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Chapter 1

Introduction

Structural phase transition are an important area of research in solid state physics. An

overview is given by Bruce and Cowley [1]. They are characterized by a spontaneous

breaking of the lattice symmetry. Below the critical temperature the lattice undergoes

a distortion enlarging the unit cell. Consequently such transitions are not only experi-

mentally accessible through thermodynamic methods probing anomalies due to the critical

behavior at the phase transition but also by spectroscopic methods such as X-ray or neu-

tron di�raction. The interesting fact about CuGeO3 is that a large number of di�erent

experimental methods have been applied. As I try to show with this work the number of

data available made it possible to achieve a consistent understanding of the spin-Peierls

transition in CuGeO3. Yet, a number of quantities are still controversial within certain

boundaries. Where possible I try to propose approaches suited for further clari�cation.

In the introduction I wish to discuss the general physical concepts of structural phase

transitions and the spin-Peierls transition as well as the fundamental experimental results

showing the presence of such a phenomenon in CuGeO3. An overview of the thesis is given

in section 1.4.

1.1 Basic concept of structural phase transitions

In a purely harmonic lattice no phase transition occurs. But no crystal is purely harmonic

as can be seen from the presence of thermal expansion [2]. The harmonicity of a crystal

lattice is induced by the many particle wave function including all electrons and atomic

cores leading to potential wells binding the atoms to the �xed lattice sites. The standard

approach to obtain a model describing a structural phase transition is to �rst identify those

electronic degrees of freedom responsible for the anharmonicities in the binding potential.

This will usually involve those electronic degrees of freedom close to the Fermi surface since

they are the easiest to excite. They are described by some appropriate Hamiltonian He.

All the other electronic degrees of freedom contribute to the harmonic potential for

the atoms. The atomic degrees of freedom are then described as decoupled harmonic

1
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Figure 1.1: (a) Harmonic lattice with linear restoring forces indicated by the zig-zag lines.
(b) Energy level of the electronic system He. (c) Lattice distortion lowering the electronic
energy via the coupling term (1.2) as shown in (d).

oscillators.

Hp =
X
q


q b
y
q
b
q

(1.1)


q is the eigenenergy of the quantum state q, by
q
and b

q
are bosonic creation and annihilation

operators. Such a model is derived explicitly from a microscopic picture for the relevant

degrees of freedom in CuGeO3 in section 2.1. The separated electronic degrees of freedom

described by the Hamiltonian He usually couple to the harmonic degrees of freedom via

their density operator �̂e = �̂
y
e
.

Hep =
X
q

�
gq b

y
q
+ g

�
q
b
q

�
�̂e(q) (1.2)

gq is a coupling constant.

The coupling term (1.2) is responsible for the anharmonic e�ects leading to a symmetry-

broken ground state. �gure 1.1 shows in part (a) a harmonic lattice with linear restoring

forces indicated by the zig-zag lines. Part (b) shows the energy level of the electronic system

He. A certain lattice distortion as depicted in �gure 1.1 (c) may lower the electronic energy

via the coupling term (1.2). If the resulting electronic energy gain shown in �gure 1.1 (d)

overcompensates the elastic energy loss, the ground state of the system is indeed distorted.

In table 1.1 I give a list of di�erent structural phase transitions with their relevant electronic

degrees of freedom.

Another important feature of structural phase transitions is the appearance of spectral

weight in the phononic structure factor for vanishing excitation energies when approaching
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Phenomenon Electronic degrees of

freedom

Example for model used

Ferroelectrica Coulomb energy of

electronic dipoles

Ising model [1]

Jahn-Teller

e�ect

Locally degenerate

energy level

Ising model [3]

Peierls

transition

Conduction band

electrons

Phonon induced e�ective

coulomb interaction

(see section 4.1.5)

Spin-Peierls

transition

Magnetic exchange Heisenberg chains

coupled to phonons

Table 1.1: Di�erent mechanism leading to structural phase transitions and their relevant
electronic degrees of freedom.

the phase transition. Such low energy excitations are responsible for the critical behavior of

thermodynamic observables such as the speci�c heat and are connected to the appearance

of Goldstone bosons at symmetry breaking phase transitions [4]. The lattice distortion

below the structural phase transition enlarges the unit cell. The Brillouin zone is reduced

accordingly giving rise to new acoustical modes at the zone centers of the reduced Zones.

Those can be identi�ed as the Goldstone modes corresponding to the reduced translational

invariance of the lattice.

When approaching the transition from the high temperature phase there are usually

precursors of the transition. They are either seen in the softening of a phonon mode or by

the appearance of a central peak [1]. Typically one associates them with displacive and

order-disorder transitions, respectively, even though there is no strict formal distinction

between displacive and order-disorder transitions. I present in chapter 5 results showing

that the random phase approximation (RPA) treatment of the spin- or electron-phonon

coupling includes both scenarios. The central peak is shown to be caused by a new spin-

or electron-phonon coupled mode growing soft.

I must note at this point that a description of the lattice by a harmonic part and a rele-

vant electronic system which are coupled usually is not su�cient to describe all anharmonic

e�ects. The thermal expansion, which also does not occur in harmonic systems, usually

is described via the Gr�uneisen parameter in the so called quasi-harmonic approximation

[2]. Still, it is possible to experimentally distinguish the quasi-harmonic e�ects from those

driving the phase transition [5, 6]. For a close discussion in the case of CuGeO3 see section

2.5.3.
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1.2 The spin-Peierls transition

In the spin-Peierls transition the driving electronic degree of freedom is the unpaired spin

of localized electrons coupled via the magnetic superexchange between ionic sites. If the

exchange is spatially strongly anisotropic and of short range, the spin degrees of freedom

are well described by the Hamiltonian of the nearest neighbor Heisenberg chain.

H
NN
s

= J

X
l

Sl � Sl+ẑ (1.3)

The sum is taken over all magnetic ions, Sl are the usual spin 1/2 vectorial operators with

components

S
�

l =
1

2
(c
y
l"; c

y
l#) �

�

 
cl"

cl#

!
; (1.4)

where c
y
l� and cl� are fermionic creation and annihilation operators and �� are the Pauli

matrices with � 2 fx; y; zg. The chains run in z direction as shown in the schematic

representation of such a chain in a crystal in �gure 1.2 (a). The open circles indicate the

moment carrying ions.

The spin model (1.3) is formed of independent chains as shown in �gure 1.2 (b). It

is Bethe ansatz solvable [7, 8] and ground state [9, 10], excitation spectrum [11], and

thermodynamics [12] can be calculated.

An alternating lattice distortion as shown in �gure 1.2 (c) will change the geometry

of the superexchange path leading to an alternation in the magnetic exchange integral

J(1� �J). For antiferromagnetic exchange, i.e., J > 0 in equation (1.3), the consequence is

a fundamental change in the physics of the spin system. The spectrum develops a gap and

the ground state energy is lowered [13, 14, 15, 16]. A simple physical picture is that the

stronger bonds J(1+ �J) form spin singlets requiring a �nite energy to be excited to one of

the triplet states. By analogy of the Heisenberg chain to an eight-vertex model [17] Black

and Emery found the ground state to scale as �
4=3

J
=j ln �J j [18], which has been con�rmed by

numerical studies for �J < 0:05 [15]. Above that value the logarithmic correction appears

not to be present any more [16].

The lowering of the magnetic energy will overcompensate the elastic energy loss � �
2
J
,

so that indeed an ordered ground state is expected. As the temperature is raised, thermal

excitations will break up singlet states leading to local relaxations of the lattice. As these

relaxations become too numerous the ordering of the distortion will loose its coherence and

a transition to a high temperature disordered phase occurs.

The spin-Peierls transition can thus be classi�ed by an alternating lattice distortion, the

opening of a gap in the magnetic spectrum, and quasi one-dimensional magnetic behavior

in the disordered phase.
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J J J

harmonic lattice Heisenberg chain

E=-0.443J

δ )

(a)

(c) (d)

(b)

E=-0.443J - cJδ4/3

J(1+ J(1-δ ) J(1+δ )J J J

J

Bethe-AF

Figure 1.2: (a) Harmonic lattice with a chain of ions carrying magnetic moments (open
circles). (b) Antiferromagnetic spin chain with exchange J and ground state energy E. (c)
Spin-Peierls lattice distortion leading to the magnetic exchange alternation. (d) Alternating
spin chain. Bond lines indicate the formation of singlets, referred to as dimerization. E is
| up to logarithmic corrections | the lowered ground state energy.

1.3 CuGeO3

In 1993 Hase and co-workers [19] measured the magnetic susceptibility of CuGeO3 and

found an exponential drop below � 14 K indicating the opening of a spin gap. Neutron

scattering experiments con�rmed the opening of a gap in the magnetic spectrum [20] and

showed the quasi one-dimensionality via the strongly anisotropic dispersion of the magnetic

excitations [21]. At the same time the appearance of spontaneous strain was observed [20]

which couples to the square of an alternating lattice order parameter [1]. The consistence

of the strain coupling to the spin-Peierls order parameter has been shown latter very nicely

[5]. The appearance of superlattice re
ections in inelastic neutron scattering experiments

has been observed shortly after [22] indicating the quadrupling of the unit cell.

The magnetic susceptibility has been shown to be well described by a Heisenberg chain

with next nearest neighbor interaction [23, 24].

Hs = J

X
l

Sl � Sl+ẑ + J2

X
l

Sl � Sl+2ẑ (1.5)

The exchange integrals J and J2 denote nearest neighbor (NN) and next nearest neighbor

(NNN) interaction, respectively. This con�rms the quasi one-dimensional character of

the material as well as the magnetic spectrum measured by Arai and co-workers [25]. The

inverse correlation length measured by Schoe�el et al. [26] also shows dominant correlations
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c

a

O22-

b

O12-

Ge4+

Cu2+

Figure 1.3: Crystal structure of CuGeO3. The crystal is constructed of CuO2 ribbons
connected via GeO4 tetrahedra. The Cu

2+ ions in 3d9 con�guration form antiferromagnetic
spin 1/2 chains in c direction. There are two di�erent types of O2� ions shown in black (O2)
and gray (O1). The Ge4+ ions connect adjacent CuO2 ribbons. The lattice parameters of
the orthorhombic unit cell are a = 4:8 �A, b = 8:4 �A, and c = 2:9 �A.

δ

b
a

Cu

Ge

η

O2

a,b
c

(a)

(b)

Figure 1.4: (a) Projection of the CuO2 ribbons in the a/b-c plane. (b) Projection in the
a-b plane. The nearest neighbor superexchange path is Cu-O2-Cu via the angle � � 99�,
the dashed line indicates the next nearest neighbor superexchange path. The arrows show
the distortion in the ordered phase [40]. The values are given in table 1.2.
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jrc
Cu
j jrb

Ge
j jra

O2
j jrb

O2
j

0.0056 �A 0.0008 �A 0.0095 �A 0.0065 �A

�� �� �CuO2 �GeO2

0.4� 0.8� 0.0029 �A 0.0008 �A

Table 1.2: Ionic elongations and alternation of the angels�� = �max��min, �� = �max��min

and bond lengths �CuO2 = (CuO2)max � (CuO2)min, �GeO2 = (GeO2)max � (GeO2)min

in the ordered phase as taken from references [40] and [44]. The distortions are three orders
of magnitude smaller than the lattice constants.

along the crystallographic c axis. The magnetic spectrum in the gaped phase obtained by

neutron scattering [21, 27, 28, 29, 30] and Raman scattering experiments [31, 32, 33] can

also be described by one-dimensional models [34, 23, 35, 36, 37, 38, 39]. Thus CuGeO3

quali�es as a spin-Peierls substance.

The crystal structure is shown in �gure 1.3 [40] and has been determined already back

in 1967 [41]. The space group is Pbmm. The crystal is constructed of CuO2 ribbons

connected via GeO4 tetrahedra. The Cu
2+ ions are in 3d9 con�guration and carry a spin

1/2 [42]. They form antiferromagnetic spin chains along the c axis. The lattice parameters

of the orthorhombic unit cell are a = 4:8 �A, b = 8:4 �A, and c = 2:9 �A. In �gure 1.4 (a) the

projection of the CuO2 ribbons in the a/b-c plane is shown. The Cu-O2-Cu superexchange

path via the angle � � 99� leads to a much smaller antiferromagnetic exchange than in

materials with collinear Cu-O-Cu con�gurations due to the orthogonality of the oxygen px
and py orbitals [43, 40]. The dashed line in �gure 1.4 (a) shows the next nearest neighbor

superexchange path. Comparison of numerical results with the experimentally observed

susceptibility gives values of J = 150 K for J2=J = 0:24 [23] and J = 160 K for J2=J = 0:36

[24]. The correct value of J2=J is still controversial. A discussion including the relevance

of the parameters for the here presented work is given in section 2.7.

The distortion of the lattice in the ordered phase is indicated by the arrows in �gure

1.4 (a) and (b). Chapter 2 is dedicated to the detailed description of the alternation of the

exchange integral J resulting from the alternation of the superexchange path geometry.

The ionic displacements involve four degrees of freedom quanti�ed in table 1.2 together

with the corresponding alternation of the angles � and � and the alternation of the bond

lengths CuO2 and GeO2 relevant for the superexchange path. The modulation of the

distortion in reciprocal space is q0 = (�=a; 0; �=c), the space group in the ordered phase is

Bbcm [40].

1.4 Summary of the thesis

The overall structure of the thesis is to �rst derive an appropriate model for the description

of the spin-Peierls phenomenon using the example of CuGeO3 in chapter 2. I verify the
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applicability of the model regarding static e�ects using simple standard many-particle

methods. I then turn to the formulation of a �eld-theoretical approach to the partition

function in chapter 3. The partition function contains all the information of the system. In

chapter 4 I use the formulation of the partition function to discuss a series of approximations

used for the description of spin- and electron-phonon coupled systems. Next the e�ect of

the spin-phonon coupling on the phonon dynamics is studied in chapter 5. Finally the

topic of thermodynamics in the ordered phase is addressed via a phenomenological model

in chapter 6.

Lattice dynamics and spin-phonon coupling

Starting from the microscopic structure of CuGeO3 an appropriate Hamiltonian for the

description of the spin-phonon coupled system is derived using standard harmonic theory.

It is possible to limit the spin-phonon coupling term on the description of the relevant

degrees of freedom determined spectroscopically. These are the in real space the four

elongations of the ions in the lattice involved in the spin-Peierls distortion. In reciprocal

space they are given by the four Peierls-active phonon modes that form an irreducible

subgroup of the 30 modes in CuGeO3 at the high symmetry point of the Brillouin zone

that corresponds to the spin-Peierls modulation.

Application of the Ginzburg criterion shows the critical region to be of the order of

3K around the transition justifying the application of RPA and mean-�eld theories. Using

RPA results, mean �eld theory, and the polarization vectors, the coupling constants of the

four Peierls-active phonon modes to the spin chains are determined. They are found to

be of the order of J=10 to J=2. The coupling of the mode with the polarization pattern

closest to the spin-Peierls distortion is dominant.

The explicit derivation of the Hamiltonian gives directly a relation between the cou-

pling constants for the in real-space degrees of freedom and the reciprocal-space degrees

of freedom. I thus obtain the values of the parameters describing the coupling of the spin

system to the linear ionic displacements, the bond lengths, and the angles between bonds.

The coupling to the Cu-O-Cu angle � is clearly dominant. From the coupling constants the

e�ect of static lattice distortions on the spin system can be predicted. The e�ect has been

studied experimentally by measuring the pressure dependence of the magnetic properties

and the magnetic �eld dependence of the lattice parameters. The theoretical values are

consistent with various experimental results. The thermal expansion of the c axis shows

an anomaly in CuGeO3 which can be understood in terms of the microscopic coupling

constants. The e�ect of spontaneous strain appearing at the phase transition is shown to

be small compared with the spin-Peierls distortion.

I explicitly make predictions for the alternation of the magnetic exchange, which is

discussed rather controversially in the literature. The value obtained is rather large and

about J=10. A rigorous lower boundary for the exchange alternation of J=25 rules out a

number of results obtained from models approximating the phonons as a static distortion.

Some physical quantities might be in
uenced signi�cantly by the dynamics of the phonons.

I show the connection of the reciprocal-space Hamiltonian to one-dimensional real-space
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models which are used in the literature to study the e�ect of dynamical phonons on the

spin system.

A serious problem for the quantitative study of spin-Peierls materials is the analysis

of the underlying spin system. I discuss in which way the connected uncertainties might

in
uence the results presented.

Partition function

I derive a path-integral representation for the partition function of the spin-phonon coupled

Hamiltonian using Bose coherent states. It is a preliminary chapter discussing technical

details of the derivation of the representation of the partition function used in the subse-

quent chapters. The transformation to the Fourier representation introducing Matsubara

frequencies is discussed in detail. The emphasis lies on the problems involved when taking

the continuum limit of the Trotter times initially de�ned on a discrete lattice. The outcome

is essentially that the application of the continuum limit is practical if the necessary care

is applied.

Mappings and approximations

A rigorous determination of the partition function derived in chapter 3 is not possible.

Mappings to other representations or limiting cases allow some insight into the physics

and the interdependence of problems.

Applying a static approximation to the partition function directly yields the model

where a static lattice distortion couples to the spin system. The ground state properties

of the resulting alternating-exchange spin model have been studied intensively. Finite

temperature density matrix renormalization group studies (DMRG) give access to the

thermodynamical properties. Within the model entropy and magnetic susceptibility of

CuGeO3 can be well described predicting a next nearest neighbor frustration of J2=J =

0:35. I dicuss brie
y the problems and discrepancies involved in these approaches. In

this context the incommensurate phase appearing in an external �eld in CuGeO3 �nds

mentioning.

The phonon �elds introduced by the introduction of the Bose coherent states can be in-

tegrated out yielding an e�ective spin model with dynamical (frequency or time dependent)

interaction. Such interactions are well known in theories for electron-phonon coupling. Ex-

amples are conventional superconductivity and Peierls transitions. When the spin system

is Ising-like the interaction is static and corresponding e�ective models studied in the lit-

erature are readily reproduced. Re-introducing Bose �elds via a Hubbard-Stratonovich

transformation shows that phonon �elds and spin-pair or dimer �elds are identical up to

an arbitrary scaling factor.

The integration of the spin degrees of freedom is the most di�cult problem. I introduce

a cumulant expansion up to second order in the dimer operators and in the phonon �elds

yielding an e�ective action. In the disordered phase the (dynamical) saddle point solutions



10 Chapter 1. Introduction

obtained from minimizing the e�ective action are identical to the real poles of the normal-

coordinate propagator used in chapter 5 to describe the dynamics of the spin-phonon

coupled system. The RPA equation for the transition temperature is derived as it is used

in chapter 2.

The introduction of shifted phonon �elds allows an equivalent second-order cumulant

expansion in the ordered phase as in the disordered case. I derive the stability conditions.

Comparing results from the literature show the expansion to be stable. The broken transla-

tional invariance in the ordered phase and the resulting loss of conservation of momentum

leads to a coupling of Brillouin zone center phonons to zone boundary phonons via the

dimer-dimer correlation function. The static saddle point yields the mean-�eld equation

relating the macroscopic occupation of the Peierls-active phonon modes and the coupling

constants. This is used in chapter 2 to determine the values of the latter. I propose a

method for estimating the importance of Gaussian 
uctuations.

Finally I discuss the approaches used in the literature for solving of the spin part of

the systems and present results for the correlation functions. I discuss the limits of the

approximations used. Indications of quantum criticality in CuGeO3 are shown by probing

the scale invariance of the magnetic excitation spectrum.

Phonon dynamics

The in
uence of the spin-phonon coupling on the lattice dynamics is studied by regard-

ing the normal-coordinate propagator. The latter is derived via a standard perturbative

approach in RPA.

First limiting the description to a single mode coupling to the spin system I show that

within the bosonization approach to the dimer-dimer correlation function a soft phonon

occurs only if for the phonon frequency of the unperturbed system }
q0 < 2:2 kBTSP is

valid. TSP is the transition temperature, } is Planck's constant divided by 2�, and kB is

Boltzmann's constant. A soft phonon is characterized by a renormalization of the frequency

of the eigenmode of the system due to the coupling to the spin-degrees of freedom such

that the frequency is lowered with decreasing temperature. The frequency vanishes at the

phase transition. For larger phonon frequencies 
q0 even phonon hardening may occur and

the transition is driven by a new magneto-elastic mode leading to a so called central peak.

This result does not depend on the speci�c electronic system as can be seen by considering

conduction electrons in a half-�lled cosine band coupling to the phonon. The relevant

density-density correlation function is then described by the Lindhard formula. For a

band width of 2J and a transition temperature of J=(10 kB) a soft phonon is obtained for

}
q0 < 0:8J . Results for the XY model are in qualitative agreement.

Generalization to four phonon modes shows CuGeO3 in the central peak regime and

the calculated temperature dependence of the Peierls-active phonon modes is in good

agreement with experiment. A central peak of a width � 0:2 meV is predicted at TSP.

Good agreement is found between theory and experiment for the pre-transitional Peierls-


uctuations justifying the RPA approach.
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E�ective Ising model

In an alternative approach I map the elementary excitations (solitons) of the dimerized

chain on an e�ective Ising model. Phonon induced interchain coupling then introduces

a linear binding potential between a pair of soliton and anti-soliton, leading to a �nite

transition temperature. I evaluate, as a function of temperature, the order parameter, the

singlet-triplet gap, the speci�c heat, and the susceptibility and compare with experimental

data on CuGeO3. CuGeO3 is found close to a �rst-order phase transition. Introducing the

experimentally determined soliton width to the description a rough quantitative agreement

with experiment is obtained. The famous scaling law � �
2=3 of the triplet gap can be

interpreted as a simple consequence of the linear binding potential between pairs of solitons

and anti-solitons in dimerized spin chains.

Finally I discuss e�ects from magnetic interchain coupling, the connection between the

real-space Ising model and RPA, and I give a derivation of the Ising-like Landau-Ginzburg

approach often used in the literature for the description of quasi one-dimensional systems.



Chapter 2

Lattice dynamics and spin-phonon

coupling

Braden et al. [44] acquired detailed data on the phonon dispersions in CuGeO3. Using a

shell model they have determined the polarization pattern of the lattice-vibrational eigen-

modes. It is then possible to identify the four modes with the symmetry of the spin-Peierls

lattice distortion. Limiting myself to those relevant degrees of freedom I derive in this

chapter the appropriate Hamiltonian for CuGeO3 by treating the lattice with the standard

harmonic theory. Including the spin-phonon coupling mean-�eld like, I calculate the mi-

croscopic coupling constants between the lattice and the spin chains. It is then possible to

predict the e�ect of structural changes on the spin system, namely the antiferromagnetic

exchange J . The latter has been subject to various experimental [45, 46, 47, 48, 49] and

theoretical studies [23, 34, 35, 43, 40, 38, 50].

As has been motivated in the introduction, the microscopic three-dimensional Hamil-

tonian I have to consider consists of three parts.

H = Hs +Hp +Hsp (2.1)

I recall that the Heisenberg spin Hamiltonian given in equation (1.5) is

Hs = J

X
l

Sl � Sl+ẑ + J2

X
l

Sl � Sl+2ẑ ; (2.2)

where the exchange integrals J and J2 denote nearest neighbor (NN) and next nearest

neighbor (NNN) interaction, respectively.

Further I distinguish the phonon part

Hp =
X
n
�;�

�
p
�

n;�

�2
2m�

+
X
n;n0

�;�0;�;�0

�
�;�0

n;n0;�;�0 r
�

n;� r
�
0

n0;�0 (2.3)

describing the lattice vibrations in harmonic approximation, where rn;� = (rxn;�; r
y

n;�; r
z

n;�)

are the deviations from the ionic equilibrium positions.

12
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Finally the spin-phonon coupling term reads

Hsp =
X
l

�Jl;l+ẑ Sl � Sl+ẑ +
X
l

�Jl;l+2ẑ Sl � Sl+2ẑ : (2.4)

The energy scale �Jl;l+ẑ is a function of the variation of the magnetic exchange integral

with the atomic displacements g�l;� = @J=@r
�

l;� to be discussed in section 2.2. The NNN

term �Jl;l+2ẑ is a function of @J2=@r
�

l;�.

The indices used are n = (nx; ny; nz) 2 Z3 running over all unit cells of the three-

dimensional crystal, the Cu-site index l = (lx; ly; lz) 2 Z3 (2 Cu sites per unit cell), and

the unit vectors x̂ = (1; 0; 0), ŷ = (0; 1; 0), and ẑ = (0; 0; 1) to nearest neighbor unit cells in

the corresponding direction. The index � labels the 10 atoms within a unit cell as shown

in �gure 2.1 and � 2 fx; y; zg is the vectorial component of the indexed quantity in the

respective three-dimensional space.

In section 2.1 I brie
y summarize the diagonalization of the phonon Hamiltonian (2.3)

followed by the discussion of the symmetry of the four Peierls-active phonon modes, in-

cluding re�ned data for their polarization vectors. Using these symmetries I transform in

section 2.2 the microscopic spin-phonon coupling Hamiltonian (2.4) to normal coordinates

in reciprocal space. This procedure yields relations between the di�erent linear, angular

and normal-mode coupling constants. Using RPA results and mean-�eld theory in section

2.3 I obtain numerical values for the normal-mode coupling constants which then can be

converted to the real-space coupling constants. The resulting dependence of the magnetic

exchange on static distortion of the lattice is discussed in section 2.5 and compared with

values from the literature. Finally I derive an e�ective one-dimensional model to give cou-

pling constants consistent with frequently applied theoretical approaches. The consistency

of the di�erent results gives a �a posteriori justi�cation of the mean-�eld approach.

2.1 Peierls-active phonon modes

In the standard treatment of harmonic lattice dynamics the initial problem of 3�N �Nion de-

grees of freedom (N number of unit cells, Nion number of ions in the unit cell) is transformed

into reciprocal space by Fourier transformation, where N wave vectors ful�l the periodic

boundary condition [51]. For any �xed wave vector one obtains a 3 � Nion-dimensional

problem which may be diagonalized, resulting in a set of 3 � Nion eigenmodes labelled by

� 2 f1; : : : ; 3Niong. On that purpose the displacement and momentum operators are de-

composed into eigenmode contributions introducing normal coordinates Q and conjugate

momenta P .

rn;� =:
1p
N

X
q

eiqRn

X
�

e�(�; q)p
m�

Q�;q (2.5)

pn;� =:
1p
N

X
q

eiqRn

X
�

e�(�; q)
p
m� P�;q (2.6)
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^

n
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Figure 2.1: Projection of the unit cell of CuGeO3 on the x-y plane. The oxygen atoms are
distinguished into O1, O2a, and O2b, the atoms of the second formula unit are labelled
with a prime. Each unit cell contains two Cu chains in z direction (positive z direction is
into the plane). The broken lines show the reduced unit cell introduced in section 2.2. n
is the index for the whole cells, l indexes the reduced cells.

The vectorsRn designate the coordinates of the unit cell origins. m� is the mass of the �-th

atom and e� are polarization vectors. Note that I use a non-standard de�nition forRn and

e�(�; q) which will simplify the interpretation of the polarization vectors at high symmetry

points in the Brillouin zone. Further transformation to boson creation and annihilation

operator representation via

Q�;q =

s
}

2
�;q

�
b
y
�;�q + b

�;q

�
(2.7)

and

P�;q = i

r
}
�;q

2

�
b
y
�;�q � b

�;q

�
(2.8)

yields the Hamiltonian usually used in the theoretical treatment of the lattice vibrations.

Hp =
X
�;q

}
�;q

�
b
y
�;qb�;q +

1

2

�
(2.9)
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� 1 2 3 4


�=(2�) 3.12 THz 6.53 THz 11.1 THz 24.6 THz

u e
z

Cu
(�)=

p
mCu 0.0095 -0.4790 0.7412 -0.0888

u e
y

Ge(�)=
p
mGe -0.4330 -0.5325 -0.3698 -0.2605

u e
x

O2b
(�)=

p
mO2 -0.6212 0.6581 0.3382 -0.7932

u e
y

O2b(�)=
p
mO2 -0.8620 0.1339 0.2021 0.8723

Table 2.1: Frequencies and polarization of the Peierls-active T+
2 phonon modes at room

temperature. The global prefactor is given by u2 = (8:26� 0:02) � 10�26 kg. The notation
is ez

�
(�; q0) � e

z

�
(�).

With the experimentally determined phonon modes 
�;q and shell model calculations

it is possible to determine the components of the polarization vectors e�(�; q) [44]. At the

wave vector of the Peierls instability q0 = (�=a; 0; �=c) four of the 30 modes correspond

to the irreducible representation with the symmetry of the lattice distortion in the spin-

Peierls phase, T+
2 in the notation of reference [52]. a = 4:8 �A, b = 8:5 �A, and c = 2:9 �A

are the lengths of the unit cell in x, y, and z direction, respectively.

Adapting the lattice dynamical model presented in reference [44] a special e�ort was

made for the description of the spin-Peierls relevant modes by the introduction of additional

force constants [53]. The T+
2 modes are characterized by displacements of the Cu ions along

c, of the O2 sites along a and b, and of the Ge ions along b. The polarization patterns of the

four modes as obtained by the shell model are represented in �gure 2.2 and given together

with their frequencies in table 2.1. The highest T+
2 mode corresponds to a Ge-O bond

stretching vibration thereby explaining its elevated frequency. The three T+
2 modes at

lower energies posses a common element which consists in the rotation of the O2-O2 edges

of the CuO4 plaquettes in the x-y plane around the c axis. However, only for the lowest

mode this twisting of the CuO2 ribbons describes the main character of the polarization

pattern. The modes at 11 and at 6.5 THz show in addition a modulation of the lengths

of the O2-O2 edges and a Cu shift parallel c. For the 11 THz mode the displacements of

the Cu ions modulate the O2-Cu bond distance. The 6.5 THz mode is characterized by a

strong modulation of the Cu-O2-Cu bond angle (see �gure 2.2) which is essential for the

magnetic interaction.

For later use I de�ne the MatrixM with the elements given by e�
�
(�; q0)=

p
m� extracted

from table 2.1.

M =

0
BBBBB@

0:03 �1:67 2:58 �0:31
�1:51 �1:85 �1:29 �0:91
�2:16 2:29 1:18 �2:76
�3:00 0:47 0:70 3:04

1
CCCCCA

1012p
kg

(2.10)
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3

24.6Thz

11.1Thz

6.53THz

3.12THz

Ω4

Ω

2Ω

Ω1

y

x
z

Figure 2.2: Geometry of the T+
2 eigenmodes as given by the polarization patterns in table

2.1. The shaded areas are the CuO4 plaquettes which form the Cu chains in z direction.
The Cu atoms are in the center of each plaquette, the corners are formed by O2 ions. The
O1 atoms are represented by the open circles with the Ge ions in between them. (Compare
with the x-y projection given in �gure 2.1.) Note that the O2 elongations are in the x-y
plane, the (small) Cu displacements are along the z axis while the Ge displacements are
along y.
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The static distortion in the spin-Peierls phase at T = 4 K also has been determined [40].

I de�ne a corresponding four-dimensional vector.

hriT=4K =

0
BBBBB@

hrz
Cu
i

hryGei
hrx

O2b
i

hryO2bi

1
CCCCCA = 10�2

0
BBBBB@

0:57

0:08

�0:95
�0:65

1
CCCCCA�A (2.11)

2.2 Spin-phonon coupling term

In the spin-phonon coupling term (2.4) I focus on the NN part for reasons that will become

obvious at the end of the section. I include the relevant displacements of the ions directly

involved in the Cu-Cu superexchange path determining J and only those coupling constants

where the ions actually show displacements in the Peierls-active modes. The apex \O1"

atoms are not displaced by those modes at the appropriate wave vector q0. I have to

consider two copper ions in adjacent unit cells along the c direction, two germanium sites,

and two oxygen atoms surrounding a Cu-Cu bond. The notation introduced is shown in

�gure 2.1, the two \O2" oxygen atoms per formula unit are denoted \O2a" and \O2b".

There are two formula units per unit cell which I distinguish by a prime.

The relevant coupling constants for the linear atomic elongations are shown in table

2.2. The e�ective spin-phonon coupling Hamiltonian is

H
NN
sp

=
X
n

"
g
z

Cu

�
r
z

Cu;n � r
z

Cu;n+ẑ

�� g
y

Ge

�
r
y

Ge0;n�ŷ � r
y

Ge;n

�

� g
x

O2b

�
r
x

O2b0;n�ŷ � r
x

O2b;n

�� g
y

O2b

�
r
y

O2b0;n�ŷ � r
y

O2b;n

�#
Sn � Sn+ẑ

+
X
n

"
g
z

Cu

�
r
z

Cu0;n � r
z

Cu0;n+ẑ

�� g
y

Ge

�
r
y

Ge;n � r
y

Ge0;n

�

+ g
x

O2a

�
r
x

O2a;n � r
x

O2a0;n

�
+ g

y

O2a

�
r
y

O2a;n � r
y

O2a0;n

�#
S 0
n � S0

n+ẑ : (2.12)

The two sums correspond to the two Cu chains running through each unit cell.

The symmetry of the Hamiltonian (2.12) allows for some simpli�cations. First of all I

use the equivalence of coupling to the O2a and O2b displacements (see �gure 2.1).

g
x

O2
= g

x

O2b
= g

x

O2a
(2.13)

g
y

O2
= g

y

O2b
= �gy

O2a
(2.14)

From the symmetry of the T+
2 modes (see �gure 2.2) one can see that the O2-y components

are in phase, i.e., r
y

O2a;n = r
y

O2b;n = r
y

O2;n, while the x components exhibit an anti-phase

shift: �rx
O2a;n = r

x

O2b;n = r
x

O2;n.
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g
z

Cu
= @J

@rz
Cu;n

= � @J

@rz
Cu;n+ẑ

= @J
0

@rz
Cu0;n

g
y

Ge = @J

@r
y

Ge;n

= � @J

@r
y

Ge0;n�ŷ

= � @J 0

@r
y

Ge;n

g
x;y

O2a = @J 0

@r
x;y

O2a;n
= � @J 0

@r
x;x

O2a0;n

= � @J 0

@r
x;y

O2a0;n�ŷ

g
x;y

O2b = @J

@r
x;y

O2b;n

= � @J

@r
x;y

O2b0;n

= � @J

@r
x;y

O2b0;n�ŷ

Table 2.2: De�nition of the coupling constants for linear atomic elongations. The two Cu
chains running through each unit cell are distinguished by a prime (see �gure 2.1). J 0 is
the magnetic coupling constant along the Cu0 chains.

As indicated in �gure 2.1 I then cut the unit cell along the y axis in half separating the

ions labelled \prime" from those without a label.

r
�

�0;n ! �r�
�;n+ŷ=2 (2.15)

S 0
n � S0

n+ẑ ! Sn+ŷ=2 � Sn+ŷ=2+ẑ (2.16)

The change of sign of the coordinates accounts for the anti-phase elongation of the two types

of ions in the Peierls-active modes at the wave vector of the instability q0 = (�=a; 0; �=c).

Resummation n! l over all the new cells, i.e., twice as many with a new cell length b=2

in y direction, yields

H
NN
sp

=
X
l

"
g
z

Cu

�
r
z

Cu;l � r
z

Cu;l+ẑ

�
+ g

y

Ge

�
r
y

Ge;l�ŷ + r
y

Ge;l

�

+ g
x

O2

�
r
x

O2;l�ŷ + r
x

O2;l

�
+ g

y

O2

�
r
y

O2;l�ŷ + r
y

O2;l

� #
ei�ly Sl � Sl+ẑ : (2.17)

The overall change of sign in the �rst sum with respect to the second in equation (2.12)

has been incorporated in the phase factor ei�ly . This change of sign translates into the

anti-phase shift of the spin-Peierls ordering between neighboring Cu chains in y direction.

Now I substitute the displacements r�
�;l with the q-space normal coordinates (2.5). For

clarity I introduce the abbreviation

Y
(1)
�q :=

X
l

eiqRl ei�ly Sl � Sl+ẑ (2.18)

for the Fourier transform of the nearest neighbor spin-spin correlation operator.

H
NN
sp

=
1p
N

X
q

Y
(1)
�q

X
�

r
2
�;q

}
g�;q Q�;q (2.19)
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Here the e�ective normal-mode coupling constants

r
2
�;q

}
g�;q := (1� eiqzc) gz

Cu

e
z

Cu
(�; q)p
mCu

+(e�iqyb=2 + 1)

 
g
y

Ge

e
y

Ge(�; q)p
mGe

+ g
x

O2

e
x

O2
(�; q)p
mO2

+ g
y

O2

e
y

O2(�; q)p
mO2

! (2.20)

were introduced. Note that in the literature the coupling constants often are given with

respect to normal coordinates, i.e., set gnormal =
p
(2
�;q)=} g�;q in equation (2.19). In

equation (2.25) the transition temperature then is TSP � g
2
normal=


2, consistent with the

result of Cross and Fisher [14].

The next step is to transform the normal coordinates to boson creation and annihilation

operator representation via equation (2.7).

H
NN
sp

=
1p
N

X
q

Y
(1)
�q

X
�

g�;q

�
b
y
�;�q + b

�;q

�
(2.21)

This is the representation usually used in theoretical approaches to spin-phonon coupling.

Since the polarization vectors are known for q0 (table 2.1), equation (2.20) de�nes the

relation between the coupling to the linear atomic deviations g�
�
(table 2.2) and the normal-

mode coupling constants g�;q.

2.2.1 Next nearest neighbor spin-phonon coupling

The Cu-O2-O2-Cu NNN superexchange path is shown by the dashed line in �gure 1.4 on

page 6. The NNN exchange term J2 Sl � Sl+2ẑ leads to a magneto-elastic coupling equiv-

alent to the one for the NN exchange shown in equation (2.17). Including all ionic linear

elongations contributing to the NNN superexchange path the prefactors in the resulting

reciprocal space coupling constants | compare equation (2.20) | then are (1� e2iqzc) for

the Cu part and (1 + eiqzc) for the other ions. The coupling of the J2 term vanishes at

the wave vector of the instability q0 = (�=a; 0; �=c) and does thus not directly in
uence

the spin-Peierls transition. Away from q0 the q dependence of the polarization vectors is

di�cult to handle since then all 13 modes of an irreducible representation of lower sym-

metry couple to the spin system [44]. Any quantitative inclusion of the NNN spin-phonon

coupling term is thus di�cult. In most of this work I limit the discussion to the vicinity

of q0 where this contribution can be disregarded.
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� � � dCu dGe

j@��=@rz
Cu
j 0.11 �

�A
0 0.76 0

j@��=@ryGej 0 0.11 �

�A
0 0.82

j@��=@rx
O2
j 0.21 �

�A
0.29 �

�A
0.54 0.57

j@��=@ryO2j 0.14 �

�A
0.32 �

�A
0.36 0.82

�0 0.55 � 0.89 � 1.93 �A 1.73 �A

Table 2.3: Linear coe�cients of the expansion of the angles and bond lengths as a function
of the linear atomic elongations, as de�ned in equation (2.22). The variables � 2 fa; a0; b; b0g
and �� 2 f��; ��; d�

Cu
; d

�

Ge
g are introduced in the text. The last line holds the experimental

equilibrium angles and bond lengths [40] (�� = �0+���, ��� is de�ned in equation (2.22)).

2.2.2 Coupling to bond angles and lengths

The two lower Peierls-active modes essentially vary the angles �� = \(Cu-O2�-Cu) and

�
� = \(O2�0-O2�-Ge). Together with the bond lengths d�

Cu
= Cu�O2� and d

�

Ge
=

Ge� O2� they represent the natural set of coordinates of the lattice vibrations in the

irreducible group of the T+
2 modes. The index � 2 fa; a0; b; b0g was introduced to label the

position on the di�erent oxygen atoms in the unit cell.

Introducing the variable �� 2 f��; ��; d�
Cu
; d

�

Ge
g I can write

�Jl;l+ẑ =
X
f��g

@J

@��n

���n =
X
f��g

g�

X
�

@�
�

n

@r�
�;n

r
�

�;n : (2.22)

Here I de�ned the coupling constants g� = (@J)=(@��n), which are independent of �. For

reasons of translational invariance I can drop the unit cell index n. The linear coe�cients

of the Taylor expansions (@��)=(r�
�
) at the di�erent positions � in the unit cell all yield the

same numerical coe�cients but with varying signs. The absolute values of the coe�cients

are given in table 2.3.

Considering all the relevant bonds and angles and using the decomposition (2.22) I can

set up a spin-phonon Hamiltonian similar to (2.12) in the previous section. By a simple

comparison of the coe�cients I obtain the transformation matrix between the angular and

bond length coupling constants and the linear atomic deviation coupling constants.0
BBBBB@

g
z

Cu

g
y

Ge

g
x

O2

g
y

O2

1
CCCCCA =

0
BBBBB@

�0:22 �

�A
0 �1:52 0

0 �0:11 �

�A
0 0:82

0:21 �

�A
0:29 �

�A
�1:08 0:57

�0:14 �

�A
0:32 �

�A
0:72 �0:82

1
CCCCCA

0
BBBBB@

g�

g�

g
d

Cu

g
d

Ge

1
CCCCCA (2.23)

Together with equation (2.20) I now can determine all coupling constants if any four of

the them are known.
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2.3 Normal-mode coupling constants

I now numerically determine the four normal-mode coupling constants. In chapter 5 I

shown the RPA approach by Cross and Fisher [14] to the Hamiltonian

H = J

X
l

Sl � Sl+ẑ + J2

X
l

Sl � Sl+2ẑ

+
X
�;q

}
�;q

�
b
y
�;qb�;q +

1

2

�

+
1p
N

X
q

Y
(1)
�q

X
�

g�;q

�
b
y
�;�q + b

�;q

�
(2.24)

to satisfactorily describes the dynamics of the Peierls-active Phonon modes. It consists of

the Heisenberg chain (2.2), the harmonic phonon part (2.9) and the spin-phonon coupling

term (2.21) all discussed above. The expression for the critical temperature TSP of the

spin-Peierls transition is derived in section 4.2.1. Using the approach of Cross and Fisher

[14] to the corresponding dimer-dimer correlation function discussed in section 4.3.2, the

expression involving the four Peierls-active modes I have to consider herein (
�;q0 � 
�,

g�;q0 � g�, [54]) is:

kBTSP =

�
2g21
}
1

+
2g22
}
2

+
2g23
}
3

+
2g24
}
4

�
�0: (2.25)

kB is Boltzmann's constant. The factor �0 � 0:5 is a contribution of the static dimer-dimer

correlation function at the appropriate wave vector. Its value is controversial and I have

adopted a mean of the proposed values. Please refer to the discussion in section 2.7 for the

details.

2.3.1 Ginzburg criterion

The Ginzburg criterion gives an estimate of the temperature range of the critical region

in which 
uctuations suppress the applicability of mean-�eld approaches (or RPA). It

is obtained through comparing the theoretical correction of Gaussian 
uctuations to the

speci�c heat

Cp � Cp;0 =
a b c

16�

T
2
SP

(T � TSP)2
kB

�a�b�c
(2.26)

with the experimental jump in the speci�c heat at the transition [55]. The correlation

lengths �a, �b, and �c along the respective crystallographic axes can be obtained from �ts
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Figure 2.3: Correlation length from di�usive X-ray scattering experiments by Schoe�el
et al. [26] along the three crystallographic axes. The broken lines are the �ts given in
equations (2.27), (2.28), and (2.29).

to the di�use X-ray data from Schoe�el et al. [26] as shown in �gure 2.3.

�a � 0:50 a [(T � TSP)=TSP]
� 1
3 (2.27)

�b � 0:65 b [(T � TSP)=TSP]
� 1
3 (2.28)

�c � 3:06 c [(T � TSP)=TSP]
� 1
3 (2.29)

The speci�c heat jump at TSP has been determined by Lasjaunias et al. [56] to be �Cexp =

0:73kB per unit cell volume. Requiring Cp�Cp;0 � �Cexp I �nd the Ginzburg criterion to

be

(T � TSP) � 0:03TSP = 0:4 K : (2.30)

In accordance with the mean-�eld approach to the susceptibility by Kl�umper et al. [57] I

conclude that beyond a region of 3-4 K around TSP the mean-�eld theory is reliable.
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2.3.2 Mean-�eld approach

The transition temperature given for CuGeO3 with 14:1 K, one parameter is �xed through

equation (2.25). As I shall discuss now, the others can be estimated from the polarization

vectors of the Peierls-active phonon modes and the static distortion in the dimerized phase

at 4 K also given by Braden et al. [40]. For the �xed wave vector of the Peierls instability

q0 I can derive from expressions (2.5) and (2.7) a relation between a static lattice distortion

hr�
�
i and the expectation values of the displacement of the eigenmodes out of the harmonic

equilibrium


b�;q0

�
.

hr�
�
i =

D
r
�

q0;�

E
p
N

=
X
�

e
�

�
(�; q0)p
Nm�

s
2}


�;q0



b�;q0

�
(2.31)

In section 4.1.1 I show that the expectation values


b�;q0

�
are real. The real-space displace-

ments hr�
�
i are real anyway. This is consistent with the fact that in this representation the

polarization vectors e�
�
(�; q0) are real.

Introducing the canonical transformation

~b�;q = b�;q +
1p
N

g�;q

}
�;q
Y
(1)
q (2.32)

for the Bose annihilation and creation operators b�;q, where Y
(1)
q was de�ned by (2.18), the

Hamiltonian (2.24) decouples into

H = J

X
l

Sl � Sl+ẑ � 1

N

X
�;q

jg�;qj2
}
�;q

Y
(1)
�q Y

(1)
q +

X
�;q

}
�;q

�
~b
y
�;q
~b
�;q +

1

2

�
: (2.33)

The operators ~b�;q do not satisfy Bose commutation relations and since [Y
(1)
�q ;

~b
�;q]� 6= 0

the solution of this Hamiltonian is not at all evident. But in a mean-�eld like approach I

can assume h~b
�;qi = 0 so that from (2.32) follows

hb�;qi = � 1p
N

g�;q

}
�;q



Y
(1)
q

�
: (2.34)

This relation is derived in detail in section 4.2.3. The mean-�eld ansatz is reasonable here,

since I am interested in temperatures of 4K which is far from the critical region and the

dimerization is as good as saturated [27].
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g1=kB g2=kB g3=kB g4=kB

-15 K 58 K -30 K -12 K

Table 2.4: Normal-mode coupling constants for the four Peierls-active phonon modes at
q0 as determined by equation (2.35).

2.3.3 Values

With expressions (2.32) and (2.34) I am left with a set of linear equations. The values of

the frequencies 
� are given in table 2.1, the polarization vectors e�
�
(�; q0) enter via the

Matrix M de�ned in equation (2.10), and hriT=4K is given in equation (2.11).

hriT=4K = �hY
(1)
q0 i
N

r
2

}
M

0
BBBBB@

g1=
p

3
1

g2=

p

3
2

g3=
p

3
3

g4=

p

3
4

1
CCCCCA (2.35)

The solution of the equations gives the coupling constants as a function of N=hY (1)
q0 i. The

latter is then determined by the critical temperature TSP = 14:1 K via equation (2.25).

hY (1)
q0 i
N

=
1

N

X
l

(�1)lx+ly+lzhSl � Sl+ẑi = 0:59 (2.36)

For a spin 1=2 system with two Cu chains per unit cell I have hY (1)
q0 i=N � 0:75 where 0:75

is reached in the fully dimerized state. In the uniform Heisenberg case hY (1)
q0 i=N = 0.

In table 2.4 I show the calculated coupling constants of the spin system to the Peierls-

active eigenmodes of the lattice at the wave vector of the instability q0. The signs are

such that all contributions in the spin-phonon coupling term in the Hamiltonian (2.24) are

negative when the phonon modes are macroscopically occupied as determined via equation

(2.32) in section 2.5.1. The mode at 
2=(2�) = 6:5 THz is dominant, by its symmetry it

essentially varies the angles �. This will be re
ected in the corresponding coupling constant

discussed below. The values are rather large compared with the magnetic exchange of

J � 150 K. This is what is expected intuitively since the spin system has to overcompensate

the elastic energy of a rather rigid lattice. The two lowest Peierls-active eigenmodes with

}
1=kB = 150 K and }
2=kB = 320 K have energies of the order of J .

Note that the in
uence of the lowest mode at 
1=(2�) = 3:1 THz on the transition

temperature is as important as that of 
3=(2�) = 11 THz because of the frequencies in

the denominator of equation (2.25).
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g
z

Cu
=kB g

y

Ge=kB g
x

O2
=kB g

y

O2=kB

-890 K/�A -110 K/�A 400 K/�A -91 K/�A

Table 2.5: Coupling constants for the linear atomic displacements calculated via equation
(2.37) using the values for g� from table 2.4.

g�=kB g�=kB g
d

Cu
=kB g

d

Ge
=kB

15 K/deg 1.5 K/deg 180 K/�A -96 K/�A

Table 2.6: Coupling constants for the angles and bond lengths calculated via equation
(2.23) using the values for g�

�
from table 2.5.

2.4 Microscopic coupling constants

The numerical values of the normal-mode coupling constants thus given, the microscopic

coupling constants can be determined. Using the matrix (2.10) I rewrite expression (2.20)

for q = q0 as

MT

0
BBBBB@

g
z

Cu

g
y

Ge

g
x

O2

g
y

O2

1
CCCCCA =

1p
2}

0
BBBBB@

g1

p

1

g2

p

2

g3

p

3

g4

p

4

1
CCCCCA ; (2.37)

and compute the coupling to the linear atomic elongations. Then I calculate the angular

and bond length couplings using equation (2.23). The resulting values are given in table

2.5 and table 2.6, respectively.

The results allow for some immediate conclusions:

� The coupling to the angle �, i.e., g�, is the dominant contribution.

� The signs of the coupling constants are correct, J increases with increasing angles

and decreasing O2-Ge bond length. The positive value of gd
Cu

may indicate that a

ferromagnetic contribution of the exchange is weakened more than the antiferromag-

netic contribution when stretching the O2-Cu bond. This would be consistent with

the net ferromagnetic exchange of the O2-Cu plaquettes without the germanium side

group predicted by Geertsma and Khomskii [43].

� Variation of the coupling constants shows g1 to couple mainly to the angles �, g2 to

�, and g3 and g4 to be almost entirely bond stretching [44]. While the results for g�
and g� are robust under variation of the parameters, the values of gd

Cu
and g

d

Ge
are

less �xed within the accuracy of our approach.
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Method [Reference] @J

J@��
@J

J@��

Harm. theory and mean-�eld [here] 10 % 1
deg

1 % 1
deg

Microscopic superexchange [43] � 8 % 1
deg

� 0:3 % 1
deg

Microscopic superexchange [40] 22 % 1
deg

0.6 % 1
deg

Pressure vs. magnetostriction [50] > 3 % 1
deg

> 0:3 % 1
deg

Table 2.7: Variation of J with the variation of the angles. Note that in our notation there
are two angles �� and two angles �� contributing each to the Cu-Cu superexchange path
(see �gure 2.1).

� From magnetostriction data B�uchner et al. [50] expect the in
uence of the Cu-O2-

Cu angle � on the magnetic exchange to be of the order of 2 @J=(J@��) � 10 % per

degree and for the O2-O2-Ge angle their value is 2 @J=(J@��) � 1 %. For J=kB = 150

K I obtain about twice the values (see table 2.7).

� Comparing gd
Ge
and g

y

Ge shows the e�ect of the Ge elongation on the magnetic exchange

to be due mainly to the stretching of the O2-Ge bond. The contribution of the Ge side

group to the magnetic exchange should depend on the O2-O2-Ge angle as Jside � cos �.

Therefore, the angle �� � 160� = 0:89� being close to �, the angular dependence of

J on � is quite small in spite of the large entire side-group e�ect, which is of similar

magnitude as that of the CuO4 plaquette elongation [43, 40].

� Two groups analyzed the structural dependence of the superexchange within similar

microscopic models. Geertsma and Khomskii [43] obtained J=kB = 135 K and found

2 @Jgeo=(J@�
�) � 16 % and 2 @Jgeo=(J@�

�) � 0:6 % per degree. These values only

account for the \geometrical" contribution and are thus lower bounds. Braden et al.

[40] found J=kB = 160 K and gave 2 @J=(J@��) � 44 % and 2 @J=(J@��) � 1:1 %

per degree. The agreement between the microscopic models is a�ected by the choice

of the parameters and the number of orbitals taken into consideration.

A summary of the values obtained with the di�erent approaches is given in table 2.7.

2.5 Static distortion

The microscopic coupling constants given, I can directly calculate the e�ect of static dis-

tortions of the lattice geometry on the magnetic exchange.

2.5.1 Dimerization

Using the static displacements of the ions in the spin-Peierls phase at T = 4 K [40], one may

calculate the alternation of the magnetic exchange usually used in mean-�eld approaches
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hb1;q0i=
p
N hb2;q0i=

p
N hb3;q0i=

p
N hb4;q0i=

p
N

0.061 -0.11 0.034 0.006

Table 2.8: Macroscopic occupation of the Peierls-active T+
2 phonon modes in the ordered

phase at 4 K as given by equation (2.32).

to the spin-phonon coupling, i.e.,

HMF = J

X
lz

�
1 + (�1)lz�J

�
Slz � Slz+1 : (2.38)

This is achieved by substituting in the spin-phonon coupling term (2.17) the atomic dis-

placements by their expectation values r�
�;l ! (�1)lz+lxhr�

�
iT=4K and comparing the result-

ing hHNN
sp
iT=4K with equation (2.38). Equivalently one can calculate hHNN

sp
iT=4K by using

the static angular and bond length deviations [40] yielding the same results.

I �nd �JJ=kB = 17 K or �J � 0:11 (J=kB = 150 K). By solving the system of linear

equations de�ned by equation (2.32) for q = q0, the expectation values hb�;q0i=
p
N have

been determined as given in table 2.8. The elastic energy per unit cell of the spin-Peierls

distortion at T � 4 K then is given by

hHpi
N kB

=
X
�

}
�;q0
N kB

hb�;q0i2 = 5 K : (2.39)

This energy loss has to be compensated by the spin system. Considering that the maximum

gain of magnetic energy is reached in the fully dimerized case with 0:375 �JJ per Cu ion,

I �nd a lower boundary for the dimerization of �J > 0:044. Including a NNN term in

equation (2.38) with J2=J = 0:241 as studied by Chitra et al. [35] using a density matrix

renormalization group (DMRG) approach I �nd �J � 0:078.

Our result is within a factor of two of the values obtained by using @J=@� and @J=@�

obtained from the magnetostriction results [50] and from the microscopic models [43, 40].

All other published estimates of the dimerization result from an analysis of the magnetic

excitation spectra observed by inelastic neutron or Raman scattering. Most of these esti-

mates are based on the static dimerized Hamiltonian (2.38) [23, 34] and yield dimerization

values much smaller than the one reported here (see table 2.9). Augier and Poilblanc [58] as

well as Wellein et al. [59] extend the static model by coupling to dynamical phonons which

reduces the magnetic gap by lowering the e�ective lattice distortion acting on the spin

system [50]. The derivation of their model and the signi�cance of the phonon dynamics

are closer discussed in section 2.6. Introducing interchain coupling may further suppress

the spin gap [60]. For an extensive discussion see reference [38].

All methods incorporate more or less crude approximations to the real physical situation

leaving the question of the true value of �J unanswered. Our lower boundary should be
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Method [Reference] �J

Harmonic theory and mean-�eld [here] 0.11

Macroscopic occupation of T+
2 modes [here] >0.04

Microscopic superexchange [43, 40] 0.07 to 0.2

Dynamic phonons and experimental gap [50] � 0:05

Static phonons and experimental gap [23, 34] 0.01 to 0.03

Coupled chains [38] 0.01 to 0.12

Table 2.9: Exchange alternation in J [1 + (�1)lz�J ] in equation (2.38).

� � � dCu dGe

@�
�

@p
�0:16 deg

GPa
�1:3 deg

GPa
�0:0012 �A

GPa
�0:0033 �A

GPa

@J�

@p
�2:5 kBK

GPa
�1:9 kBK

GPa
�0:22 kBK

GPa
0:32 kBK

GPa

Table 2.10: Linear pressure gradients of angles and bond lengths from experimental
data in reference [62] (top) and the resulting theoretical pressure gradients @J�=@p =

(@J=@�)(@�=@p) (bottom). The values for @J=@� are given in table 2.6.

rather reliable though. The values obtained in the di�erent approaches are given in table

2.9 for comparison.

2.5.2 Pressure

Br�auninger et al. [61] and Braden et al. [62] have investigated the pressure dependence

of the angles and bond lengths in CuGeO3 under hydrostatic pressure. The linearity of

the pressure dependence is reasonable for pressures < 2 GPa. The values for the pressure

gradients obtained from reference [62] are shown in table 2.10.

Regarding the partial derivative of the exchange integral @J�=@p = (@J=@�)(@�=@p) I

�nd immediately the pressure gradients of the di�erent angular and bond length contri-

butions to J as given in table 2.10. Considering all four contributions, I obtain the total

variation of the antiferromagnetic exchange.

@J

@p
= 2

@J�

@p
+ 2

@J�

@p
+ 2

@JGe

@p
+ 4

@JCu

@p
= �9 kBK

GPa
(2.40)

For J=kB = 150 K this value corresponds to @J=(J@p) � �6 % per GPa. The pressure

dependence of the magnetic susceptibility is directly related to the magnetostriction. A

value of �@�=(�@p) � @J=(J@p) � �8 % per GPa was obtained after averaging the uni-

axial components [47, 48, 24]. Takahashi et al. [45] have measured the pressure dependence
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Method [Reference] @J

J@p

Harmonic theory and mean-�eld [here] -6 % 1
GPa

Susceptibility via magnetostriction [47, 48] -8 % 1
GPa

Curie-Weiss �t to the susceptibility [45] -7 % 1
GPa

Fit to the triplet dispersion [46] -8 to -10 % 1
GPa

Table 2.11: Variation of J with pressure.

of the Curie constant C by �tting a Curie-Weiss law to the high temperature tail of the

magnetic susceptibility. Assuming C � 1=J one can estimate a value of about @J=(J@p) �
�7 % per GPa. Nishi and coworkers [46] compared �ts to the dispersion of the lowest

triplet excitations at di�erent pressures. They assume the ratio between the exchange J

and next nearest neighbor exchange J2 with a value of J2=J � 0:25 not to alter under

pressure and �nd @J=(J@p) � �10 % per GPa. In contrast to that Fabricius et al. [24]

�nd J2 not to alter under pressure. Then the result from Nishi's analysis is corrected

to @J=(J@p) � �8 % per GPa. A newer analysis by Nishi and coworkers [49] yields at

ambient pressure J2=J = 0:166 which is increased to J2=J = 0:180 at 2 GPa.

A summary of the values is given in table 2.11 showing their consistency. It must be

stressed that the values extracted from the experiments are subject to corrections from the

explicit pressure dependence of J2 which is still controversial [63].

2.5.3 Thermal expansion and spontaneous strain

In a harmonic lattice the coe�cients of linear thermal expansion � = (@L)=(L@T )p vanish.

Here L is the length of the crystal in a given spatial direction. Anharmonic contributions

result in temperature dependent phonon frequencies which in turn yield �nite values for

�. The coe�cient of thermal expansion is linked to the speci�c heat via the (temperature

dependent) Gr�uneisen parameter. This implies in the limiting cases T ! 0 : � � T
3 and

T � �D : � � constant, where �D is the Debye temperature [2].

The thermal expansion in CuGeO3 can be attributed to two e�ects: the usual anhar-

monic behavior described above and anomalies due to the spin-phonon coupling [6, 64].

The coe�cient of linear thermal expansion of the c axis in CuGeO3 has a negative sign

between TSP and T � 200 K. The expansion of the c axis enlarges J via the angle �.

The spin system then gains energy when the temperature is lowered to T � J by driving

the anomaly [65]. A rough quantitative estimate can be extracted from the analysis of the

temperature dependence of the herein considered bond lengths and angles given by Braden

et al. [6] Their temperature dependence between 295 K and 20 K is close to linear and

presented in table 2.12. Summing up the di�erent contributions equivalently to equation

(2.40) yields @J=(J@T ) � �2:6 % per 250 K (J=kB = 150 K). This e�ect is a superposition

of the normal thermal expansion with positive @Jnorm=(J@T ) and the anomalous e�ect at
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� � � dCu dGe

@�
�

@T
�0:2 deg

250K
0:6 deg

250K
0:0002

�A

250K
�0:002 �A

250K

@J�

@T
�3:1 kBK

250K
0:9 kBK

250K
0:04 kBK

250K
0:2 kBK

250K

Table 2.12: Experimental linear temperature gradients of angles and bond lengths from ref-
erence [6] (top) and the resulting theoretical contributions to the temperature dependence
of J (bottom) between 20 K and 295 K.

C11 C22 C33 C12 C13 C23

Exp.
�
1011 dyn

cm2

�
7.4 2.1 33.2 - - -

Theory
�
1011 dyn

cm2

�
8.2 5.0 34.6 3.0 4.0 2.2

Table 2.13: Experimental uniaxial elastic constants from reference [66] (top) and the the-
oretical elastic constants obtained from the shell model (bottom).

low temperature which can be estimated by @Jan=(J@T ) � 2 @J�=(J@T ) = �4:1 % per 250

K.

As the crystal undergoes the spin-Peierls transition spontaneous strain appears along

all three orthorhombic directions [5, 64]. The strain couples di�erent T+
2 modes [1]. Here

I show the resulting corrections to equation (2.35) to be unimportant. The elastic energy

per unit cell related to the spontaneous strain at T � 4 K can be estimated from the elastic

constants. The diagonal elastic constants Cii were taken from the ultra-sound study by

Poirier et al. [66], and o�-diagonal terms Cij were calculated with the lattice dynamical

model [53] as shown in table 2.13 using standard notation [2]. With the values for the

strain �i given by Winkelmann et al. [64] I �nd

Estrain

kB
=
a � b � c
2kB

X
i;j=1;2;3

�iCij�j = 7 � 10�4 K : (2.41)

Note that the strain components �4 = �5 = �6 vanish, since the orthorhombicity is con-

served. The elastic energy involved in the strain is four orders of magnitude smaller than

the elastic energy of the dimerization given in equation (2.39).

Note that the components of the spontaneous strain [64] have the opposite sign com-

pared with the anomalies of the thermal expansion [44] discussed above. The spontaneous

strain may thus be interpreted as a relaxation of the latter when the spin system changes

its character at the spin-Peierls transition. A possible origin is the coupling via the spin

system as discussed in section 4.2.2. The relaxation is of the order of 1%.
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� 1 2 3 4

g
Cu

�
=kB -0.5 K 17 K -20 K 1.6 K

g
loc

�
=kB -7.2 K 12 K 4.8 K -7.5 K

Table 2.14: Coupling constants to real-space normal modes obtained from equation (2.43)
and equation (2.44).

2.6 Coupling constants for real-space normal coordi-

nates

In order to obtain real-space expressions I use the Fourier representation of the Bose

operators

b�;q =
1p
N

X
l

e�iqRl b�;l : (2.42)

For simplicity I neglect the wave vector dependence of the frequencies 
� = 
�;q0 and of

the polarization vectors e�
�
(�) = e

�

�
(�; q0). The coupling constants g�;q0 in equation (2.20)

then are be divided intor
2
�

}
g
Cu

�
= g

z

Cu

e
z

Cu
(�)p
mCu

; (2.43)r
2
�

}
g
loc

�
= g

y

Ge

e
y

Ge(�)p
mGe

+ g
x

O2

e
x

O2
(�)p
mO2

+ g
y

O2

e
y

O2(�)p
mO2

: (2.44)

Transforming the Hamiltonian (2.24) via (2.42) I obtain in real space

Hr =
X
�;l

}
�

�
b
y
�;lb�;l +

1

2

�
+ J

X
l

Sl � Sl+1

+
X
�;l

(�1)ly
h
g
Cu

�

�
b
y
�;l + b

�;l � b
y
�;l+ẑ � b

�;l+ẑ

�

+ g
loc

�

�
b
y
�;l + b

�;l + b
y
�;l+ŷ + b

�;l+ŷ

� i
Sl � Sl+ẑ : (2.45)

The coupling constants are given in table 2.14. This result implies that the oxygen and

germanium displacements are of the same importance for the spin-phonon coupling as the

copper elongation.

Motivated by the symmetry of the Peierls-active phonon modes an e�ective one-di-

mensional model can be obtained by restricting the sum to a single chain. The Fourier

transform of the one-dimensional model derived from equation (2.45) shows the di�erent
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q
h(rz

Cu
)2i

q
h(ryGe)2i

q
h(rx

O2
)2i

q
h(ryO2)2i

0.029 �A 0.035 �A 0.048 �A 0.053 �A

Table 2.15: Zero point motion of the ions obtained by neglecting the dispersion of the T+
2

modes via equation (2.48).

q dependences (q � qz) of the copper term and the local term.

H1D =
X
�;q

}
�

�
b
y
�;q
b
�;�q +

1

2

�
+ J

X
lz

Slz � Slz+1

+
X
�;q

g1D(q)p
N

�
b
y
�;�q + b

�;q

�X
lz

eiqRlz Slz � Slz+1

(2.46)

Here I de�ned the one-dimensional coupling constant

g1D(q) = (1� eiqc)gCu
�
+ 2gloc

�
: (2.47)

Several studies [65, 58, 59, 67, 50, 68, 69] have been carried out using real-space Hamil-

tonians in the form of (2.45) reduced to a one-dimensional model. Usually a single mode

Hamiltonian only keeping the local term is considered, i.e., in their notation 2gloc1 � g while

the other coupling constants are set to zero. Considering gCu2 , gloc2 , and g
loc

1 being of the

same order of magnitude this simpli�cation should only yield qualitative results.

Yet, these treatments include the dynamics of the phonons. The signi�cance of the

latter can be estimated from the size of the zero point motion of the ions. Without

the negligible contribution from the macroscopic occupation (section 2.5.1, table 2.8) the


uctuations of the T+
2 modes at T = 0 can be obtained from equation (2.5) using the

approximation of dispersionless phonons introduced above.

h(r�
�
)2i = 1

N

X
n

h(r�
�n)

2iT=0 =
X
�

�
e
�

�
(�)p
m�

�2
}

2
�
(2.48)

The resulting values are given in table 2.15. They are consistent with the values of the

total zero point 
uctuations obtained from the shell model and the neutron scattering

experiments presented in reference [6]. The zero point 
uctuations are thus a factor of 5

to 10 larger than the static distortions as given in equation (2.11).

On the other hand the Ginzburg criterion discussed in section 2.3.1 and the consistency

of our results with experimental ones justify our mean-�eld approach. In accordance to

that Kl�umper et al. [57] show that a variety of physical quantities can be obtained correctly

in a mean-�eld picture. For the derivation of their model and a discussion see section 4.1.2.

It is beyond the scope of this work but certainly an interesting question addressed to future

studies which quantities are sensitive to the zero point 
uctuations and why. In section

4.2.3 I propose a model to include Gaussian 
uctuations within a pathintegral approach.
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2.7 Discussion of �0

The approach by Cross and Fisher [14, 70] gave a value of �0 � 0:26. This value is

independent of J because of the scale invariance at qz = �=c. The scaling hypothesis is

applicable close to the critical point of the spin chain, i.e., in the limit T ! 0. Recent

DMRG results obtained by Kl�umper et al. [57, 63] show a strong temperature dependence

of �0(T=J). For J2 = 0 and J = 120 K they �nd �0(TSP=J) � 0:28, for J2=J = 0:241 and

J = 150 K the parameter attains �0(TSP=J) � 0:56, whereas for J2=J = 0:35 and J = 160

K they �nd �0(TSP=J) � 1.

The exact value of J2 in CuGeO3 has not yet been determined. Fits to the susceptibility

for T > TSP indicate an overcritical J2 [23, 24], but �ts to the four-spinon continuum

seen by Raman scattering [71] indicate an undercritical J2. In favour of an undercritical

J2 is also the small binding energy of the singlet bound-state for T < TSP, as seen by

Raman experiments [33, 39]. Interchain coupling will reduce the value of �0 because of an

enhancement of antiferromagnetic correlations [60].

As can be seen from equation (2.25) our coupling constants scale as g� � p�0�1. From
the above results follows 1 <

p
�0

�1
< 1:9 and I adapt the mean value of �0 = 0:5 for our

calculations. This value is close to the result for J2=J = 0:241. Within the accuracy of our

approach I can use J = 150 K as given by Castilla et al. [34]. The choice of �0 is justi�ed a

posteriori by the agreement of the results in the literature. Also note that including a NNN

term with J2=J = 0:24 in equation (2.38) with �J = 0:1 and using exact diagonalization

gives a value of
P

lz
(�1)lzhSlz � Slz+1i=N = 0:57 per two Cu ions in agreement with the

value given in equation (2.36).

Applying hydrostatic pressure the transition temperature grows at a rate of 4:8 K/GPa

[45]. In our approach TSP is given by equation (2.25) and depends on the coupling constants

g�;q0 , the frequencies 
�;q0, and the factor �0. The coupling constants g�;q0 in turn depend

on the linear derivatives of the magnetic exchange g�
�
and the polarization vectors, as given

in equation (2.20). In a harmonic lattice the phonon frequencies and polarization vectors

are independent of pressure. It seems very unlikely that the Peierls-active modes exhibit

extremely large negative Gr�uneisen parameters which would be needed in order to describe

the increase of TSP upon pressure via the pressure dependence of the phonon frequencies.

The linear coupling constants g�
�
also are independent of pressure, and since the lattice

distortions are rather small [61, 62] I do not expect higher order contributions to play a

crucial role. I must thus conclude the value of �0 to be strongly pressure dependent.

Together with the pressure dependence of J2=J discussed by Fabricius et al. [24], this

can explain the shift of TSP [63]. When introducing interchain coupling, prefactors and

the functional dependence of the spin-spin correlation function are also altered [72]. The

compressibility of the crystal is largest in b direction so that the alternation of the interchain

coupling under pressure is another possible origin of the pressure dependence of �0 and

TSP.
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2.8 Summary

In this chapter I have given a detailed analysis of the microscopic magneto-elastic coupling

in CuGeO3 which may be easily transferred to other systems. The comparison of several

theoretical and experimental approaches yields a satisfactory consistency. Numbers have

been given in table 2.7 for the angular dependence of the magnetic exchange, in table

2.9 for the dimerization, and in table 2.11 for the pressure dependence of the magnetic

exchange. The quantitative agreement of course is limited by the uncertainties within

experiments and theoretical techniques. Coupling constants for e�ective one-dimensional

real-space model Hamiltonians accessible to numerical studies are given in table 2.14. I

have discussed the applicability of static models (section 2.5.1 and 2.6) and I was able to

explain qualitatively the c axis anomaly of the thermal expansion (section 2.5.3).



Chapter 3

Partition function

The trace over the phonon states can be transformed to Gaussian integrals introducing

Bose coherent states. The pathintegral representation allows for a representation of the

partition function

Z = Tr exp f��Hg ; (3.1)

from which it is possible to derive explicitly a number of e�ective models and approxima-

tions used to study spin-phonon coupled systems. � = 1=(kBT ) is the inverse temperature,

kB is Boltzmann's constant. In this chapter I discuss the derivation of the representation

and its Fourier transformation and turn to applications in chapter 4.

In the previous chapter 2 it has been shown that the appropriate Hamiltonian for the

description for a spin-Peierls system can be derived microscopically (see page 21). For

clarity I repeat here the expressions given in previous chapters. The appropriate three

dimensional Hamiltonian for a spin-Peierls system consists of three parts

H = Hp +Hs +Hsp : (3.2)

The three dimensional harmonic phonon part

Hp =
X
�;q

}

�;qb

y
�;qb�;q (3.3)

includes the all relevant modes �. In the case of CuGeO3 we have � 2 f1; : : : ; 4g, as
discussed in chapter 2 and in references [44] and [73]. Here the Hamiltonian is shifted by

its ground state contribution
P

�;q }
�;q=2.

In this chapter I generalize the spin part to anisotropic nearest neighbor antiferro-

magnetic exchange in order to be able to tune between the limiting cases of the XY and

Ising model. The anisotropic spin 1/2 Heisenberg Hamiltonian with next nearest neighbor

frustration for the spin chains running in z direction is

Hs = J

X
l

�
1

2
(S+

l S
�
l+ẑ + S

�
l S

+
l+ẑ) +

Jz

J
S
z

l S
z

l+ẑ

�

+ J2

X
l

�
1

2
(S+

l S
�
l+2ẑ + S

�
l S

+
l+2ẑ) +

J2;z

J2
S
z

l S
z

l+2ẑ

�
; (3.4)

35
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where Jz and J are the nearest-neighbor-Sz and -transversal spin-component exchange

integrals, respectively. J2 and J2;z are the corresponding next nearest neighbor exchange

integrals. The transversal part has been rewritten in spin raising and lowering operators.

The index l runs over all magnetic ions, ẑ is a unit vector in z direction.

The spin-phonon coupling term from equation (2.21) on page 19 is modi�ed to

Hsp =
1p
N

X
q

Y�q

X
�

g�;q

�
b
y
�;�q + b

�;q

�
: (3.5)

The Fourier transform of the anisotropic electronic operator

Y�q :=
X
l

eiqRl+i�ly

2

�
S
+
l S

�
l+ẑ + S

�
l S

+
l+ẑ + 2
Szl S

z

l+ẑ

�
: (3.6)

was introduced. I have de�ned the ratio 
 = Jz=J . Since Y�q consist of local spin-pair

operators I will refer to it as a dimer operator. In the isotropic limit, where J = Jz or


 = 1, equation (3.6) becomes equation (2.18) where Y
(1)
�q was de�ned.

I have not included the next nearest neighbor contribution for the reasons discussed on

page 19. The next nearest neighbor contribution vanish at the wave vector of the spin-

Peierls distortion q0 = (�=a; 0; �=c), which most of this thesis is focused on. I will discuss

its e�ect qualitatively where necessary.

3.1 Bose coherent states

The Bose coherent states are de�ned as [74]

j�i = exp
nX

q

(�
q
b
y
q
� �

�
q
bq)
o
j0i (3.7)

with the closure relation

1 =

"Y
q

Z
C

d�
�
q
d�

q

2�i

#
j�ih�j: (3.8)

Here q runs over a set of quantum numbers. The matrix elements of any normal ordered

operator functional Afby
q
; b
q
g are

h�jAfby
q
; b
q
gj�0i = Af��

q
; �

q
g e�

P
q[

1
2
j�qj2+

1
2
j�0qj

2+��q�
0
q] : (3.9)

The trace in the partition function (3.1) is divided into a spin part Trs and phonon part

Trp. I introduce the Trotter parameter t = �=� where � = �=M . Expressing the phonon

trace in terms of coherent states using equation (3.8) the partition function is written as

Z = lim
�!0

Trs

"Y
�;q

Z
C

d�
�
�;q d��;q

2�i

#
h�j

MY
t=1

e��H j�i : (3.10)
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I introduceM�1 closure relations (3.8) between every pair of time slices. Normal ordering

of the terms expf�Hg = : expf�Hg : + O(�2) yields an error negligible in the limit � ! 0

[4]. The Bose operators can then be traced out using equation (3.9) for every time slice. I

introduce the shorthand

lim
�!0

"Y
�;q;t

Z
C

d�
�
�;q(t) d��;q(t)

2�i

#
=

Z
[D�] (3.11)

and write

Z = lim
�!0

Trs

Z
[D�]

Y
�;q;t

e��
�
�;q

(t+1)[��;q(t+1)���;q(t)]��
�;q�
�
�;q

(t+1)��;q(t)

Y
�;q;t

exp

�
�� g�;qp

N

�
�
�
�;�q(t+ 1) + ��;q(t)

�
Y�q � �Hs

�
: (3.12)

The notation has been chosen such that the trace imposes the boundary condition ��;q(M+

1) � ��;q(1) for the Bose �elds.

Now the spin-phonon coupling can be treated as a perturbation with respect to the

spin system by introducing the time dependence of Y�q in the interaction representation.

Y�q(t) = e�tHs Y�q e
��tHs : (3.13)

The second line of equation (3.12) can be factorized inducing an error of order �2 negligible

for lim�!0. Then one can transform

Y
�;q;t

exp

�
�� g�;qp

N

�
�
�
�;�q(t + 1) + ��;q(t)

�
Y�q

�
e��Hs

=
Y
�;q;t

e�tHs exp

�
�� g�;qp

N

�
�
�
�;�q(t+ 1) + ��;q(t)

�
Y�q(t)

�
e��(t+1)Hs

= e��Hs

Y
�;q;t

exp

�
�� g�;qp

N

�
�
�
�;�q(t+ 1) + ��;q(t)

�
Y�q(t)

�
: (3.14)

When writing the product over t as a sum in the exponent the discrete time ordering

operator Tt has to be introduced. The partition function becomes

Z = lim
�!0

Trs e
��Hs Tt

Z
[D�] e��

P
�;q;t

L�[�
��Y ]

: (3.15)
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The discrete imaginary time Lagrangian is given by

L� = �
�
�;q(t + 1)

�
��;q(t+ 1)� ��;q(t)

�
+ 
�;q��;q(t)

�

+
g�;qp
N

�
�
�
�;�q(t+ 1) + ��;q(t)

�
Y�q(t) :

(3.16)

We can now perform formally [75, 4] the continuum limit lim�!0. The sum over the

Trotter times t in the exponent then becomes an integral in the sense of Riemann's de�ni-

tion. The partition function then is given by

Z = Zs

Z
[D�]

*
T� exp

8<
:�

�Z
0

d�

X
�;q

L[���Y ]
9=
;
+

(3.17)

with the Lagrangian

L[���Y ] = �
�
�;q(�) [}
�;q + @� ]��;q(�) +

g�;qp
N

�
�
�
�;�q(�) + ��;q(�)

�
Y�q(�): (3.18)

Zs = Trs expf��Hsg is the partition function of the unperturbed spin Hamiltonian

(3.4), T� is the imaginary time � ordering operator, � is the inverse temperature, and the

brackets give the thermodynamic expectation value of an arbitrary operator Â asD
Â

E
= Z

�1
s

Trs e
��HsÂ ;

where Trs is the trace over the spin degrees of freedom. The di�erential operator is de�ned

as

@���;q(�) = lim
�!0

��;q(t+ 1)� ��;q(t)

�
: (3.19)

Via the grand canonical potential F = ���1 lnZ all relevant physical quantities can

be derived.

3.2 Ordered phase

In the distorted spin-Peierls phase the Peierls active phonon modes condense. It will turn

out to be advantageous to immediately introduce shifted Bose operators

~b
�;q = b

�;q � hb�;q0i�q=q0 (3.20)
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imposing h~b�;qi = 0. The properties of the expectation value of hb�;q0i can be derived in

the static limit of the functional integral formulation derived here which is done in section

4.1.1.

Introducing the shift (3.20) the phonon Hamiltonian (3.3) becomes

Hp =
X
�;q

}

�;q
~b
y
�;q
~b
�;q +

X
�

}

�;q0

�
hb
�;q0
i~by
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+ hb
�;q0
i�~b

�;q0

�
+
X
�

}

�;q0

���hb�;q0i
���2
(3.21)

The lattice distortion induces via (3.5) a magnetic exchange alternation

�J(l) =
1p
N

X
�

eiq0Rl+i�ly g�;q0

�
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�;�q0

i� + hb
�;q0
i
�
: (3.22)

leading to the Hamiltonian

H� = J
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}
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���hb�;q0i
���2: (3.23)

This Hamiltonian is one-dimensional since the spin chains are decoupled. As discussed on

page 19, the distortion modulated with q0 does not e�ect the next nearest neighbor part.

I have included in (3.23) the constant � hb�;q0i2 initially introduced in equation (3.21). In

this representation phonon part then is

~Hp =
X
�;q

}

�;q
~b
y
�;q
~b
�;q +

X
�

}

�;q0

�
hb
�;q0
i~by
�;q0

+ hb
�;q0
i�~b

�;q0

�
(3.24)

and describes displaced harmonic oscillators at q0. The spin-phonon coupling term (3.5)

then has to be rewritten Hsp ! ~Hsp by replacing b
�;q ! ~b

�;q.

~Hsp =
1p
N

X
q

Y�q

X
�

g�;q

�
~b
y
�;�q +

~b
�;q

�
: (3.25)

The partition function can be derived according to section 3.1 introducing displaced

�elds ~�
�;q.

Z = Z�

Z
[D ~�]

�
T� exp

�
�
Z

�

0

d�

X
�;q

~L[ ~�� ~�Y ]
��

�

(3.26)



40 Chapter 3. Partition function

with the Lagrangian

~L[ ~�� ~�Y ] = ~��
�;q(�) [}
�;q + @� ] ~��;q(�) +

g�;qp
N

h
~��
�;�q(�) +

~��;q(�)
i
Y�q(�)

+ }

�;q0

h
hb
�;q0
i~��

�;q0
(�) + hb

�;q0
i� ~�

�;q0
(�)
i
�q=q0 :

(3.27)

Note that the integral measure is not e�ected by the constant displacement of the �elds. I

introduced the partition function of the alternating spin system Z� = Trs expf��H�g, the
expectation values hi� are taken with respect to expf��H�g, and the evolution operator

for the spin operators is expf��H�g. The same result is obtained when introducing

~�
�;q(t) = �

�;q(t)� hb�;q0i�q=q0 (3.28)

into equation (3.12) and performing the transformation to interaction representation (3.14)

with respect to H� given in equation (3.23).

The expectation value of the phonon condensation

hb
�;q0
i = Tr e��H b

�;q0
(3.29)

can be expressed in terms of the phonon �elds by proceeding equivalently to the derivation

of the partition function (3.15):

hb
�;q0
i = lim

�!0
Trs e

��Hs Tt

Z
[D�] e��

P
�;q;t

L�[�
�
�Y ]

��;q0(M) = h�
�;q0

(�)i: (3.30)

Since the lattice distortion is static, i.e., h�
�;q0

(t)i � h�
�;q0
i is independent of the imaginary

time, one can simply write

hb
�;q0
i = h�

�;q0
i (3.31)

3.3 Fourier transform to Matsubara frequencies

The exponents in the expressions for the partition function in the ordered phase (3.17) or in

the disordered phase (3.26) can be transformed to their Fourier representations introducing

bosonic Matsubara frequencies !� = 2��=� [76]. Because the functional integral de�nition

in equation (3.10) is made on the discrete imaginary time lattice the Fourier transformation

has to be done for discrete time Lagrangian (3.16) using �nite Fourier sums. Afterwards

the continuum limit lim�!0 can be formally performed again. Otherwise one encounters

some ambiguity concerning the limit �! 0. I give a discussion of the problems connected

in section 3.3.3.
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3.3.1 Discrete transformation

I de�ne the discrete Fourier transform

~��;q;� =
1p
M

M�1X
t=0

ei!��t ~�q(t) (3.32)

and its inverse

~�q(t) =
1p
M

M=2�1X
�=�M=2

e�i!��t ~��;q;� : (3.33)

I recall that � = �M and � = �t. Note that the number of �elds in imaginary time space

��;q(t) and in Fourier space ��;q;� is equal. The number of degrees of freedom is conserved

and the limits lim�!0 = lim�=M!0 are not independent. Equivalently the transformations

of the dimer operators are de�ned.

Yq;� =
1p
M

M�1X
t=0

ei!��t Yq(t) (3.34)

Yq(t) =
1p
M

M=2�1X
�=�M=2

e�i!��t Yq;� (3.35)

The Fourier coe�cients have been chosen such that they are orthonormal

1
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X
t

ei!�t ei!�0 t = ��=�0 (3.36)
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1

M

X
�

ei!�t ei!�t
0

= �t=t0 : (3.37)

I present here the calculation for the more general ordered case. The disordered ex-

pressions are recovered by simply setting hby
�;q0
i = 0. I alter the notation of the partition

function (3.26)
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by introducing the operator in discrete time representation
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The latter is obtained by introducing the �eld shift (3.28) into the discrete time Lagrangian

(3.16). (One must consider � = �=M and
P

t
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(t + 1) � ~�
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(t)] = 0.) Applying the

transformations (3.32) through (3.35) I �nd

~H� =
�p
M

X
�

}

�;q0

h
hb
�;q0
i~��

�;q0;0
+ hb

�;q0
i� ~�

�;q0;0

i
+
X
�;q;�

~��
�;q;�

�
1� ei!��

�
~�
�;q;�

+
�

M

X
�;q;�

�
}
�;q ~��

�;q;� e
i!�� ~�

�;q;� +
g�;qp
N

h
~��
�;�q;�� e

�i!�� + ~��;q;�

i
Y�q;��

�
:

(3.40)

The factors expfi!��g = expfi��=Mg describe the phase picked up by the �elds ~��;q(t)
between two time slices t and t+1. It vanishes for all �nite frequencies in the limit �! 0.

A common shorthand is

lim
�!0

ei!�� = ei!�0
+

: (3.41)

Since the whole expression (3.38) has to be taken in the limit �! 0 I may use

lim
�!0

�
1� ei!��

�
= � lim

�!0
�
@ei!� �

@�
= lim

M!1
(�!0)

� �

M
i!� e

i!�� (3.42)

The resulting partition function then is

Z = Z� lim
M!1
(�!0)

Z
[D ~��]

*
T� exp

(
� �

M

X
�;q;�

~L�
)+

�

(3.43)

while the transformed exponent holds the Matsubara frequency Lagrangian

~L� = ~��
�;q;� e

i!�� [}
�;q � i!�] ~��;q;� +
g�;qp
N

h
~��
�;�q;�� e

�i!�� + ~��;q;�

i
Y�q;��

+
p
M

X
�

}

�;q0

h
hb
�;q0
i~��

�;q0;0
+ hb

�;q0
i� ~�

�;q0;0

i
:

(3.44)

Note that in the static limit � = 0 with time independent �elds ~��;q(t) � ~��;q or operators

Yq(t) � Yq the static Fourier components attain the correct limiting values

lim
M!1

~�
�;q;0p
M

= ~�
�;q ;

(3.45)
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lim
M!1

Yq;0p
M

= Yq : (3.46)

It is important to notice that equation (3.45) and (3.46) de�ne the static �elds ~��;q and

operators Yq as time-averaged values, compare equations (3.32) and (3.34).

The integral measure in the partition function (3.43) has been transformed accordingly.

Since the Fourier coe�cients in equations (3.32) through (3.35) have been normalized, the

Jacobi determinant denoted J is unity. This can be checked immediately by considering

the Gaussian identity

1 =

Z
[D ~�] exp

(
�
X
�;q;t

~��
�;q(t)

~�
�;q(t)

)
; (3.47)

where [D ~�] is de�ned via [D�] in equation (3.11) replacing �! ~� since the constant shift

from equation (3.28) leaves the integral measure unaltered. Applying the transformations

(3.32) and (3.33), equation (3.47) is transformed into

1 = lim
�!0

Y
�;q;t

"Z
C

d~��
�;q;� d

~�
�;q;�

2�i
J exp

n
�~��

�;q;�
~�
�;q;�

o#
: (3.48)

Since the transformations (3.32) and (3.33) are linear the Jacobi determinant J is inde-

pendent of the �elds. Rotating the �elds to real and imaginary part representation

d~��
�;q;� d

~�
�;q;� = 2i dRe~��

�;q;� dIm
~�
�;q;� (3.49)

the Gaussian integrals in equation (3.48) can be integrated out. I obtain for the Jacobi

determinant

J =

�����@
~��
�;q(t)

@ ~��
�;q;�

@ ~�
�;q(t)

@ ~�
�;q;�

����� = 1 : (3.50)

Consequently the integral measures are found to be equal, in other words [D ~��] = [D(~�!
~��)].

3.3.2 Partition function of the unperturbed phonon system

The partition function of the unperturbed phonon system is obtained from equation (3.43)

with the Lagrangian (3.44) by setting g�;q � 0, hb�;qi � 0, and disregarding the spin

contribution Z�. Note that then ~� � �.

Zp = lim
M!1

Z
[D��] exp

(
� �

M

X
�;q;�

�
�
�;q;� e

i!�� [}
�;q � i!�]��;q;�

)
(3.51)
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The functional integration can simply be performed via the intermediate step (see equation

(3.49))

Zp = lim
M!1

Y
�;q;�

�Z
C

dRe��;q;� dIm��;q;�

�

� exp

�
� �

M

X
�;q;�

ei!�� [}
�;q � i!�]
�
(Re��;q;�)

2 + (Im��;q;�)
2
�� �

: (3.52)

One has

Zp = lim
M!1

Y
�;q;�

M

�

e�i!��

}
�;q � i!�
: (3.53)

The evaluation of this expression is rather tedious because the usual technical approach via

functional analysis collides with the limit limM!1. For related problems with the limits

see section 3.3.3. I will not go into the details here because the result is well known by

other means [4].

Zp =
Y
�;q

�
1� e��}
�;q

��1
(3.54)

The derivation of expression (3.53) will be useful later on.

3.3.3 Continuous transformation and problems involved

The phonon �elds ~�q(�) and the dimer operators Yq(�) in the Lagrangian (3.27) can be

interpreted as the interpolations of the �elds ~�q(t) and operators Yq(t) de�ned at the

discrete Trotter times t. The continuous transforms then can be de�ned the usual way.

~�
�;q;�

=
1p
�

Z
�

0

d� ei!�� ~��;q(�) (3.55)

~��;q(�) =
1p
�

1X
�=�1

e�i!�� ~�
�;q;�

(3.56)

The dimer operators transform equivalently as

Y q;� =
1p
�

Z
�

0

d� ei!�� Yq(�); (3.57)

Yq(�) =
1p
�

X
�

e�i!�� Y q;�: (3.58)



3.3. Fourier transform to Matsubara frequencies 45

The integrals are de�ned in the sense of Riemann's de�nition.

The distinction of the Fourier transforms ~�
�;q;�

and Y q;� is necessary because the nor-

malization is di�erent than for the discrete Fourier transforms de�ned in equations (3.32)

and (3.34).

~�
�;q;�

= lim
�!0

p
� ~��;q;� (3.59)

Y q;� = lim
�!0

p
� Yq;� (3.60)

equations (3.55) through (3.58) are not normalized in contrast to the discrete transforma-

tions (3.32) through (3.35).

The direct application of the continuous transformations (3.55) through (3.58) to the

continuous Lagrangian (3.27) in the partition function (3.26) has three unpleasant e�ects.

� Most importantly, the phase factors expfi!�0+g in the Lagrangian (3.44) are absent.
This is erratic as is explained below. The phase factors serve as convergence factors

when performing frequency sums [77].

� The prefactor �=M = � is absent in contrast to the exponent of the partition function

(3.43). The �elds ~� and operators Y carry the units of
p
Energy.

� The integral measure is not unity any more. The Jacobi determinant (3.50) becomes

J =

������
@ ~��

�;q(�)

@ ~�
�

�;q;�

@ ~�
�;q(�)

@ ~�
�;q;�

������ = lim
M!1

Y
�;q

M=2�1Y
�=�M=2

�

M
(3.61)

and has the unit of an energy to the 4MN -th power. Recall that N is the number of

unit cells, M is the number of time slices and the number of relevant phonon modes

in CuGeO3 is 4.

Neglecting phase factors � neglecting discontinuous paths

Here I try to develop an understanding of the underlying error implied by the neglected

phase factors when applying the continuous Fourier transformation. I recall that I used the

de�nition of the di�erential operator (3.19) to obtain the continuous Lagrangians (3.18)

and (3.27). Alternatively one may demand the �elds ~��;q(�) to continuously interpolate

the �elds ~��;q(t). Then one can approximate

lim
�!0

~��;q(t+ 1) = lim
�!0

�
~��;q(t) + �

_~��;q(�)
���
�=�t

�
; (3.62)

where
_~�q(�) is the derivative of the continuous �eld with respect to � . Inserting the

expression (3.62) into the discrete representation of the exponent (3.39), neglecting terms

� �
2, and applying then the discrete Fourier transformations (3.32) through (3.35) one also

obtains the frequency space Lagrangian (3.44) without the phase factors.
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Thus the omission of the phase factors expfi!�0+g in the frequency space Lagrangian

is equivalent to only allowing continuous paths in imaginary time space. The de�nition of

the functional integral (3.12) includes no restriction on �elds �1 � ~��;q(t) � 1. Thus,

applying any restriction on the �elds ~��;q(�) is an approximation.

Mathematically the origin of the inconsistencies lies in the violation of the uniqueness

of the in�nitesimal limit. To obtain the derivative
_~�q(�) a limit has already been performed

{ even though, in the sense of the de�nition of @� in equation (3.19), it is not independent

of the limit � ! 0. Performing the limits in equations (3.59) and (3.60) independently

imposes just the same error.

Mean-�eld � continuous paths

For any �nite frequency the phase factors are irrelevant since then expfi!�0+g = 1 .

Consequently the mean-�eld approaches, where only the static limit !� = 0 is considered,

only allow for continuous paths. This is what is expected since mean-�eld approaches

describe classical saddle points.

Procedure for practical purposes

It is still convenient to work with the continuous representation of the partition function

(3.26) and Lagrangian (3.27). I will use the representation in what follows, keeping in

mind that the origin of the de�nition is discrete. In principle, it is always possible but

tedious to go back to the discrete representation. I will permit myself to take the shortcut

via the continuous Fourier transformations and renormalizations (3.55) through (3.60) and

include the phase factors at the appropriate places. The latter is straight forward since

regarding the transformation from expression (3.39) to expression (3.40) it is clear that all

the complex conjugate �elds ~��(�) = lim�!0
~��(t+ 1) pick up the phase factor.



Chapter 4

Mappings and approximations

A rigorous determination of the partition function (3.43) derived in the last chapter is not

possible. Mappings to other representations or limiting cases allow some insight into the

physics and the interdependence of problems. I discuss some applicable approximations,

their physical or mathematical justi�cation, and their limits.

4.1 Integrating out phonon degrees of freedom: e�ec-

tive spin models

Integrating out the phonon degrees of freedom | either rigorously or by applying ap-

proximations | yields e�ective spin or electronic models that have been studied in the

literature. Additionally it is possible to show the equivalence of di�erent �eld-theoretical

approaches as shown in section 4.1.6.

4.1.1 Static limit

Starting point is the partition function (3.43) on page 42. The static limit is obtained by

retaining only the Fourier components with !� = 0 in the Matsubara frequency Lagrangian

(3.44). Using the notation for the renormalized static �elds (3.45) and the renormalized

operator (3.46) one has

~L0 = }
�;q ~��
�;q

~�
�;q +

g�;qp
N

h
~��
�;�q +

~��;q

i
Y�q

+ }

�;q0

h
hby
�;q0
i~�

�;q0
+ hb

�;q0
i~��

�;q0

i
�q=q0

(4.1)

47
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in the static partition function

Zstat = Z�

Z
[D ~�0]

D
T� exp

n
��
X

�;q

~L0

oE
�

: (4.2)

The integral measure was adapted to the rescaled �elds.Z
[D ~�0] = lim

M!1

Y
�;q

Z
C

d~��
�;q d

~�
�;q

2�i
M (4.3)

It is useful here to also regard the representation without the static lattice distortion

hb
�;q0
i or, in other words, the representation with the unshifted �elds �. The Lagrangian

is

L0 = }
�;q �
�
�;q ��;q +

g�;qp
N

�
�
�
�;�q + ��;q

�
Y�q (4.4)

in the partition function

Zstat = Zs

Z
[D�0]

D
T� exp

n
��
X

�;q
L0

oE
: (4.5)

The Lagrangian (4.4) describes a displaced harmonic oscillator with a displacement pro-

portional to the operator Y�q. As discussed in detail in chapter 2 [73], the spin-Peierls

distortion in CuGeO3 is modulated with q0 = (�=a; 0; �=c), where a and c are the lattice

constants in x and z direction respectively. Only the �elds at q0 are actually shifted by

the spin-phonon coupling. 2q0 is a reciprocal lattice vector so that the ordering is com-

mensurate with the lattice. Thus, one has ��;�q0 = ��;q0 . In other words, at q0 only the

real part of the corresponding �eld couples to the spin system.

g�;q0p
N

h
�
�
�;�q0

+ ��;q0

i
Y�q0 =

g�;q0p
N

2Re ��;q0 Y�q0 (4.6)

The imaginary part is not shifted so that h��;q0i is real and via equation (3.31) on page 40

one �nds that hb�;q0i is real.
From equation (2.32) on page 23 then follows that for q0 the polarization vectors are

real. Regarding equation (2.20) on page 19 shows that g�;q0 is real. The magnetic exchange

alternation de�ned in equation (3.22) simpli�es to

�J(l) =
2p
N

(�1)lx+ly+lz
X
�

g�;q0 hb�;q0i (4.7)

and is real. These re
ections simplify the discussion of the static saddle point in section

4.1.2. For incommensurate ordering the situation changes as discussed in section 4.1.3.
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4.1.2 Static saddle point

The saddle point is obtained by replacing the �elds by their expectation value such that the

static Lagrangian is minimized. Recalling that the shifted operators ~bq in equation (3.20)

on page 38 where de�ned such that 0 = h~b�;q0i = h~��;q0i, the static saddle point partition
function is simply Z� = Trs expf��H�g. The Hamiltonian H� is given by equation (3.23)

on page 39. Note that the relation h~b�;q0i = h~��;q0i can be obtained equivalently to

hb�;q0i = h��;q0i in the unshifted case described in section 3.2.

Kl�umper et al. have used an equivalent isotropic model with Jz = J and J2;z = J2 to

describe thermodynamical properties of CuGeO3 using �nite temperature DMRG [57, 63].

Their notation is

HMF = J

X
lz

�
1 + (�1)lz�J

�
Slz � Slz+1 + J2

X
lz

Slz � Slz+2 +
1

2
LK �

2
J
: (4.8)

I denote with L the number of ions of a Cu chain. The lattice alternation �2
J
has to be

determined self consistently by minimizing the free energy F = �kBT lnZ�.

A direct comparison of the elastic energy terms in (4.8) using the de�nition of �J in

equation (4.7) and (3.23) yields:

K

X
�;�0

g�;q0g�
0;q0

hb�;q0ihb�0;q0i =
1

2

X
�

}

�;q0
hb�;q0i2 (4.9)

Note that in order to adapt the one-dimensional formulation one must replace 2N ! L. I

recall that there are two Cu ions per unit cell and that in this work the energies are usually

de�ned per unit cell and not per Cu ion. This is responsible for the factor of 1=2 on the

right hand side of equation (4.9).

In the applied harmonic approximation K must be independent of the distortion �elds

hb�;q0i. Comparing coe�cients in equation (4.9) yields a set of four linear equations which

can be rewritten to decouple as

}
�;q0
g�;q0

hb�;q0i = K

X
�0

2 g2
�0;q0

}
�0;q0

}
�0;q0
g�0;q0

hb�0;q0i: (4.10)

The right hand side of equation (4.10) is the same for all � and thus }
�;q0hb�;q0i=g�;q0 =
const in full agreement with equation (2.34) on page 23 derived in chapter 2. This result

is generalized to all eigenmodes of the system at �nite frequencies and arbitrary q within

the framework of the RPA approach in equation (4.56) discussed in section 4.2.1. Further

one can identify

K =

 X
�

2 g2
�;q0

}
�;q0

!�1

: (4.11)

This de�nition yields full consistency between the values of the coupling constants derived

via equations (2.35) and (2.36) and the values of K given in reference [57]. Note that in

reference [57] J2=J = 0:35 and consequently �0 = (TSP=J) � 1 as discussed in section 2.7.
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In the high temperature phase, where �J = 0, the model (4.8) has been used to success-

fully describe the magnetic susceptibility in CuGeO3 [24]. The same is true in the ordered

phase and also the estimated magnetic entropy liberated up to the transition temperature

can be matched [57]. On the other hand, the critical exponent of the order parameter is

mean-�eld like 1=2, whereas experiments give an exponent of � 0:35 [78, 79]. The value of

K most consistent with the entropy and susceptibility measurements gives a transition tem-

perature which is slightly too high [63]. Also, the temperature dependence of the magnetic

exchange discussed in section 2.5.3 has not been included and will alter the results. The

possible signi�cance of the phonon 
uctuations has been discussed at the end of section 2.6.

The in
uence of dynamical phonons of the spin spectrum is already established [58, 59, 50].

L�ow and K�uhne [69] have shown in a recent work that one-dimensional phonons also have

a signi�cant e�ect on the magnetic susceptibility. An answer to the discrepancies may be

accessible by including Gaussian 
uctuations as proposed in section 4.2.3.

4.1.3 Short remark on incommensurate ordering

If 2q0 is not a reciprocal lattice vector such that the ordering is incommensurate with the

lattice the preceeding argumentation about hb�;q0i to be real fails. The expectation values

aquire complex phases. Indeed does CuGeO3 show incommensurate ordering in an external

magnetic �eld larger than about 12 Tesla [80, 81, 82, 5, 83, 84]. As was discussed in section

(3.2), in the distorted spin-Peierls phase the Peierls-active phonon modes condense. For a

domain-wall-like modulation higher harmonics condense, too, with the appropriate Fourier

weight. equation (3.20) then must be generalized to

~b
�;q = b

�;q �
NsX
s=1

hb
�;q

s

i �q=q
s

(4.12)

imposing h~b�;qi = 0. The index s labels the Ns modes that condense. The magnetic

exchange alternation (3.22) is then also generalized.

�J(l) =
1p
N

X
�;s

eiqsRl+i�ly g�;q
s

�
hb
�;�q

s
i� + hb

�;q
s
i
�
: (4.13)

Such a generalized magnetic exchange alternation has been successfully used in a real-

space model equivalent to equation (4.8) to describe the incommensurate phase in CuGeO3

[83, 85]. An overview of the e�orts made to describe the incommensurate phase can

be obtained through reference [86] and the references therein. For a discussion of the

theoretical background of the Goldstone modes connected to the incommensurate ordering,

the so called phasons, and the general phase diagram referred to as Lifshitz critical behavior,

see reference [87] and the references therein.
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4.1.4 E�ective spin model with long range interaction

The phonon �elds in the partition function (3.17) can be integrated out. For that purpose

the generating functional

P [j�; j] = exp

(
�
Z

�

0

d�

X
�;q

�
j
�
�;q(�)��;q(�) + �

�
�;q(�)j�;q(�)

�)
(4.14)

is introduced [75]. It satis�es limj�;j!0 P = 1. The new �elds have the same de�nitions of

the continuum limit as the phonon �eld, as discussed at the end of section 3.3.3:

j(�) = lim
�!0

j(t); j
�(�) = lim

�!0
j
�(t+ 1): (4.15)

The phonon �elds in the spin-phonon coupling part in the action (3.17) can then be

expressed as functional di�erential operators with respect to the �elds j.

Z = Zs lim
j�;j!0

*
T�exp

8<
:

�Z
0

d�

X
�;q

g�;qp
N

"
�

�j
�;�q(�)

+
�

�j
�
�;q(�)

#
Y�q(�)

9=
;
+

Zp[j
�
; j] (4.16)

At this point it is useful to notice that the di�erentiation with respect to the �elds j is

derived from the discrete representation as"
�

�j
�;�q(�)

+
�

�j�
�;q(�)

#
= lim

�!0

"
�

�j
�;�q(t)

+
�

�j�
�;q(t + 1)

#
(4.17)

consistent with expressions (4.15). The phononic partition functional is given by

Zp[j
�
; j] =

Z
[D�] exp

8<
:�

�Z
0

d�

X
�;q

�
�
�;q(�) [}
�;q + @� ]��;q(�)

9=
; P [j�; j] (4.18)

and can be brought into quadratic form by shifting the phonon �elds as [75]

�
�;q(�) = ��

�;q(�)� [}
�;q + @� ]
�1
j
�;q(�) ; (4.19)

�
�
�;q(�) = ���

�;q(�)� j
�
�;q(�) [}
�;q + @� ]

�1
: (4.20)

The �elds �� can then be integrated out [4]. I formally introduce a Dirac distribution and

�nd

Zp[j
�
; j] = Zp exp

8<
:

�Z
0

d�

�Z
0

d�
0
X
�;q

j
�
�;q(�) [}
�;q + @� ]

�1
�(� � �

0)j
�;q(�

0)

9=
; ; (4.21)
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where Zp is the partition function of the bare harmonic phonon system given in equation

(3.54). Introducing the unperturbed phonon Green's function

d
(0)

�;q(�) = e�}
�;q�

�
�(�)

1

1� e��}
�;q

+ �(��) 1

e�}
�;q � 1

�
; (4.22)

satisfying

[}
�;q + @� ]
�1
�(� � �

0) = d
(0)

�;q(� � �
0); (4.23)

one can insert Zp[j
�
; j] from equation (4.21) into equation (4.16), carry out the functional

di�erentiation and the limit j�; j ! 0 to �nd

Z = ZsZp

*
T� exp

8<
:

�Z
0

d�

�Z
0

d�
0
X
�;q

g�;qg�;�q

N
Yq(�) d

(0)

�;q(� � �
0) Y�q(�

0)

9=
;
+
: (4.24)

Transforming the exponent via equations (3.57), (3.58), and (3.60) introducing Matsubara

frequencies !� = 2��=� yields the e�ective spin representation of the partition function.

Z = ZsZp lim
M!1

*
T� exp

(
�

M

X
�;q;�

g�;qg�;�q

N
Yq;� (}
�;q � i!

�
)
�1
Y
�
q;�

)+
(4.25)

Note that Y y
q;� = Y

�
q;� = Y�q��.

The induced dimer-dimer interaction is proportional to the Fourier transform of the

unperturbed phonon propagator (4.22) [77].

d
(0)

�;q;� =

Z
�

0

d� ei!�� d
(0)

�;q(�) =
1

}
�;q � i!
�

(4.26)

It is a dynamical potential and thus no e�ective Hamiltonian can be given corresponding

to the representation (4.25) of the partition function.

The result (4.25), of course, can also be obtained by applying an equivalent approach

directly to the Fourier transformed representation of the partition function given in equa-

tion (3.43) and (3.44) in the limit hb�;q0i = 0, ~� = �. The imaginary time representation

has the advantage that in integration over the phonon �elds �� leading to the unperturbed

phonon partition function Zp in equation (4.21) is well de�ned and given in the literature

[4]. It is free of the problems connected with the limit �! 0 mentioned in section 3.3.2.

4.1.5 Limiting cases

Using Y �
q;� = Y�q;��, the summation in the exponent in the partition function (4.25) can

be transformed by setting
P

�
= 1=2

P
�
+1=2

P
�!��. The partition function then is

rewritten to

Z = ZsZp lim
M!1

*
T� exp

(
�

M

X
q;�

Yq;� Ve�(q; !�) Y
�
q;�

)+
: (4.27)
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In this form the phonon induced e�ective electron-electron interaction is, after continuation

to the real axis i!� ! ! + i�, written as

Ve�(q; !) = �
X
�

g�;qg�;�q }
�;q

N
�
}2
2

�;q � (! + i�)2
� (4.28)

Such phonon induced interactions are usually considered in electronic systems where one

replaces

Hs ! He =
X
k�

E
(e)

k c
y
k�ck�; (4.29)

Yq;� ! �q;� =
1p
�

Z
�

0

ei!��
X
k�

c
y
k�q�(�)ck�(�): (4.30)

The operators ck� and c
y
k� are electronic annihilation and creation operators, � is the spin

index, E
(e)

k is the dispersion of the unperturbed electronic system and the phonons couple

to the electronic density.

The possible attractiveness of such an induced interaction was �rst noticed by Fr�ohlich

[88]. In the static limit the potential (4.28) is indeed attractive [77]. The above model

with an electron gas (E
(e)

k � }
2k2), where the electronic density couples to acoustic phonon

modes with a cut-o� of the order of the Debye temperature, is the basis for the description

of conventional superconductivity [77]. The appearance of superconductivity is governed by

the competition of the phonon mediated interaction and the repulsive coulomb interaction

[76].

In the static limit the exponent in the partition function (4.27) is frequency independent

and the problem can be written in terms of an e�ective Hamiltonian. Note that for q = 0

the density operator �0;� commutes with He and is time independent, i.e., �0;� = �0 ��=0.

For small momentum transfer q ! 0 the static approximation should thus be reliable. If

the phonons are three dimensional, the problem is equivalent to that of three dimensional

interacting electrons with spin degeneracy which is usually reduced to e�ective one-particle

descriptions via mean-�eld theories, e�ective screening potentials, or Landau theories [76].

In the one-dimensional case the model can be treated by bosonization techniques [10].

Revues are given by Voit [89] and by Schulz et al. in the form of lecture notes [90].

The Peierls instability, where E
(e)

k � cos kzc near half �lling, has been treated in a mean-

�eld approach by Rice and Str�assler [91], starting from a generalized coulomb interaction

using bosonization by Chui et al. [92] (see also references therein), and in RPA by Leung

[93].

In the case of the nearest neighbor XY model, where Jz = J2 = J2;z = 0, the Jordan-

Wigner transformation described in section 4.3.1 can be applied to obtain a model of

interacting spinless fermions. The corresponding unperturbed Hamiltonian (3.4) and the
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dimer operator (3.6) can be written as

H
XY
s

= J

X
k

cos(kzc) c
y
k ck (4.31)

Y
XY
q;� =

X
k

�
eikzc + e�i(kz+qz)c

�
c
y
k+q+2�ŷ=b;�

ck;� (4.32)

The operators ck and c
y
k are spinless fermion annihilation and creation operators. Note

that the momentum transfer 2�ŷ=b is just an artefact of the alternating ordering in the

reduced unit cells derived in section 2.2. It is speci�c to the given con�guration in CuGeO3

and I drop it for the next two equations. The problem can be viewed as interacting spinless

fermions

ZXY = Z
XY
s
Zp lim

M!1

*
T� exp

8<
: �

M

X
k;k0;q;�

V
XY
e� (q;k;k0; !�) c

y
k+q;�ck;�c

y

k0�q;��
ck0;��

9=
;
+

(4.33)

with the e�ective dynamical potential

V
XY
e� (q;k;k0; !�) = � cos(kz + qz=2) cos(k

0
z
� qz=2)

g�;qg�;�q }
�;q

N
�
}2
2

�;q + !2
�

� : (4.34)

Neglecting the qx and qy dependence of the coupling constants g�;�q and of the phonon

dispersions 
�;q the problem becomes one-dimensional.

For J = 0 one has Ising chains coupled to phonons. The spin operators commute with

the spin Hamiltonian [H Ising
s

; Y
Ising
q ] = 0 8 q and are time independent Y Ising

q;� = Y
Ising
q ��=0.

The interaction then is static and the above transformation yields a three-dimensional

Ising model. This approach has been used for J2 = 0 by Pytte [3] to describe the Jahn-

Teller e�ect. In chapter 6 I apply a static approximation to the partition function (4.25) to

motivate the phenomenological Ising model used for the description of the thermodynamics

in the ordered phase of CuGeO3.

4.1.6 Equivalence of dimer and distortion �elds

Macris and Piguet [94] have recently shown that from

[H; b
y
�;q] = }
�;qb

y
�;q +

g�;qp
N
Y�q (4.35)

follows hb�;qi 6= 0 , hYqi 6= 0, i.e., long range elastic and dimer order must appear

simultaneously.

This conjecture can be easily supported here. The Hubbard-Stratonovich transforma-

tion [95, 96, 97] makes use of the Gaussian identity

eC�;q;�Â�;q;� B̂�;q;� =

Z
C

d 
�
�;q;�d �;q;�

2�i C�;q;�
exp

�
�j �;q;�j

2

C�;q;�
� Â�;q;� �;q;� � B̂�;q;� 

�
�;q;�

�
(4.36)
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to decouple two arbitrary operators Â and B̂. The �elds are integrated over the entire

complex plane. The transformation can be used to introduce dimer �elds in (4.25) by

identifying the operators

Â�;q;� =
�

M

g
�;qp
N

Y
�
q;� ;

B̂�;q;� =
�

M
ei!��

g
�;�qp
N

Yq;� ;

and the prefactor

C�;q;� =
M

�
e�i!�� (
�;q � i!

�
)
�1

: (4.37)

I �nd the partition function

Z = Zs Zp lim
M!1
(�!0)

�Y
�;q;�

M

�

e�i!��


�;q � i!
�

��1
*Y
�;q;�

Z
C

d 
�
�;q;�d �;q;�

2�i
exp

(
� �

M

X
�;q;�

L [ � Y ]
)+

: (4.38)

The action is

L [ � Y ] =  
�
�;q;� e

i!�� (
�;q � i!
�
)  �;q;�

+
g
�;qp
N

�
 
�
�;�q;�� e

�i!�� +  
�;q;�

�
Y�q;�� ; (4.39)

where I have performed a resummation q ! �q and � ! �� in the last term. I recall

that Y�q;�� = Y
�
q;�.

Comparing equation (3.53) and (3.54) for the unperturbed phonon partition function

on page 44 it is clear that

Zp lim
M!1
(�!0)

�Y
�;q;�

M

�

e�i!��


�;q � i!
�

��1
= 1 : (4.40)

Comparing the Lagrangian (4.39) with the phonon �eld Lagrangian (3.44) on page 42 in

the undistorted limit, i.e., hb�;q0i � 0 and ~� = �, one �nds the phonon �elds and the here

introduced dimer �elds to be identical.

 
�;q;� = �

�;q;�
(4.41)

In a sense I have just performed a calculation in a circle. But it proofs that the problem

is described by only one �eld-theoretical representation, as long as the spin degrees of

freedom are represented by operators Yq;�. Of course, an arbitrary scaling of the �elds can

be introduced via the de�nition of the operators Â�;q;� and B̂�;q;� and the prefactor C�;�q;�.

This cannot alter the underlying physics, though.
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4.2 Spin degrees of freedom: cumulant expansion

The representations of the partition function (3.43) with the Lagrangian (3.44) on page

42 can be interpreted as moment generating functions for the operators Yq(�) [98]. The

partition function can then be rewritten with the trace over the spin degrees of freedom in

the exponent [98]

Z = Z� lim
M!1

Z
[D ~�] exp

n
�S[ ~�� ~�Y ]

o
; (4.42)

de�ning the action

S = �
1X
n=1

1

n!

*"
� �

M

X
�;q;�

g�;qp
N

�
~��
�;�q;�� e

�i!�� + ~��;q;�

�
Y
�
q;�

#n+
�;cum

+
�

M

X
�;q;�

~��
�;q;� e

i!�� [}
�;q � i!�] ~��;q;� + }

�;q0
hb
�;q0
i
h
~��
�;q0

+ ~�
�;q0

i
: (4.43)

I refer to the modulation wave vector q0 in CuGe03 so hb�;q0i = h��;q0i is real as discussed in
section 4.1.1, the static �eld ~�

�;q0
and its complex conjugate is de�ned according to equation

(3.45) on page 42. The index cum implies that the expectation values are calculated as

cumulants [98].

4.2.1 Random Phase Approximation (RPA)

I �rst consider the disordered phase where hYq;�i = hb�;qi = 0 and thus ~� = �. Expanding

the action (4.43) to second order in the phonon �elds I �nd

SRPA =
�

M

X
�;q;�

�
�
�;q;� e

i!�� [}
�;q � i!�]��;q;�

� �
2

2M2

X
�;q;�

X
q0;�0;�0

g�;qg�0;q0

N

�
�
�
�;�q;�� e

�i!�� + ��;q;�

�
� �

�
�
�0;�q0;��0 e

�i!
�0
� + ��0;q0;�0

� 

Y
�
q;�Y

�
q0;�0

�
cum

: (4.44)

The partition function reads

ZRPA = Zs lim
M!1

Z
[D�] exp f�SRPA[���Y ]g : (4.45)

In the disordered phase the second order cumulant simpli�es to the bare dimer-dimer

correlation function:

Y
�
q;�Y

�
q0;�0

�
cum

=


Y
�
q;�Y

�
q0;�0

�� 
Y �
q;�

� 

Y
�
q0;�0

�
=


Y
�
q;�Y

�
q0;�0

�
: (4.46)
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The dimer-dimer correlation function is determined by



Y
�
q;�Y

�
q0;�0

�
=

1

M

X
t;t0

ei(!��t+!�0 �t
0)


Y
�
q (t)Y

�
q0(t

0)
�

=
X
�t

ei!���t


Y
�
q (�t)Y

�
q0(0)

�
��=��: (4.47)

In the last step I used the de�nition of the imaginary time dependence (3.13) and the

cyclic invariance under the trace to �nd that the correlation function depends on the time

di�erence �t = t � t
0 only. Using the real-space de�nition for the dimer operators (3.6)

and de�ning �l = l� l0 one has



Y
�
q (�t)Y

�
q0(0)

�
=

1

4

X
l;�l

ei(q+q
0)Rl e�iq

0R�l�i��ly (4.48)

�
D �
S
+
l (�t)S

�
l+ẑ(�t) + S

�
l (�t)S

+
l+ẑ(�t) + 2
Szl (�t)S

z

l+ẑ(�t)
�

� �S+
l��l(0)S

�
l��l+ẑ(0) + S

�
l��l(0)S

+
l��l+ẑ(0) + 2
Szl��l(0)S

z

l��l+ẑ(0)
� E

:

I recall that the position vector of the reduced unit cell (see �gure 2.1 on page 14) may

be de�ned as Rl = (a lx; b=2 ly; c lz). In the disordered phase translational invariance is

given and thus the real-space correlation function in (4.48) is independent of l so that



Y
�
q (�t)Y

�
q0(0)

�
=


Y
�
q (�t)Y

�
�q(0)

�
N �q0=�q = hY�q(�t)Yq(0)i N �q0=�q: (4.49)

In short, I de�ne the correlation function

�
Y
(q; �) = � �

M

X
�t

ei!���t hY�q(�t)Yq(0)i ��=�� �q0=�q (4.50)

This is just the spin-polarization bubble (see section 5.1 and reference [14]) which accounts

for the title of the present section.

The action now can be written as

SRPA =
�

M

X
�;q;�

�
�
�
�;q;� e

i!�� [}
�;q � i!�]��;q;�

+
�
Y
(�q;��)
2

�
�
�
�;�q;�� e

�i!�� + �
�;q;�

�X
�0

g�;qg�0;�q

�
�
�
�0;q;� e

i!�� + �
�0;�q;��

��
:

(4.51)

The classical (mean-�eld) expectation values of the �elds of such a dynamical system

can be obtained by minimizing the action. I will here refer only to �nite (or vanishing)
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frequencies and I may thus drop the phase factors. By requesting @SRPA=@��;q;� = 0 and

@SRPA=@���;q;� = 0 one �nds

[}
�;q + i!� ] h���;�q;��i = �Re�
Y
(q; �)

X
�0

g�;�qg�0;q

�h��
�0;�q;��i+ h��0;q;�i

�
; (4.52)

[}
�;q � i!�] h��;q;�i = �Re�
Y
(q; �)

X
�0

g�0;qg�;�q

�h��
�0;�q;��i+ h��0;q;�i

�
: (4.53)

Note that to obtain equation (4.52) I have performed a transformation q ! �q and

� ! �� after the di�erentiation. I have also used the fact that, since the spin operators

in equation (4.48) are self adjoint,

[�
Y
(q; �) + �

Y
(�q;��)] = 2 Re�

Y
(q; �): (4.54)

The same results are obtained by setting @SRPA=@Re��;q;� = 0 and @SRPA=@Im��;q;� = 0.

equations (4.52) and (4.53) are trivially ful�lled for h�
�;q;�i = h��

�;q;�i = 0 consistent

with the Gaussian integral formulation. The nontrivial solutions allow for the macroscopic

(thermodynamic) occupation of the states identi�ed by the corresponding quantum num-

bers �; q; �. They thus characterise eigenstates of the spin-phonon coupled system.

Multiplying equation (4.52) by (}
�;q � i!�)=(2g�;�q}
�;q), then multiplying equation

(4.53) by (}
�;q + i!�)=(2g�;�q}
�;q), and adding them up I obtain

}
2
2

�;q + !
2
�

2 g�;�q}
�;q

�h��
�;�q;��i+ h��;q;�i

�
= �Re�

Y
(q; �)

X
�0

g�0;q

�h��
�0;�q;��i+ h��0;q;�i

�
:

(4.55)

This equation is equivalent to equation (4.10) in the limit q ! q0 and � ! 0 found in

section 4.1.2. Since the right hand side is independent of the phonon mode index � so must

be the left hand side.

}
2
2

�;q + !
2
�

2 g�;�q}
�;q

�h��
�;�q;��i+ h��;q;�i

�
= �q;� (4.56)

equation (4.55) can then be rewritten as to reproduce the relation de�ning the poles of

the normal coordinate propagator in RPA used for the description of the phonon dynamics

in chapter 5.

0 = 1� Re�
Y
(q; �)

X
�

g�;qg�;�q D
(0)

�;q;� (4.57)
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Here I have introduced the de�nition of the renormalized, unperturbed normal-coordinate

propagator as it is given in the literature [76].

D
(0)

�;q;� = � 2 }
�;q

}2
2
�;q + !2

�

(4.58)

It is derived from

D
(0)

�;q;� = �2
�;q
}

Z
�

0

d� ei!�� hQ�;q(�)Q�;�q(0)ip

= �
Z

�

0

d�

D�
b
y
�;�q(�) + b

�;q(�)
��

b
y
�;q(0) + b

�;�q(0)
�E

p

; (4.59)

where the trace is taken with respect to the unperturbed phonon Hamiltonian (3.3). For

the relation between normal coordinates and Bose operators see the de�nition (2.7) on

page 14.

Transition temperature

The criticality is characterized by diverging thermodynamic quantities such as correlation

lengths or speci�c heat [99, 55]. The divergencies are driven by critical 
uctuations due

to low energy excitations. The transition temperature TSP is thus characterized by the

existence of zero a frequency eigenmode at the appropriate wave vector:

0 = 1 + �
Y
(q0; 0; TSP)

X
�

2 g2
�;q0

}
�;q0
: (4.60)

For the isotropic Heisenberg chain, where �
Y
(q0; 0; TSP) has been shown to reduce to �0/

kBTSP, equation (4.60) becomes equation (2.25) used for the determination of the coupling

constants in section 2.3.
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4.2.2 Ordered phase

In the ordered phase the expansion of equation (4.43) up to second order also contains

terms linear in the phonon �elds.

S(2) =
�

M

X
�;q;�

g�;qp
N

h
~��
�;�q;�� e

�i!�� + ~��;q;�

i 

Y
�
q;�

�
�
+ �

X
�

}

�;q0
hb
�;q0
i
h
~��
�;q0

+ ~�
�;q0

i

+
�

M

X
�;q;�

~��
�;q;� e

i!�� [}
�;q � i!�] ~��;q;�

� �
2

2M2

X
�;q;�

X
q0;�0;�0

g�;qg�0;q0

N

�
~��
�;�q;�� e

�i!�� + ~��;q;�

�

�
�
~��
�0;�q0;��0 e

�i!
�0 � + ~��0;q0;�0

� 

Y
�
q;�Y

�
q0;�0

�
�;cum

: (4.61)

Note that this is not an expansion in the order parameters hb�;q0i but in the 
uctuation

�elds ~� around the static distortion and in the dimer operators. The order parameter

hb�;q0i is included in the spin-system expectation values hi
�
to arbitrary order. The dimer

expectation value and the dimer-dimer correlation function may not even be analytic in

hb�;q0i. This raises the issue of stability of the expansion which I address in section 4.2.3.

In the �rst order term the notion of the cumulant looses its sense. Using the Fourier

representation (3.34), the de�nition of the imaginary time dependence (3.13), and cyclic

invariance under the trace the expectation value of the dimer operator

hY �
q;�i�p
M

=
1

M

MX
t=1

ei!��t hY �
q (t)i� = hY �

q0
i
�
��=0 �q=q0 (4.62)

is found to be static. It is only nonzero in the ordered phase and only for the wave vector

of the modulation of the distortion. Note that I used the renormalized static operator

according to equation (3.46).

The second order cumulant is de�ned as [98]



Y
�
q;�Y

�
q0;�0

�
�;cum

=


Y
�
q;�Y

�
q0;�0

�
�
� hY �

q;�i�hY �
q0;�0i�: (4.63)

The dimer-dimer correlation function is determined analogously to that in section 4.2.1

by simply replacing the expectation value hi by hi
�
in equations (4.47) and (4.48). In

the ordered phase the translational invariance is broken so that the expectation values

for l and l + x̂, l + ŷ, and l + ẑ are di�erent. In reciprocal space this corresponds to

the loss of the conservation of momentum due to new Bragg re
ections inherent of the

superlattice structure and the resulting reduced Brillouin zone. The correlation function
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has four contributions.

Y
�
q (�t)Y

�
q0(0)

�
�

=


Y
�
q (�t)Y

�
�q(0)

�
�
N �q0=�q

+
D
Y
�
q+q0

(�t)Y �
�q+q0

(0)
E
�

N �q0=�q

+
D
Y
�
q (�t)Y

�
�q+q0

(0)
E
�

N �q0=�q+q0

+
D
Y
�
q (�t)Y

�
�q�q0

(0)
E
�

N �q0=�q�q0 (4.64)

I recall that 2q0 = 2(�=a; 0; �=c) is reciprocal lattice vector. For simplicity I introduce the

shorthand

�
�
(q1; q2; �) = �

�

MN

X
�t

ei!���t


Yq1(�t)Yq2(0)

�
�
� �hY �

q0
i2
�
��=0 �q1=q0 �q2=q0 ; (4.65)

where thus q1 2 fq; q + q0g and q2 2 fq; q � q0g. Using equations (4.63), (4.62), and

(4.47) with hi
�
one �nds the connection to the initial cumulant:

� �

MN
hY�q;��Y�q0;��0i�;cum = �

�
(�q1;�q2;��) ��=��0 �q=q1 �q0=q2: (4.66)

The action (4.61) is now rewritten using the above results for the expectation values.

S(2) = �

X
�

�
g�;q0p
N
hY �

q0
i
�
+ }


�;q0
hb
�;q0
i
� h

~��
�;q0

+ ~�
�;q0

i

+
�

M

X
�;q;�

~��
�;q;� e

i!�� [}
�;q � i!�] ~��;q;� + Scorr(2) (4.67)

Here I have de�ned the correlation part Scorr(2) where the coupling to the spin system corre-

lates di�erent phonon modes at di�erent wave vectors. For clarity it will be useful here to

de�ne the shorthand

~��;q;� =
h
~��
�;�q;�� e

�i!�� + ~��;q;�

i
: (4.68)

The correlation term then reads

Scorr(2) =
�

M

X
�;�0;q;�

n
g�;qg�0;�q

2
~��;q;� ~��0;�q;�� ��(�q; q;��)

+
g�;qg�0;q

2
~��;q;� ~��0;�q;�� ��(�q � q0; q � q0;��)

+
g�;qg�q�q0;�

0

2
~��;q;� ~��q+q0;�

0;�� ��(�q; q � q0;��)

+
g�;qg�0;�q�q0

2
~��;q;� ~��0;�q�q0;�� ��(�q; q + q0;��)

o
: (4.69)
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As can be seen by considering q � q0 or q � 0 the last three terms of equation (4.69)

couple acoustic phonon modes to zone boundary phonons and dimer excitations at q = q0
as well as at q = 0. In the static limit these terms give a contribution to the spontaneous

strain observed in the ordered phase as discussed in section 2.5.3. Dynamically the terms

are responsible for the ultrasonic sound velocity anomalies observed at and below the

phase transition [66]. They thus describe anharmonic e�ects induced by the coupling of

the phonons to the spin system [1].

The energy involved in the spin-Peierls distortion has been determined in section 2.5

to be hHpi=(N kB) = 5 K. The size of the static e�ect has been determined in section

2.5.3 to involve energies four orders of magnitude smaller than those of the spin-Peierls

distortion. The energy scale of the ultrasonic sound measurements with frequencies of 200

MHz � 10�5kB=h K is even smaller. The anomalies are only of the order of 0:1% of the

sound wave velocities. The coupling is thus week and | as has been stated in section

2.5.3 | it can be concluded that the q ! 0 e�ects will not have a notable in
uence on the

spin-Peierls transition.

The small coupling might result from the fact that the weight of the spin excitation

spectrum vanishes for q ! 0. This has been calculated for alternating Heisenberg chains

[37] in good agreement with experiments on CuGeO3 [26]. A closer analysis would require

the investigation of the dimer-dimer correlation function �
�
(�q; q; 0; T ). This has to my

knowledge not yet been done for the reasons described in section 4.3.

4.2.3 Static limit, mean-�eld results, and stability

As has just been shown, the last three terms of equation (4.69) have a negligible in
uence

on the spin-Peierls distortion. Including only the �rst term of equation (4.69), the static

action thus is reduced to

Sstat(2) = �

X
�

�
g�;q0p
N
hY �

q0
i
�
+ }


�;q0
hb
�;q0
i
�
2Re~�

�;q0

+ �

X
�;�0

n
}
�;q0

h
(Re~�

�;q0
)2 + (Im~�

�;q0
)2
i
+ 2�

�
(q0; q0; 0)g�;q0g�0;q0 Re

~�
�;q0

Re~�
�0;q0

o

+ �

X
q 6=q0
�;�

0

n
}
�;q ~�

�
�;q

~�
�;q + �

�
(�q; q; 0)g�;qg�0;�q

2

h
~��
�;�q +

~��;q

i h
~��
�0;q +

~��0;�q

io
:

(4.70)

Again, I have used the renormalization of the static �elds limM!1
~�
�;q;0=

p
M = ~�

�;q

de�ned in equation (3.45) on page 42. I have written the contribution at the wave vector

of the instability q0 separately and I made use of the fact that twice the modulation wave

vector 2q0 is a reciprocal lattice vector. This way it becomes immediately clear that the

�rst two lines of equation (4.70) represent an displaced harmonic oscillator with respect to

the �elds Re~�
�;q0

.
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The static saddle point is de�ned such as to minimize the action, i.e., the �rst derivatives

of the action with respect to the �elds have to vanish. As discussed in section 4.2.1

this procedure de�nes the mean-�eld expectation values of the �elds. For the q0 part of

equation (4.70) the condition @Sstat(2) =@Im
~��;q0 = 0 gives trivially hIm~��;q0i = 0, whereas

for @Sstat(2) =@Im
~��;q0 = 0 one has the set of equations

g�;q0p
N
hY �

q0
i
�
+ }


�;q0
hb
�;q0
i = �}


�;q0
hRe~�

�;q0
i � 2�

�
(q0; q0; 0)

X
�0

g�;q0g�
0;q0
hRe~�

�0;q0
i:

(4.71)

I recall that hb�;q0i was de�ned such that h~b�;q0i = h~��;q0i = 0 and thus

g�;q0p
N
hY �

q0
i
�
+ }


�;q0
hb
�;q0
i = 0 : (4.72)

Note the consistency with the equivalence of dimer and distortional ordering discussed in

section 4.1.6. In the isotropic limit, where J = Jz, this is the equation (2.34) used in

section 2.3 to determine the normal mode coupling constants g�;q0 .

Applying equation (4.72), the action (4.70) is equivalent to the static limit of the

undistorted case discussed in section 4.2.1 with �! ~� and �
Y
! �

�
. The trivial solutions

minimizing the static action (4.70) are h~��;q = 0i. The nontrivial solutions are for arbitrary
q [compare equation (4.60)]

0 = 1 + Re�
�
(�q; q; 0; T )

X
�

2 g�;qg�;�q

}
�;q
: (4.73)

I added the temperature dependence T to the argument of the dimer-dimer correlation

function �
�
(�q; q; 0; T ) for clarity. This equation is closely related to the issue of stability

to be addressed next.

As discussed in section 4.2.1 a phase transition occurs when equation (4.73) has a

solution. A stable phase for T < TSP requires thus equation (4.73) to have no solution.

Moreover, for the Gaussian integrals in the static partition function with the action (4.70)

Z
stat
(2) = Z�

Z
[D ~�] exp

n
�Sstat(2) [

~�� ~�]
o

(4.74)

to converge it is necessary for the action Sstat(2) to be a convex function (from below) of the

static �elds ~��;q and ~��
�;q. One must thus request that the quadratic form

X
�;�0

~��
�;q

@
2Sstat(2)

@ ~��
�;q @

~�
�0;q

~�
�0;q > 0 (4.75)
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is positive de�nite. This yields the condition

0 < 1 + Re�
�
(�q; q; 0; T )

X
�

2 g�;qg�;�q

}
�;q
: (4.76)

For one phonon mode this result is straight forward. For many modes it is obtained

easiest by considering that in the vicinity of the extremum of the action one can deduct

equivalently to equation (4.56) in the static limit

~�q;0 =
}
�;q

g�;�q

~��;q; (4.77)

where ~�q;0 is a number independent of the phonon index �. I have also used that at the

extremum of the action subtracting equation (4.52) from equation (4.53) yields in the static

limit ~��;q = ~��
�;�q. Note that the action in the herein discussed Gaussian approximation

has but one extremum for every �eld. Stability in the vicinity of the extremum implies

global stability.

Within the phonon-mean-�eld picture identical to the saddle point discussed here there

is no doubt about the stability of the ordered phase. For the isotropic, frustrated Heisenberg

chain this has been shown by Kl�umper et al. [57], in the XY case it has been proven by

Beni and Pincus [100]. The physical reason was discussed in the introduction in section

1.2. Thus the inequality (4.76) must be ful�lled.

Gaussian 
uctuations

The larger the right hand side of equation (4.76) the less important will be corrections

of Gaussian 
uctuations to the mean-�eld results. A closer analysis would require the

investigation of �
�
(�q; q; 0; T ). This has to my knowledge not yet been done for the

reasons described in section 4.3. Since the spin system is gaped in the distorted phase and

from analogy to the spin-spin correlation function studied by Uhrig and Schulz [37] in RPA,

it is expected that limT!0 Im��(�q; q; 0; T ) is exponentially suppressed. Via the Kramers-
Kronig relation this will lead also to a suppression of limT!0Re��(�q; q; 0; T ). This would
be consistent with the small size of the critical region obtained from the Ginzburg criterion

in section 2.3.1.

Another approach, which I only mention here for completeness, would be to perform a

self-consistency check on equation (4.72). The expectation values hY �
q0
i
�
and hb�;q0i can be

calculated in the presence of Gaussian 
uctuations by using the corresponding partition

function (4.74) and performing the integration over the �elds ~�. The good agreement

of the coupling constants determined in chapter 2 with various experiments is a strong

indication of the applicability of equation (4.72). This result then has to be contrasted to

the expectation values obtained when considering Z� based on the Hamiltonian discussed

in section 4.1.2.
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Technically the expectation values can be obtained by considering the de�nition of the

partition function Z in equation (3.1). It follows that

��@ lnZ
@g�;q0

=
2p
N
hY �

q0
i
�
hb
�;q0
i: (4.78)

One can then approximate Z with Zstat
(2) or Z�, respectively. A second set of equations is

obtained by minimizing the free energy �� lnZstat
(2) or �� lnZ� with respect to hb�;q0i.

4.3 Approaches to the spin system

The most di�cult task in the partition function in representation (3.17) and (3.26) is

the determination of the trace over the spin degrees of freedom, even in perturbative

approaches. This becomes obvious from the discussion of the value on �0 in section 2.7 on

page 33.

In the isotropic case (Jz = J) the relevant Hamiltonian for the expectation values hi
�
is

given in equation (4.8) on page 49. The ground state properties of the model are described

by Chitra et al. [35]. The spectrum has a gap for all �nite values of �J . Only for �J = 0

and J2=J < 0:241 is the spectrum gapless. At �J = 0 and J2=J = 0:5 the model is solved

exactly [101, 102].

At present the only quantitatively reliable results appear to be obtained numerically by

exact diagonalization [15, 34, 23, 24, 103, 16] and the density matrix renormalization group

(DMRG) [35, 57, 63]. Quantum Monte Carlo methods are reliable for models without next

nearest neighbor interaction, i.e., J2 = 0 [65, 68]. Only recent developments also allow

for �nite J2 [104]. Since the dynamical dimer-dimer correlation function used in chapter 5

has not yet been determined by any of these methods I review here brie
y an analytical

standard approach.

4.3.1 Spinless Fermions

One of the standard approaches for the Heisenberg model is the mapping to a fermionic

description (see for example Fradkin [10]). The transformation of the next nearest neighbor

terms incorporates the so called sign problem which I explain towards the end of the

section. For now I set J2 = 0 and consider the nearest neighbor part HNN
�

of the dimerized

Hamiltonian (3.23) on page 39.

Nearest neighbor terms

The spin operators are transformed on each chain to interacting spinless fermions via a

Jordan-Wigner transformation [10].

S
+
lz

= c
y
lz
e
i�
P

lz�1

l
0
z=1

c
y

l
0
z

c
l
0
z S

�
lz

=
�
S
+
lz

�y
(4.79)

S
z

lz
=

1

2
� n̂lz n̂lz = c

y
lz
c
lz

(4.80)
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Fourier transformation

cl =
1p
N

X
k

eiRlk ck ; c
y
l =

1p
N

X
k

e�iRlk c
y
k (4.81)

then yields the spin Hamiltonian HNN
�

= H0 +Hint in reciprocal space.

H0 =
X
k

h
(Ek � Jz) c

y
kck +�k c

y
k+Qck

i
(4.82)

Hint = Jz=J

X
q

[Eqn̂qn̂�q +�qn̂qn̂�q+Q] (4.83)

The density operators are in Fourier space

n̂q =
X
k

c
y
k�qck : (4.84)

I have introduced the dispersion and gap parameter as

Ek = J cos(kzc) ; �k = iJ�J sin(kzc); (4.85)

respectively. c is the lattice constant in chain direction and Q = (0; 0; �=c).

Hint as given in (4.83) is the interaction term. Here it stems from the z part of the spin

Hamiltonian. Coulomb interaction or phonon induced interaction, as discussed in section

4.1.5, give equivalent terms. The system H0 + Hint is thus a standard problem in many

particle physics [2, 76, 77]. In the absence of a gap, for small T , and for small excitation

energies the Hamiltonian H0 +Hint can be diagonalized by linearizing the spectrum of Ek
around the Fermi surface and subsequent bosonization [10, 90, 89]. Of course the spectrum

of the diagonalized system may exhibit a gap induced by the interaction Hint.

For small gaps � �J the system H0+Hint can still be treated by continuum �eld theory

[105, 37], for larger �J , treating Hint perturbatively, RPA yields results in agreement with

numerical studies [37]. In the limit of the XY model, where Jz = 0, the interaction is

absent and the model can be solved exactly [100].

Next nearest neighbor frustration

Transforming the next nearest neighbor term in the Hamiltonian (3.23) using equations

(4.79) and (4.80) yields in real space

H2 =
J2

2

X
l

�
ei�n̂l+ẑ c

y
lcl+2ẑ + e�i�n̂l+ẑ c

y
l+2ẑcl

�
+ J2;z

X
l

�
n̂l � 1

2

��
n̂l+2ẑ � 1

2

�
: (4.86)

The phase factors e�i�n̂l+ẑ = 1� 2n̂l+ẑ are strongly sensitive to local 
uctuations and are

di�cult to handle by Quantum Monte Carlo methods because of the varying sign [104].

Field-theoretical treatments yield qualitatively correct phase diagrams but are numerically
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far from accurate [106, 107]. Bond operator techniques do not include solitonic elementary

excitations and are only reliable for large J2 or �J [106, 38].

For a discussion of the solitonic elementary excitations in one-dimensional dimerized

systems see chapter 6 and references [102, 108, 109, 110]. An extensive revue is given by

Mikeska and Steiner [111].

4.3.2 Dimer-dimer correlation function

For the quantitative analysis of the phonon dynamics of the spin-phonon coupled system

in the undistorted phase performed in chapter 5 the determination of the dimer-dimer

correlation function

�
Y
(q; �) = � 1

N

Z
�

0

d� ei!�� hYq(�)Y�q(0)i (4.87)

is essential. I have here applied the continuum limit limM!1 to equation (4.50) in the sense

of section 3.1. Because of the di�culties described above I limit myself to the unfrustrated

case, where J2 = J2;z = 0.

Conduction electrons

When considering the case of the density of conduction electrons with spin degeneracy

coupling to phonons, where

Hs ! He =
X
k�

E
(e)

k c
y
k�ck�; (4.88)

Yq(�) ! �q(�) =
X
k�

c
y
k�q�(�)ck�(�): (4.89)

The operators ck� and c
y
k� are electronic annihilation and creation operators, � is the spin

index. The correlation function is simply given by the Lindhard formula [76].

�
�
(q; �) = � 1

2N

Z
�

0

d� ei!�� h�q(�)��q(0)i =
1

N

X
k;�

fk � fk+q

i!� + Ek � Ek+q
(4.90)

This implies that the dispersion E
(e)

k is bilinear in Fermion creation and annihilation op-

erators so that Wick's theorem is applicable [4]. The Fermi distribution function is given

by

fk =
1

1 + exp
n
�E

(e)

k

o : (4.91)

For a short discussion of various applications of such a model see section 4.1.5.
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XY case

In for Jz = 0 and J2 = J2;z = 0 the dimer operators in terms of the Jordan-Wigner spinless

Fermi operators introduced in section 4.3.1 are given by

Y
XY
q�q0

y

(�) =
X
k

�
eikzc + e�i(kz+qz)c

�
c
y
k+q(�) ck(�): (4.92)

I have introduced the shorthand q0
y
= 2�ŷ=b. It stems from the introduction of the reduced

unit cells in section 2.2 together with the polarization of the Peierls-active phonon modes.

It is speci�c to CuGeO3 and accounts for the alternation of the ordering in adjacent Cu

chains in unit cell (see �gure 2.1 on page 14). It can usually be neglected especially since

the correlation function (4.87) will only depend on qz in chain direction.

The trace is taken with respect to H0 = J
P

k cos kz c
y
kck as given by equation (4.82)

and (4.85) with �J = 0. The correlation function (4.87) then is a generalized Lindhard

formula.

�
XY

Y
(q; �) =

1

2L

X
kz

[1 + cos(2kz + qz)c]
fkz � fkz+qz

i!� + Ekz � Ekz+qz

(4.93)

c L is the length of a Cu chain in z direction. The problem is one-dimensional since the

dispersion Ekz in equation (4.85) only depends on kz.

Isotropic case

In the isotropic case, where Jz = J , Cross and Fisher have determined the correlation

function (4.87) using bosonization techniques and implying spin rotational invariance [14].

They �nd

�
CF

Y
(q; !�) = � �0

0:35 kBT
I1

�
!� � vsjqz � �=cj

2�kBT

�
I1

�
!� + vsjqz � �=cj

2�kBT

�
: (4.94)

The prefactor has been chosen such that �CF
Y
(�=c; 0) = �0 since [I1(0)]

2 = 0:35. The

spin-wave velocity is

vs = J
�

2
: (4.95)

The generalized Bessel functions I1 can be given in integral representation or transformed

to Gamma functions via Euler's Beta function [112]:

I1(k) =
1

2�

Z 1

0

dx eikx(sinh(x))�1=2 =
1p
8�

�(1
4
� 1

2
ik)

�(3
4
� 1

2
ik)

: (4.96)

For qz = �=c, i.e., at the wave vector of the Peierls instability, this correlation function

is independent of the magnetic energy scale J . This re
ects the scale invariant, quantum
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critical behavior of the spin 1/2 Heisenberg chain at T = 0 [12]. T�CF
Y
(q; !�) is a function

of !�=T only. This behavior is characteristic of quantum critical systems [113].

Cross and Fisher give an estimate value of �0 � 0:26. Recent DMRG results of Kl�umper

et al. are in contradiction to that result [57, 63]. They �nd �0(J=kBT ) to be signi�cantly

temperature dependent and not scale invariant. The quantum criticality thus breaks down

at �nite temperatures probably because the continuum limit underestimates local correla-

tions.

For the determination of the coupling constants I have used the numerical values by

Kl�umper et al. [63] as discussed in section 2.7. In chapter 5 I use the correlation function

after analytical continuation i!� ! ! + i� for a qualitative understanding of the phonon

dynamics, lacking any better approximation. I contrast the result with those for the XY

model and conduction electrons and show that the behavior is generic.

4.3.3 Quantum criticality in CuGeO3

Schulz has determined the spin-spin correlation function also using bosonization techniques

for anisotropic Heisenberg chains with arbitrary spin [72]. In the limit of the isotropic spin

1/2 chain he obtains just the same functional dependence. In the imaginary time formalism

and implying spin rotational invariance one has

~�S(qz; !�) = �
Z

�

0

d� ei!�� hSqz(�)S�qz(0)i � �
CF

Y
(q; !�): (4.97)

Schulz has not attempted to specify the prefactor.

An estimate of how good the spin dynamics in CuGeO3 is described by a one-dimen-

sional Heisenberg chain is obtained by plotting the scaled magnetic structure factor after

analytical continuation i!� ! ! + i�

T SS(�=c; !) � lim
�!0

1

�kB

Im
h
I1(

}!

2�kBT
)
i2

1� expf��}!g (4.98)

together with the scaled magnetic spectrum obtained by Hirota et al. [27]. Quantum

criticality implies T SS(�=c; !) to be an universal function of !=(2�T ), at least for small !.

The result is shown in �gure 4.1 and the experimental data are observed to approximately

obey the scaling, though there is substantial scattering of the data for small !=(2�T ). This

is possibly due to the in
uence of non-critical contributions from the Peierls-
uctuations

or by a crossover of the character of the magnetic excitations from one- to two-dimensional

near the Peierls transition [26, 36].

It is also interesting to note that the prediction for T SS(�=c; !) is independent of J and

that the data for other one-dimensional Heisenberg antiferromagnets with very di�erent

values of the coupling J , like KCuF3 [114], should fall onto the same universal curve

presented in �gure 4.1.
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Figure 4.1: T SS(�=c; !), as a function of !=(2�T ), as predicted by bosonization (solid line,
equation (4.98)), and the neutron-scattering results [27], for T = 14:5K (�lled squares),
T = 20K (crosses) and T = 50K (diamonds).



Chapter 5

Phonon dynamics

In principle the here discussed phonon dynamics in the disordered phase of a spin-phonon

coupled system is given within the random phase approximation (RPA) by the saddle

point found in section 4.2.1. For a comparison with experiment the propagator of the spin-

phonon coupled system is also need. In the framework of RPA this can also be obtained

via the partition function ZRPA given in equation (4.45) by integrating out the �elds �

and considering @2ZRPA=@g�;q. I prefer though to introduce here the more straight forward

standard perturbative method to obtain the correlation function.

5.1 Normal-coordinate propagator in RPA

The de�nition of the renormalized, unperturbed normal-coordinate propagator was given

in section 4.2.1 in equation (4.58) and (4.59). I recall the resulting

D
(0)

�;q;� = � 2 }
�;q

}2
2
�;q + !2

�

: (5.1)

To study the dynamics in the spin-phonon coupled system the interaction has to be in-

cluded. This done by the standard perturbative approach of the S-Matrix [76].

D�;q;� = �2
�;q
}

�Z
0

d� e
i!��

D
T� e

�
R
�

0
Hsp(�

0)d� 0
Q�;q(�)Q�;�q(0)

E
D
T� e

�
R
�

0
Hsp(� 0)d� 0

E (5.2)

For the relation between normal coordinates and Bose operators see the de�nition (2.7)

on page 14. The spin-phonon coupling term Hsp was derived in section 2.2 for CuGeO3

and generalized to anisotropic chains in equation (3.5). The imaginary time dependence

in interaction representation is given for any operator Â by

Â(�) = e�(Hp+Hs)� Â e(Hp+Hs)� ; (5.3)

71
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where Hp and Hs are given by equation (3.3) and (3.4), respectively. Here the trace has to

be taken with respect to both the unperturbed spin and phonon system.

D
Â

E
=
Trs Trp e

��(Hs+Hp) Â

Trs Trp e��(Hs+Hp)
(5.4)

Hp is bilinear in Bose operators so that Wick's theorem is applicable in the phonon

channel. For Hs this is generally not true. Instead I introduce the notion of cumulants,

allowing for an equivalent decomposition of the expectation values. The second order

dimer-dimer term was already discussed in section 4.2.1:

hYq(�)Yq0(� 0)icum = hYq(�)Yq0(� 0)i � hYq(�)i hYq0(� 0)i : (5.5)

This can be generalized to higher orders [98]. As discussed in section 4.3, in the limit of the

unfrustrated XY model, where Jz = J2 = J2;z = 0, Hs and Y
�
q (�) are bilinear in spinless

Fermi operators. Then Wick's theorem is applicable and the cumulant is described by

a connected graph. The expectation values of the dimer operators are time independent

hYq(�)i = hYqi which becomes clear from the de�nition of the time dependence (5.3) and

cyclic invariance under the trace. Additionally, in the disordered phase which I consider

here, the translational invariance of the system implies hYqi = 0 so that the lowest order

contribution in the spin channel is the dimer-dimer correlation function hYq(�)Yq0(� 0)i.
By introducing a generating functional

Q�;q(�)Q�;�q(0) = lim
h!0

@

@h
expfhQ�;q(�)Q�;�q(0)g (5.6)

numerator and denominator of equation (5.2) can be rewritten to cumulant expansions

[98].

D�;q;� = �2
�;q
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e
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n=1
1
n!hT�[� R �0 d� 0 Hsp(�

0)+hQ�;q(�)Q�;�q(0)]
ni

cum

e
P
1

n=1
1
n!hT�[� R �0 d� 0 Hsp(� 0)]

ni
cum

(5.7)

The limit implies that only terms linear in h will contribute. After di�erentiation the

exponential functions in the numerator and denominator cancel.

D�;q;� = �2
�;q
}

�Z
0

d� e
i!��

*
T�

1X
n=1

1

(n� 1)!

�
�
Z

�

0

Hsp(�
0)d� 0

�n�1
Q�;q(�)Q�;�q(0)

+
cum

(5.8)

In the XY limit, where Jz = J2 = J2;z = 0, or for the model describing conduction electrons

discussed in section 4.3.2 Wick's theorem is applicable and equation (5.8) is just a linked

cluster expansion [76, 4]. In that case D�;q;� can be represented diagrammatically as shown

in �gure 5.1. In the general case equation (5.8) still is an expansion in connected terms
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Figure 5.1: Lowest order terms of the series representation of the normal coordinate prop-
agator given in equation (5.8). Wiggled lines are unperturbed normal coordinate prop-
agators (5.1), straight lines are electronic propagators. Away from the limit of the XY
model or conduction electrons (see section 4.3.2) the electronic loops have to be viewed as
generalized to cumulant contributions. In RPA only electronic loops with two vertices are
retained.

since Kubo [98] has shown that a cumulant is zero if one of the variables is statistically

independent of the others. Every phonon propagator is connected to a spin vertex as shown

in �gure 5.1.

In RPA only spin loops with two vertices are retained. Using the de�nition of the spin-

phonon coupling term (3.5), writing the normal-mode operators Q�;q(�) as a function of

Bose operators as shown in equation (2.7), and recalling the de�nition of the dimer-dimer

correlation function

�
Y
(q; �) = � 1

N

Z
�

0

d� ei!�� hYq(�)Y�q(0)i ;

which was given in equation (4.87), one has

D�;q;� = D
(0)

�;q;� +D
(0)

�;q;� g�;q

1X
n=0

"
�
Y
(q; �)

X
�0

g�0;qg�0;�q D
(0)

�0;q;�

#n
�
Y
(q; �) g�;�qD

(0)

�;q;�

(5.9)

Note that all terms odd in the Bose operators b�;q vanish since Hp is diagonal.

After rewriting the geometric series in equation (5.9) I obtain Dyson's equation in RPA



74 Chapter 5. Phonon dynamics

[76].

D�;q;� =
D

(0)

�;q;�

�
1� �

Y
(q; �)

P
�0 6=� g�0;qg�0;�q D

(0)

�0;q;�

�
1� �

Y
(q; �)

P
�0
g�0;qg�0;�q D

(0)

�0;q;�

(5.10)

The physically relevant retarded normal-coordinate propagator is obtained through

analytical continuation i!� ! }! + i�.

D�(q; !) =
D

(0)

�
(q; !)

�
1� �

Y
(q; !)

P
�0 6=� g�0;qg�0;�q D

(0)

�0
(q; !)

�
1� �

Y
(q; !)

P
�0
g�0;qg�0;�q D

(0)

�0
(q; !)

(5.11)

The unperturbed propagator then is

D
(0)

�;q;� =
2 }
�;q

(}! + i�)2 � }2
2
�;q

: (5.12)

5.2 Phonon softening versus central peak

In this section I show that generically there are two scenarios included in the RPA approach

to spin-phonon coupling. For clarity I limit the discussion to a single mode coupling to

the electronic system. For the application to CuGeO3 in section 5.3 the results can be

generalized to four modes without a problem.

D(q; !) =
D

(0)(q; !)

1� �
Y
(q; !)gqg�q D(0)(q; !)

(5.13)

The eigenmodes of the perturbed phonon system are given by the poles of the normal-

coordinate propagator (5.11). Consistent with the saddle point evaluation equation (4.57)

in section 4.2.1 the poles are given by the zeros of the real part of the denominator of

equation (5.13). For one phonon mode this simpli�es to

0 = 1� Re�
Y
(q; !)gqg�q D

(0)(q; !) (5.14)

As discussed in section 4.2.1 the transition occurs when equation (5.14) has a solution for

! = 0.

0 = 1 + �
Y
(q0; 0; TSP)

2 g2q0
}
q0

: (5.15)
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The coupling of the phonon to the spin system is strongest at the wave vector of the

instability q0. I will specify here

q
z

0 = �=c (5.16)

as the usual spin-Peierls or Peierls modulation particularly true for CuGeO3, see chapter

2. The exception of incommensurate ordering is brie
y discussed in section 4.1.3.

A graphical solution of equation (5.14) can be obtained by writing out the bare prop-

agator (5.12) with �! 0.

} (!2
�
� 
2

q0
)

2
q0g
2
q0

= Re�
Y
(q0; !�) (5.17)

I now discuss the results for di�erent approaches to the electronic system. The correspond-

ing correlation functions �
Y
have been discussed already in section 4.3.2.

5.2.1 Isotropic case

In the isotropic case the dimer-dimer correlation function is given approximatively in equa-

tion (4.94). After analytical continuation I have

�
CF

Y
(q0; !) = �

�0

0:35 kBT

�
I1

�
}!

2�kBT

��2

: (5.18)

The imaginary part of the frequency i� is unimportant here. As discussed in section 4.3.2

the prefactor �0(kBT=J) is temperature dependent and not scale invariant. It is very likely

that it also has a frequency dependence, which yet has not been determined. To study

qualitatively the phonon dynamics I will approximate �0 as a constant. The transition

temperature is then given as [14]

kBTSP =
2g2q0
}
q0

�0: (5.19)

Typical plots of the left hand side (broken lines) and right hand side (full lines) of

equation (5.17) with �
Y
(q0; !) = �

CF
Y
(q0; !) are presented in �gure 5.2. For a small

frequencies of the unperturbed phonon system 
q0 equation (5.17) has a single solution

for T = TSP and inspection of the temperature dependence of this solution for T > TSP

(compare �gure (5.2)) shows that this root continuously connects to the T =1 solution,

limT!1 !� = 
q0 . For large frequencies 
q0 equation (5.17) has two solutions at T = TSP.

The solution at ! = 0 vanishes for T > TSP. This is referred to as the central peak and

is attributed to a mixed magneto-acoustic excitation in section 5.3.2. The temperature

dependence of the solution at �nite frequencies is illustrated in �gure 5.3.
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!=TSP. In the graph I have set } = kB = 1. The temperature independent left hand side of
equation (5.17), (!2 � 
2

q0
)=(2
q0g

2
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), is plotted for 
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with gq0 given by equation (5.19). The �lled circles denote the position of the phonon
frequencies, !�. The arrows indicate the shift of !� with decreasing temperature. Inset:
Im�CF

Y
(q0; !).

The appearance of the regime with two solutions and a central peak can be quanti�ed

from the parabolic width of �CF
Y
(q0; !; TSP) for small !. For any �nite temperature I can

expand �CF
Y
(q0; !) in !=(2�T ) as

�
CF

Y
(q0; !) = �

�0

kBT

"
1 + i�1

�
}!

2�kBT

�
� �2

�
}!

2�kBT

�2

+ : : :

#
; (5.20)

with �1 � 3:14 and �2 � 8:5. The position of the poles !� of D(q0; !) are then determined

by the roots of

}!
2
�

2
q0g
2
q0

� }
2
q0

2
q0g
2
q0

� � �0

kBT
+
�0�2

kBT

�
}!�

2�kBT

�2

; (5.21)

Comparing the prefactor of the terms � !
2
�
of the right hand and left hand side of equation
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(5.21) one �nds that for

1

2g2q0
q0
>

�0�2

4�2 (kBTSP)3
; (5.22)

equation (5.17) has a single solution at T = TSP and the phonon softens completely as

shown by the lowest curve in �gure 5.3. I can use equation (5.19) to eliminate gq0 from

equation (5.22) and obtain

kBTSP >
}
q0
2�

p
�2 � 0:46 }
q0 ; }
q0 < 2:2 kBTSP; (5.23)

for the soft-phonon regime. For }
q0 > 2:2 kBTSP the Peierls-active phonon does not soften

completely and an additional central peak shows up.

5.2.2 Conduction electrons

To show that the two regimes of phonon softening and the central peak are not an artefact

of the approximations applied to the dimer-dimer correlation function in the isotropic

Heisenberg case I consider here the model of the density of one-dimensional conduction

electrons coupling to phonons. The Hamiltonian was given in equation (4.88) on page 67

and the operator Yq ! �q is a density operator given in equation (4.89). This model is
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�
for neglecting the spin degree of freedom of the electron (solid

lines) for T = TP = 0:1J and T = 3TP as a function of !. In the graph I have set } = kB =

1. The temperature independent left hand side of equation (5.24), (!2�
2
q0
)=(2g2q0
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plotted for 
q0 = 0:5J and 2:1J (dashed lines), with gq0 given self-consistently by equation
(5.25). The �lled circles denote the position of the phonon frequencies, !�. The arrows
indicate the shift of !� with decreasing temperature. Note that for phonon frequencies
near the band edge there are two poles showing the mixed electro-elastic nature of the
electron-phonon coupled modes.

used to describe the Peierls instability [91, 92, 93]. The electronic correlation function �
�

then is the Lindhard formula (4.90), which can easily be determined numerically. The spin

degree of freedom of the electrons is degenerate, so I can neglect it here.

The poles of the normal-coordinate propagator (5.13) are determined by the roots of

the self-consistency equation

}(!2
�
� 
2

q0
)

2
q0g
2
q0

= Re
1

N

X
k

fk � fk+q0

!� + Ek � Ek+q0 + i�
: (5.24)

The dispersion is one dimensional Ek = J cos kz and there is no chemical potential corre-

sponding to half �lling. Plots of the left hand and right hand side of equation (5.24) are

shown in �gure 5.4. There is no scale invariance, the critical temperature has been set to
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iterating equation (5.24). In the graph I have set } = kB = 1. 
q0 is the bare phonon
frequency. Phonons above the band width of 2J are always hardened.

}
q0 0:5J 1:0J 1:8J 4:0J

gq0 0:5J 0:71J 0:95J 1:4J

Table 5.1: Coupling constants for the conduction electron model with TP = 0:1J for
di�erent unperturbed phonon frequencies, as obtained by iterating equation (5.25). If the
electronic spin degree of freedom is not neglected, the values have to be divided by two
since the contribution from �� is doubled.

TP = 0:1J . The coupling constant is then determined self-consistently by

0 = 1 +
2 g2q0
}
q0

1

N

X
k

fk(TP)� fk+q0(TP)

Ek � Ek+q0

: (5.25)

The values are given in table 5.2.2.

Clearly, the two regimes of the soft phonon and the central peak are present. Numerical

analysis yields that for TP = 0:1J only for }
q0 < 0:8J the phonon softens completely.

For }
q0 > 0:8J the Peierls-active phonon does not become soft and a central peak arises

at TSP. Note that for phonon frequencies near the band edge there are two poles showing

the electro-elastic nature of the electron-phonon coupled modes.

The corresponding temperature dependence of the eigenmodes are shown for various
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phonon frequencies, !�. The arrows indicate the shift of !� with decreasing temperature.

bare phonon frequencies in �gure 5.5. Note that the second pole shown for }
q0 = 2:1J ,

which is clearly present in �gure 5.4, is not an attractive �xed point of the self-consistency

equation (5.24). Yet, the second mode is clearly present in the structure factor as shown

and discussed further in section 5.3.2. The same is true for the }
q0 = 1:8J mode not

shown explicitly. The solutions obtained by the via equation (5.24) are those connecting

continuously to the T !1 solutions where the e�ects of the interaction are absent.

5.2.3 Ising and XY limit

The case of an Ising chain coupled to phonons, where J = J2 = J2;z = 0, has been treated

by Pytte [3] to study the Jahn-Teller e�ect. He also performed an RPA approximation

introducing a phenomenological damping. Although not having been worked out by him,

there is also a parameter regime in his model where the phonon is not softened and a

central peak is present.

The XY case can be determined equivalently to the case of conduction electrons dis-
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cussed above, as can be seen by comparing the corresponding correlation functions (4.90)

and �XY
Y

(q; !) in equation (4.93). After analytical continuation the eigenstates are given

by the roots of

}(!2
�
� 
2

q0
)

2
q0g
2
q0

= Re
1

2L

X
kz

[1 + cos(2kz + q
z

0)c]
fkz � fkz+qz0

! + Ekz � Ekz+qz0
+ i�

: (5.26)

The plot of the left and right hand side of equation (5.26) is shown in �gure 5.6. The

coupling constant is determined self-consistently by

0 = 1 +
2 g2q0
}
q0

1

2L

X
kz

[1 + cos(2kz + q
z

0)c]
fkz(TSP)� fkz+qz0

(TSP)

Ekz � Ekz+qz0

: (5.27)

Qualitatively the same two regimes are given as in the other cases.

5.3 Application to CuGeO3

For a long time the absence of a soft phonon mode in CuGeO3 [27, 20] has been puzzling,

since the behavior was believed not to be consistent with the standard approach to spin-

Peierls transitions by Cross and Fisher [14]. The frequencies of the Peierls-active phonon

modes being of the order of the magnetic exchange (section 2.1 and reference [44]), it has

been argued that the Cross and Fisher approach is not applicable because of the non-

adiabacity of the phonons [67]. In the previous sections I have shown that the absence of

phonon-softening is generically described within the RPA approach. Here I apply this result

to reproduce the experimental results on CuGeO3 and give arguments for the applicability

of RPA.

The coupling constants in CuGeO3 have been derived and tested for coherence with

experiment in chapter 2. The magnetic system in CuGeO3 has been shown to be well

described by an isotropic Heisenberg chain so the appropriate correlation function is the

dimer-dimer correlation function �CF
Y
(q0; !) given in equation (4.94) in section 4.3.2. The

condition for the soft phonon regime (5.23) has to be generalized. One obtains

kBTSP <
�2

4�2�0

 X
�

2 g2
�;q0


3
�;q0

!�1

(5.28)

for the soft-phonon regime. CuGeO3 is found to be in the central peak regime.

In �gure 5.7 I have plotted the results for the dynamical structure factor,

S(q0; !) = � 1

�

P
�
ImD�(q0; ! + i�)

1� exp(��}!) ; (5.29)

where I have used the experimental resolution function

� � 0:023 + 0:028 !=(2�) (5.30)
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in units of THz [115]. Including the experimental resolution by a convolution with a

Gaussian distribution while setting �! 0 gives identical results for all practical purposes.

The normal-coordinate propagator D�(q0; ! + i�) was de�ned in equation (5.11) with the

dimer-dimer correlation function �CF
Y
(q0; !).

The intensity of the experimental spectra [44], also shown in �gure 5.7, have been

scaled. The (constant) background has been adjusted. A rough comparison indicates, that

the experimental intensity ratio of the lower T+
2 mode at T=295K and T=16K is about 3:1

in agreement with theory, see �gure 5.7. The overall agreement between experiment and

theory is satisfactory, although the hardening of the lower phonon mode is somewhat more

pronounced in the experiment (6% vs. 1%). This discrepancy is not surprising considering

the numerical uncertainties in the dimer-dimer correlation function discussed in section

4.3.2 and 2.7. A reliable approach to the dynamical dimer-dimer correlation function in

the presence of next nearest neighbor frustration would be quite desirable. No experimental

data for the upper mode were available for T = 16 K.

In the inset a blowup of the central peak is given. It should be possible to resolve the

predicted central peak below � 20 K. It has a width of � 0:05 THz = 0:2 meV. From

the neutron scattering data form Regnault et al. [30] no central peak was observed, but

the analysis involved the subtraction of the incoherent beam which I do not consider too

reliable. Brillouin scattering would be an appropriate technique, but it is only sensitive

to the zone boundary at q0 after folding back the dispersion in the ordered phase below

TSP. In the ordered phase the dimer-dimer correlation function has not been determined

yet. Additionally, the central peak only develops substantial spectral weight in the critical

region determined by the Ginzburg criterion in section 2.3.1 so that 
uctuations may

suppress the peak.

5.3.1 Applicability of RPA

From the Ginzburg criterion discussed in section 2.3.1 the RPA approach should be reliable

above � 16 K. The coupling constants determined in chapter 2 are rather large so that the

small critical region is counter-intuitive at �rst sight. This result can be made plausible

though by considering that RPA becomes exact for models with a �nite number of phonons

[116]. The q dependence of the coupling constants is given in equation (2.20) on page 19.

The phase factors are only weakly q dependent. But away from the high symmetry point

q0 in the Brillouin zone the the 30 phonon modes will be decomposed into less irreducible

subgroups. Along the [x; 0; x] direction 13 modes will all couple to the spin system [44].

A strong dephazation of the di�erent contributions to the coupling constant is very likely

suppressing the coupling away from q0. The phase space of the phonons coupling the spin

system is thus expected to be small.

In order to estimate the (quantitative) magnitude of the corrections to RPA for CuGeO3

one may compare the RPA prediction for the inverse lattice correlation length 1=�c with

the experimental pre-transitional Peierls 
uctuations. The lattice correlation length is
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determined by the long-distance fallo�,

lim
z!1

Z
dqz

2�
eiqzRz ReD(q; 0) � ei�Rz=c e�Rz=�c ; (5.31)

where c = 2:94 �A is the c axis lattice constant of CuGeO3 and D(q; !) is given by equation

(5.11) with the dimer-dimer correlation function of the isotropic Heisenberg chain (4.94)

given in section 4.3.2. I have calculated 1=�c from equation (5.31) using vs = (�=2)J(1�
1:12�) [117] (which enters via the dimer-dimer correlation function (4.94)), J = 150 K

for the exchange integral, and � = 0:24 for the frustration parameter as discussed in

section 2.7. I have neglected the q dependence of the phonon frequencies and the coupling

constants. The results for 1=�c are presented in �gure 5.9, together with results for CuGeO3

obtained by di�usive X-ray scattering [26], which are consistent with neutron-scattering

data and the absence of a soft phonon [27].

Close to the transition the theory shows mean-�eld behaviour, 1=�c �
p
T � TSP deviat-

ing from the �t to experiment given by equation (2.29) on page 22. For higher temperatures,

when the correlation length is small, Fourier components further away from qz = �=c are
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important and the approximation of the dimer-dimer correlation function (4.94) fails. One

can conclude that there is no substantial quantitative deviation of the RPA result from

experiments.

5.3.2 Magneto-elastic modes

The eigenstates of the spin-phonon system evolve adiabatically as a function of the spin-

phonon coupling strength in the soft-phonon regime. In the central-peak regime a new

magneto phonon appears at low frequencies and condenses at TSP, leading to the structural

transition and the formation of spin singlets. A blow-up of the central peak region of the

structure factor (5.29) with the dimer-dimer correlation function �CF
Y

in equation (4.94) is

shown in �gure 5.10. The appearance of a new maximum at about 40K is clearly visible.

This mode is then turning soft developing the central peak.

This new mode is neither found in the roots of the real part of the denominator of the

retarded normal-coordinate propagator (5.11) nor in the equivalent nontrivial saddle point

solutions of the action (4.51). Only at the transition temperature TSP the solution appears

which then can be interpreted as the new Bragg peak related to the onset of the lattice
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distortion. For a better understanding of the mathematical nature of the maximum an

analysis of all the complex roots in the denominator of the normal-coordinate propagator

(5.10)

0 = 1� �
Y
(q; z)

X
�

g�;qg�;�q D
(0)

�
(q; z) (5.32)

with the continuation i!� ! z is desirable. I recall that the new mode is not found within

the dynamical saddle point approach in section 4.2.1. This might indicate that it has no

classical analogue.

A physical interpretation of the new collective excitation can be given as a superposition

of a phonon with two magnons in a (valence-bond) singlet state. Condensation of this

magneto phonon at TSP leads to the simultaneous formation of the valence-bond singlets

and the dimerization of the lattice. The magneto phonon couples to the phonon propagator

and therefore shows up as a low-energy resonance in D(q; !). The other resonances in

D(q; !) at !� have the limit limg�;q0
!0 !� = 
�;q0 . Therefore, one usually regards !� to

be \true" phonons. In terms of the eigenstates of the coupled spin-phonon system such a

distinction does not make sense. In the central-peak regime the spectral weight of D(q; !)

is divided between the \phonon resonances" at !� and the soft magneto phonon.

A related scenario is found in the case of conduction electrons coupling to phonons. The

additional root of the denominator of the retarded normal-coordinate propagator (5.11)

with the Lindhard formula describing the electronic density-density correlation function

has already been discussed in section 5.2.2 and was shown in �gure (5.4). The resulting

structure factor

S�(q0; !) = � 1

�

ImD�(q0; ! + i�)

1� exp(��}!) = � 1

�

Im
D(0)(q0;!)

1���(q0;!)g
2
q0

D(0)(q0;!)

1� exp(��}!) (5.33)

is shown in �gure 5.11. I have used a small regularization parameter � = 0:0005J to assure

numerical stability. The peak above the upper band edge of ! = 2J is broadened only by

the �nite � since Im�
�
(q0; ! > 2J) = 0.

Even though the second peak just below the electronic band edge is not an attractive

�xed point of the self-consistency equation (5.24) and is thus not shown in �gure 5.5, it

clearly is present in the structure factor. It vanishes for T ! 1 so that the higher peak

can be referred to the \true phonon". At lower temperatures the spectral weight of the

structure factor is split into the \renormalized phonon" and a new electro-acoustic mode.

This new electro-acoustic mode can be interpreted as growing soft and diverges at the

transition. Again, a detailed analysis of the roots of the denominator of D�(q0; z) with

complex argument ! + i� ! z is desirable for a closer understanding of the nature of the

coupled mode.

I do not show here results for the XY model. They are in qualitative agreement with

the isotropic Heisenberg case.
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Figure 5.11: Temperature dependence of the electro-elastic mode leading to the central
peak in the theoretical dynamical structure factor where the electronic degrees of freedom
are described by the Lindhard formula. A small regularization parameter leads to the slight
broadening of the peak above the electronic band edge of ! = 2J . Curves are shifted. In
the graph I have set } = kB = 1.

5.3.3 Conclusions

In this chapter I have shown that the puzzle of the absence of a soft phonon is naturally

explained within RPA, regardless of the speci�c form of the electronic correlation function.

New mixed magneto-elastic or electro-elastic excitations are observed, the further study of

which is suggested. The calculated temperature-dependence of the phonon modes and that

of the pre-transitional Peierls 
uctuations are in satisfactory agreement with experiments

on CuGeO3. A central peak of width 0:2 meV is predicted to appear at TSP.



Chapter 6

E�ective Ising model

In this chapter I discuss a model describing the driving physics of the spin-Peierls transition

as the coherent ordering of preformed dimers. The resulting model is applied successfully

to describe the thermodynamics in the ordered phase of CuGeO3. Mostovoy and Khomskii

have used a similar approach to study doping e�ects in CuGeO3 [108].

Ising models are a standard approach to order-disorder transitions [1]. Ising-like Lan-

dau-Ginzburg functionals have been used to estimate 
uctuation e�ects in quasi-one-dimen-

sional components [118, 119] and the resulting pseudo gap [120] as well as the Lifshitz

criticality and the incommensurate transition in the presence of a magnetic �eld [87] can

be described within this approach. For completeness I show the derivation of such models

from the microscopic approach in section 6.4.3.

6.1 E�ective real-space mean-�eld dimer

partition function

Starting point is the representation of the partition function (4.25), where the phonon �elds

have been integrated out. I apply a static approximation by only keeping the component

where � = 0.

Zstat = ZsZp

*
exp

(
�

X
�;q

g�;qg�;�q

N }
�;q
Yq Y�q

)+
(6.1)

I have used the de�nition limM!1 Yq;0=
p
M = Yq for the static dimer operator given in

equation (3.46). I recall that Zs = Trs expf��Hsg and Zp = Trp expf��Hpg, where Hs

and Hp are given in equation (3.4) and (3.3), respectively.

I consider now the isotropic limit Jz = J and J2;z = J2 and transform to real space

using the de�nition of Y�q in equation (3.6).

Zstat = ZsZp

*
T� exp

8<
:��

X
l;l0

Jl;l0 (Sl � Sl+ẑ) (Sl0 � Sl0+ẑ)
9=
;
+

(6.2)

88
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I have de�ned the interaction

Jl;l0 =
1

N

X
�;q

e�iq(Rl�Rl0) e�i�(ly�l
0
y
) g�;qg�;�q

}
�;q
: (6.3)

The q dependence of the coupling constants is dominated by the polarization vectors

as can be seen from their de�nition in equation (2.20). As discussed in section 5.3.1,

the dephazation of the polarization vectors away from the wave vector of the spin-Peierls

instability q0 will suppress the coupling constants. Jl;l0 is then of long range justifying a

mean-�eld decoupling of the exponent in equation (6.2).

(Sl � Sl+ẑ � hSl � Sl+ẑi) (Sl0 � Sl0+ẑ � hSl0 � Sl0+ẑi) � 0 (6.4)

This decoupling should not be applied to the nearest neighbor terms l = l0 � ẑ, since the

overlap of the local dimer operators Sl � Sl+ẑ describes the one-dimensional character of

the correlations. Denoting

JNN = Jl;l+ẑ =
1

N

X
�;q

cos(qzc)
g�;qg�;�q

}
�;q
(6.5)

I thus obtain the partition function

Zstat � Zp Zs ZMF
(6.6)

where I introduced the mean-�eld dimer contribution

ZMF =

*
T� exp

(
�JNN

X
l

(Sl � Sl+ẑ) (Sl+ẑ � Sl+2ẑ)

+ �

X
l;l0 6=l+ẑ

Jl;l0 [2(Sl � Sl+ẑ)hSl0 � Sl0+ẑi+ 2hSl � Sl+ẑihSl0 � Sl0+ẑi]
)+

:

(6.7)

ZMF is the underlying model for the mapping discussed in the next section. The model is

one-dimensional. The net �eld of the second term can be described as

�Jl =
X
l0 6=l+ẑ

Jl;l0 hSl0 � Sl0+ẑi: (6.8)

Its spatial dependence will be given in the ordered phase by an alternating contribution

� (�1)lx+ly+lz .
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6.2 Mapping on an e�ective Ising model

A strictly one-dimensional system, as described by Zs and the contribution proportional

to JNN in the partition function (6.6) and the dimer part (6.7), shows no long-range order

at �nite temperatures due to the solitonic excitations. The appropriate solitons in a spin-

Peierls state are domain-walls in between two di�erent dimer coverings, see �gure 6.1. In

this picture a dimer consists of a NN pair of spins in a singlet state. A single soliton in an

otherwise (dimer-) ordered chain is in reality a complicated object [102, 111]. It is spatially

extended [80, 81, 84, 86] and has a spin degree of freedom together with a dispersion. In

the purely magnetic and isotropic Majumdar-Gosh model [101], given by equation (3.4)

with Jz = J , Jz;2 = J2, and J2 = J=2, the dispersion has the form J (5=4� cos 2kzc). kz
is the wave number in units of inverse lattice spacings 1=c in chain direction. It has been

shown [102], that the solitons yield an accurate description of the magnetic susceptibility

and hence of the Hilbert space.

The dispersion of the solitons might be approximated, in general, by

E(kz) =
p
(Es)2 + (u JNN sin kzc)2; (6.9)

where Es is the gap to solitonic excitations, JNN is an e�ective exchange as introduced in

section 6.1, u is a constant of order of unity. Only the low-energy solitons are e�ective

in destroying the long-range dimer order, and I approximate here (6.9) by a constant

E(kz) � Es. I will include the spatial extent of the solitons later phenomenologically and

include their spin-degree of freedom only when determining the susceptibility.

The �nite temperature transition to long range order is introduced by the phonon

induced interchain coupling derived in section 4.1.4. A direct coupling of the chains via

magnetic exchange is also conceivable and discussed in section 6.4.1. The two con�gurations

of coupling of dimers on neighboring chains are represented in �gure 6.1 (b) and (c).

I take one of the two possible dimer con�gurations of the linear chain as the reference

state and label every \good" dimer by +1 and every bond between two \wrong" dimers

by �1; A bond between a soliton and a wrong dimer is also labeled �1 as shown in �gure

6.1. Every possible soliton con�guration is therefore mapped to a Ising-spin con�guration

living on every second bond. A similar mapping has been used recently by Mostovoy and

Khomskii [108]. To obtain a mathematical description of the model I de�ne by �i = �1 the
Ising variable on the (2lz�1)-th bond of a chain of length L. For this mapping I introduce a
new coupling constant �g. Translational invariance yields h�ii = h�i and the Hamiltonian

for a single chain (the number of Ising variables is L=2) becomes in this approximation

HIsing = �1
2
Es

L=2X
i=1

�i�i+1 � B

L=2X
i=1

�i +
L

4
Es +

L

4
�gh�i2; (6.10)

where I have set B = �gh�i. This is just the Ising Hamiltonian for a ferromagnetic spin

chain in an external magnetic �eld B. Alternatively I can interpret equation (6.10) as

an e�ective model for domain walls in a spin-Peierls state with a linear binding potential
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Figure 6.1: Phenomenological picture of copper chains in CuGeO3. (a): A soliton and an
anti-soliton in a dimerized chain with the corresponding values of the dimer operators �i;l.
There is one dimer operator for every pair of sites. (b) and (c): Illustration of two di�erent
dimer con�gurations which lead to an inter-chain coupling contribution to the energy of
�0:5�g. The origin of the coupling may be attributed to the inter-chain exchange as well
as to phononic e�ects.

V (x) = B � (x + 1) (with x � 1 being the distance in sites, not bonds) between a soliton

and an anti-soliton [110].

The analogy with the mean-�eld model derived in section 6.1 is given by

S2lz�1 � S2lz $ �i (6.11)

hS2lz�1 � S2lzi $ h�i: (6.12)

The constraint that the dimer operators only are de�ned on every second site is necessary

to assure that no dimers can be located on adjacent bonds. The analogy for the partition

function then is

ZMF $ ZIsing =
X
f�ig

exp f��HIsingg ; (6.13)

where
P

f�ig
denotes the sum over all con�gurations of the Ising variables �i. For the

external �eld the analogy is

B $ �J2lz : (6.14)

The partition function ZIsing can be obtained from equation (6.10) by the transfer

matrix method. The free energy FIsing = �kBT lnZIsing is given in the thermodynamic
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limit (L!1)

FIsing = �L
2
kBT ln�0 +

L

4
�gh�i2 (6.15)

where

�0 = cosh(��gh�i) +
q
sinh2(��gh�i) + e�2�Es ; (6.16)

with � = 1=(kBT ) being the inverse temperature. From the free energy all physical quan-

tities can be derived.

Note that ZIsing is not the only contribution to the partition function Z. Clearly, the

harmonic phononic part Zp is also present as well as the part from the spin chain Zs as

can be seen from equation (6.2). The total partition function is given by the product

Z � Zp Zs ZIsing : (6.17)

Only the Ising part is order parameter dependent, though. Consequently Zp and Zs con-

tribute a temperature dependent background to the free energy but have no in
uence on

the transition.

6.2.1 Inclusion of the �nite soliton width

The soliton width in CuGeO3 has been determined experimentally in the incommensurate

phase, where an external �eld induces a soliton lattice [80, 81, 84]. The width is of the

order of �s � 10 lattice spacings. Field theoretical approaches are compatible [121, 122]

as well as DMRG studies [83, 85]. Although the soliton width has not been determined in

zero magnetic �eld, the order of magnitude should be reliable since the �eld dependence

of the width is not too strong [84].

In the e�ective Ising model the soliton width is only two lattice spacings, compare

�gure 6.1 and the prefactor of L=2 in equation (6.15). The true width may be included by

imposing the additional restriction of introducing a dimer operator �i only on every tenth

site. Depending on the external �eld the distance between solitons is experimentally of the

order of 30 to 100 lattice sites which is also consistent with a model of dimer operators

only on sites spaced by the soliton width. The free energy in such a renormalized system

is given via equation (6.15), but the energy per site has to be rescaled via

fsite =
FIsing

L
� � 1

�s
kBT ln�0 +

1

2�s
�gh�i2: (6.18)

I will use this equation to determine the soliton width necessary to reproduce the experi-

mental results for CuGeO3 and compare with the order of magnitude of �s � 10=c discussed

above.
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6.2.2 Excitation energies

There are two relevant excitation energies, the gap to single soliton excitations, given by

Es in equation (6.10), and the gap to triplet excitations, �N , as measured in a neutron

scattering experiment [28]. I now discuss the relation of �N to Es.

A triplet excitation can dissolve into a soliton/anti-soliton pair. The linear binding

energy V (x) = B � (x + 1) in between a soliton and an anti-soliton in equation (6.10)

leads to a con�nement of soliton/anti-soliton pairs [123, 110]. In the model (6.10) I have

neglected the kinetic energy of the single solitons, which is of order vs = (u JNN)
2
=Es as

can be seen by expanding the dispersion (6.9) for u J kc � Es. (For Es � u JNN one has

vs = u JNN.) The energy levels of a particle in a linear con�ning potential are well known

[124, 125, 110]. The lowest eigenstate has, in the limit vs � B, the energy

�N = 2Es + c
0
vs

�
B

vs

�2=3

; (6.19)

with c0 � 2:33. Equation (6.19) gives then the gap to triplet excitations as a function of

soliton energy Es and the strength of the con�ning potential B. The mean extension of a

soliton/anti-soliton pair scales like (B=vs)
�1=3.

The order parameter h�i measures the lattice distortion as becomes obvious in section

6.3.1. From the derivation of the dimerized spin model in section 2.5.1 it is then obvious

that h�i � �J . For a dimerized spin chain with exchange alternation �J it is known [14, 35]

that the gap scales for J2=J < 0:241 like � �
2=3

J
implying that Es�

�2=3
J

! 0 for �J ! 0.

Comparison with numerical results for J2=J = 0:241 give �N � 2:1 J �
2=3

J
[35]. This

indicates a vanishing contribution from 2Es. Away from J2=J = 0:241 corrections to the

scaling with �
2=3

J
are observed [35].

The functional form of the dependence of the solitonic excitation energy Es on �J , or

alternatively on the dimerization order parameter h�i is not known at present. It might

be extracted for J2=J < 0:241, in principle, from a sub-leading scaling analysis of the

excitation energy

�N = ~c J (�J)
2=3 + 2Es(�J); (6.20)

but this has not yet been done.

I have therefore decided to assume the functional form

Es(h�i) = E1 + (E0 � E1)h�i2; (6.21)

where E0 is the zero-temperature value of Es and where E1 is the soliton energy in the

disordered phase, i.e., for T > TSP. Equation (6.21) is, in the spirit of a Landau functional

(6.22), the simplest form consistent with the symmetry of h�i.
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6.2.3 Landau expansion

I may expand the free energy (6.15) in powers of h�i,

FIsing = F0 + a(T )h�i2 + b(T )h�i4 +O(h�i6): (6.22)

Depending on the parameters I may have either a second-order phase transition with

b(T ) > 0 or a �rst-order phase transition with b(T ) < 0. In the �rst case the transition

temperature TSP is given by a(TSP) = 0 as

kBTSP =
�2
g
(1 + e��E1)

2(E0 � E1)e�2�E1 +�g(1 + e��E1)e��E1
; (6.23)

with � ! 1=(kBTSP). This transcendental equation takes a simple form in some limiting

cases:

E1 = 0 : TSP = �2
g
=(�g + E0)

E1 = E0 : TSP = �ge
E0=(kBTSP) (6.24)

�g !1 : TSP ! �g � E0 + 2E1

For illustration I present in �gure 6.2 (a) TSP as a function of the inter-chain coupling

constant �g for E0 = 0:2 meV. I obtain a �rst-order phase transition for b(TSP) < 0, which

is the case for values of E0 larger than a certain critical value of the soliton energy Ec,

which is determined from b(TSP) = 0 as

Ec = E1 +
�2
g

TSP

�
1 + e

E1=TSP
�2 s1 + 3eE1=TSP + 3e2E1=TSP

6 (1 + eE1=TSP)
2

� 1

2

!
: (6.25)

For a �xed transition temperature TSP = 14:15 K and using equation (6.23), Ec and

the corresponding inter-chain coupling energy �g can be calculated as a function of E1.

The resulting phase diagram is given in �gure 6.2 (b). The numerical results presented

throughout this chapter are obtained within the second-order regime, indicated by the

crosses in �gure 6.2 (b).

6.3 Application to CuGeO3

The e�ective Hamiltonian (6.10) contains three free parameters, namely E1, E0 and �g.

I examine two scenarios. The �rst is the case of J2=J < 0:241 with E1 = 0. The second

is the case of 0:241 < J2=J � 0:35. Then the spin system Hs has a gap even without

dimerization which is included setting E1 = 0:15 meV. This corresponds to a gap in the
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Figure 6.2: (a): Illustration of the spin-Peierls transition temperature TSP for E0 = 0:2meV
as a function of�g. (b): Phase diagram as a function of E1 and E0 for �xed TSP = 14:15K.
Only the region E0 > E1 is allowed (above the solid line). Above the dashed line the phase
transition is of �rst-order, below it is of second-order. The crosses indicate the parameter
values considered for comparison with CuGeO3.

for J2=J < 0:241 for J2=J > 0:241

E0 E1 �g E0 E1 �g

0 0 1.22 0.15 0.15 1.05

0.1 0 1.31 0.3 0.15 1.2

0.2 0 1.39 0.4 0.15 1.28

0.277 0 1.45 0.474 0.15 1.33

Table 6.1: Complete sets of values in units of [meV].

disordered phase of 2E1 = 0:3 meV [35]. For each case I consider a range of E0 (see �gure

6.2 (b)) within the second-order regime, E1 � E0 � Ec,

E1 = 0 meV; E0 = 0; 0:1; 0:2; 0:277 meV (6.26)

2E1 = 0:3 meV; E0 = 0:15; 0:3; 0:4; 0:474 meV (6.27)

The largest value of E0 for each E1 corresponds to Ec(E1), compare �gure 6.2 (b). The ex-

perimental transition temperature TSP = 14:15 K of CuGeO3 then determines the coupling

constant �g. The complete sets of parameter values are given in table 6.3.
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Figure 6.3: The square of the spin-singlet order parameter (h�i2, lines) as a function of
temperature, for two di�erent values of E1 (soliton gap in the disordered phase) and
several values of E0 (T = 0 soliton gap). (a): E1 = 0, i.e., Es = E0h�i2. (b): 2E1 = 0:3

meV, i.e., Es = E1 + (E0 � E1)h�i2. For comparison I plot the measured (normalized)
intensity of an additional superlattice peak (�lled circles) [28].

6.3.1 Self-consistency equation

The order parameter h�i is determined self-consistently as a function of temperature by

setting the derivative of the free energy with respect to h�i to zero,

h�i = sinh(��gh�i)
2E0�E1

�g�0
e�2�Es +

q
sinh2(��gh�i) + e�2�Es

: (6.28)

In �gure 6.3 I show the results for h�i2 as a function of temperature for the parameters given
in expressions (6.26) and (6.27). I have also plotted the measured intensity of an additional

superlattice peak [28], which is proportional to the square of the lattice dimerization. I have

normalized the experimental data such that agreement is obtained in the low-temperature

regime.

The comparison between theory and the data for CuGeO3 does not lead to a determi-

nation of the frustration J2=J but indicates closeness to a �rst-order phase transition, as

can be deducted from the closeness of the experimental points in �gure 6.3 to the critical

curves where E0 � Ec(E1), compare �gure 6.2 (b).

6.3.2 Thermodynamics

The Ising model contribution to the entropy s and the speci�c heat cV per site are obtained

from the free energy (6.18) via
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s = �@fsite
@T

; cV = T
@s

@T
: (6.29)

Entropy

In the disordered phase the entropy is (for E1 = 0) temperature independent with a value

of kB ln(2) per dimer. The value per site depends on the soliton width to be discussed

below comparing speci�c heat data. From the derivation of the phonon-induced dimer-

dimer interaction term in equation (6.7), which is described here within the Ising model,

it is clear that this entropy is both phononic and magnetic. The entropy of the spin 1=2

chain is liberated only on the energy scale of the exchange J contained in the spin part of

the partition function Zs.

Note that the Ising model de�ned here depends on the existence of well de�ned dimers.

For T ! 1 the spin-phonon coupling has no e�ect and the thermodynamic properties

are de�ned by the decoupled contributions Zs and Zp. The entropy contribution from the

Ising system must thus vanish. This condition can be matched by describing the absence of

dimers in the high temperature limit by a diverging soliton width limT!1 �s !1. In the

presence of dimers the entropy contribution from Zs is overestimated, since the formation

of singlets binds the spins. A better description would be given by Z� as de�ned in section

3.2 with h�i � �J . The implementation can, however, not be done within this simple

approach.

Speci�c heat

In �gure 6.4 (a) I present results on cV (T ) for the parameters given by expression (6.26)

and in �gure 6.4 (b) for the values (6.27). The plots are to be understood per site for

the unrestricted model with a soliton width of �s = 2 lattice spacings. For small soliton

excitation energies the results are typically mean-�eld like. For values of E0 approaching

the limit of the second-order phase regime the speci�c heat is strongly enhanced near

TSP. It will diverge as the transition becomes �rst-order. Note that the speci�c heat

is linear in temperature in the limit T ! TSP in the second order transition regime,

where E1 � E0 < Ec, and that the jump in the speci�c heat diverges as E0 ! Ec

like (Ec � E0)
�1. Right at E0 = Ec the speci�c heat diverges like (TSP � T )�1=2. Note

that a similar divergence � (TSP � T )�0:4 has been reported in an early measurement for

CuGeO3 [126] though the exact value of the speci�c heat critical exponent for CuGeO3 is

still controversial [78, 127, 56].

In the inset of �gure 6.4 I present the measured magnetic contribution to the speci�c

heat of CuGeO3 [56]. The lattice contribution � T
3 contained in Zp has been subtracted.

Comparing the maximum of the theoretical curves which have a shape comparable to

the experiment, i.e., shown by the thick full lines in �gure 6.4, the theoretical values are

found to be too large by roughly a factor of 5. Introducing a soliton width of �s � 10 as

discussed in section 6.2.1 yields consistency. Note that Lasjaunias et al. [56] also �nd a



98 Chapter 6. E�ective Ising model

8 10 12 14
temperature [K]

0.00

0.01

0.02

0.03

0.04

c V
/T

 [
m

eV
/K

2 ]

E0=0.277meV
E0=0.2meV
E0=0.1meV
E0=0.0meV

8 10 12 14
0

1

2 Experiment

2E∞=0

8 10 12 14
temperature [K]

0.00

0.01

0.02

0.03

0.04

c V
/T

 [
m

eV
/K

2 ]

E0=0.474meV
E0=0.4meV
E0=0.3meV
E0=0.15meV

2E∞=0.3meV

(a) (b)

Figure 6.4: Speci�c heat for di�erent parameters as a function of temperature. (a): E1 =

0. (b): 2E1 = 0:3 meV. The inset in graph (a) shows the experimental data [56] for cV =T
in units of [mJ=gK2] versus T (10�2 meV=K2 corresponds to 5:24 mJ=gK2). The lattice
contribution � T

3 has been subtracted.

linear contribution cV � T for T > TSP which is readily explained as the contribution from

Zs [12].

Susceptibility

Up to now I did not take the spin-degree of freedom of the solitons into account, as they

are described by the contribution Zs of the partition function. An alternative approach

is to consider the solitons as spin-1/2 objects in a nonmagnetic background of dimers

[85]. Neglecting the magnetic interactions between the spins carried by the solitons, the

magnetic susceptibility can be evaluated simply by Curie's law

�(T ) =
g
2
�
2
BS(S + 1)

3kBT
n(T ) � 1:16

�
2
B

kBT
n(T ); (6.30)

where �B = e}=(2mevc) is the Bohr magneton, g = 2:15 the measured [128, 129] g-factor

of the Cu2+ ion, S = 1=2, and n(T ) is the density of thermally activated solitons per site.

Here vc is the speed of light. n(T ) is obtained di�erentiating the free energy with respect

to Es:

n(T ) =
@fsite

@Es
=

1

�s�0

e
�2�Esq

sinh2(��gh�i) + e�2�Es

: (6.31)

Above TSP this expression reduces to

n(T > TSP) =
1

�s

1

e�E1 + 1
: (6.32)
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Figure 6.5: Magnetic susceptibility obtained from the simpli�ed model of independent
solitons for di�erent parameters as a function of temperature. (a): E1 = 0. (b):
2E1 = 0:3 meV. The inset in graph (a) shows the experimental data [130] of � in units of
[10�9 m3

=mole] versus T (0:01 �2B=kBK correspond to 47:12 � 10�9 m3
=mole).

The results for the magnetic susceptibility are shown in �gure 6.5 for the unrestricted

model, where �s = 2. The fast drop of �(T ) below TSP for larger values of the soliton

excitation energy E0 is again reminiscent of the experimental data for CuGeO3 [130].

The fast drop is a direct consequence of the opening of the spin gap. The theoretical

susceptibility rises though roughly a factor of 5 higher at TSP than the experimental data

which might be a direct consequence of the neglected soliton dispersion (6.9). On the other

hand, introducing the restriction of a soliton width of �s = 10 as discussed in section 6.2.1

restores the consistency between experiment and theory.

Above TSP the Curie-Weiss-like fallo� of the susceptibility in �gure 6.5 clearly indicates

that in the disordered phase the appropriate description of the susceptibility is given by Zs.

Introducing the temperature dependent soliton width limT!1 �s !1 discussed in connec-

tion with the entropy yields the desired high temperature description of the susceptibility

entirely by Zs.

6.3.3 Singlet-triplet gap

The gap to triplet excitations is given by equation (6.19),

�N = 2
�
E1 + (E0 � E1)h�i2

�
+ c

0
vs

�
�gh�i
vs

�2=3

; (6.33)

with c
0 = 2:33. I use vs as a �t parameter to adapt �N(T = 0) to the experimentally

observed value of 2:4 meV. The results are given in �gure 6.6, together with the measured
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Figure 6.6: The gap to triplet excitations for several parameters as a function of tempera-
ture. (a): E1 = 0. (b): 2E1 = 0:3 meV.

E0 E1 �g vs E0 E1 �g vs

0 0 1.22 0.73 0.15 0.15 1.05 0.66

0.1 0 1.31 0.5 0.3 0.15 1.2 0.32

0.2 0 1.39 0.33 0.4 0.15 1.28 0.2

0.277 0 1.45 0.24 0.474 0.15 1.33 0.14

Table 6.2: Complete sets of values in units of [meV].

gap for CuGeO3 [28]. For E1 = 0 the contribution from 2Es is rather small.

An upper boundary for the e�ective nearest neighbor exchange (6.5) is obtained by

JNN <

X
�

2 g2
�;q0

}
�;q0
= 28 K = 2:4 meV; (6.34)

where I used the values derived in chapter 2. This result can be used as an estimate for

the order of magnitude of the energy scale vs < 3 meV which is consistent with the �tted

values given in table 6.3.3. An underestimation of vs is also possible because the order

parameter h�i(T = 0) = 1 in the molecular-�eld approximation, while it might be smaller

than unity for CuGeO3.

It should be remarked here that one-dimensional 
uctuations leading to a pseudo gap

above the three-dimensional transition [119, 120] may induce a value of E1 much larger

than the one discussed for the next nearest neighbor frustration. Then the experimental

spin-gap can be matched even better within this model.
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6.3.4 Conclusions

In this chapter I have discussed a simple mean-�eld theory for spin-Peierls transitions

based on the disordering of dimers by solitonic excitations. The theory allows both for a

�rst-order and a second-order spin-Peierls transition, depending on the parameters of the

model. I �nd that the parameters which �t experiments best indicate that CuGeO3 is close

to a �rst-order phase transition.

The experimental thermodynamical quantities of CuGeO3 are well reproduced by the

theory when including a phenomenological soliton width of �s � 10 lattice spacings, which

is in good agreement with the value given in the literature (see section 6.2.1). It is not

possible to determine the magnitude of the frustration parameter J2=J uniquely from the

experimentally measured temperature dependence of the order parameter.

6.4 Appendix: discussion of related topics

In this last section of the chapter I mention a few issues related to the approach of an

e�ective Ising model that are somewhat of less relevance for the discussion above.

6.4.1 Derivation from an electronic model

In our work given in reference [109] we have motivated the e�ective Ising model via a quasi

one-dimensional spin model. The idea at the time was the possibility of an electronically

driven transition motivated by the absence of the soft phonon in CuGeO3. In our latter

work [70], which chapter 5 is based on, it became clear that a phonon driven transition is

consistent with the central peak. As a matter of fact, the equivalence of dimer and phonon

�elds discussed in section 4.1.6 shows that one cannot tell apart the two systems as far

as the transition is concerned. Still, there may be a direct interchain-superexchange path

J? contributing to the transition, which is shown here to give an e�ective dimer-dimer

interaction equivalent to that in equation (6.7).

Mean-�eld theory

The e�ective Hamiltonian for the magnetic excitations for a 2D array of chains in the

dimerized state is then [34]

H2D = J

X
lz;ly

�
Slz;ly � Slz+1;ly + �Slz;ly � Slz+2;ly

�
+ J?

X
lz;ly

Slz;ly � Slz;ly+1 : (6.35)

The inter-chain coupling having been estimated [123] to be of the order of J? � 0:1J

allows for a perturbative treatment of H? = J?

P
lz;ly

Slz;ly � Slz ;ly+1 in the Hamiltonian

(6.35). The contribution of the third dimension is of the order of J 0? � 0:01J [123] and is

neglected. Note that it is likely that the dispersion of the magnetic excitations are at least

in part phonon induced, as can be seen from the mapping on the e�ective spin model in
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section 4.1.4 (see also reference [67]). The value of J? � 0:1J may thus include already

spin-phonon coupling e�ects.

I expand (6.35) up to second order in J? by a standard perturbative procedure. It has

been shown recently, that a molecular-�eld decoupling of inter-chain interactions in quasi

one-dimensional systems is a good approximation in the strongly anisotropic limit [131].

One may thus decouple the operators of the �rst order term (� J?) as

Slz;ly � Slz;ly+1 ! Slz;ly �


Slz;ly+1

�
+


Slz;ly

� � Slz;ly+1 �


Slz;ly

� � 
Slz;ly+1

�
: (6.36)

Since no signi�cant magnetic ordering is expected, i.e.,


Slz;ly

� � 0, in the absence of an

external magnetic �eld I will neglect this contribution.

The operator product of the second order term (� J
2
?=J) is rewritten by Lagrange's

theorem.�
Slz ;ly � Slz;ly+1

� �
Sl0

z
;l0
y
+1 � Sl0

z
;l0
y

�
=

�
Sl0

z
;l0
y
+1 � Slz;ly+1

� �
Slz;ly � Sl0

z
;l0
y

�
+
�
Slz;ly � Sl0

z
;l0
y
+1

� �
Slz;ly+1 � Sl0

z
;l0
y

�
(6.37)

Now a local approximation in space is applied, i.e., only regarding contributions where

l
0
z
= lz and l

0
y
= ly. Any spatially constant mean-�eld decoupling of the cross product

terms of (6.37) then vanishes. The mean-�eld decoupling of the �rst term on the right

hand side of equation (6.37) yields �elds of the form


Slz;ly � Slz+1;ly

�
. I drop the chain

index l for reasons of translational invariance across the chains and de�ne a mean-�eld

inter-chain Hamiltonian

Hmf = g

X
lz

�
Slz � Slz+1 hSlz � Slz+1i �

1

2
hSlz � Slz+1i2

�
; (6.38)

where g � J
2
?=J is a parameter of the theory. I thus obtain an e�ective one-dimensional

Hamiltonian.

Hspin = H0 +Hmf (6.39)

H0 = H2D �H? is the intra-chain part of the Hamiltonian (6.35). The contribution Hmf

has essentially the same form as the phonon induced dimer-dimer interaction leading to

the dimer contribution of the partition function (6.7) discussed in section 6.1.

6.4.2 Critique: RPA versus Ising

For CuGeO3 the coupling constants g�;q have been determined explicitly at the wave vector

of the spin-Peierls modulation q0 = (�=a; 0; �=c) and are given in equation (20) of reference

[73]. The wave vector dependence will be dominated by the polarization vectors of the four

Peierls active phonon modes. When deviating from the high symmetry point q0 in the

Brillouin zone all 30 modes will couple to the spin system leading to a strong dephazation
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and hence to a strong suppression of g�;q. The phenomena resulting from spin-phonon

coupling will thus be dominated by q0.

For a �nite number of phonons coupled to the spin system RPA becomes exact in the

thermodynamic limit [116]. The physics that can be extracted from RPA are phenomena

local in reciprocal space, in our case the collective formation of dimers with diverging corre-

lation length. The sharp peak of g�;q around q0 can thus be accounted for the satisfactory

description of CuGeO3 by RPA shown in chapter 5 and the mean-�eld approaches used in

chapter 2 and discussed in section 4.1.2 [57, 63, 73].

The resulting alternating lattice distortion is the starting point for the derivation of the

real-space Ising model sketched in �gure 6.1. It describes local excitations in real space.

These excitations lead to the dephazation of the dimer order and thus to the transition to

the disordered phase. In this sense the spin-Peierls transition is a order-disorder transition

usually approached via Ising models and consistent with the absence of phonon softening

[1]. The Ising-like Landau expansion discussed in section 6.4.3 describes the pseudo-gap

expected to be present in quasi-one-dimensional systems which is not accessible by the

RPA or mean-�eld approach.

It would be interesting to combine both approaches to have a uni�ed theory describing

both the e�ects of the local 
uctuations and the mean-�eld like aspects modulated with

q0. Since both approaches can be derived from the functional integral approach derived in

chapter 3 and 4 this might be a promising starting point.

6.4.3 The Ising-Landau approach

I show here the derivation of an e�ective model which is especially of interest for the discus-

sion of one-dimensional 
uctuations leading to a pseudo gap above the three-dimensional

transition [119, 120].

When deriving an e�ective Landau expansion in real space the notion of di�erent

phonon modes, which are by de�nition eigenmodes in reciprocal space (see section 2.1),

looses its physical sense. I limit the treatment to one �eld dropping the index �. Basis of

the analysis is the cumulant expansion equations (4.42) and (4.43) in the static limit, i.e.,

keeping only the contribution of � = 0. In the disordered phase considered here ~�q � �q

and I only need to consider even powers in the �elds �q which take over the role of the

order parameter. Also, hYqi = 0. Performing the cumulant expansion to to fourth order

in the phonon �elds gives the Landau-Ginzburg functional

S(4)I = �

X
q


q�
�
q�q +

�
2

2!

X
q

jgqj2
�
�
�
�q + �q

� �
�
�
q + ��q

� hYqY�qi
N

+
�
4

4!

X
q1q2q3

hQ4

i=1 Yqiicum
N2

4Y
i=1

gq
i

�
�
�
�q

i

+ �q
i

�
: (6.40)

The spin correlation function in the last line of equation (6.40) assures the conservation

of momentum q4 = �q1 � q2 � q3. I have used de�nition (3.45) and (3.46) for the static

limit of the �elds and the dimer operators.
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As discussed in section 6.4.2 the physics of the spin-phonon coupled system will be

dominated by the wave vector of the spin-Peierls instability q0. To obtain the local models

studied in the literature one has to assume that coupling constants, phonon dispersions

and dimer correlation functions are well described by expanding up to second order in �q

around q0.

jgqj2 = jgq0 j2 +
X

�2fx;y;zg

@
2
gq

@q2
�

���
q0

(�q�)
2

2
+ : : : (6.41)


q = 
q0 +
X

�2fx;y;zg

@
2
q

@q2
�

���
q0

(�q�)
2

2
+ : : : (6.42)

hYqY�qi = hYq0Y�q0i+
@
2hYqY�qi
@q2

z

���
q0

(�qz)
2

2
+ : : : (6.43)

The spin correlation function is only a function of qz in the chain direction.

Usually linear terms vanish for symmetry reasons around q0. It has been pointed out

though by Lee et al. [119] that one has to be aware of possible linear contributions � j�qj
from the electronic correlation function. For the approach to the isotropic Heisenberg

chain discussed in section 4.3.2 the correlation function (4.94) can be expanded at �nite

temperatures as

hYqY�qi � �
CF

Y
(q; 0) = � �0

kBT

"
1� �2

�
vsjqz � �=cj
2�kBT

�2

+ : : :

#
(6.44)

with �2 = 8:5, compare equation (5.20). There is thus no linear term in �qz = qz � �=c.

Imposing that the spatial order parameter dependence is dominantly given by the

quadratic term in equation (6.40) one can attempt to approximate the quartic term by

setting the coupling constants gq and the four-dimer correlation function hQ4

i=1 Yqii con-
stant using their values at q = q0. One can then transform equation (6.40) to real space.

Introducing the real-space representation for the �elds

�q =
1p
N

X
l

e�iqRl e�i�ly �l ; (6.45)

the action S(4)I in equation (6.40) is transformed to:

S(4)I = �

X
l


l j�lj2 +
�
2

2

X
l

4 jgq0j2
hYq0Y�q0i

N
[Re�l]

2

+
�

2

X
l;�

�
@
2
q

@q2
�

�
q0

����@�l@�

����
2

+
�
2

4

X
l;�

hYq0Y�q0i
N

�
@
2
gq

@q2
�

�
q0

�
@Re�l
@�

�2

+
�
2

4

X
l

jgq0 j2
�
@
2hYqY�qi
N@q2

z

�
q0

�
@Re �l
@z

�2
+
�
4

24

X
l

hY 4
q0
i

N
jgq0 j4 [Re�l]

4
+ : : :

(6.46)
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This is in principle the Landau functional treated in the Literature [87, 118, 120]. Note that

the contributions for Re�l and Im�l are decoupled. When considering incommensurability

it is essential to expand equations (6.41) { (6.43) to fourth order in qz to assure stability.

Real and imaginary part then are coupled re
ecting the order parameter to aquire two

components in the incommensurate case.

Given the signi�cance of the approximations made it is tedious to derive ab initio values

for the coe�cients. They have to be determined phenomenologically. The derivation of

the functional from the microscopic model supports its physical relevance, though.
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[45] H. Takahashi, N. Môri, O. Fujita, J. Akimitsu, and T. Matsumoto, Sol. State Comm.

95, 817 (1995).

[46] M. Nishi, O. Fujita, J. Akimitsu, K. Kakurai, and Y. Fujii, Phys. Rev. B 52, R6959

(1995).

[47] B. B�uchner, U. Ammerahl, T. Lorenz, W. Brenig, G. Dhalenne, and A. Revcolevschi,

Phys. Rev. Lett. 77, 1624 (1996).

[48] T. Lorenz, Ph.D. thesis, Universit�at zu K�oln, 1998.

[49] M. Nishi, K. Kakurai, Y. Fujii, M. Yethiraj, D. A. Tennant, S. E. Nagler, J. A.

Fernandez-Baca, O. Fujita, and J. Akimitsu, Physica C 241-243, 537 (1998).

[50] B. B�uchner, H. Fehske, A. P. Kampf, and W. Wellein, Physica B 259-261, 956

(1999).

[51] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University

Press, Oxford, 1968).

[52] H. T. Stokes and D. M. Hatch, Isotropy Subgroups of the 230 Crystallographic Space

Groups (World Scienti�c, Singapore, 1988).



Bibliography 109

[53] M. Braden et al., to be published.

[54] In the literature the coupling constants often are given with respect to normal coor-

dinates, i.e., set gnorm =
p
(2
�;q)=} g�;q in Eq. (2.19). In Eq. (2.25) the transition

temperature then is TSP � g
2
norm=


2, consistent with the result of Cross and Fisher

[14].

[55] L. D. Landau and E. M. Lifschitz, Statistical Mechanics (Pergamon Press, Oxford,

1988).

[56] J. C. Lasjaunias, P. Monceau, G. Rem�enyi, S. Sahling, G. Dhalenne, and A.

Revcolevschi, Sol. State Comm. 101, 677 (1997).

[57] A. Kl�umper, R. Raupach, and F. Sch�onfeld, Phys. Rev. B 59, 3612 (1999).

[58] D. Augier and D. Poilblanc, Eur. Phys. J. B 1, 19 (1998).

[59] G. Wellein, H. Fehske, and A. P. Kampf, Phys. Rev. Lett. 81, 3956 (1998).

[60] G. S. Uhrig, Phys. Rev. Lett. 79, 163 (1997).

[61] S. Br�auninger, U. Schwarz, M. Han
and, T. Zhou, R. K. Kremer, and K. Syassen,

Phys. Rev. B 56, R11357 (1997).

[62] M. Braden, B. B�uchner, S. Klotz, W. G. Marschall, J. S. Loveday, M. Behruzi, and

G. Heger, preprint (1999).

[63] R. Raupach, A. Kl�umper, and F. Sch�onfeld, preprint (1999).

[64] H. Winkelmann, E. Gamper, B. B�uchner, M. Braden, A. Revcolevschi, and G.

Dhalenne, Phys. Rev. B 51, 12884 (1995).

[65] A. W. Sandvik, R. R. P. Singh, and D. K. Campbell, Phys. Rev. B 56, 14510 (1997).

[66] M. Poirier, M. Castonguay, A. Revcolevschi, and G. Dhalenne, Phys. Rev. B 52,

16058 (1995).

[67] G. S. Uhrig, Phys. Rev. B 57, R14004 (1998).

[68] A. W. Sandvik and D. K. Campbell, preprint, cond-mat/9902230 (1999).

[69] R. W. K�uhne and U. L�ow, preprint, cond-mat/9905337 (1999).

[70] C. Gros and R. Werner, Phys. Rev. B 58, R14677 (1998).

[71] C. Gros, W. Wenzel, A. Fledderjohann, P. Lemmens, M. Fischer, G. G�untherodt, M.

Weiden, C. Geibel, and F. Steglich, Phys. Rev. B 55, 15048 (1997).

[72] H. J. Schulz, Phys. Rev. B 34, 6372 (1986).



110 Bibliography

[73] R. Werner, C. Gros, and M. Braden, Phys. Rev. B 59, 14356 (1999).

[74] W. H. Louisell, Quantum statistical properties of radiation (John Wiley & Sons, New

York, 1973).

[75] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics

(World Scienti�c, Singapore, 1990).

[76] G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1981).

[77] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems

(McGraw-Hill, New York, 1971).

[78] X. Liu, J. Wosnitza, H. v. L�ohneysen, and R. K. Kremer, Z. Phys. B 98, 163 (1995).

[79] M. D. Lumsden, B. D. Gaulin, H. Dabkowska, and M. L. Plumer, Phys. Rev. Lett.

76, 4919 (1996).

[80] V. Kiryukhin, B. Keimer, J. P. Hill, and A. Vigilante, Phys. Rev. Lett. 76, 4608

(1996).

[81] V. Kiryukhin, B. Keimer, J. P. Hill, S. M. Coad, and D. M. Paul, Phys. Rev. B 54,

7269 (1996).

[82] Y. Fagot-Revurat, H. Horvati�c, C. Berthier, P. S�egransan, G. Dhalenne, and A.

Revcolevschi, Phys. Rev. Lett. 76, 4608 (1996).

[83] T. Lorenz, B. B�uchner, P. H. M. van Loosdrecht, F. Sch�onfeld, G. Chouteau, G.

Dhalenne, and A. Revcolevschi, Phys. Rev. Lett. 81, 148 (1998).

[84] H. Horvati�c, Y. Fagot-Revurat, C. Berthier, G. Dhalenne, and A. Revcolevschi,

preprint, cond-mat/9812370 (1998).

[85] F. Sch�onfeld, G. Bouzerar, G. S. Uhrig, and E. M�uller-Hartmann, Eur. Phys. J. B 5,

521 (1998).

[86] G. S. Uhrig, F. Sch�onfeld, J. P. Boucher, and M. Horvati�c, preprint, cond-

mat/9902272 (1999).

[87] S. M. Bhattacharjee, T. Nattermann, and C. Ronnewinkel, Phys. Rev. B 58, 2658

(1998).

[88] H. Fr�ohlich, Phys. Rev. 79, 845 (1950).

[89] J. Voit, Eur. Phys. J. B 5, 505 (1998).

[90] H. J. Schulz, cond-mat/9807366 (1998), lecture notes following the summer school

lectures in Chia Laguna, Italy, September 1997.



Bibliography 111

[91] M. J. Rice and S. Str�assler, Sol. State Comm. 13, 125 (1973).

[92] S. T. Chui, T. M. Rice, and C. M. Varma, Sol. State Comm. 15, 155 (1974).

[93] M. C. Leung, Phys. Rev. B 11, 4272 (1975).

[94] N. Macris and C.-A. Piguet, J. Phys. A in print (1999), preprint, cond-mat/9811376.

[95] R. L. Stratonovich, Dokl. Akad. Nauk SSSR 115, 1097 (1957).

[96] R. L. Stratonovich, Sovjet Phys. { Doklady 2, 416 (1958), engl. transl.

[97] J. Hubbard, Phys. Rev. Lett. 3, 77 (1958).

[98] R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

[99] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford

University Press, Oxford, 1971).

[100] G. Beni and P. Pincus, J. Chem. Phys. 57, 72 (1972).

[101] C. K. Majumdar, J. Phys. C 3, 911 (1970).

[102] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 47, 964 (1981).

[103] K. Fabricius and U. L�ow, Phys. Rev. B 57, 13371 (1998).

[104] C. H. Mak, R. Egger, and H. Weber-Gottschick, Phys. Rev. Lett. 81, 4533 (1998).

[105] A. M. Tsvelik, Phys. Rev. B 45, 486 (1992).

[106] J. Zang, A. R. Bishop, and D. Schmeltzer, Phys. Rev. B 52, 6723 (1995), and

Phys. Rev. B 54, 9556 (1996).

[107] F. D. M. Haldane, Phys. Rev. B 25, 4925 (1981).

[108] M. Mostovoy and D. I. Khomskii, Z. Phys. B 103, 209 (1997).

[109] R. Werner and C. Gros, Phys. Rev. B 57, 2897 (1998).

[110] I. A�eck, in Dynamic Properties of Unconventional Magnetic Systems (Kluwer Aca-

demic Publishers, Dordrecht, 1998), p. 123.

[111] H.-J. Mikeska and M. Steiner, Ann. Phys. 40, 191 (1991).

[112] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions (Dover Publica-

tions, New York, 1972).

[113] J. A. Hertz, Phys. Rev. B 14, 1165 (1976).



112 Bibliography

[114] D. A. Tennat, R. A. Cowley, S. E. Nagler, and A. M. Tsvelik, Phys. Rev. B 52, 13368

(1995).

[115] M. Braden, private communication.

[116] U. Brandt and H. Leschke, Z. Phys. 271, 295 (1974).

[117] A. Fledderjohann and C. Gros, Europhys. Lett. 37, 189 (1997).

[118] R. H. McKenzie, Phys. Rev. B 51, 6249 (1995).

[119] P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973).

[120] R. H. McKenzie, Phys. Rev. B 52, 16428 (1995).

[121] A. Dobry and J. A. Riera, Phys. Rev. B 56, R2912 (1997).

[122] J. Zang, S. Chakravarty, and A. R. Bishop, Phys. Rev. B 55, R14705 (1997).

[123] D. I. Khomskii, W. Geertsma, and M. Mostovoy, Czech. Journ. of Phys. 46, 3239

(1996).

[124] L. N. Bulaevskii, E. L. Nagaev, and D. I. Khomskii, Sov. Phys. JETP 27, 836 (1968).

[125] A change of variable x ! B
1=(2+
)

x for the the stationary Schr�odinger equation

�	00(x) +Bjxj
	(x) = E	(x) leads to E � B
2=(2+
). Here 
 = 1.

[126] S. Sahling, J. C. Lasjaunias, P. Monceau, and A. Revcolevschi, Sol. State Comm. 92,

423 (1994).

[127] M. Weiden, J. K�ohler, G. Sparn, M. K�oppen, M. Lang, C. Geibel, and F. Steglich,

Z. Phys. B 98, 167 (1995).

[128] B. Pilawa, J. Phys.: Condens. Mat. 9, 3779 (1997).

[129] A. K. Hassan, L. A. Pardi, G. B. Martins, G. Cao, and L.-C. Brunel, Phys. Rev.

Lett. 80, 1984 (1998).

[130] V. N. Muthukumar, C. Gros, R. Valent��, M. Weiden, C. Geibel, F. Steglich, P.

Lemmens, M. Fischer, and G. G�untherodt, Phys. Rev. B 55, 5944 (1997).

[131] K. M. Kojima et al., Phys. Rev. Lett. 78, 1787 (1997).


