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To my father

Charity suffereth long, and is kind; charity envieth not; charity vaunteth not itself, is not puffed

up, her own, is not easily provoked, thinketh no evil; Rejoiceth not in iniquity, but rejoiceth in

the truth; Beareth all things, believeth all things, hopeth all things, endureth all things. Charity

never faileth: but whether there be prophecies, they shall fail; whether there be tongues they

shall cease; whether there be knowledge, it shall vanish away.

1 Corinthians 13: 4-8
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6.4.4 Renormalons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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Preface

This thesis studies primarily neutrino-nucleon and neutrino-nucleus interactions. This

topic has become very important with the observatory of neutrino oscillations. In the

near future several new experiments, summarized as long-base line experiments, need

precise values of the cross section for the interpretation of their results and precise deter-

mination of the parameters (δm2, θ-mixing, etc.). For this reason I began in Dortmund

the investigation of this subject. Earlier results are presented in two publications [1, 2]:

• E. A. Paschos, L. Pasquali, J. Y. Yu, Single pion production in neutrino reactions

and estimates for charge-exchange effects, Nucl. Phys. B588, 263 (2000) [Chapter

2]

• E. A. Paschos, J. Y. Yu, Neutrino interactions in oscillation experiments, Phys.

Rev. D65, 03302 (2002) [Chapter 3]

In the meanwhile I improved several of the calculations, especially the production of the

∆ and the other resonances. Old and new results are included in the thesis. In particular

part I chapter 2 contains new results including nuclear rescattering corrections.

Before my association with the topic neutrino reactions, I studied the modification of

the Euler-Heisenberg Lagrangian in the presence of electric and magnetic fields. With my

collaborator Dr. G. Cvetič we calculated the dispersive part as a sum over complex singu-

larities. This is a non-perturbative effect solved by numerical methods. In this context we

studied the concept of separation of the induced dispersive action into non-perturbative

and perturbative parts using two numerical methods. The results were published in two

articles [3, 4]:

• G. Cvetič and Ji-Young Yu, NONPERTURBATIVE DISPERSIVE SECTOR IN
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STRONG (QUASI-)ABELIAN FIELDS, Int. J. Mod. Phys. A16, 57 (2001) [Chap-

ter 5–7]

• G. Cvetič and Ji-Young Yu, BOREL-PADÉ VS. BOREL-WENIGER METHOD: A

QED AND A QCD EXAMPLE, Mod. Phys. Lett. A15, 1227 (2000) [Chapter 6]

For a complete picture of my contributions to physics I included these results in the second

part of this thesis which is giving a short description of the methods and results.



Part I

Neutrino Interations and Nuclear
Effects in Oscillation Experiments





Chapter 1

Introduction and Survey

It has long been believed in the Standard Model that neutrinos have zero rest masses.

Recent experimental evidence [5–9] for non-vanishing neutrino masses opens a new excit-

ing era in neutrino studies. The question of neutrino mass is one of the major research

areas of particle physics both experimentally and theoretically. The evidence of nonzero

neutrino masses stems from the neutrino oscillations that a neutrino of one type or flavor,

like the muon neutrino, can transform into another state, such as either a tau or a sterile

neutrino.

Recently, atmospheric and solar neutrino experiments [5–9] have provided strong evi-

dence for neutrino oscillations. Currently, the experiments are either running or are under

construction planning to obtain a better understanding of the reactions and to observe

neutrino oscillations, to measure more precisely the magnitudes of the squared mass dif-

ferences δm2 and the angle sin2 2θ. To perform these measurements special Long Base

Line(LBL) experiments have been approved and will be operating. Among them are:

• the present generation of solar and accelerator experiments: Homestake [10],

Kamiokande [11, 12], Super-Kamiokande [13], SAGE [14], GALLEX [15], K2K [16],

SNO [17]

• the next generation experiments: miniBOONE [18], MINOS [19], ICANOE [20],

OPERA [21], ICARUS [22], KamLAND [23], Borexino [24]

• the high-intensity low energy conventional neutrino beam proposal (JHF-Kamioka

[25]) and the muon storage rings (Neutrino Factory [26]).
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On the other hand, it is important to understand a necessary input for their relevant

reactions in free nucleons and to consider the contribution due to the nuclei, since most

of them will use (heavy) nuclei as target.

Until now, there are very few studies about the influence of nuclear effects on the nuclei

targets. In addition, in the low energy range the neutrino-nucleon reactions are not well

understood. Therefore, part I of this thesis is devoted to a careful study of nuclear effects

in nuclei targets and the cross sections for the relevant reactions in the LBL experiments.

The outline of Part I will be as follows:

In chapter 2 we present the general formulas for the calculation of single pion produc-

tion by neutrinos in the resonance regions concerning both charged and neutral current

reactions on free protons and neutrons. Then we apply these results to evaluate the

spectra of the emerging pions including the Pauli suppression factor and rescattering cor-

rections for reactions in heavy nuclei targets considering the proposed and constructed

LBL experiments.

In chapter 3 we give a compendium of the formulas for deep inelastic and quasi-elastic

scattering by neutrinos on free protons and neutrons and heavy nuclei targets. We briefly

review resonance production for the tau lepton case, since the muon case has already

been discussed in chapter 2. In addition, the charged and neutral current cross sections

are calculated for the case of muon- and tau-(anti-)neutrino interactions. Furthermore,

the nuclear effects are taken into account in DIS by the use of two recent sets of nuclear

parton distributions [27–29], in quasi-elastic interactions by the Pauli reduction factor

and in the case of resonance production by the ANP model (multiple scattering) [30].

Then, we consider threshold effects in the tau neutrino reactions and use these results to

predict tau event rates in the proposed OPERA LBL experiment [21] which will look for

νµ → ντ oscillations. Finally, we summarize our main results in chapter 4.



Chapter 2

Neutrino Induced Single Pion
Production and Estimation for
Nuclear Effects

2.1 Introduction

There is strong evidence for the mixing of muon neutrinos with either tau or sterile neutri-

nos. The evidence comes from atmospheric neutrino experiments which observe a decrease

of muon neutrinos in charged current reactions, but no decrease of the corresponding elec-

tron neutrino interactions [5–7].

In order to obtain better insight into the oscillation which takes place and in order to

eliminate the dependence on the flux there are proposals and experiments being planned

and constructed, which look at the neutral current interactions. These are reactions which

will use neutrinos of an average energy of 1 GeV producing the resonances between 1.0 and

1.6 GeV/c2. One proposal considers the production of pions directly by the atmospheric

neutrinos [31] and the detection of π0’s with the help of two ring events.

More powerful are experiments which use neutrinos from an accelerator with two

detectors; the first one nearby the accelerator and a second farther away. The nearby

detector will be able to detect all pions and check the neutrino flux and the neutrino

energy spectrum, as well as the cross sections for these reactions. The detector with the

long baseline (300–400 km) will observe the charged and neutral current reactions. The

oscillation of muon neutrinos into other neutrinos, tau or sterile neutrinos, will produce

a reduction of muon events in the far away detector.
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We classify the reactions. Quasi-elastic charged current reactions νµ(ν̄µ) + N →
µ−(µ+) +N and neutral current reaction ν + p→ ν + p 1 are well understood.

In addition to the above reactions there are excitations of resonances and their subse-

quent decays

νµ + p → µ− + p+ π+ (2.1)

νµ + n → µ− + n+ π+ (2.2)

νµ + n → µ− + p+ π0 , (2.3)

to which the corresponding antineutrino-nucleon processes are

ν̄µ + p → µ+ + p+ π− (2.4)

ν̄µ + n → µ+ + n+ π− (2.5)

ν̄µ + p → µ+ + n+ π0 . (2.6)

Furthermore, there are the neutral current reactions

ν + p → ν + p+ π0 (2.7)

ν + p → ν + n+ π+ (2.8)

ν + n → ν + n+ π0 (2.9)

ν + n → ν + p+ π− , (2.10)

to which the following antineutrino-nucleon processes correspond

ν̄ + p → ν̄ + p+ π0 (2.11)

ν̄ + p → ν̄ + n+ π+ (2.12)

ν̄ + n → ν̄ + n+ π0 (2.13)

ν̄ + n → ν̄ + p+ π− . (2.14)

The theory for the production of these states is known for thirty years now and there

are several calculations available. The charged current reactions have been studied exten-

sively [32–38] and the production of the ∆++ (2.1) has been well understood theoretically.

It has also been measured experimentally [32–37] with good agreement between theory

and experiment. For the other charged current reactions there are only few experimental

1Note that the corresponding reaction ν + n→ ν + n practically is not measurable.
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measurements. For this reason the nearby detectors of the experiments should study the

reactions using light and heavy nuclei as targets.

Knowledge of the neutral current reactions is even more limited. The latest calcu-

lations of charged and neutral current reactions for the production of single-pion cross

sections differ by approximately 20% [33, 34, 39]. One should make all possible efforts now

to reduce the overall uncertainty and measure the various channels experimentally.

A second difficulty arises from the fact that the experimental targets are heavy mate-

rials so that the interactions take place on protons and neutrons bound in nuclei like for

example 8O
16, 18Ar

40 or 26Fe
56. In the heavy nuclei, the produced pions rescatter before

they escape from the nucleus and are subject to two phenomena: (1) the cross sections

are reduced by the Pauli exclusion principle, when the energy of the recoiling nucleon is

low and can not occupy a filled level of nucleons, and (2) the pion charge exchange due

to rescattering. These phenomena are known and have been subject of extensive studies

[30, 40–42].

The expectations of the experiments are the following. For all charged current reac-

tions we anticipate a reduction of the observed rates in the far away detector because

some of the muon neutrinos oscillate into another state. For the neutral current reactions

there will be no reduction in rate if the oscillation is to tau neutrinos because all neutrinos

contribute equally to neutral current reactions. On the other hand, we expect a reduction

if the oscillation is to sterile neutrinos.

Now, since the reduction is expected to be approximately 40% from the calculations,

it is important to understand all possible corrections. An important requirement is that

the nearby and the far away detector use the same nuclei as targets. If this is not possible,

then corrections have to be applied.

Because of the importance of the experiments and the opportunities they present

for establishing the charged and neutral current reactions, we have undertaken the task

of calculating the cross section on free protons and neutrons. This way we produce

differential, as well as integrated cross sections. Then we use the obtained results to

calculate the corrections which are present in nuclei.

This chapter is organized as follow:

Section 2.2 is devoted to the calculation of the differential and total cross sections

for single-pion production in neutrino-nucleon interactions. In section 2.3 we discuss the
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nuclear effects involved in this process adopting the multiple scattering model [30] and

calculate the energy spectra for charged and neutral pions for a few different materials

typically used as targets in experiments. Finally, conclusions are presented in section 2.4.
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2.2 Single Pion Production

In this section we present the main equations and the form factors used to evaluate

the differential and total cross sections for single-pion production in neutrino-nucleon

interactions. For neutrino energies of a few GeV the single-pion production proceeds

mainly through the excitation of the lower resonances. The main contribution to the

cross section comes from the production and the subsequent decay of the ∆(1232)P33

resonance. Nevertheless, some of the channels receive a non-negligible contribution from

the isospin 1/2 resonances as, for example, the N(1440)P11 and the N(1535)S11 resonances.

The channels under investigation in this thesis are the six charged current and the

eight neutral current channels listed in the introduction in Eqs. (2.1)–(2.14).

Using Clebsch-Gordan coefficients, it is easy to verify that the amplitudes for the

charged current channels, Eqs. (2.1)–(2.6), are given by the following relations [33]:

A(µ− + p+ π+) = Acc
3

A(µ− + n+ π+) =
1

3
Acc

3 +
2
√

2

3
Acc

1

A(µ− + p+ π0) = −
√

2

3
Acc

3 +
2

3
Acc

1

A(µ+ + n+ π−) = Acc
3

A(µ+ + p+ π−) =
1

3
Acc

3 +
2
√

2

3
Acc

1

A(µ+ + n + π0) =

√
2

3
Acc

3 −
2

3
Acc

1 , (2.15)

and for the neutral current channels, Eqs. (2.7)–(2.14), one obtains [39]:

A(ν + p + π0) =

√
2

3
Anc

3 +
1

3
Anc

1 +
1

3
A0

1

A(ν + n+ π+) = −1

3
Anc

3 +

√
2

3
Anc

1 +

√
2

3
A0

1

A(ν + n + π0) =

√
2

3
Anc

3 +
1

3
Anc

1 −
1

3
A0

1

A(ν + p+ π−) =
1

3
Anc

3 −
√

2

3
Anc

1 +

√
2

3
A0

1, (2.16)

where Acc,nc
3 corresponds to the amplitude for the production of the P33 resonance, Acc,nc

1

is the sum of the amplitudes for the production of the P11 and S11 resonances and A0
1 is

the sum of the isoscalar contributions of the P11 and S11 resonances to the cross section.
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Notice that, as suggested in Ref. [33, 39], the neutral current amplitudes Anc
3 , Anc

1 and A0
1

can be derived from the corresponding charged current amplitudes Acc
3 and Acc

1 by simply

rescaling the vector and axial form factors. In the case of the Anc
3 and Anc

1 amplitudes

the vector and axial charged current form factors need to be multiplied by 1− 2 sin2 θW

and by 1 respectively, where θW is the Weinberg angle. For A0
1 the vector and axial

charged current form factors need to be multiplied by −2/3 sin2 θW and 0, respectively.

Furthermore, since the A0
1 amplitude turned out to be very small compared to Anc

3 and

Anc
1 , we neglected the isoscalar contribution in our evaluation of the cross sections.

2.2.1 ∆(1232)P33

As it was mentioned in the introduction, the theory for the production of the ∆(1232)P33

is well known and understood, and several independent calculations have already been

published, showing good agreement with the experimental results [32–37]. Therefore,

rather than developing our own formalism for this process, we decided to follow the

article of Schreiner and von Hippel [36], who used the Zucker’s model [37].

Differential Cross Section

The unpolarized double-differential cross section for the production of the ∆ resonance

according to the process

ν(q1) + p(p1)→ l−(q2) + ∆++(P∆) (2.17)

shown in Fig. 2.1, is given by [36]:

dσ

dQ2dW 2
=

G2
F

16πM2
N

(K1W̃1 +K2W̃2 +K3W̃3) , (2.18)

where GF is the Fermi constant, MN with N = n, p is the nucleon mass, q2 ≡ −Q2 is the

four-momentum transferred from the lepton to the hadron and W 2 is the invariant mass

of the hadronic system. Using the four-momenta given in (2.17) [and in Fig. 2.1] we can

write:

q2 = −Q2 = (q1 − q2)2 = −2q1 · q2 +m2
l = −2Eν(El − |~q2| cos θ) +m2

l , (2.19)

W 2 = (q + p1)
2 = −Q2 +M2

N + 2MNν, (2.20)
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ν(q1)

p(p1)

q = q1 − q2

l−(q2)

∆++(P∆)

Figure 2.1: The Feynman diagram for the production of the ∆ resonance according to the
charged current process ν(q1) + p(p1) → l−(q2) + ∆++(P∆). q1, P1, q2, P∆ are the four-
momenta of the particles.

where |~q2| =
√
E2

l −m2
l , θ is the angle between the initial neutrino and the final lepton,

ml (l = µ, τ) is the lepton mass, Eν (El) is the energy of the initial neutrino (final lepton)

in the lab system. Furthermore, the Ki (i = 1, 2, 3) are kinematical factors which are

connected to known lepton matrix elements and are given by [37]:

K1 =
2(Q2 +m2

l )

E2
ν

(2.21)

K2 = 4
[
1− (Q2 +m2

l )

EνQ2

(Q2 +m2
l

4Eν

+ q0
L

)]
(2.22)

K3 =
Q2MN

EνWqCMS

(
2− q0

L(Q2 +m2
l )

EνQ2

)
(2.23)

with

q0
L = Eν − Eµ = ν =

W 2 −M2
N +Q2

2MN

,

q0
CMS =

W 2 −M2
N −Q2

2W
,

qCMS =
√
Q2 + (q0

CMS)2 , qCMS > 0, (2.24)

where qCMS and q0
CMS correspond to the three-momentum transfer to the hadrons and

energy transfer in the pion-nucleon center of mass system (CMS), respectively, and q0
L = ν

is the energy difference in the lab system.

Finally, the W̃i are structure functions which describe the hadron currents and they

are expressed in terms of the helicity amplitudes from Ref. [37]. In case of the production
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of a spin-parity JP = 3
2

state the structure functions W̃i are as follows:

W̃1 =
W

qCMS

([
|T 3

2
|2 + |T 1

2
|2 + |U 3

2
|2 + |U 1

2
|2
]
+

m2
l

q2
CMS

[
|TC |2 + |UC |2 + |UD|2

])
,

W̃2 =
M2

N

WqCMS

Q2

q2
CMS

([
|T 3

2
|2 + |T 1

2
|2 + |U 3

2
|2 + |U 1

2
|2
]
+

2Q2

q2
CMS

[
|TC |2 + |UC |2

])
,

W̃3 =
4W

qCMS

(
ReT ∗

3
2
U 3

2
−ReT ∗

1
2
U 1

2
+

m2
l

q2
CMS

ReU∗
CUD

)
, (2.25)

where T ’s and U ’s are helicity amplitudes of the vector and axial-vector currents, respec-

tively, and their subscripts 3
2

and 1
2

denote matrix elements of the helicity ±1 (transverse)

currents combining with a nucleon to a ∆ whose helicity has absolute value 3
2

or 1
2
. The

subscript ′C ′ means the matrix elements of the Coulomb component of the current and

the subscript ′D′ indicates the matrix elements of its divergence which is zero for the

vector current but not for the axial-vector current.

Fully Differential Cross Section

The fully differential cross section with the angular distribution which is fitted by the

normalized probability distribution [36] is as follows:

dσ

dQ2dWdΩπ

=
1√
4π

dσ

dQ2dW

[
Y 0

0 −
2√
5
(ρ̃33 −

1

2
)Y 0

2

+
4√
10
ρ̃31ReY

1
2 −

4√
10
ρ̃3−1ReY

2
2

]
, (2.26)

where dΩπ = d cos θπdϕ. Here, Y M
L (Ω) are the spherical harmonic functions and some of

them are:

Y 0
0 =

1√
4π

Y 0
2 =

√
5

16π
(3 cos2 θπ − 1)

Y 1
2 = −

√
15

8π
sin θπ cos θπe

iϕ

Y 2
2 =

√
15

32π
sin2 θπe

2iϕ. (2.27)

We substitute Eq. (2.27) into Eq. (2.26) to integrate over the polar angle ϕ. As a result

we get the cross section:

dσ

dQ2dWd cos θπ

=
dσ

dQ2dW

[1
2
− (3/2 cos2 θπ −

1

2
)(ρ̃33 −

1

2
)
]

(2.28)
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with

(ρ̃33 −
1

2
)

dσ

dQ2dW
=

W

M2
N

G2
F

16π
[K1D1 +K2D2 +K3D3]. (2.29)

Using Eqs. (2.18) and (2.29) in (2.28) we obtain the final triple-differential cross section:

dσ

dQ2dWd cos θπ

=
G2

F

16πM2
N

3∑

i=1

[
KiW̃i −

1

2
KiDi(3 cos2 θπ − 1)

]
. (2.30)

The structure functions Di (i = 1, 2, 3) are expressed in terms of the helicity matrix

elements from Ref. [37] as follows:

D1 =
W

qCMS

([
|T 3

2
|2 − |T 1

2
|2 + |U 3

2
|2 − |U 1

2
|2
]
− m2

l

q2
CMS

[
|TC |2 + |UC |2 + |UD|2

])
,

D2 =
M2

N

WqCMS

Q2

q2
CMS

([
|T 3

2
|2 − |T 1

2
|2 + |U 3

2
|2 − |U 1

2
|2
]
+

2Q2

q2
CMS

[
|TC |2 + |UC |2

])
,

D3 =
4W

qCMS

(
ReT ∗

3
2
U 3

2
+ReT ∗

1
2
U 1

2
− m2

l

q2
CMS

ReU∗
CUD

)
. (2.31)

Now, Eq. (2.30) can be converted into the triple-differential cross section

dσ/dQ2dWdEπ by using the fact that:

Eπ = EL
π = γECMS

π + βγ|pCMS
π | cos θπ (2.32)

with the CMS values

ECMS
π =

M2
∆ +m2

π −M2
N

2M∆
, (2.33)

|pCMS
π | =

√
(ECMS

π )2 −m2
π. (2.34)

and the Lorentz factors:

γ =
ν +MN

M∆
, βγ =

qCMS

M∆
=

√
ν2 +Q2

M∆
, (2.35)

where M∆ (1.232 GeV) denotes the mass of the ∆ resonance. Since the triple-differential

cross section dσ/dQ2dWd cos θπ changes into βγ|pCMS
π | dσ/dQ2dWdEπ using the Lorentz

transformation of Eq. (2.32), the final result for the triple-differential cross section is given

by:

dσ

dQ2dWdEπ
=

1

βγ|pCMS
π |

WG2
F

16πM2
N

3∑

i=1

[
KiW̃i −

1

2
KiDi(3 cos2 θπ − 1)

]
, (2.36)
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where the kinematic ranges for the cos θπ and the pion energy Eπ are:

−1 ≤ cos θπ ≤ 1 , (2.37)

⇒ γ(ECMS
π − β|pCMS

π |) ≤ Eπ ≤ γ(ECMS
π + β|pCMS

π |). (2.38)

The total cross section can be obtained by integrating over the allowed ranges of values

of Eπ, Q
2 and W 2. In the case of a tau lepton in the final state the Q2 range is given by:

Q2
min ≤ Q2 ≤ Q2

max,

Q2
min = − 1

(2Eν +MN)

[
− 2E2

νMN +MNm
2
τ + Eν(−M2

N +m2
τ +W 2)

+Eν

√
(s−m2

τ )
2 − 2(s+m2

τ )W
2 +W 4

]
,

Q2
max =

1

(2Eν +MN )

[
2E2

νMN −MNm
2
τ + Eν(M

2
N −m2

τ −W 2)

+Eν

√
(s−m2

τ )
2 − 2(s+m2

τ )W
2 +W 4

]
(2.39)

with s = M2
N + 2MNEν. The integration boundaries in Eq. (2.39) simplify in the limit

mτ → 0 which is relevant in the case of a muon in the final state:

Q2
min = 0, Q2

max =
(s−W 2)(s−M2

N)

s
. (2.40)

In both cases (muon, tau) the pion energy range is given by Eq. (2.38).

Rarita-Schwinger Formalism

The invariant matrix element for the production of the ∆ resonance is as follows [36]:

M =< µ−∆++|νp >=
GF cos θc√

2
jα < ∆++|V α − Aα|p > , (2.41)

where the hadronic elements V and A denote vector and axial vector parts, respectively,

and θc is the Cabibbo angle. The leptonic weak current jα is given by:

jα = ūµγ
α(1− γ5)uν. (2.42)

Following the notation of [35] we can express the matrix element as

M√
3

=
G√
2
ψ̄α

{[ CV
3

MN
γλ +

CV
4

M2
N

(P∆)λ +
CV

5

M2
N

(Pp)λ

]
γ5F

λα + CV
6 j

αγ5
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+
[ CA

3

MN

γλ +
CA

4

M2
N

(P∆)λ

]
γ5F

λα + CA
5 j

α +
CA

6

M2
N

qαqλjλ

}
uf(W ) (2.43)

with F λα ≡ qλjα − qαjλ. ψα is the Rarita-Schwinger spinor for the ∆++ spin state, u is

the Dirac spinor for the initial proton spin state, Pp is the four-momentum of the proton,

and the S-wave Breit-Wigner factor f(W )2 can be written as follows:

f(W ) =

√
Γ∆(W )

2π

(M∆ −W )− 1
2
iΓ∆(W )

, Γ∆(W ) =
Γ0

∆qπ(W )

qπ(M∆)
(2.44)

with qπ being the modulus of the three-momentum of the pion in the rest frame of the ∆

resonance:

qπ(W ) =
√

(W 2 −M2
N −m2

π)2 − 4M2
Nm

2
π/(2W ) (2.45)

and with Γ0
∆ = 120 MeV being the width of the ∆ resonance. The CV

j and CA
j (j =

3, 4, 5, 6) are the vector and axial-vector form factors. Due to the conserved vector cur-

rent (CVC) we have CV
6 = 0. For our calculation of the cross section we need the

connection between the form factors CV
j , C

A
j and the helicity matrix elements (T ’s and

U ’s) in Eqs. (2.25) and (2.31). This relationship between them is discussed in appendix

A.

Form Factors

For the relevant N−∆ vector and axial-vector transitions, form factors have been studied

extensively for thirty years by the analysis of neutrino scattering experiments [32–38] and

quark model calculations [43, 44]. Summaries can be found in Ref. [42].

The vector and axial vector form factors in the approximation of magnetic dipole

dominance used in our calculation are the ones given by Alvarez-Ruso et al. [42]. The

vector form factors are:

CV
3 (Q2) =

2.05

(1 + Q2

0.54 GeV2 )2
(2.46)

CV
4 (Q2) = −MN

M∆

CV
3 (2.47)

CV
5 (Q2) = 0, (2.48)

2Following Schreiner and von Hippel [36] we parameterize the ∆(P33) resonance by an S-wave Breit-
Wigner factor which well describes the experimental data. Alternatively, Rein and Sehgal have utilized
a P-wave Breit-Wigner factor [34].
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and the axial vector form factors can be parametrized as:

CA
k (Q2) = Ck(0)

(
1 +

akQ
2

bk +Q2

)(
1 +

Q2

M2
A

)−2

(2.49)

with k = 3, 4, 5, CA
3 (0) = 0, CA

4 (0) = −0.3, CA
5 (0) = 1.2, a4 = a5 = −1.21, b4 = b5 =

2 GeV2. The axial vector mass MA is treated as a free parameter. As will be discussed in

subsection 2.2.3 we take MA = 1.0 GeV. The pion pole dominance of the divergence of

the axial vector current can be used to give the following relation:

CA
6 (Q2) =

g∆fπ

2
√

3MN

M2

m2
π +Q2

, (2.50)

where the ∆++ → pπ+ coupling constant g∆ = 28.6, the pion decay constant fπ = 0.97mπ

and the pion mass mπ = 0.14 GeV. Notice that, since these form factors have been derived

from photo- and electro-production experiments in which a ∆+ or a ∆0 was produced, in

order to obtain the correct cross section for the ∆++ production, all the form factors need

to be multiplied by
√

3 due to the fact that < ∆++ | Vα | p >=
√

3 < ∆+ | Vem
α | p >

[36].

2.2.2 N(1440)P11 and N(1535)S11

The V − A form of the leptonic current determines the polarization states of the final

muon (as well as that of the initial neutrino) and thus defines a pure polarization state for

the virtual W-boson exchanged between the leptons and hadrons. Therefore it is natural

to describe the process in terms of cross sections corresponding to the the three helicity

states of the virtual W-Boson which is separated into three polarization vectors εr, εl, εs

denoting right-handed, left-handed and scalar polarization, respectively.

We show the Feynman diagram for the production of the isospin I = 1
2

resonances

in Fig. 2.2, where k is the neutrino four-momentum, k′ is the lepton four-momentum,

ν = Eν − El is the difference between the energies of the incoming and the outgoing

lepton, p and p′ are the four-momenta of the initial and final nucleon, respectively, pπ is

the four-momentum of the final pion and q = k − k′ is the four-momentum transferred

from the leptons to the hadrons. The polarization vectors εi (i = r, l, s) are defined as:

εs =
1

Q

(√
ν2 +Q2, 0, 0, ν

)
(2.51)

εr,l =
1√
2
(0, 1,±i, 0) (2.52)
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ν(k)

N(p)

q, ε

l−(k′)

R

π+,0(pπ)

N ′(p′)

Figure 2.2: s-channel Feynman diagram for the process ν(k) +N(p)→ l−(k′) + π+,0(pπ) +
N ′(p′). R denotes one of the two isospin 1

2
resonances (S11, P11).

and satisfy the following conditions

(εs)2 = 1, (εr,l)2 = −1 , (εi) · q = 0. (2.53)

Remembering that nearby the resonance only the s-channel is essential, the three matrix

elements Mi (i = r, l, s) can be defined as follows:

Mi = −fRū(p′)γ5(/p+ /q +MR)/εi(gV − gAγ5)u(p)f(W ), (2.54)

where fR with R = P11, S11 is the coupling constant of the pion to the nucleon and the

resonance, MR is the resonance mass (MP11 = 1.44 GeV, MS11 = 1.535 GeV), and gV,A are

the vector and axial form factors, respectively. The values for fR are given by fP11 = 4.45

and fS11 = 0.48 [33]. The Breit-Wigner factor f(W ) in Eq. (2.54) for the S11 and the P11

resonance can be taken in a similar way as in the ∆ resonance case (2.44):

f(W ) =
1

(W 2 −M2
R) + iMRΓR(W )

, (2.55)

changing the resonance mass M∆ → MR and the width of the resonance Γ0
∆ → Γ0

R. The

widths of the S11 and P11 resonances are given by Γ0
S11

= 0.15 GeV and Γ0
P11

= 0.35 GeV

[45]. In addition, we take the total width ΓR(W ) for the S-wave S11 resonance from

Eq. (2.44). For the P-wave P11 resonance we use:

ΓP11(W ) = Γ0
P11

( qπ(W )

qπ(MP11)

)3

, (2.56)

where qπ(W ) is given by Eq. (2.45).
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As shown in Ref. [46], the triple-differential cross section dσ/dQ2dνdΓ for the produc-

tion of the P11 and S11 resonances is given by the following equation:

dσ

dQ2dνdΓ
=

2G2
F

(2π)2

Q2

ν

(
1− Q2

2MNν

)[
(1− ν

Eν
)
dσs

dΓ
+

1

2
(1− ν

Eν
)2 dσr

dΓ
+

1

2

dσl

dΓ

]
, (2.57)

where the helicity cross sections dσi/dΓ for the ’virtual’ W-nucleon absorption into final

hadronic space spanning the phase space dΓ are defined as:

dσi

dΓ
=
π

ν

(
1− Q2

2MNν

)−1∑′
|Mi|2(cos θ, Eπ)(2π)4δ4(p+ q − pπ − p′), (2.58)

where the summation
∑′ is over all final state variables except for the set of final state

hadron momenta Γ, which are measured. Inserting Eq. (2.58) into Eq. (2.57) and after

some algebra we obtain the final result for the triple-differential cross section:

dσ

dQ2dWdEπ

=
W

4MN

G2
FQ

2

(2π)4ν2

1√
ν2 +Q2

[(
1− ν

Eν

)
|Ms|2(cos θ, Eπ)

+
1

2

(
1− ν

Eν

)2|Mr|2(cos θ, Eπ) +
1

2
|Ml|2(cos θ, Eπ)

]
, (2.59)

where

cos θ =
Q2 − 2(νMN −MNEπ − νEπ)−m2

π

2Eπ

√
ν2 +Q2

. (2.60)

Form Factors

For the form factors we use the expressions presented by Fogli and Nardulli in Ref. [33]:

g1V
R (Q2) = − Q2g2V

R (Q2)

MN (MN −MR)
(2.61)

g2V
R (Q2) =

gV
R(0)

(1 + Q2

4.3 GeV2 )2

1

1 + Q2

(MR−MN )2

(2.62)

gA
R(Q2) =

gA
R(0)

(1 + Q2

M2
A

)2
, (2.63)

where the gV,A
R denote the vector and axial vector form factors for the resonances S11

and P11. For the S11 resonance we employ in case of a proton target gV
S (0) = −0.28

and in case of a neutron target gV
S (0) = 0.14. For the P11 resonance we take gV

P (0) = 0.

The axial vector form factors are gA
P11

(0) =
√

2fP fπ

MP11
+MN

= 0.35 for the P11 resonance and

gA
S11

(0) =
√

2fP fπ

MS11
+MN

= 0.16 for the S11 resonance and the axial vector mass is given by

MA = 1.0 GeV for both the P11 and S11 resonance.
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2.2.3 Results

In this section we present our results for the total cross sections for the seven channels

under examination including the anti-neutrino processes for completeness and, where

possible, compare these results with experimental data. They have been calculated by

integrating over the allowed range of values for Q2 and Eπ with a cut on the invariant

mass W at 1.6 GeV taking Eqs. (2.36)–(2.59). Since some experimental targets consist of

heavy nuclei, nuclear effects have to be taken into account in these cases. In addition we

investigate also the dependence of the total cross sections on the axial vector mass MA.

In Fig. 2.3 the total cross section for the νµ +p→ µ−+p+π+ process has been plotted

versus the incoming neutrino energy. The data points have been taken from Ref. [47]

(solid circles) and from Ref. [48] (empty circles) which use hydrogen and deuterium for

their experimental targets, respectively. Figs. 2.4–2.5 display the total cross sections for

the νµ +n→ µ− + p+π0 and νµ +n→ µ− +n+π+ processes, respectively, again plotted

versus the incoming neutrino energy. In this case the data points have been taken from

Refs. [47] (solid circles), [48] (empty circles) and [49] (crosses) using hydrogen, deuterium

and CF3Br (halon) targets, respectively. As can be seen from Figs. 2.3–2.5, the cross

sections increase with increasing axial vector mass (due to the factor (1 + Q2/M2
A)−1)

and, at neutrino energies above 1.5 GeV, show a variation of roughly 10% if the axial

vector mass is varied by 10%. However, in this region (Eν > 1.5 GeV) the experimental

data are less precise such that the agreement between the theoretical results and the data

points is reasonably good for all shown MA. In the following we utilize MA = 1.0 GeV

which seems to be a reasonable choice.

In Fig. 2.6 the total cross section for the ν̄µ + p → µ+ + p + π− process has been

plotted versus the incoming neutrino energy. The data points have been taken from Refs.

[50] (triangle), [51] (square), and [49] (solid circles) using hydrogen, deuterium and freon

targets, respectively. Also here, the agreement between the theoretical curves and the

experimental data is quite good.

Figs. 2.7–2.8 display the total cross sections for the ν̄µ + p → µ+ + n + π0, and

ν̄µ +n→ µ+ +n+ π− processes, respectively, again plotted versus the incoming neutrino

energy. For the latter process the data points have been taken from Refs. [50] (triangle),

[51] (square), and [49] (solid circles). The solid and dashed lines take into account the full

nuclear corrections according to our (ANP) model which will be discussed in sec. 2.3 and
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ν + p → µ- + p + π+
Radecky et al. (H2, D2)
Barish et al. (H2, D2)

ma = 1.0 GeV
ma = 0.90 GeV
ma = 0.84 GeV

Eν (Gev)
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Figure 2.3: Total cross section for the νµ + p → µ− + p + π+ process plotted versus the
incoming neutrino energy. The solid, dashed and dotted lines denote axial vector masses
MA = 1.0, 0.95 and 0.84 GeV, respectively. The data points are from [47] (H2, D2) and [48]
(H2, D2).

the model of Adler [52], respectively. As can be seen in Fig. 2.8 the resulting curves are

very similar and give a satisfactory description of the data. The dotted curve has been

calculated without any nuclear corrections and clearly overshoots the data. This nicely

illustrates the need of considering nuclear corrections.

The difference between the theoretical and the experimental results can be partially

explained by taking into account the fact that, while the theoretical curves have been

estimated imposing a cut on the invariant mass W at 1.6 GeV, the experimental points

have been obtained without any cut. Notice also that we did not include any non-resonant

background and any interference terms of resonances in our evaluation of the cross sec-

tions.

In the case of the neutral current interactions, the experimental results are presented

in the form of ratios between each of the neutral current channels and one of the charged

current channels. For this reason, Figs. 2.9–2.12, which display respectively the total

cross sections of the νµ(ν̄µ) + p → νµ(ν̄µ) + p + π0, νµ(ν̄µ) + p → νµ(ν̄µ) + n + π+,

νµ(ν̄µ) + n→ νµ(ν̄µ) + n+ π0 and νµ(ν̄µ) + n→ νµ(ν̄µ) + p+ π− processes plotted versus

the incoming energy, have no data points. Nevertheless, we compared our results with the

experimental ratios from Refs. [54–57] and found that there is a reasonable agreement,

even if, in some cases, the ratios measured by the different experiments differ a lot from

each other. The two Figs. 2.9 (b) and 2.10 (a) as well as the Figs. 2.11 (b) and 2.12 (a)

are related by charge symmetry.



2.2 Single Pion Production 21

ν + n → µ- + p + π0
Radecky et al. (H2, D2)

Barish et al. (H2, D2)

Grabosh et al. (CF3Br)

ma = 1.05 GeV
ma = 1.0 GeV
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Figure 2.4: Total cross section for the νµ + n → µ− + p + π0 process plotted versus the
incoming neutrino energy. The data points are from [47] (H2, D2), [48] (H2, D2) and [49]
(CF3Br). The solid and dashed lines have been obtained employing axial vector masses
MA = 1.05 and 1.0 GeV, respectively.

ν + n → µ- + n + π+Radecky et al. (H2, D2)

Barish et al. (H2, D2)

Grabosh et al. (CF3Br)
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Figure 2.5: Total cross section for the νµ + n → µ− + n + π+ process plotted versus the
incoming neutrino energy. The data points are from [47] (H2, D2), [48] (H2, D2) and [49]
(CF3Br). The solid, dashed and dotted lines have been obtained employing axial vector
masses MA = 1.22, 1.12 and 1.0 GeV.
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Figure 2.6: Total cross section for the ν̄µ + p → µ+ + p + π− process plotted versus the
incoming neutrino energy. The data points are from [50] (D2), [51] (H2), and [49] (CF3Br).
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Figure 2.7: Total cross section for the ν̄µ + p → µ+ + n + π0 process plotted versus the
incoming neutrino energy.
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Figure 2.8: Total cross section for the ν̄µ + n → µ+ + n + π− process plotted versus the
incoming neutrino energy. The data points are from [50] (D2), [49] (CF3Br), [53] (C3H8).
The solid and dashed lines take into account nuclear corrections (for propane) according to our
(ANP) model and the model of Adler [52], respectively. The dotted line has been calculated
without considering nuclear corrections.
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Figure 2.9: Total cross section for the (a) νµ +p→ νµ +n+π+ and (b) νµ +p→ νµ +p+π0

process plotted versus the incoming neutrino energy.
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Figure 2.10: Total cross section for the (a) νµ+n→ νµ+n+π0 and (b) νµ+n→ νµ+p+π−

process plotted versus the incoming neutrino energy.
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Figure 2.11: Total cross section for the (a) ν̄µ +p→ ν̄µ +n+π+ and (b) ν̄µ +p→ ν̄µ +p+π0

process plotted versus the incoming neutrino energy.
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Figure 2.12: Total cross section for the (a) ν̄µ+n→ ν̄µ+n+π0 and (b) ν̄µ+n→ ν̄µ+p+π−

process plotted versus the incoming neutrino energy.
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Figure 2.13: Invariant mass W spectra of charged current processes utilizing a fixed neutrino
energy Eν = 1.5 GeV. In (a) the individual contributions from the resonances P33 (dashed),
P11 (dotted), S11 (dot-dashed) and the sum P33 + P11 + S11 (solid) are shown. These results
have been calculated according to Eqs. (2.36) and (2.59) integrated over Eπ and Q2. In
(b) the differential cross sections for the physical processes νµ + p → µ− + p + π+ (solid),
νµ + n→ µ− + p+ π0 (dashed) and νµ + n→ µ− + n + π+ (dotted) are plotted.

Finally, in Fig. 2.13 invariant mass spectra dσ/dW of several charged current pro-

cesses are plotted utilizing a fixed neutrino energy Eν = 1.5 GeV. In Fig. 2.13 (a) the

contributions from the resonances P33 (dashed), P11 (dotted), S11 (dot-dashed) and the

sum P33 + P11 + S11 (solid) are shown. These results have been calculated according

to Eqs. (2.36) and (2.59) integrated over Eπ and Q2. One can see that the delta reso-

nance (P33) dominates over the isospin I = 1/2 resonances (P11, S11) for invariant masses

W < 1.4 GeV, whereas for larger invariant masses the contributions from the P11 and

S11 resonances are not negligible. This is particularly true since the cross sections for the

physical processes νµ + p → µ− + p + π+ (solid), νµ + n → µ− + p + π0 (dashed) and

νµ + n → µ− + n + π+ (dotted) shown in Fig. 2.13 (b) are linear combinations (C.G.

coefficients) of the individual curves in Fig. 2.13 (a) such that the relative importance of

the various resonances can be changed.

2.3 Nuclear Effects

In section 2.2 we discussed the reaction ν + N → l + N ′ + π±,0, where N is a free

nucleon (proton or neutron). In order to investigate the nuclear effects taking place in

the experimental targets (for example, 8O
16, 18Ar

40 or 26Fe
56), we need to study the

modifications necessary for the reaction ν + T → l + T ′ + π±,0, where T is the nuclear



26 Neutrino Induced Single Pion Production and Estimation for Nuclear Effects

π±,0

π±,0

π±,0

lν

N

N
N

N

N

Figure 2.14: Multiple scattering: The incoming neutrinos interact with individual nucleons in
the nuclei, producing single pions and excited nuclei. The subsequent journey of the pions is
a “random-walk” of multiple scattering until the pion escapes from the nucleus.

target and T ′ is an unobserved final nuclear state.

We visualize the reaction as a two step process in Fig. 2.14. The incoming neutrinos

interact with individual nucleons in the nuclei, producing single pions and excited nuclei.

The production process is influenced by the Pauli principle and the Fermi-motion of the

individual nucleons. The subsequent journey of the pions is a “random-walk” of multiple

scattering until the pion escapes from the nucleus. In the multiple scattering the pions

can exchange their charge. The most important effects can be summarized as: charge

exchange through the reaction πi + N → πj + N ′, absorption of pions, changing of the

direction of pions and Pauli effects. The model of Adler, Nussinov and Paschos (ANP)

[30] treats the neutrino induced pion production in the nuclei taking into account all these

effects with some constraints. Their model is based mainly on a Clebsch-Gordan analysis

and the transport integral equation of the pions.

In this subsection we will outline the theoretical aspects of nuclear effects in nuclei

adopting the ANP model. This section is organized in the following way:

In subsection 2.3.1 we explain the general transport problem in a nucleus. In subsection

2.3.2 we discuss the charge density distribution in different nuclear targets. The scattering

matrix Q is presented in subsection 2.3.4. The charge exchange matrix M is widely
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discussed including the Pauli suppression factor and the function f(λ) in subsections

2.3.3 and 2.3.6. Two Pauli factors are discussed in subsections 2.3.7. In subsection 2.3.8

we denote briefly the averaging approximation of the dynamical function f(λ). Finally,

numerical results are presented in subsection 2.3.9.

2.3.1 General Transport Problem in Nuclei

If an (anti-)neutrino flux hits a nuclear target T (for example, 8O
16, 18Ar

40 or 26Fe
56),

pions are produced by the reactions (2.1)–(2.12). During the journey the produced pions

interact with protons and neutrons in the nucleus, before they escape from it and are

detected, see Fig. 2.14. The interesting reactions for the latter (multiple scattering) step

are as follows:

π+ +N → π+ +N (2.64)

π+ + n → π0 + p (2.65)

π0 +N → π0 +N (2.66)

π0 + p → π+ + n (2.67)

π0 + n → π− + p (2.68)

π− +N → π− +N (2.69)

π− + p → π0 + n (2.70)

and

π±,0 +N → X. (2.71)

The reaction (2.71) is corresponding to the pion absorption, where the final state does

not contain any pions. We do not consider more than one pion production reactions and

processes which are not important in the ∆ resonance region. For the reactions (2.64)–

(2.70) the main nuclear corrections are: charge exchange, Pauli effects, pion absorption,
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changing of the pion direction and Fermi motion. We neglect Fermi motion and nucleon

recoil effects because we consider the nucleon to be fixed within the nucleus.

For the charge exchange processes in Eqs. (2.65), (2.67), (2.68) and (2.70) a scattering

matrix Q is considered using a simple isospin Clebsch-Gordan analysis of the channel

I = 3
2
. Since the second step is independent of the identity of the leptons involved in the

first step, we can factorize the nuclear effects like pion charge exchange and absorption

in the charge exchange matrix M . Interactions of the produced pions in the nucleus are

dealt with the approximation of complete incoherence, including the utilization of the

pion-nucleon cross sections rather than scattering amplitude in the multiple scattering

calculation. There are two relevant cross sections, i.e., the elastic and the absorption

cross section, in the ∆ resonance region. The elastic scattering is taken by [58]:

dσelastic

dΩ
∝ σπ+p(W )(1 + 3 cos2 φ), (2.72)

where φ is the pion scattering angle and W is the invariant mass. Since the ∆ resonance

dominates compared to the resonance channels I = 1
2
, we consider all πN scattering in

the ∆ resonance region. We treat the multiple scattering problem as an one-dimensional

problem because the three dimensional spherical problem is solved by the ANP model [30]

and because there are very small deviations between the one and the three dimensional

treatment of the multiple scattering problem.

There is another nuclear effect which does not depend on the pion scattering, namely,

the Pauli factor in pion-leptoproduction reactions (2.1)–(2.14) in a nucleus. This reduction

factor depends on the invariant mass W and Q2 and is denoted as g(W,Q2). A second

Pauli factor exists in the pion-nucleon scattering and depends on the pion energy Eπ and

the pion scattering angle φ.

Before we discuss the nuclear effects in the nucleus according to the multiple scattering

model [30], we outline useful constraints for our studies:

• pion-nucleon reactions take place in the ∆ resonance region

• the number of protons is the same as the number of neutrons in the target nucleus

• the neutrino-pion production by bound nucleons should be the same as neutrino-

pion production by a free nucleon.

• Eπ does not change in elastic scattering
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• approximately, the target nucleus is assumed to be isotropically neutral.

2.3.2 Charge Density Distributions

Following Ref. [30], we treat the target nucleus as a collection of independent nucle-

ons which are distributed in space accordingly to a density profile determined through

electron-nucleus scattering experiments.

For the charge density profile of 8O
16 we adopt the harmonic oscillator model in which

the density is given by [59]:

ρ(r) = ρ(0) exp(−r2/R2)

(
1 + C

r2

R2
+ C1

(
r2

R2

)2
)
, (2.73)

where R = a/K with K =
√

3(2 + 5C)/2(2 + 3C) and a is the root mean square radius.

The constants C and C1 are free parameters depending on the material. For 18Ar
40 and

26Fe
56 we use the two parameters Fermi model [59] and write the charge density in the

following way:

ρ(r) = ρ(0)
[
1 + exp ((r − C)/C1)

]−1
. (2.74)

Note that we take different models for various nuclei to describe their charge density due

to the fact that they have distinct charge density profiles. The density ρ(r) is normalized

as
∫

d3rρ(r) = A, where A denotes the number of protons plus neutrons in the nucleus.

The different parameters used in Eqs. (2.73) and (2.74) are given in Ref. [59] and are

summarized in Table 2.1.

ZT
A a[fm] C[fm] C1[fm] R[fm] ρ(0)[fm−3]

8O
16 2.718 1.544 0 1.833 0.141

18Ar
40 3.393 3.530 0.542 4.830 0.176

26Fe
56 3.801 4.111 0.558 4.907 0.163

Table 2.1: Charge density distribution parameters
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2.3.3 Charge Exchange Matrix M

The final and initial pion distributions are related to each other through a scattering

matrix Q whose coefficients result from a Clebsch-Gordan analysis as follows:

q̄i =
∑

j=±,0

QijqIj, (2.75)

where the indices i, j = ±, 0 denote the final and initial pion charge states. The initial

and final pion charge states are defined by:

qI =




π+

π0

π−




I

, (2.76)

q̄ =




π+

π0

π−




F

. (2.77)

The multiple scattering process can be represented by the application of the matrix Qn

on qI . qI can be decomposed into a sum of eigenvectors qk and their eigenvalues λk:

qI =
3∑

k=1

Ckqk, Q qk = λkqk (2.78)

with the coefficient Ck. Thus we can rewrite the final pion distribution as follows:

q̄ =

∞∑

n=0

QnqI =

∞∑

n=0

3∑

k=1

QnCkqk

=

∞∑

n=0

3∑

k=1

λn
kCkqk. (2.79)

Absorption of pion and changing of the pion direction except for the charge exchange

can be understood by the number of pions N (n) exiting from the medium after exactly

n-interactions, since they are independent on the charge exchange. Therefore we can

modify Eq. (2.79) in the following form:

q̄ =

∞∑

n=0

N (n)QnqI
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=

∞∑

n=0

3∑

k=1

N (n)λn
kCkqk

=

3∑

k=1

f(λk)Ckqk (2.80)

with

f(λk) =
∞∑

n=0

λn
kN

(n). (2.81)

f(λk) contains all the dynamics of the multiple scattering problem and the coefficient Ck

are linear combinations of the initial pion mutiplicities. q̄ and qI which denote differen-

tial cross sections for leptonic pion production on nuclear and on free nucleon targets,

respectively, are linked by the so called charge exchange matrix M in the following way:




dσ(ZT
A; +)

dQ2dWdEπ

dσ(ZT
A; 0)

dQ2dWdEπ

dσ(ZT
A;−)

dQ2dWdEπ




= M




dσ(NT ; +)

dQ2dWdEπ
dσ(NT ; 0)

dQ2dWdEπ
dσ(NT ;−)

dQ2dWdEπ



, (2.82)

where
dσ(NT ;±0)

dQ2dWdEπ
= Z

dσ(p;±0)

dQ2dWdEπ
+ (A− Z)

dσ(n;±0)

dQ2dWdEπ
. (2.83)

Its eigenvalues define beams of pions of specific charge combination, which is decreased

by the appropriate eigenvalue. The complete scattering phenomenon is characterized by

three transition probabilities f(λk) corresponding to the three eigenvalues of the matrix

M . They describe the probabilities of beams with eigenvalues λk to survive and exit the

nucleus. When we transpose the final pion to the initial state, we obtain the isospin of

the system πi + π̄f whose total isospin can be 0, 1 and 2. Therefore we deduce that the

charge exchange matrix M includes three independent parameters. Using this property

M can be expressed in terms of three parameters Ap, c and d

M = Ap




1− c− d d c

d 1− 2d d

c d 1− c− d


 . (2.84)

The overall factor Ap is given by

Ap = g(W,Q2) a (2.85)
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with the Pauli suppression factor g(W,Q2) in Eq. (2.165) and a = f(1). Using the

following identity:

q̄ = MqI =

3∑

k=1

f(λk)Ck qk, (2.86)

we can determine the elements of the charge exchange matrix M . In subsection 2.3.5 we

will discuss some details of the dynamical function f(λk).

2.3.4 Scattering Matrix Q

We analyzed the reactions (2.64)–(2.70) by means of a Clebsch-Gordan analysis, neglecting

the isospin 1
2

channels because the ∆ resonance plays the dominant role. The pion-nucleon

matrix elements are as follows:

M(πiN → πjN ′) = Cij(N) < 3/2|S|3/2 > (2.87)

with the Clebsch-Gordan coefficient Cij. The probability P that a πi (i = ±, 0) is con-

verted into a πk (k = ±, 0) by a single scattering process is given by:

Pik =

∑
N=p,n |Cik(N)|2

∑
j=±,0

∑
N=p,n |Cij|2

(2.88)

with

C++(p) = 1 C−−(p) =
1

3

C++(n) =
1

3
C−−(n) = 1

C+0(n) =

√
2

3
C−0(p) =

√
2

3

C00(p) =
2

3
C0+(p) =

√
2

3

C00(n) =
2

3
C0−(n) =

√
2

3
(2.89)

corresponding to the reactions (2.64)–(2.70). We identify the matrices Pij and Qij and

obtain the following matrix elements of Q:

Q =




5
6

1
6

0
1
6

2
3

1
6

0 1
6

5
6


 . (2.90)
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The eigenvalues and eigenvectors are obtained by a simple calculation:

q1 =




1

1

1


 , λ1 = 1 (2.91)

q2 =




1

0

−1


 , λ2 =

5

6
(2.92)

q3 =




1

−2

1


 , λ3 =

1

2
(2.93)

and the decomposition of qI is:

qI =

3∑

k=1

Ckqk,

C1 =
1

3

[
qI(π

+) + qI(π
0) + qI(π

−)
]

C2 =
1

2

[
qI(π

+)− qI(π−)
]

C3 = −1

3
qI(π

0) +
1

6

[
qI(π

+) + qI(π
−)
]
. (2.94)

Note that the matrix Q is normalized so that each column and row sums to one which

means that the number of particles is constant. Hence, the largest eigenvalue λ1 will be

one and the corresponding eigenvector q1 will be the only state surviving in a sufficiently

large medium of length L (many rescatterings), because of the exponential decay law

(e−(1−λ)κL), see subsection 2.3.5.

Using Eqs. (2.84) and (2.94) we find the following connection between the charge

exchange matrix elements and the transition probabilities in Eq. (2.86):

Ap (1− c− d) =
1

3
f(1) +

1

2
f(5/6) +

1

2
f(1/2)

Ap d =
1

3
f(1)− 1

3
f(1/2)

Ap c =
1

3
f(1)− 1

2
f(5/6) +

1

6
f(1/2). (2.95)
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Finally, we get the results for matrix elements c, d and Ap from Eq. (2.95):

Ap = g(W,Q2) a,

c =
1

3
− 1

2

f(5/6)

f(1)
+

1

6

f(1/2)

f(1)

d =
1

3

(
1− f(1/2)

f(1)

)
, (2.96)

where f(λk) denotes the transmission coefficient for the state with eigenvalue λk and

g(W,Q2) is calculated explicitly in subsection 2.3.7.

2.3.5 Determination of the Function f(λ)

From now, we omit the index k for λ because it plays no role. As mentioned already in

the previous subsections, f(λ) contains the dynamics of the pion multiple scattering in

the nucleus for the λ eigenvalues and can be interpreted as the expected number of pions

which eventually escape from the nuclear medium either moving to the right (f+) or to

the left (f−), normalized so that the integrated initial pion density is one. In order to

calculate f(λ), we assumed that all scattering into the forward hemisphere is along the

forward direction and all scattering into the back hemisphere is along the same line in the

backward direction. Therefore it is a one-dimensional scattering process. The expected

number of pions to escape in either direction in the one-dimensional case is given by:

f(λ, L(b)) = f+(λ, L(b)) + f−(λ, L(b)). (2.97)

Here, b is the impact parameter and L(b) is the effective length where we have to average

over L(b) in the nucleus. It was shown that approximating the multiple-scattering with

scattering in the forward and backward directions provides a very accurate approximation

[30]. Thus what is important is the effective profile of the nucleus that the pions see. This

allows to write:

f(λ) =

∫∞
0

db bL(b)f(λ, L(b))∫∞
0

db bL(b)
, (2.98)

where the effective length L(b) is defined as:

L(b) =
1

ρ(0)

∫ +∞

−∞
dz ρ(

√
z2 + b2) . (2.99)

In the case of 8O
16, the effective length L(b) is given by:

L(b) = R
√
π exp (−b2/R2)

(
1 + C

(
1

2
+
b2

R2

))
. (2.100)
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For 18Ar
40 and 26Fe

56 the effective length L(b) is written as:

L(b) =

∫ +∞

−∞
dz

1

1 + e

√
z2+b2−C

C1

. (2.101)

In order to solve this integration we replace z = bu:

L(b) = 2

∫ +∞

0

bdu
1

1 + e
b

C1

√
1+u2− C

C1

(2.102)

and substitute the new variable x = b
C1

√
1 + u2 − C

C1
in Eq. (2.102). After some calcula-

tions, we have the integration:

L(b) = 2C1

∫ +∞

b−C
C1

dx
x + C

C1√
(x+ C

C1
)2 − b2

C2
1

e−x

1 + e−x
. (2.103)

Since we can not integrate Eq. (2.98) directly, we calculate this numerically using the

Laguerre integration from [60]. It is given by:

∫ +∞

0

e−xf(x)dx =
n∑

i=1

wif(xi), (2.104)

where wi denotes the weight. Replacing the variable x by x + x0 in Eq. (2.104) we get

the following result:

∫ +∞

x0

e−xf(x)dx = e−x0

n∑

i=1

wif(xi + x0), (2.105)

Comparing the Eqs. (2.103) and (2.105) we can extract the following function f(x) for

our case:

f(x) = 2C1

x + C
C1√

(x+ C
C1

)2 − b2

C2
1

1

1 + e−x
(2.106)

and

f(x+ x0) = 2C1
x+D√
x(x +D)

1

1 + e
−(x+D− C

C1
)

(2.107)

with D = b
C1

and x0 = b−C
C1

. Finally, the effective length for 18Ar
40 and 26Fe

56 is written

in the following way:

L(b) = 2C1

n∑

i=1

wi
xi +D√
xi(xi + 2D)

e
−(D− C

C1
)

1 + e
−(xi+D− C

C1
)
. (2.108)
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The numerical values for the xi in Eq. (2.108) are taken from [60]. The other double inte-

gration in the denominator in Eq. (2.98) for 18Ar
40 and 26Fe

56 is carried out in appendix

B.

The appropriate expression for the function f(λ, L(b)) has been derived in Ref. [30]

both for the case of a one-dimensional multiple scattering problem and for the case of

a spherical one. The two solutions have then been compared showing excellent agree-

ment over the entire range of parameters. Therefore, in our case, we calculate f(λ, L(b))

adopting the approximate expression for the one-dimensional problem.

The solution of the one-dimensional problem of finding f(λ, L(b)) depends on the

absorption and πN (I = 3
2
) elastic scattering cross sections, σabs and σπ+p, respectively,

obtained from experiment.

To describe f(λ, L(b)) we need the inverse interaction length κ and the direction

reversal probability µ±. We assume that all pions are equal because the effects of the

pion charges are contained already in the charge exchange matrix Q. For this reason, the

pion-nucleon elastic scattering is taken by :

σπN =
1

3
σπ+p. (2.109)

Pions can be scattered and absorbed during their journey in the nucleus. We express

this process in terms of the charge density connected with the inverse interaction length

κ and the absorption and scattering cross sections in the following way:

κ = ρ(0)σtot(W ),

σtot(W ) = σabs(W ) +
1

3
σπ+p(W )

[
h+(W ) + h−(W )

]
, (2.110)

where:

h+ =
1

2

∫ π
2

0

dφ (1 + 3 cos2 φ) sinφh(W,φ)

h− =
1

2

∫ π

π
2

dφ (1 + 3 cos2 φ) sinφh(W,φ). (2.111)

For the cross sections σabs we used the first older parameterization (A) from [61]:

(A) : σabs(W ) =

{
0, Tπ < 110 MeV ,

22 mb Tπ−110 MeV
290 MeV

, Tπ > 110 MeV
(2.112)
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with the kinetic energy of the pion:

Tπ =
W 2 − (MN +mπ)2

2MN
.

A more recent parameterization (B) of σabs is given by [62]:

(B) : σabs(W ) =

{
30 mb Tπ

200 MeV
, Tπ < 200 MeV,

51.3 mb (1− Tπ

500 MeV
), 200 MeV < Tπ < 500 MeV .

(2.113)

The elastic cross section for the πN scattering σπ+p is combined by the ∆ resonance

cross section and a constant non-resonant background:

σπ+p = σ(3,3)(W ) + 20 mb. (2.114)

Using the Roper parameterization [63] we get the cross section σ(3,3)(W ):

σ(3,3)(W ) = σmax
q2
r

q2

Γ2

4

(q0 − q0
r)

2 + Γ2

4

(2.115)

with

q0
r = 1.921mπ,

qr = 1.640mπ ,

σmax =
8π

q2
r

≈ 185 mb ,

q0 =
W 2 −M2

N +m2
π

2W
,

q =
√

(q0)2 −m2
π,

Γ =
1.262 q3

mπ(q0 + q0
r)(1 + 0.504 q2

m2
π
)
. (2.116)

The direction reversal probability µ± can be derived from the projections h± of the

pion-nucleon elastic cross section dσπN/dΩ in Eq. (2.72) on the forward- and backward-

hemisphere of the Pauli factor h(W,φ):

µ± =
1

3
σπ+p(W )

h±
σtot

, (2.117)

where h± is given in Eq. (2.111).

The Pauli factor in the pion-nucleon scattering h(W,φ) is given explicitly in section

2.3.7.
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2.3.6 One Dimensional Multiple Scattering in Nuclei

We define the probability for a particle to transverse the distance x− y in a medium with

inverse interaction length κ as e−κ(x−y). The probability of interacting after that distance

is κdx. Thus the combined probability of going from y to x and interacting in dx is given

by:

P (x|y)dx = κe−κ(x−y)dx, x > y

= κe−κ(x−y)θ(x− y)dx. (2.118)

In the following subsections we consider the forward and backward scattering and its

special case, the only forward scattering.

Forward and Backward Scattering Case

For our multiple scattering problem we consider the probability P (xj|yi)dx, containing a

pion which is after n−1 collisions at a place yi (i = l (left), r (right)) and after n collision

in an interval dx at x moving in the direction j. The four relevant probabilities are:

P (xr|yr) = µ+κe
−κ(x−y)θ(x− y) ,

P (xl|yr) = µ−κe
−κ(x−y)θ(x− y) ,

P (xl|yl) = µ+κe
−κ(y−x)θ(y − x) ,

P (xr|yl) = µ−κe
−κ(y−x)θ(y − x) (2.119)

with the step function θ. We have also introduced the parameters µ± denoting the prob-

ability that the scattering is forward or backward.

Since the composition laws for these probabilities correspond to the quantum me-

chanical composition laws for probability amplitudes we adopt the Dirac notation for the

convenience as follows:

〈xj|P |yi〉 = P (xj|yi)

〈xj|P 2|yi〉 =

∫ L

0

dz
∑

k=r,l

〈xj|P |zk〉〈zk|P |yi〉

〈xj|P n|yi〉 =

∫ L

0

dz
∑

k=r,l

〈xj|P |zk〉〈zk|P n−1|yi〉. (2.120)
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To evaluate the magnitude N (n) we defined ρ(0)(yi) as the initial pion density at the

position y in direction i. Therefore, the pion density ρ(n)(xj) at the position x in direction

j after n-collisions is given by:

ρ(n)(xj) =

∫ L

0

dy
∑

i=r,l

〈xj|P n|yi〉ρ(0)(yi), (2.121)

where the initial pion density ρ(0)(yi) is normalized to one:

ρ(0)(yi) =
1

L
δi,r. (2.122)

The number of pions N (n), which escape the medium after n-interactions, is equal to

the pion number, which exist in medium after n-interactions minus the number of such

pions, which interact once more in the medium. Then, the pion number N (n) is:

N (n) =

∫ L

0

dx(ρ(n)(xr) + ρ(n)(xl))

−
∫ L

0

dx
( ∫ x

0

dzκe−κ(x−z)ρ(n)(xl) +

∫ L

x

dzκe−κ(z−x)ρ(n)(xr)
)
. (2.123)

A more compact notation for Eqs. (2.119)–(2.123) is introduced by:

〈zi|xj〉 = δ(z − x)δij ,

〈z|Ptot|xr〉 = κe−κ(z−x)θ(z − x) ,
〈z|Ptot|xl〉 = κe−κ(x−z)θ(x− z) . (2.124)

We rewrite the Eqs. (2.121)–(2.123) using this compact notation and insert Eq. (2.123)

into Eq. (2.81):

f(λ, L(b)) =

∞∑

n=0

λnN (n)

=
1

L

∫ L

0

∫ L

0

∫ L

0

dxdydz〈xj|(1− λP )−1|yr〉 ×
[(
δ(z − x)− 〈z|Ptot|xl〉

)
+
(
δ(z − x)− 〈z|Ptot|xr〉

)]
, (2.125)

where the following identity has been used:

∞∑

n=0

λnρ(n)(xj) =
1

L

∫ L

0

dy〈xj|
∞∑

n=0

λnP n|yr〉
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=
1

L

∫ L

0

dy〈xj|(1− λP )−1|yr〉 (2.126)

with j = r, l. Furthermore, we can simplify Eq. (2.125) as:

δ(z − x)− 〈z|Ptot|xj〉 = (1− 1

σ+ + σ−
)
∑

i=r,l

〈zi|xj〉

+
1

σ+ + σ−

∑

i=r,l

〈zi|(1− λP )|xj〉 (2.127)

with σ± = λµ±. After substituting Eq. (2.127) into Eq. (2.125) we obtain:

f(λ, L(b)) =
1

L

∑

j=r,l

∫ L

0

∫ L

0

∫ L

0

dxdydz〈xj|(1− λP )−1|yr〉 ×
[
δ(z − x)− 〈z|Ptot|xj〉

]

=
1

L

∑

j=r,l

∑

i=r,l

∫ L

0

∫ L

0

∫ L

0

dxdydz
[
〈xj|(1− λP )−1|yr〉 ×

(1− 1

σ+ + σ−
)δ(z − x)δij +

1

σ+ + σ−
〈zi|(1− λP )|xj〉 ×

〈xj|(1− λP )−1|yr〉
]

(2.128)

with

∑

i=r,l

〈zi|yr〉 =
∑

j=r,l

∑

i=r,l

∫ L

0

dx〈zi|(1− λP )|xj〉〈xj|(1− λP )−1|yr〉

=

∫ L

0

dzδ(z − y). (2.129)

Finally, substituting Eq. (2.129) into Eq. (2.128) f(λ, l(b)) is obtained as follows:

f(λ, l(b)) = (1− 1

σ+ + σ−
)〈(1− λP )−1〉av +

1

σ+ + σ−
, (2.130)

where the averaged inverse operator 〈(1− λP )−1〉av is defined as:

〈(1− λP )−1〉av =
1

L

∑

i=r,l

∫ L

0

∫ L

0

dydz〈zi|(1− λP )−1|yr〉. (2.131)

In order to obtain the inverse operator we make an ansatz in the following way:

〈zi|(1− λP )−1|yj〉 = δ(z − y)δij + F (zi|yj), (2.132)
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where f(yj) is defined by:

f(yj) =
∑

i=r,l

∫ L

0

dzF (zi|yj). (2.133)

With this ansatz we have the expression of the inverse operator (2.131) in the following

way:

〈(1− λP )−1〉av = 1 +
1

L

∫ L

0

dyf(yr)

= 1 +
1

L

∫ L

0

dyf(yl). (2.134)

Therefore the evaluation of f(λ, L(b)) is reduced to the calculation of f(yj). We obtain

f(yj) using the identity in Eq. (2.129):
∫ L

0

dzδ(z − y) =

∫ L

0

dz
{∑

i=,r,l

∑

j=r,l

∫ L

0

dx〈zi|(1− λP )−1|xj〉〈xj|(1− λP )|yk〉
}

=

∫ L

0

dz
{∑

i=,r,l

∑

j=r,l

∫ L

0

dx
[
(δijδ(z − x) + F (zi|yj))(δjkδ(x− y)

−〈xj|λP |yk〉)
]}

→ 1 =
∑

i=r,l

∫ L

0

dz
{
δ(z − y)δik + F (zi|yk)− 〈zi|λP |yk〉

−
∑

j=r,l

∫ L

0

dxF (zi|xj)〈xj|λP |yk〉
}

→ 1 = 1 + f(yk)− g(yk)−
∑

j=r,l

∫ L

0

dxf(xj)〈xj|λP |yk〉 . (2.135)

This relation implies that f(yk) satisfies the following integral equation:

f(yk) = g(yk) +
∑

i=r,l

∫ L

0

dzf(zi)〈zi|λP |yk〉 (2.136)

with

g(yk) ≡
∑

i=r,l

∫ L

0

dz〈zi|λP |yk〉. (2.137)

It is very useful to consider the reflection symmetry to solve the integration in

Eq. (2.137). This symmetry is obtained when we go back to Eq. (2.119) for P (xi|yj)
and substitute z → L− y in (2.137):

f(yr) = f((L− y)l),
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f(yl) = f((L− y)r),
g(yr) = g((L− y)l),
g(yl) = g((L− y)r). (2.138)

Using the symmetry and substituting Eq. (2.119) into Eq. (2.137), we get a single integral

equation:

f(yl) = (σ+ + σ−)(1− e−κy)︸ ︷︷ ︸
g(yl)

+

∫ y

0

dz
[
κσ+f(zl) + κσ−f((L− z)l)

]
e−κ(y−z). (2.139)

Evaluating e−κx
[

d
dy

(eκyf(yl))
]

one finds the following differential equation:

κf(yl) + f ′(yl) = (σ+ + σ−)κ+ κσ+f(yl) + κσ−f((L− y)l) (2.140)

with the boundary condition f(0l) = 0. The solution of this differential equation consists

of two parts, a homogeneous and an inhomogeneous solution:

f(yl) =
σ+ + σ−

1− (σ+ + σ−)

[
1− h(y)

h(0)

]
. (2.141)

The first term (inhomogeneous solution) in (2.141) cancels the κ(σ+ + σ−) and the re-

maining terms (homogeneous part) give the equation:

−κh(y)
h(0)

− h′(y)

h(0)
= −κσ+

h(y)

h(0)
− κσ−

h(L− y)
h(0)

⇒ κh(y) + h′(y) = κσ+h(y) + κσ−h(L− y). (2.142)

In order to solve (2.142) we take the exponential ansatz:

h(y) = eκσy + µe−κσy. (2.143)

With this ansatz we find the following solution:

σ =
√

(1− σ+)2 − σ2
−, (2.144)

µ =
σ + 1− σ+

σ−
eκσL.

In order to obtain the exact expression of 〈(1 − λP )−1〉av in (2.134) we substitute

Eq. (2.141) into Eq. (2.134) and find the following results for f(λ, L(b)) in Eq. (2.130):

f(λ, L(b)) = f+(λ, L(b)) + f−(λ, L(b))
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=
eκσL − 1

κσL

1 + µe−κσL

1 + µ
. (2.145)

The expected numbers f±(λ, L(b)) of pions emerging from the medium either moving

to the right (no over-all direction reversal) or to the left (over-all direction reversal) are

obtained when f(λ, L(b)) is regarded as a function of the direction-reversal probability µ−.

Only even powers of (µ−)n to f+(λ, L(b)) and odd powers to f−(λ, L(b)) can contribute

in the summation over n. Therefore we have the following relations:

f(µ−, L(b)) = f+(µ−, L(b)) + f−(µ−, L(b)),

f(−µ−, L(b)) = f+(−µ−, L(b))− f−(−µ−, L(b)). (2.146)

From this it follows directly:

f+(λ, L(b)) =
f(µ−, L(b)) + f(−µ−, L(b))

2

=
eκσL − 1

κσL

µ2e−κσL − 1

µ2 − 1
,

f−(λ, L(b)) =
f(µ−, L(b))− f(−µ−, L(b))

2

=
eκσL − 1

κσL

µ(1− e−κσL)

µ2 − 1
. (2.147)

We discuss the case σ± = 0 in appendix C.

Scattering Only in the Forward Direction

We discuss in this subsubsection the forward scattering case, i.e. µ− = 0, σ− = 0 and

µ+ = 1 as a check on the forward and backward scattering and start with an interaction

whose inverse interaction length is κ and thus P (x|y) = κe−κ(x−y)θ(x − y) is probability

of going from y to x and interaction at x with charge exchange λ.

In order to obtain the inverse operator 〈x|(1− λP )−1|y〉 we use the following identity

from the previous subsubsection

δ(x− y) =

∫ L

0

dz〈x|(1− λP )−1|z〉〈z|(1− λP )|y〉.

(2.148)

Substituting the ansatz for the inverse operator: 〈x|(1 − λP )−1|z〉 ≡ δ(x − z) + F (x|z)
with F (x|z) = 0 for z > x into (2.148) we obtain the following result:

δ(x− y) =

∫
dz
[
δ(x− z) + F (x|z)

][
δ(z − y)− λκe−κ(z−y)θ(z − y)

]
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⇒ F (x|y) = λκe−κ(x−y) + λκ

∫ x

y

dzF (x|z)e−κ(x−y). (2.149)

F (x|y) is rewritten as follows:

F (x|y) = λκeκy
[
e−κx +

∫ x

y

dzF (x|z)e−κz
]

= λκeκyg(x|y) (2.150)

with the definition:

g(x|y) =
[
e−κx + λκ

∫ x

y

dzg(x|z)
]
. (2.151)

For x = y the integral vanishes and g(x|x) = e−κx. We take an ansatz of g(x|y) in the

following way:

g(x|y) = e−αye−βx = e−αy−(κ−α)x, (2.152)

because α+β = κ due to g(x|x) = e−κx. Using this, F (x|y) from Eq. (2.150) is expressed

by:

F (x|y) = λκe(λ−1)κ(x−y) (2.153)

with the substitution α = λκ. Thus, the inverse operator is obtained as follows:

〈x|(1− λP )−1|y〉 = δ(x− y) + λκe(λ−1)κ(x−y). (2.154)

After integrating this equation the final result for the inverse operator gives:

〈(1− λP )−1〉av = 1 +
λ

λ− 1
(e(λ−1)κL − 1). (2.155)

Finally, f+(λ, L(b)) from Eq. (2.130) is:

f+(λ, L(b)) = (1− 1

λ
)
[
1 +

λ

λ− 1
(e(λ−1)κL − 1)

]
+

1

λ

= e−(1−λ)κL. (2.156)

We find that the effect of the multiple scattering is to produce an effective interaction

constant (1− λ)κ. This is the complete modification from multiple scattering.

The last expression makes sense because for λ = 1 is f+(λ, L(b)) = 1, i.e. the particles

just all come out, and for λ < 1 is f+(λ, L(b)) < 1 and for L→∞ is f+(λ, L(b))→ 0, i.e.

after infinite many rescattering they all go to the λ = 1 state.
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~∆

RF

H

0 φ

~∆

Figure 2.15: Fermi spheres in phase space: The segment of nucleons which can contribute, for
given momentum transfer ~∆ to the nucleus, is the fraction of the volume of a Fermi sphere of
radius RF centered at 0 which lies outside a second sphere of radius RF centered at ~∆. H, φ
denote the height and the angle, respectively. The overlapped region denotes the forbidden
volume (FV ) due to the Pauli principle.

2.3.7 Pauli Factors

In order to calculate the Pauli factor we use the simple Fermi gas model. It assumes that

the nucleons in the nucleus form a gas of weakly interacting fermions. In the ground state

of the system the nucleons fill all energy states (labeled by the momentum) within the

Fermi sphere with Fermi momentum RF . Due to the Pauli exclusion principle an excited

nucleon necessarily needs to have a momentum outside the Fermi sphere, since all states

inside the sphere are already occupied. The radius of the Fermi sphere is from [64] and

reads:

RF = Rp = Rn ≈ 1.6mπ. (2.157)

Then, the segment of nucleons which can contribute, for given momentum transfer ~∆ to

the nucleus, is the fraction of the volume of a Fermi sphere of radius RF centered at 0

which lies outside a second sphere of radius RF centered at ~∆. Due to the Pauli principle

~∆ should not overlap the two spheres in phase space. The forbidden (overlapped) region

corresponds to two times the volume of a sphere fraction with the radius RF and the

height H. The so-called forbidden volume (FV) in Fig. 2.15 is:

FV = 2
[1
3
πH2(3RF −H)

]

=
4

3
πR3

F

[
1− 3|~∆|

4RF
+
|~∆|3
16R3

F

]
, (2.158)



46 Neutrino Induced Single Pion Production and Estimation for Nuclear Effects

where H = RF − |~∆|
2

= RF (1− cosφ). Then, the Pauli factor h is defined as the fraction

of the allowed phase space referred to the whole volume 4πR3

3
:

h(η) =

{
3
4
η − 1

16
η3, η < 2

1, η ≥ 2
(2.159)

with

η =
|~∆|
RF
≈ 2q

RF
sin(

φ

2
). (2.160)

Pauli Production Factor g(W,Q2)

Inspecting Fig. 2.2, the momentum transfer ~∆ := ~pN ′ − ~pN is given in the πN ′-CMS by

~∆ = ~q − ~pπ. In order to facilitate the comparison with the literature [30] we adopt the

following notation: ~q → ~k, ~pπ → ~q, i.e. ~∆ = ~k − ~q. It is easy to derive the following

expressions for these momenta in the πN ′-CMS in dependence of W and Q2:

k0 =
W 2 −M2

N −Q2

2W
,

k ≡ |~k| =
√

(k0)2 +Q2 (2.161)

q0 =
W 2 −M2

N +m2
π

2W
,

q ≡ |~q| =
√

(q0)2 −m2
π , (2.162)

where the latter two equations can also be found in Eq. (2.116).

To calculate the Pauli production factor g(W,Q2) we average the Pauli factor h(η)

over the solid angle as follows:

g(W,Q2) =

∫
dΩ h(η)∫

dΩ
=

R2
F

2 q k

∫ η(−1)

η(+1)

dη η h(η), (2.163)

where η = η(cosφ). We distinguish the following three cases for the integration in

Eq. (2.163):

(1) η(−1) > η(+1) ≥ 2 ←→ 2RF ≤ k − q,
(2) η(+1) < η(−1) ≤ 2 ←→ 2RF ≥ k + q,

(3) η(+1) ≤ 2 ≤ η(−1) ←→ k − q ≤ 2RF ≤ k + q, (2.164)
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resulting in:

g(W,Q2) =





1, 2RF ≤ k − q,

1
2k

[
3k2+q2

2RF
− 5k4+q4+10k2q2

40R3
F

]
, k + q ≤ 2RF ,

1
4qk

[
(q + k)2 − 4

5
R2

F − (k−q)3

2RF
+ (k−q)5

40R3
F

]
, k − q ≤ 2RF ≤ k + q .

(2.165)

Pauli Factors in the πN Scattering

Since the approximation (2.160) is not doing well in the case η ≈ 2, i.e. h(η) ≈ 1, we take

the invariant mass W as follows:

W 2 = 2mNEπ +m2
N +m2

π. (2.166)

Performing the integration Eq. (2.111) we get:

α ≤ 1,





h+ = α 1√
2

59
70
− α3 1√

2
29
420

h− = α 136−59
√

2
70

− α3 176−29
√

2
420

1 ≤ α ≤
√

2,





h+ = α 1√
2

59
70
− α3 1√

2
29
420

h− = 2− α−2 4
5

+ α−4 18
35
− α−6 4

21
− α 1√

2
59
70

+ α3 1√
2

29
420

√
2 ≤ α,





h+ = 1− α−2 4
5

+ α−4 18
35
− α−6 4

21

h− = 1

(2.167)

with

α =
q

RF
. (2.168)

2.3.8 Averaging Approximation

It is important to notice that, while the Pauli production factor depends on both W and

Q2, the function f(λ) depends only on W and this dependence is very weak. Therefore,

as it has been already verified in Ref. [30], it is reasonable to average the charge exchange
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parameters over the leading W -dependence by defining an averaged function f̄(λ) in the

following way:

f̄(λ) =

∫
dW q(W )−1σ3,3(W )f(λ)∫

dW q(W )−1σ3,3(W )
, (2.169)

where σ3,3(W ) is the pion-nucleon scattering cross section and q(W ) is the pion momen-

tum. For the definitions of σ3,3(W ) and q(W ) see subsection 2.3.5.

2.3.9 Results

Using the model outlined in the previous subsections, we evaluated the nuclear correc-

tions for leptonic pion production on three different nuclei: oxygen, argon and iron. As

described in the previous sections, the nuclear corrections are based on three effects:

absorption, charge exchange and the Pauli factor. In the following we examine the im-

portance of these three contributions to the nuclear corrections. Furthermore, in order

to estimate the uncertainties due to the theoretical description of absorption effects we

compare the two different models given in Eq. (2.112) (model (A)) and Eq. (2.113) (model

(B)). Note that throughout this thesis all results (all figures, Table 2.2) have been calcu-

lated using model (A) if not stated otherwise.

In Table 2.2 the average charge exchange parameters f̄(λ) are listed for the three

different targets. As expected the values of f̄(λ) are smaller for heavier targets in ac-

cordance with the expectation that charge exchange and absorption are larger in heavier

targets. Note, however, that f̄(λ) depends on the charge exchange and the absorption

in a non-trivial manner as can be seen by inspecting subsections 2.3.5 and 2.3.6 and

Eq. (2.169).

ZT
A f̄(1/2) f̄(5/6) f̄(1)

8O
16 0.418 0.587 0.811

18Ar
40 0.284 0.420 0.648

26Fe
56 0.261 0.393 0.625

Table 2.2: f̄(λ) with λ = 1/2, 5/6 and 1 for 8O
16, 18Ar

40 and 26Fe
56.

In order to disentangle charge exchange effects from absorption effects and the depen-

dence on the absorption model we have calculated f̄(λ) for an oxygen target for three

different scenarios, see Table 2.3: no absorption, absorption model (A) and model (B)
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(always including charge exchange and the Pauli factor). that the values of f̄(λ) with

absorption (B) are considerably smaller than in the case of absorption (A). Furthermore,

f̄(1) is affected by the absorption (A) by about 20%.

8O
16 all nucl. corr. all nucl. corr. all nucl. corr.

no absorption absorption (A) absorption (B)

f̄(1/2) 0.448 0.418 0.346

f̄(5/6) 0.659 0.587 0.439

f̄(1) 1.0 0.811 0.523

Table 2.3: f̄(λ) with λ = 1/2, 5/6 and 1 for 8O
16 without absorption, with absorption (A)

and (B), separately.

Next we show in Table 2.4 the Q2-dependence of the Pauli factor g(W,Q2) at fixed

W = 1.2 GeV which is independent of the nuclear target and the absorption. As can be

seen, the reduction of the cross section due to the Pauli exclusion principle is smaller for

larger values of Q2 since more phase space is available. Eventually at Q2 = 0.35 GeV2

there is no more reduction of the cross section due to the Pauli exclusion principle

Q2 g(1.2 GeV, Q2)

0.00 0.825

0.05 0.888

0.10 0.931

0.15 0.960

0.20 0.978

0.25 0.989

0.30 0.996

0.35 1.000

0.40 1.000

Table 2.4: Pauli production factor g(W,Q2) in dependence of Q2 evaluated at fixed W =
1.2 GeV.
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The charge exchange matrices M for oxygen, argon and iron are given by 3:

M(8O
16) = Ap




0.782 0.161 0.057

0.161 0.677 0.161

0.057 0.161 0.782


 (2.170)

M(18Ar
40) = Ap




0.731 0.187 0.082

0.187 0.625 0.187

0.082 0.187 0.731


 (2.171)

M(26Fe
56) = Ap




0.718 0.194 0.088

0.194 0.612 0.194

0.088 0.194 0.718


 . (2.172)

As can be seen, the dominant entries are on the main diagonal and decrease (more charge

exchange!) with increasing target mass. An example of how to utilize the charge exchange

matrices M , a detailed calculation and discussion of the ratio r = (σ(π+)+σ(π−))/σ(π0)

of charged current cross sections for propane and halon targets utilized by the CERN

Gargamelle experiment [65], can be found in appendix D.

The Pauli factor and the charge exchange matrix M for oxygen have been compared

with the corresponding quantities previously evaluated in Refs. [30, 40, 41] and have been

found to be in good agreement with each other. Unfortunately, no comparison with

previous calculations or experimental data is possible for argon and iron.

To study the effects of absorption we plotted in Fig. 2.16 total cross sections (more pre-

cisely the dominant resonance contributions) for CC (anti-)neutrino scattering off oxygen

targets. Figs. 2.16 a) and b) deal with π+ and π0 production, respectively, in ν scattering.

Note that no negatively charged pions are produced in neutrino (free) nucleon scattering.

Of course, due to charge exchange effects in nuclei also a small fraction of π− is generated

which we do not plot here. Figs. 2.16 c) considers the case of π− production in ν̄ scat-

tering. Again curves for the subdominant π0 and π+ production are not shown. In each

figure the solid, dashed, dash-dotted, thick and thin dotted lines represent respectively

the cross sections including nuclear corrections except absorption, including all nuclear

corrections utilizing absorption model (A) and (B), taking into account only the Pauli

production factor g, and neglecting any nuclear corrections. Note that the solid curves

3As can be inferred from Eq. (2.84) the charge exchange matrices M exhibit a high degree of symmetry.
(The values in each row and column add up to 1 and M is symmetric w.r.t. to both diagonals.)
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have been calculated using modified charge exchange matrices which can be calculated

with help of the matrices including absorption effects according to model (A) given in

Eq. (2.170) and Table 2.2. One can make the following observations:

• The reduction of the free cross section due to the Pauli factor is very small.

• The charge exchange effect reduces the dominant free cross sections (π+ in neutrino

production, π− in anti-neutrino production) by about 25-30%. On the other hand,

the smaller cross sections (π0, π− in ν scattering and π0, π+ in ν̄ scattering) are

enlarged due to the charge exchange. The π0 cross section shown in Fig. 2.16 b) is

increased by about 30% taking into account nuclear corrections.

• The absorption effect leads to a further reduction of roughly 10-15% model (A) and

40% model (B) in the π± case. In the π0 case we find a reduction of about 30% in

model (A) and 50 % in model (B).

• Finally, the total nuclear effect in the π± cases can be as large as 40 to 60% depending

on the absorption model. In the π0 case the charge exchange and absorption effect

compensate each other resulting in almost no reduction employing model (A) and

a decrease of about 25% in case of model (B).

Note that Merenyi et. al. [66] give a best fit for the effective pion absorption and charge

exchange probabilities:

Pπ(absorption) = 0.22± 0.05

Pπ(charge exchange) = 0.10± 0.08.

The difference to our values can be partly understood if one notices that this group

assumed that each pion undergoes only either a charge exchange or an absorption process

whereas we consider both cases simultaneously.

Finally, we turn to the neutral current case. The differential cross sections, evaluated

in sec. 2.2 for free nucleon targets, have been used here together with the charge exchange

matrix M to obtain the differential cross sections for nuclear targets. These cross sections

have been integrated over W and Q2 keeping the neutrino energy fixed at 1 GeV in order

to obtain the pion energy spectra appearing in Figs. 2.17–2.19.

Fig. 2.17 displays the pion energy distributions for positive, neutral and negative pi-

ons for NC neutrino scattering produced on oxygen targets. In each figure the solid line
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represents the initial distribution without any nuclear correction, the dashed line repre-

sents the same distribution after the application of the Pauli factor in the production,

and the dotted line represents the final distribution after applying all the nuclear correc-

tions discussed in the previous subsections. Similarly, Fig. 2.18 and Fig. 2.19 display the

corresponding pion distributions produced on argon and iron targets, respectively.

From these figures it is clear that, while the reduction of the cross section due to the

Pauli production factor is the same for all the processes investigated in this thesis, the

nuclear corrections related to the pion charge exchange and pion absorption are larger

for neutral pions than for the positive or negative ones. Furthermore, these corrections

turn out to be larger for heavier nuclei. Finally, the magnitude of the nuclear corrections

decreases with increasing pion energy.
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Figure 2.16: Total cross sections (resonance contributions) in CC (anti-)neutrino scattering
off oxygen targets. Shown are in a) and b) cross sections for π+ and π0 production in ν
scattering and in c) the cross sections for π− production in ν̄ scattering. The solid, dashed,
dash-dotted, thick and thin dotted lines represent, respectively, the cross sections including
nuclear corrections except absorption, including all nuclear corrections utilizing absorption
model (A) and (B), taking into account only the Pauli production factor g, and neglecting any
nuclear corrections.
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Figure 2.17: Pion energy distribution for a) positively charged pions b) neutral pions c)
negatively charged pions produced for NC scattering of neutrinos on oxygen targets. The
solid, dashed and dotted lines represent respectively the pion energy distribution including
all nuclear corrections, including only the Pauli production factor g and without any nuclear
correction.
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Figure 2.18: The same as in Fig. 2.17 for an argon target.
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Figure 2.19: The same as in Fig. 2.17 for an iron target.
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2.4 Conclusions

Several long-baseline neutrino experiments plan to study low energy neutrino reactions.

Their main aim is the observation and better understanding of neutrino-oscillations. A

necessary input is the understanding of these reactions in free protons and neutrons, as

well as the modifications brought about when the nucleons are bound in relatively heavy

nuclei.

In order to work in a coherent framework we calculated the cross sections on free

protons and neutrons. The theory for the production of the ∆(1232)P33 resonance is well

understood and our results for the total cross section agree with the experimental data.

The same holds for other channels where I = 1
2

resonances also contribute. The compar-

isons appear in figs. 2.3–2.12, where it is evident that the accuracy of the measurements is

subject to large improvements. Thus it is highly desirable that the new experiments use

the nearby detector in order to measure the various cross sections. This refers to charged

and neutral currents interactions on free protons and neutrons. The main uncertainties

described in this part of the thesis are the functional form and parameters of the form

factors and the interference between I = 3
2

and I = 1
2

resonances. We expect that the

effects from these uncertainties are small.

More important are changes which are brought about in the scattering of neutrinos in

heavy nuclei. It is very likely that the far away detectors will use heavy materials as targets

in order to enhance their counting rates. The heavy materials will bring in corrections

comparable to oscillations. In this work we used an old model for nuclear corrections [30]

and calculated the effects on the produced π±,0. In section 2.3 we reviewed details of the

main features of the model.

At first, we calculated the CC cross sections in order to examine the absorption

and charge exchange effects in nuclei targets using two different absorption models, see

Fig. 2.16. We found that the total nuclear corrections in the π± case are about 40− 60%

depending on the absorption model. In the π0 case the corrections ranged between 0 and

25% again depending on the absorption model.

Futhermore, we decided that an interesting and important parameter in the experi-

ments is the energy of the emerging pion. For the NC case, we plotted in figures 2.17–2.19

the pion spectra as function of their energy and found that the largest correction appears

in the spectrum of the π0 ′

s. The reduction of the signal for neutral pions with energies



58 Neutrino Induced Single Pion Production and Estimation for Nuclear Effects

of approximately 200 MeV is substantial: of the order of 40%. Processes with nuclear

corrections as large as the ones found in this study require special attention.

Several strategies suggest themselves. One should use the same material for the front

and the far away detector and study the spectra as a function of Eπ. Then should be

compared the results from the two detectors with quasi-elastic scattering. In case that

the experiments are forced to use different materials detailed calculations for the two

materials will point to similarities and possible differences between the two targets.



Chapter 3

Neutrino Interactions in Oscillation
Experiments

3.1 Introduction

Oscillation experiments [5–7] provide evidence for non-vanishing neutrino masses. Promi-

nent among them is the reduction of the fluxes of atmospheric muon neutrinos and solar

electron neutrinos. To measure precisely the parameters δm2 ' 10−2 − 10−3 eV2 and

sin2 2θ, as well as to better understand the neutrino oscillation there are Long Baseline

(LBL) experiments, like K2K, [67], JHF-Kamioka [25]1, MINOS [19], OPERA [21] and

ICANOE [20], under construction and others being planned or running. The interest of

LBL experiments lies mainly on the νµ → ντ channel, since it is already known from

the CHOOZ experiment [69] that the possibility of νµ → νe oscillation is very much

suppressed. In the LBL experiments several reactions contribute to neutrino nucleon re-

actions, namely deep inelastic scattering (DIS), quasi-elastic (QE) and resonance (RES)

reactions. The latter two are low energy reactions, which are however still significant in

the kinematic range of the new experiments with neutrino energies Eν ' 4 − 30 GeV.

Therefore, these contributions should be included in the theoretical description of charged

current reactions for τ appearance

ντ +N → τ− +X, (3.1)

1Quasi-elastic and resonance reactions are important at the K2K and JHF-Kamioka experiments in
Japan because of the low neutrino energy (Eν ' 1 GeV), see [25, 68]. Since the beam energy is less than
the threshold for the production of τ -leptons (3.5 GeV) we do not consider them here.
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with N = p, n. In addition, we think it is useful to look at the various CC channels of

ντ , searching for additional signatures which will help to confirm the reactions, since the

expected number of τ -events will be small. For this reason, we calculate the total cross

sections and the number of events, Nτ , for the deep inelastic, the quasi-elastic and the

resonance channels of CC reactions. In addition, we consider NC reactions since they are

important for establishing or eliminating oscillations into sterile neutrinos which are not

completely excluded yet. In the previous chapter we have already discussed the single pion

production and the associated nuclear corrections of the resonances. Here we examine the

DIS and QE channels including nuclear contributions as well. These results will be used

to evaluate the number of events, Nτ , for a heavy target like 26Fe56. For completeness, we

also present anti-neutrino nucleon interactions of NC and CC reactions for QE and DIS

with and without nuclear corrections.

This chapter is organized as follows:

In section 3.2 we present the formalism and the evaluation of the charged and neutral

current total cross section for deep inelastic scattering, quasi-elastic scattering and the

resonance channels. In section 3.3 we explain theoretical aspects of the nuclear effects

for the charged and neutral current total cross sections. Then we summarize our results

for all the type of reactions including nuclear corrections in section 3.4. In section 3.5

we give the number of events, Nτ , with and without nuclear corrections for CC and NC

channels for the OPERA experiment. Several conclusions and their importance for the

experiments are included in section 3.6. The results of this chapter should be useful for

LBL experiments [19–21, 25, 67] and those being discussed for the neutrino factory [26].

3.2 General Formalism

In this section we explain the main equations and the form factors used to calculate the

cross section for DIS, QE and RES in (anti-)neutrino-nucleon interactions. Although the

main contribution comes from DIS, we include also QE and RES because their contri-

bution is still important in the energy region of LBL experiments. In the following, we

outline the calculation of the cross sections for DIS and QE scattering, while the resonance

reactions have already been discussed in chapter 2.
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ν(ν̄)(k1)

N(p1)

q,W

l−(l+)(k2)

X(p2)

Figure 3.1: The Feynman diagram for the DIS charged current reaction νl(ν̄l)(k1)+N(p1)→
l−(l+)(k2) +X(p2).

3.2.1 Deep Inelastic Scattering

In this subsection we present the theoretical framework for the calculation of ν(ν̄)-nucleon

DIS cross sections. The CC channels are given by the following equation (see the Feynman

diagram in Fig. 3.1):

νl(ν̄l)(k1) +N(p1)→ l−(l+)(k2) +X(p2). (3.2)

The NC channels are:

νl(ν̄l)(k1) +N(p1)→ νl(ν̄l)(k2) +X(p2), (3.3)

where N is a nucleon and l = µ, τ and X is the system of outgoing hadrons. The double-

differential cross section dσ/dxdy can be expressed in terms of a leptonic tensor Lµν and

a hadronic tensor Wµν:
dσ

dxdy
=
G2

Fy

16π
κ2LµνWµν, (3.4)

where κ =
M2

W

Q2+M2
W

for the CC case, GF is the Fermi constant, MW is the W-boson mass

and y = ν
Eν

. In the case of NC we have κ =
M2

Z

Q2+M2
Z

with MZ the Z-boson mass.

The leptonic tensor Lµν is:

Lµν = 2Tr[(/k2 +ml)γ
µ(1− γ5)/k1γ

ν], (3.5)

with the lepton mass ml, denoting mτ or mµ in the CC case. In the NC case we have

ml = 0. Note that, since in NC neutrino scattering CV = CA we find in both cases, CC
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and NC, a γµ(1 − γ5) structure in the leptonic tensor. Following Ref. [70] the general

hadronic tensor Wµν is defined by:

Wµν = −gµνF1(x,Q
2) +

p1µp1ν

p1 · q
F2(x,Q

2)− iεµνρσ
pρ

1q
σ

2p1 · q
F3(x,Q

2)

+
qµqν
p1 · q

F4(x,Q
2) + (p1µqν + p1νqµ)F5(x,Q

2). (3.6)

Here εµνρσ is the total antisymmetric tensor with ε0123 = + 1. The Fi (i = 1...5) are the

structure functions in neutrino-nucleon deep inelastic scattering. We have derived the

following expression for the differential cross section in the case of ml 6= 0:

dσν,ν̄

dxdy
=

G2
FMNEν

π

[
y
(
xy +

m2
l

2EνMN

)
F1 +

(
1− y − MNxy

2Eν

− m2
l

4E2
ν

)
F2 (3.7)

±
(
xy(1− y

2
)− y m2

l

4MNEν

)
F3 +

(
xy

m2
l

2MNEν

+
m4

l

4M2
NE

2
ν

)
F4 −

m2
l

2MNEν

F5

]
,

where x = Q2

2MN ν
with ν = Eν − El, Q

2 = 2MNEνxy, MNwith N = p, n the nucleon mass

and the ±F3 signs correspond to the ν(ν̄)-nucleon scattering.

To obtain the structure functions for the proton and the neutron for charged and

neutral channels we used the quark parton model (QPM). We treated the proton and the

neutron separately in order to account for non-isoscalar targets. Above the threshold for

charm production the structure functions for charged current ν(ν̄)-proton scattering are:

FCC
2 (νp) = 2x[d + s+ ū+ c̄]

xFCC
3 (νp) = 2x[d + s− ū− c̄]

FCC
2 (ν̄p) = 2x[u+ c+ d̄+ s̄]

xFCC
3 (ν̄p) = 2x[u+ c− d̄− s̄] (3.8)

and for ν(ν̄)-neutron scattering:

FCC
2 (νn) = 2x[u+ s + d̄+ c̄]

xFCC
3 (νn) = 2x[u+ s− d̄− c̄]

FCC
2 (ν̄n) = 2x[d + c+ ū+ s̄]

xFCC
3 (ν̄n) = 2x[d + c− ū− s̄]. (3.9)

Below the threshold for charm production the corresponding structure functions for

the proton are:

FCC
2 (νp) = 2x[d cos2 θc + s sin2 θc + ū+ c̄]
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xFCC
3 (νp) = 2x[d cos2 θc + s sin2 θc − ū− c̄]

FCC
2 (ν̄p) = 2x[u cos2 θc + c sin2 θc + d̄+ s̄]

xFCC
3 (ν̄p) = 2x[u cos2 θc + c sin2 θc − d̄− s̄] (3.10)

and for the neutron

FCC
2 (νn) = 2x[u cos2 θc + s sin2 θc + d̄+ c̄]

xFCC
3 (νn) = 2x[u cos2 θc + s sin2 θc − d̄− c̄]

FCC
2 (ν̄n) = 2x[d cos2 θc + c sin2 θc + ū+ s̄]

xFCC
3 (ν̄n) = 2x[d cos2 θc + c sin2 θc − ū− s̄], (3.11)

with Cabibbo angle cos θc = 0.9755 [45]. Notice that the contribution of the threshold

effect for charm production is small (' 5%) and negligible.

The neutral current reactions for ν(ν̄)-proton scattering depend on:

FNC
2 (νp, ν̄p) = 2x((g2

L + g2
R)[u+ c+ ū+ c̄] + (g′2L + g′2R)[d+ s+ d̄+ s̄])

xFNC
3 (νp, ν̄p) = 2x((g2

L − g2
R)[u+ c− ū− c̄] + (g′2L − g′2R)[d+ s− d̄− s̄])

and for the neutron

FNC
2 (νn, ν̄n) = 2x((g2

L + g2
R)[d+ c+ d̄+ c̄] + (g′2L + g′2R)[u+ s+ ū+ s̄])

xFNC
3 (νn, ν̄n) = 2x((g2

L − g2
R)[d+ c− d̄− c̄] + (g′2L − g′2R)[u+ s− ū− s̄]), (3.12)

where gL = 1
2
− 2

3
sin2 θW , gR = −2

3
sin2 θW and g′L = −1

2
+ 1

3
sin2 θW , g

′
R = 1

3
sin2 θW

with the Weinberg angle sin2 θW = 0.23117 [45]. To calculate the total cross section we

integrate dσ
dxdy

for the muon case in the range 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. For the tau case

we use the limits [71]:

m2
τ

2MN(Eν −mτ )
≤ x ≤ 1

a− b ≤ y ≤ a + b, (3.13)

where a and b are defined the following way:

a =
1−m2

τ (
1

2MN Eνx
+ 1

2E2
ν
)

2(1 + MNx
2Eν

)

b =

√
(1− m2

τ

2MN Eνx
)2 − m2

τ

E2
ν

2(1 + MN x
2Eν

)
. (3.14)
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ν(ν̄)(k1)

N(p1)

q,W

l−(l+)(k2)

N ′(p2)

Figure 3.2: The Feynman diagram for the QE charged current reaction νl(ν̄l)(k1)+N(p1)→
l−(l+)(k2) +N ′(p2).

The derivation of Eq. (3.13) is presented in appendix E.

For the quark distributions we use the CTEQ5 leading order (LO) parton distributions

[72]. The Callan-Gross relation relates F2 to F1:

2xF1 = F2. (3.15)

Furthermore, we use for F4 and F5 the Albright-Jarlskog relations [71]:

F4 = 0 (3.16)

xF5 = F2. (3.17)

3.2.2 Quasi-Elastic Scattering

Following Ref. [35] we calculated the charged current and neutral current channels of

ν(ν̄)−N reactions:

νl(ν̄l)(k1) +N(p1) → l−(l+)(k2) +N ′(p2) (CC) (3.18)

νl(ν̄l)(k1) +N(p1) → νl(ν̄l)(k2) +N ′(p2) (NC). (3.19)

The Feynman diagram for the QE charged current reaction Eq. (3.18) is depicted in

Fig. 3.2. Notice that the neutral current reaction on neutron targets is in practice not

measurable, even though its cross section is comparable to the proton reaction. The

matrix element of the quasi-elastic reactions can be defined as follows:

M =
ig2 cos θc

4

gµν

q2 −M2
W

ū(k2)γ
µ(1− γ5)u(k1)ū(p2)Γ

νu(p1). (3.20)
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Γν is given by:

Γν = γνF V
1 (q2) + iσνα qαξF

V
2 (q2)

2MN

+
qνF V

3 (q2)

MN
+ γνγ5FA(q2) +

qνγ5Fp(q
2)

MN
+
γ5(p1 + p2)

ν

MN
FA

3 (q2), (3.21)

where F V
i (i = 1, 2, 3), FA, F

A
3 , Fp are the weak form factors of the nucleon. The form

factors are in general complex, but general principles eliminate two of them and require

the rest to be real. First, F V
i , FA, Fp and FA

3 are real because of time reversal invariance.

Second, F V
1 , F

V
2 , FA and Fp are real but FA

3 and F V
3 are imaginary because of charge

symmetry. Thus FA
3 = F V

3 = 0 (no second class currents) from these two constraints.

The conserved vector current (CVC) hypothesis establishes the following relations between

the weak form factors and the electromagnetic form factors: F V
1 (q2) = F p

1 (q2) − F n
1 (q2)

and ξF V
2 (q2) = µpF

p
2 (q2) − µnF

n
2 (q2) with ξ = µp − µn = 3.706, kp = µp − 1 = 1.793

and kn = µn = −1.913. kp and kn are the anomalous magnetic moments of proton and

neutron and F p,n
1 and F p,n

2 are the electromagnetic Dirac-Pauli isovector form factors of

proton and neutron. F V
1 (q2) and F V

2 (q2) can be expressed in terms of the Sachs form

factors:

F V
1 (q2) =

GV
E(q2)− q2

4M2
N

GV
M(q2)

1− q2

4M2
N

(3.22)

ξF V
2 (q2) =

GV
M(q2)−GV

E(q2)

1− q2

4M2
N

, (3.23)

where

GV
E(q2) =

1

(1− q2

M2
V

)2
(3.24)

GV
M(q2) =

1 + ξ

(1− q2

M2
V

)2
(3.25)

with a vector mass MV = 0.84 GeV. The axial vector form factor is given by:

FA(q2) =
FA(0)

(1− q2

M2
A

)2
(3.26)

with an axial vector mass MA = 1.0 GeV and FA(q2 = 0) = −1.23. A reasonable

approximation for all q2 is given by:

Fp(q
2) = 2M2

N

FA(q2)

m2
π − q2

(3.27)
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with the pion mass mπ = 0.14 GeV.

For NC reactions, we replace the charged current form factors with the neutral current

form factors. In the electroweak theory the charged current form factors are related to

the neutral current form factors as follows:

(F V
1 )NC(q2) =

1

2
F V

1 (q2)− 2 sin2 θWF
p
1 (q2) (3.28)

ξ(F V
2 )NC(q2) =

1

2
ξF V

2 (q2)− 2 sin2 θW (µp − 1)F p
2 (q2) (3.29)

FNC
A (q2) =

1

2
FA(q2) (3.30)

FNC
p (q2) =

2M2
NF

NC
A (q2)

(m2
π − q2)

, (3.31)

where

FN
1 (q2) =

GN
E (q2)− q2GN

M (q2)

4M2
N

1− q2

4M2
N

, µNF
N
2 (q2) =

GN
M(q2)−GN

E (q2)

1− q2

4M2
N

, (3.32)

GN
E (q2) =

GN
E (0)

(1− q2

M2
V

)2
, GN

M(q2) =
GN

M(0)

(1− q2

M2
V

)2
. (3.33)

At q2 = 0 the form factors are normalized by the following conditions:

Gp
E(0) = 1, Gn

E(0) = 0,

Gp,n
M (0) = µp,n, FNC

A (0) = −0.615.

After some standard but tedious algebra we arrive at the differential cross section:

dσ

d|q2| =
G2

F cos2 θc

8πE2
ν

[
(F V

1 )2 q
4 − 4M2

N(m2
l − q2)−m4

l

4M2
N

+(ξF V
2 )2 4M2

N (q4 −m4
l )− q4(m2

l − q2)

16M4
N

+ (FA)2 q
4 + 4M2

N(m2
l − q2)−m4

l

4M2
N

−(Fp)
2m

2
l q

2(−q2 +m2
l )

4M4
N

+ F V
1 ξF

V
2

2q4 + q2m2
l +m4

l

2M2
N

−FAFP
m2

l (−q2 +m2
l )

2M2
N

+ FA(F V
1 + ξF V

2 )q2 (s− u)
M2

N

+
(
(F V

1 )2 − (ξF V
2 )2q2

4M2
N

+ (FA)2
)(s− u)2

4M2
N

]
, (3.34)

with s− u = 4EνMN + q2 −m2
l . For the anti-neutrino nucleon reactions in QE channels

we replace the term FA(F V
1 + ξF V

2 ) by −FA(F V
1 + ξF V

2 ).
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3.2.3 Resonance Production

In the previous chapter we discussed in detail the neutral current differential cross section

for the production of resonances on various materials and included nuclear effects. In

this subsection we include in addition the ντ (ν̄τ )-nucleon interactions of charged current

channels, like:

ντ (ν̄τ ) + p→ τ−(τ+) + p+ π+(π−) (3.35)

ντ (ν̄τ ) + n→ τ−(τ+) + n + π+(π−) (3.36)

ντ (ν̄τ ) + n(p)→ τ−(τ+) + p(n) + π0, (3.37)

where mτ = 1.78 GeV and calculate the differential cross sections with respect to the pion

energy as well as the total cross sections. We present the results for various incoming

neutrino energies and include nuclear corrections for the different nuclei, using the same

kinematics as in chapter 2.

3.3 Nuclear Effects

As mentioned already the heavy nuclei of the targets bring in additional effects. We

discuss them separately for the various reactions, considering 26Fe56 as a typical target.

We investigate in this section nuclear effects for the DIS and QE reactions. In addition,

having already considered the charged and neutral current processes for the muon case in

chapter 2, we extend these studies here to the tau case.

3.3.1 Deep Inelastic Scattering

For the nuclear corrections in deep inelastic scattering we use two different sets of nuclear

parton distributions, the χ2-analysis of Ref. [27] as well as the EKS98 parameterization

[28, 29]. The EKS98 nuclear parton distributions are determined by a DGLAP evolution

of input distributions given at an initial scale Q2
0 = 2.25 GeV2 in the x range 10−6 ≤ x ≤ 1.

These input distributions have been fixed using the data from lepton-nucleus (lA) DIS

and Drell-Yan (DY) measurements from proton-nucleus (pA) collisions with conservation

of momentum and baryon number as constraints. Their nuclear modifications in different

regions of the variable x comprise:

• shadowing: a depletion at x <∼ 0.1,
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• anti-shadowing: an excess at 0.1 <∼ x <∼ 0.3,

• EMC effect: a depletion at 0.3 <∼ x <∼ 0.7,

• Fermi motion: an excess towards x→ 1 and beyond.

The first method is based on a χ2-analysis of data, which have been taken from deep

inelastic electron and muon scattering and provides nuclear structure functions at the ini-

tial scale Q2
0 = 1.0 GeV2 in the x range 10−9 ≤ x ≤ 1. The χ2-analysis does not contain a

charm distribution. Their results are quite sensitive on the Bjorken variable x and there is

a slight difference between the χ2-analysis from Ref. [27] and the EKS98 parameterization

[28, 29]. However, the difference occurs mainly in the sea quark distribution and is only

noticeable in the small x region.

3.3.2 Quasi-Elastic Scattering

Important nuclear effects for the quasi-elastic scattering arise from the Pauli principle,

rescattering and absorption of recoiling hadrons and from the Fermi motion. We use only

the Pauli principle since it is the most important nuclear effect and neglect the other two,

see Refs. [73–75] for a detailed discussion. We calculate the Pauli factor of the quasi-elastic

scattering according to Refs. [35, 76, 77]. We multiply the Pauli factor g = 1−N−1D with

the total cross section for QE where:

D =





Z for 2x < u− v
0.5A

(
1− 3x(u2+v2)

4
+ x3

3
− 3(u2−v2)2

32x

)
for u− v < 2x < u+ v

0 for 2x > u+ v,

(3.38)

where

x =
|q|
2kF

, u =
(2N

A

) 1
3

, v =
(2Z

A

) 1
3

. (3.39)

The Fermi momentum kF = 1.36 fm−1 is taken from Ref. [64]. N, Z, and A are neutron,

proton, and nucleon number, respectively. The three-momentum transfer |q| is defined

by |q| = q2

2MN

√
1− 4M2

N

q2 . For protons we just replace N by Z.
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3.4 Results

We present results for νµ and ντ induced reactions. All ντ charged current reactions show

an evident τ -lepton threshold with the cross sections becoming large and noticeable for

beam energies above 5− 6 GeV. The neutral current reactions do not show any threshold

but they are smaller than the νµ reactions by a factor of approximately ten.

The energy dependence is the second difference: The QE and RES total cross sections

reach constant asymptotic values at high energies, while the DIS cross section rises lin-

early with energy. For this reason we plot for DIS the ratios σ/Eν or σ/(G2
FmNEν/π).

Immediately above the threshold for ντ the DIS process dominates over the QE and RES,

while below Eν < 5 GeV the sum of QE and RES is approximately 50% of the total cross

section. We discuss next each of the reactions separately.

3.4.1 Deep Inelastic Scattering

In Fig. 3.3 we show the total cross sections for the reactions νµ(ν̄µ) +N → µ−(µ+) +X

with nuclear corrections using the EKS98 parameterization [28, 29] (solid line) and without

nuclear corrections (dashed line) as a function of neutrino energy. More precisely, we plot

the slopes vs energy. We see that the curves start with a constant slope and remain so up

to 350 GeV. We also include the experimental data from various groups [48, 78–89]. The

data are closer to the curves which include nuclear effects.

Fig. 3.4 shows the reaction ντ + N → τ− + X where the threshold dependence from

the mass of the τ -lepton is now evident. For comparison we included the νµ cross section.

The νµ and ντ induced reactions will merge into each other at an energy of 1 TeV, which

is unrealistic for LBL experiments. Such energetic neutrinos may be detectable in Antares

[90], Nestor [91], Amanda [92], and Baikal [93].

For comparison with other reactions we plot in Figs. 3.5 and 3.6 the slope of the νµ

and ντ CC cross sections for the sum of the three types of reactions. For the νµ CC case

(Fig. 3.5), it is clear that the QE and RES dominate up to Eν
<∼ 1.3 GeV. DIS is dominant

for Eν
>∼ 1.3 GeV and the total cross section rises linearly. Our curve and data agree very

well. For the ντ case (Fig. 3.6), we also note that at high energies DIS dominates. The

QE and RES give a noticeable contribution around 5 GeV where a kink in the slope is

visible.
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Figure 3.3: The cross section of DIS for νµ +N → µ− +X and ν̄µ +N → µ+ +X plotted
versus the incoming neutrino energy for an isoscalar target with the normalization of 1/Eν.
The solid and dashed curves represent the cross section of DIS with nuclear corrections of
EKS98 parameterization [28, 29] and without nuclear corrections. The data points have been
taken from ANL [48], BEBC-WBB [78], BNL7ft [79], CCFR90 [80], CCFR96 [81], CCFRR
[82], CDHSW [83], CHARM [84], CRS [85], GGM-PS [86], GGM-SPS [87], IHEP-ITEP [88],
SKAT [89].

In Fig. 3.7 we show ντ induced cross sections for charged and neutral currents. The

energy scale is now expanded to show clearly the threshold effect. Our results agree well

with those in Ref. [68]. We notice that the slope of the neutral current reactions remains

constant also for low energies, while the production of τ -leptons begins between 4−5 GeV

and their strength reaches large values above 8 GeV. The high energy values of charged

and neutral current reactions are comparable.

Figs. 3.8 and 3.9 show the slope of cross sections for an iron target. We included in

this case the nuclear corrections which turn out to be small (of order 5− 7%). The main

characteristic is the threshold dependence of the charged current reactions. Thus if the

experiments can measure neutral current reactions for low energies, Eν < 5 GeV, they

should observe a linear energy dependence of the events coming from νµ and ντ neutrinos,

because even after the oscillation νµ → ντ their contributions are equal. If, on the other

hand, the oscillation is νµ → νs then there should be a decrease of the cross section in the

far away detector, since the sterile neutrinos do not contribute. This decrease should be

a function of Eν and should be maximal when δm2L
4Eν
≈ π

2
.
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Figure 3.4: The cross section of DIS for ντ + N → τ− + X and νµ + N → µ− +X for an
isoscalar target plotted versus the incoming neutrino energy with the normalization of 1/Eν.
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Figure 3.5: All the types of νµ charged current cross sections for an isoscalar target plotted
as a function of neutrino energy with the normalization of 1/nucleon. The data points are
taken from [79].
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Figure 3.6: All the types of ντ charged current cross sections for an isoscalar target plotted
as a function of neutrino energy with the normalization of 1/Eν.
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Figure 3.7: The cross section of DIS for (a) ντ (ν̄τ )+N → τ−(τ+)+X and (b) ν(ν̄)+N →
ν(ν̄) +X plotted versus the incoming neutrino energy, normalized by G2

FmNEν/π.

26Fe56

nucl. corr.(eks98)
nucl. corr.(χ2-anal.)
no nucl. corr.

Eν(GeV)

σ D
IS

/(
G

F2 m
N

E
ν/

π)

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

26Fe56

nucl. corr.(eks98)
nucl. corr.(χ2-anal.)
no nucl. corr.

Eν(GeV)

σ D
IS

/(
G

F2 m
N

E
ν/

π)

0

1

2

3

4

5

6

0 5 10 15 20 25 30

Figure 3.8: The cross section of (a) ντ and (b) ν̄τ charged current reactions for DIS on
iron targets versus the incoming neutrino energy, normalized by G2

FmNEν/π. The solid,
dashed and dotted curves represent the cross section of DIS with nuclear corrections of EKS98
parameterization [28, 29] and χ2 analysis [27] and without nuclear correction.
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Figure 3.9: The same as in Fig. 3.8 for (a) ν and (b) ν̄ neutral current reactions.
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3.4.2 Quasi-Elastic Scattering

In Figs. 3.10–3.12 we present our results for QE scattering. Figs. 3.10 show cross sections

on free protons induced by νµ and ν̄µ’s. The cross sections reach a constant asymptotic

value at an energy of 2 GeV. We included also the Pauli factor whose effect is small.

The data are closer to the curves which include the Pauli factor. In Figs. 3.11 we show

the charged current cross section induced by ντ ’s. The threshold dependence is again

prominent and the cross sections have an energy dependence even at Eντ ≈ 10 GeV. The

Pauli factor effect is in this case small, bringing a decrease of about 10%. Finally, the

neutral current cross sections rise quickly to their asymptotic values (Figs. 3.12) which are

approximately 10% of the νµ CC cross section. Thus the threshold effects can distinguish

between νµ and ντ interactions. The neutral current events should not show a threshold

effect if the oscillation is νµ → ντ and there should be no τ -leptons if the oscillation is

νµ → νs.
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Figure 3.10: The cross section of QE for (a) νµ + n → µ− + p and (b) ν̄µ + p → µ+ + n
process plotted versus the incoming neutrino energy with and without Pauli factor. The data
points are taken from ANL [94], GGM [95] and Serpukhov [96].
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Figure 3.11: The cross section of QE for the (a) ντ + n→ τ− + p and (b) ν̄τ + p→ τ+ + n
process plotted versus the incoming neutrino energy with and without Pauli factor.
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Figure 3.12: The same as in Fig. 3.11 for the (a) ν + p → ν + p and (b) ν̄τ + p → ν̄ + p
process.
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3.4.3 Resonance Production

Resonance production induced by νµ neutrinos was studied in chapter 2. Here we extend

our analysis to the production of τ ’s and their associated threshold effects. Resonance

production provides an additional signature, because in this case there is also a pion in

the final state. For CC reactions the signal will be a lepton and a charged pion in the

final state, while the neutral currents will search for a single pion. The nuclear effects are

expected to be larger because the pions have a chance of rescattering within the nucleus

[30]. Fig. 3.13 (a) shows the various channels produced in the reactions

ντ +N → τ− +N + π+,0 (3.40)

and the corresponding reactions with anti-neutrinos are shown in Fig. 3.13 (b). The

threshold is again at Eν ≈ 5.6 GeV. The cross sections grow rapidly now, reaching their

asymptotic values at Eν ≈ 15 GeV. For a heavy target like iron the same features ap-

pear, but now there are nuclear effects like rescattering and charge-exchange, bringing a

substantial reduction: a factor of 2 for π+ (Fig. 3.14 (a)) and a change of 30 % for π0

(Fig. 3.14 (b)) in ντ scattering. As already mentioned in chapter 2, due to charge ex-

change effects in nuclei also a small fraction of π− is generated which we do not plot here.

Similarly there is a reduction by a factor ∼ 2 for π− in the reaction in ν̄τ scattering shown

in Fig. 3.15. Again curves for the subdominant π0 and π+ production are not shown.

Finally, we plot in Figs. 3.16–3.21 differential pion energy spectra for various targets.

Again, we consider the same cases, i.e. production of π±,0 in CC scattering of ντ and

ν̄τ as in Fig. 3.14 and the remarks made there apply here as well. The pion spectra are

significantly reduced by nuclear corrections reflecting the rescattering of the pions. In

some cases the reduction is a whole factor of 2. It is also interesting to note that the

reaction of the various channels is different than in the case of NC.
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Figure 3.13: The cross section of RES for (a) ντ +N → τ− +N + π+,0 and (b) ν̄τ +N →
τ+ +N + π−,0 plotted versus the incoming neutrino energy.
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Figure 3.14: Total cross sections (resonance contributions) in CC τ -neutrino scattering off
oxygen targets. Shown are in a) and b) cross sections for π+ and π0 production in ντ scattering.
The solid, dashed and dotted lines represent all nuclear corrections, including only the Pauli
production factor g and without any nuclear correction, respectively.
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Figure 3.15: The same as in Fig. 3.14 is shown in the cross sections for π− production in ν̄τ

scattering.
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Figure 3.16: Pion energy distributions (the dominant resonance contributions) in CC τ -
neutrino scattering off oxygen targets. Shown are in a) and b) pion energy distributions
for π+ and π0 production in ντ scattering. The solid, dashed and dotted lines represent re-
spectively the pion energy distributions including all nuclear corrections, including only the
Pauli production factor g and without any nuclear correction.
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Figure 3.17: The same as in Fig. 3.16 is plotted for π− production in ν̄τ scattering.
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Figure 3.18: The same as in Fig. 3.16 for an argon target.
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Figure 3.19: The same as in Fig. 3.17 for an argon target.



3.4 Results 79

26Fe56

π+ f
π+ i g
π+ i

Eπ(GeV)

d
σ

/d
E

π
 (

1
0

-3
8
c
m

2
/G

e
V

)

0

10

20

30

40

50

60

70

0.2 0.3 0.4 0.5 0.6 0.7 0.8

26Fe56

π0 f
π0 i g
π0 i

Eπ(GeV)
d
σ

/d
E

π
(1

0
-3

8
c
m

2
/G

e
V

)

0

2

4

6

8

10

12

14

16

18

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.20: The same as in Fig. 3.16 for an iron target.
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Figure 3.21: The same as in Fig. 3.17 for an iron target.
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3.5 Event Rates

We calculated the τ -lepton event rates of the total cross section (RES+QE+DIS), concen-

trating on the OPERA LBL experiment [21]. The number of observable ντ charged current

events, Nτ , using the CERN-NGS neutrino beam is given by the following equation:

Nτ = A

∫
φνµ(Eν)Posc(νµ → ντ )σ

CC
ντ

(Eν)Br(τ → lepton(l), hadron(h))ε(Eν)dEν, (3.41)

where φνµ is the muon neutrino flux at the Gran Sasso detector which we took from

[97] and σCC
ντ

is the charged current total cross section for the ντ from our theoretical

calculation. For the neutral current total cross section we replace σCC
ντ

by σNC
ν . The

neutrino flux is appropriately normalized so that A is the total number of active protons

plus neutrons in the target. It is referred to as the active target mass A and is given by

A = NA × 109 ×Md × Np × Ny, where NA is Avogadro’s number. We take the detector

mass Md = 1 kton, the number of years for data taking Ny = 4 and the number of protons

on target per year Np = 4.5 × 1019 pot/year. In the two flavor mixing scheme we took

the probability of νµ → ντ given by the following equation:

Posc(νµ → ντ ) = sin2 2θ sin2
(1.27δm2L

Eν

)
, (3.42)

with sin2 2θ = 1 and the distance L from CERN to Gran Sasso Laboratory is 730 km.

We considered the neutrino energy range as 1 GeV ≤ Eν ≤ 30 GeV and took δm2 =

10−3 − 10−2 eV2. We adopted the branching ratios Br(τ → lepton(l), hadron(h)) and the

detector efficiency ε of the ντ events from Ref. [98]. We did not consider background

because the number of such events is expected to be very small, as can be seen from [21].

3.5.1 Results

We present the number of events, Nτ , for charged currents (Tables 3.1 and 3.2) and for

neutral currents (Tables 3.3 and 3.4). In order to distinguish the various channels we

give events for DIS, separately, and also the sum of DIS+QE+RES. Table 3.1 shows the

number of charged current events for the oscillation parameters at two confidence levels

with δm2 ' 10−3− 5 · 10−3 eV2 and sin2 2θ ≥ 0.89 taken from a recent global analysis [9].

In the first column is the total number of events without nuclear corrections. The second

column shows events for DIS with nuclear corrections and the third one the total number
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Nτ Nτ (nucl.forDIS) Nτ (nucl.forDIS +RES +QE)

90%C.L. min 4.06 2.72 3.56

max 30.72 20.92 26.67

99%C.L. min 2.33 1.55 2.04

max 41.13 28.66 35.71

Table 3.1: The number of events Nτ at OPERA for the cross section for DIS and for the
total cross section (QE+RES+DIS) with and without nuclear corrections. The table is for
charged current channels with the 90% and 99% C.L. parameter set at the value δm2 '
10−3 − 5 · 10−3 eV2 and sin2 2θ ≥ 0.89 of [9].

δm2(eV 2) Nτ Nτ (nucl.forDIS) Nτ (nucl.forDIS +RES +QE)

1.5 ×10−3 2.69 1.8 2.36

3.0 ×10−3 11.34 7.62 9.87

3.5 ×10−3 15.57 10.49 13.53

4.5 ×10−3 25.80 17.51 22.39

5.0 ×10−3 31.72 21.60 27.53

Table 3.2: The number of events Nτ at OPERA for the cross section for DIS and for the
total cross section (QE+RES+DIS) with and without nuclear corrections. These are charged
current channels with sin2 2θ = 1 and various δm2.

of events with nuclear corrections. Table 3.2 shows charged currents events as a function

of δm2. The various columns include events classified in the same way as in Table 3.1.

In Tables 3.3 and 3.4 we present the neutral currents events. Table 3.3 includes the

number of events again for two confidence levels and the various columns have the same

meaning as above. Finally, Table 3.4 shows the number of events as a function of δm2. The

event numbers for charged current channels in Refs. [98, 99] are in reasonable agreement

with our results. For the total number of events in QE+RES+DIS the reduction from

nuclear corrections is 10− 15%, mainly because nuclear corrections are significant for the

resonance channels. Nuclear effects reduce RES and QE processes, but remain negligible

for DIS processes. The contribution of QE and RES production to τ -appearance events,

in charged currents, is approximately 20− 24% and, in neutral currents, about 13− 15%.
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Nτ Nτ (nucl.forDIS) Nτ (nucl.forDIS +RES +QE)

90%C.L. min 6.89 5.26 6.15

max 42.34 33.56 37.91

99%C.L. min 4.10 3.11 3.66

max 55.21 43.98 49.46

Table 3.3: The number of events Nτ at OPERA for the cross section for DIS and for the total
cross section (QE+RES+DIS) with and without nuclear corrections. These are neutral current
channels with the 90% and 99% C.L parameter set at the value δm2 ' 10−3 − 5 · 10−3 eV2

and sin2 2θ ≥ 0.89 of [9].

δm2(eV 2) Nτ Nτ (nucl.forDIS) Nτ (nucl.forDIS +RES +QE)

1.5 ×10−3 4.72 3.58 4.21

3.0 ×10−3 17.45 13.54 15.59

3.5 ×10−3 23.11 18.05 20.66

4.5 ×10−3 36.26 28.63 32.45

5.0 ×10−3 43.66 34.62 39.1

Table 3.4: The number of events Nτ at OPERA for the cross section for DIS and for the
total cross section (QE+RES+DIS) with and without nuclear corrections. These are neutral
current channels with sin2 2θ = 1 and various δm2.

3.6 Conclusions

Neutrino oscillation experiments face the problem that the number of events is very small.

This limitation is more severe for τ -appearance experiments, which motivated to design

experiments with heavy nuclei as targets. The number of events will now increase sub-

stantially, given by (A−Z)σn +Zσp with σp,n being the cross sections on free protons and

neutrons, respectively. This substantial increase is slightly complicated by nuclear target

effects. In this paper we calculated several cross sections and showed how the nuclear

effects can be understood and compensated for.

The role of the various reactions is distinct. For energies Eν < 2.5 GeV the µ− -

production and neutral current reactions receive comparable contributions from three

types of reactions: quasi-elastic, resonance production and deep inelastic scattering. The

analysis of the data must include all three of them and try to identify unique signatures:
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• In quasi-elastic scattering there is a single nucleon in the final state, which is unique

but hard to detect.

• In resonance production there is a nucleon and a pion, whose decay gives a unique

signature. The produced pions may be further identified and confirmed by their

specific energy spectra as plotted in Figs. 3.16–3.21.

• For Eν > 2.5 GeV deep inelastic scattering dominates the νµ reactions. For com-

parison, the τ -lepton events have a characteristic threshold dependence.

There are no τ -leptons produced for Eν < 5.6 GeV. For the ντ beams quasi-elastic and

resonance production are important for energies Eν up to 6.5 GeV to 7.0 GeV. Above

this energy (see Fig. 3.6) the deep inelastic reaction dominates.

In the resonance region our results of the nuclear effects for neutral currents were

presented in chapter 2. In this section we extended the calculations to τ -appearance

experiments and we can summarize them as follows:

• Nuclear effects are very small for deep inelastic reactions and can be neglected.

• For quasi-elastic scattering the main effect is the Pauli suppression factor, which

reduces the rates by 10–12 % (See Figs. 3.11 and 3.12).

• Nuclear corrections are substantial in single-pion production at the resonance region.

They vary from channel to channel and for this reason we produced Figs. 3.13–3.15

showing the production cross sections and Figs. 3.16–3.21 showing the pion spectra.

A striking feature in all of the cross sections is the τ -lepton threshold.

We also made an extensive search of earlier publications trying to find data for possible

experimental comparisons. In spite of our efforts we could not find data for a meaningful

test of nuclear corrections. Thus it is advisable for the nearby detectors of the LBL

experiments to collect data on heavy nuclei and test the models [30, 38]. The required

comparisons are evident from this thesis and the article [30].





Chapter 4

Summary

The future long base line experiments will look for neutrino oscillations and are con-

structed with nuclei targets. The neutrino energies will be typically at most 10 GeV.

Therefore it is important to study neutrino induced, both, charged and neutral current

cross sections relevant for neutrino oscillation experiments including nuclear modifications.

In Part I of this thesis we have presented all relevant formulas and cross sections for

the scattering of muon- and tau neutrinos on free nucleons, taking into account the τ -

lepton threshold effects. There are three types of reactions contributing to these cross

sections: deep inelastic scattering, quasi-elastic scattering and single pion production in

the resonance region. Furthermore, using these results for free nucleon targets, we have

evaluated the nuclear effects occurring in heavy nuclei targets.

The role of deep inelastic scattering, quasi-elastic scattering and resonance production

is distinguished by the neutrino energy range. In the low neutrino energy range (Eν < 2.5

GeV) all three types of the reactions have comparable contributions, while deep inelastic

scattering dominates in the high neutrino energy range. Due to threshold effects, tau

leptons are produced above the neutrino energy Eν > 5.6 GeV. Still the contributions of

quasi-elastic scattering and resonance production are important for Eν up to 7.0 GeV.

The nuclear effects are sizable and large in the resonance production reactions and

moderate slightly for the quasi-elastic scattering, while they are small in deep inelastic

scattering.

Finally, we have calculated the τ event rates for the OPERA long base line experiment

with and without any nuclear corrections.
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Our results will be useful studying single pion production and for investigating neutrino

oscillations in future experiments.



Part II

The Nonperturbative Dispersive
Sector in Strong (Quasi-)Abelian

Fields





Chapter 5

Introduction and Survey

It has been well known for some time that the effects of the fermionic quantum fluctuations

in space–time uniform Abelian gauge fields can be effectively integrated out, resulting in

a one–loop effective action [100–106]. The results have been formulated also for the

covariant homogeneous, thus quasi–Abelian, fields of the SU(2) gauge group [107], and

for specific nonhomogeneous magnetic field configurations [108]. All the results can be

extended to the case of the quantum fluctuations of scalar particles. The problems arising

when genuinely non–Abelian fields with translationally invariant gauge–invariants are

present [e.g., in SU(3)c] were discussed, e.g., in Refs. [109, 110].

The quantum fluctuations of the strong gauge field itself (photons, or gluons) mod-

ify additionally those Lagrangian densities induced by the fermionic quantum fluctua-

tions. Such two-loop effects have been successfully derived by Ritus [111] for homogeneous

Abelian fields, and further discussed by others [112, 113]. In QED, such two–loop effects

in the coupling constant change the one–loop result by at most a few per cent. We will

omit them in our investigation.

There are basically two classes of phenomena associated with the presence of intense

gauge fields.

Firstly, they can produce pairs of particles. For the case of strong Abelian homoge-

neous electric fields this was shown by Sauter [114] by investigating solutions of the Dirac

equation in the corresponding potential 1, and by Schwinger [102] by using methods of

action integral, Green’s functions and proper time. Differential probabilities for pair cre-

1A related problem was first considered even earlier by Klein [115] who investigated solutions of the
Dirac equation with a high vertical barrier potential (Klein’s paradox).
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ation were investigated in Refs. [116] and [117]. In the latter reference, the quasi–Abelian

model was applied to an investigation of the quark pair production in chromoelectric flux

tubes. Experimental evidence related with the pair production in a strong QED (laser)

field was reported in Ref. [118].

The pair production has its origin in the imaginary (absorptive) part of the effective

Lagrangian induced by the fermionic quantum fluctuations in the strong field. That part

is entirely nonperturbative in nature, because the production effects are ∼exp(−const./g)

and thus cannot be expanded in positive powers of the field–to–fermion coupling constant

g.

On the other hand, the other class of phenomena is associated with the real (dispersive)

part of the induced effective Lagrangian. In QED, this class includes the following phe-

nomena that affect a low energy (ω � me) photon wave entering the region of the strong

background field: photon splitting, change of the photon speed, and birefringence. Stud-

ies on the theoretical aspects of these phenomena can be found in Refs. [119–123]. The

experimental aspects of birefringence in strong magnetic fields are discussed in [124, 125].

The dispersive part of the induced action leads in principle to those corrections of the

classical Maxwell equations which originate from the (fermionic) quantum fluctuations.

Our investigation in the second part of this thesis, while dealing with the dispersive

part of the induced action, is somewhat different from these works. We concentrate on

the concept of separating the nonperturbative from the perturbative contributions in the

induced dispersive action when the product of the (quasi)electric field E and the coupling

constant g is large: gE/m2 >∼ 1, where m is the fermion mass. Subsequently, we nu-

merically investigate the two contributions. Afterwards, we use the discussed quantities

as a “laboratory” for testing and investigating the efficiency of methods of quasianalytic

continuation. The latter methods, involving the (modified) Borel-Padé approximants, al-

low us to obtain approximately the nonperturbative contributions from the approximate

knowledge of the perturbative contributions and by employing the Cauchy principal value

prescription in the inverse Borel transformation (Laplace–Borel integral). These consider-

ations can give us insights into the problems of extraction of nonperturbative physics from

the knowledge of perturbative physics in gauge theories, in particular in various versions

of QCD.

Alternatively, the Weniger (delta sequence) method has been proposed by the authors

of Ref. [126] for the resummation of truncated perturbation series (TPS) in quantum field
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theories. They presented numerical evidence suggesting that this method works better

than the Padé approximants when we resum a function with singularities in the Borel

plane but not on the positive axis. We compare the efficiency of the Borel-Padé method

with the Borel-Weniger method for resummation of TPS in some physically significant

scenarios. The scenarios we are referring to are those when the function, which we want to

find through a resummation, is known to have a certain singularity structure in the Borel

plane. If there are singularities on the positive axis of the Borel plane, then we implicitly

assume that in such cases we either know the correct prescription for integration in the

Laplace-Borel integral, or we simply adhere to a certain adopted prescription.

The outline of Part II will be as follows.

Chapter 6 is constructed by:

• In section 6.1 we present the derivation of the Euler-Heisenberg Lagrangian density

in a homogeneous strong (quasi) Abelian field using the path-integral formalism.

• In section 6.2, we argue how to perform the mentioned separation into the pertur-

bative and nonperturbative contributions for arbitrary strength of the field in the

one-loop case. After identifying the two contributions, we investigate numerically

their values for various values of the field parameter ã ∼ gE/m2.

• In section 6.3 we then carry out an analogous analysis for the induced energy density,

that is in principle observable.

• In section 6.4 we then numerically investigate, for the induced Lagrangian and en-

ergy densities, (quasi)analytic continuation from the perturbative into the nonper-

turbative sectors, employing the method of Borel–Padé for the induced Lagrangian

and a modified Borel–Padé for the induced energy density. We encounter integra-

tions over renormalon poles, whose origin is nonperturbative, and we show how to

carry it out.

• In section 6.5 we illustrate the efficiency of the Borel-Padé and Borel-Weniger

method on the Euler-Heisenberg Lagrangian density and the Bjorken polarized sum

rule, and compare some numerical results for both methods.

Chapter 7 summarizes our results and conclusions.





Chapter 6

The Nonperturbative Dispersive
Sector in Strong (Quasi-)Abelian
Fields

6.1 Derivation of the Euler-Heisenberg Lagrangian

Density

In this section we calculate the Euler-Heisenberg Lagrangian density in an arbitrarily

strong homogeneous (quasi-) Abelian field according to [106] and [127] involving the path-

integral method to the probability density and considering one-dimensional harmonic

oscillators to evaluate the traces.

6.1.1 Probability Density

The probability density per unit time for producing a fermion-antifermion pair (w = dP
dV dt

)

is as follows:

w ≡ dP

dx
= − 1

Ω
ln |S0(A)|2 = − 2

Ω
Re lnS0(A), (6.1)

where x = (x0, ~x), Ω is the large four-dimensional space-time volume in the presence of

the field, and S0(A) is the vacuum to vacuum amplitude in the presence of an external

present electromagnetic field A. S0(A) can be conveniently described using path integrals

in the following way:

S0(A) ≡ 〈0in|Ŝ(A)|0in〉 = 〈0out|0in〉(A) =
Z(A)

Z(0)
, (6.2)
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where

Z(A) =

∫
DΨ̄DΨei

�
d4x[iΨ̄(∂/+im+igA/)Ψ]. (6.3)

with the Grassmann variable Ψ, the field–to–fermion coupling parameter g (in electro-

magnetism it is the positron charge e0), and the mass of the (lightest) fermion m.

Specifically, we take the field A as follows:

Aµ = −1

2
Fµνx

ν, (6.4)

where Fµν is the antisymmetric tensor for the homogeneous electromagnetic field:

F µν = ∂µAν − ∂νAµ =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0



. (6.5)

For our purpose we take the electric field ~E = (0,0,E) (with E > 0), and the magnetic

field ~B = (0, 0,B‖) without loss of the generality. Namely, there always exists a Lorentz

boost such that in the boosted frame the electric and magnetic fields are aligned. The

probability density (6.1), and in general (1/Ω) lnS0(A), are invariant under the boost.

With help of Eq. (6.4) and a gauge transformation G = exp[g(−Ex3x0 + B‖x2x1)/4] the

field A is obtained as:

Aµ = (0, 0,B‖x1,−Ex0) . (6.6)

Using Eqs. (6.2-6.3), the probability density w in Eq. (6.1) can be expressed in the

following way:

w = − 1

Ω
Re
{

Tr ln
[
(P̂/− gA/)2 − (m− iε)2

]
− Tr ln

[
P̂/

2 − (m− iε)2
]}

, (6.7)

where Tr denotes tracing over all relevant degrees of freedom. Using the identity

(P̂/− gA/)2 = (P̂ − gA)2 − g

2
σµνF

µν , (6.8)

where σµν = i
2
[γµ, γν] and the Schwinger integral representation for logarithms in terms

of proper time s, we obtain from (6.7):

w = Re

∫ ∞

0

ds

s
exp

[
−is

(
m2 − iε

)]
{
Tr
〈
x
∣∣∣ exp

[
is
(
P̂ − gA(X̂)

)2
]
×
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exp [−is (g/2)σµνF
µν]
∣∣∣x
〉
−Tr

〈
x
∣∣∣exp

[
isP̂ 2

]∣∣∣ x
〉}

. (6.9)

In order to obtain this result we canceled
∫

d4x with the Ω in the denominator because

w is independent of x. We have written (m− iε)2 in Eq. (6.7) in the equivalent form

(m2−iε), where the infinitesimal ε=+0 ensures convergence of the integral. Due to the

homogeneity of the gauge field A, we can calculate Eq. (6.9) explicitly. In order to solve

Eq. (6.9) we start to derive the trace term Tr e[−is(g/2)σµνF µν ]. The explicit calculation of

(σµνF
µν)2, using the anticommutator relation 1

2
{σαβ, σµν} = gαµgβν − gανgβµ − iεαβµνγ5

from [105], can be further evaluated:

(σµνF
µν)2 = 4

(
Eσ30 + B‖σ21

)2

= 4
[(
−~E2 + ~B2

)
− 2iγ5

(
~E · ~B

)]
. (6.10)

It is convenient to use the following Lorentz-invariant notation:

F =
1

4
F µνFµν =

1

2

(
~B2 − ~E2

)
, (6.11)

G = −1

4
F µνF̃µν =

(
~E · ~B

)
, (6.12)

where F̃µν ≡ 1
2
εµναβF

αβ. We expand Tr exp [−is(g/2)σµνF
µν ] using relation in (6.10) and

tracelessness of σµν , γ5 and of γ5σµν :

Tr exp [−is(g/2)σµνF
µν] = 4

{
1− g221s2

2!
F +

g422s4

4!

(
F2 − G2

)
+ . . .

+ (−1)n g
2n2ns2n

(2n)!
[Fn −

(
n

2

)
Fn−2G2 + . . .

+(−1)k

(
n

2k

)
Fn−2kG2k + . . .] + . . .

}

= 2

{
(1 + 1)− g221s2

2!
[(F − iG) + (F + iG)] (6.13)

+
g422s4

4!

[
(F − iG)2 + (F + iG)2]+ . . .

+ (−1)n g
2n
s 2ns2n

(2n)!
[(F − iG)n + (F + iG)n] + . . .

}

= 2
{

cos
[
gs
√

2(F − iG)
]

+ cos
[
gs
√

2(F + iG)
]}

.
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We now set 2(F± iG) = (b± ia)2, where the parameters a and b are Lorentz–invariant

expressions characterizing the (quasi-)electric and the (quasi-)magnetic fields ~E and ~B,

respectively:

a =

[
+~E2 − ~B2 +

√(
~E2 − ~B2

)2

+ 4
(
~E · ~B

)2
]1/2

/
√

2 , (6.14)

b =

[
−~E2 + ~B2 +

√(
~E2 − ~B2

)2

+ 4
(
~E · ~B

)2
]1/2

/
√

2 . (6.15)

Therefore, we can rewrite (6.14) as

Tr exp [−is(g/2)σµνF
µν] = 2 {cos [(b− ia) gs] + cos [(b+ ia) gs]}

= 4 cosh (ags) cos (bgs) . (6.16)

We note that ab= |~E· ~B|, and a2−b2 = ~E2− ~B2. Further, a→|~E| when | ~B|→0, and b→| ~B|
when |~E|→0. In the Lorentz frame where ~B‖~E, we simply have: a= |~E| and b= | ~B|.

The other term on the right-hand side in Eq. (6.9) can be obtained using a unitary

transformation Û into a sum of two harmonic oscillator Hamiltonian densities:

Û
[
P̂ − gA(X)

]2
Û † =

[
P̂ 0P̂ 0 − g2a2X̂0X̂0

]
−
[
P̂ 1P̂ 1 + g2b2X̂1X̂1

]

= 2H(1) − 2H(2), (6.17)

where H(1) ≡
[

1
2
(P̂ 0P̂ 0 − g2a2X̂0X̂0)

]
and H(2) ≡

[
1
2
(P̂ 1P̂ 1 + g2b2X̂1X̂1)

]
.

The unitary operator Û is constructed in appendix F. Inserting (6.17) and (6.16) into

expression (6.9), and using unitarity of Û and completeness of the four-momentum states

|q〉, we obtain:

w = 4 Re

∫ ∞

0

ds

s
exp

[
−is

(
m2 − iε

)]
{

cosh (ags) cos (bgs)×
∫ ∫

d4qd4q′
〈
x
∣∣∣Û †
∣∣∣ q
〉〈

q2
∣∣∣q′2
〉〈

q3
∣∣∣q′3
〉 〈
q0
∣∣exp

[
2isH(1)

]∣∣ q′0
〉
×

〈
q1
∣∣exp

[
−2isH(2)

]∣∣ q′1
〉 〈
q′
∣∣∣Û
∣∣∣x
〉
− . . .

}
, (6.18)

where the dots stand for the same expression but with no field (a,b 7→ 0). We note that

the integrations over q′2 and q′3 in (6.18) are trivial because 〈qj|q′j〉=2πδ(qj−q′j). Using



6.1 Derivation of the Euler-Heisenberg Lagrangian Density 97

the relation 〈x|q〉 = exp[−ix · q]/(2π)2, the matrix elements are evaluated as follows:
〈
x
∣∣∣Û †
∣∣∣q
〉

=
1

(2π)2
exp(−iq · x) exp(− i

gE
q0q3) exp(− i

gB‖
q1q2) (6.19)

and for
〈
q′|Û |x

〉
we replace q0 7→ q

′0 and q1 7→ q
′1 in the complex conjugate of the right-

handed side of Eq. (6.19). It is subsequently shown that the integrations over q2, q3, q′0

and q′1 can be explicitly performed, leading to:

w =
1

4π2
Re

∫ ∞

0

ds

s
exp

[
−is

(
m2 − iε

)]
{

4g2a b cosh (ags) cos (bgs)×

∫
dq0
〈
q0
∣∣exp

[
2isH(1)

]∣∣ q0
〉 ∫

dq1
〈
q1
∣∣exp

[
−2isH(2)

]∣∣ q1
〉
− . . .

}
, (6.20)

where dots denote the analogous term with zero fields. The expressions in the above

parentheses in the exponents are in fact Hamiltonian densities for harmonic oscillators

with mass parameterm=1 and with frequency parameters ω=iga and ω=gb, respectively.

Integration over dq0 (dq1) amounts to tracing over configuration space for exponents of

these oscillators. Since the result of tracing is independent of the chosen basis, it is

convenient to choose for the basis the known eigenstates of these oscillators. This leads

to a discrete geometric sum, as shown explicitly in appendix G, and results in:

w =
1

16π2
Re

∫ ∞−iε′

−iε′
dz

1

i z
exp

[
−iz

(
m2 − iε

)]
×

{[
4g2a b cosh (agz) cos (bgz)

sinh (agz) sin (bgz)

]
− 4

z2

}
. (6.21)

The factor 4 in the last (zero-field) term in (6.21) arises from tracing over spinor degrees of

freedom. In the above expression, when compared with (6.20), we moved the integration

slightly (infinitesimally) below the positive real axis (s 7→ z = s− iε′), in order to ensure

that the geometric sum originating from tracing over dq1 (appendix G) converges. At

this point, it is convenient to rewrite the above integral as an integral along the entire

real axis. Namely, if we denote the integrand as Iε(z), it is straightforward to show that

Iε(−z∗) = [I−ε(z)]
∗. Therefore, we can replace ReIε(z) by [Iε(z)+ I−ε(−z∗)]/2. If we

perform in addition the limit ε→0, we obtain the final result:

w =
1

8π2

∫ +∞−iε′

−∞−iε′

dz

i z
exp

(
−izm2

){[g2a b cosh (agz) cos (bgz)

sinh (agz) sin (bgz)

]
− 1

z2

}
. (6.22)

It should be noted that taking the limit ε→0 in the mass terms m2±iε appearing in the

exponent is legitimate only if the resulting total integral above is convergent.
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6.2 Induced Dispersive Lagrangian Density

The Euler-Heisenberg Lagrangian density δL, which is the part induced by the quantum

fluctuations of the fermions in an arbitrarily strong (quasi-)Abelian homogeneous field, is

obtained from the vacuum–to–vacuum amplitude S0(A)of Eq. (6.2) by the simple relation

δL = (−i/Ω) ln S0(A). As mentioned before, this expression is Lorentz-invariant as well.

Comparison with Eq. (6.1) then tell us that we obtain δL from the probability density w,

e.g., from Eq. (6.21), by removing ’Re’ and by multiplying then by (i/2). This gives us:

δL =
1

8π2

∫ ∞−iε

−iε

ds

s
exp[−is(m2−iε′)]×

[
g2ab coth(ags) cot(bgs)− g2

3
(a2−b2)− 1/s2

]
. (6.23)

Note that the term ∝ (a2 − b2) in (6.23) had to be added in order to cure a divergence.

It can be shown to lead to field strength renormalization.

As denoted, the integration in (6.23) is performed along the positive real axis in-

finitesimally below it, avoiding in this way the poles on the real axis appearing due to the

(Lorentz–invariant version of the) magnetic field b. If the path in (6.23) were above the

real axis, then we would obtain a nonzero imaginary part of the Lagrangian density even

in the pure magnetic field case. This would imply particle creation in this case, which is

physically unacceptable. The path in (6.23) reproduces for the case of the pure magnetic

field the known real density, and for the case of the pure electric field the known complex

density [102]. The path in (6.23) is suggested also from the extension of the formal ap-

proach of Ref. [106] to the general ab 6=0 case. Namely, when ab 6=0, we need to evaluate

in this approach two traces:

• One trace originating from a 6=0 and discussed in [106] [their Eq. (4-116)].

• The other trace of the evolution operator of an harmonic oscillator, originating from

b 6=0 [127], of the form
∑∞

n=0 exp[−2isgb(n+1/2)], s > 0.

The latter trace becomes convergent after regularization s 7→ s−iε (ε→+0), i.e., the path

in (6.23).

Performing a contour integration in the fourth quadrant of the complex proper–time
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Figure 6.1: The contour integration, in the complex s–plane, needed to rewrite (6.23) in the
form (6.24). The location of the poles is denoted explicitly.

s–plane (cf. Fig. 6.1), expression (6.23) can be rewritten as

δL = − 1

8π2

∫ ∞

+0

dz

(z+iε)
e−zm2 ×

[
g2ab cot (ag(z+iε)) coth (bg(z+iε)) +

g2

3
(a2−b2)− 1

(z+iε)2

]
, (6.24)

where s = −iz+ ε now runs along the negative imaginary axis (and ε→ +0). As seen

from Fig. 6.1, the result (6.24) is actually independent of the precise path of variable s in

(6.23), as long as s in (6.23) runs close to the positive axis towards s = +∞ and passes

each positive pole on the right, i.e. precisely the class of the paths satisfying the physical

condition that pure magnetic fields can not produce particles. In (6.23) and (6.24), the

familiar [100] counterterm ∝(a2−b2) [=(E2−B2)] is included which makes the integral finite.

This divergent term leads to the renormalization of the field in the leading Lagrangian

density L(0) = (E2−B2)/2. We now divide the integration region into intervals for the

integration variable agz: i0 = [0, π/2], i1 = [π/2, 3π/2], . . ., in = [(n−1/2)π, (n+1/2)π],

. . .. Each interval, except i0, contains in its middle one pole of the integrand. The
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corresponding series for the real (dispersive) part of the Lagrangian density is:

ReδL̃ = ReδL̃0 +

∞∑

n=1

ReδL̃n , (6.25)

ReδL̃0 = −
∫ π/2

0

dw

w
exp

(
−w
ã

) [
p cot(w) coth(pw) +

1

3
(1−p2)− 1

w2

]
, (6.26)

ReδL̃n = − exp
(
−nπ
ã

){∫ π/2

−π/2

dw exp
(
−w
ã

)[p cot(w) coth(p(w+nπ))

(w+nπ)

− p
w

coth(pnπ)

nπ
+

(1−p2)

3(w+nπ)
− 1

(w+nπ)3

]

+Re

∫ π/2

−π/2

dw exp
(
−w
ã

) 1

(w+iε′)

p coth(pnπ)

nπ

}
, (n≥1) . (6.27)

Here, ε′≡εga→ +0, and we used the notation

ã ≡ ga

m2
, b̃ ≡ gb

m2
, p ≡ b

a
≡ b̃

ã
, δL̃ ≡ δL/

(
m4ã2

8π2

)
, (6.28)

and we introduced the dimensionless integration variable w ≡ agz when agz is in the

interval i0, and w≡agz−nπ when agz is in the interval in (n≥1). In (6.27), we separated

the integrand into a part that is entirely nonsingular in the integration region, and a part

that is singular but gives a finite value of integration since the Cauchy principal (P) value

has to be taken. From a formal point of view, we note that δL̃0 doesn’t “feel” the poles

of the integrand as depicted in Fig. 6.1, while δL̃n (n≥1) “feels” the pole s=−inπ/(ag)

via the principal value part in (6.27) that is proportional to:

Re

∫ π/2

−π/2

dw
exp(−w/ã)

(w+iε′)
≡ P

∫ π/2

−π/2

dw

w
exp(−w/ã)

= −E1

( π
2ã

)
−Ei

( π
2ã

)

=

{
−2 [x+x3/(3! 3)+x5/(5! 5)+· · · ] if ã� 1

−(ex/x) [1+(1/x)+· · · ] if ã� 1

}
(6.29)

with x = π/(2ã). We note that the dispersive part of the induced Lagrangian density

as normalized here (6.25)–(6.28) depends only on two dimensionless parameters – on

parameter p ≡ b/a which characterizes in a Lorentz–invariant manner the ratio of the

strengths of the (quasi-)electric and (quasi-)magnetic fields [cf. (6.14)–(6.15)], and on

parameter ã≡(ga)/m2 which characterizes the combined strengths of the (quasi-)electric
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field parameter a, the field–to–fermion coupling g, and the squared fermion mass m2. In

the perturbative weak–field limit, ã is small. In this case, when reintroducing z≡w/(ag)
into (6.26) we get:

ReδL̃0 = − 1

8π2

∫ π/(2ag)

0

dz

z
× exp(−zm2)×

[
g2ab cot(agz) coth(bgz) +

g2

3
(a2−b2)− 1

z2

]
. (6.30)

One can see that the real part of expression (6.24) is approximately reproduced, since

formally π/(2ag) → ∞. In this case, the conventional perturbative expansion of the

dispersive Lagrangian density in powers of g2 (i.e., inverse powers of x) can be performed

(cf. [100], [102]):

δL̃pert.(ã; p) =
(
c11! ã2 + c33! ã4 + c55! ã6 + · · ·

)
, (6.31)

where the expansion coefficients are:

c1 =
1

45

[
(1−p2)2 + 7p2

]
,

c3 =
1

945

[
2(1−p2)3 + 13p2(1−p2)

]
,

c5 =
1

14175

[
3(1−p2)4 + 22p2(1−p2)2 + 19p4

]
, etc. (6.32)

In the case of pure magnetic field (p.m.f), the corresponding expressions are simpler:

δL̃(b̃)ã=0 ≡
8π2δLa=0

m4b̃2

=

∫ ∞

0

dz exp

(
−z
b̃

)
(−1)

z

[
coth(z)

z
− 1

3
− 1

z2

]
, (6.33)

and the conventional perturbative expansion is:

δL̃pert.(b̃)ã=0 =
[
c̃11! b̃2 + c̃33! b̃4 + · · ·

]
(6.34)

with coefficients

c̃1 =
1

45
, c̃3 =− 2

945
, . . . .

Expression (6.31) can be derived alternatively by purely perturbative methods – the

terms ∼ã2n can be obtained by calculating the one–fermion–loop Feynman diagram with

2n photon external legs of zero momenta. It is a divergent asymptotic series and gives
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the usual perturbative corrections to the Maxwell equations [128]. On the other hand,

the formal small–ã expansion of ReδL̃0 of (6.26) [or equivalently: (6.30)] reproduces the

terms (6.31) and yields in addition the terms ∼ã exp(−const./ã). The latter terms may

in principle be dangerous for the interpretation of ReδL̃0 of (6.26) as the perturbative

part of the induced density, since they are nonanalytic and could thus signal physical

nonperturbative effects. However, in the appendix H we demonstrate that these terms

are only an artifact of the abruptness of the infrared (IR) proper–time cutoff z≤ 1/Λ2
IR

(Λ2
IR =(2/π)m2ã∼m2ã). 1 These terms are therefore not of a physical nonperturbative

origin. In the appendix H we further show that ReδL̃0 of (6.26) should be reinterpreted

as the limit with an infinitesimally softened IR cutoff, the latter limit being numerically

the same but having no nonanalytic terms in the small–ã expansion. That expansion is

then identical to (6.31).

On the other hand, the densities ReδL̃n (n≥1) of (6.27) represent the nonperturbative

part of the induced dispersive density (6.25), for two reasons:

• The integration over the proper–time z runs here in the vicinity (in fact, across)

the n’th pole of the integrand of (6.24). The poles of the integrand are in the

nonperturbative regions. We recall that these poles are also the source of the nonzero

imaginary (absorptive) part of the density leading to the fermion–antifermion pair

creation, a clearly nonperturbative phenomenon.

• The densities ReδL̃n (n≥1), independent of the pole structure of their integrands,

become appreciable only in the strong–field (large–ã) regime while in the weak–field

(small–ã) region they decrease faster than any power of ã, i.e., they do not contribute

to the perturbative series (6.31). Each of the two integrals in the curly brackets of

(6.27) behaves as ∼ ã exp[π/(2ã)] when ã→+0, and thus the entire ReδL̃n behaves

as ∼ ã exp[−(n−1/2)π/ã] (n≥1) in this limit. 2

Therefore, the nonperturbative effects contained in ReδL̃n (n≥ 1) are of two types,

one type being characterized by the poles of the integrand, and the other type by what we

1The energy cutoff ΛIR∼m
√

ã is low in the case when the perturbative effects dominate (i.e., at ã<1),
but is higher when the nonperturbative effects are significant (at ã>1). The nonperturbative effects here
reside in the infrared (IR) sector of (fermionic) momenta q <ΛIR, and the effective contributing size of
this sector gets larger when ã grows.

2If we do not take the Cauchy principal value in (6.27), but some other prescription (which in the case
at hand would be wrong), ReδL̃n would behave as ∼exp[−nπ/ã].
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may call strong–field effects. From the above discussion, it further follows that we have

some freedom in choosing the IR proper–time cutoff: z ≤ 1/Λ2
IR is such that Λ2

IR ∼m2ã

and that all the possible poles must lie at z’s above the cutoff 1/Λ2
IR. We took Λ2

IR =κm2ã

with κ=2/π, but any κ satisfying 1/π<κ∼1 would be acceptable as well.

From a somewhat different perspective, we can imagine transforming a truncated

perturbation expansion for ReδL̃pert./ã of (6.31) (with several terms) via the Borel–Padé

approximation. The resulting integrand approximately reproduces the integrand of (6.24),

including the poles structure. Thus the integration over the n’th pole, contained in ReδL̃n

of (6.27), can be interpreted as the n’th renormalon in the density, i.e., a nonperturbative

quantity. We will return to this point in sec. 6.4.4.

Thus, the densities (6.26) and (6.27) result in the fermion–induced perturbative and

nonperturbative contributions, respectively, to the Maxwell equations. The fields were

taken, strictly speaking, to be homogeneous in space and time. In practical terms, this

means that they are not allowed to change significantly on the distance and time scales

of the Compton wavelength of the fermion 1/m. For electro–magnetic fields, m is the

electron mass, and 1/m is about 4 · 10−13 m, and 1.3 · 10−21 s.

An indication of the relative size of the perturbative and nonperturbative fermion–

induced corrections to the Maxwell equations can be obtained by comparing the cor-

responding contributions to the induced Lagrangian density. This is done in Figs. 6.2

and 6.3. Figures 6.2 (a) and 6.2 (b) show the dimensionless perturbative (6.26) and

nonperturbative (6.27) induced Lagrangian densities, respectively, as functions of the

(quasi-)electric field parameter ã (6.28), at four different fixed values p ≡ b̃/ã of the

magnetic–to–electric field ratio. The case of the pure (quasi-)magnetic field (p.m.f.) is

also included in the Figures, as function of b̃. For the p.m.f. case, we normalized the La-

grangian density in analogy with (6.28), i.e., δL̃ is obtained in that case by dividing δL by

m4b̃2/(8π2). The separation between the perturbative and the nonperturbative part was

performed in the p.m.f. case analogously, i.e., the proper–time z<π/(2bg) contributions

were defined to be perturbative, and those from z >π/(2bg) nonperturbative. We point

out, however, that in the latter case the nonperturbative contributions do not involve

the renormalon–type (“pole–type”) effects, but only strong–field effects (cf. previous dis-

cussion). In Fig. 6.3, the corresponding ratios of the nonperturbative and perturbative

induced densities are presented. 3 When moving beyond the perturbative region (i.e.,

3The total induced dispersive Lagrangian densities, and values of the truncated perturbation series
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Figure 6.2: (a) Perturbative and (b) nonperturbative induced dispersive (Euler–Heisenberg)
Lagrangian densities [cf. (6.26) and (6.27)] as functions of the (quasi-)electric field parameter
ã (6.28), at various fixed values of the magnetic–to–electric field ratio p= b̃/ã (6.28). The
actual values of the curves for p ≈ 0, p = 1.0 and p = 5.0 have been multiplied here by
factors 10, 5 and 1/2, respectively, for better visibility. Included is also the case of the pure
(quasi-)magnetic field (p.m.f.), for which the x-axis represents b̃=gb/m2.

when ã 6�1), we see from these Figures that the nonperturbative parts in general become

relatively significant and often even dominant.

Once we come into the nonperturbative regime (ã
>∼1), however, we must keep in mind

that the pair creation, originating from the large absorptive part, will become so strong

as to render the solutions of the corrected Maxwell equations unstable. We will quantify

this fact in the next section in the case of the induced energy density in QED.

In Figs. 6.2 (a), (b), the densities were normalized according to (6.28), so that the

tree–level reference values for the densities are:

L̃(0) ≡ L(0)/

(
m4ã2

8π2

)
=

4π2

g2
(1− p2) . (6.35)

Therefore, increasing only the coupling parameter g, while leaving the (quasi-)electric

field a unchanged, results in correspondingly larger relative corrections originating from

the induced parts, both nonperturbative and perturbative. In the special case of QED, on

(6.31) (including ∼ ã8), are included in Figs. 6.6 in section 6.4.2.
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Figure 6.3: Ratios of the nonperturbative and the perturbative induced dispersive Lagrangian
densities for the cases depicted in Figs. 6.2. For the p.m.f. case, the x-axis represents
b̃=gb/m2.

the other hand, g=e0 is small (α=e2
0/(4π)≈1/137), and the overall induced Lagrangian

density accounts usually for less than 0.5 permille of the total Lagrangian density when

ã≤1 (see the next section on related points).

6.3 Induced Energy Density

In this section, we discuss the induced energy densities. Energy density is in principle a

measurable quantity. But, it is not Lorentz–invariant. If the (quasi-)electric and (quasi-)

magnetic fields are mutually parallel, the various induced energy densities can be obtained

directly from the corresponding induced Lagrangian densities:

δUk = a
∂ReδLk

∂a

∣∣∣∣∣
b

− ReδLk
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⇒ δŨk = ã
∂ReδL̃k

∂ã

∣∣∣∣∣
b̃

+ ReδL̃k (k = 0, 1, 2, . . .) , (6.36)

where we denoted, in analogy with (6.28)

δŨ(k) ≡ δU(k)/

(
m4ã2

8π2

)
. (6.37)

With the restriction to parallel fields ~E ‖ ~B (i.e, |~E|= a and | ~B|= b) we do not lose the

generality, since for any configuration of ~E and ~B, there always exists a Lorentz boost,

perpendicular to the plane of the fields, so that in the boosted frame the two fields

are parallel. The corresponding perturbative and nonperturbative parts of the energy

densities in such frames are:

ReδŨ0 = −
∫ π/2

0

dw

w
exp

(
−w
ã

){(w
ã
− 1
) [

p cot(w) coth(pw) +
1

3
(1−p2)− 1

w2

]

+

[
p cot(w) coth(pw) + p2 w cot(w)

sinh2(pw)
+

2

3
− 2

w2

]}
, (n = 0) (6.38)

ReδŨn = − exp
(
−nπ
ã

){∫ π/2

−π/2

dw exp
(
−w
ã

) [(w+nπ)

ã
− 1

]
×

[
p cot(w) coth(p(w+nπ))

(w+nπ)
− p

w

coth(pnπ)

nπ
+

(1−p2)

3(w+nπ)
− 1

(w+nπ)3

]

+

∫ π/2

−π/2

dw exp
(
−w
ã

) [
p cot(w)

(
coth(p(w+nπ))

(w+nπ)
+

p

sinh2(p(w+nπ))

)

− p
w

(
coth(pnπ)

nπ
+

p

sinh2(pnπ)

)
+

2

3

1

(w+nπ)
− 2

(w+nπ)3

]

+

[
p

ã
coth(pnπ) +

p2

sinh2(pnπ)

] [
−E1

( π
2ã

)
− Ei

( π
2ã

)]

+
2p

nπ
coth(pnπ) sinh

( π
2ã

)}
, (n ≥ 1) . (6.39)

The tree–level density in the normalization convention used [cf. (6.28)] is:

Ũ (0) ≡ U (0)/

(
m4ã2

8π2

)
=

4π2

g2
(1 + p2) . (6.40)

The perturbative power expansion of the induced energy density δŨ is:

δŨpert.(ã : p) =
(
d11! ã2 + d33! ã4 + d55! ã6 + · · ·

)
, (6.41)
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where the expansion coefficients are:

d1 =
1

45

[
3 + 5p2 − p4

]
,

d3 =
1

945

[
10 + 21p2 − 7p4 + 2p6

]
,

d5 =
1

14175

[
21 + 50p2 − 21p4 + 10p6 − 3p8

]
, etc. (6.42)
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Figure 6.4: (a) Perturbative and (b) nonperturbative induced energy densities [cf. (6.38) and
(6.39)] as functions of ã at various fixed values of p= b̃/ã (6.28). The actual values of the
curves have been multiplied, for better visibility, by the denoted factors, just as in Figs. 6.2.

The results for the induced perturbative (6.38) and nonperturbative parts (6.39), and

their ratios, are presented in Figs. 6.4 (a)–(b) and 6.5, respectively, in analogy with

Figs. 6.2 (a)–(b) and 6.3. The case of the pure (quasi-)magnetic field is not included in

Figs. 6.4–6.5, because in this case δŨ=−δL̃ and thus the relevant information is already

contained in Figs. 6.2–6.3. The behavior of the induced energy densities is, in broad

qualitative terms, similar to that of the induced Lagrangian densities. 4

In the special case of QED, similarly as for the Lagrangian densities in the previous

section, the total induced energy densities account for a very small part of the total energy

4The total induced energy densities, and values of the truncated perturbation series (6.41) that include
terms ∼ ã8, are included in Figs. 6.7 in section 6.4.3.



108 The Nonperturbative Dispersive Sector in Strong (Quasi-)Abelian Fields

p = 0.0
p = 1.0
p = 3.0
p = 5.0

aa=ga/m2

N
P/

P 
en

er
gy

 d
en

si
ty

-5

-4

-3

-2

-1

0

1

2

3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 6.5: Ratios of the nonperturbative and the perturbative induced energy densities for
the cases depicted in Figs. 6.4. The ratio for p=1 varies strongly for ã=0.5–1.5 because the
perturbative induced density has a zero at ã≈1.1.

density (0.2–0.3 permille when ã ≈ 1) and can become significant only when the field

becomes exceedingly large (ã
>∼102). The same is true also for the dielectric permeability

tensor εij: In the direction of the fields, we have δε‖ ≡ ε‖−1 = a∂(ReδL)/∂a|b, i.e., by

(6.36)–(6.37) we have δε‖ =(δŨ+ReδL̃)α/(2π), which is about 10−3 for ã≈ 1 and p=1.

Therefore, the effective coupling parameter along the field direction α‖=α/ε‖ changes by

about one permille, while α⊥=α/ε⊥ remains unchanged since ε⊥=1. Therefore, in QED,

any quantity which can be expanded in powers of the coupling parameter alone (without

fields) remains a perturbative quantity. QED then remains a perturbative theory despite

such strong fields – cf. also Ref. [129] on that point.

The energy density is not stable in time when ã 6=0, due to the energy losses to pair

creation of fermions of mass m. It decreases by about 50 percent in the time t1/2:

t1/2 ≈
π2

8α
exp

(
+
π

ã

) [ (1 + p2)

pπ coth(pπ)

]
1

m
, (6.43)
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where α≡ g2/(4π). The factor in the square brackets, appearing due to the presence of

the (quasi-)magnetic field, is usually not essential in the estimates since it is ∼1 for p≤5.

In the case of QED and with p=0, t1/2 is about 0.9 ·105m−1
e , 0.4 ·104m−1

e and 0.3 ·103m−1
e

for ã = 0.5, 1, and 5, respectively. Here, m−1
e ≈ 1.3 ·10−21 s is the electron Compton time.

6.4 Quasianalytic Continuation into the Nonpertur-

bative Sector

In this section, we use the discussed induced densities as an example on which to test

and get some insights into methods of approximate analytic (i.e., quasianalytic) continu-

ation. In various physical contexts, such methods allow one to extract all or part of the

information on the nonperturbative sector from the knowledge of the perturbative sector

alone. We will use the method of Borel–Padé transformation, or a modification thereof.

6.4.1 Definitions

Before we discuss the efficiency of methods of quasianalytic continuation into the nonper-

turbative sector we give some useful definitions for this section.

• Quasianalytic continuation:

If we know, for a function f(a), which is analytic at a = 0, the full power expansion

around a = 0:

f(a) ∼ e1a+ e2a
2 + e3a

3 + ... , (6.44)

then usually this infinite series is convergent in the complex plain in a disc of a

finite radius r0(|a| < r0) (in some cases we even have r0 = 0, e.g. in QCD). But

then, if r0 6= 0 (and often even when r0 = 0), the function f(a) can be determined

also for |a| > r0 by means of the analytic continuation. Physically, this represents

a continuation from the weak coupling |a| < r0 to the strong coupling |a| > r0,

based only on our initial knowledge of f(a) in the weak coupling regime, i.e., the

knowledge of the infinite power series of f(a). However, in physical problems we

often do not know the full power series of f(a), but only a few terms (truncated

power series (TPS)). Thus our knowledge of f(a) in the weak coupling regime is

in practice not exact (full). Therefore, any approximation that gives us the values
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of f(a) in the strong coupling regime, on the basis of the known TPS, is called

quasianalytic continuation, in contrast to the aforementioned analytic continuation.

• Borel transformation:

Suppose we have a function f(a). Then the Borel transformation BTf(w) of f(a)

is defined via the integral relation:

f(a) =

∫ ∞

0

dw exp(−w/a) BTf(w). (6.45)

This integral is called Borel integral, or often also Borel-Laplace integral. The

above relation BTf(w) → f(a) is called inverse Borel transformation. The Borel

transformation is f(a) → BTf(w). The power expansions of f(a) (in powers of a)

and of BTf(a) (in powers of w) are closely related, as can be checked via the above

integral relation:

f(a) ∼ e1a+ e2a
2 + e3a

3 + ... .

BTf(w) = e1 + e2
w

1!
+ e3

w2

2!
+ e4

w3

3!
+ ... . (6.46)

• Padé-approximant:

If we have an input perturbative series given by: f(x) =
∑∞

n=0 cnx
n, a Padé-

approximant (PA) can be constructed by writing a ratio of two polynomials so

that their Taylor expansion up to and including order N + M is identical to the

original series:

P[N/M ](x) =
a0 + a1x+ ... + aNx

N

1 + b1x+ ... + bMxM
, P[N/M ](x) = f(x) +O(xN+M+1). (6.47)

• Borel-Padé transformation:

If we know only a TPS for f(a), we can either construct a PA of that TPS of

f(a) → PAf(a), or we can take first the corresponding TPS of BTf(w), construct

a PA for this latter TPS [BTf(w) → PABTf (w)] and then pretend that this PA is

BTf(w) (it is only approximately so) and apply to it the Borel integration:

BPf(aw) =

∫ ∞

0

dw exp(−w/a) PABTf (aw). (6.48)

This we can call a Borel-Padé approximant of f(a), since the PA was applied to

its Borel transformation BTf(w), not to f(a) itself. The above integration can be

called loosely Borel-Padé transformation.
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• Modified Borel Transformation:

We defined the modified Borel transformation of f(a) as MBTf(w) such that the

following integral transformation connects them

f(a) = 1/a

∫ ∞

0

dw exp(−w/a) MBTf(w). (6.49)

This transformation is almost like the usual above-mentioned Borel transformation,

except that we have now the factor 1/a in front of the Borel integral.

• Meromorphic function:

Meromorphic function is a function f(a) which is analytic in the entire complex

plane, expect for a discrete number of points (this discrete number can be infinite,

but each point of singularity is surrounded by an area of analyticity).

6.4.2 Application of Borel-Padé Method for the Euler-

Heisenberg Lagrangian Density

One may ask whether the perturbation expansions (6.31) and (6.41) allow us to obtain

the full, including the nonperturbative, information about the corresponding densities.

The answer for the Lagrangian density is yes, but under the condition that we take in the

corresponding Borel–Padé approximants the Cauchy principal values when integrating

over the positive poles of the Padé integrand in the inverse Borel transformation. This

is reflected in the terms iε in the denominators of the integrands of (6.24) and/or (6.27).

More specifically, we first use the Borel–transform (BT) of the perturbation series (6.31):

BT
[
δL̃pert.(ã; p)

]
= c1(p)ã+ c3(p)ã

3 + c5(p)ã
5 + · · · , (6.50)

then construct an [N/M ]B(ã; p) Padé approximant to (6.50), 5 and then apply the inverse

Borel transformation:

BP[N/M ]
[
δL̃pert.

]
(ã; p) =

∫ ∞

0

dw exp
(
−w
ã

)
[N/M ]B(w; p) . (6.51)

On the other hand, the real part of the actual density (6.24) can also be written as a

Borel–type integral, when introducing w≡agz and ε′≡agε in (6.24) and normalizing the

5[N/M ](ã) Padé approximant to (6.50) is defined by two properties: 1. it is a ratio of two polynomials
in ã, the numerator polynomial having the highest power ãN and the denominator ãM ; 2. when expanded
in powers of ã, it reproduces the coefficients at the terms ãn in (6.50) for n≤N+M ; it is based solely on
the knowledge of these latter coefficients cn (n≤N +M).
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density according to (6.28)

ReδL̃(ã; p) = Re

∫ ∞

0

dw exp
(
−w
ã

) (−1)

w
×

[
p cos(w)

sin(w+iε′)
coth(pw) +

1

3
(1−p2)− 1

w2

]
. (6.52)

The expansion of the integrand of (6.52), excluding the exponential, in powers of w

is identical with the Borel transform (6.50) with ã 7→ w, as it should be. Comparing

(6.51) with the exact result (6.52), we see that the Borel–Padé method (6.51) will be

efficient in (quasianalytic continuation if Padé approximants [N/M ]B(w) approach the

integrand of (6.52) in an increasingly wide integration interval of w when the Padé order

indices N and M (≈N) increase. This in fact happens, since the integrand in (6.52) is a

meromorphic function in the complex plane whose pole structure on the positive axis is

especially simple – there are only single (not multiple) poles, located at w=π, 2π, 3π, . . . .

Padé approximants to power expansions of such functions are known to approximate such

functions increasingly better when the Padé order indices N ≈M increase [130]. Near

the poles w ≈ nπ the integrand behaves as ∼(w−nπ+iε′)−1. Hence, for obtaining the

real (dispersive) part of the density, the Borel integration over the poles has to be taken

with the Cauchy principal value (CPV) prescription – not just in the exact expression

(6.52), but also in the approximate expression (6.51). Thus, the Borel integration in

(6.51) over the n’th pole, i.e., the n’th renormalon contribution, has in the case at hand

no renormalon ambiguity. As the Padé order indices N ≈ M are increased, we thus

systematically approach the exact ReδL̃ via the CPV of (6.51). This means that in the

case at hand [strong (quasi–)Abelian fields with fermionic fluctuations included], the full

induced Lagrangian density can be obtained on the basis of the knowledge of perturbation

expansion (6.31) for weak fields and the CPV prescription. The more terms in (6.31) [and

thus in (6.50)] we know, the higher Padé order indices N ≈M we can have, and hence

the closer to the full Lagrangian density we can come via (6.51).

On the basis of the knowledge of the first four nonzero perturbation terms in (6.31)

and correspondingly in (6.50), we can construct the following Padé approximants of the

perturbative Borel transform (6.50): [1/2]B, [1/4]B, [3/4]B. Then we can calculate the

corresponding Borel-Padé transforms via (6.51) with the CPV prescription. Using the

same method we evaluate the case of pure magnetic fields. The corresponding results of

the approximants for the full induced density ReδL̃ are presented in Fig. 6.6, together

with the exact numerical values calculated by (6.52) in section 6.2 . The curves are
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Figure 6.6: Borel–Padé approximants (BP’s) to the induced dispersive Lagrangian density
(6.28) as functions of ã, for various values of p= b̃/ã: (a) p= 0; (b) p= 0.5; (c) p= 5.0;
(d) pure magnetic field (ã=0). Depicted are those BP’s (6.51) which are based on the Padé
approximants [1/2], [1/4] and [3/4] of the Borel–transform (6.50). The numerically exact
curves [sum of curves of Figs. 6.2 (a) and (b)] are also included and they virtually agree with
the [3/4] BP results. Included are also the the results of the truncated perturbative series
which include terms ∼ã8 [in (d): ∼b̃8].
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given as functions of the (quasi-)electric strength parameter ã for four fixed values of

the magnetic–to–electric field ratio p, and Fig. 6.6 (d) is for the case of the pure (quasi-

)magnetic field (ã=0). We see that the highest order ([3/4]) Borel–Padé results agree well

with the exact results over the entire depicted region of ã. When the Padé order indices

N and M (∼N) increase, the region of agreement includes increasingly large values of ã.

For comparison, we also included the results of the truncated perturbation series (TPS)

made up of the first four nonzero terms of (6.31) and (6.34), i.e., those perturbation terms

which the presented Borel–Padé transforms are based on and plot in Fig. 6.6 (d) for the

corresponding p.m.f. case.

6.4.3 Application of Modified Borel-Padé Method for the En-
ergy Density

If we apply the very same procedure in the case of the energy density Borel transforming

the series δŨpert./ã of (6.41), constructing Padé approximants, and carrying out the inverse

Borel transformation by using the CPV prescription – the results are disappointing. It

turns out that increasing the Padé order indices N and M (∼N) does not generally result

in a better precision. For example, for p
<≈ 0.5 and ã

>≈ 0.5, the Borel–Padé transforms

of the order [3/4] and [3/6] give significantly worse results than those of the lower order

[1/4]. The reason for this erratic behavior of the Borel–Padé approximants in this case

lies in the more complicated pole structure of the Borel–Padé transforms. This can be

seen if we rewrite δŨ in the Borel–integral form analogous to (6.52), obtained from (6.52)

by applying relation (6.36):

ReδŨ = Re

∫ ∞

0

dw exp
(
−w
ã

) (−1)

w[
− pw

sin2(w+iε′)
coth(pw) +

1

3
(1+p2) +

1

w2

]
. (6.53)

The expansion in powers of w of the integrand in (6.53), excluding the exponential, gives

of course the exact Borel transform of the perturbation series (6.41) divided by ã (and

replacing ã 7→w):

BT

[
δŨpert.(w; p)

w

]
= − 1

w

[
− pw

sin2(w+iε′)
coth(pw) +

1

3
(1−p2) +

1

w2

]

= d1(p)w + d3(p)w
3 + d5(p)w

5 + · · · . (6.54)
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However, we now see that this integrand has a double pole structure on the positive

w axis, the double poles located at w = π, 2π, 3π, · · · . The Padé approximants to the

power series (6.54) have great trouble simulating this double pole structure adequately.

When they do it by creating one single or two nearby real poles, say near w = π, then

it turns out that the inverse Borel transformation via the CPV prescription often gives

good results. However, when the Padé approximants try to simulate the double pole near

w=π by creating two mutually complex–conjugate poles a± ib (a≈π, |b|�π), the inverse

Borel transformation gives very unsatisfactory results. This occurs, for example, in Padé

approximants [3/4](w; p) and [3/6](w; p) for p≤0.5. Heuristically we can understand that

such a simulation is bad, because the structure of the integrand in (6.53) suggests that a

double pole at a−ib alone, just below the real axis, would do a better job, but it is not

allowed in the Padé approximants. The latter is true because the perturbation expansion

(6.54) is explicitly real for real w’s, and this property is hence shared also by the Padé

approximants, enforcing for each complex pole another pole which is complex–conjugate.

To overcome this problem, the idea is to modify the Borel transformation of the

perturbation series (6.41) in such a way that the resulting transformed series is represented

by a (meromorphic) function without any double poles on the real positive axis, in contrast

to the Borel transformed series (6.54). This, in fact, can be implemented in the easiest

way by using the following modification of the Borel transformation (MB):

∂MB
[
δŨpert.

]
(w; p)

∂w
= BT

[
δŨpert.(w; p)

w

]

= d1(p)w + d3(p)w
3 + d5(p)w

5 + · · ·

⇒ MB
[
δŨpert.

]
(w; p) = d1(p)

w2

2
+ d3(p)

w4

4
+ d5(p)

w6

6
+ · · · . (6.55)

This trick changes every double pole in the B into the corresponding single pole in the

MB. Then we apply Padé approximants [N/M ]MB(w) to the MB series (6.55), and carry

out the corresponding inverse modified Borel transformation:

MBP[N/M]
[
δŨpert.

]
(ã; p) =

1

ã

∫ ∞

0

dw exp
(
−w
ã

)
[N/M ]MB(w; p) (6.56)

with the CPV prescription when integrating over the single poles. This CPV prescription

originates again from the iε′ terms in the double pole structure (w−nπ+iε′)−2 of the

Borel transform (B) integrand of (6.53) that is now changed to the single pole structure

(w−nπ+iε′)−1 in the MB of (6.55) whose Padé approximants [N/M ]MB(w; p) appear in

(6.56).
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Figure 6.7: Modified Borel–Padé approximants [MBP’s – cf. (6.56)] to the induced energy
densities, based on the Padé approximants [2/2], [2/4] and [4/4] for the MBP’s (6.55), as
functions of ã, at fixed values of p= b̃/ã: (a) p=0; (b) p=0.5; (c) p=1.0; (d) p=5.0.
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The numerics clearly confirm that these MBP’s (6.56) are well behaved, i.e., they

approximate well the actual full induced energy density δŨ(ã; p) in the region of ã which

is getting wider when the Padé order indices N and M (≈N) increase. The results are

presented in Fig. 6.7, where the MBP’s for the first three possible Padé order indices

[2/2], [2/4] and [4/4], along with the exact numerical results, are shown as functions of ã,

at four fixed values of p≡ b̃/ã. Another reason why the results now behave better than

those of the usual BP tranforms lies in the fact that the Padé approximants ([2/2], [2/4]

and [4/4]) are now more diagonal than earlier ([1/2], [1/4] and [3/4]). This is due to

one additional power of w in the MB series (6.55), as compared with the usual B series.

The diagonal and near–diagonal Padé approximants are known to behave better than the

(far) off–diagonal ones [130]. In fact, Fig. 6.7 suggest that clear improvement – extension

of the ã range of agreement with the exact results – sets in when we switch from [2/2]

to [4/4] MBP, while the off–diagonal [2/4] MBP may even be slightly worse than [2/2].

For comparison, we also included the results of the truncated perturbation series (TPS)

made up of the first four nonzero terms (up to ∼ã8) of (6.41), i.e., the terms on which the

presented Borel–Padé transforms are based. The case of the pure (quasi-)magnetic field

was not included in these Figures because in this case δŨ=−δL̃ and thus the information

on this case is contained in Fig. 6.6 (d).

6.4.4 Renormalons

This application of Borel–Padé transformations and their modification may give us some

insights into how the quasianalytic continuation from the perturbative (small ã) into

the nonperturbative (large ã) regions can be carried out in other theories whose exact

behavior in the latter region is still theoretically unknown. One such example is the

perturbative QCD (pQCD), where some observables are known at the next–to–next–to–

leading order (N2LO). The coupling parameter in that case [ã 7→ αs(Q
2)] can be quite

large when the relevant energies of the process are low (Q∼ 1 GeV), thus rendering the

direct evaluation of the N2LO TPS unreasonable or at best unreliable. When applying

Borel–Padé transformations or modifications thereof to such series, we are faced with two

major problems:

• The first problem is of a more technical nature. Since only very few, at most two,

coefficients beyond the leading order are known, the Padé approximants associated
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with the (modified) Borel transform of the series have low order indices (N,M ≤ 2)

and thus do not necessarily reproduce the location of the leading poles on the positive

axis, if they exist, adequately.

• The second problem is of a deeper theoretical nature. Knowing too little about

the behavior of QCD in, or close to, the nonperturbative regime, we do not know

how to integrate over the possible positive poles in the inverse (modified) Borel

transformation – this can be termed the infrared renormalon ambiguity [131].

In the discussed case of integrated fermionic fluctuations in strong (quasi–)Abelian

fields – for the Lagrangian and energy densities – we do not face any of the two afore–

mentioned problems since the exact solution is known. We have to apply CPV prescription

in the integration of the Borel–Padé transform of the induced dispersive Lagrangian den-

sity, and in the modified Borel–Padé transform of the induced energy density. The CPV

is the direct consequence of the path (ε parameter) in the exact solution (6.23) [⇔ (6.24)].

The knowledge of the full theoretical solution in the latter case also tells us that the pole

structure of the usual Borel transform of the induced energy density is more complicated

(double poles), so that we have to apply a modified Borel-Padé transform which changes

the double poles into a single pole structure.

We point out that the positive poles – renormalons – discussed in this thesis cannot

be directly identified with the usual infrared (ultraviolet) renormalons in QCD (QED).

The latter renormalons, as defined in the literature [131], are interpreted in the pertur-

bative language as originating from renormalon chains at low (high) momenta k. The

renormalon chains are momentum–k gluon (photon) propagators with n chained one–

loop insertions, where n can be arbitrarily large. In the model at hand, however, only

quantum fluctuations of fermions, in the slowly–varying strong fields, are considered; the

effects of the quantum fluctuations of propagating gluons (photons) were not included

in the discussed effective model. The positive poles, i.e. renormalons, in the present

model originate from a collective effect of arbitrarily many very soft gluons (photons)

coupling to a fermion loop or to a fermion propagator – cf. [132]. The relevant param-

eter of the effective coupling of these soft gauge bosons to the fermions, appearing in

the induced effective action, is ã = ga/m2 and it can be large due to the strong field

a and/or due to the strong coupling g. These nonperturbative contributions are then

roughly ∼exp(−const./ã)=exp[−const.m2/(ga)] – cf. (6.51), (6.56). This is similar, but
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not identical, to the infrared renormalon contributions in QCD ∼exp(−const.′/g2). We

may be tempted to term the renormalons discussed in this thesis as infrared renormalons

due to their nonperturbative origin in the infrared, although this name is reserved for the

afore–mentioned QCD–type renormalons.

6.5 Borel-Padé vs Borel-Weniger Method

Various QCD and QED applications of the Borel-Padé approach, with CPV prescription,

have been made in [133–135]. The new method of Ref. [135] gives modified real and

imaginary parts of the Borel–Padé of δL̃, in comparison to the usual CPV prescription,

when the Padé approximants [N/M ]B have poles off the positive real axis. This may

influence the speed of the convergence of the Borel–Padé transforms towards the full

solution when the Padé order indices N and M (≈N) increase.

Two other references [126, 136] are also somewhat related to our work. Dunne and

Hall [136] considered, among other things, the question of resummation of the (one–loop)

Euler–Heisenberg (EH) Lagrangian density by using the knowledge of the perturbation

expansion of the Borel transform. Since they did not use Padé in addition, they needed

at least an approximate information on all the coefficients of the series to reconstruct

approximately the nonperturbative sector. Jentschura et al. [126], on the other hand,

did not employ the Borel transform, but applied directly to truncated perturbation series

(TPS) of the EH density a numerical method (Weniger sequence transformation) which

differs from Padé in several aspects. Their results of resummation are better than the

direct application of Padé to the TPS of the EH Lagrangian.

We present in this section numerical evidence for a QED and QCD example suggeting

that in this case the combined method of Borel-Padé works better than its analog Borel-

Weniger, and that it may work better or comparably well in some of the cases when there

are singularities on the positive axis in the Borel plane.

6.5.1 A QED Example

Since we worked out the efficiency of the Borel-Padé method on the EH Lagrangian den-

sitiy in previous section we start to apply the Borel-Weniger method for it. The authors

of [126] proposed the use of Weniger (delta sequence) transformations as an alternative to
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the use of Padé approximants, for direct resummation of truncated perturbation series.

For a TPS of the form F[n+1](z) =
∑n+1

0 γjz
j , it is defined as [137]:

δ(0)
n (ζ; γ0, . . . , γn+1) =

n∑

j

(−1)j

(
n

j

)
(ζ+j)n−1

(ζ+n)n−1

zn−jF[j](z)

γj+1

n∑

j

(−1)j

(
n

j

)
(ζ+j)n−1

(ζ+n)n−1

zn−j

γj+1

, (6.57)

where (ζ+j)n−1 ≡ Γ(ζ+j+n−1)/Γ(ζ+j) are the Pochhammer symbols and ζ=1 is usually

taken. The approximant (6.57) is a ratio of two polynomials in z of power n each, and

when expanded back in powers of z it reproduces all the terms of F[n+1].

The authors of [126] applied (6.57) directly to the TPS’s of δL̃pert.(ã; p)/ã2 of (6.31),

and when re-expanding the approximant in powers of ã they were able to predict the next

coefficient in the series with a better precision than the one provided by the corresponding

diagonal (or almost diagonal) Padé approximant. Further, in the case of the pure magnetic

field they showed that the method (6.57), when applied directly to the TPS’s in b̃ of the

induced Lagrangian density, 6 gave better results of resummation than the corresponding

Padé approximants.

We now apply the method of (6.57) to the Borel transformation of (6.50), and compare

the results of resummation obtained in this way with the results of the corresponding

Borel–Padé approximants of the sec. 6.4. Formula (6.57) is applied to the Borel transform

(6.50) divided by w with ã → w. We identify z = w2. In the ensuing Borel–Weniger

approximant, we integrate in the Laplace–Borel integral over the poles of the integrand

with the CPV prescription, just as in Borel–Padé approximant (6.51), in accordance with

the full known solution (6.52).

The results of these calculations are presented in Figs. 6.8(a)–(d), as functions of the

electric field strength parameter ã, for various values of p ≡ b̃/ã = 0., 0.5, 1.5, 5.0. In

Fig. 6.9 we present the analogous results for the case of the pure magnetic field (p.m.f.),

as function of the magnetic field parameter b̃. N3 and [3/4] denote the Borel–Weniger

and the Borel–Padé resummations based on the truncated Borel transform (6.50) with

the first four nonzero terms (i.e., three terms beyond the leading order); N5 and [5/6] are

based on the first six terms in (6.50). Comparison with the exact solutions, also present

in the Figs. 6.8 and 6.9, suggests that the Borel–Padé is significantly better than the

6The approximants (6.57) applied to the TPS’s of the series (6.34) divided by b̃2.
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Figure 6.8: Borel–Padé approximants ([3/4], [5/6]) and the corresponding Borel–Weniger
approximants (N3, N5) to the induced dispersive Lagrangian density (6.53), as functions of ã,
for various values of p= b̃/ã: (a) p=0.0; (b) p=0.5; (c) p=1.5; (d) p=5.0. The numerically
exact curves are included for comparison.
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Figure 6.9: Borel–Padé approximants ([3/4], [5/6]) and Borel–Weniger approximants (N3, N5)
to the induced dispersive Lagrangian density (6.33), as functions of b̃, for the pure magnetic
field case (ã=0). The numerically exact curve is included for comparison.

corresponding Borel–Weniger, except in the case of p=5.0 (electric field combined with a

much stronger magnetic field). Further, comparison of Fig. 6.9 with the results of Table

I of Ref. [126] suggests strongly that Borel–Padé and Borel–Weniger methods are much

more efficient than Weniger method in resuming a series which has singularities in the

Borel plane. Weniger method in the p.m.f. case is better than Padé method [126].

We can also do analogous calculations for the induced energy densities δU . In that

case, the simple Borel transform has a double–pole structure on the positive real axis,

and the Padé and Weniger approximants have trouble simulating such multiple poles

adequately. Therefore, we employ a slightly modified Borel transform in the case of the
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induced energy densities in (6.55) which has no multiple–pole structure – all the poles are

simple. The (modified) Laplace–Borel integral in this case is:

δŨ(ã; p) =
1

ã

∫ ∞

0

dw exp
(
−w
ã

)
MB(w; p) , (6.58)

where again the Cauchy principal value has to be taken, once MB(w; p) is replaced in

(6.58) by its Padé or Weniger approximants. For details, we refer to the sec.6.4 where

Borel–Padé was employed also for the induced energy densities. Weniger formula (6.57)

is now applied to the modified Borel transform (6.55) divided by w2. The results are

presented in Figs. 6.10(a)–(d), as functions of ã at fixed p= 0., 0.5, 1.5, 5.0, respectively.
7 We present the solutions of Borel–Weniger and Borel–Padé based on the first four (N3,

[4/4]) and six (N5, [6/6]) nonzero terms of the modified Borel transform of the energy

density. We see that for the induced energy density the situation is less clear. In the cases

p = 0, 0.5 and 5.0 the Borel–Padé and Borel–Weniger resummations are apparently of

comparable quality, while at p = 1.5 the Borel–Padé appears to work better.

We can see these trends also if we compare the perturbation coefficients predicted by

these two methods with the exact ones. These results are written in Table 6.1 for the

case of the Lagrangian density (predicted c9 and c13) and in Table 6.2 for the case of

the energy density (predicted d9 and d13). Predictions of the Borel–Padé are better in

most cases, predictions of the Borel–Weniger are of comparable quality in the cases of

p = 0., 0.5, 5.0 for energy density and in the case of p = 5.0 for Lagrangian density. In

fact, in the case p = 5.0 of the energy density, the modified Borel–Weniger is slightly,

but discernibly, better than the modified Borel–Padé. Comparing predictions of Table

6.1 (for p= 0.0) with those of Tables II and III of Ref. [126] suggests strongly that the

discussed Borel–Padé and Borel–Weniger methods are better than the Weniger method

in predicting the coefficients cn. The Weniger method is better than the Padé method in

predicting the cn’s [126].

6.5.2 A QCD Example

We compare the efficiency of the Borel–Padé and Borel–Weniger methods with an example

from QCD, and it will have to do with the “fixing” of a pole of a Borel transform rather

than with a resummation. We look at the Bjorken polarized sum rule (BjPSR), which

7In the case of the pure magnetic field, the energy density is the same as the Lagrangian density,
except for the sign change.
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Figure 6.10: Modified Borel–Padé ([4/4], [6/6]) and the corresponding modified Borel–
Weniger (N3, N5) approximants to the induced energy densities (6.53), as functions of ã,
at fixed values of p= b̃/ã: (a) p=0.0; (b) p=0.5; (c) p=1.5; (d) p=5.0.
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approximant p = 0.0 and p.m.f p = 0.5 p = 1.5 p = 5.0

N3 c9 = 2.1666·10−6 c9 = 3.524·10−6 c9 = 4.320·10−4 c9 = 596.91

[3/4] c9 = 2.1637·10−6 c9 = 3.648·10−6 c9 = 5.866·10−4 c9 = 595.28

exact c9 = 2.1644·10−6 c9 = 3.711·10−6 c9 = 6.166·10−4 c9 = 596.24

N5 c13 = 2.2212·10−8 c13 = 3.725·10−8 c13 = 2.460·10−5 c13 = 3823.65

[5/6] c13 = 2.2215·10−8 c13 = 3.804·10−8 c13 = 3.157·10−5 c13 = 3824.42

exact c13 = 2.2215·10−8 c13 = 3.805·10−8 c13 = 3.161·10−5 c13 = 3824.45

Table 6.1: Coefficients c9 and c13 of the perturbation series for the induced Lagrangian density,
as predicted by various Borel–Weniger and Borel–Padé approximants. We include exact values
for comparison.

approximant p = 0.0 p = 0.5 p = 1.5 p = 5.0

N3 d9 = 2.3752·10−5 d9 = 3.8124·10−5 d9 = 3.312·10−4 d9 = −452.06

[4/4] d9 = 2.3658·10−5 d9 = 3.7974·10−5 d9 = 4.529·10−6 c9 = −458.32

exact d9 = 2.3808·10−5 d9 = 3.8085·10−5 d9 = 2.503·10−5 c9 = −464.01

N5 d13 = 3.3319·10−7 d13 = 5.4289·10−7 c13 = 8.162·10−5 c13 = −2977.3

[6/6] d13 = 3.3309·10−7 d13 = 5.4291·10−7 c13 = −1.571·10−6 c13 = −2991.7

exact d13 = 3.3322·10−7 d13 = 5.4301·10−7 c13 = −2.537·10−6 c13 = −2976.7

Table 6.2: Coefficients d9 and d13 of the perturbation series for the induced energy density,
as predicted by various Borel–Weniger and Borel–Padé approximants. For comparison, exact
values are included as well.

involves the isotriplet combination of the first moments over xBj of proton and neutron

polarized structure functions:

∫ 1

0

dxBj

[
g

(p)
1 (xBj;Q

2
ph)− g

(n)
1 (xBj;Q

2
ph)
]

=
1

6
|gA|

[
1− S(Q2

ph)
]
. (6.59)

Here, p2 = −Q2
ph< 0 is γ∗ momentum transfer. At Q2

ph = 3GeV2 where three quarks

are assumed active (nf = 3), and if taking MS scheme and renormalization scale (RScl)

Q2
0 =Q2

ph, we have the following TPS of the BjPSR observable S(Q2
ph) available [138]:

S[2](Q
2
ph;Q

2
0 = Q2

ph; c
MS
2 , cMS

3 ) = a0(1 + 3.583a0 + 20.215a2
0) , (6.60)
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with:

a0 = a(lnQ2
0; c

MS
2 , cMS

3 , . . .), nf = 3, cMS
2 = 4.471, cMS

3 = 20.99 . (6.61)

Here we denoted by a the strong coupling parameter a≡αs/π.

It is known from [139, 140] that the Borel transform BS(z) of S has the lowest positive

pole at zpole = 1/β0 = 4/9 (leading infrared renormalon) and that this pole has a much

stronger residuum than the highest negative pole at zpole = −1/β0 (leading ultraviolet

renormalon). The question we raise here is: How well can Padé and Weniger approximants

to the Borel transform BS(z) determine the next coefficient r3 of the term r3a
4
0 in the TPS

(6.60), via the requirement that zpole = 4/9? For that, we have to know well the actual r3.

That term can be determined reasonably well on the basis of two approximants discussed

in [141] – the effective charge approximant (ECH) A(ECH)
S (c3) with c3≈20., and another,

also renormalization scale (RScl)– and renormalization scheme –independent approximant

A1/2

S2 (c3) with c3≈15.5. These two approximants give the correct location of the leading

infrared renormalon pole, and when we expand them back in powers of a0 we obtain

r3≈ 129.4 and r3≈ 130.8, respectively. Therefore, we can estimate with high confidence

the actual value r3 = 130.0± 1.0 .

It is important to consider the RScl–and scheme–invariant Borel transform when we

want to apply Padé or Weniger approximants to it, so that the predicted values of r3

will be independent of the RScl– and scheme in which we work at the intermediate stage.

Such a Borel transform has been used in [142], and we use its variant B̃S(z) as specified in

[141] [cf. Eqs. (6.59)–(6.61) there]. Such a Borel transform reduces (up to a z–dependent

nonsingular factor) to the usual Borel transform in the approximation of the one–loop

evolution. The resulting power expansion of B̃S(z) up to∼z3 will depend on the coefficient

r3

B̃S(z) = 1 +
32

81
(γ−1)y + (0.02078...)y2 +

8

729
(−21.88...+

1

6
r3)y

3 +O(y4) , (6.62)

where γ = 0.577... is Euler constant, and y ≡ 2β0z. If we apply [2/1] and [1/2] Padé

approximants to the TPS (6.62) and demand zpole =1/β0 (ypole =2), we obtain predictions

r3 =137.0 and r3 =128.0, respectively. The prediction of [1/2] is significantly better, and

this could possibly be explained with the more involved denominator structure of [1/2] in

comparison to [2/1]. When applying to (6.62) Weniger formula (6.57) (δ
(0)
2 with ζ = 1),

we obtain r3 =135.3. This is further away from the actual value of 130.0± 1.0 than the
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prediction of [1/2]. In both [1/2] and δ
(0)
2 , the denominators are polynomials of quadratic

degree in z.

To summarize this QCD example: We applied Padé and Weniger approximants to a

(TPS of a) Borel transform of the Bjorken polarized sum rule and demanded that the

leading infrared renormalon pole be reproduced correctly. Weniger approximant δ
(0)
2 then

apparently gives a somewhat worse prediction for the next coefficient than the correspond-

ing Padé approximant [1/2].





Chapter 7

Summary

We introduced the concept of separation of the induced dispersive action into nonper-

turbative and perturbative parts. We then investigated numerically the nonperturbative

contributions to the dispersive (real) part of the Lagrangian density and to the real en-

ergy density, induced by quantum fluctuations of fermions in the strong (quasi–)Abelian

fields that don’t change significantly in space–time over the typical fermionic Compton

wavelengths 1/m. There are only nonperturbative contributions in the absorptive (imagi-

nary) part of the strong field Lagrangian density, the latter part being responsible for the

fermion–antifermion pair creation. On the other hand, the nonperturbative contributions

in the real (dispersive) sector are in general also significant and can often even dominate

over the perturbative induced contributions there. The induced dispersive Lagrangian

density modifies the Maxwell equations for strong fields. The induced energy density is

in principle an observable quantity. When the (quasi-)electric fields are strong, however,

these densities decay fast (in ∼103 Compton times, for ã∼1). These two induced densities

lead to a change in the dielectric permeability tensor of the vacuum. In the special case of

QED, all these induced effects are below one per cent unless the fields are huge (ã∼102).

We then used the discussed induced quantities as a “laboratory” to test and investi-

gate the efficiency of specific methods of quasianalytic continuation from the perturbative

region (weak fields) into the nonperturbative region (strong fields). We employed the

method of Borel–Padé for the induced dispersive Lagrangian density, since the function

represented by the Borel transform series has only simple poles. For the induced en-

ergy density, we had to employ a modified Borel–Padé transformation since the function

represented by the (nonmodified) Borel transform series has double poles. We found out
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numerically that such quasianalytic continuations become precise over an increasing region

of the effective expansion parameter ã when the number of available terms in the per-

turbative expansion increases. This means that the quasianalytic continuation gradually

becomes the analytic (exact) continuation when the number of the perturbative expansion

terms accounted for increases. The Borel integration over positive poles (renormalons)

is necessary. The correct prescription for the integration over these poles, in the case at

hand, is the simplest one – the Cauchy principal value (CPV) prescription, its origin being

the path (ε parameter) in the exact solution (6.23) [⇔ (6.24)]. Such analyses could give

us some insight into the problems faced in QCD when nonperturbative contributions to

observables are investigated either on the basis of the perturbative results themselves or

by using other models [143] that are at least partly motivated by perturbative methods.

The correct analytic continuation, in the discussed case of strong background gauge

fields, is the one employing the simplest (CPV) prescription for integration over the poles

in the Laplace–Borel integral. This appears to be in agreement with the conclusions of

Ref. [144] which were obtained from quite different considerations involving the renor-

malization group – that the vacuum polarization induced by the intense gauge fields is in

principle determined by the information on the behavior of the theory in the perturbative

region. The situation in QCD is less clear. A necessary condition for the existence of the

(correct) analytic continuation from the perturbative into the nonperturbative regime in

QCD is that a nontrivial infrared stable fixed point exist for the running strong coupling

parameter. Such an infrared stable fixed point, however, seems to exist only if the number

of the quark flavors is high (Nf > 9) [145]. For the real (low–Nf ) QCD, a phase transition

takes place, and methods of analytic continuation have probably only a limited range of

applicability. Stated differently, in this case the full knowledge of the perturbative sector

probably does not allow us to obtain information on the deep nonperturbative sector. In

such a case, it is probable that even the renormalon ambiguity in the low–flavor pertur-

bative QCD (pQCD) is an intrinsic ambiguity that cannot be entirely eliminated with

pQCD–related methods alone.

Finally, We discussed the Padé approximants, the Delta sequence method and the

combined methode of Borel-padé and Borel-weniger for the Euler-heisenberg Lagrangian

(QED case) and the Bjorken polarized sum rule (QCD case) and compared their methodes.

The predictions based on these methods have better results for the EH Lagrangian than

the padé approximants and the delta tranformation alone.



Appendix A

Connection between Helicity
Amplitudes of Zucker and the
Rarita-Schwinger Form Factors for
the N-∆ Transition

The relationships between the helicity amplitudes of Zucker in [37] and the Rarita-

Schwinger form factors from Ref. [35] are given in the following way:

T 3
2

= f(W )NRS qCMS

[(W +MN

MN

)
CV

3 +
Wq0

CMS

M2
N

(
CV

4 + CV
5

)
+

Q2

M2
N

CV
5

]
(A.1)

T 1
2

=
1√
3
f(W )NRSqCMS

[(q0
CMS − P 0

CMS −MN

MN

)
CV

3

+
Wq0

CMS

M2
N

(
CV

4 + CV
5

)
+

Q2

M2
N

CV
5

]
(A.2)

TC = −
√

2

3
f(W )NRS

q2
CMS

MN

[
CV

3 +
W

MN

(
CV

4 + CV
5

)
− q0

CMS

MN
CV

5

]
(A.3)

U 3
2

= f(W )NRS(P 0
CMS +MN )

[(W −MN

MN

)
CA

3 +
Wq0

CMS

M2
N

CA
4 + CA

5

]
(A.4)

U 1
2

=
1√
3
f(W )NRS(P 0

CMS +MN)
[(q0

CMS +MN − P 0
CMS

MN

)
CA

3

+
Wq0

CMS

M2
N

CA
4 + CA

5

]
(A.5)
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UC = −
√

2

3
f(W )NRS(P 0

CMS +MN)
qCMS

MN

[
CA

3 +
W

MN
CA

4 −
q0
CMSMN

Q2
CA

5

]
(A.6)

UD =

√
2

3
f(W )NRS(P 0

CMS +MN )
q2
CMS

M2
N

[
CA

5 + CA
6

]
, (A.7)

where P 0
CMS =

√
M2

N + q2
CMS is the initial proton energy in the final πN center of mass

system, q2
CMS = |~q|2CMS , and the normalization factor

NRS ≡ −i
√

qCMS

4W (P 0
CMS +MN )

. (A.8)

qCMS is given by in Eq. (2.24).



Appendix B

Double Integration in the Function
f (λ)

The double integration of the denominator in Eq. (2.98) with the effective length L(b) is

given by:

I ≡
∫

∞
bdb

∫ ∞

−∞
dz

1

1 + e

√
b2+z2

−C

C1

= 2

∫

∞
bdb

∫ +∞

0

dz
1

1 + e
√

b2/C2
1+z2/C2

1−C/C1

. (B.1)

With the defined variables to simplify the integration:

x1 =
C

C1

, u =
z

C1

, v =
b2

C2
1

(B.2)

we get

I = C3
1

∫ ∞

0

dv

∫ ∞

0

du
1

1 + e
√

v+u2−x1
. (B.3)

Furthermore, we substitute w =
√
v + u2 − x1 in Eq. (B.3):

I = C3
1

∫ ∞

u−x1

2(w + x1)dw

∫ ∞

0

du
1

1 + ew

= 2C3
1

∫ ∞

−x1

dw

∫ w+x1

0

du
w + x1

1 + ew

= 2C3
1

∫ ∞

−x1

dw
(w + x1)

2

1 + ew
. (B.4)
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To calculate this integration we use Mathematica [146] and get the results as:

I =
2

3
C3

1

[
π2x1 + x3

1 − 6Polylog(3,−e−x1)
]

(B.5)

with

Polylog(3,−e−x1) =

∞∑

n=1

(−e−x1)n

n3

=
∞∑

k=1

e−2kx1

( 1

(2k)3
− ex1

(2k − 1)3

)
. (B.6)



Appendix C

The Limit of σ± = 0

We discuss here two limit cases, i.e. σ± = 0 in Eq. (2.145). The case of σ+ = 0 is given

by:

→ σ =
√

1− σ−,

µ =
1 + σ−
σ−

eκσL (C.1)

and σ− = 0 case:

→ σ =
√

1− σ+,

µ =
2(1 + σ+)

σ−
eκσL. (C.2)

As it can be seen, the limit of σ− = 0 gives the parameter µ which is infinite. For this

reason we change the ansatz in Eq. (2.143) by taking instead

h(y) = ρeκσy + e−κσy. (C.3)

After the same calculations we get the following result:

ρ = −σ−e
−κσL

1− σ+

+ σ

σ =
√

(1− σ+)2 − σ2
−. (C.4)

In the case of σ− = 0:

σ = (1− σ+),

ρ = 0 (C.5)
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and σ+ = 0:

σ =
√

1− σ2
−,

ρ = − σ−e
κσL

1 +
√

1− σ2
−

(C.6)

It follows that the limit σ− = 0 is regular and the limit σ+ = 0 case is not very evident.



Appendix D

Example calculation of the ratio
r = (σ(π+) + σ(π−))/σ(π0)

In this appendix we calculate the ratio r = (σ(π+) + σ(π−))/σ(π0) of charged current

cross sections for propane (C3H8) and halon (CF3Br) targets which have been used by

the CERN Gargamelle experiment [65]. This experiment utilized a wide band neutrino

beam with an average neutrino energy < Eν > ∼ 2 GeV, see p. 29 in [65]. In the case of

a halon target we compare with an experimental measurement of the ratio.

Considering a neutrino energy Eν = 2.0 GeV1, we can read off the charged current

cross sections for free nucleons from Figs. 2.3–2.8

σ+(p) ≡ σ(νµ + p→ µ− + p+ π+) = 0.668× 10−38cm2

σ+(n) ≡ σ(νµ + n→ µ− + n+ π+) = 0.179× 10−38cm2

σ0(p) ≡ σ(ν̄µ + p→ µ+ + n+ π0) = 0.122× 10−38cm2

σ0(n) ≡ σ(νµ + n→ µ− + p+ π0) = 0.2× 10−38cm2

σ−(p) ≡ σ(ν̄µ + p→ µ+ + p+ π−) = 0.139× 10−38cm2

σ−(n) ≡ σ(ν̄µ + n→ µ+ + n+ π−) = 0.312× 10−38cm2 .

Furthermore, it is convenient to introduce the column vectors

~σ ≡




σ+

σ0

σ−


 , ~σ(p) =




0.668

0.122

0.139


× 10−38cm2, ~σ(n) =




0.179

0.2

0.312


× 10−38cm2 .

1The ratio r depends only weakly on the neutrino energy. We have checked this explicitly by performing
the calculations below with an energy Eν = 6 GeV giving very similar results.
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Propane

Considering the propane target as a collection of free nucleons we can write

~σfree(C3H8) = 3 ~σfree(6C
12) + 8 ~σfree(H)

= 3 [Z ~σ(p) + (A− Z) ~σ(n)] + 8 ~σ(p)

= 24 ~σ(p) + 18 ~σ(n) .

Thus, ~σfree(C3H8) = (19.254, 6.996, 8.952)T × 10−38cm2 and the ratio for a free target is

given by rfree = (19.254 + 8.952)/6.996 = 4.03.

In order to take into account the nuclear corrections we proceed as follows. Since the

various atoms in propane are only weakly bound (due to electro-magnetic interactions)

we consider propane as C3H8 ' 3× 6C
12 + 8×H, i.e.,

~σ(C3H8) = 3 ~σ(6C
12) + 8 ~σ(H)

ANP
= 3 M(6C

12) ~σfree(6C
12) + 8 ~σfree(H)

where the second equation can be calculated according to the ANP model with help of

the charge exchange matrix M(6C
12) for carbon

M(6C
12) = Ap




0.805 0.149 0.047

0.149 0.703 0.149

0.047 0.149 0.805


 (D.1)

with the parameter Ap = 0.816.2 Using ~σfree(6C
12) = (5.082, 1.932, 2.706)T × 10−38cm2

(and of course ~σfree(H) = ~σ(p)) we obtain ~σ(C3H8) = (16.375, 7.766, 7.734)T × 10−38cm2.

Therefore the ratio r including nuclear corrections is given by rnuc.corr. = (16.375 +

7.734)/7.766 = 3.1.

Halon

Following the same steps as above we find for CF3Br:

~σfree(CF3Br) = ~σfree(6C
12) + 3 ~σfree(9F

19) + ~σfree(35Br
80)

= [6 ~σ(p) + 6 ~σ(n)] + 3 [9 ~σ(p) + 10 ~σ(n)] + [35 ~σ(p) + 45 ~σ(n)]

= 68 ~σ(p) + 81 ~σ(n).

2Of course, the ratio r depends only mildly on the precise value of Ap since it is canceled to a large
extent.
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Therefore, ~σfree(CF3Br) = (59.923, 23.482, 34.724)T × 10−38cm2 and the ratio is rfree =

(59.923 + 34.742)/23.482 = 4.03.

The nuclear corrections require the charge exchange matrices M(6C
12), M(9F

19) and

M(35Br
80) which we take from Ref. [52]. Writing

~σ(CF3Br) = ~σ(6C
12) + 3 ~σ(9F

19) + ~σ(35Br
80)

= M(6C
12)~σfree(6C

12) + 3 M(9F
19)~σfree(9F

19) +M(35Br
80)~σfree(35Br

80)

we find ~σ(CF3Br) = (35.644, 21.245, 23.372)T×10−38cm2 and the ratio containing nuclear

corrections is rnuc.corr. = (35.644+23.372)/21.246 = 2.78. This compares favourably with

the experimental result [65] rexp = 2.3± 0.9 for a CF3Br target, whereas the ratio for a

free target, rfree = 4.03, appears to be too large.





Appendix E

Kinematic Region of the Variables x
and y in Deeply Inelastic Tau-Lepton
Nucleon Scattering

The momentum transfer q2 = −Q2 in DIS (see Fig. 3.1) is given by:

Q2 = 2k1 · k2 −m2
l

= 2EνEl − 2Eνk
0
2 cos θ −m2

l (E.1)

with k0
2 =

√
E2

l −m2
l . From this we can easily read the following relations:

Q2
min,max = 2Eν(Eν − ν)± 2Eν

√
(Eν − ν)2 −m2

l −m2
l (E.2)

using ν = Eν −El. Q
2
min,max denotes the minimum and the maximum of Q2, respectively.

Combining the variables x = Q2

2MNν
and y = ν

Eν
we obtain Q2 = 2MNEνxy = (s−M2

N )xy

with s = (k1 + p)2 = M2
N + 2MNν, ν = Eνy. Substituting x, y into Q2

min,max in Eq. (E.2)

is obtained as follows:

Q2
min,max = 2E2

ν(1− y)−m2
l ± 2E2

ν

√
(1− y)2 − m2

l

E2
ν

. (E.3)

⇒ 2E2
ν(1− y)−m2

l − 2E2
ν

√
(1− y)2 − m2

l

E2
ν

≤ Q2 = 2MNEνxy

≤ 2E2
ν(1− y)−m2

l + 2E2
ν

√
(1− y)2 − m2

l

E2
ν

(E.4)

⇔ Eν

MNx
(1− y)− m2

L

2MNEνx︸ ︷︷ ︸
d1

− Eν

MNx

√
(1− y)2 − m2

l

E2
ν︸ ︷︷ ︸

d2

≤ y
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Scattering

≤ Eν

MNx
(1− y)− m2

L

2MNEνx︸ ︷︷ ︸
d1

+
Eν

MNx

√
(1− y)2 − m2

l

E2
ν︸ ︷︷ ︸

d2

(E.5)

⇔ d1 − d2 ≤ y ≤ d1 + d2 (E.6)

⇒ |y − d1| ≤ d2 (E.7)

⇒ (y − d1)
2 − d2

2 = 0. (E.8)

Using two following conditions from Eq. (E.3):

•
√

(1− y)2 − m2
l

E2
ν

is real.

• Q2
min ≥ 0.

We get the y region from the first condition as follows:

y ≤ 1− ml

Eν
. (E.9)

since from the second condition we have negative y range, we do not take it into account.

We obtained the final results in Eq. (3.13) solving (y − d1)
2 − d2

2 = 0 in Eq. (E.8).



Appendix F

Unitary Transformation Leading to
Harmonic Oscillators

We want to find a unitary operator Û which “diagonalizes” the scalar density for the

covariantly homogeneous strong abelian field (6.6):
[
P̂ − gA

]2
=

(
P̂ 0
)2

−
(
P̂ 1
)2

−
(
P̂ 2 − gB‖X̂1

)2

−
(
P̂ 3 + gEX̂0

)2

, (F.1)

into the sum of two harmonic oscillator densities as written in (6.17). This approach can

be regarded as a generalization of the approach by Itzykson and Zuber [106]. Since the

latter authors used a relatively simple unitary “diagonalizing” operator for the case of a

homogeneous electromagnetic field, we adopt their consideration and use the commutation

relations: [X̂µ,P̂ ν] = −igµν , and P ν = i∂ν . In fact, using the mentioned commutation

relations and the operator identity1

exp
(
B̂
)
Â exp

(
−B̂
)

= Â+
1

1!

[
B̂, Â

]
+

1

2!

[
B̂,
[
B̂, Â

]]
+ . . .

+
1

n!

[
B̂,
[
B̂, . . .

[
B̂, Â

]
. . .
]]

+ . . . , (F.2)

we can derive the following useful formulas for the case µ 6= ν:

exp
(
iαP̂ µP̂ ν

)(
X̂δ
)

exp
(
−iαP̂ µP̂ ν

)
= X̂δ − αgνδP̂ µ − αgµδP̂ ν. (F.3)

We can now make the following ansatz for the unitary operator Û :

Û = exp
(
iξ1P̂

1P̂ 2
)

exp
(
iξ2P̂

0P̂ 3
)
. (F.4)

1This identity can be proved, for example, by introducing an operator F̂ (α) = exp(αB̂)Â exp(−αB̂);
it is straightforward to show that dnF̂ (α)/dαn =[B̂,[B̂,. . .[B̂,F̂ ]. . .]], where the latter expression involves
n commutators; Taylor expansion of F̂ (1) around the point α=0 then leads to (F.2).
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Using the above two formulas and the unitarity of Û , we can show the following: the

P̂ k (k=2,3) operators in (F.1) vanish

Û
[
P̂ − gA(X̂)

]2
Û † =

(
Û
[
P̂ − gA(X̂)

]
Û †)2

=
(
P̂ 0
)2

−
(
P̂ 1
)2

− g2E2
(
X̂0
)2

− g2B2
‖

(
X̂1
)2

, (F.5)

where

Û = exp
(
ig−1B−1

‖ P̂ 1P̂ 2
)

exp
(
ig−1E−1P̂ 0P̂ 3

)
. (F.6)

Thus final result is:

Û
[
P̂ − gB(X̂)

]2
Û † =

[(
P̂ 0
)2

− g2a2(X̂0)2

]
−
[
(P̂ 1)2 + g2b2(X̂1)2

]
(F.7)

with

a =

[
+~E2 − ~B2 +

√(
~E2 − ~B2

)2

+ 4
(
~E · ~B

)2
]1/2

/
√

2 ,

b =

[
−~E2 + ~B2 +

√(
~E2 − ~B2

)2

+ 4
(
~E · ~B

)2
]1/2

/
√

2 .



Appendix G

Tracing over the Harmonic
Oscillator Degrees of Freedom

Here we calculate traces (integrals) of exponentiated harmonic oscillators appearing in

expression (6.20), i.e., we calculate:

T1(s) =

∫ +∞

−∞
dq0
〈
q0
∣∣∣e2isH(1)

∣∣∣ q0
〉
, T2(s) =

∫ +∞

−∞
dq1
〈
q1
∣∣∣e−2isH(2)

∣∣∣ q1
〉
, (G.1)

where H(k) (k=1,2) are Hamiltonian densities of harmonic oscillators:

H(1) =

{
1

2
P̂ 0P̂ 0 − g2a2

2
X̂0X̂0

}
, (G.2)

H(2) =

{
1

2
P̂ 1P̂ 1 +

g2b2

2
X̂1X̂1

}
. (G.3)

Expressions (G.2)-(G.3) show that, in a rotated basis, H(1) and H(2) are sets of oscillators

each, with frequency parameters ω=iga and ω=gb, respectively, and with mass parameter

m = 1. Since tracing (G.1) for these oscillators can be done in any complete basis, we

choose instead of momentum-eigenstate basis |q0〉 (|q1〉) the basis of eigenstates of the c-

number Hamiltonian densities H(k) (k=1,2). Eigenenergies iE(1)(m) (imaginary positive)

of the first set, and E(2)(m) (real positive) of the second set of harmonic Hamiltonians

are then:

iE(1)(m) = iga

(
m +

1

2

)
, (G.4)

E(2)(m) = gb

(
m +

1

2

)
,
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where m=0,1,2,· · · are the energy quantum numbers of the harmonic oscillators. Tracing

therefore reduces to simple geometric sums:

∫ +∞

−∞
dq0
〈
q0
∣∣exp

[
2isH(1)

]∣∣ q0
〉

=

∞∑

m=0

exp
[
2isE(1)(m)

]

= exp [−gsa]
∞∑

m=0

{exp [−2gsa]}m

=
1

2 sinh [gsa]
, (G.5)

∫ +∞

−∞
dq1
〈
q1
∣∣exp

[
−2isH(2)

]∣∣ q1
〉

=

∞∑

m=0

exp
[
−2isE(2)(m)

]

= exp [−igsb]
∞∑

m=0

{exp [−2igsb]}m

=
1

2i sin [gsb]
. (G.6)

In order to ensure that the geometric sum in (G.6) converges, we have to move the proper

time s> 0 slightly below the real axis: s 7→ z= s − iε′ (ε′ =+0). Thus, the final result is

obtained as follows:

T1(s)T2(s) =
1

4i sinh [gza] sin [gzb]
. (G.7)

Keeping in mind notation (G.1) for matrices T1(s) and T2(s), as well as notation (6.17),

we see that the resulting formula (G.7) proves the implication (6.20)⇒(6.21).



Appendix H

On the Analyticity of δL̃0

In this appendix we will clarify the nature of the nonanalytic terms ∼exp(−const./ã)

that appear in the naive expansion of the perturbative part ReδL̃0(ã; p) of (6.26) around

the point ã = 0. Such terms may in principle be dangerous for our interpretation of

(6.26) as the perturbative part of the induced Lagrangian density, because they have the

nonanalytic structure similar to those terms that appear in the nonperturbative parts

ReδL̃n(ã; p) of (6.27), the latter containing genuinely nonperturbative contributions due

to the singular (pole) structure of the integrand. We will show that the mentioned terms

in (6.26) are an artifact of having the abrupt infrared (IR) cutoff there, and that they

disappear as soon as the abruptness of the infrared cutoff is (infinitesimally) softened.

In the proper–time formalism, the IR and UV regions correspond to the high and the

low values of the proper time, respectively [147]. In the proper–time integral (6.24) for

δL, the IR region of large proper time z [z ≥ π/(ag)] contains poles, the latter leading

to nonperturbative effects. The region of smaller z has no such singularities and thus no

nonperturbative effects. Therefore, the perturbative part of δL should cover the latter

region, and suppress the IR region. The general way to do this is to introduce, in the

spirit of approaches of [147], a nonnegative regulator ρε(w) (w≡agz) in the proper–time

integral:

ReδL̃(P.)
ε (ã; p) = −Re

∫ ∞

0

dw

w
ρε(w) exp

(
−w
ã

)
×

[
p cot(w + iε′) coth(pw) +

1

3
(1−p2)− 1

w2

]
, (H.1)

where the minimal IR regularization requirements are

ρε(w) ≈ 1 for w � 1 , ρε(w)� 1 for w
>≈ π . (H.2)
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The nonnegative parameter ε indicates that we can choose a class of such regulators. In

fact, we will require that for small ε a large chunk of the perturbative region, namely

the w–region of approximately [0, π/2], survive in (H.1). Thus we restrict the minimal

conditions (H.2) to the following ones, when ε� 1:

ρε(w) ≈ 1 for w
<≈ π/2−

√
ε , ρε(w)� 1 for w

>≈ π/2 +
√
ε . (H.3)

A seeming alternative to (H.1) would be to introduce a regulator ρε(z) that would scale

as a function of z≡w/(ag) instead of w. But this possibility must be discarded because

then the condition of suppressing the pole structure [ρε(z)� 1 for z ≥ π/(ga)≡π/(m2ã)]

cannot be reconciled with the condition of the survival of a large chunk of the perturbative

region [ρε(z) ≈ 1 for z ≤ π/(2m2ã)] at various values of ã simultaneously.

The conditions (H.3) are designed in such a way that the limit ε→+0 would apparently

lead to the abrupt IR regulator appearing in ReδL̃0(ã; p) of (6.26), with the abrupt cutoff

at w=π/2. We can choose the following specific one–parameter family of regulators ρε(w)

satisfying the afore–mentioned conditions:

ρε(w) =
ρ̃ε(w)

ρ̃ε(0)
, ρ̃ε(w) =

1

2
− 1

π
arctan

(
w − π/2

ε

)
. (H.4)

When ε→+0 (ε 6=0), these regulators differ from the abrupt cutoff regulator outside the

narrow w–interval [π/2− √ε, π/2 +
√
ε] by at most ∼√ε

ρε(w) =

{
1− (ε/π)(π/2− w)−1 +O(ε2) if w < π

2
−√ε

(ε/π)(w − π/2)−1 +O(ε2) if w > π
2
+
√
ε ,

}
(H.5)

while they may differ from the abrupt version significantly only in the afore–mentioned

narrow interval. The first thing to check would be that the regularized expression (H.1)

with the regulator (H.4)–(H.5), in the limit ε→+0 (ε 6= 0) really gives numerically the

result (6.26) of the abrupt cutoff. Stated otherwise, we should check that the limε→+0 in

front of the integral (H.1) can be moved into the integral, without changing the result.

For such a check, we need to see that the contributions in (H.1) from the singular (poles)

regions (w > π/2) are suppressed toward zero when ε→+0. Such a check is straight-

forward and we performed it. It turns out that the w–regions [(n−1/2)π, (n+1/2)π]

around the n’th pole wn = nπ are suppressed by a factor ∼ε when n ≥ 2, and by at least

a factor ∼√ε when n = 1. Thus, all these contributions go to zero when ε→ +0. On

the other hand, on the w–interval [0, π/2], there are no singularities of the integrand and
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the regulator is virtually equal to 1 in the entire interval when ε→ +0. Therefore, on

this interval we can automatically push the limiting procedure into the integral. Thus we

really have

lim
ε→+0

ReδL̃(P.)
ε (ã; p) = ReδL̃0(ã; p) , (H.6)

i.e., the numerical value of the perturbative part with the infinitesimally “softened” IR

cutoff is the same as that of the perturbative part with the abrupt IR cutoff (6.26).

Now we will investigate the expansions of the above two expressions around the point

ã = 0, in order to see the difference in the (non)analyticity structure between the two

cases. We can find the small–ã expansion of ReδL̃0(ã; p) of (6.26) by expanding first the

integrand (without the exponent) there, i.e., the Borel transform, in powers of w. As

argued in section 6.4.2 [cf. Eqs. (6.50)–(6.52)], this expansion yields (6.50) with ã 7→ w,

where cj(p)’s are given by (6.32). Then the term–by–term integration over w leads to the

small–ã expansion of ReδL̃0:

ReδL̃0(ã; p)
(exp.) = c1(p)

∫ π/2

0

dw exp(−w/ã)w + c3(p)

∫ π/2

0

dw exp(−w/ã)w3 + · · ·

=
[
c1(p)1! ã2 + c3(p)3! ã4 + · · ·

]

−ã exp
(
− π

2ã

) [
c1(p)

(π
2

)
+ c3(p)

(π
2

)3

+ · · ·
]

+O
(
ã2 exp[−π/(2ã)]

)
. (H.7)

Incidentally, the coefficient at ã exp[−π/(2ã)], written as an infinite sum, is just the value

of the Borel transform at w = π/2 [cf. remark following Eq. (6.52)]:

[
c1(p)

(π
2

)
+ c3(p)

(π
2

)3

+ · · ·
]

=

(
2

π

)[(
2

π

)2

− 1

3
(1−p2)

]
. (H.8)

The coefficients of terms O (ã2 exp[−π/(2ã)]) can be obtained in an analogous manner,

by using derivatives of the Borel transform with respect to w at w = π/2. Expressions

(H.7)–(H.8) show explicitly the following: In the small–ã expansion of ReδL̃0 of (6.26),

in addition to the usual perturbation expansion part (6.31) that is analytic at ã=0, we

obtain formally also terms ∼ãn exp[−π/(2ã)] which are nonanalytic at ã = 0. One might

suspect that such terms could possibly be of nonperturbative origin, and below we will

show that they are not. More specifically, we will show that they are an artifact of the

abruptness of the IR cutoff and that they are de facto not there, in the sense that they

disappear when we consider instead of ReδL̃0 its numerical equivalent, i.e., the ε→+0
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limit of the left–hand side of (H.6). To show this, we have to expand the latter expression

[at ε 6=0 – i.e. (H.1)] around ã=0. For that, we first Taylor–expand the regulator ρε(w)

(H.4), which is analytic everywhere, 1 in powers of w for small ε:

ρ̃ε(w) = ρ̃ε(0)− w ε

2

(
2

π

)3

− · · · − wn ε

2

(
2

π

)n+2

− · · ·+O(ε3) , (H.9)

ρ̃ε(0) = 1− 2

π
ε+O(ε3) . (H.10)

The other part of the integrand in (H.1), without the exponent, is the Borel transform

whose small–ã expansion is (6.50) with ã 7→ w. Combining this and (H.9)–(H.10), we

obtain after some straightforward algebra 2 the small–ã expansion of (H.1) around ã=0

for small ε:

ReδL̃(P.)
ε (ã; p)(exp.) =

[
c1(p)1! ã2 + c3(p)3! ã4 + c5(p)5! ã6 · · ·

]
(H.11)

−ε1
2

(
2

π

)3
{
c1(p)2! ã3 +

(
2

π

)
c1(p)3! ã4

+

[(
2

π

)2

c1(p) + c3(p)

]
4! ã5 +

[(
2

π

)3

c1(p) +

(
2

π

)
c3(p)

]
5! ã6

+

[(
2

π

)4

c1(p) +

(
2

π

)2

c3(p) + c5(p)

]
6! ã7 + · · ·

}
+O(ε2) .

Here we see explicitly that the small–ã expansion of ReδL̃(P.)
ε (ã; p) of (H.1) at nonzero

ε exists and that this function is analytic there, having no nonanalytic terms ∼
exp(−const./ã), in contrast to the expansion of ReδL̃0 where ε was set equal to zero

exactly (i.e., inside the integral). Further, expansion (H.12) goes over into the usual

perturbation expansion δL̃pert. (6.31) when ε→+0.

These considerations thus lead us to the following conclusions:

• The perturbative part of the induced Lagrangian density, ReδL̃0 as defined in (6.26),

has an abrupt IR cutoff at w=π/2, and it is numerically equal to the corresponding

expression with an infinitesimally softened IR cutoff – cf. left–hand side of (H.6).

• The small–ã expansion of ReδL̃0(ã; p) reproduces the usual perturbation expansion

(6.31) plus nonanalytic terms ∼ãn exp(−const./ã) [cf. (H.7)].

1In contrast to the abrupt cutoff when ρ0(w)=1 for w<(π/2), and ρ0(w)=0 for w>(π/2).
2We again integrate term–by–term; and we repeatedly use the identity:

∫
∞

0
du exp(−u)un = n!.
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• The small–ã expansion of the corresponding expression (H.1) with a softened IR

cutoff (ε 6= 0) yields no nonanalytic terms; when the softening of the IR cutoff

becomes infinitesimal (ε→+0, ε 6=0), the expansion becomes identical with that of

the usual perturbation expansion (6.31).

• The above points show that the nonanalytic terms in the small–ã expansion of

ReδL̃0(ã; p) are only an artifact of the abruptness of the IR cutoff (the cutoff reg-

ulator becomes a nonanalytic function of the proper time w) and are thus not of

a nonperturbative physical origin. ReδL̃0(ã; p) should be reinterpreted as the limit

with the infinitesimally softened IR cutoff [the left–hand side of (H.6)], the latter

being numerically the same but its small–ã expansion having no nonanalytic terms.
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