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Introduction

It is known that, residual life time (R.L.T.) distributions, and their behavior for
t→∞ play an important role in probability theory, such as, survival analysis, renewal
theory, and queueing processes. The starting work was Balkema and De.Haan [1],
that initiated investigations into the asymptotic behavior of R.L.T. (for t → ∞) on
the real line. They derived the types of possible limit distribution and their domain
of attraction. See also, the monograph P. Embrechts, C. Klueppelberg, T. Mikosch
[6].

In a second work Balkema and Yong-Cheng Qi [2] investigated limit laws in
the multivariate setting and introduced concepts of stability and strict stability of
R.L.T. distribution in the multivariate setup. For recent investigations for R2 see
M.V.Wuethrich [27].

The (semi-) stability of R.L.T. (for d = 1) are characterized by the general lack
of memory property (G.L.M.P). On the other hand, the G.L.M.P turns out to be a
functional equation which we call ”(semi-) stability” functional equation. It is found
that, the limit laws of R.L.T. distributions fulfil also these functional equation. (The
R.L.T. semi-stable laws are slightly different from the class of discrete limit laws
in [1]). We obtained all possible R.L.T. limit distribution by obtaining the general
solutions of these functional equation (in the continuous and discrete cases). For
Rd, d > 1, there exist various generalizations of the L.M.P.
Most of these are not suitable for investigations of R.L.T. distributions in the mul-
tivariate case. We introduce a concept of (semi-) stability for R.L.T. distributions
which differs from the approach [2] mentioned above.

The paper is organized as follows:
Beginning with preparations where results of the structure of affine transformations
and convergence of types theorem are collected. Chapter 1 is concerned with the
one-dimensional setup. Following the ideas in [1] on the one hand, and having in
mind the theory of stable and semi-stable laws (in the usual sense) it is proved that
the possible limit laws satisfy a ” stability” functional equation. These laws are called
R.L.T. stable resp. R.L.T. semi-stable. Parallel to the investigations of (semi-) stable
laws (in the ”additive scheme”, i.e. in the usual sense) the R.L.T. (semi-) stability is
characterized by the ”decomposability semigroup” and by the existence of domains of
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attraction. Finally, in 1.8 and 1.9 we emphasis the similarities between R.L.T. (semi-)
stability, (semi-) stability in the ”additive scheme”, and in the ”max-scheme”.

Chapter 2 is concerned with analogous investigations for the multivariate case
Rd, d ≥ 2. The investigations are parallel to Chapter 1 however the results are less
complete.
Following [2] the admissible normalizing operators are now ”CAT′s” (coordinate wise
affine transformations). The structure of one-parameter groups of ”CAT′s” is more
complicated than for d = 1, hence the possible solutions of a ”stability functional
equation” (for R.L.T.) have – in the general case – no simple representations. Due
to the fact that we have no complete overview over the possible solutions of the
functional equation the R.L.T. (semi-) stable laws are characterized only in the special
cases where the underlying one-parameter group of ”CAT′s” is a group of shifts or
has a unique fixed point. Again R.L.T. (semi-) stable laws are characterized by their
decomposability semigroup and by the existence of domains of attraction. (It should
be noted that (for d ≥ 2)) the investigations [2] and the recently published [27] lead
to different generalizations).

Finally, as for d = 1 some connections between R.L.T. (semi-) stability and max
(semi-) stability are pointed out. These parts are only sketched because (for d > 1)
the set of max (semi) stable laws is much more complicated as in the one dimensional
situation, (and only few investigations are available) where due to the famous result
of Gnedenko only three types of max-stable laws exist.



Chapter 0

Preparation

0.1 The structure of affine transformations on a

finite dimensional vector space

In this section we reformulate results from Edelstein, Tan [5] for the special case of
finite dimensional vector spaces. Since for dim V < ∞ strong and weak convergence
coincide the results and proofs in [5] are simplified. Therefore we reformulate some
results and include sketches of proofs. We start with the following notations.

Definition 0.1.1. (Affine transformation): Let V = Rd be a finite dimensional vector
space, and T be of V defined by

T : x 7→ T (x) = A · x+ b ∀ x ∈ V, (0.1.1)

A ∈ End(V), b ∈ V. Then T is said to be an affine transformation of V.

Notation 0.1.2. Let A(V) denote the semigroup of affine transformations and
Aff(V) ⊆ A(V) denote the subgroup of invertible transformations.

Note that T : x 7→ A · x + b invertible iff A ∈ GL(V). Later we shall restrict the
consideration to subgroups of Aff(V).
In particular for d = 1 let

Aff0(R, 1) := {x 7→ A · x+ b : A > 0} (0.1.2)

Theorem 0.1.3. Let V ≡ Rd, let T : x 7→ A · x + b, b ∈ V be affine transformation
defined as in definition 0.1.1. If b /∈ (A − I)(V) then {T n}n≥1 has no bounded
subsequence.
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Proof. There exist V 3 y ⊥ (A− I)(V) such that 〈y, b〉 = 1 (since b /∈ (A− I)(V) i.e.
〈y, b〉 6= 0). According to Edelstein, Tan [5] lemma(1)we have

T nx = (A− I)(
n−1∑
k=0

T kx) + x+ n · b (0.1.3)

Therefore

〈y, T nx〉 = 〈y, (A− I)(
n−1∑
k=0

T kx)〉+ 〈y, x〉+ n · 〈y, b〉 (0.1.4)

Since (A− I)(
k−1∑
0

T kx) ⊆ (A− I)(V) hence 〈y, (A− I)(
n−1∑
k=0

T kx)〉 = 0, then we have

〈y, T nx〉 =: c+ n

with c = 〈y, x〉. Hence 〈y, T nx〉 has no bounded subsequence, and the assertion
follows.(See [5] theorem 2.2)

Theorem 0.1.4. Let V = Rd, let T be an affine transformation as before. Then the
following are equivalent

(i) There exists a fixed point x? (i.e. Tx? = x?).

(ii) For some x ∈ V, {T nx} contains a bounded subsequence.

(iii) For some x ∈ V, {T nx} is bounded.

(iv) For some x ∈ V, {T nx} is convergent.

(v) For some x ∈ V, {T nx} contains a convergent subsequence.

Proof. (i) ⇒ (iv) ⇒ (v) ⇒ (ii), (i) ⇒ (iii) ⇒ (ii) are obvious.
(ii) ⇒ (i): From (ii), and according to theorem 0.1.3 we have b ∈ (A − I)(V). Let
x? ∈ V: (A− I)x? = −b ⇐⇒ Ax? = x? − b. Then we have

Tx? = Ax? + b = (x? − b) + b = x?

hence x? ∈ Fix(T ). (See e.g. [5] theorem 2.3)

Theorem 0.1.5. Let V = Rd as in theorem 0.1.4. Let S ⊆ A(V) be a commutative
semigroup. If for some x0 the orbit

Sx0 = {Tx0 : T ∈ S}

is bounded then S has a common fixed point x?.

Proof. Sx0 = {Tx0 : T ∈ S}, is bounded, hence relatively compact. Then the closed
convex hull co (Sx0) := K is compact
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Claim : T (K) ⊆ K, ∀ T ∈ S.

T is affine =⇒ T (co(Sx0)) ⊆ co(Sx0). Since V is finite-dimensional, T is continu-
ous therefore T (K) ⊆ K follows. Hence S is a commutative semigroup of continuous
affine transformation acting on a compact convex set. Therefore, by Kakuntani,s
fixed point theorem see e.g. Rudin [?], there exist a common fixed point x? for S

Corollary 0.1.6. Let V = Rd, let T be affine. If {T nx0}n∈N is bounded or has at
least a bounded subsequence for some x0 ∈ V, then {T n}n∈N, has a common fixed
point x?, i.e. T nx? = x? for all n ∈ N

Proof. Apply theorem 0.1.5 to the semigroup {T n}n∈N

Remark 0.1.7. By induction we obtain

a) For T : x 7→ A · x+ b, if A = AT , b = bT we have

T n(x) = An · x+
n−1∑
k=0

Ak · b

with A0 := I hence AT n = An
T , bT n =

n−1∑
k=0

Ak · bT

b) T , and hence {T n}, has a fixed point x? if

Tx? = Ax? + b = x? ⇐⇒ (I − A)x? = b

Hence, given A, and x? we obtain

Tx = A · x+ (I − A) · x? = A · (x− x?) + x?.

Therefore by induction we obtain

T n(x) = An(x− x?) + x?

Corollary 0.1.8. Let {Tt}t>0, be a continuous one parameter semigroup ⊆ Aff(V),
with TtTs = Tt+s, T0 = I (additive parameterization). Hence {Tt}t>0 is extendable
to a group {Ts}s∈R. If {Ttx0}t>0, is bounded for some x0 then {Tt}t>0 has a common
fixed point x?

Remark 0.1.9. We have in corollary 0.1.8

Ttx = Atx+ bt. (0.1.5)
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If Ttx? = x? we obtain for all t > 0 Atx? + bt = x?. Hence as in the discrete case
Ttx = Atx+ bt = Atx+ (I − At)x?. Therefore we have

Ttx = At(x− x?) + x?. (0.1.6)

The semigroup property (additive parameterization)

Tt+s = TtTs for t, s ≥ 0

and continuity yield that

At(Asx+ bs) + bt = AtAsx+ Atbs + bt = At+sx+ bt+s.

Hence At+s = AtAs ⇒ At = etQ for some linear Q. Therefore

Tt(x) = etQ(x− x?) + x? (0.1.7)

and bt = (I− etQ)x?

Remark 0.1.10. We can switch from the additive parameterization to the multi-
plicative parameterization by defining

T̃u := Tlog u for t = log u (resp. u = et, u ≥ 1). Then we have

Tt+s = TtTs for t, s ≥ 0 ⇐⇒ T̃uv = T̃uT̃v for u, v ≥ 1 (0.1.8)

Remark 0.1.11. Let T : x 7→ Ax+ b be affine as above

(a) Put x = 0: If {T n(0) =
n−1∑
k=0

Ak · b} is bounded, then T has a fixed point

(b) Assume that A−1 exists (i.e. T ∈ Aff(V)). If

{T−n(0) = −
n−1∑
k=0

A−kA−1 · b = −
n∑

k=0

A−(k+1) · b} is bounded, then T has a fixed

point

The special case d = 1 : We have T : x 7→ Ax+ b, A > 0

Proposition 0.1.12. (a) • If 0 < A < 1 : Then {T n(0) =
n−1∑
k=0

Ak · b} is conver-

gent, hence bounded. Hence T has a fixed point.

• If A > 1 : Then {T−n(0) = −
n−1∑
k=0

1
Ak+1 · b} is bounded, hence T−1 has a

fixed point. We obtain : T : x 7→ Ax+ b has a fixed point iff A 6= 1. Then
x? = b

1−A
.
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• Assume b 6= 0. If A = 1 : Then T : x 7→ x + b, has no fixed point. We
always assume T (R+) ⊆ R+. Hence b ≥ 0, A > 0. Therefore
x? ≥ 0 iff 0 < A < 1, and x? ≤ 0 iff A > 1

• The case x? = 0 appears iff b = 0, i.e. iff T is linear, Tx = A · x

(b) (Continuous one-parameter groups for d = 1): Let Tt : x 7→ A(t)x+ b(t) be a
continuous one-parameter group in Aff(R) then A(t) = etQ for some real Q.
(Tt) has a fixed point x? ⇐⇒ Tt(x) = etQ · (x− x?) + x?. This is the case iff
Q 6= 0, (i.e. etQ 6= 1).

Proof. This follows immediately if we consider the discrete sub-semigroups (Tt0·n)n≥1

for some t0 > 0. As in the discrete case we obtain assuming Tt(R+) ⊆ R+ :

x? ≥ 0 ⇐⇒ A(t) < 1 (i.e. ⇐⇒ Q < 0),

x? ≤ 0 ⇐⇒ A(t) > 1 (i.e. ⇐⇒ Q > 0), and

x? = 0 ⇐⇒ b(t) = 0 (i.e. ⇐⇒ Tt(x) = etQ · x).

Lemma 0.1.13. d = 1. Let γ ∈ Aff0(R) and c > 0, c 6= 1. Then there exist a
continuous one parameter group (Tt)t>0 with multiplicative parameterization, such
that Tc = γ.

Proof. Put γ : x 7→ a · x+ b.

Case 1: If a = 1. Put Tt : x 7→ x+ log(t) · b
log c

. Then, obviously

Tts(x) = x+ b
log c

(log(t)+log(s)) = Tt(Ts(x)) = Tt(
b

log c
·s+x) = x+ b

log c
·s+ b

log c
·t.

Furthermore, Tc(x) = x+ b = γ.

Case 2: If a > 0, a 6= 1. Then, according to proposition 0.1.12 above there exist a
fixed point x? and γ(x) = a · (x− x?) + x?. Then we define
Tt : x 7→ at(x− x?) + x?, and obtain Tloga(c) = γ.

And then using remark 0.1.10 to verify the existence of a group (T̃t) with mul-
tiplicative parameterization.

Lemma 0.1.14. Let γ ∈ Aff0(R). Then there exist a one-parameter group (Tt)t>0

(with additive parameterization), such that T1 = γ

Proof. As above let γ : x 7→ a · x+ b. Then we have
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Case 1: Assume that a = 1. Put γ(t) : x 7→ x + b · t. Therefore, again as in lemma
0.1.13 (case 1) Tt+s = Tt · Ts (additive parameterization). Furthermore T = γ

Case 2: Assume a 6= 1. Then according to proposition 0.1.12 there exists a fixed
point x? with γ(x?) = x?, γ(x) = a · (x− x?) + x?.
Put Tt : x 7→ at(x− x?) + x?. We have T1 = γ.

Remark 0.1.15. Let γ be as above, c > 0. Then there exists a one-parameter group
(with additive parameterization) (T ′

t) with T ′
c = γ

Proof. Put T ′
t = Tt/c. Later we use this notation in section 1.7 to obtain some refor-

mulations.

Remark 0.1.16. In the sequel we shall frequently assume that affine transformation
γ have the following properties :

(i) γ is strictly increasing,

(ii) γ(x) > 0 for all x > 0,

(iii) γn(x)
n→∞−→ ∞ for all x > 0.

We denote this set by Aff+
0 (R, 1). Let S+ := {γ1,b : b > 0} and

U+ : = {γa,b : a > 1, with fixed point x? ≤ 0}
= {γa,b : a > 1, b = (1− a) · x?}

As easily seen, the semigroup generated by S+ and U+ is Aff+
0 , whence we obtain

Aff+
0 (R, 1) = {γa,b : a ≥ 1, b > 0 or a > 1, b ≥ 0}

= {γa,b : (a, b) ∈ [1,∞)× [0,∞) \ {(1, 0)}}
= {γ = γa,b : (i), (ii) and (iii) hold}

0.2 Convergence of types theorems (C.T.T.)

The central object of this section is the convergence of types theorem which connects
weak convergence in the set of probabilities M1(R) and convergence of affine trans-
formation of R+. Note that non- degenerate distribution means that, the distribution
is not a point measure. Convergence of types is a simple but powerful limit theorem
that is useful in many branches of probability theory (see e.g. Hazod [14]). In this
section, we present the one dimension version.
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Proposition 0.2.1. The classic version of C.T.T. for d = dim V = 1 :
Let µn, µ, λ be probability measures on R, µ, λ non-degenerate. Let
γn ∈ Aff0(R) : x 7→ An · x+ bn with An > 0. Assume

(1) µn −→ µ, and

(2) γn(µn) −→ λ.
Then the sequence {γn}n≥1 is relatively compact in Aff0(R). And for all accu-

mulation points γ (i.e. γn
ñ−→ γ for some subsequence ñ) we have

(3) γ(µ) = λ.
Here we will be concerned with probabilities µn, µ, λ concentrated on R+ hence
we assume γn(R+) ⊆ R+, in particular An > 0 for all n. Therefore we obtain in
this particular case:
lim

n→∞
γn =: γ exists and (3) holds. (See e.g. Letta [17]).

We shall continue with general C.T.T. for dim V > 1 in Chapter 2. Here we continue
with an equivalent form of the C.T.T. in the context of distribution functions.

Proposition 0.2.2. Let Fn, F and G denote the distribution functions of µn, µ
and λ, (of prop. 0.2.1) respectively. Then (1), (2) and (3) in proposition 0.2.1 are
equivalent to the following

(1)
′
Fn(x) −→ F (x), for all continuity points of F .

(2)
′
Fn(γ−1

n (x)) = Fn( 1
an

(x− bn)) → G(x) for all continuity points of G.

(3)
′
F (γ−1(x)) = G(x) for all x.

Note that F and G are right continuous. Therefore, if the relation (3)
′
holds true

for all continuity points, it holds true for all x ∈ R+. In the following we shall use the
notation Fn(·) w−→ F (·) iff Fn(x) −→ F (x) for all continuity points of F .

Proposition 0.2.3. Another useful version of C.T.T. for (d = 1) : Let F be a non-
degenerate distribution function, let αn, βn ∈ Aff0(R) be affine transformations of R.
Assume in addition that

F (αn(x))
w−→ F (x) (0.2.1)

and
F (βn(x))

w−→ F̃ (x) (0.2.2)

where F and F̃ are non-degenerate distribution functions. Then the sequence,
{γn}n≥1 := {βnα

−1
n }n≥1 is relatively compact and for all accumulation points γ we

have
F̃ (x) = F (γ(x)), x ∈ R. (0.2.3)

(In fact, since γn, βn ∈ Aff0(R) we obtain γn → γ)
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Proof. The proof is an obvious consequence of proposition 0.2.2 if we put
Fn := F ◦ αn. Then we have Fn(x) → F (x), and hence Fn ◦ γn(x) → F̃ (x).

For the next version of the C.T.T. we first note

Lemma 0.2.4. Let cn →∞, 0 < xn < 1. Then

cn · (1− xn) → y ⇐⇒ cn · (xn − 1) → −y
⇐⇒ ecn·(xn−1) → e−y

⇐⇒ xcn
n → e−y

Proof. Without loss of generality we take cn ∈ N, otherwise we take [cn]. Then

| ecn·(xn−1) − xcn
n | = | (exn−1)cn − xcn

n |

≤
cn∑

n=1

| exn−1 − xn | (since | xn |≤ 1 =⇒| exn−1 |≤ 1)

≤ cn· | xn − 1 | . | xn − 1 |︸ ︷︷ ︸
→0

·
∞∑

k=2

(xn − 1)k

k!

n→∞−→ 0

This yields immediately the following new version of the C.T.T. (See e.g. Balkema,
de Haan [1]).

Proposition 0.2.5. Let S, S̃ be decreasing real functions, cn →∞, γn, βn, as in
proposition 0.2.3. Let F be a distribution function and assume that
cn · (1− F (γn(x))

w−→ S(x), and

cn · (1− F (βn(x)))
w−→ S̃(x), when S, S̃ ≥ 0, are non-degenerate functions. Then

exp(cn · (F (γn(x)))− 1)
w−→ exp(−S(x)) ⇐⇒ F cn(γn(x))

w−→ exp(−S(x)) (0.2.4)

and

exp(cn · (F (βn(x)))− 1)
w−→ exp(−S̃(x)) ⇐⇒ F cn(βn(x))

w−→ exp(−S̃(x)) (0.2.5)

(Where
w−→ means weak convergence as above mentioned.)

Proposition 0.2.6. Let S, S̃, βn, γn, and cn, be as in proposition 0.2.5. Assume
that

cn · (1− F (γn(x))
w−→ S(x) (0.2.6)

and
cn · (1− F (βn(x)))

w−→ S̃(x) (0.2.7)

x ≥ x0, for some x0 ≥ 0. Then {Γn = βnγ
−1
n }n≥1 is relatively compact, and for all

accumulation points Γ we have S̃ = S ◦ Γ. (In fact, we have Γn −→ Γ).
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0.3 The set of the probability measures M 1(R+)

Notation 0.3.1. Let (Ω, Σ, P ) be a probability space, let Xn, X : Ω → R be a real
random variables, with distributions µn, µ (resp. distribution functions Fn, F , and
the tails functions Rn, R) respectively, where
F (x) := P (X ≤ x) and R = 1− F (R(x) := P (X > x)), and let Y be the set of all
continuity points of F (resp. R) for which F (x) < 1 (resp. R(x) > 0). Then we have

µn
w−→ µ (resp. Fn

w−→ F) ⇐⇒ Fn(x) → F (x) ∀ x ∈ Y.

Equivalently formulated for the tail R as:

Rn
w→ R ⇐⇒ Rn(x) → R(x) ∀ x ∈ Y.

Definition 0.3.2. We define the R.L.T. distribution for t, x ≥ 0 by:

Ft(x) := P (X ≤ x+ t|X > t). (0.3.1)

Hence if F (t) < 1 we have

Ft(x) = (F (x+ t)− F (t))/(1− F (t)) = µ(t, x+ t]/µ(t,∞). (0.3.2)

Analogously, if R(t) > 0 we define the corresponding tail function by

Rt(x) := P (X > x+ t|X > t) = µ(x+ t,∞)/µ(t,∞). (0.3.3)

Which is expressed analytically by:

Rt(x) := min(1, R(x+ t)/R(t)). (0.3.4)

Remark 0.3.3. R.L.T. distributions may be defined by transformations acting on
the set of probabilities M1(R+) as:
If µ(t,∞) > 0 define τt : M1(R+) →M1(R+) by

τt(µ)(0, x] := µ(t, x+ t]/µ(t,∞). (0.3.5)

(I.e. the distribution function of τt(µ) is Ft if F is the distribution function of µ).
As easily seen we have

τtτs(µ) = τt+s(µ) (0.3.6)

hence (τt)t≥0 is a continuous one parameter semigroup.
Put γ(t) : x 7→ x+ t. Then the tail R(t) may be written as

Rt(x) = R(γ(t)(x))/R(t) (0.3.7)
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Proposition 0.3.4. For later use we note: Let F be a distribution function with
tail R. Let t 7→ Γ(t) : x 7→ a(t) · x+ b(t) be a function R+ → Aff0(R). Assume that

Γ(t)(x) ≥ x ∀ x ≥ 0. Define Γ̃(t) : x 7→ a(t) · x+ b(t)− t. Then for all x, t ≥ 0 we have

Rt(Γ̃(t)(x)) = R(x) ⇐⇒ R(Γ(t)(x)) = R(t) ·R(x). (0.3.8)

Functional equations of this type,

R(Γ(t)(x)) = R(t) ·R(x) (0.3.9)

more generally
R(Γ(t)(x)) = c(t) ·R(x) (0.3.10)

for some function c(·).

0.4 Examples

Example 0.4.1. Exponential distribution : Let α > 0.
The distribution function is defined by: Eα(x) = 1− e−αx, x ≥ 0
And the tail distribution is: Eα(x) = e−αx, x ≥ 0

Example 0.4.2. Shifted exponential distribution : Fix x0 ∈ R.

The distribution function is defined by: Eα, x0(x) = 1− e−α(x−x0) = Eα(x− x0), x ≥ x0.
And the tail distribution is: Eα,x0(x) = e−α(x−x0) = Eα(x− x0), x ≥ x0.
By re-scaling the example 0.4.2 above we obtain again a shifted exponential distribu-
tion as in the following example

Example 0.4.3. Re-scaled exponential distribution. Let β > 0 and put
Eα, x0,β(x) := Eα, x0(β · x), x ≥ 0.
Then the distribution function is:

Eα, x0(β · x) = 1− e−α(βx−x0) = 1− e−αβ(x−x0/β) = Eαβ,x0/β(x), x ≥ 0.

And the tail distribution is: Eαβ, x0/β(x) = e−αβ(x−x0/β)

Example 0.4.4. Standard Pareto distribution: Let α > 0. Then the distribution
function is defined by: Pα,1(x) = 1− x−α, x ≥ 1.
And the tail distribution is: Pα,1(x) = x−α, x ≥ 1

Example 0.4.5. Shifted Pareto distribution: Let c ∈ R, consider the Pareto distri-
bution shifted by 1− c, then the distribution function is defined by:
Pα, c(x) = Pα,1(x− (1− c)) = 1− (x− (1− c))−α, c+ x− 1 ≥ 1 ⇔ x ≥ 2− c.
And the tail distribution is: Pα, c(x) = (x− (1− c))−α, x ≥ 2− c
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Notation 0.4.6. : It is may be better in the previous example to replace 1− c by
x0, then the distribution function is: Pα, x0(x) = Pα, 1(x− x0) = 1− (x− x0)

−α for
x− x0 ≥ 1.
And the tail distribution is: Pα, x0(x) = (x− x0)

−α, x− x0 ≥ 1. Therefore it is better
to define the re-scaled Pareto distribution as the following example

Example 0.4.7. Re-scaled Pareto distribution : Let β > 0.
Define Pα, β, x0(x) as: Pα, β, x0(x) = Pα, x0(β · x). Therefore the distribution function
is: Pα, β, x0(x) = 1− (β · x− x0)

−α, β · x− x0 ≥ 1 ⇔ x ≥ 1+x0

β

= 1− β−α(x− x0

β
)−α, x ≥ 1+x0

β
.

And the tail distribution is: Pα, β, x0(x) = β−α(x− x0

β
)−α, x ≥ 1+x0

β

Notation 0.4.8. By using the re-scaled Pareto distribution 0.4.7 above. we obtain
the following: Pα, x0(x) = 1− (x+ 1− x0)

−α, x− x0 ≥ 0 ⇐⇒ x ≥ x0.
Put x0 = 0. Then we obtain the distribution function: Pα, 0(x) := 1 − (x + 1)−α,
x ≥ 0.
And the tail is: Pα, 0(x) = (1 + x)−α, x ≥ 0
Put x0 = 1. Then the distribution function is Pα,1(x) := Pα, 0(x−1) = 1−x−α, x ≥ 1.
And the tail distribution is: Pα, 1(x) = x−α, x ≥ 1

Example 0.4.9. Re-Parameterization of the Pareto distribution: From 0.4.7 we ob-

tained the following Pα, β, x0(x) = Pα, 1(β · x− x0), x ≥ 1+x0

β
. Then a useful re-param-

eterization of the continuous Pareto distribution is obtained in the following:

Pα,β,x0(x) = Pα,1(β · x− x0) = 1− e−α(log β+log(x−x0
β

)), x ≥ 1+x0

β
.

In particular for c = 1 (i.e. x0 = 0) we have
Pα,1(x) ≡ 1− (β · x)−α = 1− e−α log βx, β · x ≥ 1.
And the tail distribution is: Pα,1(x) = e−α·log β·x, β · x ≥ 1

Example 0.4.10. Weibull distribution :
The distribution function is: Wλ, α(x) = 1− e−λxα

, λ > 0, α > 0, x > 0.
And the tail distribution is: W λ, α(x) = e−λxα

, λ > 0, α > 0, x > 0.

Example 0.4.11. The following distribution will appear later: Let β > 0.
The distribution function: Bβ(x) = 1− (1− x)β

+ , 0 ≤ x ≤ 1

And the tail distribution is: Bβ(x) = (1− x)β
+ , 0 ≤ x ≤ 1

Example 0.4.12. Geometric distribution: We have to consider two types of geometric
distributions. Let 0 < q < 1, p := 1− q. We put

(a) µ = µq =
∑
k≥0

p · qk · εk , k ∈ Z+ or

(a)′ (Shifted µq): µ = ξq :=
∑
k≥0

p · qk · εk+1 = µq ∗ ε1 , k ∈ Z+
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Consequently, if we consider the type (a), then

the distribution function is: Gq(x) =
[x]∑

k=0

p · qk · εk = 1− q[x+1] , x ≥ 0.

And the tail distribution is: Gq(x) = q[x+1] , x ≥ 0

Example 0.4.13. Shifted geometric distribution: Let x0 ∈ R then we have the prob-

ability measure is: µq, x0 =
∑
k≥0

p · qk · εk−x0 . Therefore the distribution function is:

Gq, x0 = Gq(x− x0) =

[x−x0]∑
k=0

p · qk · εk−x0 = 1− q[x−x0+1], x ≥ x0

And the tail is: Gq, x0 = Gq(x− x0) = q[x−x0+1], x ≥ x0

Example 0.4.14. Re-scaled geometric distribution: Let p, q be as above, then we

have µq, τ =
∑
k≥0

pqkεkτ , τ > 0 fixed, x > 0.

The distribution function is: Gq,τ (x) =
[x
τ
]∑

k=0

pqk · εkτ = Gq(
x
τ
) = 1− q[1+x

τ
] , x > 0.

And the tail distribution is: Gq, τ (x) = q[1+x
τ
] , x > 0

Example 0.4.15. Shifted re-scaled geometric distribution: Let τ be fixed. Then we

have µq, τ, x0 =
∑
k≥0

pqk · εkτ−x0 . Then

the distribution function is : Gq, τ, x0(x) = 1− q[
x−x0

τ
], x ≥ x0, τ > 0

And the tail distribution is : Gq, τ, x0(x) = q[
x−x0

τ
], x ≥ x0

Example 0.4.16. Some times a re-parameterization of the geometric distribution is
useful: Take γ < 0, q = eγ, (γ = log q). Then

the distribution function is: Geγ (x) =
[x]∑

k=0

(1− eγ) · ekγ = 1− e−γ[x+1].

If we take γ > 0, q = e−γ hence we obtain
the distribution function Ge−γ ,τ (x) = 1− e−γ(1+[x

τ
]), x > 0.

And the tail distribution is: Ge−γ , τ (x) = e−γ·(1+[x
τ
]), x > 0,

and in particular if τ = 1 we have

Ge−γ , 1(x) = e−γ·[1+x]

Example 0.4.17. Discrete Pareto distribution : We define a discrete version of 0.4.4
where the function in the exponent is constant between lattice points.
The distribution function is: DPα, 1(x) = 1− e−α·[log x] , x ≥ 1
And the tail: DPα, 1(x) = e−α·[log x] , x ≥ 1
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More generally we have the following Pareto distribution:

Example 0.4.18. The distribution function is:

DPα, β, x0(x) = 1− e−α·[log β+log(x−x0
β

)], β(x− x0

β
) ≥ 1 ⇐⇒ x ≥ 1+x0

β
.

And the tail: DPα, β, x0(x) = e−α·[log β+log(x−x0
β

)], β · (x− x0

β
) ≥ 1 ⇐⇒ x ≥ 1+x0

β
.

In particular

Example 0.4.19. Shifted discrete Pareto distribution : Let c ∈ R. Then we have

the distribution function is: DPα, c(x) = 1− β−αe−α·[log(x+c)], x+ c ≥ β.
And the tail is: DPα,c(x) = β−αe−α·[log(x+c)]

Example 0.4.20. Re-scaled discrete Pareto distribution.

The distribution function is: DPα, 1(
x
β
) = 1− e−α·[log x

β
] , x ≥ β.

And the tail is: DPα, 1(x) = e−α·[log x
β

] , x ≥ β.



Chapter 1

(Semi-) stability of residual life

time (R.L.T.) distributions in the

one dimensional case

1.1 The lack of the memory property (L.M.P.)

It is convenient to describe the lack of memory property (L.M.P.) of a random variable
or of its distribution in terms of residual life time. Firstly, in this situation we know,
the classical version of the (L.M.P.) of the exponential distribution, described by
Galambos [8]. In this section we formulate the general definition of the L.M.P. for
R.L.T. distributions, which will be important in the sequel, to characterize the (semi-)
stability of the limit laws, and we begin with the following definition:

The classical case of the lack of memory property

Definition 1.1.1. We say that the probability measure µ possesses the lack of memory
property for R.L.T. if

µ(x+ t,∞)/µ(t,∞) = µ(x,∞), x ≥ 0, t > 0, µ(t,∞) > 0. (1.1.1)

Equivalently: Let F be the distribution function, with the tail function R. Then we
say that F possesses the lack of memory property if

R(x+ t)/R(t) = R(x), x ≥ 0, t ≥ 0, R(t) > 0 (1.1.2)

(See Galambos[8]).
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Definition 1.1.2. For a distribution function F with the tail R, we define

LM(F ) := {t : (1.1.2) holds} (1.1.3)

to be the set of all points t which satisfies the L.M.P. with respect to the distribution
function F

Example 1.1.3. In example 0.4.1 we obtain

Eα(x+ t)/Eα(t) = e−α(x+t)/e−αt = e−αx = Eα(x),∀x ≥ 0.

Hence the exponential distribution possesses the L.M.P., that is, LM(Eα) = R+.

Example 1.1.4. In example 0.4.2 we obtain

Eα,x0(x+ t)/Eα,x0(t) = e−α(x−x0+t)/e−α(t−x0) = e−αx 6= Eα,x0(x)

∀x ≥ x0, α > 0, t ≥ 0. Hence the shifted exponential distribution does not possess
the L.M.P. And we write

LM(Eα,x0) = ∅.
On the other hand, these distributions satisfy a similar equation

R(γ(t)(x)) = c(t) ·R(x) (1.1.4)

withR(x) = Eα,x0(x), for some γ(t) ∈ Aff+
0 (R, 1), and for some function c : R+ → [0, 1].

In fact, for this example. Put γ(t) : x 7→ x+ t then

R(γ(t)(x)) = e−αt ·R(x), t > 0, x ≥ x0

Note that, if R(0) = 1, then c(t) = R(γ(t)(0)). This will be important in the sequence.

Example 1.1.5. In example 0.4.4 similarly we obtain that the standard Pareto distri-
bution does not possess the L.M.P. But this distribution satisfies an equation similar
to (1.1.4). Examples 0.4.4 - 0.4.20 can be treated in a similar way. For this reason
the equation (1.1.4) will be studied in the next sections.

Definition 1.1.6. Let µ ∈M1(R+) with distribution function F and tail function R.
Let (γ(t))t∈R be a continuous one parameter group in Aff+

0 (R, 1) (see remark 0.1.16)
and γ ∈ Aff+

0 (R, 1) with γn(x) → ∞, as n → ∞ for x > 0. Then µ (resp. F resp.
R) is called R.L.T. stable w.r.t. γ(·) if

R(γ(t)(x))

R(γ(t)(0))
= R(x), x ≥ 0, t ≥ 0 (1.1.5)

Analogously, µ (resp. F , resp. R) is called R.L.T. semi-stable w.r.t. γ(·) if

R(γ(x))

R(γ(0))
= R(x), x ≥ 0 (1.1.6)
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The general case of the lack of memory property 1.1.6 may be considered as
a generalization of the L.M.P:

Definition 1.1.7. A further generalization of the lack of memory property: We say
that the probability µ (resp. the distribution function F ) possesses the generalized
L.M.P. if there exist a path γ : t 7−→ γ(t) ∈ Aff+

0 (R, 1), γ(t)(x) = a(t) · x+ b(t) such
that γ(t)(x) > x that is x ≥ x0, γ(t) ↗∞, and in addition

R(γ(t)(x))/R(γ(t)(0)) = R(x) (1.1.7)

for all x ≥ 0 and all t ≥ 0 with R(γ(t)(0)) > 0. We do not assume that γ(·) is a
semigroup. Hence equation (1.1.4) holds for some c(t) > 0.

If x = x0, R(x0) > 0 such that γ(t)(x0)
t→∞−→ ∞ then we have

R(γ(t)(x0)) = c(t) ·R(x0), t > 0 (1.1.8)

Remark 1.1.8. For a distribution µ (resp. F ) which possesses the generalized L.M.P.
(i.e. if (1.1.7) holds), i.e. µ is R.L.T. stable (in short, R.L.T.stable ). Then, for a

fixed x0 such that γ(t)(x0)
t→∞−→ ∞ we observe:

Put y := γ(t)(x0) in (1.1.8) then we have

R(y) = c(t) ·R(x0) = c(t(y)) ·R(x0). (1.1.9)

with t = t(y) = f−1(y), where f denotes f : t 7→ γ(t)(x0). Hence R (resp. F ) is
uniquely determined by γ(·) and c(·)

1.2 (Semi-) stable R.L.T. distributions

Stable R.L.T. distributions: We called in Definition 1.1.6 distributions which possess
the generalized L.M.P. (1.1.5) R.L.T. stable.

Example 1.2.1. Consider the distribution obtained by using the re-scaled Pareto
distribution in example 0.4.7. In particular the case at x0 = 0 in notation 0.4.8. We
have

Pα,0(x) = (1 + x)−α, x ≥ 0, α > 0 (1.2.1)

Claim: The Pareto distribution is R.L.T. stable. Indeed, we have

Pα,0(x+ t) = (1 + x+ t)−α. (1.2.2)

At the same time

Pα,0(x) · Pα,0(t) = (1 + x)−α · (1 + t)−α = (1 + t+ x+ xt)−α. (1.2.3)
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Hence we can define affine transformations

Γ(t) : x→ t+ x+ xt = (1 + t)x+ t (1.2.4)

with a(t) = 1 + t, b(t) = t, then

Pα,0(Γ(t)(x)) = Pα,0(Γ(t)(0))Pα,0(x), x ≥ 0. (1.2.5)

And in the case of x0 = 1 with x ≥ 1, the same affine Γ(t)(x) will be taken to prove
the stability condition as above.

Remark 1.2.2. Another view of example 1.2.1: Instead of the relation
Pα,0(Γ(t)(x)) = Pα,0(Γ(t)(0))Pα,0(x) we can write the equivalent form

(Pα,0)Γ(t)(0)(Γ̃(t)(x)) = Pα,0(x) (1.2.6)

with Γ̃(t)(·) = Γ(t)(·)− Γ(t)(0). Now define the affine mappings

β(t) : x 7→ 1

1 + t
· x

with Γ̃(t) = β−1(t). Then we observe Γ(t)(0) = t. Therefore, for the Pareto distribu-
tions we have (Pα,0)t(β

−1(t)(x)) = (Pα,0)(x) which coincides with

(Pα,0)t(Γ̃(t)(x)) = Pα,0(x)

Notation 1.2.3. The distribution in the above example does not possess the L.M.P.
but it is R.L.T. stable. The other examples have similar properties. Hence, we can
say that, the L.M.P. is not suitable to characterize R.L.T. stability. That is the
reason why R.L.T. stability is defined. At the same time we obtain a generalization
of the stability condition, to cover and characterize all R.L.T. limit distributions.
Now similar to Prop. 0.3.4 (in particular for the discrete case distribution) we have:

Proposition 1.2.4. Let Γk be affine Γk : x 7→ ak · x+ bk, x ≥ 0, ak > 0, such that
Γk ∈ Aff+

0 (R, 1) (i.e. Γk(x) > x for all x > 0 and Γk(x) ↗∞) then

R(Γk(x)) = ck ·R(x) ⇐⇒ RΓk(0)(Γ̃k(x)) = R(x)

where Γ̃k(x) = Γk(x)− Γk(0)
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Proof. Define Γ̃k(x) := Γk(x)− bk = ak · x, x ≥ 0, ak > 0. Then we have

RΓk(0)(Γ̃k(x)) = R(x) ⇐⇒ R(Γ̃k(x) + Γk(0))

R(Γk(0))
= R(x)

⇐⇒ R(Γ̃k(x) + bk)

R(Γk(0))
= R(x)

⇐⇒ R(Γk(x))

R(Γk(0))
= R(x)

⇐⇒ R(Γk(x)) = R(Γk(0)) ·R(x)

⇐⇒ R(Γk(x)) = ck ·R(x), ck := R(Γk(0)), x ≥ 0.

(Semi-)stable R.L.T. distributions: We defined in 1.1.6 the R.L.T. semi-stability
distributions as: Let µ be a probability distribution, then µ is said to be R.L.T.
semi-stable if there exist affine mappings Γk : x 7−→ Γk(x) defined by
Γk(x) = ak · x+ bk = Γk(x) with Γk(x) ≥ x ∀ x ≥ 0, k ∈ N and in addition

R(Γk(x)) = ck ·R(x), x ≥ 0 (1.2.7)

Similar to the continuous Pareto distribution 1.2.1 we verify the R.L.T. semi-stability
for discrete Pareto distributions 0.4.17

Example 1.2.5. Put (as in 0.4.17)
DPα, 1(x) = e−α·[log x] =: q[log x], x ≥ 1 (with q = e−α).
Define γk : x 7→ ek · x. Then for x ≥ 1 we have

R(γk(x)) = q[log(ekx)] = q[k+log x] = q[log x] · qk, k ∈ Z+.

(Note that qk = R(γk(1))). Hence DPα, 1 is R.L.T. semi-stable. Note that γk = γk

with γ = γ1.
Now, we will prove that the set of distributions satisfying the generalized L.M.P.

is closed, that is, the limit law is also characterized by a functional equation, and
hence satisfies the condition of the (semi-) stability (resp. the general L.M.P. )

Proposition 1.2.6. Let Fn be R.L.T. stable continuous distribution functions with
tailsRn such thatRn(0) = 1, andRn(γn(t)(x)) = cn(t) ·Rn(x) ∀x, t, ∀ n with γn(·) ∈ Aff0(R),

and cn : R+ 7→ [0, 1]. Assume that Fn
w−→ F 6≡ 1. Then

γn(·) n→∞−→ γ(·), cn(·) n→∞−→ c∞(·), and if c∞ 6≡ 0, 1, F is R.L.T. stable,
i.e. F (γ(t)(x)) = c∞(t) · F (x)
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Proof. Assume x = 0 is a continuity point of F , then, with γn : x 7→ anx+ bn

Rn(γn(t)(0)) = cn(t) =⇒ Rn(bn(t)) = cn(t), 0 ≤ cn(·) ≤ 1

For fixed t there exist a subsequence (n′) of (n) such that

cn(t)
n′→∞−→ c∞(t) ∈ [0, 1].

If inf
n
cn(t0) > 0 for some t0 > 0. Then we can apply the convergence of types (Prop.

0.2.3). Since c∞(t) 6= 0, we have {γn(t)} is relatively compact, then there exist a
subsequence (ñ) of (n′) such that

γn(t)
ñ→∞−→ γ̃(t)(x) = ã(t) · x+ b̃(t).

In fact, since γn ∈ Aff0(R), (ñ) = N, and hence (n′) = N. Therefore

cn(t) ·Rn(x) = Rn(γn(t)(x))
n→∞−→ R(γ̃(t)(x))

weakly, and therefore R(γ̃(t)(x)) = c∞(t) ·R(x). We have

• If c∞(t) = 1 =⇒ R(γ̃(t)(x)) = R(x) ∀ x therefore γ̃(t)(x) = id ∀ x, a contradic-
tion to R(γ̃(t)(x)) = c(t) ·R(x) for all continuity points x, x ≥ 0, ∀ t.

Hence the limit laws fulfil the functional equation for all continuity points. Since R
is right continuous, this relation holds true for all x. And then we have t 7→ c(t) is a
continuous homomorphism, whence c(t) = ct, c = c(1).

1.3 Limit laws: characterization by ”stability func-

tional equations”

In this section we find that R.L.T. limit laws satisfy a functional equation which turns
out to be the condition of R.L.T. stability (semi-stability). Functional equation of
the R.L.T. semi-stability will be solved in the next section in its general form, in
both, continuous and discrete cases, in order to find the possible limit distributions
of R.L.T. (We follow here the investigations of Balkema, de Haan [1]).

Notation 1.3.1. Let X be a random variable, let µ (resp. F ) denote the correspond-
ing distribution (resp. distribution function), and let R denote the tail. Assume that
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Γ(t) ∈ Aff+
0 (R, 1) , Γ(t)(x)

t→∞−→ ∞.
Assume further

Rt(Γ̃(t)(x)) =
R(Γ̃(t)(x) + t)

R(t)
=
R(Γ(t)(x))

R(t)

t→∞−→ S(x)

for all continuity points x of S(x) such that S(x) < 1 where 1− S is a non-

degenerate distribution function, and Γ̃(t)(x) be as in proposition 0.3.4.

Lemma 1.3.2. There exist a function Y 3 y 7→ Γ(y) ∈ Aff+
0 (R, 1) such that

S(Γ(y)(x)) = S(y) · S(x) (1.3.1)

∀ x, y ∈ Y , where Y denotes the set of all continuity points of S(x) such that
S(x) < 1

Proof. Assume (as in the above notation) that,

R(Γ(t)(x))

R(t)
=
R(a(t) · x+ b(t))

R(t)

t→∞−→ S(x) (1.3.2)

for all x ∈ Y , x ≥ 0.

Let Y 3 y ≥ 0, put t := Γ(s)(y) = a(s) · y + b(s) for all y ∈ Y , s > 0 with

Γ(s)(y)
s→∞−→ ∞ then we obtain in (1.3.2)

R(a(Γ(s)(y)) · x+ b(Γ(s)(y)))

R(Γ(s)(y))

s→∞−→ S(x) (1.3.3)

Therefore

R(a(Γ(s)(y)) · x+ b(Γ(s)(y)))

R(Γ(s)(y))
· R(Γ(s)(y))

R(s)

s→∞−→ S(x) · S(y) (1.3.4)

for all Y 3 x, y ≥ 0.

The left hand side is equal

R(a(Γ(s)(y)) · x+ b(Γ(s)(y)))

R(s)
=

R(a(s) · (a(Γ(s)(y))·x+b(Γ(s)(y))−b(s)
a(s)

) + b(s))

R(s)

with

(a(Γ(s)(y))·x+b(Γ(s)(y))−b(s)
a(s)

) = a(Γ(s)(y))
a(s)

· x+ b(Γ(s)(y))−b(s)
a(s)

= Γ−1(s)(Γ(Γ(s)(y))(x)).
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(note that a(Γ(s)(y))
a(s)

s→∞−→ A(y) and b(Γ(s)(y))−b(s)
a(s)

s→∞−→ B(y)). Hence we obtain in
1.3.4

R(a(Γ(s)(y)) · x+ b(Γ(s)(y)))

R(Γ(s)(y))
· R(Γ(s)(y))

R(s)

s→∞−→ S(Γ(y)(x)). (1.3.5)

where Γ(y)(x) = A(y) · x+B(y).
Applying C.T.T. to (1.3.4) and (1.3.5) we obtain

S(Γ(y)(x)) = S(y) · S(x)

for all points x, y ∈ Y , x, y ≥ 0. Hence the assertion follows.

Remark 1.3.3. Assume S(0) = 1 and 0 ∈ Y. Then

Rt(Γ̃(t)(x))
w−→ S(x) implies that there exists a function s 7→ γ(s) ∈ Aff+

0 (R, 1),
hence γ(s)(x) →∞ for all x > 0 as s→∞ and

R(γ(s)(x))

R(γ(s)(0))

w−→ S(x) (for s→∞) (1.3.6)

Proof. With the notation of the proof of lemma 1.3.2 we have for y = 0

1. R(Γ(Γ(s)(0))(x))
R(Γ(s)(0))

w−→ S(x). Then for x = 0 we have

2. R(Γ(Γ(s)(0))(0))
R(Γ(s)(0))

w−→ S(0) = 1

Whence we have R(γ(s)(x))
R(γ(s)(0))

w−→ S(x) with γ(s) = Γ(Γ(s)(0)).

1.4 Solutions of the stability functional equation

Here we solve a general functional equation, special cases of which appeared in the
preceding sections.

Let Λ : R 7−→ R be a non constant decreasing right continuous function. Let
{γ(t)}t∈T ⊆ Aff+

0 (R, 1) be a semigroup of affine transformations. Let

T =

R+ in the continuous case,

Z+ in the discrete case

We always assume γ(t)(0) ≥ 0. Assume

Λ(γ(t)(x)) = c(t) · Λ(x) (1.4.1)

∀ x ∈ R+, t ∈ T where c(t) ≥ 0.
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SOLUTION Since t 7→ γ(t) is a homomorphism, we obtain immediately that
t 7→ c(t) is a homomorphism (T,+) −→ ([0, 1], ·). If t 7→ γ(t) is continuous, we obtain
that t 7→ c(t) is continuous.
In the discrete case, we obtain c(t) = (c(1))t = qt := e−βt (q = e−β resp. β =
− log c(1) ≥ 0), t ∈ Z+. The trivial cases c(·) ≡ 0, c(·) ≡ 1 are excluded in the
sequel.
In the continuous case we obtain the solution c(t) = e−βt = qt, t ∈ R+. According to
the structure of affine semigroups obtained in section 0.1 we have the following two
cases:

Case(1) (Q = 0), γ(t)(x) = x+ t · α

Case(2) (Q 6= 0), γ(t)(x) = etQ(x− x?) + x?.

Note that in case (2): x? < 0 ⇐⇒ Q > 0, and x? > 0 ⇐⇒ Q < 0. See prop. 0.1.12.
Hence the functional equation 1.4.1 can be formulated as:

Case(1) Λ(x+ t · α) = e−βt · Λ(x)

Case(2) Λ(etQ · (x− x?) + x?) = e−βt · Λ(x)

The solution in the continuous case (T = R+):

A1) According to case(1) we have γ(t)(x) = x+ t · α.
Put x = 0, Λ(0) =: c. Therefore we obtain

Λ(t · α) = e−β·t · Λ(0) = c · e−β·t. (1.4.2)

Hence we obtain
Λ(z) = c · e−

β
α
·z, z ≥ 0 (1.4.3)

where z := t · α = γ(t)(0) and Λ(t · α) = Λ(γ(t)(0)) = c · e−β·t. (In particular Λ
is continuous on R+.)

A2) According to case(2), it is more convenient to use multiplicative parameteriza-
tion (in Remark 0.1.10). Therefore

Λ(uQ(x− x?) + x?) = u−β · Λ(x), u = et ≥ 1.

For x = 0, Λ(0) =: c we obtain again :

Λ((uQ − 1)(−x?)) = u−β · c , u ≥ 1.
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• The case Q > 0 : (i.e. x? � 0). −x? =| x? |=: d this yields

Λ(d · (uQ − 1)) = u−β · c, (c > 0, d ≥ 0) (1.4.4)

Put z = d · (uQ − 1) ≥ 0 hence u = (1 + z
d
)

1
Q . And the solution of the func-

tional equation (using 1.4.4) obtains the form

Λ(z) = c · (1 +
z

d
)
−β
Q , z ≥ 0. (1.4.5)

With C = c
β
Q , D = c

β
Q

d
, γ = β

Q
we have

Λ(z) = (C +D · z)−γ. (1.4.6)

• The case Q < 0 (i.e. x? > 0), c, d as above. We obtain analogously with
d = x? ≥ 0

Λ(d · (1− uQ)) = u−β · c (1.4.7)

Put z = d · (1− uQ), 0 ≤ z ≤ d for u ≥ 1 then we have

u = (1− z

d
)

1
Q , 0 ≤ z ≤ d.

Hence we obtain (using 1.4.7)

Λ(z) = c · (1− z

d
)
−β
Q = (C −D · z)−γ (1.4.8)

With C, D, γ as above.

• Now we treat the case x? = 0: We have
γ(t)(x) = etQ · x =⇒ Λ(etQ · x) = e−tβ · Λ(x).
For x = 1, Λ(1) =: c we obtain Λ(etQ) = e−tβ · c.
Put z = etQ hence et = z

1
Q , and therefore we obtain

Λ(z) = z
−β
Q · c, z ≥ 1 (1.4.9)

The solution in the discrete case (T = Z+):

A3) According to case(1) we have γ(t)(x) = x+ tα, t ∈ Z+ therefore

Λ(z) = c · e
−β
α

.z (1.4.10)

as before with c = Λ(0), z = α · t = γ(t)(0) ∈ Z+ · α.
Put T (x) := Λ(x), 0 ≤ x < α, q := e

−β
α . Then we obtain the solution

Λ(z) = c · qk · T (x) (1.4.11)

if k · α ≤ z < (k + 1) · α, x := z − k · α. For later use, note that t · α = γ(t)(0),
t ∈ Z+, hence

Λ(z) = c · qk · T (x) (1.4.12)

if γ(k)(0) ≤ z < γ(k + 1)(0), x := z − γ(k)(0)
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Properties of the function T : T ↘, T (0) = Λ(0) w.l.o.g.= 1, T (α−) ≥ c · q
(equivalently, T ↘, T (α−) = Λ(α−) ≥ Λ(0) · q)

A4) According to case(2), t ∈ Z+. As before we obtain with γ(1) =: R > 1, R = eQ :
Λ(Rk(x− x?) + x?) = e−βkΛ(x). Put x = 0, c = Λ(0),

z =| x? | (Rk − 1) =| x? | (ekQ − 1). Here ekQ = 1 + z
|x?| and e−k = (1 + z

|x?|)
−1
Q .

Therefore, for this discrete set of z’s we have

Λ(z) = c · (1 +
z

| x? |
)
−β
Q (1.4.13)

Put for short vk = γ(k)(0) =| x? | (Rk − 1) =| x? | (ekQ − 1), k ∈ Z+.
For z ≥ 0 ∃k = k(z) ∈ Z+ such that z = γ(k)(x), 0 ≤ x < γ(1)(0),
i.e. vk ≤ z < vk+1 with

z = γ(k)(x) = ekQ(x− x?) + x?

= ekQ · x+ | x? | (ekQ − 1)

= ekQ · x+ vk.

Hence x = (z−vk)
ekQ = x(z) = z−vk

Rk .
Put again T (x) := Λ(x), 0 ≤ x < γ(1)(0). Then we obtain the solution

Λ(z) = c · (1 +
vk

| x? |
)−

β
Q · T (x), (1.4.14)

k = k(z), x = x(z) where T ↘, T (0) = 1, T (γ(1)(0)−) ≥ c · (1 + v1

|x?|)
−β
Q .

A5) In case(2) if Q < 0, x? > 0, this case is omitted because it is of no importance
in the sequel.

A6) In case(2) if Q > 0, x? = 0 we have:
γ(k)(x) = Rk · x, R = eQ. Put e.g. x = 1, Λ(1) := c. Hence

Λ(γ(k)(1)) = Λ(Rk) = c · e−kβ

for z ≥ 0, γ(k)(1) = Rk ≤ z < Rk+1 = γ(k + 1)(1). Then
z = γ(k)(x), 1 ≤ x < R (i.e. x = x(z) = z

Rk , k = k(z) ∈ Z+). Put T (x) = Λ(x),
1 ≤ x < R. Then we obtain for z ≥ 1 :

Λ(z) = Λ(γ(k)(x)) = c(k) · Λ(x) (1.4.15)

Hence
Λ(z) = e−kβ · T (x) = qk · T (x) (1.4.16)

with k = k(z) = [ log z
Q

] and x = x(z) = z
Rk , q = e−β.
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Remark 1.4.1. Conversely, as easily seen, all functions obtained in the above cases
in equations 1.4.3, 1.4.5, 1.4.8, and 1.4.9 are solutions of the functional equation in
the continuous case. And in the discrete case, as easily seen in 1.4.12, 1.4.13, 1.4.14,
and 1.4.16 we obtain solutions for any fixed function T . The solution is uniquely
determined only if we assume T in addition to be constant ≡ 1.

Remark 1.4.2. In most cases we considered solutions of the functional equation to
be valid for x ≥ 0 (resp. x ≥ 1). Same arguments allows to consider also solutions
of Λ(γ(t)(x)) = c(t) · Λ(x), for t ≥ 0 and x ≥ x0, for some x0.

In fact, in the continuous case solution, define t0 by x0 = γ(t0)(0).
Put Λ?(x) := Λ(γ(t0)(x)) =: Λ(y), x ≥ 0 =⇒ y ≥ x0. Then Λ? fulfils the equation

Λ?(γ(t)(x)) = c(t) · Λ?(x), for t ≥ 0, x ≥ 0 (1.4.17)

Similarly in the discrete case: Assume x0 = γ(k0)(0) then define Λ? as before. Or for
γ(k0 − 1)(0) < x0 < γ(k0)(0), then define Λ?(x) := Λ(γ(k0)(x)), x ≥ 0, y > x0 with

Λ?(γ(k)(x)) = c(k) · Λ?(x), x ≥ 0, k ≥ 0

Remark 1.4.3. If Λ is the solution of the functional equation, and if we look for
solutions (for sufficiently large x ) which are tail functions, we have to replace Λ by

Λ̃ = min(1,Λ). Hence, if Λ fulfils the equation for all x ≥ 0, Λ̃ fulfils the equation for
all x ≥ x0, where x0 is defined by Λ(x0) = 1 in the continuous case (resp. Λ(x0) ≤ 1
in the discrete case).

Theorem 1.4.4. The probability distributions, with tail function R such that
0 < R(x) < 1 for all x > 0 following a R.L.T. stability functional equation are

1. Exponential distributions

2. Pareto distributions

3. Generalized geometric distributions

4. Generalized discrete Pareto distribution

and suitable shifted versions of (1)–(4).

Proof. The continuous case:

1) The case Q = 0. We obtain in A1) equation 1.4.3 the solution

Λ(z) = c · e−β
α
·z, z ≥ 0 with c = Λ(0).

2) The case Q > 0, x? < 0. We obtain in A2), in particular if c := Λ(0) = 1 the
following:
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a) Λ(z) = (1 + z
d
)
−β
Q , z ≥ 0 (equation 1.4.5)

b) Λ(z) = (1− z
d
)
−β
Q , 0 ≤ z ≤ d (equation 1.4.8)

c) Λ(z) = z
−β
Q · c, z ≥ 1 (equation 1.4.9).

3) We obtain in (A2), case Q > 0, x? = 0. In particular if c := Λ(1) = 1 :

Λ(z) =

z−γ z ≥ 1

1 z < 1.
.

Hence we obtain the following tail functions

• In step (1) the tail function of E β
α

if (c = 1), see example 0.4.1.

• In step (2): a) and c) the tail functions of a Pareto distribution which is inves-
tigated by using the re-scaled version, see notation 0.4.8.

• In step (3) the tail function of a shifted Pareto distribution, see notation 0.4.6.

Notation 1.4.5. Note that we obtain in step (2):b), (and in addition to the Pareto
distribution), the tail of a bounded distribution B β

Q
, see example 0.4.11, which are of

no importance in the sequel.

The discrete case:

4) We obtain In A3) (using equation 1.4.12), in particular if c=1: Λ(z) = qk · T (x).
Hence Λ(z) = qt · T (x). Hence we obtain the tail of a generalized discrete Pareto
distribution, see example 0.4.17.

5) We obtain in A4) (using equation 1.4.14), in particular if c=1:

Λ(z) = (1 + vk

|x?|)
− β

Q · T (x). Hence we obtain the tail function of a generalized

shifted discrete Pareto distribution, see example 0.4.19.

6) The case Q > 0, x? = 0. We obtain in A6) equation 1.4.16
Λ(z) = e−kβ · T (x) = qk · T (x). Hence we obtain the tail of a generalized geo-
metric distribution, see example 0.4.14

Notation 1.4.6. The case Q < 0, x? > 0 is omitted because it is of no importance in
the sequel.
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1.5 The decomposability semigroups of R.L.T. dis-

tributions

Here we introduce a concept which has been successfully used for investigations in
(operator) semi-stability of vector space – and group– valued random variables.
We give a general definition which will be useful for vector spaces (in chapter 2). For
d = 1 it turns out that the objects a quite simple.

Definition 1.5.1. Let R be a non-degenerate tail function and x0 = x0(R) ≥ 0. We
define the R.L.T. decomposability semigroup
Dec(R) := {γ ∈ Aff+

0 (R, 1) : γ = γa,b with a ≥ 1, b ≥ 0, such that R(γ(x)) = c(γ) ·R(x)
for all x ≥ x0, c = c(γ) ∈ (0, 1]}.

Remark 1.5.2. Note that with the notations 0.1.16 in 0.1
Dec(R) ⊆ {{id}∪Aff+

0 (R, 1)}. The assumption γ = γa,b ∈ Dec(R) implies that either
γ = γ1,0 = id, or γ is a shift, γ = γ1,b , b > 0 or γ has a fixed point x? ≤ 0 with
γ(x) = a · (x− x?) + x? = a · x+ (a− 1)(−x?), hence b = (a− 1)(−x?) ≥ 0.
In particular, γ is (strictly) increasing on R+ hence γ(x) ≥ x0 for all x ≥ x0. Obviously
we have

Proposition 1.5.3. Dec(R) is a closed subsemigroup of Aff+
0 (R, 1) and γ 7→ c(γ) is

a continuous homomorphism c : Dec(R) → ((0, 1], ·)

Proof. Let γ, γ̃ ∈ Dec(R). According to the remark 1.5.2 we have

R((γ ◦ γ̃)(x)) = c(γ) ·R(γ̃(x))

= c(γ)c(γ̃) ·R(x)

for x ≥ x0 (hence γ̃(x) ≥ x0). Hence γ 7→ c(γ) is a homomorphism. Let x ≥ x0 with
R(x) > 0 such that γ(x) is a continuity point of R. Then R(γ(n)(x)) → R(γ(x)) hence
c(γ(n))R(x) → c(γ)R(x) whence c(γ(n)) → c(γ) follows.

Moreover we have

Proposition 1.5.4. c : Dec(R) → (0, 1] is a closed map if R is non-degenerate

Proof. Let {αn} ⊆ im(c), i.e. αn = c(γn) with γn ∈ Dec(R), 0 < αn ≤ 1 and assume

further αn → α ∈ (0, 1]. If x0 > 0 replace R by R̃ such that

R̃(x) :=

R(x) x ≥ x0

1 x < x0
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Then we have R(γn(x)) = αn ·R(x) −→ α ·R(x), x > x0. On the other hand

R̃(γn(x)) =

R(γn(x)) γn(x) > x0 ⇐⇒ x > γ−1
n (x0)

1 x ≤ γ−1
n (x0)

If we define

S(x) :=

α ·R(x) x > x0

1 x ≤ x0

we obtain R̃(γn(·)) w−→ S, whence by the convergence of types theorem we have

(γn) is relatively compact, in fact γn → γ follows, and moreover R̃(γ(x)) = α · R̃(x).
Whence R(γ(x)) = α · R(x). Therefore, γ ∈ Dec(R) with c(γ) = α. Thus im(c) is
closed in (0, 1]

In analogy to investigations of semi-stable laws on vectors spaces and groups, we
define the invariance group. Note that this definition appears at first complicated,
due to the fact that Dec(R) is only a semi group. (See also 1.5.5 below )

Definition 1.5.5. Let R, x0 as above.
Inv(R) := {γ ∈ Aff0(R), γ ↗ : ∃ xγ ≥ x0 such that R(γ(x)) = R(x), x ≥ xγ}.
Inv(R) is called the invariance group of R.

Proposition 1.5.6. For d = 1 and for a non-degenerate tail function R with
xγ > x0, and R(xγ) > 0 we obtain: Inv(R) = {id} = {γ : R(γ(x)) = R(x), x ≥ x0}

Proof. We assume γ ∈ Aff+
0 (R, 1), hence γ ↗, i.e.γ := γa,b : x 7→ ax+ b with a > 0.

• Assume first a ≥ 1, b ≥ 0, γ 6= id such that γn(x) ↗∞ for x ≥ 0. Hence

R(x) = R(γn(x))
n→∞−→ 0 for all sufficiently large x, (i.e. for x ≥ xγ, with

γn(x) ≥ xγ for all large n ∈ N). Hence R(x) = 0, a contradiction.

• If a = 1, b < 0. Then γn(x) → −∞ and we obtain R(x) = R(x−nb) ≥ R(xγ +b)
for all large x and n ∈ N, such that x− (n+ 1)b ≤ xγ < x− nb.
I.e. 0 = lim

x→∞
R(x) = lim

n→∞
R(γn(x)) ≥ R(xγ) > 0, a contradiction.

• If 0 < a < 1, γ(x) = a(x − x?) + x?, we obtain γn(x) → x?. Therefore, for all
large x > xγ, n ∈ N with γn+1(x) ≤ xγ < γn(x) we have R(x) = R(γn(x)).
Whence again lim

y→∞
R(y) > 0, a contradiction.

Thus we have proved: Inv(R) = {id} = {γ1,0}
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Remark 1.5.7. Evenly the assumption R(x) > 0 for all x would not be a seri-
ous restriction: Assume there exists γ ∈ Dec(R), γ 6= id, and assume furthermore;
R(x1) > 0 for some x1 > 0. Then R(x) > 0 on R+.

Proof. Obvious, since R(γn(x1)) = c(γ)nR(x1) > 0, and by assumption we have
γ ∈ Aff+

0 (R, 1), γn(x1) ↗∞. Hence R(x) > 0 for all x ≥ 0.

The next result explains the complicated definition of Inv(R) in 1.5.5 :

Proposition 1.5.8. The semigroup Dec(R) is embeddable into a group

D̃ec(R) ⊆ Aff+
0 (R, 1).

c extends to a continuous injective homomorphism, c̃ : D̃ec(R) → (R×
+, ·) with (triv-

ial) kernel ker(c) = Inv(R) = {id} or c ≡ 1 (if Dec(R) = Inv(R))

Proof. Let D̃ec(R) denote the subgroup generated by Dec(R). D̃ec(R) acts in a

suitable way on R: let γ, τ ∈ Dec(R) then γτ−1 ∈ D̃ec(R). And we obtain for x ≥ x0,
y = τ(x) ≥ τ(x0) that

R(y) = c(τ) ·R(x) = c(τ) ·R(τ−1(y))

Therefore for all sufficiently large y we have R(τ−1(y)) = 1
c(τ)

R(y) and τ−1(y) ≥ x0.

Whence R(γτ−1(y)) = c(γ)
c(τ)

·R(y) follows. Hence, put c̃(γτ−1) := c(γ)
c(τ)

we obtain

R(γτ−1(y)) = c̃(γτ−1) ·R(y).

Assume c(τ) = c(γ) =: z. Then, for all sufficiently large y, R(γτ−1(y)) = R(y), i.e.
γτ−1 ∈ Inv(R). But Inv(R) = {id}, whence γ = τ follows

Note that we have proved:

D̃ec(R) = {τγ−1 : τ, γ ∈ Dec(R)}
= Dec(R) ·Dec−1(R)

Therefore, the preceding results extend immediately to the group D̃ec(R) ⊆ Aff+
0 (R, 1)

Theorem 1.5.9. With the notations introduced above we have:

a) Dec(R) is a closed sub-semigroup of the closed subgroup D̃ec(R) ⊆ Aff+
0 (R, 1)

b) γ 7→ c̃(γ) is a continuous closed homomorphism D̃ec(R) −→ ((0,∞), ·)
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Remark 1.5.10. im(c̃) ∩ (0, 1] is a multiplicative semigroup of (0, 1], which is closed
since c is closed map. Therefore either

• im(c̃) = (0, 1] or

• im(c̃) = {qk : k ∈ Z+ for some 0 < q < 1} or

• im(c̃) = {1}

Therefore we obtain the following

Theorem 1.5.11. Let R be as above. Then either

a) im(c̃) = {1} (i.e. Dec(R) = {id} = Inv(R)) or

b) there exist γ ∈ Dec(R) such that Dec(R) = {γk : k ∈ Z+} or

c) there exists a continuous one-parameter group R 3 t 7→ γ(t) (w.l.o.g. additive

parameterization) such that D̃ec(R) = {γ(t) : t ∈ R}, Dec(R) = {γ(t) : t ≥ 0}
and c(γ(t)) = qt (= e−βt) for some q ∈ (0, 1), β = − log q > 0. W.l.o.g. we may
assume β = 1.

Proof. • In fact, if D̃ec(R) 6= {id}, then for any γ ∈ D̃ec(R) , c(γ) ∈ (0, 1). Obvi-

ously {γk} ⊆ D̃ec(R), c(γk) = c(γ)k.

• If im(c) = {qk : k ∈ Z+}, there exists γ ∈ D̃ec(R) with c̃(γ) = q. Now (b)
follows.

• If im(c) = (0, 1], γ 7→ c̃(γ) ∈ (0,∞) is a continuous homomorphism of the Lie

group D̃ec(R) onto ((0,∞), ·), D̃ec(R) is closed in Aff+
0 (R, 1), hence closed in

GL(R). Therefore D̃ec(R) has at most countably many connected components.
Therefore there exists a continuous homomorphism

((0,∞), ·) −→ D̃ec(R) : u 7→ γ̃(u)

such that c̃(γ̃(u)) = u, u > 0. Passing to additive parameterization,
γ(t) := γ̃(et), u = et, yields the assertion (for q = e−1). Now it is obvious that

γ(t)(x)
t→∞−→ ∞ for all x ≥ x0 (resp. ≥ 0) (since R(γ(t)(x)) = qt ·R(x)

t→∞−→ 0)

Corollary 1.5.12. Let R be as above. Let D ⊆ D̃ec(R), D 6= {id},

C := {c(γ) : γ ∈ D}

Then either
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a) the semigroup 〈C〉 generated by C is discrete {qk : k ∈ Z+}, then R is R.L.T.
semi-stable, with Dec(R) = {γk : k ∈ Z+} or

b) 〈C〉 is dense in (0, 1], then c(Dec(R)) = (0, 1] and there exists a one-parameter
group γ(·) such that (e.g. with additive parameterization) c(γ(t)) = qt , t ≥ 0.
I.e. in this case R is R.L.T. stable.

Theorem 1.5.13. The limit distributions which satisfy the limit relation in sec-
tion 1.3 are R.L.T.(semi-) stable, and hence belong to the class of distributions char-
acterized in section 1.4 (see1.4.4), i.e. they belong to (shifted) exponential distribu-
tions, (shifted) Pareto distributions, generalized geometric distributions or generalized
discrete Pareto distributions.

Proof. We obtained in 1.3 that for R.L.T. limit distributions we have affine
Γy ∈ Aff(R), y ∈ Y , such that

R(Γy(x)) = R(y) ·R(x), y ∈ Y , x ≥ 0.

In other words–with the notation of section 1.5–

D = (Γy : y ∈ Y ) ⊆ Dec(R) with c(Γy) = R(y)∀ y ∈ Y.

Therefore, either 〈R(y) : y ∈ Y 〉 is discrete, or dense in (0, 1], whence the assertion
follows by the preceding corollary 1.5.12.

1.6 Domains of attraction of stable R.L.T. distri-

butions

Definition 1.6.1. Let F,G be a non degenerate distribution functions, such that

Ft(Γ(t)(x))
t→∞−→ G(x) (1.6.1)

for all continuity points x of G(x), x ≥ 0, for some continuous function

Γ(t) : x 7→ Γ(t)(x) ∈ Aff+
0 (R, 1) of affine transformations such that Γ(t)(x)

t→∞−→ ∞,

∀x ≥ 0, and Γ̃(t)(x) be as in proposition 0.3.4. Then the set of all distribution
functions F which satisfy (1.6.1) is said to be the domain of R.L.T. attraction of G
and we write

(DOA)r(G) = {F : equation (1.6.1) holds} (1.6.2)

Equivalently, let R > 0 be the tail of F , L = 1−G be the tail of G then 1.6.1 is
equivalent to

R(Γ(t)(x))

R(t)

t→∞−→ L(x) (1.6.3)
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for all continuity points x of L. In this case we write

(DOA)r(L) = {R : equation (1.6.3) holds} (1.6.4)

More generally, we admit non-continuous Γ(·), with right and left limits such that for
all sequences tn →∞

R(Γ(tn+))/R(Γ(tn−))
n→∞−→ 1 (1.6.5)

The shape of the limit distributions :

Remark 1.6.2. From the solution of the functional equation 1.4.1 see 1.4, and the
descriptions of limit laws in 1.3, we have according to theorem 1.5.13, that the pos-
sible limit distribution G are R.L.T. stable (in short R.L.T. stable ), and hence are
solutions of the functional equation (1.4.1). Thus we know according to theorem
1.4.4, that G resp. L, has one of the following forms

1) Exponential Laws: L(x) = Eλ(x) = exp(−λx), x ≥ 0 for λ > 0
with γ(t) : x 7→ x+ t, c(t) = exp(−λt) (= L(Γ(t)(0)))

1a) Shifted exponential laws: L(x) = Eλ,x0(x) = exp(−λ(x− x0)), x ≥ x0

with γ(t) as in 1), c(t) = exp(−λt) (= L(Γ(t)(x0)))

2) Pareto distribution: L(x) = P λ(x) = (1 + κ · x)−λ, x ≥ 0
with γ(t) : x 7→ et(x+ κ−1)− κ−1, c(t) = e−λt (= L(Γ(t)(0))), and

2a) Shifted Pareto distribution: L(x) = P λ, x0(x) = (1 + κ(x− x0))
−λ, x ≥ x0

with γ(t) and c(t) are as in 2) with assumption that x− x0 = z

The domains of attraction of R.L.T. stable laws are non empty. First we show

Proposition 1.6.3. a) The definition of (DOA)r(L) (1.6.3) or (1.6.4) can be written
in the following equivalent form:

(DOA)r(L) = {R :
R(γ(t)(x))

R(γ(t)(0))

w−→ L(x)} (1.6.6)

where R is a tail and γ : R+ −→ Aff+
0 (R, 1) is a function, γ(t)(0)

t→∞−→ ∞, which
is continuous or at least fulfils (1.6.5) in definition 1.6.1

b) L is R.L.T. stable iff (DOA)r(L) 6= ∅

Proof. a) Assume R(Γ(t)(x))
R(t)

w−→ L(x). Assume for convenience that Γ(·) is continu-

ous. Then define s = s(t) such that Γ(s)(0) = t. With this notations (applying

remark 1.3.3) then equation (1.6.3) means that R(γ(t)(x))
R(γ(t)(0))

w−→ L(x).
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Conversely, assume (1.6.6) and assume again γ(·) to be continuous. Then define
s = s(t) such that γ(s(t))(0) = t. Put Γ(t) := γ(s(t)) to obtain

R(Γ(t)(x))

R(t)
=
R(γ(s(t))(x))

R(γ(s(t)(0)))

w−→ L(x).

If Γ(·) (resp. γ(·)) is not continuous but satisfies (1.6.5), it is easy to modify
the proof above.

b) Let L be a R.L.T. stable tail with continuous one-parameter groups γ(·) such that
L(γ(t)(x))
L(γ(t)(0))

= L(x). Then with R := L (1.6.6) is fulfilled , hence L ∈ (DOA)r(L).

Conversely, assume there exists R ∈ (DOA)r(L) satisfying (1.6.3). Then, as
already mentioned in 1.6.2 L is R.L.T. stable

Remark 1.6.4. For the R.L.T. stable tails L in 1.6.2 (1),(2) and the corresponding
one parameter groups γ(·) we have, as mentioned, c(t) = L(γ(t)(0)), and

L(γ(t)(x)) = c(t) · L(x) (1.6.7)

Put Γ(t) := γ(s(t)), Γ̃(t) : x 7→ Γ(t)(x)− t where for t > 0 we define s = s(t) such
that c(s(t)) = L(t). Then (1.6.7) yields L(Γ(t)(x)) = L(t) · L(x), i.e.

Lt(Γ̃(t)(x)) = L(x) (1.6.8)

And the converse is true too. Hence (1.6.7) and (1.6.8) are equivalent descriptions of
R.L.T. stability. More precise, Eλ ∈ (DOA)r(Eλ), and Pλ ∈ (DOA)r(Pλ) (i.e. both
of the (DOA)r(Eλ) and (DOA)r(Pλ) are not empty).

Remark 1.6.5. Max-stable distributions on R were investigated for the first time by
Gnedenko [9]. For a recent survey on extreme value theory see Galambos [8]. There
exist three types of max-stable distribution functions Φα, Λ, Ψα, where Φα and Ψα,
(α > 0) are concentrated on R+, R− respectively:

Φα(x) = exp(−(x−α)), x > 0

(Ψα is not important in the sequel), and

Λα(x) = exp(−α · exp(−x)), x ∈ R, for α > 0.

In particular, Λ = Λ1 = exp(− exp(−x)). We obtain

− log Φα(x) |R+= x−α · 1[1,∞)(x)
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and
− log Λ(x) |R+= exp(−x)

are the tails of the Pareto and of an exponential distribution respectively, see remark
1.4.2 both R.L.T. stable distributions.

Let F denote the distribution function of a max-stable law. Then we denote by
(DOA)m(F ), the domain of max-stable attraction of F . We obtain for the domains
of attractions of R.L.T. stable resp. of max-stable laws:

Theorem 1.6.6. Let F be a distribution function with tail R, R(x) > 0, x > 0. Let
G be a max-stable distribution function, G(x) = exp(−H(x)) for all x ≥ 0, assume
that α ·G |R+ is the tail of a distribution function for some α > 0. Then we have

F ∈ (DOA)m(G) ⇐⇒ F ∈ (DOA)r(αH)

Precisely: There exist γn ∈ Aff+
0 (R, 1) such that

F n(γn(x))
w−→ G(x), x ≥ 0

iff for a function γ(·) fulfilling (1.6.5) in 1.6.1 defined by the sequence {γn}n≥1 we
have

Rt(γ̃(t)(x))
w−→ αH(x), x ≥ 0

and vice versa. Analogous results are obtained for shifted versions, if 0 is replaced by
some x0 (with R(x0) < 1).

Proof. ” =⇒ ” Let F , G be distribution functions, G = exp(−H). Assume that there
exists a sequence of affine transformations {γn}n≥1 ⊆ Aff+

0 (R, 1) such that

F n(γn(x))
n→∞−→ G(x), x ≥ 0.

According to lemma 0.2.4 this is equivalent with

n · (1− F (γn(x)))
w−→ H(x)

hence
n ·R(γn(x))

w−→ H(x).

Define γ : R+ → Aff+
0 (R, 1) by γ(t) := γn(t) with n(t) =: n, 1

n+1
< αR(t) ≤ 1

n
.

Therefore,

n · α ·R(γn(t)(x)) ≤
R(γ(t)(x))

R(t)
≤ (n+ 1) · α ·R(γn(t)(x))

Therefore, since lim n+1
n

= 1, we obtain

R(γ(t)(x))

R(t)
= α ·Rt(γ̃(t)(x))

w−→ α ·H(x), x ≥ 0
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” ⇐= ”. Assume the existence of a function t 7−→ γ(t) ∈ Aff0(R) such that

Rt(γ̃(t)(x))
t→∞−→ α ·H(x), x ≥ 0

Define γn ∈ Aff+
0 (R, 1) by γn = γ(tn), with 1

n+1
< R(γ(tn(x)))

α
≤ 1

n
,

then tn
n→∞−→ ∞ and

R(γ(tn)(x))

R(tn)

n→∞−→ α ·H(x)

yield
n ·R(γn(x))

n→∞−→ H(x), x ≥ 0

Therefore as above, according to 0.2.4

F (γn(x))n n→∞−→ exp(−H(x)) = G(x)

Corollary 1.6.7. Let F,R as above, let Λ, Φα be defined as in [8]. Then

a) F ∈ (DOA)m(Λ) iff F belongs to the domain of R.L.T. attraction of (shifted)
exponential laws

b) F ∈ (DOA)m(Φα) iff F belongs to the domain of R.L.T. attraction of (shifted)
Pareto laws.

Proof. a) Obvious, since Λ(x) = exp(− exp(−x)) hence Λ |{x≥x0}= e−H , with

H(x) = e−x |{x≥x0}= e−x0 · e−(x−x0) |{x≥x0}=: α ·K

with K the tail of a shifted exponential distribution.

b) Analogously, P (x) = x−α, x ≥ 1, is the tail of a shifted Pareto distribution, and

Φα(x) = exp(−(x−α)) = exp(−P (x)), x ≥ 0.

Remark 1.6.8. For later use (in Chapter 2) we note that in the definitions of R.L.T.
stability and domain of R.L.T. attraction (for d = 1) we followed the notations
introduced in Balkema and de Haan [1]. But we have seen that under mild conditions
these definitions are equivalent with the following ones which turn out to be useful
for the multivariate case:
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Remark 1.6.9. a) From remark 1.3.3 we have already shown that for a limit tail
function S which is continuous at y = 0 and fulfils S(0) = 1, we have

R(Γ(t)(x))

R(t)

w−→ S(x) (for t→∞) (1.6.9)

iff (for some function s 7→ γ(s) ∈ Aff+
0 (R, 1) with γ(s)(x) →∞, x > 0) we have

R(γ(s)(x))

R(γ(s)(0))

w−→ S(x) (as s→∞) (1.6.10)

b) Hence in Definition 1.6.1 if L is continuous at 0 and L(0) = 1, equation 1.6.1
(resp. 1.6.3) is fulfilled iff for some function s 7→ γ(s) ∈ Aff+

0 (R, 1),

γ(s)(x)
s→∞−→ ∞, x > 0,

R(γ(s)(x))

R(γ(s)(0))

w−→ L(x) , (for s→∞) (1.6.11)

Therefore,
(DOA)r(L) = {R : 1.6.11 holds}.

c) If in addition R is continuous then (1.6.11) is equivalent to

R(γn+1(0))

R(γn(0))

n→∞−→ 1 (1.6.12)

Indeed, this follows immediately from the proof of theorem 1.6.6 and part (a)
of this remark.

d) Thus we can re-define domains of R.L.T. attraction as follows

(i) (Domain of R.L.T. attraction ):

R ∈ (DOA)r(L) iff
R(γn(x))

R(γn(0))

w−→ L(x)

for some sequence γn ∈ Aff+
0 (R, 1) such that γn(x)

n→∞−→ ∞, x > 0, and

R(γn+1(0))

R(γn(0))

n→∞−→ 1

(ii) (Normal domain of R.L.T. attraction):

R ∈ (NDOA)r(L) iff
R(γ(t)(x))

R(γ(t)(0))

w−→ L(x)

where (γ(t)) ⊆ Aff+
0 (R, 1) is a one parameter group such that L is R.L.T.

stable w.r.t. γ(·), i.e.

L(γ(t)(x)) = L(γ(t)(0)) · L(x), t ≥ 0.
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1.7 Domains of attraction of R.L.T. semi-stable

laws

With the notation from 0.1. and according to lemma 0.1.14 and 0.1.15 we define the
following:

Definition 1.7.1. Let γ ∈ Aff+
0 (R, 1), such that γk(x)

k→∞−→ ∞, x > 0, then

Case (1) γ(x) = x+ τ and γk(x) = x+ k · τ , k ∈ Z+, τ > 0. Put

zk,τ := γk(0) = k · τ

Case(2) γ(x) = uα
0 (x− x?) + x? and γk(x) = ukα

0 (x − x?) + x?, x? < 0, u0 > 1,
α > 0. Put

zk,α := γk(0) =| uk·α
0 − 1 || x? |

Put

vk :=

zk,τ = γk(0) = k · τ in case (1),

zk,α = γk(0) =| uk·α
0 − 1 || x? | in case (2).

Let T : [0, v1) 7→ [p, 1) be decreasing with T (0) = 1, T (v1−) ≥ p where 0 < p < 1. Put

L(x) = pk · T (y) =:

1−Gp,T,τ,γ(x) Case (1),

1−Np,T,α,γ(x) Case (2).

where vk ≤ x < vk+1, such that y := x− vk ∈ [0, v1).
L(x) = 1−Gp,T,τ,γ(x) (in case (1)) is called the generalized geometric distribution,
and L(x) = 1−Np,T,α,γ(x) (in case (2)) is called the generalized discrete Pareto dis-
tribution (cf. 1.4, A3–A4 ).

Corollary 1.7.2. Put p = e−β, and put w.l.o.g. τ = 1.

• For T (x) = 1, 0 ≤ x < 1: L(x) = 1 − Gp,1,1,γ(x) is the (usual) ”geometric
distribution Gp”.

• For T (x) = e−β·x, 0 ≤ x < 1 : L(x) = 1 − Gp,T,α,γ(x) is the ”exponential
distribution function Eβ”. In a similar way, Pareto distributions and discrete
Pareto distributions are representable as ”generalized Pareto distribution”.

• If T (x) = 1, 0 ≤ x < 1 : L(x) = 1−Np,1,α,γ(x) is ”a discrete Pareto distribution
DPα, 1(x)”
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Definition 1.7.3. a) Let Γ be R.L.T. semi-stable with tail 1− Γ = Ψ,

Ψ(γ(x)) = Ψ(γ(0)) ·Ψ(x), x ≥ 0.

Then a distribution function F with tail R belongs to the R.L.T. domain of
semi-stable attraction of Γ (F ∈ (DOA)r,ss(Γ)) iff there exists γn such that
γn(0) →∞ furthermore

R(γn+1(0))/R(γn(0))
n→∞−→ β ∈ R+ (β ∈ (0, 1)) (1.7.1)

and
R(γn(x))/R(γn(0))

n→∞−→ Ψ(x), x ≥ 0 (1.7.2)

b) F belongs to the normal domain of R.L.T. semi-stable attraction (F ∈ (NDOA)r,ss(Γ))
if γn = γn in (a).

Proposition 1.7.4. We have

a) (DOA)r,ss(Ψ) 6= ∅ =⇒ Ψ is R.L.T. semi-stable

b) If Ψ is R.L.T. semi-stable then the normal domain of R.L.T. semi-stable attraction
is non-empty, in fact Ψ ∈ (NDOA)r,ss(Ψ)

Proof. a) Assume for a tail function R that R(γn(x))/R(γn(0))
w−→ Ψ(x). Hence

R(γnγ
−1
n γn+1(x))

R(γn(0))
· R(γn(0))

R(γn+1(0))

n→∞−→ Ψ(x)

Observing that R(γn(0))
R(γn+1(0))

n→∞−→ 1/β (> 1), we obtain by the convergence of

types theorems that
γ−1

n γn+1
n→∞−→ γ ∈ Aff+

0 (R, 1). Therefore, Ψ(γ(x)) = β · Ψ(x), x > 0, follows.
I.e., Ψ is R.L.T. semi-stable.

b) follows immediately from the definition: We have by (1.7.1) and (1.7.2)

Ψ(γk(x)) = Ψ(γk(0)) ·Ψ(x) =: pk ·Ψ(x).

Note that k 7→ Ψ(γk(0)) = c(γk) is a homomorphism. Hence with
p = Ψ(γ(0)) ∈ (0, 1)

Ψ(γk(0)) = pk ∈ (0, 1) (1.7.3)
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Remark 1.7.5. In [1] the authors consider limit laws of the following type:

lim
t→∞

Rt(Γ(t)(x)) = S(x) (1.7.4)

Where in the discrete case t 7→ γ(t) is a jump-function, i.e. there exist tk ↗ ∞,
such that γ(t) = γ(tk), tk ≤ t < tk+1. The so defined domains of attraction are not
equivalent to (DOA)r,ss defined above. In fact, if the stronger condition (1.7.4) is
fulfilled, R is R.L.T. semi-stable, hence R = Gp,T,τ,γ or R = Np,T,α,γ where T ≡ 1 on
[0, v1).

Proof. Note that the discrete set {vk} is of the form

vk ∈

Dk,τ = {k · τ : k ∈ Z+, τ > 0} Case (1),

Dk,α = {| x? | (uk·α
0 − 1) : k ∈ Z+, u0 ≥ 1} Case (2).

Let F be a distribution function with the tail R > 0. F belongs to the domain of
semi-stable R.L.T. attraction of S. Hence

Rvk
(γk(x))

k→∞−→ S(x) (1.7.5)

for all continuity points x, x ≥ 0 where γ ∈ Aff(R), and vk = γk(0) (resp. γk(x0)).
Define Γ : R+ −→ Aff+

0 (R, 1), Γ(t) := γk if vk ≤ t < vk+1. (We write vk = vk(t) in this
case ). In other words, with this notation we have

Rvk(t)
(Γ(t)(x))

t→∞−→ S(x). (1.7.6)

If t = vk one could also replace (1.7.6) by

Rvk
(Γ(vk)(x))

vk→∞−→ S(x)

But not necessarily Rt(Γ(t)(x))
t→∞−→ S(x) as in Balkema, De-Haan [1].

For vk < t < vk+1 we have (if Γ(t)(x) ≥ t)

Rt(Γ(t)(x)) =
R(Γ(t)(x) + t)

R(t)
=
R(vk)

R(t)
·Rvk

(Γ(vk)(x))︸ ︷︷ ︸
→S(x)

.

Thus, let LIM(·) denote the set of accumulation points, then

LIM(Rt(Γ(t)(x)))t→∞ ⊆ LIM(
R(vk)

R(t)
) · S(x)
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At the same time we have

R(vk)

R(t)
=

1
R(t)

R(vk)

=
1

R(γk(v1))
R(γk(0))

if t = γk(u), 0 ≤ u < v1 = γ(0).

Thus by assumption,

LIM(
R(vk)

R(t)
) ⊆ [1, lim

R(γk(0))

R(γk(v1))
] = [1,

1

S(v1)
] or

LIM(Rt(Γ(t)(x))) ⊆ S(x) · [1, 1

T (γ(0)−)
] ⊆ S(x) · [1, 1

q
]

So the defined R.L.T. semi-stability, in condition (1.7.5) is not equivalent to the
condition in [1].

Therefore we obtain

Corollary 1.7.6. The stronger condition Rt(Γ(t)(x))
t→∞−→ S(x) is fulfilled iff T is

constant.

1.8 R.L.T. semi-stability and max-semi-stability

Max stable laws and their domains of attraction are well known, whereas for max-
semi-stable laws there exist only a few investigations. see e.g. [4], [10], [11], and [24].
With the notation in 0.1, according to lemma 0.1.14 and 0.1.15 we obtain

Definition 1.8.1. A distribution µ with distribution function F and tail R is called
max-semi-stable if there exist γ ∈ Aff0(R), c ∈ R+ \ {1}, such that

F 1/c(γ(x)) = F (x), equivalently

F (γ(x)) = F c(x)

for x ≥ x0 (≥ −∞) and F (x) = 0, x ≤ x0.

As we are interested in distributions concentrated on R+ we assume γ ∈ Aff+
0 (R, 1)

and 0 < c < 1 (since then γn(x) →∞ for x > 0 and F (γn(x)) = F cn
(x) ↗ 1). Recall

that F is max-stable if there exists a one parameter group (γ(t))t>0 ⊆ Aff+
0 (R, 1) such

that
F (γ(t)(x)) = F t(x) for t ≥ 0, x ≥ x0 (≥ −∞)
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Remark 1.8.2. According to lemma 0.1.13 for given γ and c there exists (a uniquely
determined) one parameter semigroup (γ(t))t>0, and (with multiplicative parameter-
ization ) such that γ(c) = γ, c ∈ R+ \ {1}. Therefore we obtain:
F is max-semi-stable ⇐⇒ for a continuous group (γ(t), t > 0) we have

F (γ(ck)(x)) = F ck

(x), k ∈ Z, x ≥ x0.

As mentioned in section 1.6 there exist only three types of max-stable distributions.
For max-semi-stable distributions the situation is more complicated. We shall obtain
a new characterization of max-semi-stable laws in the sequel.
As in 1.6 we define

Definition 1.8.3. Let F be a distribution function; F (x) > 0 for x > x0 and
F (x) = 0 if x ≤ x0. Then

H(x) :=

− logF (x) x > x0 (i.e.F (x) > 0)

∞ x ≤ x0.

is well defined. We obtain H ≥ 0 and H ↘ . If H(x1) <∞ then we define

H̃(x) :=


1

H(x1)
·H(x) x ≥ x1

1 x < x1.

Then H̃ is the tail of a probability distribution function with

H(x) = H(x1) · H̃(x), x ≥ x1

Therefore, putting H(x1) = α. We obtain:

F (x) = e−α·H̃(x), x ≥ x1.

Theorem 1.8.4. Let F be a distribution function concentrated on R+, assume
F (x) = e−α·H(x), x ≥ 0 w.l.o.g. x1 = 0 where H is the tail of a distribution function.
Then we have:

F is max-semi-stable ⇐⇒ H is R.L.T. semi-stable

Proof. Let F be a max-semi-stable distribution. Hence we have

F (γ(x)) = F c(x) ⇐⇒ e−α·H(γ(x)) = e−c·α·H(x)

⇐⇒ H(γ(x)) = c ·H(x)

This is the case if and only if H is a solution of the R.L.T. semi-stability functional
equation, resp. H is R.L.T. semi-stable.
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Remark 1.8.5. Let F , and H be as in the theorem 1.8.4 above. Assume that F is
max-semi-stable. Then H is either Gp,T,τ,γ or Np,T,α,γ.

Proof. Applying theorem 1.8.4 above, we have H is R.L.T. semi-stable. (I.e. H is a
solution of the semi-stability functional equation). See section 1.4, theorem 1.4.4.

In view of this characterization we recall the definitions of the domain of max-
semi-stable attraction, and we obtain immediately:

Definition 1.8.6. a) Let G be a max-semi-stable distribution function,
G(γ(x)) = Gc(x), x ≥ 0. Let F be a distribution function. Then F belong to the
domain of max semi-stable attraction of G (in short F ∈ (DOA)m,ss(G)) ⇐⇒
there exist kn ↗∞, kn/kn+1 → c and γn ∈ Aff+

0 (R, 1) such that

F (γn(x))kn w−→ G(x), x ≥ 0

b) F belongs to the normal domain of max-semi-stable attraction of G if γn = γn

and kn = [1/cn]

c) F in (DOA)r(G) belongs to the normal domain of R.L.T. semi-stable attraction
if γn = γn.

With this notation we obtain

Theorem 1.8.7. Let G = e−α·H as in theorem 1.8.4. Let F be a distribution function
concentrated on R+, let w.l.o.g. H(0) = 1. Then we have:

F ∈ (DOA)m,ss(G) ⇐⇒ F ∈ (DOA)r,ss(1−H).

And the same relation holds true for normal domains of semi-stable attraction.

Proof. 1) According to lemma 0.1.14 we have

(1−R(γn(x)))kn = F kn(γn(x))
n→∞−→ G(x) (= e−α·H(x)) iff

kn ·R(γn(x))
n→∞−→ α ·H(x)

2) Replacing G by G1/α, kn by [kn/α], we may assume w.l.o.g. α = 1

3) Therefore, since H(0) = 1 we obtain

lim
n→∞

R(γn+1(0))

R(γn(0))
= lim

n→∞

kn

kn+1

= c
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4) Thus

kn ·R(γn(x))
n→∞−→ H(x) ⇐⇒ R(γn(x))

R(γn(0))

n→∞−→ H(x)

i.e. 1−R = F ∈ (DOA)r,ss(1−H)

5) Conversely, assume

R(γn+1(0))

R(γn(0))

n→∞−→ c and

R(γn(x))

R(γn(0))

n→∞−→ H(x)

assume again as above α = 1 and put kn := [1/R(γn(0))]. Then, as above

kn ·R(γn(x))
n→∞−→ H(x) follows.

I.e. F ∈ (DOA)m,ss(G) as asserted.
The coincidence of the domains of normal attraction is now obvious.

1.9 Similarities between (semi-) stability, max-

(semi-) stability and R.L.T. (semi-) stability.

Definition 1.9.1. Let µ ∈M1(R) with distribution function F . An infinitely divisible
measure µ ∈ M1(R) is (strictly) stable if and only if there exists a continuous one-
parameter group of linear transformations
(γ(t) : x 7→ tαx)t>0 (with multiplicative parameterization) such that

γ(t)(µs) = µts, t, s > 0 (1.9.1)

Recall that a subset (µt)t≥0 ⊆M1(R) is called a continuous convolution semigroup
if

(i) R+ 3 t 7→ µt ∈M1(R) is weakly continuous

(ii) µt ∗ µs = µt+s, t, s ≥ 0

Here (µs) is the convolution semigroup with µ1 = µ, the number α is called the
index of µ (See e.g. Hazod [15], or Meerschaert, Scheffler [20] ).
If µ is stable but not strictly stable, then there exists a continuous function
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R×
+ 3 t 7→ γ(t) ∈ Aff(R) such that (1.9.1) holds. But (γ(·)) is in general not a one-

parameter group.
In fact, let τt : x 7→ tα · x. Then µ is usually defined to be stable iff

τt(µ) = µt ∗ ε−b(t)

for some b(t) ∈ R.
Equivalently, put γ(t) : x 7→ τt(x) + b(t), then

γ(t)(µ) = µt, t > 0.

As easily shown, that if (γ(·)) were a group then b(·) fulfills the functional equation

b(st) = tαb(s) + b(t), t, s > 0 (1.9.2)

hence γ(·) is a semigroup iff b(·) ≡ 0 (in 1.9.2), hence if γ(t) = τt, t > 0.

Definition 1.9.2. µ is (strictly) semi-stable iff there exist γ ∈ Aff0(R) and
c ∈ (0, 1) such that γ(µs) = µcs, s ≥ 0.

Since γ is embeddable into a continuous one-parameter group (γ(t))t>0 such that
γ(c) = γ we obtain:

µ is semi-stable ⇐⇒ γ(c)(µ) = µc (1.9.3)

Definition 1.9.3. µ (resp. F ) is max-stable iff for some continuous group with
(γ(t))t>0 ⊆ Aff+

0 (R, 1)
F (γ(t)(x)) = F t(x), x ≥ x0, (1.9.4)

where F (z) = 0, z ≤ x0

Remark 1.9.4. • Note that (in the one-dimensional case) F t is a distribution
function for any t > 0.

• Note that as mentioned in 1.6.5 a max-stable distribution is of the type Λ, Φα,
or Ψα (which will be of no importance in the sequel). The corresponding affine
transformations γ(·) following (1.9.4) are
γ(t) : x 7→ x + t and x 7→ t1/α · x respectively, hence in both cases γ(·) is a
group of affine transformations.

Definition 1.9.5. µ (resp. F ) is max-semi-stable iff for some (γ(t))t>0 and c ∈ (0, 1)
we have

F (γ(cn)(x)) = F cn

(x), x ≥ x0, n ∈ Z+. (1.9.5)

This is a motivation to define operators acting on the set of probabilities similar
to τt in definition 0.3.3

Definition 1.9.6. Let γ(·) denote continuous functions with values in Aff0(R). Let
ID denote the set of infinity divisible probabilities on R.
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a) let γ(t) : x 7→ tαx+ b(t) fulfil (1.9.2), Sγ(t) : ID −→ ID is defined by

Sγ(t)(µ) := (γ(t)(µ))1/t

b) let γ(·) be a continuous one-parameter group in Aff+
0 (R, 1) e.g. with multiplicative

parameterization. Mγ(t) : M1(R) −→M1(R) is defined by

Mγ(t)(F )(x) = (F (γ−1(t)(x)))1/t

where F is the distribution function of µ

c) let again γ(·) be a continuous one-parameter group in Aff+
0 (R, 1).

T γ(t) : M1
∗ (R+) −→M1

∗ (R+) defined by

T γ(t)(µ(x,∞)) :=
µ(γ(t)(x),∞)

µ(γ(t)(0),∞)
, x > 0

where M1
∗ (R+)) = {µ ∈M1(R+) with R(x) > 0, x > 0}

With this notations we obtain:

Proposition 1.9.7. t 7→ Sγ(t), t 7→Mγ(t) and t 7→ T γ(t) are homomorphisms.

Proof. This follows from the definitions by easy calculations.

Theorem 1.9.8. a) µ ∈ ID is strictly stable (resp. semi-stable) iff for some γ(·),
(and c ∈ (0, 1)) we have Sγ(t)(µ) = µ, t > 0 (resp. Sγ(c)(µ) = µ)

b) µ ∈M1(R) with distribution function F is max-stable (resp. max-semi-stable) iff
for some γ(·) (and c ∈ (0, 1)) Mγ(t)(F ) = F, t > 0 (resp. Mγ(c)(F ) = F )

c) µ ∈ M1
∗ (R+) is residual life time stable (resp. R.L.T. semi-stable ) iff for some

γ(·), (and c ∈ (0, 1)) we have

T γ(t)(µ) = µ, t > 0 (resp. T γ(c)(µ) = µ)

Proof. a) and b) follow immediately by using 1.9.1 resp. 1.9.3 and 1.9.4 resp. 1.9.5
above

c) Let R be the tail of µ, let µ(t) = T γ(t)(µ) with tail x 7→ R(γ(t)(x))
R(γ(t)(0))

by definition.

Hence, obviously, µ is R.L.T. stable iff µ(t) = µ, i.e. if

T γ(t)(µ) = µ for t > 0

and µ is R.L.T. semi-stable if

R(γ(x))

R(γ(0))
= R(x), x > 0.
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Hence, if γ is embedded into a group γ(·) such that γ(c) = γ, the assertion
follows.

Note that if we define in 1.9.6-(c) with a continuous function γ(·) ⊆ Aff0(R) with

γ(t)
t→∞−→ ∞, then T γ(t)(µ) = µ for t > 0 yields that

(γ(·)) ⊆ Dec(µ)

Hence, as shown in section 1.5, there exist a continuous one-parameter group
γ̃ ⊆ Dec(µ). I.e. µ is R.L.T. stable.

1.10 References and comments for Chapter 1

This section contains remarks and comments to Chapter 1, and references to further
literature on the (semi-) stability of R.L.T. distributions (on R). Particularly, we
are interested in a property called ” Lack of Memory property (L.M.P.)”, and how
to generalize this property to characterize the property of (semi-) stability of R.L.T.
distributions and their domains of attraction by limit laws. Finally we investigate sim-
ilar relations between the (semi-) stability, max-(semi-) stability, and R.L.T. (semi-)
stability distributions.

R 0.1 In this section we give an overview of affine transformation. We follow Edel-
stein, Tan [5].

R 0.2 This section contains a survey of C.T.T., on R1 in particular for probabilities
concentrated on R+. For general version see Letta [17]; for the particular version the
reader is referred to Balkema, de Haan [1].

R 0.3 In this section we collected some notations for probabilities on R+.

R 0.4 This section contains some standard examples of distributions which are im-
portant in the sequel.

R 1.1 In this section, we start collecting definitions, remarks, and examples of well-
known classical L.M.P. of the exponential distribution followed from J. Galambos
and S. Kotz [8] (cited in § 2.1 ). See also Balkema and de-Haan [1]. Here, we defined
R.L.T. (semi-) stable distributions allowing (γ(t))t∈R ⊆ Aff+

0 (R, 1) to be a continuous
one parameter group (see 1.1.6) which may be considered as a generalization of the
L.M.P. A further generalization of the L.M.P. (see 1.1.7 and 1.1.8).



52

R 1.2 Firstly, it should be noted that the L.M.P. is not suitable to characterize
R.L.T. (semi-) stability. That is the reason why R.L.T. (semi-) stability is defined,
for this (see 1.2.1–1.2.3). Here we introduced a further definition of the (semi-) sta-
bility R.L.T. distributions closely with the general L.M.P. but γ(t) ⊆ Aff+

0 (R, 1) not
assumed to be a semi-group. Note that all R.L.T. (semi-) stable distributions are
characterized by this generalizations of the L.M.P. (see e.g. 1.2.1 or 1.2.2). Finally
we investigated that the R.L.T. distributions (in the limit laws) fulfills the (semi-)
stability condition (G.L.M.P.) (i.e. the set of distributions satisfying G.L.M.P. is
closed, (see 1.2.6).

R 1.3 In this section we followed investigations of Balkema and de-Haan [1]. In (1.3.2)
it is proved (applying the convergence of types theorem ( 1.3.4, and 1.3.5)) that the
limit laws fulfill a functional equation which turns out to be the condition of R.L.T.
(semi-) stability.

R 1.4 Here we are mainly concerned with a general form of the introduced sta-
bility functional equation, and obtained its general solutions after re-formulating it
with respect to the formulation of affine semigroups (according to the existence of
common fixed point or not) introduced in §0.1 (see 0.1.12). All these solutions are
already R.L.T. stable. It should be noted that the solutions in the discrete case are
uniquely determined only if the function T is assumed to be constant (e.g. T ≡ 1)
see 1.4.1.
In most cases the solutions considered to be valid for x ≥ 0 (resp. x ≥ 1), same
arguments allows to consider solutions for x ≥ x0, t > 0 see 1.4.2, 1.4.3. Finally,
we obtained a new class of limit distributions with a suitable shifted versions see 1.4.4.

R 1.5 Here we introduced the decomposability semigroup of R.L.T. distributions
(Dec(µ)) similar to the useful concept to characterize (operator) semi-stability for
vector space and group valued random variables. Again we characterized the (semi-)
stability of the limit laws in§ 1.3 by the decomposability semi group (i.e. they be-
long to the class of distributions characterized in 1.4.4). See in particularly 1.5.13.
Decomposability groups and corresponding canonical homomorphisms are essential
tools for investigations of (semi-) stability of vector space– and group– valued random
variables. See e.g. Hazod, and Siebert [15] §1.5, 1.12, 2.5 .

R 1.6 With the notations following from Balkema [1], we re-write the domain of
R.L.T. attraction in an equivalent form related to a continuous one parameter group
(γ(t))t≥0 ⊆ Aff+

0 (R, 1) (resp. w.r.t. a right continuous function). Moreover, this do-
main of attraction characterizes the R.L.T. stability of the limit laws (see 1.6.4). It
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should be noted that, (as in 1.6.5) the domain of R.L.T. attraction for (shifted) expo-
nential laws and (shifted) Pareto laws, are closely related to the domains of attraction
for the Max-stable distribution functions Φα, Λα respectively. (See also Balkema [1]
theorems 3,4). Finally we re-defined in 1.6.9 R.L.T. stability in an equivalent way
and domain of R.L.T. (for d = 1), which will be useful in Chapter(2)(for d > 1).

R 1.7 Firstly, in this section we investigated in 1.7.1 the general geometric distribu-
tion Gp,T,τ,γ(x) (case (1)), and general discrete Pareto distribution Np,T,α,γ(x) (case
(2)). Again analogously, the R.L.T. semi-stability is characterized by its domain of
attraction. Moreover it is proved in 1.7.4, that the defined R.L.T. semi-stability, in
condition (1.7.5) is not equivalent to the condition in [1]: This stronger condition

Rt(Γ(t)(x))
t→∞−→ S(x) is fulfilled iff T is constant.

R 1.8 It should be noted that, the situation for the max-semi-stable more com-
plicated. As we are interested in distributions concentrated on R+, we defined
max-(semi-) stable distributions related to the existence of a continuous one pa-
rameter groups (γ(t))t≥0 ⊆ Aff+

0 (R, 1) (see 1.8.1 and 1.8.2). As in 1.8.4 if the
distribution function F (x) = e−α·H(x), x ≥ 0 allow F to be max-semi-stable then
H ∈ {Gp,T,τ,γ , Np,T,α,γ}. Finally we investigated the similarity between the max-
semi stable domain of attraction (of a distribution function G = e−α·H , (as in 1.8.7)
and the domain of R.L.T. semi-stable attraction).
(Semistable R.L.T. and similarities to max-semi-stability are not considered in [1].)

R 1.9 In this section we start collecting definitions on (strictly) stable, semi stable,
max-stable, and max-semi-stable distributions related to a continuous one parameter
group (γ(t))t≥0 ⊆ Aff+

0 (R, 1) (see 1.9.1–1.9.5). We introduced in 0.3.3 and 1.9.7 a
motivation to define a homomorphism operators t 7→ Sγ(t), t 7→ Mγ(t) and t 7→ T γ(t)

acting on the set of probabilities. This allowed us to re-define (strictly-) stable,
max-(semi-) stable, and (semi-) stable R.L.T. see 1.9.8. (Compare also the charac-
terization of semi-stable processes by invariance under space–time–transformations,
See e.g. [15]§3.6.24).



Chapter 2

(Semi-) stability of R.L.T.

distributions in the

multidimensional case

2.1 The structure of affine transformations on Rd.

The subgroups of coordinate-wise affine trans-

formations CAT(R, d)) (d > 1)

In the preparatory section 0.1 affine transformations were introduced. Here in chapter
2 we investigate a subgroup CAT(R, d) which will play the role of affine normalization.
First we recall and fix some notations.

Notation 2.1.1. • LetM(R, d) denote the algebra of real d×dmatrices, GL(R, d)
the general linear group.

• Let A(R, d) denote the set of affine transformations on Rd, T :
⇀
x 7→ A

⇀
x +

⇀

b ,

A ∈M(R, d),
⇀

b∈ Rd.

• We always have fixed vector space bases, hence identify linear transformations
and matrices, and we use the notation T = γ

A,
⇀
b
.

54
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• We shall denote the group of affine transformations by

Aff(R, d) = {γ
A,

⇀
b
∈ A(R, d) : A ∈ GL(R, d)}

and Aff0(R, d) the connected component of the unit element γ
I,

⇀
0

= Id.

Remark 2.1.2. Analogous to the remark 0.1.16 we assume that the normalizing
affine transformations T = γ

A,
⇀
b

have the following properties

(i)
⇀
x 7→ T (

⇀
x) is strictly increasing (coordinate wise)

(ii) T (
⇀
x) >

⇀

0 for all
⇀
x>

⇀

0 and

(iii) (T n(
⇀
x))i

n→∞−→ ∞, 1 ≤ i ≤ d, for all
⇀
x>

⇀

0 .

Hence we begin with the following definition

Definition 2.1.3. (Coordinate-wise affine transformations): We define

CAT(R, d) = {γ
A,

⇀
b

: A is diagonal with positive entries} ⊆ Aff0(R, d). (2.1.1)

For
⇀
u∈ Rd let diag(

⇀
u) :=


u1 . . . 0
...

. . .
...

0 . . . ud

 .

Hence
CAT(R, d) = {γ

diag(
⇀
u ),

⇀
b

:
⇀
u>

⇀

0 ,
⇀

b∈ Rd}

Note that CAT(R, d) is a proper subgroup of Aff0(R, d) iff d > 1.
We observe for γ

A,
⇀
a
, γ

B,
⇀
b
∈ A(R, d)

γ
A,

⇀
a
◦ γ

B,
⇀
b

= γ
A·B,A·

⇀
b +

⇀
a

(2.1.2)

and for γ
A,

⇀
a
∈ Aff(R, d)

γ−1

A,
⇀
a

= γ
A−1,−A−1

⇀
a

(2.1.3)

Aff(R, d) contains subgroups isomorphic to (Rd,+) and to GL(R, d) respectively:

S(R, d) := {γ
I,

⇀
a

:
⇀
a∈ Rd} ∼= (Rd) (2.1.4)

the group of translations (or shifts), and

L(R, d) := {γ
A,

⇀
0

: A ∈ GL(R, d)} ∼= GL(R, d), (2.1.5)
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the group of linear transformations.
Put furthermore

D(R, d) := CAT(R, d) ∩ L(R, d), (2.1.6)

the group of coordinate-wise linear transformations (resp. diagonal matrices).
Affine transformations on Rd may be considered as linear transformations on Rd+1,

in fact

ϕ : γ
A,

⇀
b
7→ Γ

A,
⇀
b

:=

(
1 t

⇀

0
⇀

b A

)
∈M(R, d+ 1) (2.1.7)

is a continuous injective homomorphism. In the sequel we use this interpretation

frequently. For (C,
⇀
c ) ∈M(R, d)× Rd let X

C,
⇀
c

denote the matrix in M(R, d+ 1)) :

X
C,

⇀
c

:=

(
0 t

⇀

0
⇀
c C

)
.

In section 0.1 we started with the description of one-parameter groups
R 3 t 7→ Tt ∈ Aff(R, d). Let Tt = γ

A(t),
⇀
b (t)

. Recall that

Tt+s = TtTs ⇐⇒

A(t+ s) = A(t)A(s) and
⇀

b (t+ s) = A(t)
⇀

b (s)+
⇀

b (t) .
(2.1.8)

(Analogous relations are obtained if we switch to multiplicative parameterization,
putting Su := Tlog u , u > 1. Hence SuSv = Suv.) One-parameter groups (Tt) are
always assumed to be continuous. Hence according to basic Lie group theory t 7→ Tt

is even analytic and the derivatives d
dt
Tt |t=0 may be considered as elements of the

Lie algebra. If we consider the above mentioned matrix representation we obtain
for Tt = γ

A(t),
⇀
b (t)

(resp. Γ
A(t),

⇀
b (t)

) : A(t) = exp(tQ) for some Q ∈ M(R, d), hence

d
dt
A(t) |t=0= Q and d

dt

⇀

b (t) |t=0=:
⇀

d∈ Rd. (Note that T0 = Id = γ
I,

⇀
0
, hence

⇀

b (0) =
⇀

0 .) Therefore the infinitesimal generator exists

d

dt
Γ

A(t),
⇀
b (t)

|t=0= X
Q,

⇀
d

(2.1.9)

with the above- mentioned notation. For further use, note

[X
A,

⇀
a
, X

B,
⇀
b
] = X

[A,B],A
⇀
b−B

⇀
a

(2.1.10)

where [U, V ] := UV − V U as usual. We write

Γ
A(t),

⇀
b (t)

= exp(tX
Q,

⇀
d
) (2.1.11)
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if X
Q,

⇀
d

is the infinitesimal generator, and since the matrix representation is injective,

we also write (by abuse of language) Tt = exp(tX
Q,

⇀
d
) in this case.

For the above mentioned subgroups we observe for Tt = γ
A(t),

⇀
b (t)

= exp(tX
Q,

⇀
d
) :

• (Tt : t ∈ R) ⊆ CAT(R, d) iff A(t) = diag(et·q1 , . . . , et·qd) = exp(t · Q) with
Q = diag(q1, . . . , qd), i.e. iff Q is diagonal.

• (Tt : t ∈ R) ⊂ S(R, d) iff A(t) = Id hence iff Q = 0. Then obviously
⇀

b (t) = t·
⇀

d ,
Tt = γ

I,t·
⇀
d
, and the infinitesimal generator is given by X

Q,
⇀
d

= X
0,

⇀
d
.

• (Tt : t ∈ R) ⊆ L(R, d) iff
⇀

d=
⇀

0, hence iff X
Q,

⇀
d

= X
Q,

⇀
0

and we have

Tt = γ
exp(tQ),

⇀
0

• According to section 0.1 (0.1.3–0.1.7) we observe: Either {Tt
⇀
x: t ∈ R} is

unbounded for all
⇀
x or there exists a common fixed point

⇀
x? . The first case

appears e.g. for shifts, i.e. for Tt = γ
I,t·

⇀
d
, in the second case we have

Tt
⇀
x= etQ · (⇀

x − ⇀
x?)+

⇀
x?= etQ ⇀

x +(I − etQ)· ⇀
x?

hence Tt = γ
etQ,(I−etQ)·⇀x ?

• Put for short Γt := Γ
A(t),

⇀
b (t)

= exp(tX
Q,

⇀
d
). Then

d

dt
Γt = ΓtXQ,

⇀
d

= X
Q,

⇀
d
Γt, t ∈ R.

Hence
⇀

b (·) satisfies the differential equation

d

dt

⇀

b (t) =
⇀

d +Q
⇀

b (t) = etQ
⇀

d,
⇀

b (0) =
⇀

0 (2.1.12)

We are going to investigate the structure of one-parameter subgroups

{Tt, t ∈ R} ⊆ CAT(R, d)

in more details. (For a slightly different description see Balkema and de Yong-Cheng
Qi [2].)
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Definition 2.1.4. Let (Tt = γ
etQ,

⇀
b (t)

) ⊆ CAT(R, d) with Q = diag(q1, . . . , qd). Put

D0 := {i : qi = 0} and D1 := {D0 = {i : qi 6= 0}. Let

Vi := {⇀
x∈ Rd : xj = 0, j /∈ Di} =

∑
j∈Di

⊕R , i = 0, 1

Let, as above,
⇀

d := d
dt

⇀

b t=0(t). Furthermore, let T
(i)
t denote the one-dimensional affine

groups R 3 z 7→ etqi · z+ bi(t)(= (Ttz·
⇀
e )i,

⇀
e i denoting the ith unit vector, 1 ≤ i ≤ d.)

The general considerations above yield for this particular case:

d

dt
bi(t) = di + qibi(t) = etqi · di , bi(0) = 0 (2.1.13)

Whence we obtain immediately

Corollary 2.1.5. Assume, as above Tt ⊆ CAT(R, d). Then we have :

a) i ∈ D0 =⇒ bi(t) = t · di, t ∈ R , (Tt
⇀
x)i = xi + t · di

b) i ∈ D1 =⇒ bi(t) = (etqi−1) · di

qi
, (Tt

⇀
x)i = etqi ·xi +(etqi−1) · di

qi
= etqi(xi +

di

qi
)− di

qi
.

Hence in this case T
(i)
t has a fixed point (

⇀
x?)i = −di

qi
.

(Note that in a) (Tt
⇀
x)i ≡ xi if di = 0.)

With this observation we can describe the behavior for t→∞
Proposition 2.1.6. With the above notations we have:

a) Let i ∈ D0 . Then (Tt
⇀
x)i ↗∞ for t→∞ ⇐⇒ di > 0.

In this case, (Tt
⇀
x)i > 0 if t > 0, xi > 0

b) Let i ∈ D1 . Then (Tt
⇀
x)i ↗∞ for t→∞ ⇐⇒ (

⇀
x)i > −di

qi
and qi > 0.

As in chapter 1 we are interested only in distributions concentrated on Rd
+, therefore

in CATs (Tt) with (Tt
⇀
x)i

t→∞−→ ∞ for all i and for all
⇀
x in a suitable region of Rd

+.
Therefore we introduce the notations

Definition 2.1.7.

cat(R, d) := {X
Q,

⇀
d

: (exp(t ·X
Q,

⇀
d
) ∈ CAT(R, d) for t > 0}

= {X
Q,

⇀
d

: Q = diag(q1, . . . qd)}

CAT+(R, d) = {X
Q,

⇀
d

: Q = diag(q1, . . . , qd) : qi ≥ 0, 1 ≤ i ≤ d

and di > 0 if qi = 0, i.e. if i ∈ D0}.

Hence for X
Q,

⇀
d
∈ CAT+(R, d) the corresponding group (Tt) fulfils (Tt

⇀
x)i ↗ ∞ for

t→∞ for all
⇀
x∈ Rd

+ with xi ≥ 0, i ∈ D0 and xi ≥ −di

qi
, i ∈ D1
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Proposition 2.1.8. Let γ
U,

⇀
u
, γ

A,
⇀
a
∈ Aff(R, d) then

γ
U,

⇀
u
γ

A,
⇀
a
γ−1

U,
⇀
u

= γ
UAU−1,(I−UAU−1)

⇀
u+U

⇀
a
.

Therefore, the subgroup S of shifts is a normal subgroup,

S = {γ
I,

⇀
a

:
⇀
a∈ Rd}C Aff(R, d).

In fact, γ
U,

⇀
u
γ

I,
⇀
a
γ−1

U,
⇀
u

= γ
I,U

⇀
a
.

Applying this observation to one-parameter groups Tt = exp(tX
Q,

⇀
d
) = γ

exp(tQ),
⇀
b (t)

we obtain

Proposition 2.1.9. Let Tt = exp(tX
Q,

⇀
d
). Put TU,

⇀
u

t := γ
U,

⇀
u
Ttγ

−1

U,
⇀
u
. Then (TU,

⇀
u

t ) is a

one parameter group,

TU,
⇀
u

t = γ
exp(tUQU−1),(I−exp(tUQU−1))

⇀
u+U

⇀
b (t)

with infinitesimal generator XQ̃,d̃ ,

Q̃ = UQU−1, d̃ = U
⇀

d −UQU−1 ⇀
u

Proof.

d

dt
|t=0 Γ

U,
⇀
u
Γ

exp(tQ),
⇀
b (t)

Γ−1

U,
⇀
u

= Γ
U,

⇀
u
X

Q,
⇀
d
Γ−1

U,
⇀
u

=

(
1 0
⇀
u U

)(
0 0
⇀

d Q

)(
1 0

−U−1 ⇀
u U−1

)

yields the assertion.

In particular we obtain

Γ
U,

⇀
0
X

Q,
⇀
d
Γ−1

U,
⇀
0

= X
UQU−1,U

⇀
d

(2.1.14)

and
Γ

I,
⇀
u
X

Q,
⇀
d
Γ

I,−⇀
u

= X
Q,−Q

⇀
u+

⇀
d

(2.1.15)

With the notations introduced in definition 2.1.4 Rd = V0 ⊕ V1, we obtain a decom-

position
⇀

d=
⇀

d
(0)

+
⇀

d
(1)

,
⇀

d
(i)

∈ Vi, such that Q |V0= 0, hence exp(tQ) |V0≡ idV0 . We
obtain
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Proposition 2.1.10. For a one-parameter group (Tt) ⊆ CAT(R, d) with

Q = diag(q1, . . . , qd),
⇀

d=
⇀

d
(0)

+
⇀

d
(1)

there exists a shift γ
I,

⇀
u

such that (γ
I,

⇀
u
TtγI,−⇀

u
)

has X
Q,

⇀
d

(0) as infinitesimal generator.

Proof. In fact, choose
⇀
u∈ V1 such that Q

⇀
u= d(1), i.e. ui = di

qi
, i ∈ D1. Then

γ
I,

⇀
u
·X

Q,
⇀
d
· γ

I,−⇀
u

= X
Q,−Q

⇀
u+

⇀
d

= X
Q,

⇀
d

(0)

This yields

Corollary 2.1.11. Assume Q
⇀
u=

⇀

0 . Then X
Q,

⇀
u

= X
Q,

⇀
0
+X

0,
⇀
u

with [X
Q,

⇀
0
, X

0,
⇀
u
] =

0. Therefore, if Tt = γ
A(t),

⇀
b (t)

with infinitesimal generator X
Q,

⇀
u

then

Tt = γexp(tQ),0 · γI,t
⇀
u

= γ
I,t

⇀
u
· γexp(tQ),0

Proof. As immediately seen [X
Q,

⇀
0
, X

0,
⇀
u
] = 0. Whence the remanning assertion fol-

lows by elementary Lie group theory

Corollary 2.1.12. Let Tt = exp t(X
Q,

⇀
d

(0)) as in the above proposition 2.1.10, let

Rd = V0 + V1 as above. Then for
⇀
x=

⇀
x

(0)
+

⇀
x

(1)
,

⇀
x

(i)
∈ Vi.

(Tt
⇀
x)i =

xi + t · di i ∈ D0,

et·qi · xi i ∈ D1.
(2.1.16)

We decompose D1 =
r⊎
j=1 D

(j) such that qk = ql =: pj if k, l ∈ Dj, pi 6= pj, i 6= j.

Hence Q =
r∑

j=1

⊕pj · IdWj
, Wj = {⇀

x: xk = 0, k /∈ Dj} ∼=
∑

i∈D(j)

⊕R. With this notations

we obtain V1 =
r∑

j=1

⊕Wj , and Tt |V1=
r∑

j=1

⊕et·pj · IdWj
.

Putting things together we have proved

Theorem 2.1.13. Let (Tt = exp t(X
Q,

⇀
d
)) ⊆ CAT(R, d). Then Rd is decomposed as

a direct sum of lattice ideals

Rd = V0 ⊕
r∑

i=1

⊕Wi
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where V0 = {⇀
x: xk = 0, k /∈ D0} , Wi = {⇀

x: xk = 0, k /∈ D(i)} and there exists a basis

transformation γ
I,

⇀
u

of coordinate-wise shifts such that γ
I,

⇀
u
Ttγ

−1

I,
⇀
u

=: T̃t decomposes

as a direct sum of a shift and of linear operators

T̃t |V0 ⊕
r∑

i=1

⊕T̃t |Wi

with T̃t |V0 :
⇀
z 7→⇀

z +t
⇀

b
(0)

and T̃t |Wi
:
⇀
z 7→ etpi .

⇀
z , i = 1, . . . r.

Remark 2.1.14. a) Note that, for all Tt = γ
A(t),

⇀
b (t)

= exp t(X
Q,

⇀
d

(0)) ∈ CAT(R, d)
with the above assumptions, we have

⇀
x≤

⇀
y=⇒ Tt

⇀
x≤ Tt

⇀
y ∀ ⇀

x,
⇀
y∈ Rd

+

Therefore, we restrict ourselves in the following considerations to one-parameter-
subgroups in CAT(R, d).

b) Note that in the above considerations we used

CAT(R, d) =
d⊕

i=1

Aff0(R, 1) since

γ
diag(q1,...qd),

⇀
b

=
d∑

i=1

⊕γqi,bi
, γ(i) = γqi,bi

acting on R· ⇀
e i
∼= R

Define as in the one-dimensional case

CAT+(R, d) =
d⊕

i=1

Aff+
0 (R, 1)

= {γ =
d∑

i=1

⊕γqi,bi
: qi = 1, bi > 0 or qi > 1, bi ≥ 0}. Then it follows

easily by reduction to the one dimensional situation (in 0.1 remark 0.1.16) that

CAT+(R, d) = {γ ∈ CAT(R, d) : (i), (ii) and (iii) in 2.1.2 hold} (2.1.17)

2.2 Multidimensional versions of the C.T.T.

In this section we note some generalizations of the convergence of types theorems
mentioned in section 0.2 to the multidimensional case. See e.g. [14], [15] or [20].

Definition 2.2.1. A probability measure µ ∈ M1(Rd) is called full if µ is not sup-
ported by a proper affine subspace.
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Proposition 2.2.2. (Convergence of types theorem) Let µn ∈M(Rd) be probability
measures of Rd, for n ∈ N, (d > 1), and assume that µn → µ for some full measure
µ ∈M1(Rd).
Let {Tn := γ

An,
⇀
b n
}n≥1 be a sequence in A(R, d), assume that

a) Tn(µn) → λ for some full measure λ ∈M1(Rd).
Then the sequence {Tn}n≥1 is relatively compact in A(R, d), and for all limit
points T we have T (µ) = λ.

b) If we assume in addition Tn ∈ Aff(R, d) (resp. ∈ CAT(R, d)) and µ, λ are full,
then {Tn}n≥1 is relatively compact in Aff(R, d) (resp. CAT(R, d)) and any limit
point T is invertible, with T (µ) = λ, T−1(λ) = µ.

This theorem will be applied in the sequel where we assume

Tn ∈ CAT(R, d).

In fact, since CAT(R, d) ∼=
d∑
1

⊕Aff0(R, 1) it would be sufficient to replace fullness by

”CAT-fullness”: µ is CAT-full iff all marginals πi(µ) ∈ M1(R1) are non degenerate,

where πi :
⇀
x 7→ xi denote the coordinate projections. (See e.g. [15] §1.13 in particular

1.13.29–30 or [14] §4.5). We shall need the following well known

Definition 2.2.3. Let µ ∈M1(Rd
+). Then

Sym(µ) := {T ∈ Aff(R, d) : T (µ) = µ} (2.2.1)

called the symmetry group of µ. By Inv(µ) we denote the set
{γ ∈ CAT(R, d) : γ(µ) = µ} = Sym(µ) ∩ CAT(R, d) called the invariance group
of µ.

Proposition 2.2.4. Note that Sym(µ) is a closed subgroup of Aff(R, d) (See e.g.
Hazod and Siebert [15] page 14,15), and Inv(µ) is a closed subgroup of Sym(µ).

As in section 0.2 we reformulate the convergence of types theorem in the context
of distribution functions. We call Fµ non degenerate iff µ is full.

Proposition 2.2.5. Let Fn = Fµn and F = Fµ denote the distribution functions of
µn and µ respectively. Assume that

a)′ Fn(·) w−→ F (·) for some non-degenerate distribution function F. Let {Tn}n≥1 be
as in proposition 2.2.2, and

b)′ F (T−1
n (·)) w−→ F̃ (·) for some non-degenerate distribution function F̃ . Then we

have {τn := T−1
n }n≥1 is a relatively compact sequence in Aff(R, d) (resp. in

CAT(R, d)) and for all limit points τ we have Fµ(τ(
⇀
x)) = F̃ (

⇀
x).
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The following version is sometimes useful.

Proposition 2.2.6. Let F and F̃ be non-degenerate distribution function, let Tn,
τn ∈ Aff(R, d) (resp. CAT(R, d).) be defined as before. Assume that

F (Tn(·)) w−→ F (·)

and
F (τn(·)) w−→ F̃ (·).

Then the sequence {Mn := τnT
−1
n }n≥1 is relatively compact and for all limit points M

we have
F (M(

⇀
x)) = F̃ (

⇀
x) ,

⇀
x∈ Rd

+

Proposition 2.2.7. a) According to 2.2.3 and 2.2.5 we have: µ is full iff Sym(µ) is
compact (See e.g. [15] page 15).

b) In this case Inv(µ) is a compact subgroup of CAT(R, d).

Proof. The assertion follows by applying the convergence of type theorem to 2.2.4
above.

Lemma 2.2.8. Let G ⊆ CAT(R, d) be any compact subgroup of CAT(R, d). Then
G = {id}

Proof. Let γ ∈ G. Since G is compact, {γn : n ∈ Z} is bounded. Assume that γ 6= id.
According to the structure of the subgroup of CAT(R, d) in section 2.1 (bounded
case) γ is given as:

γ(
⇀
x) = A(

⇀
x +

⇀
x0)−

⇀
x0 with a fixed point x? = − ⇀

x0, A = diag(a1, . . . , ad) , ai > 0,

for
⇀
x≥

⇀

0 .

• If there exists i, such that ai > 1 then (γn(
⇀
x))i →∞,

⇀
x>

⇀

0, a contradiction to
boundedness of {γn}.

• If ai ≤ 1 for all i, and there exists i0 such that ai0 < 1 then consider γ−1 : As
above, {(γn)−1 : n ∈ N} is not bounded, a contradiction.

Hence ai = 1 for all i. I.e. γ = γ
I,

⇀
0

= id. Therefore, G = {id}.

Result 2.2.9. Let µ be full. Inv(µ) is a compact subgroup of CAT(R, d). Applying
lemma 2.2.8, we have Inv(µ) = {id}. Hence in the particular case of CAT,s we
observe:

Theorem 2.2.10. Convergence of types theorem for CAT(R, d): Let {µn}n≥1 be a
sequence of probability distributions of Rd , d > 1, let µ, ν be full distributions.
Assume that {γn}n≥1 is a sequence in CAT(R, d). Assume in addition that
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1) µn → µ

2) γn(µn) → ν.
Then γn → γ ∈ CAT(R, d) and γ(µ) = ν

Proof. According to prop. 2.2.2 we have {γn}n≥1 is relatively compact in CAT(R, d)
hence γn

n′→ γ for some subsequence (n)′ and any limit point γ is invertible with
γ(µ) = ν and γ−1(ν) = µ (since ν full). Assume that {γn} converges to another limit

point i.e. γn
(ñ)→ γ̃ for some subsequence (̃n) then γ̃ is invertible with γ̃(µ) = ν and

γ̃−1(ν) = µ. Define β := γ̃−1γ ∈ CAT(R, d), we have β(µ) = µ =⇒ β ∈ Sym(µ).
Sym(µ)∩CAT(R, d) =: Inv(µ). Since Inv(µ) is a compact subgroup of CAT(R, d) (by
lemma 2.2.8) we have Inv(µ) = {id} follows . Hence β = I, and γ̃ = γ. Hence we

obtain γn
n→∞→ γ and moreover γ(µ) = ν for any limit point γ

2.3 The set of probability measures M 1(Rd
+)

In this section, we reformulate the multivariate case of the notations and theorems
given in section 0.3 as a preparatory of chapter 2 In this case a random variable X is
usually called random vector and we begin with the following notations. (For details
see e.g. [16] or [20])

Notation 2.3.1. Let (Ω,
∑
, P ) be a probability space, let X : Ω → Rd be a random

vector, the distribution is denoted by µ, and the distribution function is F with the
tail function R = F .

F (
⇀
x) := P (X1 ≤ x1, . . . , Xd ≤ xd) = µ(−∞,

⇀
x] (2.3.1)

We are mostly concerned with probabilities on Rd
+. I.e. F (

⇀
x) > 0 only for

⇀
x with

xi ≥ 0, 1 ≤ i ≤ d. In short we write

F (
⇀
x) = P (X ≤⇀

x) ∀ ⇀
x∈ Rd

+ (2.3.2)

and the tail function R is

R(
⇀
x) = P (X >

⇀
x) ∀ ⇀

x∈ Rd
+ (2.3.3)

Note that the relation
R(

⇀
x) = 1− F (

⇀
x) ∀ ⇀

x≥
⇀

0

holds only in the one dimensional case, but in general , this simple relation fails to
hold (that is not true in the multidimensional case). See [18] page 168.
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Remark 2.3.2. With the above notations, if Xn and X are random vectors with
distribution µn and µ (resp. distribution function Fn and F ) respectively then we
write again

µn → µ (resp. Fn
w→ F ) ⇐⇒ Fn(

⇀
x) −→ F (

⇀
x) (2.3.4)

for all continuity points of F.
This is the case iff

Rn(
⇀
x) −→ R(

⇀
x) (2.3.5)

for all continuity points of R.
Since we are interested in the limit behavior of tail functions (distributions) of

non-negative random vectors. We begin with the tail functions, which we can obtain
from the univariate case.

Definition 2.3.3. Let X be a random vector, F is the distribution function, and the
tail is R. Let Λ denote the tail of a one-dimensional distribution. Then we define
R : Rd

+ → [0, 1] by

R(
⇀
x) := Λ(x1 + . . .+ xd) = Λ(〈⇀x,⇀

e 〉)

for all
⇀
x≥

⇀

0 . Here 〈·, ·〉 denotes the scalar product of the vector space Rd,
⇀
e= (1, 1, . . . , 1)

Notation 2.3.4. Since 〈⇀x,⇀
e 〉 ≥ 0 ∀ ⇀

x≥
⇀

0 we can define a continuous positive real
valued function ψ : Rd

+ → R+ by

ψ(
⇀
x) := 〈⇀x,⇀

e 〉 ∀ ⇀
x≥

⇀

0

Then we have
R(

⇀
x) = Λ(ψ(

⇀
x)) (2.3.6)

which coincides with the univariate case replacing 〈⇀x,⇀
e 〉 instead of x.

And now we give some illustrative examples to show how we obtain the tails (for
d > 1)

Example 2.3.5. Exponential distribution : The tail is:

Eα(
⇀
x) = e−α·〈⇀x ,

⇀
e 〉 ,

⇀
x≥

⇀

0 , α > 0

Example 2.3.6. Shifted Exp. distribution: Put E
α,

⇀
x 0

(
⇀
x) = Eα(

⇀
x − ⇀

x0). In a similar

way, we obtain the tail E
α,

⇀
x 0

(
⇀
x), and we have

E
α,

⇀
x 0

(
⇀
x) = Eα(

⇀
x − ⇀

x0) = eα·〈⇀x 0,
⇀
e 〉 · e−α·〈⇀x ,

⇀
e 〉 ∀ ⇀

x≥⇀
x0, α > 0
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Example 2.3.7. Standard Pareto distribution: The tail is

Pα,1(
⇀
x) = (1 + 〈⇀x,⇀

e 〉)−α ∀ ⇀
x≥

⇀

0 , α > 0

By this way we can obtain multidimensional tail functions for all univariate examples
given in section 0.4.

Definition 2.3.8. A first possible generalization of R.L.T. distribution is as follows:

F
t
⇀
e
(
⇀
x) := P (X1 ≤ x1 + t, . . . , Xd ≤ xd + t | X1 > t, . . . , Xd > t)

for all xi ≥ 0, 1 ≤ i ≤ d, t > 0
In short we write

F
t
⇀
e
(
⇀
x) = P (X ≤⇀

x +t· ⇀
e | X > t· ⇀

e ) ∀ ⇀
x∈ Rd

+, t > 0 (2.3.7)

If R(t· ⇀
e ) > 0 ∀ t > 0 then R.L.T. is analytically defined as:

R
t·⇀e (

⇀
x) = min(1,

R(ψ(
⇀
x +t· ⇀

e ))

R(ψ(t· ⇀
e ))

) ∀ ⇀
x≥

⇀

0 , t > 0

where ψ is defined as in notation 2.3.4. More generally, we define

Definition 2.3.9. Let µ ∈ M1(Rd) be any distribution and F is the distribution
function with the tail function R. Hence the R.L.T. distribution may be defined by a
transformation acting on a set of probabilities M1(Rd

+) as
τt : M1(Rd

+) →M1(Rd
+) defined by

τt(µ)(
⇀

0 ,
⇀
x] =

µ(t· ⇀
e ,

⇀
x +t· ⇀

e ]

µ(t· ⇀
e ,∞)

if µ(t· ⇀
e ,∞) > 0 (2.3.8)

Equivalently, for this distribution function

τt(F (
⇀
x)) = Ft(

⇀
x) (2.3.9)

Using equations 2.3.8 and 2.3.9 then:
If F is the distribution function of µ then Ft is the distribution function of τt(µ).
Moreover we have (τt; t ≥ 0) is a continuous one parameter semi-group.

Equivalent representation: If R(t· ⇀
e ) > 0 then

τt(µ(Λ⇀
x
)) :=

µ(Λ⇀
x+t·⇀e )

µ(Λ
t·⇀e )

∀ ⇀
x≥

⇀

0 , t > 0 (2.3.10)
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where Λ⇀
y

is the cuboid defined by

Λ⇀
y

= {⇀
x∈ Rd

+ : yi < xi , 1 ≤ i ≤ d}

Another point of view: Let F be a distribution function of a non-negative random
vector X of Rd

+, and let t 7→ γ(t) ∈ Aff0(R, d) (or ∈ CAT(R, d) ) be some function.

Put for
⇀
y>

⇀

0

R⇀
y
(
⇀
x) :=

R(
⇀
x +

⇀
y )

R(
⇀
y )

, if R(
⇀
y ) > 0.

Assume γ(t)(
⇀
x) >

⇀
x ∀ ⇀

x≥
⇀

0 and t > 0. Then we have

R
t·⇀e (γ̃(t)(

⇀
x)) = R(

⇀
x) ⇐⇒ R(γ(t)(

⇀
x)) = R(t· ⇀

e ) ·R(
⇀
x)

where γ̃(t) :
⇀
x→ γ̃(t)(

⇀
x) := γ(t)(

⇀
x) − t· ⇀

e . We obtain a functional equation of the
type

R(γ(t)(
⇀
x)) = R(t· ⇀

e ) ·R(
⇀
x) = R(γ(t)(

⇀

0)) ·R(
⇀
x) (2.3.11)

similar to the one-dimensional situation. More generally we write

R(γ(t)(
⇀
x)) = c(t) ·R(

⇀
x) (2.3.12)

for some real c(t)(= R(γ(t)(
⇀

0))) > 0. Functional equations of this type (stability
functional equations) will again be important in the sequel.

2.4 The multidimensional lack of memory prop-

erty (M.L.M.P.)

Firstly we discuss shortly generalizations of the lack of memory property. It will turn
out, that for d > 1, this concept is not useful to investigate R.L.T. limit distributions.
Nevertheless we present a few concepts which had been investigated in the past.

2.4.1 The classical lack of memory property

Various generalizations of the lack of memory property were investigated in the past,
such as ”extended form of classical L.M.P. property” See e.g. Galambos [8] (cited
on p.22), and ”strong L.M.P. ” See e.g. Kotz [16] (cited on p.69). Firstly we shall
discuss shortly these concepts connected to a continuous group of transformations:
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Definition 2.4.1. Let X be a random vector of Rd with probability measure µ ∈
M1(Rd). We say that µ possesses the strong L.M.P. iff there exist a continuous group
of transformations (T (t) := γ

I,t·⇀e ∈ S(R, d))t∈R defined by

T (t) :
⇀
x 7→⇀

x +t· ⇀
e

for
⇀
x∈ Rd

+ where
⇀
e= (1, . . . , 1), t ∈ R+ such that

µ(Λ
T (t)(

⇀
x )

) = µ(Λ
T (t)(

⇀
0 )

) · µ(Λ⇀
x
) (2.4.1)

where Λ⇀
y

:= {⇀
x∈ Rd

+ : xi > yi, 1 ≤ i ≤ d} as before

Definition 2.4.2. (Equivalent formulation) Let F be the distribution function of µ
in 2.4.1. Let R denote the tail function, where

R(
⇀
x) = P (X1 > x1, . . . , Xd > xd)

Equation (2.4.1) holds iff

R(x1 + t, . . . , xd + t) = R(t, . . . , t) ·R(x1, . . . , xd) (2.4.2)

which can be written in the equivalent vector form as

R(T (t)(
⇀
x)) = R(t· ⇀

e ) ·R(
⇀
x) = R(T (t)(

⇀

0)) ·R(
⇀
x) (2.4.3)

with T (t)(·) be as in Definition 2.4.1 above.

Definition 2.4.3. (Weak lack of memory property (W.L.M.P.)): We say that F in

2.4.2 possesses the W.L.M.P. iff for all
⇀
x≥

⇀

0 and all
⇀
a∈ E we have

R(
⇀
a ◦ ⇀

x +t
⇀
e ) = R(t· ⇀

e ) ·R(
⇀
a ◦ ⇀

x) (2.4.4)

where
⇀
a ◦ ⇀

x= (a1x1, . . . , adxd) = diag(
⇀
a)

⇀
x and

E := {⇀
a : only one of a,

is is 0 and the others are 1}. (See [16] cited on page 406).

Notation 2.4.4. We define the set of all points which satisfy the condition of
W.L.M.P. with respect to the distribution function F as:

WLM(F ) := {t ⇀
e : t > 0 : (2.4.4) holds ∀ ⇀

x≥
⇀

0 and all
⇀
a∈ E}

And the set of all points which satisfy the condition of S.L.M.P. as:

SLM(F ) := {t ⇀
e : t > 0 : (2.4.2) holds ∀ ⇀

x≥
⇀

0}

It is obvious that SLM(F ) ⊂ WLM(F ).
Now for simplicity we consider the bivariate case (d=2), and we give the following

illustrating examples.
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Example 2.4.5. (2-dimensional exponential distribution)(See example 2.3.5):

R(x1, x2) = exp(−(x1 + x2)) , x1, x2 ≥ 0.

Put T (t) := γ
I,t·⇀e : (x1, x2) 7→ (x1, x2) + t · (1, 1). Then we have

R(T (t)(
⇀
x)) = exp(−(x1 + t, x2 + t))

= exp(−(t+ t)) · exp(−(x1, x2))

= exp(−2 · t) · exp(−(x1, x2))

= exp(−2t) ·R(
⇀
x).

And as above
exp(−2t) = R(t· ⇀

e ) = R(T (t)(
⇀

0))

Hence this distribution possesses the strong L.M.P.

Example 2.4.6. (2-dimensional standard Pareto distribution) (See example 2.3.7):
Consider the 2-dimensional standard Pareto distribution defined by the tail as

P (x1, x2) = (1 + x1 + x2)
−1 , x1, x2 > 0.

Recall that for d = 1, this distribution does not possess the weak L.M.P. (it does not
possesses the strong L.M.P. )

Since these distributions play an important role in the limit laws of residual life
times, therefore we will obtain a suitable generalization of the L.M.P. in the next
section, (stability of R.L.T. distributions) to cover all the limits distributions similar
to Pareto distributions, and later we present this example with some details as R.L.T.
stable distribution.

2.4.2 A generalization of the multidimensional lack of mem-

ory property (G.L.M.P.)

Definition 2.4.7. We say that, the probability measure µ ∈ M(Rd
+) (resp. the dis-

tribution function F or the tail R) possesses the general multidimensional L.M.P. iff
there exist a continuous one parameter group

t 7→ T (t) :
⇀
x 7→ A(t)· ⇀

x +
⇀

b (t) ∈ CAT(R, d), t > 0, with (T (t)(
⇀
x))i →∞ for t→∞,

1 ≤ i ≤ d,
⇀
x>

⇀

0 such that

R(T (t)(
⇀
x)) = R(T (t)(

⇀

0)) ·R(
⇀
x), x ∈ Rd

+ (2.4.5)
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More generally, this can be written as

R(T (t)(
⇀
x)) ≡ c(t) ·R(

⇀
x) (2.4.6)

for some c(t) = R(T (t)(
⇀

0)) >
⇀

0, for all
⇀
x>

⇀

0 .

If there exists
⇀
x0>

⇀

0 such that (T (t)(
⇀
x0))i → ∞ for all i and

⇀
x>

⇀
x0 and if

R(
⇀
x0) >

⇀

0 then

c(t) =
R(T (t)(

⇀
x0))

R(
⇀
x0)

(2.4.7)

For
⇀
y= T (t)(

⇀
x0), t = t(

⇀
y ) > 0 we have

R(
⇀
y ) = c(t) ·R(

⇀
x0) = c(t(

⇀
y )) ·R(

⇀
x0) (2.4.8)

Hence for
⇀
y in the orbit {T (t)(

⇀
x0), t > 0}, R(

⇀
y ) is uniquely determined by T (·) and

the function c(·)
Remark 2.4.8. We consider a multidimensional case of example 2.4.5 :

R(
⇀
x) = exp(−〈⇀x,⇀

e 〉) ,⇀
x∈ Rd

+. As in the case d = 2 we have

R(T (t)(
⇀
x)) = c(t) ·R(

⇀
x).

with c(t) = R(T (t)(
⇀

0)) = R(t· ⇀
e ) = e−d·t.

Example 2.4.9. Consider the 2-dimensional standard Pareto distribution defined by
the tail R = P given in example 2.4.6 :

R(x1, x2) = (1 + x1 + x2)
−1 , x1, x2 > 0.

We define T (t) ∈ CAT(R, d) by T (t) := γ
et·I,(et−1)· 1

2

⇀
e
. Then we have

R(T (t)(
⇀
x)) = (1 + et〈⇀x,⇀

e 〉+
et − 1

2
· 〈⇀e ,⇀

e 〉)−1

= (et〈⇀x,⇀
e 〉+ et)−1

= e−t(1 + 〈⇀x,⇀
e 〉)−1

= e−tR(
⇀
x).

Hence the equation (2.4.6) follows with c(t) = e−t. Hence this distribution possesses
the G.L.M.P. Moreover we observe that

R(T (t)(
⇀

0)) = (1 + 0 +
et − 1

2
〈⇀e ,⇀

e 〉)−1 = e−t = c(t).

Hence the equation 2.4.5 also follows.
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Example 2.4.10. (Direct products): Assume µi to be distributions with tails Ri on

Rdi , i = 1, 2 which have the affine groups T
(i)
t acting on Rdi . Put d := d1 + d2 define

Tt : Rd = Rd1 ⊕ Rd2 → Rd by Tt(
⇀
x

(1)
⊕ ⇀
x

(2)
) := (T

(1)
t

⇀
x

(1)
)⊕ (T

(2)
t

⇀
x

(2)
).

And let F denote the distribution function of µ1 ⊗ µ2 with tail R . Hence

R(
⇀
x

(1)
⊕ ⇀
x

(2)
) = R1(

⇀
x

(1)
) ·R2(

⇀
x

(2)
) for all

⇀
x=

⇀
x

(1)
⊕ ⇀
x

(2)
∈ Rd

+.

Assume thatRi possess the G.L.M.P. w.r.t T
(i)
t , i = 1, 2. ThenR possess the G.L.M.P.

w.r.t. (Tt). In fact, we have Ri(T
(i)
t (

⇀
x

(i)
)) = ci(t) ·Ri(

⇀
x

(i)
), i = 1, 2.

Put
⇀
x=

⇀
x

(1)
⊕ ⇀
x

(2)
. Hence

R(Tt
⇀
x) = R1(T

(1)
t

⇀
x

(1)
) ·R2(T

(2)
t

⇀
x

(2)
)

= c1(t)c2(t) ·R(
⇀
x

(1)
⊕ ⇀
x

(2)
)

Hence F possesses the G.L.M.P. (with c(t) = c1(t) · c2(t)).
Note that the exponential distribution in 2.4.8 is a direct product of one-dimensional
ones, however the Pareto distribution 2.4.9 is not representable as a direct product.

2.5 Solutions of the stability functional equation

(Multidimensional case)

In this section we solve a multidimensional general stability functional equation (2.4.6)
which appeared in the preceding section. Firstly we consider the continuous case and
we begin with the the following assumptions.
Let Λ : A ⊆ Rd → (0, 1] be a non- constant decreasing continuous function defined on
some subset A of Rd. Let (γ(t))t∈R be a one-parameter group of CAT(R, d). Assume
that γ(t+ s) = γ(t)γ(s), t, s ∈ R (additive parameterization)
resp. γ̃(uv) = γ̃(u) · γ̃(v), u, v > 1 ( multiplicative parameterization). Assume that

Λ(γ(t)(
⇀
x)) = c(t) · Λ(

⇀
x) ,

⇀
x>

⇀

0 (2.5.1)

Assume in 2.5.1 that

(γ(t)(
⇀
x))i

t→∞−→ ∞ , 1 ≤ i ≤ d,
⇀
x>

⇀

0 (2.5.2)

Furthermore
0 ≤ Λ ≤ 1 and Λ(

⇀
x) → 0 if xi →∞, 1 ≤ i ≤ d. (2.5.3)
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The solution in the continuous case: According to the structure of affine trans-
formations and the subgroups of CAT′s of Rd presented in section 2.1, we consider
the following two cases:

A1) γ(t)(
⇀
x) = t · (⇀

x +
⇀
x0)−

⇀
x0 with a fixed point

⇀
x?= − ⇀

x0 ,
⇀
x0>

⇀

0 (multiplicative
parameterization).

A2) γ(t)(
⇀
x) =

⇀
x +t

⇀
x0 for

⇀
x0>

⇀

0(additive parameterizations).

Firstly we consider the case A1), and we begin with the following descriptions

Remark 2.5.1. Let γ(t)(
⇀
x) be as in case A1), and assume Λ to be a solution of

(2.5.1). For A ⊆ Rd
+, let

Aγ := {γ(t)(⇀
x) : t > 0,

⇀
x∈ A}. (2.5.4)

Then there exists a unique extension of Λ to Aγ such that t 7→ c(t) is a continuous
homomorphism (R×

+, ·) → (R×
+, ·), and immediately we obtain c(t) = tβ for some real

β. According to 2.5.2, and 2.5.3 we have c(t)
t→∞−→ 0, for t→∞ hence we write β = −α

for some α > 0. Therefore, the extension of Λ is given by

Λ(γ(t)(
⇀
x)) = t−α · Λ(

⇀
x) ,

⇀
x∈ Aγ, t > 0. (2.5.5)

Note that for A = Rd
+ we obtain the following description:

Proposition 2.5.2. Let Q = 〈⇀x0〉⊥ = {
⇀
q : 〈

⇀
q ,

⇀
x0〉 = 0}. For any

⇀
x∈ Rd

+ there exists

a unique
⇀
q=

⇀
q⇀

x
∈ Q such that

⇀
x= γ(t)(

⇀
q ) for some (unique) t = t(

⇀
x) > 0. Indeed,

t = t(
⇀
x) = 1 + 〈⇀x ,

⇀
x 0〉

〈⇀x 0,
⇀
x 0〉

,
⇀
q=

⇀
q⇀

x
= γ(1

t
)(

⇀
x)

Proof. If t(
⇀
x) ,

⇀
q⇀

x
exist, then

⇀
q= γ(1

t
)(

⇀
x) = 1

t
(
⇀
x +

⇀
x0)−

⇀
x0 and

〈
⇀
q ,

⇀
x0〉 = 0. Put c := 〈⇀x0,

⇀
x0〉. Since 〈

⇀
q ,

⇀
x0〉 = 0 hence

1
t
〈⇀x,⇀

x0〉 + 1
t
· c − c = 0 =⇒ t · c = 〈⇀x,⇀

x0〉 + c. Hence t = t(
⇀
x) = 1 + 1

c
〈⇀x,⇀

x0〉 and

hence
⇀
q=

⇀
q⇀

x
= 1

t(x)
· (⇀
x +

⇀
x0)−

⇀
x0 .

Conversely, if t(
⇀
x),

⇀
q⇀

x
are defined in this way we obtain

⇀
x= γ(t(

⇀
x))(

⇀
q⇀

x
).

Remark 2.5.3. Let
⇀
q∈ Q. Then γ(t)(

⇀
q ) ∈ Q iff t = 1.
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Proof.

γ(t)(
⇀
q ) ∈ Q,

⇀
q∈ Q ⇐⇒ 〈γ(t)(

⇀
q ),

⇀
x0〉 = 0 and 〈

⇀
q ,

⇀
xo〉 = 0

⇐⇒ 〈t · (
⇀
q +

⇀
x0)−

⇀
x0,

⇀
x0〉 = 0 and 〈

⇀
q ,

⇀
xo〉 = 0

⇐⇒ t · 〈
⇀
q ,

⇀
x0〉+ t · 〈⇀x0,

⇀
x0〉 − 〈

⇀
x0,

⇀
x0〉 = 0 and 〈

⇀
q ,

⇀
x0〉 = 0

⇐⇒ (t− 1) · 〈⇀x0,
⇀
x0〉 = 0

⇐⇒ t = 1

as asserted.

Corollary 2.5.4. If we normalize
⇀
x0 such that

c = 〈⇀x0,
⇀
x0〉 = ‖ ⇀

x0 ‖2
2 = 1 then t = t(

⇀
x) = 1 + 〈⇀x,⇀

x0〉 and hence

⇀
q=

⇀
q⇀

x
=

1

1 + 〈⇀x,⇀
x0〉

· (⇀
x +

⇀
x0)−

⇀
x0 .

Note that
⇀
q⇀

x
is well defined as long as 1 + 〈⇀x,⇀

x0〉 > 0, hence for {⇀
x: 〈⇀x,⇀

x0〉 > −1},
in general for {⇀

x: 1
c
〈⇀x,⇀

x0〉 > −1}, so at least for

〈⇀x0〉+ := {⇀
x: 〈⇀x,⇀

x0〉 ≥ 0}

Lemma 2.5.5. For all
⇀
x∈ 〈⇀x0〉+, all t > 0 we have

⇀
q⇀

x
=

⇀
q

γ(t)(
⇀
x )

Proof. We have
⇀
q⇀

x
∈ Q (:= 〈⇀x0〉⊥) therefore

⇀
q

γ(t)(
⇀
x )
∈ Q since

〈
⇀
q

γ(t)(
⇀
x )
,
⇀
x0〉 = 〈

⇀
q⇀

x
,
⇀
x0〉 = 0 (2.5.6)

Moreover we obtain (using multiplicative parameterization)

⇀
q

γ(t)(
⇀
x )

= γ(
1

t · t(⇀
x)

) · γ(t)(γ(t(⇀
x))(

⇀
q⇀

x
)) =

⇀
q⇀

x

Hence the assertion.

Remark 2.5.6. We have proved: If for
⇀
x∈ 〈⇀x0〉+ the orbit of γ(·) is given by

{γ(t)(⇀
x) : t > 0}. Then 〈⇀x0〉+ is the disjoint union of orbits and any orbit intersects

Q = {〈⇀x0〉⊥} in exactly one point, namely in
⇀
q⇀

x
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Theorem 2.5.7. According to A1) with γ(t)(
⇀
x) = t · (⇀

x +
⇀
x0)−

⇀
x0 , for t > 0,

⇀
x∈ 〈⇀x0〉+ and c(t) = t−α for α > 0, c = 〈⇀x0,

⇀
x0〉 we have

Λ is a solution of (2.5.1) ⇐⇒ Λ(
⇀
x) = ϕ(

⇀
q⇀

x
) · (1 +

1

c
〈⇀x,⇀

x0〉)−α (2.5.7)

for some function ϕ : Q→ (0, 1].

Proof. ” ⇐= ” Assume Λ has the form 2.5.7. Then we have

Λ(γ(t)(
⇀
x)) = ϕ(

⇀
q

γ(t)(
⇀
x )

) · (1 +
1

c
· 〈t · (⇀

x +
⇀
x0)−

⇀
x0,

⇀
x0〉)−α

= ϕ(
⇀
q

γ(t)(
⇀
x )

) · (1 +
1

c
· 〈t · (⇀

x +
⇀
x0),

⇀
x0〉 −

1

c
〈⇀x0,

⇀
x0〉)−α

= ϕ(
⇀
q⇀

x
) · (1

c
· t · (〈⇀x,⇀

x0〉+ 〈⇀x0,
⇀
x0〉))−α

= ϕ(
⇀
q⇀

x
) · t−α · (1 +

1

c
〈⇀x,⇀

x0〉)−α

= t−α · Λ(
⇀
x)

” =⇒ ” Assume that Λ satisfies 2.5.1. Let
⇀
x∈ 〈⇀x0〉+. Hence

⇀
x= γ(t)(

⇀
q ) with

t = t(
⇀
x) ,

⇀
q=

⇀
q⇀

x
. Then we obtain

Λ(
⇀
x) = Λ(γ(t)(

⇀
q⇀

x
))

= c(t(
⇀
x)) · Λ(

⇀
q⇀

x
)

= (1 +
1

c
〈⇀x,⇀

x0〉)−α · Λ(
⇀
q⇀

x
).

Hence the assertion with ϕ(
⇀
q ) = Λ(

⇀
q ),

⇀
q∈ Q.

Now we consider the case A2). Let γ(t)(
⇀
x) =

⇀
x +t

⇀
x0 as in A2). Define Aγ be

as in 2.5.4 before. Put again Q = 〈⇀x0〉⊥. Hence we obtain t 7→ c(t) is a continuous
homomorphism, and by using the additive parameterization we obtain c(t) = e−β·t

for some real β > 0. Analogously, there exists a unique extension of Λ to Aγ ( in this

case (Rd
+)γ = Rd), and again for any

⇀
x∈ 〈⇀x0〉⊥ there exists a unique representation

⇀
x= γ(t)(

⇀
q⇀

x
) with t = t(

⇀
x) ≥ 0, and 〈

⇀
q⇀

x
,
⇀
x0〉 = 0. In fact

γ(t)(
⇀
q⇀

x
) =

⇀
q⇀

x
+t· ⇀

x0=
⇀
x hence we have

⇀
q⇀

x
=

⇀
x −t· ⇀

x0 and we obtain

〈
⇀
q⇀

x
,
⇀
x0〉 = 〈⇀x,⇀

x0〉 − t · 〈⇀x0,
⇀
x0〉 = 0 (2.5.8)

Therefore

t = t(
⇀
x) =

1

c
· 〈⇀x,⇀

x0〉 with 〈⇀x0,
⇀
x0〉 =: c (2.5.9)
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and
⇀
q⇀

x
=

⇀
x −1

c
· 〈⇀x,⇀

x0〉·
⇀
x0. (2.5.10)

Again, obviously
⇀
q⇀

x
=

⇀
q

γ(t)(
⇀
x )

for all t.

Theorem 2.5.8. According to A2) with γ(t) :
⇀
x 7→⇀

x +t· ⇀
x0 and with c(t) = e−β·t,

c = 〈⇀x0,
⇀
x0〉,

⇀
x∈ Rd, t ∈ R we have

Λ fulfils the functional equation 2.5.1 ⇐⇒ Λ(
⇀
x) = e−

β
c
〈⇀x ,

⇀
x 0〉 · ϕ(

⇀
q⇀

x
) (2.5.11)

for some function ϕ : Q→ (0, 1], where
⇀
q⇀

x
∈ 〈⇀x0〉⊥ defined in 2.5.10

Proof. ” =⇒ ” Assume

Λ(γ(t)(
⇀
x)) = e−β·t · Λ(

⇀
x) , c(t) = e−β·t

Then , for
⇀
x∈ 〈⇀x0〉+,

⇀
x= γ(t(

⇀
x))(

⇀
q⇀

x
) =

⇀
q⇀

x
+1

c
〈⇀x,⇀

x0〉·
⇀
x0 . Hence

Λ(
⇀
x) = e−β·t(⇀

x ) · Λ(
⇀
q⇀

x
) = e−β· 1

c
〈⇀x ,

⇀
x 0〉 · Λ(

⇀
q⇀

x
)

Whence the assertion with ϕ(
⇀
q⇀

x
) = Λ(

⇀
q⇀

x
).

” ⇐= ” Conversely, for Λ(
⇀
x) = ϕ(

⇀
q⇀

x
) · e−β

c
·〈⇀x ,

⇀
x 0〉 we obtain

Λ(γ(t)(
⇀
x)) = ϕ(

⇀
q

γ(t)(
⇀
x )

) · e−
β
c
·〈γ(t)(

⇀
x ),

⇀
x 0〉

= ϕ(
⇀
q⇀

x
) · e−

β
c
·〈⇀x+t·⇀x 0,

⇀
x 0〉

= ϕ(
⇀
q⇀

x
) · e−

β
c
·〈⇀x ,

⇀
x 0〉 · e−

β
c
〈⇀x 0,

⇀
x 0〉·t

= Λ(
⇀
x) · e−β·t

as asserted.

Notation 2.5.9. It is easily seen that the solutions of the stability functional equation
obtained in 2.5.7 and 2.5.8 have R.L.T. stable one-dimensional marginals.

Example 2.5.10. Bivariate Pareto distribution

Let R(
⇀
x) = R(x1, x2) = (1 + x1 + x2)

−α, for (x1, x2) =
⇀
x ≥

⇀

0 .

Then R(
⇀
x) = P (

⇀

X>
⇀
x) for a random vector

⇀

X= (ξ, η). Hence

P (ξ > x1) = P (ξ > x1, η ∈ R1)

= P (ξ > x1, η ≥ 0) (since η ≥ 0)

= R((x1, 0))

= (1 + x1)
−α, a tail of a one dimensional Pareto distribution.
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Analogously

P (η > y) = P (ξ ∈ R1, η > y)

= P (ξ ≥ 0, η > y) (since ξ ≥ 0)

= R((0, y))

= (1 + y)−α again a tail of a Pareto distribution.

In fact, we have no complete solution of the functional equation in the multivariate
case. We obtained solutions in the cases A1) and A2). Moreover, if γ(·) is the direct
sum of groups γ(i)(·) of these types, then as in example 2.4.10, we obtain a solution
if Λ splits as direct product of functions Λi fulfilling γ(i)(·) on the corresponding sub-
groups.
If γ(·) is a subgroup of Aff0(R, d) as above, not of type A1) or A2) then
γ(t)(Rd

+) ⊆ Rd
+. Let Q ⊆ Rd

+ be a cross-section w.r.t. γ(·), then, as above, the solu-
tions Λ are given as

Λ(
⇀
x) = c(t⇀

x
) · f(

⇀
q⇀

x
)

for
⇀
x= γ(t⇀

x
)(

⇀
q⇀

x
),

⇀
q⇀

x
∈ Q, t⇀

x
> 0.

But in contract to the cases A1), A2) the cross-section will in general not be explicitly
known.

2.6 The decomposability semigroup of R.L.T. dis-

tributions

Here we introduce a concept which has been successfully used for investigations in
(operator) semi-stability for random vectors in the case of multidimensional vector
spaces. and for a group valued random variables, as in 1.5, and according to the
structure of the subgroup of CAT(R, d), d > 1, we begin with the general definition
of decomposability semigroup of R.L.T. distributions.

Definition 2.6.1. Let R be a non-degenerate tail function and
⇀
x0=

⇀
x0 (R) ≥

⇀

0 ,

R(
⇀
x) > 0 ∀ ⇀

x≥
⇀

0 . We define the R.L.T. decomposability semigroup

Dec(R) := {γ ∈ CAT(R, d) : γ = γ
A,

⇀
b

with A = diag(a1, . . . , ad), ai ≥ 1,
⇀

b≥
⇀

0 such

that R(γ(
⇀
x)) = c(γ) ·R(

⇀
x) for all

⇀
x≥⇀

x0, c = c(γ) ∈ (0, 1]}.
Remark 2.6.2. The assumption on γ = γ

A,
⇀
b
∈ Dec(R) implies that either

• γ = γ
I,

⇀
0

= id or
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• γ is a shift, γ = γ
I,

⇀
b

,
⇀

b>
⇀

0 or

• γ has a fixed point
⇀
x?≤

⇀

0 with

γ(
⇀
x) = A · (⇀

x − ⇀
x?)+

⇀
x?= A· ⇀

x +(A− I)(− ⇀
x?)

hence
⇀

b= (A− I)(− ⇀
x?) ≥

⇀

0 . (See 2.1).

In particular, γ is (strictly) increasing on Rd
+ hence

γ(
⇀
x) ≥⇀

x0 for all
⇀
x≥⇀

x0 (2.6.1)

Obviously we have

Proposition 2.6.3. Let R be a fixed tail function. Then we have: Dec(R) is a closed
subsemigroup of CAT+(R, d) and γ 7→ c(γ) is a continuous homomorphism
c : Dec(R) → ((0, 1], ·)

Proof. Let γ, γ̃ ∈ Dec(R). According to the remark 2.6.2 we have

R((γ ◦ γ̃)(⇀
x)) = c(γ) ·R(γ̃(

⇀
x)) = c(γ)c(γ̃) ·R(

⇀
x) (2.6.2)

for
⇀
x≥⇀

x0 such that γ̃(
⇀
x) ≥⇀

x0. At the same time we have

R(γ ◦ γ̃)(⇀
x) = c(γ ◦ γ̃) ·R(

⇀
x) (2.6.3)

Hence γ 7→ c(γ) is a homomorphism. To prove continuity of c let
⇀
x≥⇀

x0 with

R(
⇀
x) > 0 such that γ(

⇀
x) is a continuity point of R. Assume γn → γ. Then

R(γn(
⇀
x)) → R(γ(

⇀
x)).Whence c(γn) → c(γ) and the continuity of c follows. Moreover

we have
R(γ(

⇀
x)) = c(γ) ·R(

⇀
x)

Moreover we have

Proposition 2.6.4. If R is non-degenerate, then c : Dec(R) → (0, 1] is a closed map

Proof. Let {αn} ⊆ im(c), i.e. αn = c(γn) with γn ∈ Dec(R), 0 < αn ≤ 1 and assume

further αn → α ∈ (0, 1]. If
⇀
x0>

⇀

0 replace R by R̃ such that

R̃(
⇀
x) :=

R(
⇀
x)

⇀
x≥⇀

x0

1
⇀
x�⇀

x0 d.h. ∃i : xi < (
⇀
x0)i
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Note that R̃ is a tail function. In fact, assume R(
⇀
x) = P (X >

⇀
x) for some random

vector X. Put Y := X∨ ⇀
x0 . Then R̃(

⇀
x) = P (Y >

⇀
x). Then we have

R̃(γn(
⇀
x)) = αn ·R(

⇀
x)

w−→ α ·R(
⇀
x),

⇀
x>

⇀
x0

On the other hand

R̃(γn(
⇀
x)) =

R(γn(
⇀
x)) γn(

⇀
x) ≥⇀

x0 ⇐⇒
⇀
x> γ−1

n (
⇀
x0)

1 γn(
⇀
x) �⇀

x0

Hence for
⇀
x≥⇀

x0 we have γn(
⇀
x) ≥ γn(

⇀
x0) ≥ x0 (by (2.6.1))

R̃(γn(
⇀
x)) = c(γn) ·R(

⇀
x) = αn ·R(

⇀
x) (2.6.4)

If we define

S(
⇀
x) :=

α ·R(
⇀
x)

⇀
x≥⇀

x0

1
⇀
x�⇀

x0

we obtain R̃(γn(·)) w−→ S. According to equation (2.6.4) we obtain

R(γn(
⇀
x)) = αn ·R(

⇀
x)

w→ α ·R(
⇀
x) = S(

⇀
x) (2.6.5)

Whence by the convergence of types theorem given in section 2.4 we have (γn) is

relatively compact in Aff(R, d). Moreover R(γ(
⇀
x)) = α · R̃(

⇀
x) for all accumulation

points γ. Moreover

R(γn(
⇀
x))

w→ R(γ(
⇀
x)) (2.6.6)

Therefore, there exist γ ∈ Dec(R) with c(γ) = α. (In fact, by 2.2.10, γn → γ follows).
Thus c is a closed map, in particular , im(c) is closed. Moreover Dec(R) is a closed
sub-semigroup of CAT(R, d).

Note that we have to extend Dec(R) to a group D̃ec(R). In analogy to investiga-
tions of semi-stable laws on vectors spaces, we define the invariance group.

Definition 2.6.5. Let R be any tail function, R > 0. We define

Inv?(R) := {γ ∈ CAT(R, d), γ ↗: ∃ ⇀
xγ such that R(γ(

⇀
x)) = R(

⇀
x),

⇀
x≥⇀

xγ}
Inv?(R) is called the invariance group of R. Note that by the direct product represen-
tation CAT(R, d) =

⊕
Aff0(R, 1) it easily follows that

Inv?(R) = Inv(R) = {id}. (See 2.2.9).
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Remark 2.6.6. The assumption R(
⇀
x) >

⇀

0 for all
⇀
x which will be used in the sequel

is not a serious restriction: Assume there exists γ ∈ Dec(R), γ 6= id, and assume

furthermore R(
⇀
x1) > 0 for some

⇀
x1>

⇀

0 . Then R(
⇀
x) >

⇀

0 on Rd
+.

Proof. Since R(γn(
⇀
x1)) = c(γ)nR(

⇀
x1), and by assumption we have

(γn(
⇀
x1))i ↗∞ for all i. Hence for all

⇀
x>

⇀

0 there exist n such that γn(
⇀
x1) >

⇀
x .

Proposition 2.6.7. The group Dec(R) is embeddable into a closed subgroup

D̃ec(R) ⊆ CAT(R, d) such that c extends to a continuous injective homomorphism

c̃ : D̃ec(R) → (R×
+, ·) with ker(c) = Inv?(R) = {id}.

Proof. Let D̃ec(R) denote the closed subgroup generated by Dec(R).

Let γ, τ ∈ Dec(R), γτ−1 ∈ D̃ec(R). For all sufficiently large
⇀
y we have

R(τ−1(
⇀
y )) = 1

c(τ)
R(

⇀
y ) as in the case d = 1. Whence R(γτ−1(

⇀
y )) = c(γ)

c(τ)
·R(

⇀
y ) follows.

We obtain
R(γτ−1(

⇀
y )) = c̃(γτ−1) ·R(

⇀
y ).

with c̃(γτ−1) := c(γ)
c(τ)

. Hence

R(
⇀
y ) = c(τ) ·R(

⇀
x) = c(τ) ·R(τ−1(

⇀
y ))

for
⇀
x≥⇀

x0, for
⇀
y= τ(

⇀
x) ≥ τ(

⇀
x0).

As easily seen, c̃ extends to D̃ec(R), and c̃ is a closed homomorphism.

Therefore, the preceding results extend immediately to the group

D̃ec(R) ⊆ Aff0(R)

Theorem 2.6.8. With the notations introduced above we have:

a) Dec(R) is a closed sub-semigroup of the closed subgroup D̃ec(R) ⊆ CAT(R, d)

b) γ 7→ c̃(γ) is a closed continuous homomorphism D̃ec(R) −→ ((0,∞), ·)

Remark 2.6.9. im(c̃) ∩ (0, 1] is a multiplicative semigroup, which is closed since c̃ is
closed map. Therefore either

• im(c̃) = (0, 1] or

• im(c̃) = {qk : k ∈ Z+} for some 0 < q < 1 or

• im(c̃) = {1}

Therefore we obtain the following
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Theorem 2.6.10. Let R be as above. Then either

a) im(c̃) = {1} (i.e. Dec(R) = {id} = Inv(R)) or

b) there exist γ ∈ Dec(R) such that Dec(R) = {γk : k ∈ Z+} or

c) there exists a continuous one-parameter group R 3 t 7→ γ(t) (additive parameter-
ization) such that
{γ(t) : t ∈ R} ⊆ Dec(R), {γ(t) : t ≥ 0} ⊆ Dec(R) and c(γ(t)) = qt(= e−βt) for
some q ∈ (0, 1) (β = − log q).

Proof. In fact, if D̃ec(R) 6= {id}, then for any γ ∈ D̃ec(R) , c(γ) ∈ (0, 1), obviously

{γk} ⊆ D̃ec(R), c(γk) = c(γ)k.

• If im(c) = {qk : k ∈ Z+}, there exists γ ∈ D̃ec(R) with c̃(γ) = q. Now (b)follows.

• If im(c) = (0, 1], γ 7→ c̃(γ) ∈ (0,∞) is a continuous homomorphism of the Lie

group G := D̃ec(R) onto ((0,∞), ·). G being closed, we conclude G/G0 is at
most countable. Therefore there exists a continuous homomorphism

((0,∞), ·) −→ D̃ec(R) where u 7→ γ̃(u) such that c̃(γ̃(u)) = u, u > 0. Passing
to additive parameterization, γ(t) := γ̃(e−t), u = et yields the assertion (for
q = e−1).

We have to show γ(t) ∈ Dec(R), t > 0: Since R(γ(t)(
⇀
x)) = qt ·R(

⇀
x)

t→∞−→ 0 it

is obvious that (γ(t)(x))i
t→∞−→ ∞ for all

⇀
x≥⇀

x0 (resp. ≥
⇀

0), i = 1, . . . , d.
Hence γ(t) ∈ Dec(R), t > 0.

Corollary 2.6.11. Let R be as above. Let D ⊆ D̃ec(R), D 6= {id},

C := {c(γ) : γ ∈ D} ⊆ (0, 1]

Then either

a) the group 〈C〉 generated by C is discrete {qk : k ∈ Z+}. (Then R is residual life
time semi-stable, with Dec(R) = {γk : k ∈ Z+} (see Def. 2.7.1 and 2.7.2 below)
or

b) 〈C〉 is dense in (0, 1], then c(Dec(R)) = (0, 1] and there exists a one-parameter
group γ(·) such that (e.g. with additive parameterization) c(γ(t)) = qt , t ≥ 0.
(I.e. in this case R is residual life time stable, see 2.7.1 and 2.7.2 below).
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2.7 Limit theorems for multivariate R.L.T. distri-

bution (d > 1)

In view of the discussion in 1.6 and 1.7 for d = 1, we define multivariate R.L.T.
(semi-) stability:

Definition 2.7.1. Let µ ∈M1(Rd
+) with distribution function F and tail function R.

Let (γ(t))t∈R be a continuous one-parameter group in CAT+(R, d) and γ ∈ CAT(R, d)
with (γn(

⇀
x))i

n→∞−→ ∞ ,1 ≤ i ≤ d, for
⇀
x>

⇀

0 . Then µ (resp. F , resp. R) is called R.L.T.
stable w.r.t. γ(·) if

R(γ(t)(
⇀
x))

R(γ(t)(
⇀

0))
= R(

⇀
x),

⇀
x≥

⇀

0 , t > 0 (2.7.1)

Analogously, µ (resp. F , resp. R) is called R.L.T. semi stable w.r.t. γ(·) if

R(γ(
⇀
x))

R(γ(
⇀

0))
= R(

⇀
x),

⇀
x≥

⇀

0 (2.7.2)

Using the concept of the decomposability semi-group in 2.6 we obtain an equivalent
description:

Theorem 2.7.2. Let µ, F , R be as above. Then we have

a) µ (resp. F , resp. R) is R.L.T. semi-stable iff Dec(R) \ {id} 6= ∅

b) µ (resp. F , resp. R) is R.L.T. stable if there exists a continuous one- parameter
group (e.g. with additive parameterization ) γ(·) ⊆ CAT+(R, d) such that
γ(t) ∈ Dec(R) \ {id}, t > 0.

Proof. As a consequence of definition 2.7.1 above and definition 2.6.1 (if we put
⇀
x0=

⇀

0)

Moreover, if F is non-degenerate we obtain by proposition 2.6.4 (resp. Theorem
2.6.10):

Proposition 2.7.3. Let µ be non-degenerate then µ (resp. F , resp. R) is R.L.T.
stable iff the image im(c) is dense in (0, 1] where, c : Dec(µ) → ((0, 1], ·) is the
homomorphism defined in definition 2.6.1 (resp. 2.6.3)

And furthermore we note that

Proposition 2.7.4. Let µ (resp. F , resp. R) be as above. Then µ (resp. F , resp. R)
is R.L.T. stable w.r.t. (γ(t), t > 0) iff the tail R is a solution of the functional equation
(2.5.1)
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Analogously, we have

Proposition 2.7.5. µ is R.L.T. semi- stable w.r.t. (γ(t))t>0 iff the tail R is a solution
of the discrete analogue of (2.5.1) i.e

R(γ(
⇀
x)) = c ·R(

⇀
x) ,

⇀
x>

⇀

0 , (2.7.3)

(and hence R(γk(
⇀
x)) = ck ·R(

⇀
x), k ∈ Z+) (2.7.4)

2.8 Domains of attraction of (semi-) stable R.L.T.

distributions (d > 1)

Next we define domains of R.L.T. (semi-) stable attraction in the multivariate case.

Definition 2.8.1. Let µ ∈M1(Rd
+) with distribution function F and tail function R.

Let λ be non-degenerate with distribution function G and tail function Λ. Then we
have the following:

a) µ (resp. F , resp. R) belongs to the domain of semi-stable R.L.T. attraction of
Λ if there exist β ∈ (0, 1], γn ∈ CAT+(R, d) such that

(γn(
⇀
x))i

n→∞−→ ∞, 1 ≤ i ≤ d,
⇀
x>

⇀

0 , and

1) R(γn+1(
⇀
0 ))

R(γn(
⇀
0 ))

n→∞−→ β

2) R(γn(
⇀
x ))

R(γn(
⇀
0 ))

w−→ Λ(
⇀
x),

⇀
x≥

⇀

0

b) µ (resp. F , resp. R) belongs to the domain of R.L.T. stable attraction of Λ if
there exist γn ∈ CAT+(R, d) as in (a) such that

1)′ R(γn+1(
⇀
0 ))

R(γn(
⇀
0 ))

n→∞−→ 1, and

2)′ R(γn(
⇀
x ))

R(γn(
⇀
0 ))

w−→ Λ(
⇀
x),

⇀
x≥

⇀

0

c) µ belongs to the normal domain of semi-stable R.L.T. attraction of Λ if in (a) we
have γn = γn for some γ ∈ CAT+(R, d)

d) µ belongs to the normal domain of stable R.L.T. attraction of Λ if for some one-

parameter group (γ(t) : t > 0) ⊆ CAT+(R, d) with (γ(t)(
⇀
x))i

t→∞−→ ∞, 1 ≤ i ≤ d,
⇀
x>

⇀

0 and R(γ(t)(
⇀
x ))

R(γ(t)(
⇀
0 ))

t→∞−→ Λ(
⇀
x)
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Remark 2.8.2. As well known, the situation (b) of the above definition,
R(γn+1(

⇀
0 ))

R(γn(
⇀
0 ))

n→∞−→ 1 implies that for any β ∈ (0, 1) there exist a subsequence (nj) with

R(γnj+1
(
⇀

0))

R(γnj
(
⇀

0))

n→∞−→ β.

I.e. µ is in the domain of semi-stable R.L.T. attraction of Λ for any 0 < β ≤ 1.

Proposition 2.8.3. a) If the domain of semi-stable R.L.T. attraction of Λ is non
empty then Λ is R.L.T. semi-stable.

b) If the domain of R.L.T. stable attraction of Λ is non empty , then Λ is R.L.T.
stable.

Proof. a) As a consequence of the convergence of type theorem we have: Assume in
definition 2.8.1(a) that (1) and (2) are satisfied. Then

R(γn+1(
⇀
x))

R(γn+1(
⇀

0))
=
R(γn(γ−1

n γn+1)(
⇀
x))

R(γn(
⇀

0))
· R(γn(

⇀

0))

R(γn+1(
⇀

0))

n→∞−→ Λ(
⇀
x) (2.8.1)

Hence we have

R(γn(γ−1
n γn+1)(

⇀
x))

R(γn(
⇀

0))
=: Hn(

⇀
x) → β · Λ(

⇀
x), a non degenerate limit. (2.8.2)

According to the convergence of types theorem, {γ−1
n γn+1} is relatively compact

with accumulation points {γ} = γ · Inv(Λ). Since Inv(Λ) = {id},

γ−1
n γn+1 → γ ∈ CAT(R, d)

Thus we have
Hn(

⇀
x)

w−→ β · Λ(γ(
⇀
x)) (2.8.3)

therefore, (using C.T.T. in equations 2.8.2 and 2.8.3 ) we have

Λ(γ(
⇀
x)) = β · Λ(

⇀
x) as asserted. (2.8.4)

b) To prove (b), note that by the above remark 2.8.2 for any β ∈ (0, 1] there exists

γβ ∈ Dec(Λ) with Λ(γβ(
⇀
x)) = β · Λ(

⇀
x). I.e. im(c) = (0, 1], and therefore there

exists a one-parameter group γ(·) ⊆ D̃ec(µ) with c(γ(t)) = t , 0 < t ≤ 1.
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On the other hand, we obtain immediately

Proposition 2.8.4. Let Λ be R.L.T. stable (resp. semi-stable ). Then the normal
domains of R.L.T. (semi-) stable attraction are non empty.

Proof. In fact, as for d = 1 it is easily shown that Λ itself belongs to the normal
domain of attraction. I.e. the assertion.

2.9 R.L.T. stability and max-stability for d > 1

Finally we sketch how the results of section 1.6–1.8 might be generalized to the
multivariate case.

Notation 2.9.1. Let F ∈M1(Rd) be an infinitely divisible distribution function, i.e.
F t is a distribution function for all t > 0.
Put −H := logF , H(

⇀
x) := ∞ if F (

⇀
x) = 0.

1 − H is a distribution function. (Hence H playes the role of a tail of a (possible

unbounded) measure), hence H = lim
t→0

1−F t

t
(resp. −H = lim

t→0

F t−1
t

is increasing). We

observe
F t = exp(−t ·H), t > 0.

Theorem 2.9.2. Let γ(·) ⊆ CAT+(R, d) be a continuous one-parameter group. Then
the following are equivalent:

(i) F (γ(t)(
⇀
x)) = F t(

⇀
x), i.e. F is max stable

(ii) H satisfies the functional equation (2.5.1)

H(γ(t)(
⇀
x)) = t ·H(

⇀
x)

where we define 0t := 0, t · ∞ =: ∞, e−∞ = 0.

Proof. Obvious, since F t(
⇀
x) = e−t·H(

⇀
x )

And the correspondence of the domains of attraction follows by

Theorem 2.9.3. Let G and F be non-degenerate distribution functions in M1(Rd
+).

Assume F = exp(−H), F (
⇀
x) > 0, G(

⇀
x) < 1 for

⇀
x>

⇀

0 . Let γn ∈ CAT+(R, d). Then

G(γn(
⇀
x))n n→∞−→ F (

⇀
x),

⇀
x>

⇀

0 iff n(1−G(γn(
⇀
x)))

n→∞−→ H(
⇀
x),

⇀
x>

⇀

0 .

Proof. Immediate consequence of 0.2.4. By standard arguments it is easily shown
that F is max-stable in this case: In fact, by the convergence of types theorem we

obtain for all s ∈ (0, 1) there exist σ ∈ CAT(R, d) such that F (σ(
⇀
x)) = F s(

⇀
x),

⇀
x>

⇀

0 .
On the other hand, if αH is a tail, α > 0, then αH is R.L.T. stable.
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2.10 References and comments for Chapter 2

R 2.1 As a preparation of the following, we investigated a subgroup CAT(R, d), d > 1
(coordinate-wise of affine transformations introduced in 0.1). we restrict ourselves to
one-parameter-subgroups in CAT(R, d).

CAT(R, d) =
d⊕

i=1

Aff0(R, 1)

(Note that CAT(R, d) is a proper subgroup of Aff0(R, d) iff d > 1 see 0.1.16). In 2.1.4
and 2.1.14 we investigated the structure of one-parameter subgroups

{Tt, t ∈ R} ⊆ CAT(R, d)

(For more details and for a slightly different description see Balkema and Yong-Cheng
Qi [2]).

R 2.2 Convergence of types theorems (C.T.T.) turned out to be an essential tool
in investigations in operator limit laws. Therefore we introduced in this section some
generalizations of the introduced versions of C.T.T. mentioned in section 0.2 to the
multidimensional case (see 2.2.10 in particular for normalizing operators belonging to
CAT(R, d). More details in Hazod [14]).

R 2.3 In this section we reformulated notations and theorems introduced in sec-
tion 0.3. Again the R.L.T. distribution of µ (its distribution function F with tail R)
may be defined by groups of transformations

τt : M1(Rd
+) → M1(Rd

+) (see 2.3.9). Equivalently, τt(F (
⇀
x)) = Ft(

⇀
x), i.e. If F is the

distribution function of µ then Ft is the distribution function of τt(µ).

R 2.4 Here we generalized the L.M.P. parallel to the derivations and introduced
concepts and remarks in section 1.1 see Galambos [8]. Note that, according to
2.4.10 the exponential distribution in 2.4.8 is a direct product of one-dimensional
ones, however the Pareto distribution 2.4.9 is not representable as a direct product.
Further reference for generalizations of the L.M.P. See [16](cited on pages 69, 406).

R. 2.5 The possible solutions of a ”stability” functional equation (for R.L.T.) 2.4.6
have-in the general case-no simple representations. Due to the fact that we have no
complete overview over the possible solutions of the functional equation the R.L.T.
(semi-) stable laws will be characterized in the sequel only in the special cases where
the underlying one-parameter group of CAT’s is a group of shifts or has a unique fixed
point. According to 2.5.1–2.5.6 we introduced in theorem 2.5.7 a particular solution
in the case, that the group of CAT’s has a unique fixed point, and theorem 2.5.8 gives
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the particular solution in the case of the group of shifts.

R 2.6 We introduced in this section the concept of ”decomposability semigroup”
of R.L.T. distributions, which is a successful concept for investigations in (operator)
semi-stability for random vectors in the case of multidimensional vector spaces. see
e.g. [15]. This leads to characterizations of the (semi-) stability R.L.T. distributions
in 2.6.11. (More details is in 2.7).

R 2.7 This section contains a definition and a characterization of R.L.T. (semi-)
stability by the decomposability semi group (see 2.7.2). In addition, characteriza-
tions by the functional equation 2.5.1 (or its discrete analogue See 2.7.5).

R 2.8 In this section we discussed the DOAr,s, DOAr,ss, NDOAr,ss, and NDOAr,s

see 2.8.1. It is known that, the domain of (semi-) stable R.L.T. attraction character-
izes the (semi-) stability when it is non empty see 2.8.3.

R 2.9 In this section we sketched how the results of section 1.6–1.8 might be general-
ized to the multivariate case see 2.9.1–2.9.3. Since in the multidimensional situation
the max-domains of attraction are less investigated than for d = 1 we did not give
more details.
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