedom. The respective p-value for this test can be calculated by

p(F2) = 1− F(G−1),(G·n−G)(F2). (4.23)

The sums of squares of the F2-statistic are also given in ANOVA table 4.4.

Within table 4.4 the following terms are defined as the mean of all observations in

the experiment:

y··· =
G∑

g=1

n∑

j=1

T∑

t=1

ygjt, (4.24)

the mean of all observations in group g on gel j:

ygj· =
T∑

t=1

ygjt, (4.25)

the mean of all observations at time t:

y··t =
G∑

g=1

n∑

j=1

ygjt, (4.26)

and the mean of all observations in group g at time t:

yg·t =
n∑

j=1

ygjt. (4.27)

4.2.2 Descriptive Analysis of Longitudinal Data

Besides the detection of treatment/time-interactions or treatment effects, it is usu-

ally of interest to describe the temporal courses of the expression of each pro-

tein more detailed by some more statistics. The above described tests only detect
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source of variance sums of squares d.o.f.

between treatment BTSS1 = T
∑G

g=1 n(yg·· − y···)2 G− 1

whole plot residual RSS1 = TSS1 −BTSS1 G · n−G

whole plot total TSS1 = T
∑G

g=1

∑n
j=1(ygj· − y···)2 G ·m

between time BTSS2 = G · n ∑T
t=1(y··t − y···)2 T − 1

treatment-time ISS2 =
∑T

t=1

∑G
g=1 G · n(yg·t − y···)2 (G− 1)·

interaction −BTSS1 −BTSS2 (T − 1)

split plot residual RSS2 = TSS2 − ISS2 (G ·m− 2)·
−BTSS2 − TSS1 (T − 1)

split plot total TSS2 =
∑G

g=1

∑n
j=1

∑T
t=1(ygjt − y···)2 G · T · n− 1

Table 4.4: ANOVA table for the analysis of longitudinal data from 2-D DIGE ex-

periments (d.o.f. = degrees of freedom).

whether there are effects. In order to get a more detailed impression of of the

temporal courses of protein expression one can display for example the mean start

level of a protein within group g:

yg·1 =
n∑

j=1

ygj1, (4.28)

or the respective mean end level:

yg·T =
n∑

j=1

ygjT , (4.29)

or their difference:

d(yg·1, yg·T ) = |yg·1 − yg·T |. (4.30)
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The graphical representation of longitudinal data can be done by plotting the pro-

tein expression versus time. Such a plot should include the single data points of

each replication as well as the mean curves for each group.

4.2.3 Analysis of Single Times

With the model given in equation 4.17 it is also possible to explore treatment-

effects at each single time t. The F -statistic for the null hypothesis that there is

no treatment effect at the fix point in time t is given by

F3 =
BTSS/(G− 1)

RSS/(G · n−G)
, (4.31)

and follows also an F -distribution with (G− 1) and (G ·n−G) degrees of freedom.

The sums of squares are given in the ANOVA table 4.5. The respective p-value for

source of variance sums of squares d.o.f.

between treatment BTSS =
∑G

g=1 n(yg·t − y··t)2 G− 1

residual BTSS = TSS −BTSS G− 1

total TSS =
∑G

g=1

∑n
j=1(ygjt − y··t)2 G · n−G

Table 4.5: ANOVA table for the analysis of a single times.

this F -test can be calculated by

p(F3) = 1− F(G−1),(G·n−G)(F3). (4.32)

4.2.4 Example: Analysis of a Neuroblastoma Study

In this section the above ANOVA methods are applied to protein expression data

from a proteome study of the neuroblastoma cell line SY5Y (cf. Sitek et al., 2005).

Neuroblastoma are common solid tumors which occur in early childhood. The

proteome of neuroblastoma depends on the activation of different neurotrophin re-

ceptors (TrkA and TrkB) by their ligands (cf. Nakagaware et al., 1994). Here, the

proteome samples of the SY5Y cell line when the TrkA receptors are activated by
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their ligand NGF (nerve growth factor) are compared to the case that the recep-

tors are not activated. Protein expression was measured at five non-equidistant

times, namely at 0, 0.5, 1, 6 and 24 hours after treatment. The number of repli-

cations was 4 for each, treatment and control. The data sets contained around 20

percent of missing values. Therefore, before doing the ANOVA tests, the missing

values were estimated by the k nearest neighbor method with the Euclidean dis-

tance and the mean as estimator. The analysis was done for only those proteins

for which at least three values were available, so that at most one missing value

was estimated per protein. Thus, 440 spots remained for the analysis. Using the

F1-statistic and α = 0.05 as significance level, seven protein spots with a signif-

icant treatment/time-interaction were identified (cf. table 4.6). Because the 440

rank spot-no. F1 p-value adj. p-values

1 910 9.6517 >0.0000 0.037

2 1136 4.9624 0.0046 1.000

3 941 3.6116 0.0192 1.000

4 1301 2.9517 0.0407 1.000

5 1166 2.8776 0.0444 1.000

6 2227 2.7896 0.0492 1.000

7 1787 2.7806 0.0497 1.000

Table 4.6: Proteins spots with a significant treatment/time-interaction ranked by

their unadjusted p-values. The p-values adjustment in the last columns

was done by the Bonferroni method.

tests were carried out simultaneously, here, an adjustment for multiple hypothesis

testing is required. Some special characteristics of multiple hypothesis testing in

2-D DIGE experiments will be discussed in the next section. The mean temporal

courses of the most significant spot, i.e. 910, are plotted in figure 4.2. As can be

seen, the interaction takes place only within the first hour after treatment, here.

The plots of the other significant spots are displayed in appendix D.



4 Analysis of Protein Expression Data from 2-D DIGE Experiments 66

0 5 10 15 20 25

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

time (hours)

st
an

da
rd

iz
ed

 s
po

t v
ol

um
e

treatment
control

Figure 4.2: Mean temporal courses of protein 910 in the treatment group (solid

line) and control group (dashed line), respectively. The single points

show the measurements of the replications.

Next, treatment effects were discovered by using the F2-statistic. This test re-

sulted in 53 significant spots, the top 5 of them are displayed in table 4.7. The

rank spot-no. F2 p-value adj. p-values

1 2363 56.0883 0.0002 0.088

2 2502 45.4407 0.0005 0.220

3 935 43.0781 0.0005 0.220

4 1266 42.1088 0.0006 0.264

5 2123 28.2813 0.0017 0.748

Table 4.7: The five most significant spots of 53 spots with significant treatment

effect, ranked by their unadjusted p-values.

mean expression profiles of the most significant protein, represented by spot 2363,

are plotted in figure 4.3. The plot shows that after one hour, the mean expression

profiles are nearly parallel, where the line for the treatment appears on a higher

level.
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Figure 4.3: Mean temporal courses of spot 2363 in the treatment group (solid line)

and control group (dashed line), respectively.

Additionally, the single times were analysed for treatment effects by using the F3-

statistic. The most significant protein spots are displayed in tables 4.8. Specifically,

there were 20, 29, 9, 16 and 440 significant protein spots at the single points in

time. How the Bonferroni adjustement reduces these numbers is discussed in the

following section.

4.3 The Multiple Testing Problem in 2-D DIGE

Experiments

Like in DNA microarray experiments, 2-D DIGE experiments also imply not only

a single statistical test but hundreds or sometimes thousands of them simulta-

neously. Hence, it is necessary to adjust the testing levels with respect to some

error rate like the family-wise error rate or the false discovery rate (compare

section 3.1.1). Using the Bonferroni-adjustement for the F -tests in above the

study of protein expression in neuroblastoma there remain only very few spots

which are called significant. Specifically, only one spot remains with a significant
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treatment/time-interaction and no spot remains with a treatment effect. The result

of the Bonferroni-adjustment for the single points in time can be seen in tables 4.9.

However, multiple hypothesis testing shapes up as a general problem in 2-D DIGE

experiments. Many of the detected gel spots don’t represent proteins but back-

ground staining. Common image analysis software also regards them automatically

as protein spots. Furthermore, some gel spots represent more than one protein.

Not until after statistical analysis an experienced biochemist eyes up the significant

spots on the gel and sorts them out if he assumes that they were only stains or

represent more than a single protein. Thus, the set of spots to be analysed reduces,

meaning that the parameter r gets smaller. Hence, the adjustment for multiple

hypothesis testing has to be renewed. But even after such an readjustment the real

number of actual proteins on the gel persists unclear. Therefore, it is recommended

to always print both the unadjusted and the ajusted p-values in the results and to

readjust as often as possible.
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time 1 (0 h) time 2 (0.5 h)

rank spot-no. F3 p-value spot-no. F3e p-value

1 2502 17.8709 0.0055 3081 36.7425 0.0009

2 2568 17.6444 0.0056 641 20.8458 0.0038

3 2420 16.5422 0.0066 1702 19.1797 0.0047

4 1914 15.4450 0.0077 935 17.6755 0.0057

5 2123 14.0516 0.0095 2162 16.8531 0.0063

time 3 (1 h) time 4 (6 h)

rank spot-no. F3 p-value spot-no. F3 p-value

1 1277 14.7812 0.0085 2577 25.0578 0.0024

2 1543 11.3998 0.0149 955 22.4686 0.0031

3 2007 9.8881 0.0200 1136 21.7405 0.0035

4 1054 9.8566 0.0201 941 16.2100 0.0069

5 1136 9.1546 0.0232 1850 13.5863 0.0103

time 5 (24 h)

rank spot-no. F3 p-value

1 1136 110.2500 0.00004

2 1166 36.3110 0.0009

3 910 31.8153 0.0013

4 935 25.7956 0.0023

5 11125 23.9793 0.0027

Table 4.8: Most significant proteins at single times, ranked by their unadjusted

p-values.
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time 1 (0 h) time 2 (0.5 h)

rank spot-no. F3 adj. p-value spot-no. F3e adj. p-value

1 2502 17.8709 1.0000 3081 36.7425 0.4022

2 2568 17.6444 1.0000 641 20.8458 1.0000

3 2420 16.5422 1.0000 1702 19.1797 1.0000

4 1914 15.4450 1.0000 935 17.6755 1.0000

5 2123 14.0516 1.0000 2162 16.8531 1.0000

time 3 (1 h) time 4 (6 h)

rank spot-no. F3 adj. p-value spot-no. F3 adj. p-value

1 1277 14.7812 1.0000 2577 25.0578 1.0000

2 1543 11.3998 1.0000 955 22.4686 1.0000

3 2007 9.8881 1.0000 1136 21.7405 1.0000

4 1054 9.8566 1.0000 941 16.2100 1.0000

5 1136 9.1546 1.0000 1850 13.5863 1.0000

time 5 (24 h)

rank spot-no. F3 adj. p-value

1 1136 110.2500 0.0193

2 1166 36.3110 0.4149

3 910 31.8153 0.5854

4 935 25.7956 0.9979

5 11125 23.9793 1.0000

Table 4.9: Most significant proteins at the single times and their Bonferroni ad-

justed p-values.



5 Analysis of Protein Expression

Data from MS Experiments

After regarding protein expression data from 2-D DIGE experiments in the previous

chapter, this chapter now deals with protein expression data from mass spectrome-

try (MS) experiments. While the specific problem of protein expression data from

2-D DIGE experiments are missing values, data from MALDI-TOF mass spec-

trometry confronts statisticians with outliers. Such outliers occur in the repeated

measurements of the a sample from the same patient. Up to now, practitioners

of mass spectrometry detect outliers only by visual judgement, being quote time-

consuming when having mass spectra from a lot of patients. Here, a statistical

approach for the detection of outliers is proposed. This will be the topic of section

5.1.

Another characteristic of MS data is that in some experiments the number of pro-

teins in the samples is considerable smaller than in samples used in experiments

with 2-D gel electrophoresis or DNA microarrays. For example, in some MS ex-

periments certain sets of proteins are preselected from the original sample by some

kind of magnetic beads, yielding a new sample of only around 50 to 500 proteins.

If it is now desired to detect differentially expressed proteins using the nonpara-

metric approach of chapter 3.1, the set observations to use for the kernel density

estimation is small, too. A proposal for the improvement of the kernel density esti-

mation when having only a small set of observations will be discussed in section 5.2.
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Finally, the methods for the detection of outliers and differentially expressed pro-

teins are applied to MS data from a study of human thyroids in section 5.3.

5.1 Outliers in MS Data

In some MS experiments the sample from each patient is analysed repeatedly by

mass spectrometry resulting in more than one spectrum for each sample. The num-

ber k of repetitions is usually not very big, for example 4-10. Let us index these

repetitions by l with l = 1, ..., k. As is known by mass spectrometry practitioners

some of the multiple measurements can results in ‘bad’ spectra. These bad spectra

are either characterised by strong noise or they show changes in the relative inten-

sity patterns of the peaks. Sorting these bad spectra out only by visual judgement

(as it is common practice) is quite time-consuming and can be influenced by subjec-

tive criteria. A more objective way for detecting these bad spectra is to apply some

standardised statistical method. Here, a method for the detection of multivariate

outliers is adapted for the situation of repeated measurements in MS experiments

to obtain a uniform criterion for the removal of bad spectra. This approach is based

on a method that was proposed by Egan and Morgan (1998) for multivariate outlier

detection in analytical chemical data. Their method was designed for the situation

of having a large number of variables measured on a large number of individuals as

well. In the situation of protein expression data from MS experiments, however, the

sample from each individual is measured multiple times, as stated above. Therefore

the method of Egan and Morgen (1998) will be modified in some parts.

The concrete situation to start with is given in table 5.1. For the sample from

each of n patients k mass spectra are generated containing each the intensities of

r proteins. Let us denote the r × k data matrix of patient j by X(j) with the

peak intensities as entries, where x
(j)
il is the intensity of the ith protein of the lth
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patient 1 . . . patient n

spectr. 1 . . . spectr. k . . . spectr. 1 . . . spectr. k

protein 1 37.5 . . . 37.2 . . . 32.0 . . . 34.0

protein 2 11.1 . . . 10.8 . . . 12.2 . . . 12.4
...

...
. . .

...
. . .

...
. . .

...

protein r 23.4 . . . 21.9 . . . 22.9 . . . 24.5

Table 5.1: Protein expression data from MALDI-TOF MS with k spectra for each

of n patients.

spectrum (i = 1, ..., r, l = 1, ..., k, j = 1, ..., n). For the data matrix X(j) of each

patient one can derive the k × k distance matrix D(j) using for some multivariate

distance measure, for example the Euclidean distance. The matrix D(j) consists

then of all pairwise distances between the l spectra of patient j. Assume that half

of the l spectra from each patient are ‘good’ ones. This assumption is confirmed by

experienced mass spectrometry practitioners. Hence, one can use those k/2 spec-

tra of a certain patient with the smallest distances among each other to calculate

a robust multivariate mean

m(j) =
2

k

∑

l∈Λ

X
(j)
l , (5.1)

where Λ is the set of indexes l which belong to the k/2 closest spectra of patient j.

Next, the Euclidean distances d
(j)
l from all l spectra (from the jth patient) to m(j)

are calculated. It is now of interest to get an impression of how big a distance of a

certain spectrum to the robust centroid should be to call this particular spectrum

an outlier. In order to answer this question we regard the distribution of all k ∗ n

distances d
(j)
l , with l = 1, ..., k and j = 1, ..., n. Now, one has to choose a threshold

within this distribution of the distances where spectra with distances beyond this

threshold are called outliers. This step should be treated very carefully, however.

It is not advisable to just arbitrary call the spectra with the α% biggest distances

to be outliers. This threshold should be chosen in close cooperation with mass

spectrometry practitioners. For each possible threshold they should reconcile the
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set of outliers with the set of ‘bad’ spectra found by their own visual criteria.

After outlier detection and removal one can summarise the spectra of each patient

for example by their multivariate mean.

5.2 Detection of Differentially Expressed Proteins

Using MS Data

As in 2-D DIGE experiments, the detection of differentially expressed proteins

(or peptides) is also a subject in MS experiments. In general, this problem can be

treated by using the nonparametric method for multiple hypothesis testing that was

discussed in section 3.1. However, protein expression data from MS experiments

often consists of values for only around 50-500 proteins or peptides, especially in

those experiments, where certain proteins have been selected by magnetic beads

(cf. Zhang et al., 2004 and Baumann et al., 2005). Thus, the kernel density

estimation that is applied within the nonparametric method is based on only very

few observations. According to Gannoun et al. (2004), it often occurs that the

tails of a density are not well estimated by kernel estimation because of too few

observations. They proposed therefore to use a reflection method, where β ∗ 100%

of artificial observations are added in the tails of the ordered list of the original

observations. This reflection approach is executed as follows. Let z(1), ..., z(B) be

the initial ordered data from which one wants to estimate the density function.

Then, the artificial observations in the left and the right tail of the density are

generated by

z̃(b+1) = z(1) − (z(b+1) − z(1)) (5.2)

and

ẑ(b+1) = z(B) + (z(B) − z(B−b)), (5.3)

respectively, where b = 1, ..., [Bβ/2] and [η] denotes the integer part of η. As

remarked in Gannoun et al. (2004), making β very small, around 0.5%, suffices



5 Analysis of Protein Expression Data from MS Experiments 75

when the number of original observations is large. They also mention that the

rejection region of the nonparametric approach is very sensitive to the amount of

artificial observations used in the kernel estimation.

In order to get a closer view to the effect of using this reflection approach in kernel

density estimation, this method is applied to B random samples from a N(0,1)-

distribution, here. The amount of artificial observations was set to 0, 0.5, 1, 5, 10

and 20%, respectively. The estimated densities fB(z) were then compared to the

true density f(z) of the N(0,1)-distribution by the integrated mean square error

IMSE(fB(z), f(z)) =

∞∫

−∞
E{[fB(z)− f(z)]2}dz (5.4)

These errors are presented in table 5.2. One can see, that the error increases

B

β 50 100 500 1000

0.000 0.011 0.007 0.002 0.001

0.005 0.019 0.013 0.006 0.007

0.010 0.019 0.012 0.009 0.011

0.050 0.019 0.016 0.018 0.020

0.100 0.024 0.025 0.029 0.032

0.200 0.040 0.040 0.048 0.051

Table 5.2: Integrated mean square error of kernel density estimation when using a

reflection approach to add β∗100% of artificial observations to B original

observations.

with an increasing amount of artificial observations. The effect of the reflection

approach can also be seen in figures 5.1 and 5.2. The first figure shows the density

estimation without reflection approach, the second one the case that 20% of artificial

observations have been added before kernel estimation. From the second figure it

can be seen that the reflection approach gives too much weight to the tails of the

density. From this simulation it can be deduced that the reflection approach is not
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Figure 5.1: True (solid line) and estimated (dashed line) density functions without

reflection approach.

necessary in the case of a standard normal distribution. In fact, the more artificial

observations are added, the worse the estimation becomes. Thus, one can follow the

recommendation given by Gannoun et al. (2004) to be careful with this reflection

approach. It’s effect on the set of differentially expressed proteins in an MS study

is also focus of the following subsection.

5.3 Example: Analysis of a Thyroid Study

In this section, the above detailed methods are applied to protein expression data

that was surveyed in an MS study of the protein expression in human thyroids.

Altogether, there were 2827 spectra of 738 patients, where the sample of each pa-

tients was measured three or four times by MALDI-TOF mass spectrometry. The

algorithm for outlier detection was applied to these data and the distances d
(j)
l

were calculated. The distribution of these distances is plotted in figure 5.3. In

order to find an appropriate threshold for these distances, where spectra with dis-

tances greater than this threshold are seen as outliers, each possible threshold was

compared with the set of outliers found by the visual inspections of the MS prac-



5 Analysis of Protein Expression Data from MS Experiments 77

−6 −4 −2 0 2 4 6
0.

0
0.

1
0.

2
0.

3

z

D
en

si
ty

Figure 5.2: True (solid line) and estimated (dashed line) density functions with

reflection approach.

titioners. This let to a threshold of 193683, here, meaning that around 20% of the

spectra were determined as outliers. Among this set around 80% of the spectra

agreed with the practitioners criteria to be an outlier. This outlier procedure was

firstly carried out with the raw spectra and secondly with the preprocessed spectra.

The results were nearly the same for both, meaning that the outlier detection can

be done before data preprocessing. Thus, calculation time can be reduced.

After removing the outliers, the remaining spectra were used to find differentially

expressed proteins using the nonparametric method in combination with the reflec-

tion approach for the density estimation. First, the spectra for each patient were

summarised by their multivariate mean. Next, the spectra were divided by sex,

where 300 patients were randomly chosen for each class, men and women. The

number of proteins in this data set was very small, i.e. 37, due to selection of pro-

teins by magnetic beads. With these data, the nonparametric method was carried

out to find differentially expressed proteins. The alpha-level was 0.05, here. In

order to see the effect of applying the reflection approach to the kernel estimation

within this procedure, it was carried out with different percentages β ∗ 100 of ar-



5 Analysis of Protein Expression Data from MS Experiments 78

distance

F
re

qu
en

cy

0 500000 1000000 1500000
0

50
0

10
00

15
00

Figure 5.3: Histogram of the distances of the spectra to the mean of the spectra

from the respective patient.

tificial observations. The number of differentially expressed proteins with respect

to the amount of artificial observations in the kernel estimation can be found in

table 5.3. As can be seen, the reflection approach gives strong weight to the tails of

β rejection region # diff. expr. proteins # artificial obs.

0 [-2.41, 0.85] 14 0

0.1 [-2.50, 1.05] 14 2

0.15 [-2.61, 1.35] 13 4

0.2 [-2.76, 1.58]] 10 6

Table 5.3: Amount of artificial observations for density estimation and its influence

on the number of differentially expressed proteins.

the density and expands thus rejection region. The consequence is that the number

of differentially expressed proteins becomes smaller. As mentioned in the previous

subsection, one can again deduce that the use of the reflection approach has to be

considered very carefully.



6 Summary and Outlook

The demand for statistical analyses in bioanalytical research is high. Especially

those experiments with high-throughput technologies which were developed or en-

hanced since the middle of the 1990s produce data sets of enormous size from which

correct statistical inferences have to be made. Three of these high-throughput

technologies are DNA microarrays, two-dimensional gel electrophoresis (2-DE) and

several types of mass spectrometry (MS). In this work, some new approaches for

the statistical analysis of gene and protein expression data from experiments with

these technologies are presented and discussed.

First, in chapter 2, the principles of experiments with DNA mciroarrays, 2-DE

and MS were explained as well as the resulting data structures. Especially, the

statistical preprocessing, like signal calculation, normalisation, standardisation and

calibration of such data were discussed. On the one hand, preprocessing is needed

due to technical inaccuracies in the experiments, on the other hand it is necessary

to bring the data in a form needed for the statistical methods for the actual analysis.

Chapter 3 focused on the analysis of gene expression data from DNA microar-

rays. In particular, a nonparametric method of multiple hypothesis testing for the

detection of differentially expressed genes, developed by Pan et al. (2001) and

Gannoun et al. (2004), was improved and the properties of this new version were

discussed. These improvements consisted of making the kernel estimation more

precise and of the presentation of a new fast algorithm for finding the cut-off point
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for the likelihood ratio. Furthermore, it was shown how to calculate p-values for

each gene when using this method. In addition a software implementation of this

renewed method was introduced.

Compared with an alternative method for the detection of differentially expressed

genes, a permutation test, the improved nonparametric method was shown to be

very fast but to have less statistical power. It was also shown that the nonpara-

metric method breaks down when there are no differentially expressed genes in the

biological samples.

Next, in chapter 4, a complete strategy for the differential analysis of data from 2-D

DIGE experiments was presented and evaluated. Originally the idea was to sim-

ply apply the nonparametric method for gene expression data to those 2-D DIGE

data in order to find differentially expressed proteins. However, it was found that

there are great amounts of missing values in these data sets. Therefore, several

methods for the estimation of missing values in gene expression data were applied

to 2-D DIGE data and evaluated by the normalised root mean square error. These

methods were the row mean method, the k nearest neighbor method and principal

component regression. It has been seen that the k nearest neighbor method per-

forms best and is therefore recommended for further experiments. After estimation

of missing values the whole range of multivariate methods which have already been

used in DNA microarray experiments (e.g. clustering, classification, etc.) can be

applied to protein expression data from 2-D DIGE experiments.

Oftentimes, 2-D DIGE experiments include measurements of protein expression

over several times in order to find treatment effects or treatment/time-interactions.

An analysis of variance model for longitudinal data, originally given in Diggle et

al. (1994), was corrected and applied to such time-dependent DIGE data.

The special problem of multiple hypothesis testing in 2-D DIGE experiments was

discussed and a recommendation of how to handle this problem was made.
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Last, in chapter 5, the statistical analysis of protein expression data from MS

experiments was discussed. In those experiments, the sample from each patient is

measured multiple times by MS resulting in multiple mass spectra for each patient.

However, MS practitioners expect some of these spectra to be outliers but they can

detect them only by visual judgement. Therefore, a method for multivariate outlier

detection, given in Egan and Morgen (1998), was modified to find outlier spectra

in those multiple measurements.

Like with the protein expression data from 2-D DIGE experiments, it was origi-

nally intended to apply the nonparametric method for multiple hypothesis testing

from chapter 3 to MS data, too. Such data consist oftentimes of values for only

50-500 proteins. This specific situation and its meaning for the kernel estimation

within the nonparametric method was evaluated. It has been found that the reflec-

tion approach, proposed in Gannoun et al. (2004) for the generation of artificial

observations as basis for the kernel estimation has to be handled carefully.

∗

Genomics and proteomics are still in their infancy. New analytical technologies

or enhancements of existing technologies will produce data sets of new shape and

there will subsequently follow new statistical challenges.

Protein expression, for example, can also be measured by a combination of ICAT

(isotope-coded affinity tags) with mass spectrometry (cf. Gygi et al., 1999). This

technique labels the proteins from the different groups not by different dyes but by

different specific masses. In addition, like DNA microarrays, protein arrays have

been developed to measure protein expression, too (cf. Sydor and Nock, 2003).

Statistical methods have to be evaluated how they fit with the respective resulting

data structures.

Furthermore, statistical methods are also necessary for many other techniques of

biochemical research. Proteins spots that have been analysed by gel electrophoresis

need to be identified by mass spectrometry. Therefore, the masses of an analyte are

compared with databases and the probabilities that a mass represents a certain pro-
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tein is derived by statistical methods (cf. Nesvizhskii et al., 2002). Very important

is also the detection of genetic networks or regulatory pathways (cf. Grzegorczyk

and Urfer, 2004). A new approach to analyse the binding activity of interacting

biomolecules by PLS regression is given in Kirschbaum and Urfer (2006).

A new biological area, called systems biology (cf. Spivey, 2004), intends to study

not only the expression of genes or proteins but of all metabolites of an organism

(cf. Nicholson and Wilson, 2003) and tries find the interactions between genomes,

proteomes, metabolomes and signal pathways. It is therefore also of interest to

statistically compare the expression of metabolites in different biological samples,

like normal and cancerous tissues.

Concerning this thesis, a starting point for further research are classification prob-

lems in MS experiments. A great benefit of MS is that the analytes may also be

several body fluids which are easy to collect, like serum, blood, urine or saliva in-

stead of tissue samples (cf. Villanueva et al., 2004). Mass spectra of these analytes

can be used for medical diagnosis. Statistical methods for the classification of new

spectra to known disease classes are for example support vector machines, genetic

algorithms (cf. Jeffries, 2004) and combinations of principal component analysis

or partial least squares analysis with linear discriminant analysis (Boulesteix, 2004

and Lilien et al., 2003). Also the classification method by nearest shrunken cen-

troids (Tibshirani et al., 2002) should be considered in such classification problems.

In this context, an important question is, how many training samples should be

used for these algorithms to improve the classification of spectra. Therefore, one

can model the classification error in dependence of the training set size. Mukherjee

et al. (2003) for example proposed to model the classification error e in dependence

of the training set size n as

e(n) = a1 + a2n
−α, (6.1)

where a2 is the learning rate of the classification method, α is the decay rate and

a1 the minimum error rate that can be achieved. Based on observed classification
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errors one can thus find the relation between training size and classification error

and use it for prognoses of e. Of interest for classification problems in MS experi-

ments may also be sequential approaches of sample size planning like presented in

Fu et al. (2005).



Appendix

A: R-package ‘degenes’

In this appendix the functions of the R-package ‘degenes’ is given (cf. Jung et al.,
2006b).

‘common.genes’

R-code:

common.genes <- function(file1, file2, h1 = 1, h2 = 1) {

a <- read.table(file1, sep = "", row.names = NULL,

header = FALSE, skip = h1)

pvalues.a <- data.matrix(a[, seq(3, dim(a)[2], 2)])

median.a <- rep(0, (dim(pvalues.a)[1]))

median.a <- apply(pvalues.a, 1, median)

subset.a <- which(median.a < 0.05)

b <- read.table(file2, sep = "", row.names = NULL,

header = FALSE, skip = h2)

pvalues.b <- data.matrix(b[, seq(3, dim(b)[2], 2)])

median.b <- rep(0, (dim(pvalues.b)[1]))

median.b <- apply(pvalues.b, 1, median)

subset.b <- which(median.b < 0.05)

g <- sort(union(subset.a, subset.b))

return(g)

}

Arguments:
file1, file2: Character string, framed by ””, naming the source of the treatment
and control data set, respectively.
h1, h2: Have to set 0 if there are no column names in the .txt-files, and 1 if there
are column names. Default value is 1.

84
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Value:
g: Vector of indices of those genes, for which the expression values were reliable.

‘deg’

R-code:

deg <- function(treatment, control, ref = 0, alpha = 0.05) {

n <- dim(treatment)[1]

J1 <- dim(treatment)[2]

J2 <- dim(control)[2]

m1 <- J1/2

m2 <- J2/2

X1 <- (treatment[, 1:m1] - treatment[, (m1 + 1):J1])/2

X2 <- (control[, 1:m2] - control[, (m2 + 1):J2])/2

Z.big <- Z.calc(treatment, control, X1, X2, m1, m2)

z.small <- z.calc(X1, X2, m1, m2)

if(ref == 0) {

new1 <- Z.big

new2 <- z.small }

if(ref != 0) {

new1 <- reflection(sort(Z.big), ref)

new2 <- reflection(sort(z.small), ref) }

z <- seq(1.5 * min(min(new1), min(new2)), 1.5 *

max(max(new1), max(new2)), 0.01)

lz <- length(z)

kern1 <- kern(new1, z, lz)

kern2 <- kern(new2, z, lz)

if (max(kern2) <= max(kern1)) {

print("No differentially genes.", quote=FALSE) }

if (max(kern2) > max(kern1)) {

cat("Determination of the rejection region", fill=T)

Tk.hat <- kern2[which(kern1 > 0)]/kern1[which(kern1 >

0)]

single.alpha <- alpha/n

integral.factor <- 0.005

help <- 0

c0 <- 0

c1 <- max(Tk.hat)

repeat {

c <- (c1 + c0)/2

Ac.hat <- which(Tk.hat < c)
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Ac.hat.compl <- which(Tk.hat >= c)

integral <- 0

integral <- (kern2[min(Ac.hat)] +

sum(kern2[(min(Ac.hat) + 1):(min(Ac.hat.compl) - 2)]

* 2) + kern2[min(Ac.hat.compl) - 1])

* integral.factor

integral <- integral + (kern2[max(Ac.hat.compl) + 1]

+ sum(kern2[(max(Ac.hat.compl) + 2):(max(Ac.hat) -

1)] * 2) + kern2[max(Ac.hat)]) * integral.factor

if(integral > single.alpha)

c1 <- c

if(integral < single.alpha)

c0 <- c

if(abs(integral - single.alpha) <= 1e-008) break

if(c <= 2e-006) break

if(help > 100) break

help <- help + 1 }

z <- z[which(kern1 > 0)]

f <- which(Tk.hat >= c)

region <- c(z[min(f)], z[max(f)])

a <- which(Z.big < region[1])

b <- which(Z.big > region[2])

values <- sort(c(a, b))

output <- list(values=values, region=region,

single.alpha=single.alpha)

cat(date(), fill=T)

return(output) }

}

Arguments:
treatment, control: Data sets of gene expression.
ref: Parameter ≥0 giving the percentage of artificial observations to be added for
before kernel estimation. Default value is 0.
alpha: Specification of global testing level. Default value is 0.05.

Value:
A list with following components:
single.alpha: Adjusted alpha level.
region: Rejection region for Z statistics.
values: Indexes of differentially expressed genes.

‘kern’
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R-code:

\begin{verbatim}

kern <- function(a, z, lz) {

n2 <- length(a)

band1 <- (sqrt(var(a)) * (n2^(-1/5))) * 1.144

kernx <- rep(0, lz)

for(k in 1:lz) {

zk <- rep(z[k], n2)

kernxx <- dnorm(((zk - a)/band1), 0, 1)

kernx[k] <- sum(kernxx)/(n2 * band1) }

return(kernx)

}

Arguments:
a: Vector of observations from the density to be estimated.
z: Vector of data points were the density is estimated.
lz: Length of z.

Value:
kernx: Vector with values of estimated density.

‘power.plot’

R-code:

power.plot <- function(treatment, control, ref = 0, alpha

= 0.05) {

n <- dim(treatment)[1]

J1 <- dim(treatment)[2]

J2 <- dim(control)[2]

m1 <- J1/2

m2 <- J2/2

X1 <- (treatment[, 1:m1] - treatment[, (m1 + 1):J1])/2

X2 <- (control[, 1:m2] - control[, (m2 + 1):J2])/2

Z.big <- Z.calc(treatment, control, X1, X2, m1, m2)

z.small <- z.calc(X1, X2, m1, m2)

if(ref == 0) {

new1 <- Z.big

new2 <- z.small }

if(ref != 0) {

new1 <- reflection(sort(Z.big), ref)

new2 <- reflection(sort(z.small), ref) }

z <- seq(1.5 * min(min(new1), min(new2)), 1.5 *
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max(max(new1), max(new2)), 0.01)

lz <- length(z)

kern1 <- kern(new1, z, lz)

kern2 <- kern(new2, z, lz)

Tk.hat <- kern2[which(kern1 > 0)]/kern1[which(kern1 > 0)]

single.alpha <- alpha/n

integral.factor <- 0.005

help <- 0

c0 <- 0

c1 <- max(Tk.hat)

repeat {

c <- (c1 + c0)/2

Ac.hat <- which(Tk.hat < c)

Ac.hat.compl <- which(Tk.hat >= c)

integral <- 0

integral <- (kern2[min(Ac.hat)] + sum(kern2[(min(Ac.hat)

+ 1):(min(Ac.hat.compl) - 2)] * 2) +

kern2[min(Ac.hat.compl) - 1]) * integral.factor

integral <- integral + (kern2[max(Ac.hat.compl) + 1] +

sum(kern2[(max(Ac.hat.compl) + 2):(max(Ac.hat) - 1)] *

2) + kern2[max(Ac.hat)]) * integral.factor

if(integral > single.alpha)

c1 <- c

if(integral < single.alpha)

c0 <- c

if(abs(integral - single.alpha) <= 1e-008) break

if(c <= 2e-006) break

if(help > 100) break

help <- help + 1 }

z <- z[which(kern1 > 0)]

f <- which(Tk.hat >= c)

region <- c(z[min(f)], z[max(f)])

limit1 <- rep(0, 100)

limit2 <- rep(0, 100)

power <- rep(0, 100)

d <- seq(min(z)-region[1], max(z)- region[2], length=100)

for(i in 1:100) {

limit1[i] <- d[i] + region[1]

limit2[i] <- d[i] + region[2]

power[i] <- 0 }

for(i in 1:100) {

lim1 <- max(which(z <= limit1[i]))

lim2 <- min(which(z >= limit2[i]))

for(j in 1:lim1) {
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power[i] <- power[i] + ((kern1[j] + kern1[j + 1])

* integral.factor) }

for(l in lim2:(length(z) - 1)) {

power[i] <- power[i] + ((kern2[l] + kern2[l + 1])

* integral.factor) }}

plot(d, power, xlab = "expression change d", ylab = "power",

type = "l")

}

Arguments:
treatment, control: Data sets of gene expression.
ref: Parameter ≥0 giving the percentage of artificial observations to be added for
before kernel estimation. Default value is 0.
alpha: Specification of global testing level. Default value is 0.05.

‘pvalue’

R-code:

pvalue <- function(treatment, control, ref = 0, alpha = 0.05) {

n <- dim(treatment)[1]

J1 <- dim(treatment)[2]

J2 <- dim(control)[2]

m1 <- J1/2

m2 <- J2/2

X1 <- (treatment[, 1:m1] - treatment[, (m1 + 1):J1])/2

X2 <- (control[, 1:m2] - control[, (m2 + 1):J2])/2

Z.big <- Z.calc(treatment, control, X1, X2, m1, m2)

z.small <- z.calc(X1, X2, m1, m2)

if(ref == 0) {

new1 <- Z.big

new2 <- z.small }

if(ref != 0) {

new1 <- reflection(sort(Z.big), ref)

new2 <- reflection(sort(z.small), ref) }

z <- seq(1.5 * min(min(new1), min(new2)), 1.5

* max(max(new1), max(new2)), 0.01)

lz <- length(z)

integral.factor <- 0.005

kern1 <- kern(new1, z, lz)

kern2 <- kern(new2, z, lz)

if (max(kern2) <= max(kern1)) {

print("No differentially genes.", quote=FALSE) }

if (max(kern2) > max(kern1)) {
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p.value <- rep(0, n)

c <- 0

n2 <- length(new1)

band1 <- (sqrt(var(new1)) * (n2^(-1/5))) * 1.144

band2 <- (sqrt(var(new2)) * (n2^(-1/5))) * 1.144

Tk.hat <- kern2[which(kern1 > 0)]/kern1[which(kern1 >

0)]

for(i in 1:n) {

zkk <- rep(Z.big[i], n)

pkern <- dnorm(((zkk - new1)/band1), 0, 1)

pkernel <- sum(pkern)/(n2 * band1)

zkk <- rep(Z.big[i], n)

pkern <- dnorm(((zkk - new2)/band2), 0, 1)

pkernel2 <- sum(pkern)/(n2 * band2)

if (i%%1000==0) cat("number of estimated p-values:",

i, fill=T)

c <- pkernel2/pkernel

Ac.hat <- which(Tk.hat < c)

Ac.hat.compl <- which(Tk.hat >= c)

if(c <= min(Tk.hat)) p.value[i] <- 0

if(c >= max(Tk.hat)) p.value[i] <- 1

if(c > min(Tk.hat) && c < max(Tk.hat)) {

integral <- (kern2[min(Ac.hat)] +

sum(kern2[(min(Ac.hat) + 1):(min(Ac.hat.compl) - 2)]

* 2) + kern2[min(Ac.hat.compl) - 1])

* integral.factor

integral <- integral + (kern2[max(Ac.hat.compl) + 1]

+ sum(kern2[(max(Ac.hat.compl) + 2):(max(Ac.hat) -

1)] * 2) + kern2[max(Ac.hat)]) * integral.factor

p.value[i] <- integral }}

unadjusted <- p.value

adjusted <- rep(0, n)

for (i in 1:n) {

adjusted[i] <- min(unadjusted[i]*n, 1) }

output <- list(unadjusted = unadjusted, adjusted = adjusted)

return(output)

}}

Arguments:
treatment, control: Data sets of gene expression.
ref: Parameter ≥0 giving the percentage of artificial observations to be added for
before kernel estimation. Default value is 0.
alpha: Specification of global testing level. Default value is 0.05.
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Value:
A list with following components:
unadjusted: Vector of unadjusted p-values.
adjusted: Vector of adjusted p-values.

‘read.values’

R-code:

read.values <- function(file, g, h = 1, pval = FALSE) {

a <- read.table(file, sep = "", row.names = NULL, header =

FALSE, skip = h)

b <- 1

if (pval==TRUE) b <- 2

expr.values <- data.matrix(a[g, seq(2, dim(a)[2] - 1, b)])

return(expr.values)

}

Arguments:
file: Character string, framed by ””, naming the source of the treatment or con-
trol data set.
h: Has to set 0 if there are no column names in file, and 1 if there are column
names. Default value is 1.
g: Vector, returned from the function ‘common.genes’.
pval: A logical value indicating whether there are detection p-values in the data
set or not. Default is FALSE.

Value:
expr.values: Matrix, containing expression values, with the genes in the rows and
the arrays in the columns.

‘reflection’

R-code:

reflection <- function(a, ref) {

long <- (ref * n) %/% 2

one <- rep(a[1], long)

two <- a[2:(long+1)]

left <- one - (two - one)

one <- rep(a[n], long)

two <- a[(n-1):(n-long)]

right <- one + (one - two)
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return(c(left, a, right))

}

Arguments:
a: Vector with original values to be used for kernel density estimation.
ref: Percentage of artificial observations to be calculated before kernel density es-
timation.

Value:
Vector, containing the original and the artificial observations.

‘z.calc’

R-code:

z.calc <- function(a, b, m1, m2) {

cat("Calculation of z", fill=T)

z <- ((apply(a, 1, sum)/m1) - (apply(b, 1, sum)/m2))

/ sqrt ((apply(a, 1, var)/m1) + (apply(b, 1, var)/m1))

return(z)

}

Describtion:
Function, that is called by the function ‘deg’ to calculate the z-statistics.

‘Z.calc’

R-code:

Z.calc <- function(a, b, c, d, m1, m2) {

cat("Calculation of Z", fill=T)

Z <- (apply(a, 1, mean) - apply(b, 1, mean)) /

sqrt ((apply(c, 1, var)/m1) + (apply(d, 1, var)/m1))

return(Z)

}

Describtion:
Function, that is called by the function ‘deg’ to calculate the Z-statistics.

‘zmk’

R-code:
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zmk <- function(k = 2, treatment, control, ref = 0, alpha =

0.05) {

n <- dim(treatment)[1]

J1 <- dim(treatment)[2]

J2 <- dim(control)[2]

m1 <- J1/2

m2 <- J2/2

X1 <- (treatment[, 1:m1] - treatment[, (m1 + 1):J1])/2

X2 <- (control[, 1:m2] - control[, (m2 + 1):J2])/2

Z.big <- Z.calc(treatment, control, X1, X2, m1, m2)

z.small <- z.calc(X1, X2, m1, m2)

zmk <- rep(0, n)

e <- 0

for(i in 1:(dim(treatment)[1])) {

e <- 0

e <- round(runif(k, 1, (dim(treatment)[1])))

e <- z.small[e]

zmk[i] <- sum(e)/k }

if(ref == 0) {

new1 <- Z.big

new2 <- zmk }

if(ref != 0) {

new1 <- reflection(sort(Z.big), ref)

new2 <- reflection(sort(z.small), ref) }

z <- seq(1.5 * min(min(new1), min(new2)), 1.5 *

max(max(new1), max(new2)), 0.01)

lz <- length(z)

kern1 <- kern(new1, z, lz)

kern2 <- kern(new2, z, lz)

Tk.hat <- kern2[which(kern1 > 0)]/kern1[which(kern1 > 0)]

single.alpha <- alpha/n

integral.factor <- 0.005

help <- 0

c0 <- 0

c1 <- max(Tk.hat)

repeat {

c <- (c1 + c0)/2

Ac.hat <- which(Tk.hat < c)

Ac.hat.compl <- which(Tk.hat >= c)

integral <- 0

integral <- (kern2[min(Ac.hat)] + sum(kern2[(min(Ac.hat)

+ 1):(min(Ac.hat.compl) - 2)] * 2) +

kern2[min(Ac.hat.compl) - 1]) * integral.factor

integral <- integral + (kern2[max(Ac.hat.compl) + 1] +
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sum(kern2[(max(Ac.hat.compl) + 2):(max(Ac.hat) - 1)] *

2) + kern2[max(Ac.hat)]) * integral.factor

if(integral > single.alpha)

c1 <- c

if(integral < single.alpha)

c0 <- c

if(abs(integral - single.alpha) <= 1e-008) break

if(c <= 2e-006) break

if(help > 100) break

help <- help + 1 }}

z <- z[which(kern1 > 0)]

f <- which(Tk.hat >= c)

region <- c(z[min(f)], z[max(f)])

limit1 <- rep(0, 100)

limit2 <- rep(0, 100)

power <- rep(0, 100)

d <- seq(min(z)-region[1], max(z)- region[2], length=100)

for(i in 1:100) {

limit1[i] <- d[i] + region[1]

limit2[i] <- d[i] + region[2]

power[i] <- 0 }

for(i in 1:100) {

lim1 <- max(which(z <= limit1[i]))

lim2 <- min(which(z >= limit2[i]))

for(j in 1:lim1) {

power[i] <- power[i] + ((kern1[j] + kern1[j + 1])

* integral.factor) }

for(l in lim2:(length(z) - 1)) {

power[i] <- power[i] + ((kern2[l] + kern2[l + 1])

* integral.factor)}}

plot(d, power, xlab = "expression change d", ylab = "power",

type = "l")}

Arguments:
treatment, control: Data sets of gene expression.
ref: Parameter ≥0 giving the percentage of artificial observations to be added for
before kernel estimation. Default value is 0.
alpha: Specification of global testing level. Default value is 0.05.
k: Factor, specifying the number of replicates for the power calculation by
k*dim(treatment)[2].
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B: Permutation Algorithm

In this appendix the permutation algorithm for adjusted p-values (c.f. Dudoit et

al. (2003) used in section 3.3.1 and it’s R-implementation are given.

Permutation Algorithm:

For the bth permutation, b = 1, ..., B:

1. Permute the m columns of the data matrix X.

2. Compute realisations of test statistics

ti,b,

for i = 1, ..., n.

3. Next, compute succesive maxima of the test statistics

umb = |trn,b|,

and

uib = max(ui+1,b, |tri,b|),

for i = n − 1, ..., 1, where ri are such that |tr1| ≥ |tr2| ≥ ... ≥ |trn | for the

original data.

4. The permutation adjusted p-values are

pri
=

∑B
b=1 I(ui,b ≥ |tri

|)
B

.

R-Implementation:

X = cbind(treatment, control)

n = dim(X)[1]

m = dim(X)[2]
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B = 500

perm.matrix = matrix(NA, ncol=m, nrow=B)

for (b in 1:B) {
perm.matrix[b,] = sample(1:m, m, replace=FALSE)

}
t.i = rep(0, n)

for (i in 1:n) {
t.i[i] = (mean(treatment[i,]) - mean(control[i,]))

/ sqrt(var(treatment[i,])/m1 + var(control[i,])/m2)

}
t.ib = matrix(0, ncol=B, nrow=n)

for (b in 1:B) {
perm.b = X[,perm.matrix[b,]]

for (i in 1:n) {
t.ib[i,b] = (mean(perm.b[i,1:m1])

- mean(perm.b[i,((m1+1):(m1+m2))]))

/ sqrt(var(perm.b[i,1:m1])/m1

+ var(permu.b[i,((m1+1):(m1+m2))])/m2)

}}
u.mb = t.ib[order(t.i),]

for (b in 1:B) {
u.mb[n,b] = abs(u.mb[n,b])

for (i in (n-1):1) {
u.mb[i,b] = max(u.mb[i+1,b], abs(u.mb[i,b]))

}}
t.ri = t.i[order(t.i)]

p.i = rep(0, n)

for (i in 1:n) {
p.i[i] = length(which(u.mb[i,]>=abs(t.ri[i]))) / B}
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C: List of Differentially Expressed Genes

In this appendix the differentially expressed genes from the example in section 3.4

are given. The four columns represent the ranks, the row numbers in the data set,

the Affymetrix’ names and the adjusted p-values.

rank row-no. name p-value rank row-no. name p-value

1 17678 217773 s at > 0 26 8901 208866 at 1.7*10−62

2 18389 218484 at > 0 27 11986 212060 at 9.0*10−62

3 19262 219358 s at 5.3*10−260 28 13453 213532 at 3.7*10−61

4 3108 203039 s at 8.0*10−257 29 12279 212354 at 3.8*10−59

5 17888 217983 s at 3.6*10−211 30 1357 201288 at 1.6*10−57

6 17889 217984 at 2.1*10−204 31 1733 201664 at 2.9*10−57

7 1247 201178 at 1.8*10−171 32 3741 203674 at 1.3*10−56

8 1047 200978 at 6.1*10−160 33 21026 221123 x at 1.3*10−56

9 973 200904 at 3.4*10−131 34 11907 211980 at 5.5*10−56

10 11613 211671 s at 2.3*10−126 35 10522 210512 s at 1.1*10−55

11 2286 202217 at 1.3*10−110 36 17779 217874 at 1.1*10−54

12 2394 202325 s at 5.0*10−109 37 19038 219134 at 1.7*10−53

13 9247 209213 at 3.9*10−108 38 11967 212041 at 7.4*10−50

14 8435 208394 x at 3.4*10−106 39 2277 202208 s at 9.6*10−48

15 108 31845 at 6.1*10−106 40 5592 205525 at 1.2*10−46

16 1934 201865 x at 3.4*10−104 41 3003 202934 at 4.6*10−46

17 9506 209473 at 3.7*10−103 42 8747 208712 at 4.6*10−46

18 1972 201903 at 1.8*10−99 43 13115 213193 x at 8.8*10−46

19 4722 204655 at 3.2*10−93 44 10902 210915 x at 1.7*10−45

20 2873 202804 at 1.4*10−91 45 21878 221978 at 7.0*10−45

21 9105 209071 s at 3.6*10−89 46 11917 211990 at 7.8*10−42

22 2891 202822 at 6.6*10−85 47 5550 205483 s at 5.1*10−41

23 18258 218353 at 4.7*10−75 48 3792 203725 at 1.7*10−40

24 1621 201552 at 8.8*10−64 49 17361 217456 x at 5.3*10−40

25 16149 216237 s at 8.8*10−64 50 13270 213349 at 2.*10−39
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rank row-no. name p-value rank row-no. name p-value

51 21106 221203 s at 2.0*10−38 81 17989 218084 x at 3.9*10−26

52 5639 205572 at 2.2*10−37 82 20946 221042 s at 7.2*10−26

53 8930 208895 s at 3.9*10−37 83 211 40420 at 4.7*10−24

54 9121 209087 x at 7.0*10−37 84 10119 210095 s at 8.5*10−24

55 155 35666 at 4.0*10−36 85 1048 200979 at 1.9*10−23

56 1960 201891 s at 1.4*10−35 86 1809 201740 at 4.8*10−23

57 11901 211974 x at 3.9*10−34 87 17872 217967 s at 7.6*10−23

58 293 1405 i at 1.2*10−33 88 21172 221269 s at 1.9*10−22

59 2925 202856 s at 1.2*10−33 89 734 200665 s at 2.9*10−22

60 13048 213125 at 2.1*10−33 90 91 41037 at 4.6*10−22

61 18822 218918 at 7.1*10−33 91 19796 219892 at 7.2*10−22

62 2023 201954 at 9.8*10−32 92 12278 212353 at 1.8*10−21

63 8864 208829 at 9.8*10−32 93 10973 210986 s at 2.7*10−21

64 199 38671 at 1.1*10−31 94 11322 211366 x at 6.5*10−21

65 12622 212697 at 2.9*10−31 95 3399 203332 s at 1.4*10−20

66 21832 221932 s at 2.9*10−31 96 2271 202202 s at 1.6*10−20

67 17750 217845 x at 2.4*10−30 97 17930 218025 s at 3.4*10−20

68 4362 204295 at 1.2*10−29 98 2572 202503 s at 3.7*10−20

69 368 59625 at 1.3*10−29 99 9798 209770 at 3.7*10−20

70 473 60471 at 2.2*10−29 100 21629 221729 at 1.8*10−19

71 11298 211340 s at 6.3*10−29 101 13878 213959 s at 2.0*10−19

72 2956 202887 s at 1.6*10−28 102 18043 218138 at 2.0*10−19

73 974 200905 x at 2.6*10−28 103 1688 201619 at 4.6*10−19

74 2017 201948 at 4.4*10−28 104 19186 219282 s at 4.6*10−19

75 1361 201292 at 3.3*10−27 105 17638 217733 s at 6.4*10−19

76 20136 220232 at 3.3*10−27 106 5017 204950 at 1.6*10−18

77 21491 221589 s at 3.3*10−27 107 11516 211571 s at 2.4*10−18

78 14659 214743 at 5.4*10−27 108 9471 209438 at 4.9*10−18

79 2728 202659 at 2.4*10−26 109 1081 201012 at 5.3*10−18

80 21796 221896 s at 2.4*10−26 110 6858 206792 x at 7.3*10−18
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rank row-no. name p-value rank row-no. name p-value

111 12521 212596 s at 1.6*10−17 141 9015 208981 at 8.4*10−12

112 8944 208909 at 2.4*10−17 142 4786 204719 at 1.2*10−11

113 8883 208848 at 2.6*10−17 143 5450 205383 s at 1.2*10−11

114 3154 203085 s at 5.6*10−17 144 12597 212672 at 1.2*10−11

115 6732 206666 at 5.7*10−17 145 16938 217028 at 1.7*10−11

116 3717 203650 at 1.2*10−16 146 22215 222316 at 5.9*10−11

117 13458 213537 at 1.2*10−16 147 17596 217691 x at 7.5*10−11

118 2049 201980 s at 2.7*10−16 148 13279 213358 at 1.0*10−10

119 2179 202110 at 2.7*10−16 149 1458 201389 at 2.0*10−10

120 11839 211911 x at 2.7*10−16 150 12127 212201 at 2.5*10−10

121 1195 201126 s at 3.6*10−16 151 14000 214081 at 2.5*10−10

122 2817 202748 at 3.9*10−16 152 11142 211160 x at 2.7*10−10

123 4145 204078 at 5.7*10−16 153 2924 202855 s at 3.6*10−10

124 19410 219506 at 1.1*10−15 154 12389 212464 s at 4.5*10−10

125 21770 221870 at 1.8*10−15 155 472 59999 at 8.0*10−10

126 9790 209762 x at 1.1*10−14 156 1632 201563 at 8.0*10−10

127 11660 211719 x at 2.1*10−14 157 5266 205199 at 8.0*10−10

128 13604 213684 s at 2.1*10−14 158 9104 209070 s at 8.0*10−10

129 10864 210869 s at 2.9*10−14 159 11847 211919 s at 1.1*10−9

130 5119 205052 at 5.9*10−14 160 138 34210 at 1.4*10−9

131 1887 201818 at 6.4*10−14 161 11732 211796 s at 1.4*10−9

132 20700 220796 x at 1.8*10−13 162 1959 201890 at 1.9*10−9

133 6574 206508 at 2.4*10−13 163 18412 218507 at 2.0*10−9

134 12069 212143 s at 2.4*10−13 164 74 38241 at 2.7*10−9

135 9129 209095 at 9.1*10−13 165 11 AFFX 3.3*10−9

136 17878 217973 at 9.1*10−13 -DapX-M at

137 711 200642 at 1.3*10−12 166 11448 211501 s at 4.4*10−9

138 11830 211902 x at 3.4*10−12 167 14535 214617 at 5.7*10−9

139 3402 203335 at 4.7*10−12 168 14638 214722 at 5.7*10−9

140 9614 209584 x at 6.5*10−12 169 1786 201717 at 6.1*10−9
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rank row-no. name p-value rank row-no. name p-value

170 5793 205726 at 7.5*10−9 200 17667 217762 s at 1.4*10−6

171 9493 209460 at 7.5*10−9 201 5039 204972 at 1.5*10−6

172 994 200925 at 9.9*10−9 202 10506 210495 x at 1.5*10−6

173 13658 213738 s at 1.3*10−8 203 687 200618 at 1.7*10−6

174 20884 220980 s at 1.7*10−8 204 3796 203729 at 1.7*10−6

175 9485 209452 s at 2.2*10−8 205 6092 206025 s at 1.7*10−6

176 9211 209177 at 4.8*10−8 206 4506 204439 at 2.1*10−6

177 2181 202112 at 6.2*10−8 207 20657 220753 s at 2.2*10−6

178 11938 212012 at 6.2*10−8 208 17931 218026 at 2.3*10−6

179 17454 217549 at 6.2*10−8 209 7774 207713 s at 2.7*10−6

180 22270 222371 at 8.0*10−8 210 2718 202649 x at 4.2*10−6

181 4769 204702 s at 1.0*10−7 211 4324 204257 at 4.2*10−6

182 13851 213932 x at 1.0*10−7 212 4864 204797 s at 4.2*10−6

183 5879 205812 s at 1.3*10−7 213 3927 203860 at 5.3*10−6

184 13712 213792 s at 1.6*10−7 214 12023 212097 at 6.5*10−6

185 12097 212171 x at 1.7*10−7 215 18448 218543 s at 6.5*10−6

186 11407 211458 s at 2.1*10−7 216 4198 204131 s at 8.1*10−6

187 4958 204891 s at 2.8*10−7 217 5358 205291 at 8.1*10−6

188 21631 221731 x at 3.5*10−7 218 8903 208868 s at 1.2*10−5

189 18502 218597 s at 4.3*10−7 219 14622 214706 at 1.2*10−5

190 2981 202912 at 5.4*10−7 220 18787 218883 s at 1.2*10−5

191 6302 206236 at 5.7*10−7 221 19723 219819 s at 1.2*10−5

192 2744 202675 at 7.2*10−7 222 840 200771 at 1.5*10−5

193 7569 207507 s at 7.2*10−7 223 11891 211964 at 1.5*10−5

194 4303 204236 at 8.7*10−7 224 19766 219862 s at 1.5*10−5

195 20480 220576 at 8.7*10−7 225 10 AFFX-DapX 1.8*10−5

196 839 200770 s at 9.1*10−7 -5 at

197 18105 218200 s at 9.1*10−7 226 15890 215978 x at 1.9*10−5

198 3989 203922 s at 1.1*10−6 227 3390 203323 at 2.8*10−5

199 21433 221530 s at 1.1*10−6 228 8061 208012 x at 3.3*10−5
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rank row-no. name p-value rank row-no. name p-value

229 9016 208982 at 3.3*10−5 260 18095 218190 s at 0.0013

230 3031 202962 at 3.4*10−5 261 71 38149 at 0.0016

231 13718 213798 s at 3.4*10−5 262 9699 209670 at 0.0016

232 18378 218473 s at 3.4*10−5 263 15360 215446 s at 0.0016

233 12605 212680 x at 4.8*10−5 264 18142 218237 s at 0.0016

234 7261 207196 s at 6.2*10−5 265 20191 220287 at 0.0016

235 1106 201037 at 7.5*10−5 266 21570 221669 s at 0.0016

236 13400 213479 at 7.5*10−5 267 4600 204533 at 0.0018

237 15158 215244 at 9.0*10−5 268 11143 211161 s at 0.0020

238 9283 209249 s at 1.1*10−4 269 2154 202085 at 0.00251

239 9417 209384 at 1.3*10−4 270 6389 206323 x at 0.0025

240 17944 218039 at 1.3*10−4 271 17745 217840 at 0.0025

241 4662 204595 s at 1.5*10−4 272 17787 217882 at 0.0025

242 13003 213080 x at 1.5*10−4 273 37 AFFX-HSAC07/ 0.0028

243 14631 214715 x at 1.5*10−4 X00351 3 at

244 161 36030 at 1.8*10−4 274 9345 209311 at 0.0029

245 4967 204900 x at 2.6*10−4 275 15513 215600 x at 0.0033

246 12177 212251 at 2.6*10−4 276 536 AFFX-r2-Ec- 0.0037

247 19136 219232 s at 2.6*10−4 bioB-M at

248 19424 219520 s at 3.5*10−4 277 544 AFFX-r2- 0.0037

249 9282 209248 at 3.7*10−4 Bs-dap-5 at

250 13978 214059 at 3.7*10−4 278 4744 204677 at 0.0039

251 12592 212667 at 4.2*10−4 279 7570 207508 at 0.0039

252 18792 218888 s at 4.2*10−4 280 9157 209123 at 0.0043

253 21470 221567 at 4.2*10−4 281 11473 211527 x at 0.0043

254 20913 221009 s at 4.4*10−4 282 8764 208729 x at 0.0044

255 18054 218149 s at 8.2*10−4 283 21554 221653 x at 0.0051

256 15022 215108 x at 9.7*10−4 284 3067 202998 s at 0.0057

257 5723 205656 at 1.0*10−3 285 2 AFFX-BioB- 0.0065

258 2099 202030 at 1.1*10−3 M at

259 2492 202423 at 1.1*10−3 286 7775 207714 s at 0.0065
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rank row-no. name p-value rank row-no. name p-value

287 9872 209846 s at 0.0065 312 8798 208763 s at 0.0201

288 3 AFFX-BioB- 0.0085 313 14352 214433 s at 0.0201

3 at 314 15227 215313 x at 0.0201

289 34 AFFX-HUMGAPDH/ 0.0085 315 18106 218201 at 0.0201

M33197 3 at 316 21933 222033 s at 0.0201

290 1319 201250 s at 0.0085 317 1132 201063 at 0.0220

291 4887 204820 s at 0.0085 318 3103 203034 s at 0.0227

292 21417 221514 at 0.0085 319 9344 209310 s at 0.0227

293 8725 208690 s at 0.0097 320 122 32137 at 0.0278

294 16353 216442 x at 0.0097 321 608 200046 at 0.0278

295 1681 201612 at 0.0111 322 7822 207761 s at 0.0278

296 18110 218205 s at 0.0111 323 12925 213002 at 0.0278

297 19604 219700 at 0.0111 324 5365 205298 s at 0.0286

298 535 AFFX-r2-Ec- 0.0122 325 694 200625 s at 0.0312

bioB-5 at 326 4403 204336 s at 0.0312

299 1732 201663 s at 0.0126 327 4687 204620 s at 0.0312

300 2999 202930 s at 0.0139 328 3243 203175 at 0.0349

301 7137 207071 s at 0.0143 329 14386 214467 at 0.0349

302 15559 215646 s at 0.0162 330 20943 221039 s at 0.0349

303 393 47608 at 0.0178 331 12619 212694 s at 0.0390

304 4346 204279 at 0.0178 332 18937 219033 at 0.0423

305 5337 205270 s at 0.0178 333 2865 202796 at 0.0435

306 8475 208436 s at 0.0178 334 7428 207365 x at 0.0435

307 12933 213010 at 0.0178 335 11895 211968 s at 0.0435

308 14768 214853 s at 0.0178 336 13525 213605 s at 0.0435

309 18786 218882 s at 0.0178 337 1495 201426 s at 0.0484

310 546 AFFX-r2-Bs- 0.0201 338 9635 209605 at 0.0489

dap-3 at 339 12358 212433 x at 0.0489

311 2872 202803 s at 0.0201
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D: Error Curves for Estimation of Missing Values
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Figure C.1: Error curve when applying the imputation method with the

Euclidean distance and with the weighted mean (left) or the median (right) to

data sets with different percentages of missing values.
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Figure C.2: Error curve when applying the imputation method with the

Mahalanobis distance and with the mean (top left), the weighted mean (top right)

or the median (bottom) to data sets with different percentages of missing values.
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Figure C.3: Error curve when applying the imputation method with the

Chebyshev distance and with the mean (top left), the weighted mean (top right)

or the median (bottom) to data sets with different percentages of missing values.
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Figure C.4: Error curve for a data set with 30% of missing values. Imputation

method was applied with different distances and with the median (left) or the

weighted mean (right).
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Figure C.5: Error curve for a data set with 30% of missing values. Imputation

method was applied with different estimators and with the Mahalanobis distance

(left) or the Chebyshev distance (right).
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E: Gel Spots with Time/Treatment-Interactions
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Figure D.1: Mean temporal course of spot 1136 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure D.2: Mean temporal course of spot 941 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure D.3: Mean temporal course of spot 1301 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure D.4: Mean temporal course of spot 1166 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure D.5: Mean temporal course of spot 2227 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure D.6: Mean temporal course of spot 1787 in the treatment group (solid line)

and control group (dashed line), respectively.
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F: Gel Spots with Treatment Effects
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Figure E.1: Mean temporal course of spot 2502 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure E.2: Mean temporal course of spot 935 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure E.3: Mean temporal course of spot 1266 in the treatment group (solid line)

and control group (dashed line), respectively.
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Figure E.4: Mean temporal course of spot 2123 in the treatment group (solid line)

and control group (dashed line), respectively.



Notation

Chapter 2

i Gene or protein (i = 1, ..., r). 13

j Microarray, gel or spectrum (j = 1, ..., n). 13

n Number of observations (microarrays, 2-D gels or spectra). 14

r Number of variables (genes, gel spots, m/z-values). 14

m Mass of a protein or a peptide. 15

z Charge of a protein or a peptide. 15

h Fluorescent dye (h=1: Cy2, h=2: Cy3 and h=3: Cy5). 18

yih Intensity of gel spot. 18

ah, bh Calibration coefficients. 18

Chapter 3

r Number of variables (genes). 28

n Number of observations (microarrays). 28

X (r × n)-matrix with expression values. 28

i Gene (i = 1, ..., r). 28

j Microarray (j = 1, ..., n). 28

e1 Number of true negative decisions. 29

e2 Number of false positive decisions (type I errors). 29
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e3 Number of false negative decisions (type II errors). 29

e4 Number of true positive decisions. 29

Zi, zi Test statistics for gene i. 31

f Distribution of Zi’s. 31

f0 Distribution of zi’s. 31

: K Kernel function. 33

δ Magnitude of expression change. 37

B̃ Number of runs of the permutation algorithm. 42

Chapter 4

r Number of variables (gel spots, proteins). 52

n Number of observations (gels). 52

X (r × n)-matrix with expression values. 52

i Gel spot (i = 1, ..., r). 52

j 2-D Gel (j = 1, ..., n). 52

k Number of neighbors or principal components. 53

t Time (t = 1, ..., T ). 60

T Number of points in time. 60

g Group (g=1: treatment, g=2: control). 60

G Number of groups. 60

Chapter 5

l Spectrum from patient j (l = 1, ..., k). 72

X(j) (r × k)-matrix with spectra from patient j. 72

j Patient (j = 1, ..., n). 72

i m/z-value (i = 1, ..., r). 72

r Number of variables (m/z-values, proteins, peptides). 72

n Number of observations (spectra). 73



Notation 113

D(j) (n× n)-distance-matrix for spectra from patient j. 73

m(j) Multivariate mean of replications of spectra from patient j. 73

z(b) Ordered values for density estimation (b = 1, ..., B). 74
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