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Zusammenfassung

Die beobachtete Baryonasymmetrie des Universums findet eine elegante

Erklärung im Rahmen des Szenarios der Leptogenese. Wir analysieren ver-

schiedene Aspekte dieses Szenarios, wobei wir den Einfluss von Störungen

der Energiedichte und der Metrik der Raum–Zeit auf die Erzeugung der

Lepton- und Baryonasymmetrie mit einbeziehen. Wir betrachten ferner

die Umwandlung der Leptonasymmetrie in eine Baryonasymmetrie und un-

tersuchen die Effekte, die damit zusammenhängen, dass die Leptonasym-

metrie von Null verschiedene chemische Potentiale der anderen Teilchen-

sorten induziert. Es wird eine Abschätzung für die obere Grenze der Lep-

tonasymmetrie im Standardmodell und im durch die Superstring–Theorie

inspirierten E6–Modell gemacht, und die für die Leptogenese relevanten

Eigenschaften dieses Modells werden im Detail diskutiert. Das Szenario

der Leptogenese sagt von Null verschiedene Massen der Neutrinos vorher,

die in Oszillations–Experimenten gemessen worden sind. Wir berechnen die

für die Interpretation der experimentellen Resultate relevanten Wirkungs-

querschnitte für die kohärente Pionerzeugung durch Neutrinostreuung an

Kernen mittels geladener und neutraler Ströme.

Abstract

The observed baryon asymmetry of the Universe is elegantly explained in

the framework of the baryogenesis via leptogenesis scenario. We analyze

various aspects of this scenario including the influence of perturbations of

the energy density and space–time metric perturbations on the generation

of the lepton and baryon asymmetries. We also consider conversion of

the lepton asymmetry into the baryon asymmetry and investigate the ef-

fects associated with the fact, that the lepton asymmetry induces nonzero

chemical potentials of the other species. We estimate upper bound on

the asymmetry in the Standard Model and in the superstring inspired E6

model. Properties of this model relevant for leptogenesis are discussed in

detail. The baryogenesis via leptogenesis scenario predicts nonzero masses

of the neutrinos, measured in the oscillation experiments. We calculate

cross sections of the charged and neutral current coherent pion produc-

tion by neutrino scattering off nuclei relevant for the interpretation of the

experimental results.
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1

Introduction

The observed baryon asymmetry of the Universe is one of the most intriguing problems of

particle physics and cosmology. The baryon–to–photon ratio YB has been recently measured by

the Wilkinson Microwave Anisotropy Probe (WMAP) satellite to unprecedented precision. The

reported value for YB is [1]

YB =
nB
nγ

= 6.5+0.4
−0.3 · 10−10

where nB = nb − nb̄ and nγ are the number densities for the net baryon number B and for

photons at the present epoch, respectively.

As is commonly accepted, the early Universe passed through a phase of accelerating expansion

(the inflationary epoch) that was driven by a negative–pressure vacuum energy density [2, 3].

Any preexisting baryon number asymmetry was diluted to an unobservable small value during

inflation [4]. Consequently the observed asymmetry has been generated dynamically after the

inflation.

The cosmological baryon excess can be generated dynamically, provided that the three

Sakharov conditions [5] are fulfilled:

– baryon (or baryon minus lepton) number non–conservation;

– C and CP violation;

– and deviation from thermal equilibrium.

A number of scenarios based on various models has been considered in the past. The Standard

Model itself could in principle be a good candidate, as it contains all the necessary ingredients.

However, both CP violation in the quark sector and deviation from thermal equilibrium during

the electroweak phase transition are insufficient to reproduce the observed baryon asymmetry.

In the supersymmetric extensions of the Standard Model baryon asymmetry can in principle

be generated by the Affleck–Dine mechanism [6]. In this scenario the baryon asymmetry is

generated due to coherent oscillations of flat directions around the minimum of the potential,

provided that the former ones are made of scalar quarks and carry baryon number. However,
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it is still not clear under which conditions this mechanism can generate a baryon asymmetry of

the requested magnitude.

The discovery of anomalous electroweak processes [7, 8], violating baryon (B) and lepton (L)

numbers but conserving the difference B−L, led to the widely adopted scenario of baryogenesis

via leptogenesis. According to the scenario of leptogenesis suggested by M. Fukugita and T.

Yanagida [9], lepton number asymmetry is generated at a GUT scale in the decay of heavy

Majorana neutrinos. Since the Majorana mass term violates lepton number by two units, the first

Sakharov condition is fulfilled already at classical level. Baryon number is violated at quantum

level by the anomalous electroweak processes, which are sufficiently fast at high temperature

and convert the lepton asymmetry into the baryon asymmetry. Complex couplings of the heavy

Majorana neutrino to the conventional neutrinos and the Higgs ensure, that the second Sakharov

condition is fulfilled. Technically the CP asymmetry arises due to interference of tree–level and

one–loop–vertex [9] and tree–level and one–loop–self–energy [10] diagrams. At temperatures of

the order of the Majorana neutrino mass, T ∼ M ∼ 109 − 1011, GeV the Universe expands

rapidly, so that the slowly decaying heavy neutrinos are out of kinetic equilibrium. Thus, the

third Sakharov condition is also fulfilled in the scenario under consideration.

In this thesis several aspects of the Fukugita–Yanagida scenario are studied. In chapter 1,

the influence of the effects of general relativity on the generation of lepton and baryon asymme-

tries is investigated. In particular, we investigate how the energy density carried by the heavy

decaying particles affects the expansion rate of the Universe and, in turn, the generation of

a baryon asymmetry. As the early Universe was to a very good approximation homogeneous

and isotropic, it became a common practice to completely neglect the primeval perturbations of

energy density and metric created by quantum fluctuations in the inflaton field. These primeval

perturbations, however, were of utmost importance for the subsequent formation of large scale

structure. The quantitative parameter which determines the degree of deviation from thermal

equilibrium is the ratio of the heavy neutrino decay width to the expansion rate of the Universe.

Since the expansion rate in regions of higher or smaller energy density differs from that of the

homogeneous background, lepton and baryon asymmetries become functions of space coordi-

nates – an interesting effect that has been ignored altogether in the previous calculations. In

the regions of higher energy density the generation of lepton and baryon asymmetries has been

slightly more efficient than in the regions of lower energy density. Thus, even before structure

formation has started at a temperature T ∼ 3 · 104 K, the seeds of the future galaxies and other

large scale structures contained higher–than–average number of baryons and leptons.

Sphaleron transitions, which are in thermal equilibrium in a wide range of temperatures,

convert the lepton asymmetry, generated in decay of the heavy neutrinos, into baryon asymmetry
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in such a way, that the sum 3B+L is zero for left–handed fermions. Together with the sphaleron

processes fast decay, inverse decay and scattering processes ensure, that all particle species

carry an asymmetry, which is proportional to the lepton asymmetry with the coefficients of

proportionality being determined by the particle content of the model. This usually neglected

effect leads to a modification of coefficients of individual terms in the Boltzmann equations.

The rapidness of the sphaleron transitions also implies, that the Boltzmann equations describe

evolution of the lepton number, not evolution of the B−L, as has been tacitly assumed by some

of the researches in this field.

We also solve the system of Boltzmann equations for the lepton asymmetry in the Stan-

dard Model supplemented by three generations of heavy Majorana neutrinos and compare the

numerical estimates with the experimental observations.

The Standard Model is very likely to be a part of a more fundamental theory. The exotic

interactions, which are strongly suppressed at low energies, will certainly affect the generation of

the lepton and baryon asymmetries at the scales of order of 1010 GeV. It is therefore of interest

to consider leptogenesis in the superstring inspired E6 model, which is discussed in chapter 2.

At present, the superstring theory and its latest formulation, M–theory, is the most promising

candidate for a truly unified theory of fundamental interactions. Apart from the fact that the

model naturally follows from breaking of the superstring E8 ⊗ E8, it has also several features

relevant for low–energy phenomenology. In particular the model allows chiral representations,

global gauge anomalies are automatically cancelled, and its fundamental representation contains

the fifteen known fermions along with two Higgs–like doublet and a right–handed neutrino

[11, 12, 13, 14]. We discuss in detail the particle content of the model along with possible charge

assignments, as well as constraints coming from the proton stability and the requirement of

dynamical breaking of B − L symmetry, which is a gauge symmetry in this model.

In chapter 3 we consider leptogenesis in the superstring inspired E6 model. We develop a

system of Boltzmann equations for the heavy Majorana (s)neutrinos and (s)leptons and solve

the equations numerically. Supersymmetric leptogenesis has already been considered by several

authors [15, 16]. The difference from the previous calculations arises primarily from the extended

particle content of the model under consideration. In particular, the E6 model contains three

generations of Higgs doublets and new quarks coupled to the Majorana neutrinos.

An exciting feature of baryogenesis via leptogenesis scenario is that it predicts a nonzero mass

of the conventional neutrino. After breaking of the electroweak symmetry the neutrino receives

a small Majorana mass through the see–saw mechanism. Recent SuperKamiokande [17, 18] and

SNO [19, 20, 21, 22, 23] experiments confirmed, that the conventional neutrinos indeed have

nonzero masses. High precision measurements of neutrino masses and mixing angles in the
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forthcoming experiments require good understanding of interactions of the neutrino beam with

the target material. Recent measurements of the K2K collaboration [24] revealed a discrepancy

between the theoretical predictions for the cross section of coherent scattering of low energy

neutrinos and the experimental results. Chapter 4 is devoted to a discussion of coherent pion

production by neutrinos and the calculation of the corresponding cross section using PCAC [25].

It is shown, that a reliable calculation of the cross section is possible provided that specific

kinematic cuts are introduced. The obtained results are in agreement with the experimental

measurements.

In appendix A several standard formulas for one–loop integrals are summarized. In appendix

B we introduce spinor notation and compare properties of Weyl, Dirac and Majorana neutrinos.

In appendix C we collect general formulas useful for calculation of reduced cross sections and

reaction densities of decay as well as of 2 ↔ 2 and 2 ↔ 3 scattering processes. Finally, appendix

E contains the kinematics of 2 → 3 scattering with the mass of the final lepton taken into account,

which is relevant for the calculation of coherent neutrino–nucleus scattering cross section.
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Chapter 1

Leptogenesis in nonuniform Universe

According to the third Sakharov condition a successful generation of lepton and baryon asym-

metries requires a deviation from thermal equilibrium. One of the quantities parametrizing the

degree of deviation from thermal equilibrium is the ratio of the Majorana neutrino decay width

to the expansion rate of the Universe. Whereas the former is determined by the field theoretical

model used, the latter one is determined by the equations of general relativity.

As the early Universe was to a very good approximation homogeneous and isotropic, it

became a common practice to completely neglect the primeval perturbations of energy density

and metric created by quantum fluctuations in the inflaton field. These primeval perturbations,

however, were of utmost importance for the subsequent formation of large scale structure. In this

chapter we analyze the influence of the associated effects of general relativity on the generation

of lepton and baryon asymmetries.

In section 1.1 we review in some detail general features of the baryogenesis via leptogenesis

mechanism suggested by M. Fukugita and T. Yanagida [9] and specify the model. The analysis

presented in this chapter relies only on general relativity and can therefore be applied to a wide

range of models. To be specific, however, we illustrate our results using the Standard Model

supplemented by three heavy Majorana neutrinos with non–degenerate masses.

The Boltzmann equation in the inhomogeneous Universe with linear perturbations of the

space–time metric taken into account is derived in section 1.2.

In section 1.3 we derive an explicit form of the collision terms, which contribute to generation

and washout of the lepton asymmetry in the Standard Model.

The energy density carried by the heavy decaying particles affects the expansion rate of the

Universe and the time development of the scale factor, thus affecting the generation of lepton and

baryon asymmetries. The role of the associated effects in the homogeneous Universe is considered

in section 1.4. Results of this section prove to be useful for the analysis of leptogenesis in the

inhomogeneous Universe.
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Since the expansion rate of the Universe in regions of higher or smaller energy density differs

from that of the homogeneous background, lepton and baryon asymmetries become functions

of space coordinates. As is argued in section 1.5, in the regions of higher energy density the

generation of lepton and baryon asymmetries has been slightly more efficient than in the regions

of smaller energy density. Consequently, even before the structure formation began after the

onset of the matter–dominated epoch, seeds of the future galaxies and other large scale structures

contained higher–than–average numbers of baryons and leptons.

Finally, in section (1.6) we review conversion of the lepton asymmetry into the baryon asym-

metry by sphalerons, express chemical potentials of the Standard Model species through the

chemical potential of the leptons and give numerical estimates for the theoretical upper bound

on the baryon asymmetry of the Universe.

1.1 The baryogenesis via leptogenesis scenario

In the original paper “Baryogenesis Without Grand Unification” M. Fukugita and T. Yanagida

[9] suggested a simple and elegant scenario of baryogenesis via leptogenesis reviewed in this

section.

One difficulty which arises whenever one tries to explain the observed baryon asymmetry

within the Standard Model is associated with the fact, that all the SM species apart from the

neutrino are electrically charged. A direct violation of baryon number would inevitable lead to

nonzero electric charge of the Universe in direct opposition to results of observational cosmology.

Even the neutrino cannot be used for the generation of the asymmetry: although its electric

charge is zero, the second component of the SUL(2) doublet it belongs to – the electron – is

a charged particle. Thus, despite its tremendous success in explaining results of numerous low

energy experiments, the Standard Model should be extended.

The Standard Model neutrino is a massless Weyl fermion, whereas the phenomenon of neu-

trino oscillation recently confirmed by the SNO collaboration [20] points out, that neutrinos

have small but nonzero masses. The generation of the neutrino mass through renormalizable

interactions requires an extension of the Standard Model by a right–handed neutrino – a gauge

singlet coupled to the known particles (leptons and the Higgs) only via Yukawa interactions. If

one also introduces a Majorana mass term for the right–handed neutrino, then after the sponta-

neous breaking of the electroweak symmetry the see–saw mechanism generates naturally small

Majorana masses of the conventional neutrinos. The Lagrangian of the model reads

L = LSM +N(L̄λ̂†H̃) − 1

2
N̄M̂N c + h.c. (1.1)

where L stands for the lepton doublets, H̃ = iσ2H
† is the charge conjugate Higgs doublet, and
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N are components of the physical Majorana neutrino Ψ = 1√
2
(N +N c) in the four–component

notation. Without loss of generality the right–handed neutrino mass matrix M̂ can be chosen

to be real and diagonal. The Yukawa coupling matrix λ̂ has off–diagonal complex entries.

Now that the model is specified, let us discuss in some detail fulfillment of the three Sakharov

conditions and generation of the lepton and baryon asymmetries in this model. A Majorana

fermion is a truly neutral particle1, so that its lepton number is equal to zero. Therefore lepton

number is violated (by one unit) in decay of the right–handed neutrino into leptons and the

Higgs already at tree level, and the first Sakharov condition is automatically fulfilled. The

Ψi

H

Lj

Ψi

L

H

Ψ

Lj

H

Ψi

L

H

Ψ

Lj

H

Figure 1.1: Tree–level and one–loop–level diagrams of the right–handed neutrino decay.

interference of tree–level and one–loop–vertex [9] and tree–level and one–loop–self–energy [10]

diagrams leads to generation of CP asymmetry, so that the second Sakharov condition is fulfilled

as well. Due to violation of CP rate of decay into leptons differs from the rate of decay into

antileptons, so that a nonzero net lepton number is generated. Lepton number is also violated by

Ψ
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γ
(1)
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Figure 1.2: Scattering processes violating lepton number by two units.

two units in two–body scattering processes mediated by the right–handed neutrino and by one

H
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Figure 1.3: Scattering processes violating lepton number by one unit.

unit by the Higgs mediated scattering processes. The two–body scattering processes violating

lepton number tend to washout the lepton asymmetry generated in decays of the right–handed

neutrino, and in thermal equilibrium the asymmetry would be washed out completely. However,

1This means in particular, that a bare Majorana mass term can be introduced for none of the Standard Model

species as those transform nontrivially under the SUC(3) ⊗ SUL(2) ⊗ UY (1) gauge group.
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at temperatures of the order of the right–handed neutrino mass the Universe expands very

fast, so that the slowly decaying heavy neutrinos are out of kinetic equilibrium, and the third

Sakharov condition is fulfilled as well.

From the discussion so far, the following picture emerges. After inflation is over and the

Universe reheats, all the species2 are in equilibrium and the net lepton number is equal to zero.

As the temperature decreases, the right–handed neutrinos of the heaviest generation decay and

produce an asymmetry, which is immediately washed out by scattering processes mediated by

the right–handed neutrinos of all three generations. As the temperature drops below the mass of

the lightest right–handed neutrino, the asymmetry produced in its decay is no longer completely

washed out, because the scattering processes are suppressed at low temperature. By the time

the temperature drops well below the lightest right–handed neutrino mass, almost all the heavy

particles have decayed, so that no new asymmetry is generated, and the scattering processes

are strongly suppressed, so that the asymmetry is not washed out. Thus the lepton number in

comoving volume reaches an asymptotic value.

Of course we still need a mechanism able to convert the generated lepton asymmetry into

baryon asymmetry. Although all the perturbative Standard Model processes are known to con-

serve lepton and baryon numbers, these are only “accidental” symmetries of the model and are

violated by nonperturbative anomalous electroweak processes [7]. As the anomalous processes

are induced by the nontrivial structure of the SUL(2) vacuum and do not violate the gauge

symmetry of the Standard Model, the electric charge is automatically conserved. The anoma-

lous electroweak processes are rapid at sufficiently high temperatures. Theoretical estimates [26]

show, that in the standard Big Bang scenario their rate exceeds the rate of expansion of the

Universe at temperatures 102 GeV ≤ T ≤ 1012 GeV, i.e. down to the electroweak phase transi-

tion. After the phase transition the Standard Model species acquire masses. As the temperature

further decreases, fermions of the third and second generation decay and the asymmetry is trans-

ferred to the electrons and light baryons. Part of the asymmetry is carried by the light neutrinos

of all three generations. As these neutrinos are low energetic, they are very difficult to observe.

1.2 Boltzmann equation in the early Universe

Strictly speaking, a self–consistent calculation of the lepton number asymmetry generated in

the decay of the heavy Majorana requires use of the Kadanoff–Baym equation [27]. In practice,

however, solving the Kadanoff–Baym equation for a realistic system is hardly possible due to

the complexity of the task. The common approach in this situation is to approximate the

2This statement is true provided that the reheating temperature is higher than the Majorana mass. Otherwise

the right–handed neutrinos are out of equilibrium after the reheating.
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Kadanoff–Baym equation by the Boltzmann equation. This is achieved by employing a Wigner

transformation, a gradient expansion, the Kadanoff–Baym ansatz and by using the quasi–particle

approximation [28]. These approximations are motivated by equilibrium considerations, and

therefore one can safely apply the Boltzmann equations only to systems which are sufficiently

close to thermal equilibrium.

The general form of the Boltzmann equation reads [29, 30]

df

dλ
= Ĉ[f ] (1.2)

where λ is the affine parameter along a geodesic, and Ĉ the collision operator acting on the

one–particle phase space distribution function f . As the Boltzmann equation treats particles

as on–shell states, f is a function of space–time coordinates xα and three components of the

particle momentum pi, or, alternatively, the particle kinetic energy E and the unit vector of the

momentum direction p̂i. Thus we can rewrite the left–hand side of (1.2) using the chain rule

∂f

∂x0
+
∂f

∂xi
P i

P 0
+
∂f

∂E

1

P 0

dE

dλ
+
∂f

∂p̂i

1

P 0

dp̂i
dλ

=
Ĉ[f ]

P 0
, (1.3)

where the definition Pµ = dxµ

dλ has been used. The dynamics of the contra– and covariant

components of the four–momentum is determined by the geodesic equations [31]

dPµ

dλ
+ ΓµαβP

αP β = 0,
dPµ
dλ

− 1

2

∂gβγ
∂xµ

P βP γ = 0 (1.4)

Experimental observations indicate, that the early Universe was to a very good approximation

homogeneous and isotropic with an amplitude of density perturbations of order of 10−4−10−5 [4].

The metric for a space–time with a homogeneous and isotropic spatial section is the maximally–

symmetric Friedman–Robertson–Walker metric, which in a flat Universe can be written in the

form

g0
µν = diag(1,−R2,−R2,−R2), (1.5)

where R is the cosmic scale factor. It depends only on time and is independent of the spatial

coordinates.

Perturbations of the metric can be decomposed into tensor, vector and scalar components.

The latter are most important because they exhibit gravitational instability and may lead to

the formation of structure in the Universe. Scalar perturbations are characterized by four scalar

functions [32] φ, ψ, B and E

δgµν =





2φ −B;i

−B;i 2R2 (ψδij − E;ij)



 (1.6)

where
∑

i E;ii = 0. To make a comparison with the existing literature easier we will also use

the hij ≡ δgij notation in what follows. A nonzero shift function B;i means, that comoving
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worldlines and worldlines orthogonal to hypersurfaces of constant time are not collinear and we

are dealing with a locally nonorthogonal coordinate system [30]. This complication is avoided

here by setting g0i = B;i = 0.

In this case the square of the particle kinetic energy is given by E2 = P 0P0, and the time

co– and contravariant components of four–momentum are related to energy by P0 = E
√
g00 and

P 0 = E/
√
g00. Using the equations of geodesics and the expression for the Christoffel symbols

in terms of the metric coefficients [31] we find for the derivative of energy

1

P 0

dE

dλ
=
∂gmn
∂x0

PmPn

2E
− ∂

√
g00

∂xn
Pn (1.7)

where summation over the indices m and n is assumed.

Let us now consider the derivative of the unit momentum vector

1

P 0

dp̂i
dλ

=
1

P 0

d

dλ

(

pi
p

)

=
1

P 0

p̂i
2p2

(

1

p̂2
i

dp2
i

dλ
− dp2

dλ

)

, (1.8)

where pi and p are the components and the absolute value of the physical momentum respectively.

In the case under consideration the components of physical momentum are related to spatial

components of four–momentum by p2
i = −P iPi (no summation over i). Using the geodesic

equations (1.4) once again we find

1

P 0

dp2
i

dλ
= − 1

2

(

∂g00
∂xi

P iP 0 +
∂g00
∂xm

gimPiP
0 − 2

∂gmn
∂x0

gimPiP
n

)

− 1

2P 0

(

∂gkn
∂xi

P iP kPn +
∂gkn
∂xm

gimPiP
kPn − 2

∂gmn
∂xk

gimPiP
kPn

)

(1.9)

where the summation over m, n and k is assumed. The derivative of the particle momentum

squared p2 is obtained from (1.9) by summation over i. After the summation, the last three

terms in (1.9) drop out, and the first two terms become equal. Since E2 = p2 +m2, the resulting

expression differs from (1.7) only in an overall factor 2E.

Before substituting (1.7) and (1.8) into the Boltzmann equation (1.3) one has to express com-

ponents of four–momentum in terms of energy and momentum direction vector. As can be easily

checked, to leading order in small perturbations the contravariant components of momentum Pα

are related to the physical components of the momentum pi and energy E by [33]

P 0 = E(1 − φ), P i =
1

R

(

δim +
δgim
2R2

)

pm (1.10)

Substituting (1.10) into (1.7) and expanding components of metric we obtain

1

P 0

dE

dλ
= −

(

φ,n
pp̂n
R

+
p2

E

[

H − ψ̇ + Ė;nnp̂
2
n

]

)

, (1.11)

where H ≡ Ṙ/R is the Hubble parameter, ψ̇ ≡ ∂ψ/∂x0 and φ,n ≡ ∂φ/∂xn.



1.2. Boltzmann equation in the early Universe 11

Substituting (1.10) into the expressions for the derivatives of p2
i and p2 and collecting all the

terms, we obtain for the derivative of the momentum unit vector

1

P 0

dp̂i
dλ

=
∑

n

E2φ,n + k2ψ,n
RkE

(p̂np̂i − δin) − p̂i(Ė;ii − Ė;nnp̂
2
n) (1.12)

It is straightforward to check that this expression is consistent with the
∑

i p̂i
dp̂i

dλ = 0 condition.

The isotropy and homogeneity of space–time in the FRW model of the Universe implies,

that the zero–order phase space distribution functions are independent of spatial coordinates

and the direction of momentum vector, so that ∂f
∂xi and ∂f

∂p̂i
are first order quantities. Since the

derivative of the momentum direction vector (1.12) is also of first order, the last term in (1.3)

can be omitted. For the same reason we can neglect first order corrections to the P i

P 0 factor in

the second term of (1.3).

So far, we have specified only one gauge fixing condition, namely B = 0, so that the above

analysis is valid for a wide class of gauges including the widely used longitudinal and synchronous

gauges. The latter one is obtained by setting φ = 0. In this gauge the Boltzmann equation takes

the form3

∂f

∂τ
+
∂f

∂xi
pp̂i
E

− ∂f

∂E

p2

E

(

H − ψ̇ + Ė;iip̂
2
i

)

=
Ĉ[f ]

E
(1.13)

For the reasons given above, in the FRW Universe equation (1.13) simplifies to

∂f

∂τ
−H

p2

E

∂f

∂E
=
Ĉ[f ]

E
(1.14)

As we are interested only in the total number of particles, it is convenient to integrate the

Boltzmann equation (1.14) over the phase space. The integration of the first term gives the time

derivative of the particle number density

n =
g

(2π)3

∫

fdΩp (1.15)

where g is the number of spin degrees of freedom. The integration of the second term yields

g

(2π)3

∫

p2

E

∂f

∂E
d3p =

g

2π2

∫

∂f

∂(p2)
p4dp = −3n (1.16)

As can easily be verified, the sum of the two terms reads

1√−g3
∂

∂τ
(n
√−g3) =

∫

C[f ]

E
dΩp (1.17)

where g3 is the determinant of the spatial part of the metric (1.5),
√−g3 = R3. From equation

(1.17) it follows, that in the absence of interactions the particle number in a comoving volume

Y ≡ n
√−g3, where n stands either for number density of leptons or Majoranas, remains constant.

3Let us also note, that in the longitudinal gauge, which is obtained by setting E to zero, in the absence of

anisotropic stress ψ = φ [32], and the Boltzmann equation reverts to that derived in [29].
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Although the integrand on the right–hand side of the Boltzmann equation for the lepton

asymmetry contains collision terms corresponding to all possible decay and scattering processes,

it is clear that after integration over the phase space only processes changing lepton number

remain. The dynamical explanation is as follows. Consider a small volume dV . In the FRW

Universe, the macroscopic gas velocity is zero and consequently only processes which take place

inside this volume can change the number of leptons in dV . All perturbative SM reactions

are known to conserve lepton number. Therefore these processes are only capable of changing

the phase space distribution of the SM species. At temperatures of the order of the Majorana

neutrino mass the rate of the Standard Model interactions is higher than the expansion rate of

the Universe, so that all the SM species are in kinetic equilibrium at this stage. This implies

in particular, that their dynamics is sufficiently well described by equations of hydrodynamics.

As is known, for an equilibrium system in an external static field left– and right–hand sides of

Boltzmann equations vanish. Although in the expanding Universe the right–hand side of the

Boltzmann equation does not vanish exactly, for species sufficiently close to equilibrium, as it

is the case for the SM states, the deviation from zero is negligibly small. In other words, if we

substitute the (equilibrium) distribution function determined by the fast interactions into the

right–hand side of the Boltzmann equations with all possible SM processes taken into account, it

will vanish after integration over the phase space. Due to the smallness of the Yukawa couplings

the heavy neutrino decay rate is smaller (or at least not much bigger) than the expansion rate of

the Universe. Therefore the collision terms corresponding to processes violating lepton number

by one (the decay and the Higgs mediated scattering) or two units, with the Majorana neutrino

in initial or intermediate state, do not vanish after integration over the phase space.

A similar argumentation is also valid for the Boltzmann equation for the Majorana neutrino

number density. In this case the shape of the distribution function is determined by relatively

fast elastic scattering processes of Majorana neutrinos off leptons and the Higgs. The commonly

used ansatz for the Majorana neutrino distribution function is

fΨ(τ, E, T ) = g(τ)feqΨ (E, T ), (1.18)

where τ is time, T is the temperature4, and E is the particle energy. After integration over

the phase space, collision terms corresponding to the fastest processes determining the phase

space distribution function vanish and only terms corresponding to relatively slow decay and

scattering processes changing number of Majoranas remain.

4It is important to note, that the introduction of macroscopic parameters like temperature and gas velocity

is possible because the Standard Model species, which carry most of the energy density of the Universe, are in

thermal equilibrium. This implies in particular, that phase space distribution of the leptons, quarks and the Higgs

is described by the corresponding equilibrium distribution functions. Note also, that the third Sakharov condition

requires time scale of variation of the macroscopic parameters to be smaller than the Majorana lifetime.
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In the nonuniform Universe the situation is more complicated. In particular, due to the

nonzero macroscopic particle flow, characterized by a macroscopic gas velocity ~u1, the lepton

number asymmetry in a volume element dV is no longer conserved even if the lepton number

violating reactions are frozen. The nonzero gas velocity also implies, that the single particle

distribution function f is not isotropic in the phase–space. In addition, the gravitational field

induces an anisotropy of the single particle distribution function in the coordinate space5. Let

us discuss influence of these effects on the form of the integrated Boltzmann equation. Consider

the second term on the left–hand side of (1.13). Deviation of ∂f
∂xi from zero is induced by the

nonzero gravitational field, and therefore this term, which is expected to be proportional to ∂ψ
∂xi ,

is a first order quantity. The integral of f pp̂i

E over the phase space, which is proportional to ~u1,

is also of first order. Consequently the resulting product, which is proportional to (~u1
~∇ψ), is

of second order and can be neglected6. Analogously, since E is of first order, any higher order

corrections to the integral of the last term in the brackets in (1.13) over the phase space can be

neglected, and it vanishes (recall that the zero–order distribution function is isotropic and that
∑

i E;ii = 0). Collecting the remaining (the first, the third and the fourth) terms we conclude

that the form of the integrated Boltzmann equation in the inhomogeneous Universe coincides

with (1.17) with the determinant of the spatial part of the space–time metric now given (to

leading order) by
√−g3 = R3(1 − 3ψ).

Turning from differentiation with respect to τ to differentiation with respect to x ≡ M1/T ,

where M1 is mass of the lightest Majorana, and using the definition of the particle number

density in the comoving volume, we rewrite the Boltzmann equation (1.17) in a compact form,

applicable both in the homogeneous and inhomogeneous models of the Universe, which will be

used in what follows:
∂Y

∂x
=

√−g3
ẋ

∫

C[f ]

E
dΩp. (1.19)

Boltzmann equations for the lepton asymmetry and the Majorana neutrino number density

should be coupled with the Einstein equations, which determine time dependence of the compo-

nents of the metric and thermodynamic quantities. In the homogeneous Universe these reduce

to one equation for time dependence of the temperature and one equation for the development

of the scale factor, which are discussed in section 1.4. In the inhomogeneous Universe one has

to solve complete set of the Einstein equations for small perturbations of the space–time metric,

temperature and the macroscopic gas velocity, which are discussed in section 1.5.

5A well–known example of such a modification is the distribution of the atmosphere in the Earth’s gravitational

field.
6In the FRW Universe the distribution function is isotropic in both the coordinate and the phase spaces, so that

both ∂f

∂xi and the integral of f pp̂i

E
over the phase space identically vanish. It is clear that in the inhomogeneous

Universe these terms can be at most of first order in perturbations of space–time metric and the gas velocity.
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1.3 Collision terms

The set of the decay and scattering processes contributing to the generation and washout of

the lepton asymmetry in the Standard Model is presented in figures 1.1, 1.2 and 1.3. In the

Friedman–Robertson–Walker Universe the integral on the right–hand side of the Boltzmann

equation (1.19) can be expressed through amplitudes M of these processes [4] in the following

way:

−
∫

dΠadΠb . . . dΠidΠj(2π)4δ4(Pf − Pi)
[

|M|2a+b+...→i+j+...fafb . . . (1 ± fi)(1 ± fj) . . .

− |M|2i+j+...→a+b+...fifj . . . (1 ± fa)(1 ± fb) . . .
]

, (1.20)

where dΠ = d3p
(2π)3

g
2E is the Lorentz–invariant element of phase space, ~p and E are physical

momentum and energy respectively, and g is number of spin degrees of freedom. In the absence

of Bose condensation or Fermi degeneracy the blocking and stimulated emission factors can be

ignored, so that 1 ± f ≃ 1.

Since the collision terms in the Standard Model have been discussed in detail by a number

of researches [34, 35, 36], we will only sketch the derivation here.

Let us first consider the CP violating decay and inverse decay of the Majorana neutrino

depicted in figure 1.1. For the change of the lepton number we obtain

−
∫

dΠΨdΠLdΠH(2π)4δ4(pΨ − pL − pH) ×
[

fΨ|M|2Ψ→LH − fLfH |M|2LH→Ψ

− fΨ|M|2Ψ→L̄ H̄ + fL̄fH̄ |M|2L̄ H̄→Ψ

]

(1.21)

The one–loop vertex and self–energy diagrams induce small corrections to the tree–level decay

amplitude (denoted by M0) |M|2 = |M0|2 (1±ε)
2 , where the plus sign corresponds to the Ψ → LH

and L̄H̄ → Ψ processes, whereas the minus sign to the Ψ → L̄H̄ and LH → Ψ processes. The

factor of one half arises because the Majorana neutirino can decay into both the LH and L̄H̄

pairs. Since interaction rates of the Standard Model species are bigger than the expansion rate

of the Universe, they are in equilibrium at the stage under consideration. Consequently, the

out–of–equilibrium decay of the Majorana neutrino only induces nonzero chemical potentials

of the leptons (chemical potential of the left–handed leptons is denoted by µL), of the Higgs

(denoted by µH), and of the left– and right–handed quarks (denoted by µQ and µU respectively).

Chemical potential of the Majorana neutrino is equal to zero7. At high temperatures it is safe to

use the Maxwell–Boltzmann distribution for both the bosonic and the fermionic species, so that

7As the Majorana neutrino is a truly neutral fermion, in thermal equilibrium its chemical potential is zero.

However, due to CP violation, the decay rate of the Majorana neutrino with left helicity differs from decay rate

of the Majorana neutrino with right helicity, so that if there is a deviation from thermal equilibrium, an effective

chemical potential of the Majorana neutrino can be introduced [37]. This small effect is neglected here.
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the equilibrium distribution function reads f = exp [−(E − µ)/T ]. Taking into account that due

to conservation of energy EΨ = EL + EH (see also discussion in [4]), using the ansatz (1.18),

and keeping the terms linear in the chemical potentials we finally rewrite (1.21) in the form

γΨ
LH

[

ε

(

1 +
nΨ

neqΨ

)

− cℓh
µL
T

]

(1.22)

where cℓhµL ≡ µL + µH is a sum of the chemical potentials of the leptons and the Higgs. The

decay reaction density γΨ
LH , which is defined in (C.1), can be expressed in terms of the tree–level

decay width ΓΨ1 of the lightest Majorana and its equilibrium number density neqΨ1
as

γΨ
LH = neqΨ1

ΓΨ1

K1(x)

K2(x)
, ΓΨ1 =

(λλ†)11
8π

M1, (1.23)

where K1(x) and K2(x) are the modified Bessel functions.

Integrating the Maxwell–Boltzmann distribution function over the phase space we obtain for

the equilibrium number density of the lightest Majoranas

neqΨ1
=

g

2π2
T 3x2K2(x), g = 2 (1.24)

One can also easily calculate the sum (denoted by neqL ) and the difference (denoted by nL) of

the number of leptons and antileptons. Up to terms linear in the chemical potential µL

nL = 2N

(

T 3

π2

2µL
T

)

, neqL = 2N

(

2T 3

π2

)

,
µL
T

=
nL
neqL

, (1.25)

where the factor of 2N is the total number of the left–handed leptons in the model (N generations

of two–component doublets), which arises because the asymmetry is carried by leptons of all the

three generations.

Contribution of the decay and inverse decay processes into change of the number of the heavy

neutrinos is obtained from (1.21) by an interchange of the last two signs, which yields

γΨ
LH

(

1 − nΨ

neqΨ

)

(1.26)

Consider now the first of the two scattering processes depicted in figure 1.2. Since lepton

number is violated by two units in this process, the corresponding contribution into change of

the lepton number reads

−2

∫

dΠLdΠHdΠL̄dΠH̄(2π)4δ(Pf − Pi) ×
[

fLfH |M
′ |2LH→L̄H̄ − fL̄fH̄ |M

′ |2L̄H̄→LH

]

(1.27)

where |M′ |2 = |M|2−|MRIS |2 stands for the Real Intermediate State subtracted scattering am-

plitude. Contribution of real intermediate Majorana neutrino, which has already been accounted

for by the decay and inverse decay processes, is subtracted in order to avoid double counting in
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the Boltzmann equation for the lepton number asymmetry. Expanding the distribution functions

and keeping only the terms linear in the chemical potentials we obtain

− 2

∫

dΠLdΠHdΠL̄dΠH̄(2π)4δ(Pf − Pi) × f0
Lf

0
H [
(

|M|2LH→L̄H̄ − |M|2L̄H̄→LH

)

−
(

|MRIS |2LH→L̄H̄ − |MRIS |2L̄H̄→LH

)

+ cℓh
µL
T

(|M′ |2LH→L̄H̄ + |M′ |2L̄H̄→LH)] (1.28)

where f0 ≡ exp(−E/T ). The unitarity implies [38], that the difference |M|2
LH→L̄H̄

−|M|2
L̄H̄→LH

vanishes after summation over all initial and final states. Since the µL

T ratio is a first order

quantity, we can neglect higher–order contributions to the RIS subtracted scattering amplitudes

in (1.28), so that |M′ |2
LH→L̄H̄

+ |M′ |2
L̄H̄→LH

≈ 2|M′

0|2, where M′

0 stands for the tree–level

scattering amplitude. From physical considerations it is clear, that a scattering mediated by

real intermediate state can be considered as an inverse decay followed by a decay. As has been

discussed above, contributions of the decay and inverse decay processes are proportional to γΨ
LH .

Contribution of the L̄H̄ → Ψ → LH process is proportional to (1+ε)2

4 , whereas contribution

of the LH → Ψ → L̄H̄ process to (1−ε)2
4 (see the discussion below equation (1.21)), so that

the difference of the third and the fourth terms in (1.28), integrated over the phase space and

multiplied by the factor of two, is given by −2εγΨ
LH . A careful calculation [34] confirms this

qualitative result. Therefore (1.27) can be rewritten in the form

−4cℓh
µL
T
γ

′LH
L̄H̄ − 2εγΨ

LH . (1.29)

γ
′LH
L̄H̄

denotes the tree–level reaction density corresponding to the RIS subtracted reduced cross

section (see equations (C.9), (C.18), (D.3) and (D.5))

σ̂
′LH
L̄H̄ =

∑

ij

√
aiaj

4πz
(λλ†)2ij

[

z2

Dij(z)
+

1

Pi(z)

{

z − (z + aj) ln

(

z + aj
aj

)}

(1.30)

+
1

P ∗
j (z)

{

z − (z + ai) ln

(

z + ai
ai

)}

+ 2
z + aj
ai − aj

ln

(

z + aj
aj

)

+ 2
z + ai
aj − ai

ln

(

z + ai
ai

)

]

,

where ai =
(

Mi

M1

)2
and ci =

(

Γi

M1

)2
are dimensionless Majorana neutrino mass and decay width

squared respectively, and z = s
M2

1
is square of dimensionless center of mass energy of the colliding

particles.

Consider now the second of the depicted in figure 1.2 processes violating lepton number by

two units. Proceeding as above we find for the contribution into change of the lepton number

2

∫

dΠLdΠLdΠHdΠH(2π)4δ(Pf − Pi) × [ − fLfL|M|2LL→H̄H̄ + fL̄fL̄|M|2L̄L̄→HH

− fHfH |M|2HH→L̄L̄ + fL̄fL̄|M|2H̄H̄→LL] (1.31)

Taking into account that this process is to one–loop order CP conserving (so that the four

scattering amplitudes are equal to leading order), expanding the distribution functions and
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keeping only the terms linear in the chemical potentials we rewrite (1.31) in the form

−8cℓh
µL
T
γLLH̄H̄ (1.32)

where γLL
H̄H̄

is the tree–level reaction density corresponding to the reduced cross section

σ̂ LLH̄H̄ =
∑

ij

√
aiaj

4π
(λλ†)2ij

[

2

ai − aj
ln

(

ai(z + aj)

aj(z + ai)

)

+
1

z + ai + aj
ln

(

(z + aj)(z + ai)

aiaj

)]

(1.33)

Consider now the depicted in figure 1.3 processes violating lepton number by one unit. These

processes are also to leading order CP conserving, so that it is sufficient to consider only the

tree–level diagrams, whose amplitudes are denoted by M0 in what follows. Contribution of the

ΨL→ QŪ process into change of the number of the leptons is given by

−
∫

dΠΨdΠLdΠQdΠU (2π)4δ(Pf − Pi)|M0|2
[

fΨfL − fQfŪ − fΨfL̄ + fQ̄fU
]

(1.34)

The fast Standard Model process H0 → uR + ūL ensures, that µH = µU − µQ. Expanding the

distribution functions and keeping only the terms linear in the chemical potentials, we rewrite

(3.7) in the form

−2
µL
T

(

nΨ

neqΨ
+ cH

)

γΨL
QŪ , (1.35)

where cH ≡ µH

µL
has been introduced.

The contribution into change of the number of the lightest Majoranas is obtained from (1.34)

by an interchange of the two last signs, which yields

2

(

1 − nΨ

neqΨ

)

γΨL
QŪ , (1.36)

where γΨL
QŪ

is the tree–level reaction density corresponding to the reduced cross section (a1 = 1)

σ̂ΨL
QŪ = 3(λλ†)11

Tr(λuλ
†
u)

4π

(z − a1)
2

(z − ah)2
, ah =

(

mh

M1

)2

(1.37)

The trace over the product of the quark Yukawa couplings is dominated by the top–quark

coupling, and consequently it can be expressed through the top–quark mass Tr(λuλ
†
u)

4π ≃ αwm2
t

2M2
W

,

where αw is related to the fine structure constant by αw = α
sin2 ΘW

.

Contribution of the ΨQ→ LU process into change of the Majorana neutrino number reads

−
∫

dΠΨdΠQdΠLdΠU (2π)4δ(Pf − Pi)|M0|2
[

fΨfQ − fLfU + fΨfQ̄ − fL̄fŪ
]

(1.38)

Using the ansatz (1.18), expanding the distribution functions and keeping only the terms linear

in the chemical potentials we rewrite (1.38) in the form

2

(

1 − nΨ

neqΨ

)

γΨQ
LU (1.39)
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Contribution of this process into change of the lepton number is obtained from (1.38) by an

interchange of the last two signs, which yields

−2
µL
T

(

1 + cu − cQ
nΨ

neqΨ

)

γΨQ
LU , (1.40)

where γΨQ
LU is the tree–level reaction density corresponding to the reduced cross section

σ̂ΨQ
LU = 3(λλ†)11

Tr(λuλ
†
u)

4π

z − a1

z

[

z − 2a1 + 2ah
z − a1 + ah

+
a1 − 2ah
z − a1

ln

(

z − a1 + ah
ah

)]

, (1.41)

and cu and cQ are defined analogously to cH .

Finally, the contribution of the ΨŪ → LQ̄ process into change of the heavy neutrino number

coincides with (1.39), whereas contribution of this process into change of the lepton number is

obtained from (1.40) by the cu ↔ −cQ interchange. The tree–level reduced cross section σ̂ΨŪ
LQ̄

is

given by the same expression as the σ̂ΨQ
LU .

Collecting all the terms and using relations (1.25) and the definition of particle number

density in the comoving volume we obtain a system of Boltzmann equations for the Majorana

and the lepton number densities in the FRW Universe

∂YΨ

∂x
=

√−g3
ẋ

{(

1 − YΨ

Y eq
Ψ

)

[

γΨ
LH + 2γΨL

QŪ + 2γΨQ
LU + 2γΨŪ

LQ̄

]

}

(1.42a)

∂YL
∂x

=

√−g3
ẋ

{

−εγΨ
LH

(

1 − YΨ

Y eq
Ψ

)

− YL
Y eq
L

Yψ
Y eq
ψ

[

2γΨL
QŪ − 2cqγ

ΨQ
LU + 2cuγ

ΨŪ
LQ̄

]

(1.42b)

− YL
Y eq
L

[

cℓhγ
Ψ
LH + 4cℓhγ

′LH
L̄H̄ + 8cℓhγ

LL
H̄H̄ + 2chγ

ΨL
QŪ + 2(1 + cu)γ

ΨQ
LU + 2(1 − cq)γ

ΨŪ
LQ̄

]

}

Equations (1.42) are similar to those discussed in the literature [34, 35, 36] and differ mainly

in the chemical potentials of the quarks and the Higgs being taken into account. Values of the

coefficients cℓh, ch, cq and cu in the Standard Model above the electroweak phase transition are

given by (1.110).

The reaction densities on the right–hand side of (1.42) depend on four real dimensional (the

Majorana neutrino masses and the effective mass of the Higgs) and nine complex dimensionless

(the neutrino Yukawa couplings) parameters. Reaction densities of the decay and the Higgs

mediated scattering processes can be parametrized in terms of the lightest Majorana neutrino

mass, the effective Higgs mass and the so–called effective neutrino mass

m̃1 ≡ (λλ†)11
v2

M1
, (1.43)

where v = 174 GeV is the Higgs expectation value at zero temperature. Reaction densities of

the Majorana mediate processes depend on all the Majorana masses and the Yukawa couplings.

The effective neutrino mass should not be confused with the physical ones. In the scenario

under consideration the conventional neutrinos acquire small masses via the see–saw mechanism.
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The mass eigenstates are obtained by a unitary transformation of the neutrino mass matrix m̂

m̂ij ≈ −
∑

k

λki
v2

Mk
λkj , U †m̂U∗ = −diag(m1,m2,m3). (1.44)

Contributions of the decay and the Higgs mediated processes are proportional to number

of on–shell Majoranas, and rapidly fall off with decrease of temperature. On the contrary, the

Majorana–mediated scattering processes are not strongly suppressed at low temperatures and

play an important role in washout of the lepton number asymmetry. From equation (C.24) it

follows, that at low temperatures (i.e. at large x) the leading contribution to the corresponding

reaction densities comes from the small–z region. Expanding (1.30) and (1.33) around z = 0,

substituting them into (C.24), and using the expression for the physical neutrino masses (1.44)

we find, that contributions of these processes at low temperatures are mainly determined by the

lightest Majorana massM1 and mean square of the physical neutrino masses 3m̄2 = m2
1+m

2
2+m

2
3,

whereas influence of the other parameters is sub–dominant (see [36] for detailes). Values of the

neutrino masses suggested by the results of the oscillation experiments (∆m2
sol)

1
2 ≃ 8 · 10−3 eV

and (∆m2
atm)

1
2 ≃ 5 · 10−2 eV.

Summarizing the above we conclude, that to a first approximation the reaction densities on

the right–hand side of (1.42) are determined by only four parameters: the lightest Majorana

neutrino mass M1, the effective neutrino mass m̃1 (or, alternatively, by the κ), the mean square

of the physical neutrino masses m̄ and the parameter of CP violation ε. As is argued in [36],

for the hierarchical neutrinos (that is, if m3 ≃ (∆m2
atm)

1
2 ≫ m2 ≃ (∆m2

sol)
1
2 ≫ m1) an upper

bound for the latter one reads

|ε| .
3

16π

M1(∆m
2
atm)

1
2

v2
≃ 3

√
3

16π

M1m̄

v2
, (1.45)

where we have taken into account, that for hierarchical neutrinos leading contribution to m̄ is

due to neutrino of the heaviest generation. For M1 = 109 GeV and
√

3m̄ = 5 ·10−2 eV the upper

bound on ε reaches the value ∼ 10−7. For a natural set of parameters the effective neutrino

mass is expected [36] to be in the range m1 6 m̃1 6 m3, which for the hierarchical neutrinos

implies, that m̃1 6
√

3m̄.

Let us now turn to discussion of the right–hand side of (1.19) in a nonuniform model of the

Universe. We assume here, that the decay and scattering amplitudes M are not affected by per-

turbations of the metric; more precisely, we assume, that expressed in terms of physical energy

and momentum the decay and scattering amplitudes keep the same form as in the homogeneous

and isotropic Universe. Under this assumption any variation from the homogeneous case may

only appear after integration over the phase space. Expressed in terms of physical momentum

and energy the invariant element of the phase space [33] dΠ = (−g4)−
1
2
dP1dP2dP3

(2π)3
g

2P 0 , where g4
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is determinant of the metric, takes its conventional form dΠ = d3p
(2π)3

g
2E . As has been argued in

section 1.2, perturbations of the space–time metric induce a nonzero gradient of the phase space

distribution function in the coordinate space and a nonzero macroscopic gas velocity ~u1. In the

absence of the gradient in the coordinate space the modification of the reaction densities should

be independent of direction of ~u1. Consequently, as can be checked by a direct calculation in

some simple cases, the expansion of the reaction densities around ~u1 = 0 should contain only

even powers of ~u1, i.e. terms of second and higher orders, which can be neglected. Modification

of the phase space distribution functions and the reaction densities in the gravitational field

requires a further investigation, and the associated effects are neglected here. In this approx-

imation the right–hand side of (1.42) keeps its form. Thus, to the same approximation, the

system of Boltzmann equations (1.42) is suitable for investigation of the generation of the lepton

asymmetry in both the homogeneous and inhomogeneous models of the Universe.

Equations (1.42) give the lepton asymmetry as a function of the inverse temperature x. If one

wants to compare the time development of the asymmetry in the two models of the Universe, one

has to take into account, that time dependence of the temperature in the nonuniform Universe

differs from that in the homogeneous one. We will return to this point in the next section.

1.4 Leptogenesis in the uniform Universe

Leptogenesis in the flat homogeneous and isotropic Universe has been analyzed by a number

of researchers. We reconsider here their analysis taking into account the contribution of the

Majorana neutrinos to the energy density of the Universe, which modifies the dependence of

the expansion rate and the scale factor on temperature, thus affecting the generation of the

lepton number asymmetry. Results of this section are useful for the analysis of the efficiency of

leptogenesis in the nonuniform Universe.

The metric of the flat homogeneous and isotropic Universe is given by (1.5). To be consistent

with the symmetry of the metric, the total momentum–energy tensor must be diagonal, and by

isotropy the spatial components must be equal. The simplest realization of such a momentum–

energy tensor is that of a perfect fluid characterized by energy density ρ and pressure p:

Tµν = ωuµuν − pgµν , ω ≡ ρ+ p (1.46)

The Einstein equations then reduce to two equations for the scale factor:

3R̈ = −4πGR(ρ+ 3p), RR̈+ 2Ṙ2 = 4πGR2(ρ− p) (1.47)

Eliminating R̈ we obtain the Friedman equation

3Ṙ2 = 8πGR2ρ (1.48)
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Conservation of the momentum–energy tensor, Tµν ;ν = 0, gives the third equation relating the

scale factor, energy density and pressure:

ρ̇+ 3H(ρ+ p) = 0. (1.49)

In the model we consider, energy density ρ and pressure p are sums of two terms. The first

contribution is due to the massless8 species of the Standard Model. As all the Standard Model

processes, including the electroweak reactions, are fast at high temperatures, the SM species are

in thermal equilibrium and are described by either Fermi–Dirac or Bose–Einstein distribution.

Consequently,

ρSM =
g∗π2

30
T 4, pSM =

g∗π2

90
T 4 (1.50)

In the Standard Model the effective number of massless degrees of freedom g∗ = 106.75.

The second contribution is due to three generations of heavy Majorana neutrinos. The third

Sakharov condition requires the heavy neutrinos to be out of equilibrium, so that in order to

calculate their contribution to the total energy one has to solve a coupled system of the Einstein

and the Boltzmann equations. However, if the deviation from thermal equilibrium is small,

which in fact is the condition of applicability of the Boltzmann equation, then it is a sufficiently

good approximation to neglect the deviation from thermal equilibrium in the Einstein equations.

In this case

ρM =
g⋆π

2

30
T 4
∑

i

rρ(xi), pM =
g⋆π

2

90
T 4
∑

i

rp(xi), (1.51)

where xi ≡ Mi

T and g⋆ = 1.75 is the effective number of “massless degrees of freedom” of a

Majorana fermion. The functions rρ(x) and rp(x) are integrals over the Fermi–Dirac distribution

defined as

rρ(x) =
120

7π4

∫ ∞

0

√

z2 + x2
z2dz

exp(
√
z2 + x2) + 1

, (1.52a)

rp(x) =
120

7π4

∫ ∞

0

z2

√
z2 + x2

z2 dz

exp(
√
z2 + x2) + 1

, (1.52b)

and tend to unity as x approaches zero. It is convenient to introduce

gρ = g∗ + g⋆
∑

i

rρ(xi), gp = g∗ + g⋆
∑

i

rp(xi) (1.53)

At temperatures higher than the mass of the heaviest Majorana neutrino (i.e. as x → 0) all

particles can effectively be considered as massless, and both gρ and gp tend to the same limit

8Above the electroweak phase transition the vacuum expectation value of the Higgs is zero and the masses of

all the fermions and gauge bosons are zero. Furthermore, we neglect the so–called effective thermal masses, as

these are smaller than the temperature and can be safely neglected.
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g◦ = g∗ + 3g⋆ = 112. At temperatures lower than the mass of the lightest Majorana neutrino

(i.e. as x→ ∞) both gρ and gp tend to g∗.

Using equations (1.50), (1.51), (1.53) and relation ∂
∂t = ∂x

∂t
∂
∂x we find for the time derivative

of the total energy density

ρ̇ = ẋρ

(

g
′

ρ

gρ
− 4

x

)

(1.54)

where the prime denotes differentiation with respect to x ≡ x1. Combining now equations (1.48),

(1.49) and (1.54) we obtain an explicit expression for the time derivative of x:

ẋ =
H(M1)

x
rẋ, H(M1) ≡

M2
1

MPl

(

4π3g∗
45

)
1
2

, rẋ =

√

gρ
g∗

3 + gpg
−1
ρ

4 − xg′

ρg
−1
ρ

(1.55)

By H(M1) we denote the value of the Hubble parameter at T = M1 in the model with neglected

contributions of the Majorana neutrinos to the energy density of the Universe. At temperatures

lower than the mass of the lightest Majorana neutrino rẋ tends to unity, and the expression for ẋ

takes its conventional form. A plot of the rẋ is presented in figure 1.4.a. It is interesting to note
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Figure 1.4: Ratios of ẋ and
√−g3 in the model with three heavy Majorana neutrinos with masses

M2 =
√

10M1 and M3 = 10M1 to those in the Standard Model.

that rẋ, which is bigger than unity at small x, crosses unity at a finite x and then asymptotically

approaches unity from below as x→ ∞.

As follows from (1.50), at sufficiently high temperatures, when all the species can be consid-

ered as massless, p = ρ
3 and equation (1.49) simplifies to ρ̇ = −4Hρ implying the well–known

solution R = const · T−1. Therefore it is natural to represent the scale factor R as a product of

T−1 and an unknown function rg(x):

R3 = const · T−3 · rg(x) (1.56)

Substituting (1.56) into the Friedman equation (1.48) and using (1.55) we obtain a differential
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equation for rg(x):

r
′

g(x)

rg(x)
=

3

x

[

4 − xg
′

ρg
−1
ρ

3 + gpg
−1
ρ

− 1

]

(1.57)

Its solution satisfying the boundary condition rg(∞) = 1 is given by

rg(x) = exp

(

−3

∫ ∞

x

[

4 − xg
′

ρg
−1
ρ

3 + gpg
−1
ρ

− 1

]

dx

x

)

(1.58)

and is presented in figure 1.4.b. Let us note, that, just like the function rẋ, the product rẋr
−1
g

crosses unity from above at a finite x and then approaches unity from below as x→ ∞.

For computation it is convenient to rewrite the system of Boltzmann equations (1.42) in

terms of dimensionless quantities. To this end we introduce a dimensionless Hubble parameter

H(M1) ≡ H(M1)/M1 and dimensionless reaction densities γ̂ ≡ γ/(M1T
3). Rewritten in terms

of these quantities the system (1.42) takes the form:

∂YΨ

∂x
=
rg(x)

rẋ(x)

x

H(M1)

{(

1 − YΨ

Y eq
Ψ

)

[

γ̂Ψ
LH + 2γ̂ΨL

QŪ + 2γ̂ΨQ
LU + 2γ̂ΨŪ

LQ̄

]

}

(1.59a)

∂YL
∂x

=
rg(x)

rẋ(x)

x

H(M1)

{

−εγ̂Ψ
LH

(

1 − YΨ

Y eq
Ψ

)

− YL
Y eq
L

Yψ
Y eq
ψ

[

2γ̂ΨL
QŪ − 2cqγ̂

ΨQ
LU + 2cuγ̂

ΨŪ
LQ̄

]

(1.59b)

− YL
Y eq
L

[

cℓhγ̂
Ψ
LH + 4cℓhγ̂

′LH
L̄H̄ + 8cℓhγ̂

LL
H̄H̄ + 2chγ̂

ΨL
QŪ + 2(1 + cu)γ̂

ΨQ
LU + 2(1 − cq)γ̂

ΨŪ
LQ̄

]

}

In thermal equilibrium the final lepton asymmetry would be zero. The degree of deviation

from thermal equilibrium is characterized by the ratios of reaction densities of the decay and

scattering processes to the expansion rate of the Universe. In particular, if we neglect the

contribution of the heavy neutrinos to the energy density, i.e. set rg = rẋ = 1 in (1.59), then

the degree of deviation from equilibrium in the decay of the Majorana neutrino is parametrized

by the ratio

κ =
ΓΨ1

H(M1)
≡ m̃1

m∗
, m∗ ≡

8π
5
2

3
√

5
g

1
2∗
v2

MPl
≃ 10−3 eV, (1.60)

As has been argued in [34], the smaller this ratio, i.e. the bigger the deviation from equilibrium

is, the more efficient leptogenesis is. Consequently, an increase of H(M1) would lead to an

increase of the efficiency. The nontrivial dependence of the rẋr
−1
g factor on x effectively modifies

the Hubble parameter. Generalization of the above statement to the case under consideration

would lead us then to the conclusion, that if rẋr
−1
g was bigger than unity for all x, the efficiency

of leptogenesis would increase and vice versa. However, the nontrivial dependence of rẋ and rg

on x results not only in the aforementioned effective modification of κ, but also in a modification

of the equilibrium particle number densities in the comoving volume, Y = rg(nT
−3). Results of

a numerical analysis for various κ are presented in figure 1.5, where we have used M1 = 109 GeV

and
√

3m̄ = 5 · 10−2 eV for evaluation. As initial conditions we have used YΨ(x0) = Y eq
Ψ (x0)

and YL(x0) = 0, where x0 = 10−3. It turns out, that for the chosen masses of the Majorana
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neutrinos the change in the final asymmetry due to the deviation of rẋ(x) from unity is negligibly

small. On the contrary, the nontrivial dependence9 of rg(x) on x results in a visible decrease of

the final nL

nγ
ratio. The interpretation of this somewhat unexpected result is as follows. For all

temperatures rg(x) 6 1 (see figure 1.4.b), and therefore the equilibrium particle number density

in the comoving volume is always smaller than in the case of neglected contribution of the heavy

neutrinos. Consequently, at a given x the same value of Y would correspond in the former case

to a bigger degree of deviation from thermal equilibrium, which is characterized by the Y/Y eq

ratio. Since the washout processes tend to bring the system to equilibrium, the resulting Y (x),

as well as Y (∞), is smaller compared to the case of the neglected Majorana contributions.

Note, that absolute value of the lepton asymmetry in the two models is plotted in figure

1.5 as a function of the dimensionless inverse temperature x. Since contribution of the heavy

neutrinos into the energy density changes the dependence of the temperature on time, the same

x corresponds in the two models to two different values of time. Therefore, in order to compare

the time development of the lepton asymmetry in the two models, one has to consider the

inverse temperature as a function of time. As is clear from figure 1.5, already at moderate x the

asymmetry reaches a constant asymptotic value, so that for comparison of final values of the

asymmetry in the two models the time dependence of the inverse temperature is irrelevant.

One might argue, that the difference in the asymptotic value of the asymmetry in the cases

with contribution of the Majorana neutrino to the energy density neglected and taken into

account can be explained by the smaller initial value of Y 0
ψ = Y eq

ψ in the latter case. It is

therefore instructive to compute the asymmetry using the YΨ(x0) = YL(x0) = 0 initial conditions.

Population of the Majorana neutrinos is created in this case by the scattering and inverse decay

processes. If the Yukawa interactions are weak (corresponds to small κ), they are unable to

produce a thermal population of Majoranas, whereas if the Yukawa interactions are sufficiently

strong (corresponds to large κ), the number of Majoranas almost reaches its equilibrium value.

In the latter case the asymptotic value of the lepton asymmetry is expected to be independent of

the initial conditions. The CP violating inverse decay processes produce an asymmetry, which

obviously has a sign opposite to that in the decay. The lepton asymmetry generated by the

decaying Majorana neutrinos compensates the asymmetry generated in the inverse decay at

some point, so that |YL| turns to zero and then starts to grow.

Results of a numerical analysis with the initial number of the Majoranas taken to be zero

are presented in figure 1.6. Considerable smaller (compare, for instance, the solutions without

contribution of the heavy neutrinos into the energy density taken into account) than in figure

9A multiplication of rg(x) by any constant factor corresponds to a redefinition of the scale factor normalization

and leaves the nL

nγ
ratio unaltered.
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1.5 value of the asymmetry for κ = 1 and κ = 5 is explained by the weakness of the Yukawa

interactions, unable to produce a thermal population of the heavy Majoranas. Only for κ = 10

and κ = 50 the Yukawa interactions are sufficiently strong, and the asymptotic value of the

asymmetry is the same as that in figure 1.5. For all the considered values of κ the asymmetry

in the case of neglected Majorana contribution is bigger than with that taken into account

(although for κ = 10 and κ = 50 the difference is hardly visible).

The above discussion can be summarized as follows. Consider two models of the early Uni-

verse. The first model is the FRW Universe with only the Standard Model species contributing

to the energy density. The second model can be the homogeneous Universe with contributions of

the Majorana neutrinos to the energy density taken into account or the inhomogeneous Universe

considered in the next section. If (all other parameters and dependencies being equal) the ratio

of ẋ in the second model to that in the first one is bigger (smaller) than unity for all x, then

the final lepton asymmetry in the second model is bigger (smaller) than in the first. Similarly,

if (all other parameters and dependencies being equal) the ratio of
√−g3 in the second model

to that in the first model is a monotonically growing (decaying) function, then the final lepton

asymmetry in the second model is smaller (bigger) than in the second one.

In order to better understand the numerical results above it is instructive to obtain the

analytical solution of the Boltzmann equations, which is possible in some limiting cases. We will

consider the case of κ≫ 1. One of the reasons for that is that in the case of large κ the asymptotic

asymmetry is independent of the initial conditions. To simplify the analysis we neglect the

contribution of the Higgs–mediated scattering processes. Furthermore, for moderately large κ

the scattering processes mediated by the Majorana neutrinos are sub–dominant in comparison

to the inverse decay processes and are neglected as well. Equations (1.42) then simplify to

∂∆

∂x
= −∂Y

eq
Ψ

∂x
− κxγD∆, (1.61a)

∂YL
∂x

= εκxγD∆ − κxγLYL, (1.61b)

where the following notation has been introduced:

∆ ≡ YΨ − Y eq
Ψ , Y eq

Ψ = rg(x)
x2

π2
K2(x), γD =

1

rẋ

K1(x)

K2(x)
, γL =

cℓh
4N

x2

rẋ
K1(x). (1.62)

The solution of the system (1.61) corresponding to the initial conditions ∆(0) = YL(0) = 0 reads

∆(x) = −
∫ x

0
Y eq′

Ψ (x′) exp

[

−
∫ x

x′
x′′κγD(x′′)dx′′

]

dx′ (1.63a)

YL = εκ

∫ x

0
x′∆(x′)γD(x′) exp

[

−
∫ x

x′
x′′κγL(x′′)dx′′

]

dx′ (1.63b)

(see [4]). In the κ ≫ 1 regime ∆
′ ≃ 0, and it then follows from (1.61a), that κxγD∆ ≈ −Y eq′

Ψ .

Furthermore, at x ≫ 1 we obtain Y eq′

Ψ (x) ≈ −[rg(x) − r′g(x)]
√

x3

2π3 exp(−x). Substitution into
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(1.63b) yields

YL ≈ ε

∫ x

0
[rg(x

′) − r′g(x
′)]

√

x′3

2π3
exp

[

−x′ −
∫ x

x′
x′′κγL(x′′)dx′′

]

dx′ (1.64)

For x→ ∞ the integral for YL can be evaluated using the method of steepest descent. Dividing

the asymptotic value of the lepton asymmetry by the parameter of CP violation and the photon

number density in the comoving volume, Yγ = 2
π2 rg, we obtain

η ≡ nL
εnγ

=
YL(x)

εYγ(x)
≈ π

2

rg(xf ) − r′g(xf )

rg(x)

√

x3
f

−(x′′κγL)′|xf

exp

[

−xf −
∫ x

xf

κx′′γL(x′′)dx′′
]

(1.65)

where xf is determined by κxfγL(xf ) = 1. Large κ imply large xf . In this case, approximately,

κ̃(xf )x
5/2
f exp(−xf ) ≈ 1, κ̃ ≡ cℓh

4N

κ

rẋ
(1.66)

If the contribution of the Majorana neutrinos to the energy density is neglected, then rg =

rẋ = 1. Let us assume for a moment, that rẋ = 1, whereas rg is a nontrivial function of x. As

follows from equation (1.66) and the definition of γL, the value of xf remains unchanged, and

the only difference from the case rg = rẋ = 1 is the overall factor rg(xf ) − r′g(xf ). If rg is a

monotonically growing function and reaches unity as x→ ∞, then rg < 1 and r′g(x) > 0 for any

xf . Therefore their difference is smaller than unity, and the efficiency decreases. Conversely, if

rg is a monotonically decaying function and reaches unity as x→ ∞, then rg > 1 and r′g(x) < 0

for any xf . Consequently, the difference is bigger than unity, and the efficiency increases.

A deviation of rẋ from unity effectively modifies κ and leads to a shift of xf . For moderately

large κ, the solution of (1.66) is given by [4] xf ≃ 4.2(ln κ̃)0.6. A simple calculation shows, that in

the xf ≫ 1 limit −(xκγL)′|xf
≃ 1 +

r′ẋ(xf )
rẋ(xf ) , and

∫∞
xf
xκγLdx ≃ 1− r′ẋ(xf )

rẋ(xf ) . In this approximation,

substitution of xf into (1.65) yields

η ≃ N

2cℓh

1

κ(ln κ̃)0.6
·
rg(xf ) − r′g(xf )

rg(∞)
· rẋ(xf )
√

1 +
r′ẋ(xf )

rẋ(xf )

exp

(

r′ẋ(xf )

rẋ(xf )

)

(1.67)

It is clear from (1.67), that the account of the nonzero chemical potential of the Higgs reduces

the efficiency, and that the asymmetry is (approximately) inversely proportional to κ.

The numerical analysis shows (see figure 1.4), that for xf ≫ 1 the contribution of the terms

proportional to r′ẋ(xf ) is small in comparison to the contribution of the terms proportional to

rẋ(xf ) and can be neglected. Since the deviation of rẋ from unity is small, and (ln κ̃)0.6 is a

slowly varying function of κ̃, to a good approximation the ratio of the efficiency in the model

with rg, rẋ 6= 0 to that in the model with rg = rẋ = 1 (and the same κ) is given by

rη ≃
rg(xf ) − r′g(xf )

rg(∞)
· rẋ(xf )
√

1 +
r′ẋ(xf )

rẋ(xf )

exp

(

r′ẋ(xf )

rẋ(xf )

)

xf≫1
≃

rg(xf ) − r′g(xf )

rg(∞)
· rẋ(xf ) (1.68)
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In the model with the contribution of the heavy neutrinos to the energy density taken into

account rg is a monotonically growing function, which asymptotically reaches unity, and rẋ < 1

at large x. Consequently, both of the factors in (1.68) are smaller than unity, and the efficiency

is smaller than in the model with neglected contribution of the heavy neutrinos.

It may seem at first sight, that the ratio of the efficiencies is independent of κ. However, as

follows from (1.66), an increase of κ leads to an increase of xf . As both rg and rẋ asymptotically

approach unity as x → ∞ (see figure 1.4), the ratio (1.68) also tends to unity. This conclusion

is in perfect agreement with the results of numerical analysis, see figure 1.5.

1.5 Leptogenesis in nonuniform Universe

As is commonly accepted at present, small (of order of 10−5 – 10−4) primeval inhomogeneities

of the energy density induced by quantum fluctuations in the inflaton field have been created

during inflation – a period of accelerated expansion of the Universe [2, 3].

The Hubble radius RH ≡ H−1 gives the typical size of causally connected regions of space.

A perturbation whose wavelength surpasses the Hubble radius is not affected by microscopic

physics. Since the Hubble parameterH is constant during inflation, all cosmologically interesting

scales begin sub–horizon sized, cross outside the Hubble radius during inflation, and later again

cross back inside the horizon. Larger scales cross the horizon first and reenter last. The Hubble

radius at temperature T = M1 is given by

RHL
≡ H−1(M1) ≃

(

45

4π3gρ

) 1
2 MPl

M2
1

∼ 10−32 pc (1.69)

where we have set M1 = 109 GeV for definiteness. Scales of size λ ≫ RHL
reenter the horizon

only after the generation of lepton asymmetry is over and are therefore “frozen” during inflation.

Had the perturbations of a sub–horizon scale λ < RHL
not become non–linear, at present they

would have the size

λpres .
R(tpres)

R(tlept)
RHL

(1.70)

In the radiation dominated Universe R ∝ T−1. Since the transition between radiation domina-

tion and matter domination at Ttrans ≈ 3×104 K the cosmic scale factor R has grown by slightly

more than a factor of ten thousand [4]. Consequently, the ratio of the scale factors at present to

that at the time of leptogenesis is of the order of 1021. Therefore, had the perturbations which

were of sub–horizon size during leptogenesis not become non–linear, at present they would have

size λpres . 10−11 pc. Non–linear effects would make this number even smaller. This is many

orders of magnitude smaller than the typical galaxy size ∼ 30 kpc. In other words, all pertur-

bations of physically interesting scale were of superhorizon size and “frozen” during the period

of leptogenesis.
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Assuming a momentum–energy tensor of the form (1.46), one obtains the following set of

Einstein equations for small perturbations of the metric [39]:

ḧkk − 2Hḣkk − 2Ḣhkk = 8πGR2(ρ1 + 3p1), (1.71a)

∂

∂t

[

R−2 (hkk,i − hki,k)
]

= −16πGR2(ρ+ p)u1,i, (1.71b)

hij,kk − hkj,ik − hki,jk + hkk,ij −R2ḧij +RṘ(ḣij − ḣkkδij) + 2Ṙ2(hkkδij − 2hij)

= 8πGR4(ρ1 − p1)δij − 8πGR2(ρ− p)hij , (1.71c)

where ρ1, p1 and u1 are the perturbations of energy density, pressure and the spatial components

of the four–velocity respectively, and hij are the perturbations of the spatial components of the

space–time metric.

To analyze the equations (1.71) we will follow the approach developed in [40]. Equation

(1.71a) can easily be rewritten in terms of hL ≡∑i hii/(2R
2):

ḧL + 2HḣL = 4πG
(

p1 +
ρ1

3

)

(1.72)

We will also need the trace of the equation (1.71c). Summing over i = j and using the zero–order

Einstein equations (1.47) we obtain

ḧL + 6HḣL − 1

3R4
(hii,kk − hik,ik) = 4πG(p1 − ρ1) (1.73)

Next we write the scalar mode of hij as a Fourier integral and split it into longitudinal and

transverse parts:

hij(τ, ~x) = 2R2(τ)

∫

d3q ei~q ~x [δijhL(τ, ~q ) − (q̂iq̂j − δij/3)hT (τ, ~q )] , ~q = qq̂ (1.74)

Note that hL and hT are used to denote longitudinal and transverse parts of the metric in both

the real space and the Fourier space.

Equation (1.72) rewritten in terms of Fourier components obviously retains the form

ḧL + 2HḣL = 4πG
(

p1 +
ρ1

3

)

(1.75)

where p1 and ρ1 denote now Fourier components of pressure and energy density. Substitution

of (1.74) into (1.73) yields

ḧL + 6HḣL +
4

3

q2

R2

(

hL +
hT
3

)

= 4πG(p1 − ρ1) (1.76)

Considering equation (1.71c) with i 6= j we obtain

ḧT + 3HḣT =
q2

R2

(

hL +
hT
3

)

(1.77)
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As can easily be verified by direct substitution, the solution of the system of equations (1.75),

(1.76) and (1.77) in the radiation dominated Universe is given by [40]

δ ≡ ρ1

ρ
= α

(

2C1

y2
+
y2

4
− y4

36
+ · · ·

)

+ β

(

2C2

y2
− y

3
+
y3

10
+ · · ·

)

(1.78a)

hL = α

(

C1

2y2
− C1

2
ln y +

y2

16
− y4

576
+ · · ·

)

+ β

(

C2

2y2
− C2

2
ln y − y

3
+
y3

90
+ · · ·

)

(1.78b)

hT = 3α

(

C1

2
ln y − 1

4
− y2

24
+

y4

960
+ . . .

)

+ 3β

(

C2

2
ln y +

1

2y
+
y

4
− y3

144
+ · · ·

)

(1.78c)

θ ≡ i~q ~u1

H
= α

(

−3

2
C1 +

y4

16
+ · · ·

)

+ β

(

−3

2
C2 −

3y

4
− y3

8
+ · · ·

)

(1.78d)

where y = q
√
τ/

√
3. The coefficients C1 and C2 are constants of integration representing the

residual gauge freedom and are removed by the conventional choice C1 = C2 = 0. Let us discuss

this point in more detail. If C1, C2 6= 0 then in the limit q → 0 the leading terms in (1.78) are

those proportional to a linear combination C ≡ αC1 + βC2 of C1 and C2, irrespective of the

value of τ .
ρ1

ρ0
=

2C

y2
, hL =

C

2y2
, hT =

3C

2
ln y (1.79)

Upon substitution into (1.76) we see, that the right–hand side and the first two terms on the

left–hand side of (1.76) increase with decrease of q, whereas the third term remains constant.

Consequently in the limit q → 0 this term can be neglected and equation (1.76) takes the form10

ḧL + 6HḣL = 4πG(p1 − ρ1) (1.80)

Equations (1.75) and (1.80) are precisely the two equations, which one obtains by introducing a

perturbation of the FRW metric R2(τ) → R2(τ)(1 − 2hL(τ)) and substituting it into equations

(1.47). In the FRW Universe the metric of space–time is characterized by a single quantity –

the scale factor, which depends only on time and is independent of the spatial coordinates. Its

explicit time dependence is determined by the form of the momentum–energy tensor. Obviously,

the scale factor R2(τ)(1 − 2hL(τ)) still corresponds to a homogeneous Universe, but with the

momentum–energy tensor different from the one determining R2(τ). For instance, one could

have used equations (1.75) and (1.80), to treat contribution of the Majorana neutrinos to the

energy density, considered in the previous section. We thus conclude, that the spurious solu-

tions proportional to C1 and C2 describe the dynamics of the homogeneous background, not the

dynamics of the scalar perturbations, and should be removed by setting C1 and C2 to zero.

It also instructive to compare the solutions (1.78) with those in the longitudinal gauge [41].

According to [33], the solutions of the Einstein equations for small perturbations in the longitu-

10Equivalently, after averaging over the volume of a large scale inhomogeneity, the third term on the left–hand

side of (1.73) is smaller than the first two terms.
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dinal gauge are related to those in the synchronous gauge by

φ =
1

2q2

(

h
′′

+ 6η
′′

+
R

′

R
[h

′

+ 6η
′

]

)

, ψ = η − 1

2q2
R

′

R
(h

′

+ 6η
′

) (1.81)

where a prime stands for differentiation with respect to conformal time. Switching to proper

time and using the relations h = −6hL, 6η = 2hT + 6hL, which follow from the decomposition

(1.74) and comparison with the corresponding expressions in [33], we obtain

φ =
R2

q2

(

ḧT + 2HḣT

)

, ψ =
1

3
(hT + 3hL) − R2

q2
ḣT (1.82)

It is trivial to check that the terms proportional to C in (1.78) do not contribute to φ and ψ,

which confirms that these are spurious solutions. Substituting terms proportional to α and β,

we obtain for φ and ψ

ψ = φ = −α
6

+
β

2

( √
3

2qτ
1
2

+
3
√

3

q3τ
3
2

)

= −α
6

+
β

2

(

1

2y
+

1

y3

)

(1.83)

The solution for δ = ρ1
ρ0

is related to that in the synchronous gauge by [33]

δlong = δsyn + α
ρ
′

0

ρ0
, α =

h
′
+ 6η

′

2q2
(1.84)

Expressed in terms of hL and hT , this transformation takes the form

δlong = δsyn +
R2

q2
ḣT
ρ̇0

ρ0
(1.85)

Using the zero–order solution ρ = 3/(32πGτ2), the solutions (1.78) and neglecting terms pro-

portional to q and q2, we obtain

δlong =
α

3
+ β

(

−
√

3

qτ
1
2

+
6
√

3

q3τ
3
2

)

=
α

3
+ β

(

−1

y
+

2

y3

)

(1.86)

It is straightforward to check, that the solutions (1.83) and (1.86) are the leading terms of the

expansion of the solutions obtained in [41], (1.87) and (1.88), in the vicinity of y = 0.

φ =
1

2y2

[

−α
(

sin y

y
− cos y

)

+ β

(

cos y

y
+ sin y

)]

(1.87)

δ = −α
[(

2 − y2

y2

)(

sin y

y
− cos y

)

− sin y

y

]

+ 2β

[(

1 − y2

y2

)(

cos y

y
+ sin y

)

+
sin y

2

]

(1.88)

Our goal is to compare the efficiency of leptogenesis in the inhomogeneous Universe to that in

the homogeneous background. As has been argued in section 1.3, under certain assumptions the

system of Boltzmann equations in the inhomogeneous Universe (1.42) has to a first approxima-

tion the same form as in the uniform Universe. The difference from the homogeneous case arises

through a different than in the uniform Universe dependence of ẋ and
√−g3 functions on the
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dimensionless inverse temperature x = M1
T , or, alternatively, through a nontrivial dependence of

the rẋ and rg on x. Note, that in the inhomogeneous Universe the temperature T is related to

the background temperature T0 by T = T0(1 + Θ), where Θ is small.

The generalization of the momentum–energy tensor of a relativistic gas to the case of a

perturbed space–time metric is given by [33]

Tµν =

∫

dP1dP2dP3(−g)−
1
2
PµPν
P 0

f(xi, Pj , τ) (1.89)

where g is the determinant of the space–time metric. In the synchronous gauge it coincides with

the determinant of the spatial components of the metric
√−g3. The invariant integration mea-

sure can be expressed in terms of the physical momentum and solid angle, dP1dP2dP3(−g)−
1
2 =

p2 dp dΩ. In the synchronous gauge P 0 = P0 = E. Furthermore, as has already been mentioned,

we neglect possible modifications of the phase space distribution functions induced by the grav-

itational field. In this approximation the energy density ρ = T 0
0 does not contain contributions

from the gravitational field. A direct calculation shows, that in the absence of a preferred di-

rection the leading contribution to the change of the gas energy density due to a small nonzero

macroscopic velocity ~u1 is proportional to ~u 2
1 , i.e. is of second order, and can be neglected. Thus,

to a first approximation the energy density of a relativistic gas in the nonuniform Universe is

proportional to T 4. Consequently, there is a simple relation between perturbations of the energy

density and the temperature, namely δ = 4Θ.

The determinant of the spatial components of the perturbed space–time metric is given

by
√−g3 = R3(1 − 3hL). Note that the left–hand side of this expression corresponds to the

temperature T , whereas R3 on the right–hand side is calculated at T0. Taking into account that

in the homogeneous Universe R3 = T−3
0 and using the definition rg = T 3√−g3 we obtain

rg = (1 + Θ)3(1 − 3hL) ≈ 1 + 3Θ − 3hL (1.90)

The second quantity we are interested in is the time derivative of x. Taking into account

that in the region of perturbation x = x0(1 + Θ)−1, where x0 is the background value of x, and

that the Hubble parameter in the FRW Universe is given by H = ẋ0x
−1
0 , we obtain

ẋ =
ẋ0

1 + Θ

(

1 − 1

H

Θ̇

1 + Θ

)

, (1.91)

where ẋ0 is calculated in the homogeneous Universe at temperature T0. Taking additionally into

account that ẋ0(x) ∝ x−1, we find for rẋ

rẋ ≡ ẋ(x)

ẋ0(x)
=

1

(1 + Θ)2

(

1 − 1

H

Θ̇

1 + Θ

)

≈ 1 − 2Θ − Θ̇H−1 (1.92)

Let us return to the spurious solutions of the Einstein equations at this point. From equations

(1.79) it follows that hL = δ
4 = Θ, so that rg = 1. Using the relation Θ̇ = ẏΘ

′

y = HyΘ
′

y we
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obtain from (1.79) Θ̇ = −2HΘ, which yields rẋ = 1 just like in the homogeneous case (recall,

that we negelect the contribution of the right–handed neutrinos to the energy density in this

section). This analysis supports the assertion, that the spurious solutions describe the dynamics

of the homogeneous background. It also demonstrates, that relating hL to δ by comparison of

coefficients of individual terms in the expansions is a reliable method.

At large y (i.e. for the late times or relatively small wavelengths) the leading terms in (1.78a)

and (1.78b) are those quadratic in y, so that hL = δ
4 = Θ and Θ̇ = 2HΘ and we obtain

rg = 1, rẋ = 1 − 4Θ (1.93)

As follows from equation (1.68), in this case the efficiency of leptogenesis is smaller than in the

homogeneous background.

However, at T ∼ M1 all physically relevant scales are of superhorizon size and have large

wavelengths, i.e. correspond to very small q and y. At very small y, the leading terms in (1.78a)

and (1.78b) are those linear in y, so that hL = δ = 4Θ and Θ̇ = HΘ and we obtain

rg = 1 − 9Θ, rẋ = 1 − 3Θ (1.94)

We are interested only in the perturbations growing with time, in which case Θ is positive and

increases with time. In the radiation dominated Universe
√
τ ∝ T−1 ∝ x, and we conclude that

Θ ∝ y = αx, where α is a small positive number. Since Θ is positive, rẋ is smaller than unity,

which tends to decrease the efficiency. On the other hand, since Θ increases with time, rg is a

decaying function of x, which tends to increase the efficiency.

For very large scale perturbations, to which we limit ourselves here, the terms proportional

to y2 in (1.78) start to dominate over those proportional to y at a very late time, i.e. at a

very large value of the inverse temperature xb ≫ xf , where xf is the inverse temperature of the

freeze–out (introduced in section 1.4) . Substituting rg = 1 − 9αx and rẋ = 1 − 3αx to (1.68)

we obtain for the ratios of the efficiencies at the inverse temperature x ∼ xb

rη(xb) ≈ 1 + 3α(2.5 + 3xb − 4xf ) (1.95)

Provided that xb ≫ xf , the ratio (1.95) is bigger than unity. We, thus, conclude, that the

efficiency of leptogenesis increases in the regions of higher energy density, as one would expect.

Numerical solutions of the Boltzmann equations (1.42) with rg and rẋ given by (1.94) reproduce

this result for all the considered κ. By the time x reaches xb all the washout processes are frozen

and the baryon minus lepton number is effectively conserved, so that the further development

of the Universe, which is described by (1.93), does not influence this value.

Finally, let us note, that the lepton asymmetry in the physical volume, which is proportional

to the product of the efficiency and the photon number density, is also bigger than in the uniform

Universe, because the photon number density is bigger in the regions of higher energy density.
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1.6 Baryon number violation

The nontrivial vacuum structure of non–Abelian gauge theories [7, 8, 42, 43] leads in the SUL(2)

theory to an anomalous non–conservation of baryon and lepton numbers. The vacuum is usually

regarded as a classical field configuration corresponding to a minimum of potential energy. It

is common to choose only one (trivial) configuration to represent the vacuum state. The trivial

solution of the Yang–Mills equations is given (in the A0 = 0 gauge) by ~A = 0. A Yang–Mills

field configuration phase space can be divided into gauge–equivalent subspaces, which can be

transformed one into another by a continuous gauge transformation. There are infinitely many

field configuration, which are gauge equivalent to the trivial one

~A (~x) = g−1(~x)∇g(~x) (1.96)

where g is the unitary matrix of gauge transformations. If g(~x) can be joined to the identity

through a one–parameter continuous family of transformations

g(~x, 1) = g(~x); g(~x, 0) = I (1.97)

then these vacuum configurations are also topologically equivalent to the trivial one. However,

not all of the gauge equivalent subspaces are also topologically equivalent — in Yang–Mills

theories there is a countable infinity of classical vacuum configurations which have different

topologies. The topologically inequivalent vacua are separated by a finite potential barrier.

Λq

Λℓ̄

leptons quarks quarks quarks

0

E

Figure 1.7: Illustration to the conversion of lepton asymmetry into baryon asymmetry.

Consequently, there is a finite amplitude for tunneling between topologically inequivalent vacua.

In the course of a transition from one vacuum to a topologically inequivalent one, a fermion

energy level is shifted upwards (downwards) and takes the position of its predecessor. In other

words, new (anti)quarks and (anti)leptons are created out of the vacuum. Since all the left–

handed Standard Model fermions have the same SUL(2) properties, a single transition leads to

a creation of two left–handed leptons (an electron and a neutrino) and six left–handed quarks

(up and down quarks of three colors) of each generation11. Since the baryon number of a quark

11Similar processes also take place in the SUC(3) theory. However, since the couplings of the gluons to quarks

are vectorlike, the change of baryon number carried by left–handed quarks is exactly compensated by the change

of baryon number carried by right–handed quarks.
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is one third, whereas the lepton number of a lepton is unity, the difference B − L is conserved.

At low temperatures the tunneling probability is exponentially small. At temperatures where

the leptogenesis takes place, however, the electroweak symmetry is unbroken, and the exponential

suppression of the baryon number non–conserving transitions, called sphaleron transitions [44],

disappears. The power–counting estimate of the rate per unit time and unit volume in the

unbroken phase is then [45, 46]

Γsp = const · (αWT )4. (1.98)

The rate of the sphaleron transitions exceeds the expansion rate of the Universe in the standard

Big–Bang scenario in the following interval of temperatures:

102 GeV ≤ T ≤ 1012 GeV. (1.99)

In other words, the lepton asymmetry generated in the decay of the heavy neutrinos is instantly

converted into the baryon asymmetry.

For a species in thermal equilibrium the excess of particles over antiparticles, i.e. the asym-

metry, is parametrized in terms of its chemical potential. As the SUL(2) symmetry is unbroken

at the stage under consideration, chemical potentials of upper and lower components of leptonic

doublets, denoted by µi and µiL respectively, are equal. This implies, that the chemical poten-

tials of the W bosons are zero. The chemical potential of the B0 gauge boson is zero because

it is neutral. Note, that in the absence of rapid flavor–mixing interactions in the leptonic sector

the chemical potentials of leptons of different generations are, generally speaking, not equal.

The unbroken SUL(2) symmetry also implies, that chemical potentials of top and bottom

components of quark doublets, denoted by µuL
and µdL

respectively, are equal. Moreover, since

the SUC(3) symmetry is exact at any temperature, the chemical potentials of the components

of color triplets are equal as well. This implies in particular, that the chemical potential of the

gluon fields is zero. In addition, rapid flavor–changing interactions assure that the chemical

potentials of quarks of a given charge and chirality are the same, so that only three chemical

potentials should be introduced: µuL = µdL for left–handed and µuR and µdR for right–handed

quarks of a given color.

Supersymmetric, as well as GUT, extensions of the Standard Model, one of which will be

discussed in chapter 2, may contain more than one Higgs doublet. It is assumed here, that

mixing between the Higgs doublets assures equality of their chemical potentials: µ− for all

charged scalars and µ0 for the neutral ones.

The free–energy F of the left–handed fermions is expressed in terms of their chemical po-

tentials and the temperature as

F = 2
∑

i=1..3

F(µi) + 6NF(µuL) ∝ 2T 2
∑

i=1..3

µ2
i + 6T 2Nµ2

uL , (1.100)
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Baryon and lepton number densities are obtained by differentiating the free energy with respect

to µi and µuL:

LL =
∑

i

∂F
∂µi

∝ 4T 2µ, BL =
1

3

∂F
∂µuL

∝ 4T 2NµuL, (1.101)

where µ ≡
∑

i µi has been introduced. From the fact that the sphalerons conserve baryon

minus lepton quantum number separately for each generation [26] it follows, that dµi = dµuL.

Minimization of the free energy yields

dF
dµuL

∝ 4T 2(3NµuL + µ) ∝ 3BL + LL = 0 (1.102)

In other words, if sphaleron processes are in equilibrium, the sum of the lepton and thrice the

baryon number carried by the left–handed fermions is zero.

To illustrate this conclusion let us assume that the initial baryon number is zero and the

total lepton number is negative. Number and energy densities of leptons and quarks read

nℓ̄ ∝ Λ3
ℓ̄ , nq ∝ 3Λ3

q , Eℓ̄ ∝ Λ4
ℓ̄ , Eq ∝ 3Λ4

q , (1.103)

where Λq (Λℓ̄) is the energy of the highest filled (lowest unfilled) quark (lepton) level.

In the course of sphaleron transitions empty negative lepton levels and filled negative quark

levels cross the zero energy level from below, so that the number of antileptons is decreased,

whereas the number of baryons is increased (see figure 1.7). While both Λℓ̄ and Λq change, the

sum Λℓ̄ + Λq remains constant, so that

dE

dΛq
∝ 3Λ3

q − Λ3
ℓ̄ ∝ nq − nℓ̄ ∝ 3BL + LL = 0. (1.104)

The energy density of the system reaches its minimum when the total number of antileptons is

equal to the total number of quarks, i.e. the baryon number is equal to minus one third of the

lepton number.

Relation (1.102) can also be obtained using the fact, that for equilibrium reactions the sum of

chemical potentials of the incoming particles is equal to that of the outgoing ones. The sphaleron

processes correspond to the creation of (uiLdiLeiLνiL) states [26] out of the vacuum. Therefore,

as long as the sphaleron processes are in thermal equilibrium, the following relation among the

chemical potentials is enforced:

3N(µuL + µdL) +
∑

i=1..3

(µiL + µi) = 0, (1.105)

where the factor of three is due to the three color degrees of freedom, while the summation over

generations takes into account that fermions of all the generations are created simultaneously.

Taking into account that µuL
= µdL

and µi = µiL we arrive again at equation (1.102).
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The electroweak interactions, which are in thermal equilibrium down to about Tdec ≃ 2 MeV,

imply additional relations between the chemical potentials [47]:

µW = µ− + µ0 (W− ↔ H− +H0) (1.106a)

µdL = µuL + µW (W− ↔ ūL + dL) (1.106b)

µiL = µi + µW (W− ↔ ν̄iL + eiL) (1.106c)

µuR = µuL + µ0 (H0 ↔ ūL + uR) (1.106d)

µdR = µuL + µW − µ0 (H0 ↔ dL + d̄R) (1.106e)

µiR = µi + µW − µ0 (H0 ↔ eiL + ēiR) (1.106f)

Assuming a thermal distribution, the number density of fermions (bosons) is given by the

Fermi–Dirac (Bose–Einstein) distribution

n± =

∫

dp

(2π)3
g

exp[(Ep ∓ µ)/T ] ± 1
, (1.107)

where µ is the particle chemical potential and g is the number of internal degrees of freedom

(g = 1 for massless Weyl fermions and g = 2 for massless vector bosons). Assuming that ratio

of the chemical potential to the temperature is small and neglecting the particle mass we find

for the excess of particles over antiparticles

n+ − n− =
gT 3

6

µ

T
(fermions), n+ − n− =

gT 3

3

µ

T
(bosons). (1.108)

Relations (1.106) and (1.108) make it possible to express the baryon and the lepton numbers,

as well as total electric charge, in terms of just three chemical potentials. Omitting a common

overall coefficient we find

B = N(µuL + µuR) +N(µdL + µdR) = 4NµuL (1.109a)

L =
∑

i=1..3

(µi + µiL + µiR) = 3µ−Nµ0 (1.109b)

Q = 2NµuL
− 2µ+ (4N + 2n)µ0 (1.109c)

where n is the number of Higgs doublets in the model. The requirement that the total electric

charge must be zero implies an additional relation between the chemical potentials.

From equations (1.109) it follows, that nonzero chemical potential of the leptons µ induces

nonzero chemical potentials of quarks and the Higgs. As has been argued in section 1.3, the fact

that all matter fields carry a fraction of the asymmetry leads to a modification of the coefficients

of individual terms in the Boltzmann equations. For practical applications we need the chemical

potentials of quarks and the Higgs expressed in terms of the chemical potential of the leptons.

Assuming for simplicity that chemical potentials of leptons of different generations are equal,
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µL ≡ µiL = µi, and using relations (1.106) and (1.109a), we obtain in the case of the Standard

Model

µQ ≡ µdL = µuL = −µℓ
3

≡ cQµL (1.110a)

µH ≡ µ0 = −µ− =
4

3

Nµℓ
2N + 1

=
4µℓ
7

≡ cHµL (1.110b)

µu ≡ µuR =
2N − 1

2N + 1

µℓ
3

=
5µℓ
21

≡ cuµL (1.110c)

µd ≡ µdR = −6N + 1

2N + 1

µℓ
3

= −19µℓ
21

≡ cdµL (1.110d)

µe ≡ µiR =
2N + 3

2N + 1

µℓ
3

=
3µℓ
7

≡ ceµL (1.110e)

We are now in a position to relate the baryon and lepton numbers to B−L, which is conserved

by the Standard Model processes. Making use of (1.109) we obtain [47, 48]

B =
8N + 4n

22N + 13n
(B − L) ≈ 0.35 (B − L), (1.111a)

L = − 14N + 9n

22N + 13n
(B − L) ≈ −0.65 (B − L), (1.111b)

where for the numerical evaluation we have used n = 1.

If the baryon number violating process were frozen at the epoch of leptogenesis, the lepton

asymmetry generated in the CP–violating decay of the heavy neutrino would coincide (up to a

sign) with B − L. However, since the lepton asymmetry is instantly converted into the baryon

asymmetry, this equality does not hold. Consequently, what we need is not the relation between

B and B − L, but a relation between B and L, which reads

B = − 8N + 4n

14N + 9n
L ≈ −0.54L (1.112)

According to the estimates performed in section 1.4, for M1 = 109 GeV,
√

3m̄ = 5 · 10−2 eV and

m̃1 = 10−2 eV (corresponds to κ = 10) the efficiency of leptogenesis |nL/(nγε)| = 6.7 · 10−2. For

the same values of the parameters the upper bound on the CP asymmetry is given by |ε| . 10−7.

Combining these estimates with (1.112) we obtain an upper bound on the baryon asymmetry

of the Universe in the Standard Model supplemented by three heavy right–handed Majorana

neutrinos

YB =
nB
nγ

. 3.6 · 10−9 (1.113)

which is consistent with the experimental value YB = 6.5+0.4
−0.3 ·10−10. The factor of five difference

from the experimental value can accounted for by a smaller value of the CP asymmetry in the

decay or by a bigger value of the effective neutrino mass, or by both of these factors.
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1.7 Conclusions

In this chapter the generation of the lepton and baryon asymmetries in the nonuniform Universe

has been investigated.

We have derived a simple and compact form of the Boltzmann equation suitable for compu-

tation of the lepton asymmetry in both the FRW and the inhomogeneous models of the Universe.

Effects associated with a nonzero macroscopic gas velocity and particle flow have been shown to

be of the second order and therefore negligible.

To understand how a modification of the Universe expansion rate and the scale factor depen-

dencies on the temperature influences the generation of the lepton asymmetry we have considered

leptogenesis in the Universe with contribution of the heavy Majorana neutrinos to the total en-

ergy density taken into account. It has turned out, that in this case the asymptotic value of

the asymmetry is smaller than that in the case of the neglected Majorana contribution. We

have also found, that if the ratio of time derivative of the dimensionless inverse temperature

x = M1/T to that in the FRW Universe is bigger than unity, then the efficiency of leptogenesis

increases and vice versa. Analogously, if the ratio of the determinant of spatial components of

the space–time metric to that in the FRW Universe is a monotonically decaying function of x,

the efficiency of leptogenesis increases and vice versa. These properties of the solutions are easily

“read off” from the approximate analytical solution of the Boltzmann equations, which we have

derived in the limit κ ≫ 1. The computed theoretical upper bound on the baryon asymmetry

of the Universe is consistent with the results of experimental observations.

These results have been applied to the analysis of leptogenesis in the nonuniform Universe

in the synchronous gauge. We have related the perturbations of the space time–metric and the

time derivative of the inverse temperature to perturbations of the temperature using the known

solutions of the Einstein equations. It has been shown that for growing large scale perturbations,

which constitute seeds of the future large scale structures, leptogenesis is more efficient than in

the homogeneous background. Therefore, even before structure formation began shortly after

the onset of the matter–dominated epoch, seeds of the future galaxies and other large scale

structures contained a higher–than–average number of baryons and leptons.
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Chapter 2

The superstring inspired E6 model

The ultimate goal of modern physics is the formulation of a unified field theory, able to unite

the two fundamental theories: quantum field theory and general relativity. At present, the most

promising hope for a truly unified and finite description of these two fundamental theories is

superstring theory and its latest formulation, M–theory [49, 50, 51, 52]. Superstrings possess

by far the largest set of gauge symmetries ever found in physics. Superstring’s symmetry in-

cludes not only the Einstein’s theory of general relativity and the Yang–Mills theory, but also

supergravity and the Grand Unified Theories as subsets.

The cancellation of anomalies places stringent constraints on which gauge groups may be

allowed by the superstring theory [53]. It turns out, that the gauge group of a supersymmetric

theory must contain exactly 496 generators, which restricts us to either SO(32) or E8 ⊗ E8

group. The latter one has received most attention as it leads to chiral fermions, similar to those

in the SM, whereas SO(32) does not. The ten–dimensional E8⊗E8 heterotic superstring theory

compactifies to the M4 ⊗ Γ, where Γ is the Calabi–Yau manifold with SU(3) holonomy, and

yields a low–energy theory with N = 1 supersymmetry. If Γ is simply connected, then the

E8 ⊗ E8 gauge group breaks down to the E6 ⊗ E8 subgroup

E8 ⊗ E8 ⊃ SU(3) ⊗ E6 ⊗ E8.

The unbroken E8 describes a “shadow world”, which interacts with ordinary matter only grav-

itationally and which may, in principle, be responsible for the breaking of supersymmetry. For

a multiply connected manifold Γ the initial gauge group breaks down to G ⊗ E8 where G is a

subgroup of E6 [54]. In this scheme, chiral superfields Nf27+δ(27+ 2̄7) (where for a wide class

of models δ = 1) and 78 vector superfields of E6 emerge as the zero mode spectra. States in

δ(27+ 2̄7) are denoted here by χ and χ̄ respectively, whereas states in Nf 27 are denoted by ψ.

Apart from having its origins in the superstring E8 ⊗ E8, the E6 model also has several

features relevant for low–energy phenomenology:
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– the model allows chiral representations;

– its fundamental representation contains the fifteen known fermions along with a right–

handed neutrino and two Higgs–like doublets;

– the model is automatically anomaly free.

In this chapter, I will present a detailed classification of states of the fundamental and adjoint

representations of E6 and its physically relevant subgroups using the Cartan–Weyl method,

which is briefly reviewed in section 2.1.

The issue of possible charge assignments, i.e. the correspondence between the set of weights

and physical states, is discussed in section 2.2. It is argued there, that the model allows six

charge assignments compatible with the Standard Model. Charge conservation in the processes

involving states of different generations requires that the same charge assignment be used for all

generations.

Some of the fields in the adjoint representation may lead to a rapid proton decay. Constraints

implied by the proton stability are discussed in section 2.3. In addition to the intermediate gauge

groups listed in [55] the SU(5)⊗U(1)⊗U(1) is allowed for two charge assignments. Nevertheless,

the Yukawa interactions implied by the residual SU(5) symmetry make the rapid proton decay,

mediated by new bottom quarks, unavoidable unless if those are very heavy.

The dynamical breaking of B − L symmetry is considered in section 2.4. An interesting

feature of the model under consideration is the presence of additional δ(27 + 27) generations,

which contain right–handed neutrinos. Scalar components of the right–handed neutrinos may

be used now to break the B−L symmetry spontaneously. The introduction of a simple discrete

symmetry ensures, that B − L is broken at a scale, which is sufficiently high for generating

large masses for the right–handed neutrinos, and that the right–handed scalar neutrinos of the

three known generations do not acquire a vacuum expectation value (VEV). The same symmetry

also forbids Yukawa couplings which, if present, would induce large masses for the conventional

neutrinos. The supersymmetric structure of the theory ensures, that large quantum corrections

to masses of scalars, associated with the presence of heavy gauge fields, cancel out. After the

B − L breaking, the residual gauge group is SUC(3) ⊗ SUL(2) ⊗ U(1) ⊗ U(1).

Finally, in section 2.5 we derive an explicit form of the Lagrangian of the Yukawa interactions,

expressed in terms of the component fields.

Since a motivation for this work has been the construction of a model for leptogenesis, the E6

model will be used for computation of the lepton and baryon asymmetries. This is performed in

chapter 3, where numerical estimates are also included. The difference of leptogenesis in the E6

model from leptogenesis in the Standard Model arises mainly from its extended particle content.
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2.1 The Cartan–Weyl method

The exceptional group E6 has a rich spectrum of physically acceptable, i.e. those leading to the

SUC(3)⊗Uem(1) group, breaking chains [56]. The intermediate symmetry groups include those

extensively discussed in the literature, for example the Pati–Salam group [57]. The breakdown

to the Pati–Salam model can proceed, for instance, via SO(10) [58]

E6 → SO(10) ⊗ U(1) → SUC(4) ⊗ SUL(2) ⊗ SUR(2) ⊗ U(1) (2.1)

The SO(10) model itself has also attracted a lot of attention, as it naturally contains the right–

handed neutrino, whose existence is suggested by the results of neutrino oscillation experiments.

If gauge symmetry is broken by the Higgs mechanism, then the intermediate SO(10) can also

be broken down to SU(5), considered in [59], via

E6 → SO(10) ⊗ U(1) → SU(5) ⊗ U(1) ⊗ U(1) (2.2)

where the SU(5) contains the Standard Model gauge group. There is also an attractive possibility

of breaking the E6 to another of its maximal subgroups, a direct product of three SU(3) groups,

which further breaks down to the Standard Model gauge group supplemented by additional U(1)

or SU(2) groups, thus implying the existence of at least one extra “low–energy” gauge boson

[60]. For instance the breaking chain (2.3)

E6 → SUC(3) ⊗ SUL(3) ⊗ SUR(3) → SUC(3) ⊗ SUL(2) ⊗ U(1) ⊗ U(1) (2.3)

gives rise to a new neutral Z
′
boson, which is mixed with the Standard Model Z boson.

In order to determine which breaking chains are consistent with the long–lived proton and

other low–energy constraints, we need to know the properties of the particle states under trans-

formations of the intermediate symmetry groups, i.e. their quantum numbers with respect to

these groups.

A systematic study of quantum numbers of states in fundamental and adjoint representations

is conveniently performed using the Cartan–Weyl method [61, 56]. In this method, each state

is represented by its weight – a vector in an l dimensional Euclidean space, where l is equal

to the rank of the group. An important ingredient of this method is the Cartan matrix of the

group – a matrix whose elements are the scalar products of simple roots of the algebra. Given

the highest weight of the fundamental or adjoint representation, one can deduce the rest of the

weights using the following algorithm:

– take the highest weight w = (a1, a2 . . . an);

– define positions and values of all its positive elements ai;
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– derive new weights by sequential ai–times subtraction of the i–th row αi of the Cartan

matrix from the weight w

– repeat the second and the third steps with all the obtained weights until the lowest weight

of the representation (the weight with all nonzero elements negative) is reached.

Let us illustrate this algorithm with a simple example of a SU(2) group. It has rank one and

therefore its weight is just a single number. The highest weight of its fundamental representation

is given by w1 = 1. The Cartan matrix Ĉ in this case also reduces to a single number ĈSU(2) = 2.

Subtracting the Cartan matrix from the highest weight, we obtain a weight w2 = 1̄ (where

1̄ ≡ −1 is introduced) which is negative and therefore is the lowest weight of the fundamental

representation. In other words, the fundamental representation of SU(2) has dimension 2.

Consider now the adjoint representation. Its highest weight is w1 = 2. Subtracting the Cartan

matrix, we obtain a weight w2 = 0. Since the positive element of the highest weight a1 = 2,

according to the algorithm we should subtract the Cartan matrix once again, which yields the

lowest weight of the representation w3 = 1̄. In other words, the adjoint representation of SU(2)

has dimension 3.

The analysis of fundamental and adjoint representations of SU(3) is just slightly more com-

plicated. This group has rank two and its weight is a two–dimensional vector. Correspondingly,

the Cartan matrix of SU(3) is a two–by–two matrix

ĈSU(3) =





2 1̄

1̄ 2



 (2.4)

The highest weight of its fundamental representation is given by w1 = (10) and has only one

positive entry a1 = 1. The subtraction of the first row of the Cartan matrix α1 = (2 1̄) gives the

second weight w2 = (1̄1), which again has only one positive element a2 = 1. The subtraction

of the second row of the Cartan matrix α2 = (1̄ 2) gives the third weight (01̄) which does

not have positive entries and is therefore the lowest weight of the fundamental representation.

Thus, the fundamental representation of SU(3) has dimension 3. The weights of the conjugate

representation, whose highest weight is given by w1 = (01), are derived analogously.

level 3 3̄ 8

4 (11)

2 (10) (01) (1̄2) (21̄)

0 (1̄1) (11̄) (00) (00)

-2 (01̄) (1̄0) (12̄) (2̄1)

-4 (1̄1̄)

Consider now the adjoint representation of SU(3), whose highest weight is given by w1 = (11).

Both of its elements a1 = a2 = 1 are positive, so that we have to subtract the first and the
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second rows of the Cartan matrix which gives rise to two weights w2 = (1̄2) and w3 = (21̄). It

is readily seen that these weights coincide with the rows of the Cartan matrix, so that the next

subtraction gives two zero weights w4 = w5 = (00). As the positive elements of w2 and w3 are

equal to two, in complete analogy with the SU(2) case we have to subtract the corresponding

rows of the Cartan matrix once again which gives w6 = (12̄) and w7 = (2̄1), each of which

has only one positive element. The subtraction of the corresponding rows of the Cartan matrix

yields one and the same weight w8 = (1̄1̄) with no positive elements. We thus obtained all the

eight weights of the adjoint representation of SU(3). Note that already in this simple case two

degenerate weights, i.e. similar weights corresponding to different states, appear. In general,

the number of degenerate weights coincides with rank of the group.

A SU(N) group has rank N , which implies N degenerate weights in the adjoint representa-

tion. The Cartan matrix is tridiagonal with diagonal entries equal to 2 and off–diagonal to 1̄. In

what follows we order weights according to their levels. Level of a weight is given by the scalar

products of the weight and level vector of the group. The level vector of a SU(N) group reads

RSU(N+1) = (N, 2(N − 1), 3(N − 2), . . . , (N − 1)2, N). (2.5)

Level vector of a SU(3), for instance, is given by RSU(3) = (2, 2), whereas for a SU(5) we obtain

from (2.5) RSU(5) = (4, 6, 6, 4).

Applying the above to a SU(5) group we obtain the system of weights of 5 (fundamental),

10 and 24 (adjoint) dimensional representations, presented in table 2.1.

level 5 10 24

8 (1001)

6 (0100) (1̄101) (1011̄)

4 (1000) (11̄10) (01̄11) (1̄111̄) (111̄0)

2 (1̄100) (1̄010) (101̄1) (001̄2) (01̄21̄) (1̄21̄0) (21̄00)

0 (01̄10) (1̄11̄1) (1001̄) (0000) (0000) (0000) (0000)

-2 (001̄1) (01̄01) (1̄101̄) (0012̄) (012̄1) (12̄10) (2̄100)

-4 (0001̄) (01̄11̄) (011̄1̄) (11̄1̄1) (1̄1̄10)

-6 (001̄0) (11̄01̄) (1̄01̄1)

-8 (1̄001̄)

Table 2.1: Weights of 5 (fundamental), 10 and 24 (adjoint) dimensional representations of

SU(5). The level vector of SU(5) is given by RSU(5) = (4, 6, 6, 4).

The weights of the conjugate representations 5̄ and 1̄0 of SU(5) are easily obtained from the

weights of the 5 and 10 dimensional representations presented in table 2.1 by the transformation

(a1a2a3a4) → (a4a3a2a1), which leaves the level vector and the adjoint representation invariant.
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The Cartan matrix of the orthogonal group SO(10) reads [56]

ĈSO(10) =





















2 1̄ 0 0 0

1̄ 2 1̄ 0 0

0 1̄ 2 1̄ 1̄

0 0 1̄ 2 0

0 0 1̄ 0 2





















(2.6)

Proceeding as above, we derive the weights of 10 (fundamental), 16 (spinor) and 45 (adjoint)

dimensional representations of SO(10) presented in table 2.2.

level 10 16 45

14 (01000)

12 (11̄100)

10 (00001) (1̄0100) (101̄11)

8 (10000) (00101̄) (1̄11̄11) (1001̄1) (10011̄)

6 (1̄1000) (011̄10) (01̄011) (1̄101̄1) (1̄1011̄) (1011̄1̄)

4 (01̄100) (11̄010) (0101̄0) (01̄11̄1) (01̄111̄) (1̄111̄1̄) (111̄00)

2 (001̄11) (1̄0010) (11̄11̄0) (001̄02) (01̄21̄1̄) (001̄20) (1̄21̄00) (21̄000)

0 (0001̄1) (00011̄) (1̄011̄0) (101̄01) (00000) (00000) (00000) (00000) (00000)

-2 (0011̄1̄) (1̄11̄01) (10001̄) (00102̄) (012̄11) (0012̄0) (12̄100) (2̄1000)

-4 (011̄00) (01̄001) (1̄1001̄) (011̄11̄) (011̄1̄1) (11̄1̄11) (1̄1̄100)

-6 (11̄000) (01̄101̄) (0101̄1̄) (11̄011̄) (11̄01̄1) (1̄01̄11)

-8 (1̄0000) (001̄10) (11̄11̄1̄) (1̄0011̄) (1̄001̄1)

-10 (0001̄0) (101̄00) (1̄011̄1̄)

-12 (1̄11̄00)

-14 (01̄000)

Table 2.2: Weights of 10 (fundamental), 16 (spinor) and 45 (adjoint) dimensional representa-

tions of SO(10). Level vector of SO(10) is given by RSO(10) = (8, 14, 18, 10, 10).

In what follows we will also need weights of states of the 1̄6 representation. From the

structure of the level vector, which has only two equal entries, it is clear, that these are obtained

from the weights of 16 by the transformation (a1a2a3a4a5) → (a1a2a3a5a4) which leaves both

the level vector and the adjoint representation invariant.

The exceptional groups, especially the E series, have received considerable attention from

model builders. One of the main motivations is that if one of the exceptional groups were part

of a complete theory, then there might be a chance of going beyond the Yang–Mills construction

and “explaining” why it is the correct choice of gauge group. E6 has rank 6 and 78 generators,

and is the only exceptional group with non–self conjugate irreps, so it is the only exceptional

group for which flavor–chiral theory is possible. The Cartan matrix of the exceptional group E6
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is given by [56]

ĈE6 =



























2 1̄ 0 0 0 0

1̄ 2 1̄ 0 0 0

0 1̄ 2 1̄ 0 1̄

0 0 1̄ 2 1̄ 0

0 0 0 1̄ 2 0

0 0 1̄ 0 0 2



























(2.7)

Proceeding as above, we derive the weights of 27 (fundamental) and 78 (adjoint) dimensional

representations of E6, which are presented in table 2.3.

level 27 78

22 (000001)

20 (001001̄)

18 (011̄100)

16 (100000) (11̄0100) (0101̄10)

14 (1̄10000) (1̄00100) (11̄11̄10) (01001̄0)

12 (01̄1000) (1̄011̄10) (101̄011) (11̄101̄0)

10 (001̄101) (1̄0101̄0) (1̄11̄011) (100011̄) (101̄11̄1)

8 (0001̄11) (000101̄) (1̄11̄11̄1) (01̄0011) (1̄10011̄) (10011̄1̄) (1001̄01)

6 (00001̄1) (0011̄11̄) (1̄101̄01) (01̄011̄1) (01̄1011̄) (1̄1011̄1̄) (1011̄01̄)

4 (000101̄1̄) (011̄010) (1̄111̄01̄) (01̄11̄01) (001̄110) (01̄111̄1̄) (111̄000)

2 (011̄11̄010) (11̄0010) (01̄21̄01̄) (1̄21̄000) (001̄002) (0001̄20) (001̄21̄0) (21̄0000)

0 (0101̄00) (11̄011̄0) (1̄00010) (000000) (000000) (000000) (000000) (000000) (000000)

2̄ (11̄11̄00) (1̄0011̄0) (012̄101) (12̄1000) (001002̄) (00012̄0) (0012̄10) (2̄10000)

-4 (101̄001) (1̄011̄00) (11̄1̄101) (011̄101̄) (0011̄1̄0) (011̄1̄11) (1̄1̄1000)

-6 (100001̄) (1̄11̄001) (11̄0101̄) (0101̄11̄) (011̄01̄1) (11̄01̄11) (1̄01̄101)

-8 (1̄10001̄) (01̄0001) (1̄00101̄) (11̄11̄11̄) (01001̄1̄) (11̄001̄1) (1̄001̄11)

-10 (01̄1001̄) (1̄011̄11̄) (101̄010) (11̄101̄1̄) (1̄0001̄1)

-12 (001̄100) (1̄11̄010) (101̄11̄0) (1̄0101̄1̄)

-14 (0001̄10) (01̄0010) (1001̄00) (1̄11̄11̄0)

-16 (00001̄0) (01̄011̄0) (1̄101̄00)

-18 (01̄11̄00)

-20 (001̄001)

-22 (000001̄)

Table 2.3: Weights of 27 (fundamental) and 78 (adjoint) dimensional representations of E6.

The level vector of E6 is given by RE6 = (16, 30, 42, 30, 16, 22).

From the structure of the level vector it is clear, that the weights of the states of the 2̄7

representation are obtained from the weights of the 27 by the transformation (a1a2a3a4a5a6) →
(a5a4a3a2a1a6) which leaves both the level vector and the adjoint representation invariant.
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Now that we have weights of all the groups we are interested in, we should deduce projection

matrices which take the weights of E6 to the weights of its subgroups. Let us first consider the

E6 → SO(10)⊗U(1) breaking chain. The commonly used convention is that the highest weight

of a representation of a group is projected onto the highest weight of its subgroup representa-

tion. For instance, the 27 dimensional fundamental representation of E6 is mapped to the 16

dimensional fundamental representation of SO(10) whereas 2̄7 of E6 is mapped to 1̄6 of SO(10).

Likewise, the highest weight of the adjoint of E6 is mapped to the highest weight of the adjoint

of SO(10). The resulting projection matrix is a six–by–six matrix. Its first five rows which

project a six–dimensional weight of E6 to the corresponding five–dimensional weight of SO(10)

are easily deduced from the table 2.4, where the branching rules of E6 representations are given.

The last row projects the weights of E6 to the corresponding one–dimensional weights of the

Branching rule E6 SO(10)

27 =1 + 10 +16 (100000) (00001)

2̄7=1+1̄0+1̄6 (000010) (00010)

78=1+45+16+1̄6 (000001) (01000)

351=10+1̄6+16+45+ ¯120+144 (000100) (10010)

¯351=1̄0+16+1̄6+4̄5+120+ ¯144 (010000) (10001)

2925=16+1̄6+451+ 452+1201+1202+144+210+560+945 (001000) (10100)

Table 2.4: Branching of E6 representations.

U(1) subgroup and is deduced up to an overall factor from the requirement, that all components

of the SO(10) subgroup have the same U(1) charge. As can be easily checked using table 2.4,

the explicit form of the projection matrix is

PE6→SO(10)⊗U(1) =



























0 1 1 1 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 1 0

1 1 0 0 0 0

1 1̄ 0 1 1̄ 0



























(2.8)

Analogously, we deduce the SO(10) → SU(5) ⊗ U(1) projection matrix. The branching rules

of SO(10) representations are presented in table 2.5. The first four rows of the resulting five–

by–five projection matrix take five–dimensional weights of the SO(10) representation to four–

dimensional weights of its SU(5) subgroup, whereas the fifth row projects weights of the SO(10)

to weights of its U(1) subgroup.
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Branching rule SO(10) SU(5)

10=5+5̄ (10000) (1000)

16=1+5̄+10 (00001) (0100)

45=1+10+1̄0+24 (01000) (1001)

120=5+5̄+10+1̄0+45+ 4̄5 (00100) (0101)

144=5+5̄+10+15+24+40 +4̄5 (10010) (1010)

Table 2.5: Branching of SO(10) representations.

As can be easily checked using table 2.5, the projection matrix reads

PSO(10)→SU(5)⊗U(1) =





















1 1 0 0 0

0 0 1 0 1

0 0 0 1 0

0 1 1 0 0

2 0 2 1 1̄





















(2.9)

Finally we have to derive the matrix projecting SU(5) to the Standard Model gauge group.

The branching rules of SU(5) representations are given in table 2.6. The first two rows ot the

Branching rule SU(5) SU(3) ⊗ SU(2)

5=(1,2)+(3,1) (1000) (10)(0)

5̄=(1,2)+(1,3̄) (0001) (01)(0)

10=(1,1)+(3,1)+(3,2) (0100) (10)(1)

1̄0=(1,1)+(3̄,1)+(3̄,2) (0010) (01)(1)

Table 2.6: Branching of SU(5) representations.

four–by–four projection matrix take four–dimensional weights of SU(5) representation to two–

dimensional weights of its SU(3) subgroup, the third row to one–dimensional weights of SU(2)

and the last row to weights of its U(1) subgroup. Explicit form of the projection matrix:

PSU(5)→SU(3)⊗SU(2)⊗U(1) =















0 1 1 0

1 1 0 0

0 0 1 1

2̄ 1 1̄ 2















(2.10)

An embedding of the SO(10), SU(5) and the Standard Model gauge groups into the fundamental

and the adjoint representations of E6 is presented correspondingly in table 2.7 and table 2.8.
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E6 SO(10) ⊗U(1) SU(5)⊗U(1)2 SU(3) ⊗ SU(2) ⊗U(1)3 I II III IV V VI (Z, ρ)

27 16 10 3,2

[100000] [00001]1 [0100]1,1̄ [10][1],1,1̄,1 u u u u u u −ε

[11̄0010] [1̄0010]1 [1̄010]1,1̄ [1̄1][1],1,1̄,1 u u u u u u −ε

[100001̄] [01̄001]1 [1̄101̄]1,1̄ [01̄][1],1,1̄,1 u u u u u u −ε

[00001̄1] [0101̄0]1 [101̄1]1,1̄ [10][1̄],1,1̄,1 d d d d d d −ε

[01̄0001] [1̄1001̄]1 [01̄01]1,1̄ [1̄1][1̄],1,1̄,1 d d d d d d −ε

[00001̄0] [0001̄0]1 [001̄0]1,1̄ [01̄][1̄],1,1̄,1 d d d d d d −ε

27 16 10 3̄,1

[001̄101] [011̄10]1 [11̄10]1,1̄ [01][0],1,1̄,4̄ uc uc dc Dc dc Dc α− ε

[011̄11̄0] [101̄01]1 [1001̄]1,1̄ [11̄][0],1,1̄,4̄ uc uc dc Dc dc Dc α− ε

[001̄100] [001̄10]1 [01̄11̄]1,1̄ [1̄0][0],1,1̄,4̄ uc uc dc Dc dc Dc α− ε

27 16 10 1,1

[11̄11̄00] [1̄011̄0]1 [1̄11̄1]1,1̄ [00][0],1,1̄,6 ec ec νc S νc S −α− ε

27 16 5̄ 3̄,1

[01̄1000] [00101̄]1 [0001]1,3 [01][0],1,3,2 dc Dc uc uc Dc dc β − ε

[00101̄1̄] [11̄11̄0]1 [011̄0]1,3 [11̄][0],1,3,2 dc Dc uc uc Dc dc β − ε

[01̄1001̄] [01̄101̄]1 [1̄000]1,3 [1̄0][0],1,3,2 dc Dc uc uc Dc dc β − ε

27 16 5̄ 1,2

[000101̄] [11̄010]1 [0011̄]1,3 [00][1],1,3,3̄ ν N ν N Ec Ec 2ε− γ

[1̄0011̄0] [10001̄]1 [11̄00]1,3 [00][1̄],1,3,3̄ e E e E Nc Nc 2ε− γ

27 16 1 1,1

[101̄001] [1̄11̄01]1 [0000]1,5̄ [00][0],1,5̄,0 νc S ec ec S νc
−β − ε

27 10 5 3,1

[1̄10000] [10000]2̄ [1000]2̄,2 [10][0],2̄,2,2̄ D D D D D D 2ε

[1̄00010] [00011̄]2̄ [01̄10]2̄,2 [1̄1][0],2̄,2,2̄ D D D D D D 2ε

[1̄10001̄] [11̄000]2̄ [0001̄]2̄,2 [01̄][0],2̄,2,2̄ D D D D D D 2ε

27 10 5 1,2

[0011̄11̄] [01̄100]2̄ [1̄100]2̄,2 [00][1],2̄,2,3 Ec Ec N ν N ν 2ε− α

[1̄011̄00] [0011̄1̄]2̄ [001̄1]2̄,2 [00][1̄],2̄,2,3 Nc Nc E e E e 2ε− α

27 10 5̄ 3̄,1

[0001̄11] [1̄1000]2̄ [0001]2̄,2̄ [01][0],2̄,2̄,2 Dc dc Dc dc uc uc γ − ε

[0101̄00] [0001̄1]2̄ [011̄0]2̄,2̄ [11̄][0],2̄,2̄,2 Dc dc Dc dc uc uc γ − ε

[0001̄10] [1̄0000]2̄ [1̄000]2̄,2̄ [1̄0][0],2̄,2̄,2 Dc dc Dc dc uc uc γ − ε

27 10 5̄ 1,2

[011̄010] [001̄11]2̄ [0011̄]2̄,2̄ [00][1],2̄,2̄,3̄ N ν Ec Ec ν N 2ε− β

[1̄11̄001] [011̄00]2̄ [11̄00]2̄,2̄ [00][1̄],2̄,2̄,3̄ E e Nc Nc e E 2ε− β

27 1 1 1,1

[11̄011̄0] [00000]4 [0000]4,0 [00][0],4,0,0 S νc S νc ec ec
−γ − ε

Table 2.7: Embedding of SO(10) and SU(5) into fundamental representation of E6.
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E6 SO(10) ×U(1) SU(5)×U(1)2 SU(3) × SU(2) ×U(1)3 I II III IV V VI (Z,ρ)

78 16 1 1,1

[011̄1̄11] [1̄11̄01]3̄ [0000]3̄,5̄ [00][0]3̄,5̄,0 νc ν̄c ec ec
0 ēc ēc

0 γ − β

78 16 10 3̄,1

[1̄11̄010] [001̄10]3̄ [01̄11̄]3̄,1̄ [1̄0][0]3̄,1̄,4̄ uc uc
4̄ dc dc uc

4̄ uc α+ γ

[1̄21̄000] [101̄01]3̄ [1001̄]3̄,1̄ [11̄][0]3̄,1̄,4̄ uc uc
4̄ dc dc uc

4̄ uc α+ γ

[1̄11̄011] [011̄10]3̄ [11̄10]3̄,1̄ [01][0]3̄,1̄,4̄ uc uc
4̄ dc dc uc

4̄ uc α+ γ

78 16 10 3,2

[1̄101̄00] [0001̄0]3̄ [001̄0]3̄,1̄ [01̄][1̄]3̄,1̄,1 d d2̄ d d2̄ X X γ

[1̄001̄11] [1̄1001̄]3̄ [01̄01]3̄,1̄ [1̄1][1̄]3̄,1̄,1 d d2̄ d d2̄ X X γ

[1̄101̄01] [0101̄0]3̄ [101̄1]3̄,1̄ [10][1̄]3̄,1̄,1 d d2̄ d d2̄ X X γ

[0101̄11̄] [01̄001]3̄ [1̄101̄]3̄,1̄ [01̄][1]3̄,1̄,1 u u2̄ u u2̄ Y Y γ

[0001̄20] [1̄0010]3̄ [1̄010]3̄,1̄ [1̄1][1]3̄,1̄,1 u u2̄ u u2̄ Y Y γ

[0101̄10] [00001]3̄ [0100]3̄,1̄ [10][1]3̄,1̄,1 u u2̄ u u2̄ Y Y γ

78 16 10 1,1

[0012̄10] [1̄011̄0]3̄ [1̄11̄1]3̄,1̄ [00][0]3̄,1̄,6 ec ec
0 νc ν̄c ēc

0 ēc γ − α

78 16 5̄ 1,2

[2̄10000] [10001̄]3̄ [11̄00]3̄,3 [00][1̄]3̄,3,3̄ e e e e e e 3ε

[1̄10011̄] [11̄010]3̄ [0011̄]3̄,3 [00][1]3̄,3,3̄ ν ν ν ν ν ν 3ε

78 16 5̄ 3̄,1

[1̄011̄11̄] [01̄101̄]3̄ [1̄000]3̄,3 [1̄0][0]3̄,3,2 dc dc uc uc
4̄ uc uc

4̄ β + γ

[1̄111̄01̄] [11̄11̄0]3̄ [011̄0]3̄,3 [11̄][0]3̄,3,2 dc dc uc uc
4̄ uc uc

4̄ β + γ

[1̄011̄10] [00101̄]3̄ [0001]3̄,3 [01][0]3̄,3,2 dc dc uc uc
4̄ uc uc

4̄ β + γ

78 45 1̄0 1,1

[012̄101] [012̄11]0 [11̄11̄]0,4̄ [00][0]0,4̄,6̄ ēc
0 ēc ec

0 ec ν̄c νc α− β

78 45 1̄0 3̄,2

[001̄001] [1̄11̄00]0 [01̄00]0,4̄ [1̄0][1̄]0,4̄,1̄ ū2̄ ū Ȳ Ȳ ū ū2̄ −β

[011̄01̄1] [011̄1̄1]0 [101̄0]0,4̄ [11̄][1̄]0,4̄,1̄ ū2̄ ū Ȳ Ȳ ū ū2̄ −β

[001̄002] [1̄21̄00]0 [11̄01]0,4̄ [01][1̄]0,4̄,1̄ ū2̄ ū Ȳ Ȳ ū ū2̄ −β

[101̄010] [1̄01̄11]0 [1̄011̄]0,4̄ [1̄0][1]0,4̄,1̄ d̄2̄ d̄ X̄ X̄ d̄ d̄2̄ −β

[111̄000] [001̄02]0 [0101̄]0,4̄ [11̄][1]0,4̄,1̄ d̄2̄ d̄ X̄ X̄ d̄ d̄2̄ −β

[101̄011] [1̄11̄11]0 [0010]0,4̄ [01][1]0,4̄,1̄ d̄2̄ d̄ X̄ X̄ d̄ d̄2̄ −β

78 45 1̄0 3,1

[1001̄00] [1̄001̄1]0 [1̄11̄0]0,4̄ [01̄][0]0,4̄,4 ūc
4̄ ūc ūc

4̄ ūc d̄c d̄c
−α− β

[11̄01̄11] [2̄1000]0 [1̄001]0,4̄ [1̄1][0]0,4̄,4 ūc
4̄ ūc ūc

4̄ ūc d̄c d̄c
−α− β

[1001̄01] [1̄101̄1]0 [011̄1]0,4̄ [10][0]0,4̄,4 ūc
4̄ ūc ūc

4̄ ūc d̄c d̄c
−α− β

78 45 24 3,2

[1̄11̄11̄0] [101̄00]0 [11̄01̄]0,0 [01̄][1̄]0,0,5̄ X X d2̄ d d2̄ d α

[1̄01̄101] [011̄11̄]0 [12̄10]0,0 [1̄1][1̄]0,0,5̄ X X d2̄ d d2̄ d α

Table 2.8: Embedding of SO(10) and SU(5) into adjoint representation of E6 (beginning).
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E6 SO(10) ×U(1) SU(5)×U(1)2 SU(3) × SU(2) ×U(1)3 I II III IV V VI (Z,ρ)

[1̄11̄11̄1] [111̄00]0 [21̄00]0,0 [10][1̄]0,0,5̄ X X d2̄ d d2̄ d α

[011̄101̄] [11̄1̄11]0 [0012̄]0,0 [01̄][1]0,0,5̄ Y Y u2̄ u u2̄ u α

[001̄110] [001̄20]0 [01̄21̄]0,0 [1̄1][1]0,0,5̄ Y Y u2̄ u u2̄ u α

[011̄100] [101̄11]0 [1011̄]0,0 [10][1]0,0,5̄ Y Y u2̄ u u2̄ u α

78 1 1 1,1

[000000] [00000]0 [0000]0,0 [00][0]0,0,0 ψ0 ψ0 ψ0 ψ0 ψ0 ψ0 0

78 45 1 1,1

[000000] [00000]0 [0000]0,0 [00][0]0,0,0 φ0 φ0 φ0 φ0 φ0 φ0 0

78 45 24 1,1

[000000] [00000]0 [0000]0,0 [00][0]0,0,0 γ0 γ0 γ0 γ0 γ0 γ0 0

78 45 24 8,1

[000001̄] [01̄000]0 [1̄001̄]0,0 [1̄1̄][0]0,0,0 g g g g g g 0

[01001̄1̄] [11̄01̄1]0 [011̄1̄]0,0 [12̄][0]0,0,0 g g g g g g 0

[01̄0010] [1̄0011̄]0 [1̄1̄10]0,0 [2̄1][0]0,0,0 g g g g g g 0

[000000] [00000]0 [0000]0,0 [00][0]0,0,0 g g g g g g 0

78 45 24 8,1

[000000] [00000]0 [0000]0,0 [00][0]0,0,0 g g g g g g 0

[01001̄0] [1001̄1]0 [111̄0]0,0 [21̄][0]0,0,0 g g g g g g 0

[01̄0011] [1̄1011̄]0 [01̄11]0,0 [1̄2][0]0,0,0 g g g g g g 0

[000001] [01000]0 [1001]0,0 [11][0]0,0,0 g g g g g g 0

78 45 24 1,3

[1̄0001̄1] [0101̄1̄]0 [11̄1̄1]0,0 [00][2̄]0,0,0 W− W− W− W− W− W− 0

[000000] [00000]0 [0000]0,0 [00][0]0,0,0 W 0 W 0 W 0 W 0 W 0 W 0 0

[100011̄] [01̄011]0 [1̄111̄]0,0 [00][2]0,0,0 W+ W+ W+ W+ W+ W+ 0

78 45 24 3̄,2

[01̄11̄00] [1̄011̄1̄]0 [1̄01̄1]0,0 [1̄0][1̄]0,0,5 Ȳ Ȳ ū2̄ ū ū2̄ ū −α

[0011̄1̄0] [0012̄0]0 [012̄1]0,0 [11̄][1̄]0,0,5 Ȳ Ȳ ū2̄ ū ū2̄ ū −α

[01̄11̄01] [1̄111̄1̄]0 [001̄2]0,0 [01][1̄]0,0,5 Ȳ Ȳ ū2̄ ū ū2̄ ū −α

[11̄11̄11̄] [1̄1̄100]0 [2̄100]0,0 [1̄0][1]0,0,5 X̄ X̄ d̄2̄ d̄ d̄2̄ d̄ −α

[1011̄01̄] [01̄11̄1]0 [1̄21̄0]0,0 [11̄][1]0,0,5 X̄ X̄ d̄2̄ d̄ d̄2̄ d̄ −α

[11̄11̄10] [1̄0100]0 [1̄101]0,0 [01][1]0,0,5 X̄ X̄ d̄2̄ d̄ d̄2̄ d̄ −α

78 45 10 3̄,1

[1̄00101̄] [11̄011̄]0 [01̄11̄]0,4 [1̄0][0]0,4,4̄ uc
4̄ uc uc

4̄ uc dc dc α+ β

[1̄1011̄1̄] [21̄000]0 [1001̄]0,4 [11̄][0]0,4,4̄ uc
4̄ uc uc

4̄ uc dc dc α+ β

[1̄00100] [10011̄]0 [11̄10]0,4 [01][0]0,4,4̄ uc
4̄ uc uc

4̄ uc dc dc α+ β

78 45 10 3,2

[1̄0101̄1̄] [11̄11̄1̄]0 [001̄0]0,4 [01̄][1̄]0,4,1 d2̄ d X X d d2̄ β

[1̄1̄1000] [00102̄]0 [01̄01]0,4 [1̄1][1̄]0,4,1 d2̄ d X X d d2̄ β

Table 2.8: Embedding of SO(10) and SU(5) into adjoint representation of E6 (continuation).
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E6 SO(10) ×U(1) SU(5)×U(1)2 SU(3) × SU(2) ×U(1)3 I II III IV V VI (Z,ρ)

[1̄0101̄0] [1011̄1̄]0 [101̄1]0,4 [10][1̄]0,4,1 d2̄ d X X d d2̄ β

[001002̄] [12̄100]0 [1̄101̄]0,4 [01̄][1]0,4,1 u2̄ u Y Y u u2̄ β

[01̄1011̄] [01̄111̄]0 [1̄010]0,4 [1̄1][1]0,4,1 u2̄ u Y Y u u2̄ β

[001001̄] [11̄100]0 [0100]0,4 [10][1]0,4,1 u2̄ u Y Y u u2̄ β

78 45 10 1,1

[01̄21̄01̄] [01̄21̄1̄]0 [1̄11̄1]0,4 [00][0]0,4,6 ec
0 ec ēc

0 ēc νc ν̄c β − α

78 1̄6 5 3,1

[101̄11̄0] [001̄01]3 [0001̄]3,3̄ [01̄][0]3,3̄,2̄ d̄c d̄c ūc ūc
4̄ ūc ūc

4̄ −β − γ

[11̄1̄101] [1̄11̄10]3 [01̄10]3,3̄ [1̄1][0]3,3̄,2̄ d̄c d̄c ūc ūc
4̄ ūc ūc

4̄ −β − γ

[101̄11̄1] [011̄01]3 [1000]3,3̄ [10][0]3,3̄,2̄ d̄c d̄c ūc ūc
4̄ ūc ūc

4̄ −β − γ

78 1̄6 5 1,2

[11̄001̄1] [1̄101̄0]3 [001̄1]3,3̄ [00][1̄]3,3̄,3 ν̄ ν̄ ν̄ ν̄ ν̄ ν̄ −3ε

[21̄0000] [1̄0001]3 [1̄100]3,3̄ [00][1]3,3̄,3 ē ē ē ē ē ē −3ε

78 1̄6 10 1,1

[001̄21̄0] [101̄10]3 [11̄11̄]3,1 [00][0]3,1,6̄ ēc ēc
0 ν̄c νc ec

0 ec α− γ

78 1̄6 1̄0 3̄,2

[01̄011̄0] [00001̄]3 [01̄00]3,1 [1̄0][1̄]3,1,1̄ ū ū2̄ ū ū2̄ Ȳ Ȳ −γ

[00012̄0] [1001̄0]3 [101̄0]3,1 [11̄][1̄]3,1,1̄ ū ū2̄ ū ū2̄ Ȳ Ȳ −γ

[01̄011̄1] [01001̄]3 [11̄01]3,1 [01][1̄]3,1,1̄ ū ū2̄ ū ū2̄ Ȳ Ȳ −γ

[11̄0101̄] [01̄010]3 [1̄011̄]3,1 [1̄0][1]3,1,1̄ d̄ d̄2̄ d̄ d̄2̄ X̄ X̄ −γ

[10011̄1̄] [11̄001]3 [0101̄]3,1 [11̄][1]3,1,1̄ d̄ d̄2̄ d̄ d̄2̄ X̄ X̄ −γ

[11̄0100] [00010]3 [0010]3,1 [01][1]3,1,1̄ d̄ d̄2̄ d̄ d̄2̄ X̄ X̄ −γ

78 1̄6 1̄0 3,1

[11̄101̄1̄] [01̄11̄0]3 [1̄11̄0]3,1 [01̄][0]3,1,4 ūc ūc
4̄ d̄c d̄c ūc

4̄ ūc
−α− γ

[12̄1000] [1̄0101̄]3 [1̄001]3,1 [1̄1][0]3,1,4 ūc ūc
4̄ d̄c d̄c ūc

4̄ ūc
−α− γ

[11̄101̄0] [0011̄0]3 [011̄1]3,1 [10][0]3,1,4 ūc ūc
4̄ d̄c d̄c ūc

4̄ ūc
−α− γ

78 1̄6 1 1,1

[01̄111̄1̄] [11̄101̄]3 [0000]3,5 [00][0]3,5,0 ν̄c νc ēc ēc
0 ec ec

0 β − γ

Table 2.8: Embedding of SO(10) and SU(5) into adjoint representation of E6 (continuation).

As is readily seen from table 2.7 along with one (3,2), two (3̄,1), one (1,2) and one (1,1)

representations of SU(3) ⊗ SU(2) which contain respectively the left– and the right–handed

Standard Model quarks, the leptonic doublet and the right–handed electron, the fundamental

representation of E6 also fits additional (3,1) and (3̄,1) representations which contain new

quarks, two additional (1,2) representations, which contain new leptons, and two additional

(1,1) representations containing the Standard Model singlets. Likewise, apart from the Standard

Model gauge fields, the adjoint of E6 contains a rich spectrum of new states including those

mediating the proton decay. This issue will be discussed in more detail in section 2.3.
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E6 SU(3) SU(2),Y Assignments (Z, ρ)

C L R L R R
′

R
′′

I II III IV V VI

27 3 3 1 2

[100000] [10] [10] [00] [1],1 [0],0 [0],0 [0],0 u u u u u u −ε

[11̄0010] [1̄1] [10] [00] [1],1 [0],0 [0],0 [0],0 u u u u u u −ε

[100001̄] [01̄] [10] [00] [1],1 [0],0 [0],0 [0],0 u u u u u u −ε

[00001̄1] [10] [1̄1] [00] [1̄],1 [0],0 [0],0 [0],0 d d d d d d −ε

[01̄0001] [1̄1] [1̄1] [00] [1̄],1 [0],0 [0],0 [0],0 d d d d d d −ε

[00001̄0] [01̄] [1̄1] [00] [1̄],1 [0],0 [0],0 [0],0 d d d d d d −ε

27 3 3 1 1

[1̄10000] [10] [01̄] [00] [0],2̄ [0],0 [0],0 [0],0 D D D D D D 2ε

[1̄00010] [1̄1] [01̄] [00] [0],2̄ [0],0 [0],0 [0],0 D D D D D D 2ε

[1̄10001̄] [01̄] [01̄] [00] [0],2̄ [0],0 [0],0 [0],0 D D D D D D 2ε

27 3̄ 1 3̄ 1

[001̄101] [01] [00] [1̄0] [0],0 [1̄],1̄ [1̄],1̄ [0],2 uc uc dc Dc dc Dc
−ε+ α

[011̄11̄0] [11̄] [00] [1̄0] [0],0 [1̄],1̄ [1̄],1̄ [0],2 uc uc dc Dc dc Dc
−ε+ α

[001̄100] [1̄0] [00] [1̄0] [0],0 [1̄],1̄ [1̄],1̄ [0],2 uc uc dc Dc dc Dc
−ε+ α

[0001̄11] [01] [00] [01] [0],0 [0],2 [1],1̄ [1],1̄ Dc dc Dc dc uc uc
−ε+ γ

[0101̄00] [11̄] [00] [01] [0],0 [0],2 [1],1̄ [1],1̄ Dc dc Dc dc uc uc
−ε+ γ

[0001̄10] [1̄0] [00] [01] [0],0 [0],2 [1],1̄ [1],1̄ Dc dc Dc dc uc uc
−ε+ γ

[01̄1000] [01] [00] [11̄] [0],0 [1],1̄ [0],2 [1̄],1̄ dc Dc uc uc Dc dc
−ε+ β

[00101̄1̄] [11̄] [00] [11̄] [0],0 [1],1̄ [0],2 [1̄],1̄ dc Dc uc uc Dc dc
−ε+ β

[01̄1001̄] [1̄0] [00] [11̄] [0],0 [1],1̄ [0],2 [1̄],1̄ dc Dc uc uc Dc dc
−ε+ β

27 1 3̄ 3 2

[0011̄11̄] [00] [11̄] [10] [1],1̄ [1],1 [1],1 [0],2̄ Ec Ec N ν N ν 2ε− α

[1̄011̄00] [00] [1̄0] [10] [1̄],1̄ [1],1 [1],1 [0],2̄ Nc Nc E e E e 2ε− α

[011̄010] [00] [11̄] [1̄1] [1],1̄ [1̄],1 [0],2̄ [1],1 N ν Ec Ec ν N 2ε− β

[1̄11̄001] [00] [1̄0] [1̄1] [1̄],1̄ [1̄],1 [0],2̄ [1],1 E e Nc Nc e E 2ε− β

[000101̄] [00] [11̄] [01̄] [1],1̄ [0],2̄ [1̄],1 [1̄],1 ν N ν N Ec Ec 2ε− γ

[1̄0011̄0] [00] [1̄0] [01̄] [1̄],1̄ [0],2̄ [1̄],1 [1̄],1 e E e E Nc Nc 2ε− γ

27 1 3̄ 3 1

[11̄11̄00] [00] [01] [10] [0],2 [1],1 [1],1 [0],2̄ ec ec νc S νc S −ε− α

[101̄001] [00] [01] [1̄1] [0],2 [1̄],1 [0],2̄ [1],1 νc S ec ec S νc
−ε− β

[11̄011̄0] [00] [01] [01̄] [0],2 [0],2̄ [1̄],1 [1̄],1 S νc S νc ec ec
−ε− γ

Table 2.9: Embedding of SU(3) ⊗ SU(3) ⊗ SU(3) into fundamental representation of E6. Here

ε = 1
3(α+β+ γ), x̄ ≡ −x. The zero root breaking SM gauge group preserving direction is given

by Z = (−ε, ε, β, 2ε− γ, ε, 0).
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E6 SU(3) SU(2),Y Assignments (Z, ρ)

C L R L R R
′

R
′′

I II III IV V VI

78 1 8 1

[21̄0000] [00] [11] [00] [1],3 [0],0 [0],0 [0],0 ē ē ē ē ē ē −3ε

[11̄001̄1] [00] [1̄2] [00] [1̄],3 [0],0 [0],0 [0],0 ν̄ ν̄ ν̄ ν̄ ν̄ ν̄ −3ε

[100011̄] [00] [21̄] [00] [2],0 [0],0 [0],0 [0],0 W+ W+ W+ W+ W+ W+ 0

[000000] [00] [00] [00] [0],0 [0],0 [0],0 [0],0 W 0 W 0 W 0 W 0 W 0 W 0 0

[1̄0001̄1] [00] [2̄1] [00] [2̄],0 [0],0 [0],0 [0],0 W− W− W− W− W− W− 0

[1̄10011̄] [00] [12̄] [00] [1],3̄ [0],0 [0],0 [0],0 ν ν ν ν ν ν 3ε

[2̄10000] [00] [1̄1̄] [00] [1̄],3̄ [0],0 [0],0 [0],0 e e e e e e 3ε

[000000] [00] [00] [00] [0],0 [0],0 [0],0 [0],0 γ0 γ0 γ0 γ0 γ0 γ0 0

78 1 1 8

[0012̄10] [00] [00] [11] [0],0 [1],3 [2],0 [1],3̄ ec ec
0 νc ν̄c ēc

0 ēc γ − α

[011̄1̄11] [00] [00] [1̄2] [0],0 [1̄],3 [1],3̄ [2],0 νc ν̄c ec ec
0 ēc ēc

0 γ − β

[01̄21̄01̄] [00] [00] [21̄] [0],0 [2],0 [1],3 [1̄],3̄ ec
0 ec ēc

0 ēc νc ν̄c β − α

[000000] [00] [00] [00] [0],0 [0],0 [0],0 [0],0 φ0 φ0 φ0 φ0 φ0 φ0 0

[012̄101] [00] [00] [2̄1] [0],0 [2̄],0 [1̄],3̄ [1],3 ēc
0 ēc ec

0 ec ν̄c νc α− β

[01̄111̄1̄] [00] [00] [12̄] [0],0 [1],3̄ [1̄],3 [2̄],0 ν̄c νc ēc ēc
0 ec ec

0 β − γ

[001̄21̄0] [00] [00] [1̄1̄] [0],0 [1̄],3̄ [2̄],0 [1̄],3 ēc ēc
0 ν̄c νc ec

0 ec α− γ

[000000] [00] [00] [00] [0],0 [0],0 [0],0 [0],0 ω0 ω0 ω0 ω0 ω0 ω0 0

78 8 1 1

[000001] [11] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[01̄0011] [1̄2] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[01001̄0] [21̄] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[000000] [00] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[000000] [00] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[01001̄1̄] [12̄] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[01̄0010] [2̄1] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

[000001̄] [1̄1̄] [00] [00] [0],0 [0],0 [0],0 [0],0 g g g g g g 0

78 3̄ 3 3

[11̄11̄10] [01] [10] [10] [1],1 [1],1 [1],1 [0],2̄ X̄ X̄ d̄2̄ d̄ d̄2̄ d̄ −α

[1011̄01̄] [11̄] [10] [10] [1],1 [1],1 [1],1 [0],2̄ X̄ X̄ d̄2̄ d̄ d̄2̄ d̄ −α

[11̄11̄11̄] [1̄0] [10] [10] [1],1 [1],1 [1],1 [0],2̄ X̄ X̄ d̄2̄ d̄ d̄2̄ d̄ −α

[101̄011] [01] [10] [1̄1] [1],1 [1̄],1 [0],2̄ [1],1 d̄2̄ d̄ X̄ X̄ d̄ d̄2̄ −β

[111̄000] [11̄] [10] [1̄1] [1],1 [1̄],1 [0],2̄ [1],1 d̄2̄ d̄ X̄ X̄ d̄ d̄2̄ −β

Table 2.10: Embedding of SU(3)⊗SU(3)⊗SU(3) into adjoint representation of E6 (beginning).

Color, isospin and hypercharge (as well as B − L, unless otherwise indicated) of the states

designated like the SM states are the same as charges of their SM counterparts. If present, the

subscript is thrice the B−L charge. All charges of overlined states are opposite to those of non

overlined ones. For example, for d̄2̄: I3 = 1
2 , Y = −1

3 , B − L = 2
3 .
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E6 SU(3) SU(2),Y Assignments (Z, ρ)

C L R L R R
′

R
′′

I II III IV V VI

78 3̄ 3 3

[101̄010] [1̄0] [10] [1̄1] [1],1 [1̄],1 [0],2̄ [1],1 d̄2̄ d̄ X̄ X̄ d̄ d̄2̄ −β

[11̄0100] [01] [10] [01̄] [1],1 [0],2̄ [1̄],1 [1̄],1 d̄ d̄2̄ d̄ d̄2̄ X̄ X̄ −γ

[10011̄1̄] [11̄] [10] [01̄] [1],1 [0],2̄ [1̄],1 [1̄],1 d̄ d̄2̄ d̄ d̄2̄ X̄ X̄ −γ

[11̄0101̄] [1̄0] [10] [01̄] [1],1 [0],2̄ [1̄],1 [1̄],1 d̄ d̄2̄ d̄ d̄2̄ X̄ X̄ −γ

[01̄11̄01] [01] [1̄1] [10] [1̄],1 [1],1 [1],1 [0],2̄ Ȳ Ȳ ū2̄ ū ū2̄ ū −α

[0011̄1̄0] [11̄] [1̄1] [10] [1̄],1 [1],1 [1],1 [0],2̄ Ȳ Ȳ ū2̄ ū ū2̄ ū −α

[01̄11̄00] [1̄0] [1̄1] [10] [1̄],1 [1],1 [1],1 [0],2̄ Ȳ Ȳ ū2̄ ū ū2̄ ū −α

[001̄002] [01] [1̄1] [1̄1] [1̄],1 [1̄],1 [0],2̄ [1],1 ū2̄ ū Ȳ Ȳ ū ū2̄ −β

[011̄01̄1] [11̄] [1̄1] [1̄1] [1̄],1 [1̄],1 [0],2̄ [1],1 ū2̄ ū Ȳ Ȳ ū ū2̄ −β

[001̄001] [1̄0] [1̄1] [1̄1] [1̄],1 [1̄],1 [0],2̄ [1],1 ū2̄ ū Ȳ Ȳ ū ū2̄ −β

[01̄011̄1] [01] [1̄1] [01̄] [1̄],1 [0],2̄ [1̄],1 [1̄],1 ū ū2̄ ū ū2̄ Ȳ Ȳ −γ

[00012̄0] [11̄] [1̄1] [01̄] [1̄],1 [0],2̄ [1̄],1 [1̄],1 ū ū2̄ ū ū2̄ Ȳ Ȳ −γ

[01̄011̄0] [1̄0] [1̄1] [01̄] [1̄],1 [0],2̄ [1̄],1 [1̄],1 ū ū2̄ ū ū2̄ Ȳ Ȳ −γ

[1̄011̄10] [01] [01̄] [10] [0],2̄ [1],1 [1],1 [0],2̄ dc dc uc uc
4̄ uc uc

4̄ β + γ

[1̄111̄01̄] [11̄] [01̄] [10] [0],2̄ [1],1 [1],1 [0],2̄ dc dc uc uc
4̄ uc uc

4̄ β + γ

[1̄011̄11̄] [1̄0] [01̄] [10] [0],2̄ [1],1 [1],1 [0],2̄ dc dc uc uc
4̄ uc uc

4̄ β + γ

[1̄11̄011] [01] [01̄] [1̄1] [0],2̄ [1̄],1 [0],2̄ [1],1 uc uc
4̄ dc dc uc

4̄ uc α+ γ

[1̄21̄000] [11̄] [01̄] [1̄1] [0],2̄ [1̄],1 [0],2̄ [1],1 uc uc
4̄ dc dc uc

4̄ uc α+ γ

[1̄11̄010] [1̄0] [01̄] [1̄1] [0],2̄ [1̄],1 [0],2̄ [1],1 uc uc
4̄ dc dc uc

4̄ uc α+ γ

[1̄00100] [01] [01̄] [01̄] [0],2̄ [0],2̄ [1̄],1 [1̄],1 uc
4̄ uc uc

4̄ uc dc dc α+ β

[1̄1011̄1̄] [11̄] [01̄] [01̄] [0],2̄ [0],2̄ [1̄],1 [1̄],1 uc
4̄ uc uc

4̄ uc dc dc α+ β

[1̄00101̄] [1̄0] [01̄] [01̄] [0],2̄ [0],2̄ [1̄],1 [1̄],1 uc
4̄ uc uc

4̄ uc dc dc α+ β

78 3 3̄ 3̄

[1001̄01] [10] [01] [01] [0],2 [0],2 [1],1̄ [1],1̄ ūc
4̄ ūc ūc

4̄ ūc d̄c d̄c −α− β

[11̄01̄11] [1̄1] [01] [01] [0],2 [0],2 [1],1̄ [1],1̄ ūc
4̄ ūc ūc

4̄ ūc d̄c d̄c −α− β

[1001̄00] [01̄] [01] [01] [0],2 [0],2 [1],1̄ [1],1̄ ūc
4̄ ūc ūc

4̄ ūc d̄c d̄c −α− β

[11̄101̄0] [10] [01] [11̄] [0],2 [1],1̄ [0],2 [1̄],1̄ ūc ūc
4̄ d̄c d̄c ūc

4̄ ūc
−α− γ

[12̄1000] [1̄1] [01] [11̄] [0],2 [1],1̄ [0],2 [1̄],1̄ ūc ūc
4̄ d̄c d̄c ūc

4̄ ūc
−α− γ

[11̄101̄1̄] [01̄] [01] [11̄] [0],2 [1],1̄ [0],2 [1̄],1̄ ūc ūc
4̄ d̄c d̄c ūc

4̄ ūc
−α− γ

[101̄11̄1] [10] [01] [1̄0] [0],2 [1̄],1̄ [1̄],1̄ [0],2 d̄c d̄c ūc ūc
4̄ ūc ūc

4̄ −β − γ

[11̄1̄101] [1̄1] [01] [1̄0] [0],2 [1̄],1̄ [1̄],1̄ [0],2 d̄c d̄c ūc ūc
4̄ ūc ūc

4̄ −β − γ

[101̄11̄0] [01̄] [01] [1̄0] [0],2 [1̄],1̄ [1̄],1̄ [0],2 d̄c d̄c ūc ūc
4̄ ūc ūc

4̄ −β − γ

[0101̄10] [10] [11̄] [01] [1],1̄ [0],2 [1],1̄ [1],1̄ u u2̄ u u2̄ Y Y γ

[0001̄20] [1̄1] [11̄] [01] [1],1̄ [0],2 [1],1̄ [1],1̄ u u2̄ u u2̄ Y Y γ

[0101̄11̄] [01̄] [11̄] [01] [1],1̄ [0],2 [1],1̄ [1],1̄ u u2̄ u u2̄ Y Y γ

[001001̄] [10] [11̄] [11̄] [1],1̄ [1],1̄ [0],2 [1̄],1̄ u2̄ u Y Y u u2̄ β

Table 2.10: Embedding of SU(3) ⊗ SU(3) ⊗ SU(3) into adjoint representation of E6 (continua-

tion).
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E6 SU(3) SU(2),Y Assignments (Z, ρ)

C L R L R R
′

R
′′

I II III IV V VI

[01̄1011̄] [1̄1] [11̄] [11̄] [1],1̄ [1],1̄ [0],2 [1̄],1̄ u2̄ u Y Y u u2̄ β

[001002̄] [01̄] [11̄] [11̄] [1],1̄ [1],1̄ [0],2 [1̄],1̄ u2̄ u Y Y u u2̄ β

[011̄100] [10] [11̄] [1̄0] [1],1̄ [1̄],1̄ [1̄],1̄ [0],2 Y Y u2̄ u u2̄ u α

[001̄110] [1̄1] [11̄] [1̄0] [1],1̄ [1̄],1̄ [1̄],1̄ [0],2 Y Y u2̄ u u2̄ u α

[011̄101̄] [01̄] [11̄] [1̄0] [1],1̄ [1̄],1̄ [1̄],1̄ [0],2 Y Y u2̄ u u2̄ u α

[1̄101̄01] [10] [1̄0] [01] [1̄],1̄ [0],2 [1],1̄ [1],1̄ d d2̄ d d2̄ X X γ

[1̄001̄11] [1̄1] [1̄0] [01] [1̄],1̄ [0],2 [1],1̄ [1],1̄ d d2̄ d d2̄ X X γ

[1̄101̄00] [01̄] [1̄0] [01] [1̄],1̄ [0],2 [1],1̄ [1],1̄ d d2̄ d d2̄ X X γ

[1̄0101̄0] [10] [1̄0] [11̄] [1̄],1̄ [1],1̄ [0],2 [1̄],1̄ d2̄ d X X d d2̄ β

[1̄1̄1000] [1̄1] [1̄0] [11̄] [1̄],1̄ [1],1̄ [0],2 [1̄],1̄ d2̄ d X X d d2̄ β

[1̄0101̄1̄] [01̄] [1̄0] [11̄] [1̄],1̄ [1],1̄ [0],2 [1̄],1̄ d2̄ d X X d d2̄ β

[1̄11̄11̄1] [10] [1̄0] [1̄0] [1̄],1̄ [1̄],1̄ [1̄],1̄ [0],2 X X d2̄ d d2̄ d α

[1̄01̄101] [1̄1] [1̄0] [1̄0] [1̄],1̄ [1̄],1̄ [1̄],1̄ [0],2 X X d2̄ d d2̄ d α

[1̄11̄11̄0] [01̄] [1̄0] [1̄0] [1̄],1̄ [1̄],1̄ [1̄],1̄ [0],2 X X d2̄ d d2̄ d α

Table 2.10: Embedding of SU(3) ⊗ SU(3) ⊗ SU(3) into adjoint representation of E6 (continua-

tion).

Let us now consider the E6 → SU(3) ⊗ SU(3) ⊗ SU(3) breaking chain. As can be easily

checked, the corresponding projection matrix is given by (2.11). The projection matrix maps

the fundamental representation of E6 into the fundamental representation of one of the SU(3)

subgroups (1,1,3), and the adjoint of E6 into the adjoint of one of the SU(3) subgroups (1,1,8).

The embedding of SU(3) ⊗ SU(3) ⊗ SU(3) representations into the fundamental and adjoint

representations of E6 is presented in tables 2.9 and 2.10 respectively.

PE6→SU(3)⊗SU(3)⊗SU(3) =



























1 1 1 1 1 0

0 1̄ 1̄ 1̄ 1̄ 0

0 0 1 0 0 0

0 0 1̄ 1̄ 0 0

1 2 2 1 0 1

0 0 1 1 1 1



























(2.11)

One of the SU(3) subgroups can be associated with the Standard Model SUC(3), whereas the

other two are broken at low energies.

There is a three–fold ambiguity in projecting SU(3) to SU(2) ⊗ U(1). The ambiguity is

associated with the fact, that any of the three states of the fundamental representation of SU(3)

can be projected to a singlet of SU(2). Since we have not yet specified the correspondence

between weights of E6 and states of the Standard Model, we are free to choose any of the three
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possible projections, given by (2.12), to project one of the SU(3) subgroups to SUL(2) of the

Standard Model. The embedding presented in tables 2.9 and 2.10 corresponds to a choice of the

P
1SU(3)→SU(2) projection matrix.

P
1SU(3)→SU(2) =





1 0

1 2



 , P
2SU(3)→SU(2) =





1 1

1 1̄



 , P
3SU(3)→SU(2) =





0 1

2̄ 1̄



 (2.12)

If the last of the SU(3) groups is also broken down to SU(2), then the aforementioned projection

freedom leads to one left–right symmetric and two skew left–right symmetric models (see tables

2.9 and 2.10).

2.2 Particle content and charge assignments

As has already been mentioned, the fundamental representation of E6 contains the fifteen known

states of the Standard Model along with two Higgs doublets, a pair of new quarks and two SM

singlets. The hypercharge Y of any state is given by a scalar product of the hypercharge operator

P̂Y and the weight of the state. Analogously the B − L charge is given by a scalar product of

the weight w of the state and the B − L operator P̂B−L:

Y = (P̂Y · w), B − L = (P̂B−L · w). (2.13)

The left–handed Standard Model quarks, whose hypercharge and B−L charge are known, belong

to the (3,2) representation of the SUC(3) ⊗ SUL(2) subgroup of E6 and correspond to the first

six weights in the tables 2.7 and 2.9. The requirement that the hypercharge and the B − L

charge of these states be the same determines four out of six elements of each operator.

P̂Y =
1

3
(1, 1̄, a3, a4, 1̄, 0), P̂B−L =

1

3
(1, 1̄, b3, b4, 1̄, 0) (2.14)

The remaining elements can be determined from the embedding of the right–handed Standard

Model quarks, which belong to (3̄,1) of SUC(3) ⊗ SUL(2), into the fundamental representation

of E6. As the latter one contains three (3̄,1) subgroups, there are three possible hypercharge:

P̂Y1 =
1

3
(1, 1̄, 1, 3̄, 1̄, 0), (2.15a)

P̂Y2 =
1

3
(1, 1̄, 5̄, 3̄, 1̄, 0), (2.15b)

P̂Y3 =
1

3
(1, 1̄, 1, 3, 1̄, 0), (2.15c)

and three possible B − L operators:

P̂B−L1 =
1

3
(1, 1̄, 2̄, 3̄, 1̄, 0), (2.16a)

P̂B−L2 =
1

3
(1, 1̄, 1, 0, 1̄, 0), (2.16b)

P̂B−L3 =
1

3
(1, 1̄, 2̄, 0, 1̄, 0). (2.16c)
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(or, alternatively, charge assignments) which reproduce the quantum numbers of the Standard

Model states. The particle content of the model is of course independent of the particular choice

The Standard Model states New states

B − L Y I3 Qem P B − L Y I3 Qem P

1/3 1/3 1/2 2/3 u
}

Q
0 1 1/2 1 Ec

}

Hu

1/3 1/3 -1/2 -1/3 d 0 1 -1/2 0 N c

-1 -1 1/2 0 ν
}

L
0 -1 1/2 0 N

}

Hd

-1 -1 -1/2 -1 e 0 -1 -1/2 -1 E

-1/3 -4/3 0 -2/3 uc -2/3 -2/3 0 -1/3 D

-1/3 2/3 0 1/3 dc 2/3 2/3 0 1/3 Dc

1 2 0 1 ec 1 0 0 0 νc

0 0 0 0 S

Table 2.11: Particle content of E6 – fundamental representation.

of the hypercharge and B−L operators. The charges of states in the fundamental representation

of E6 are given in table 2.11. Note that the model contains two Higgs–like doublets Hu and Hd

which are required in a supersymmetric model to give masses to the top and bottom components

of the Standard Model doublets.

Different assignments correspond to different embeddings of states into subgroups of E6. Out

of nine P̂Yi
× P̂B−Lj

combinations six are compatible with the SM:

I : (P̂Y1 , P̂B−L1), II : (P̂Y1 , P̂B−L2), III : (P̂Y2 , P̂B−L1)

IV : (P̂Y2 , P̂B−L3), V : (P̂Y3 , P̂B−L2), VI : (P̂Y3 , P̂B−L3)

The supersymmetric generalization of Yukawa interactions – the superpotential – is a holo-

morphic function of chiral superfields, i.e. it contains the chiral superfields, but not their complex

conjugates. A renormalizable superpotential contains gauge–invariant quadratic (i.e. products

of two chiral superfields) and cubic (i.e. products of three chiral superfields) terms. Since the

weights of the fundamental representation are non–degenerate, one can easily construct the terms

of the superpotential using the requirement that the weights of individual states add up to zero

in each term. As follows from this simple criterion, terms bilinear in the chiral superfields are

not allowed by gauge symmetry. Although all the trilinear terms can also be constructed using

the criterion above, a somewhat more refined analysis [62, 63] is needed in order to determine
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the relative signs of the individual terms of the superpotential. In the flavor basis

W = −λijk1 uc
i (QjH

u
k ) + λijk2 dc

i (QjH
d
k ) + λijk3 eci (LjH

d
k ) + λijk4 Si(H

u
jH

d
k ) + λijk5 SiDjD

c
k

+ [−λijk6 eciu
c
jDk + λijk7 Dc

i (QjLk) + λijk8 dc
iν

c
jDk] + [λijk9 Di(QjQk) + λijk10 D

c
iu

c
jd

c
k]

− λijk11 ν
c
i (LjH

u
k ) (2.17)

In the limit of unification the coupling constants λijkn tend to the same value. Using table 2.7

or table 2.9 one can check that the corresponding weights add up to zero at each vertex.

The form of the superpotential is independent of the charge assignment in the sense that a

change of the assignment will only result in a “permutation” of vertices. For example:

[101̄001] [000101̄] [1̄011̄00] [11̄011̄0] [011̄010] [1011̄00]

I νc ν N c S N N c

II S N N c νc ν N c

III ec ν E S Ec E

Table 2.12: Permutation of vertices under change of charge assignment.

Along with the vertices with i = j = k (i.e. states of the same generation) the superpotential

(2.17) necessarily contains terms with states of different generations in one vertex. If the charge

assignment for one of the generations differs from that for the other generations, then this will

result in a vertex where the sum of the charges differs from zero. For instance, if in the example

given above the assignment II is used for the first weight and the assignment I is used for the

second and the third weights then

νc → S ⇒ νc (νN c) → S (νN c) ,
∑

B − L = −1

S → νc ⇒ S (NN c) → νc (NN c) ,
∑

B − L = 1

If instead of the assignment II, the assignment III is used for the first weight, then it is a sum

of electric charges, which is nonzero. Consequently, the same charge assignment must be used

for all generations.

2.3 Gauge mediated proton decay

Since SU(5) is a subgroup of E6, the gauge sector of the model contains the X and Y bosons,

which are known to mediate proton decay. In addition, there are also new gauge fields leading

to a rapid proton decay (see table 2.13).

To assure that the proton is long–lived, these fields must be very heavy – of the order of 1015

GeV or more. If the only source of masses of those particles are VEVs of the neutral scalars,
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then the masses of the (u2̄, d2̄) gauge bosons are determined by 〈ν̃c〉, mass of the Y boson is of

the order of the EW symmetry breaking scale, and the X bosons remain massless even after all

neutral scalars develop a nonzero VEV.

B − L Y I3 Qem P B − L Y I3 Qem P

2/3 5/3 1/2 4/3 X -2/3 1/3 1/2 2/3 u2̄

2/3 5/3 -1/2 1/3 Y -2/3 1/3 -1/2 -1/3 d2̄

Table 2.13: Gauge fields which mediate proton decay.

Consequently, the gauge superfields which mediate proton decay have to become massive at

the first stage of symmetry breaking. If the manifold Γ is multiply connected, then the effective

Higgs mechanism [64, 65] breaks the symmetry at the compactification scale and induces large

masses of the gauge fields.

From the discussion given above it follows that after the E8⊗E
′

8 breaking, the gauge group of

the model is not E6 itself, but a subgroup G of E6. A very elaborate analysis of many possible

breaking chains has been performed in [55, 65]. It has been argued there that a gauge field

receives a mass of the order of O(1018) GeV if (Z, ρ) 6= 0. Here Z is the zero root breaking

SUC(3) ⊗ SUL(2) ⊗ UY (1) preserving direction, and ρ is the weight of the gauge field. Scalar

products (Z, ρ) for fundamental and adjoint representations of E6 are listed, respectively, in

tables 2.7, 2.9 and 2.8, 2.10.

SU(5) SU(3) ⊗ SU(2), U(1) I II III IV V VI (Z,ρ)

24 (3,2),5̄ X X d2̄ d d2̄ d α

24 (3,2),5̄ Y Y u2̄ u u2̄ u α

Table 2.14: (Z,ρ) products for (3,2)5̄ gauge fields.

The requirement of (Z, ρ) 6= 0 for the gauge fields which mediate proton decay does not

allow G = SO(10) ⊗ U(1). The (3,2)5̄ states (and their charge conjugates) are the only states

in the adjoint of SU(5) which are not automatically massless. As seen from table 2.14, the

requirement that these fields be massless (i.e. that SU(5) is unbroken) does not lead to a rapid

gauge mediated proton decay for the charge assignments IV and VI. In other words, in addition

to the intermediate gauge groups listed in [55] as allowed, also G = SU(5) ⊗ U2(1) is allowed

for the charge assignments IV and VI. Nevertheless, in this case the residual SU(5) symmetry

implies that the couplings in (2.17) are related in the following way;

λ1 = λ2 = λ4 = λ10, λ5 = λ7 = λ9, λ3 = λ6, λ8 = λ11 (2.18)
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and the rapid proton decay mediated by heavy down–type quarks D and Dc is unavoidable.

Apart from scenarios with an extended color group there are only two options left:

GU(1) = SUC(3) ⊗ SUL(2) ⊗ U(1) ⊗ U(1) ⊗ U(1), (2.19)

GSUR(2) = SUC(3) ⊗ SUL(2) ⊗ SUR(2) ⊗ U(1) ⊗ U(1). (2.20)

If the intermediate scale symmetry group is given by (2.19), then the gauge sector of the SM is

supplemented by two neutral states (the rest are superheavy), denoted by φ0 and ω0 (see table

2.10).

If the intermediate scale symmetry group is given by (2.20), then the gauge sector of the

SM is supplemented by one SUR(2) singlet ω0 and one SUR(2) triplet (φc, φ0, φ̄c). There are

three possible SUR(3) → SUR(2),Y projections which result in one left–right symmetric (R) and

two skew left–right symmetric (R
′
and R

′′
) models. The SUR(2) counterparts of φ0 for different

choices of the projection and the charge assignment are given in table 2.15.

Charge assignment

I II III IV V VI

R ec0, ē
c
0 ec, ēc ec0, ē

c
0 ec, ēc νc, ν̄c νc, ν̄c

R
′

ec, ēc ec0, ē
c
0 νc, ν̄c νc, ν̄c ec0, ē

c
0 ec, ēc

R
′′

νc, ν̄c νc, ν̄c ec, ēc ec0, ē
c
0 ec, ēc ec0, ē

c
0

Table 2.15: SUR(2) counterparts of φ0. Isospin and hypercharge (as well as B − L, unless

otherwise indicated) of the states denoted in the same way as the SM states, are the same as

the charges of their SM counterparts. If present, the subscript is thrice the B − L charge.

While SUL(2) in (2.20) coincide with that of the Standard Model, UYL
is not the SM UY (1).

The hypercharge Y , as well as B − L, is a linear combination of QYL
, QYR

and I3R. An

explicit form of the gauge interactions gαΛα[ψ+Tαψ] for the first charge assignment and left–

right symmetric model can be read off from table 2.9:

gYL

2
YL

[

Q̄Q− 2D̄D − (H̄uHu + H̄dHd) − L̄L+ 2(ēcec + ν̄cνc) + 2S̄S
]

+
gYR

2
YR

[

−(d̄cdc + ūcuc) + 2D̄cDc + (H̄uHu + H̄dHd) − 2L̄L+ (ēcec + ν̄cνc) − 2S̄S
]

+
gWR

2
W i
R

[

(dc, uc)+τi(d
c, uc) + (Hu, Hd)+τi(H

u, Hd) + (ec, νc)+τi(e
c, νc)

]

+ . . . (2.21)

At the unification scale the relation among the gauge couplings is as follows:

gWR
=

√
3 gYL

=
√

3 gYR
= gE6 (2.22)

Instead of YL, YR and W 0
R one can use their linear combination. For instance, in the limit (2.22)

the linear combination YB−L = 1√
2
(YL + YR) is a gauge field of UB−L(1). For later purposes it
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is useful to choose linear combinations ω
′

0, φ
′

0, γ
′

0 in such a way, that only one of the new fields

interacts with right–handed neutrinos and one of the fields interacts with neither of the SM

singlets. After the Standard Model singlets develop VEVs, ω
′

0 and φ
′

0 acquire masses, while γ
′

0,

which corresponds to UY (1), remains massless. Rewritten in terms of these fields, (2.21) takes

the form

g
γ
′

0
γ

′

0

1

6

[

Q̄Q− 4ūcuc + 2d̄cdc + 2D̄cDc − 2D̄D + 3H̄uHu − 3H̄dHd − 3L̄L+ 6ēcec
]

(2.23)

+g
φ
′

0
φ

′

0

[

−Q̄Q− ūcuc − 2d̄cdc + 3D̄cDc + 2D̄D + 2H̄uHu + 3H̄dHd − 2L̄L− ēcec − 5S̄S
]

+g
ω
′

0
ω

′

0

[

Q̄Q+ ūcuc − 2d̄cdc + D̄cDc − 2D̄D − 2H̄uHu + H̄dHd − 2L̄L+ ēcec + 4ν̄cνc + S̄S
]

+ ..

At the unification scale the gauge couplings g
γ
′

0
, g

φ
′

0
, g

ω
′

0
are given by

g
γ
′

0
=

√

3

5
gE6 , gφ′0

=
gE6√
40
, g

ω
′

0
=

gE6√
24

(2.24)

Reexpessed in terms of ω
′

0, φ
′

0, γ
′

0, the gauge interactions of neutral fields are obviously given by

(2.23) irrespective of the intermediate scale symmetry group G, the charge assignment or the

particular choice of the SUR(3) → SUR(2), Y projection.

2.4 Breaking of the B − L symmetry

Since B − L is gauged, the Majorana mass of the right-handed neutrino, which is an essential

ingredient of leptogenesis, is forbidden unless B−L symmetry is broken down. Present data on

neutrino masses as well as theoretical estimates of leptogenesis in other GUT models favor the

109 − 1011 GeV mass range [66, 67] for the right–handed neutrino.

There are two SM singlets whose scalar superpartners may be used to break the symmetry

down to the SM: S and the right–handed neutrino.

The former one has zero B−L charge, whereas the latter one has B−L = 1. Therefore, it is

the VEV of the scalar superpartner of the right-handed neutrino that breaks B − L symmetry.

S couples to Higgs doublets and its VEV 〈S̃〉 is the origin of the µ–term: µ = λ4〈S̃〉.
If the right-handed sneutrino which develops the VEV couples to states of the three known

generations, it induces huge Dirac masses for the components of L and Hu doublets via the last

term in (2.17). Neglecting the possibility that one of the νc superfields decouples from the other

states of the three known generations, one comes to the conclusion that all 〈ν̃c〉 = 0, and the

B−L symmetry is broken spontaneously by nonzero 〈χ̃νc〉 and 〈 ˜̄χνc〉 and, consequently, χνc and

χ̄νc are zero modes.

According to [65] chiral superfields in δ(27+2̄7) can be massive through the Yukawa coupling

27 · 2̄7 · 78. If (Z, ρ) 6= 0 for a component of 27 or 2̄7 with weight ρ, the corresponding chiral

superfield gets a compactification scale mass, while Nf 27 chiral superfields remain massless.
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Table 2.9 shows, that for both discussed intermediate gauge groups GU(1) and GSUR(2) and

any charge assignment, it is possible to have massless χνc and χ̄νc . In the case of GU(1) right–

handed neutrinos χνc and χ̄νc are the only massless states in δ(27 + 2̄7).

In the case of GSUR(2) the number of zero modes in δ(27 + 2̄7) depends on the charge

assignment and the particular choice of the SUR(3) → SUR(2) projection (2.16).

Charge assignment

I II III IV V VI

R (νc, ec) νc, (Hu, L) (νc, ec) νc, (Hu, L) (νc, S) (νc, S)

R
′

νc, (Hu, L) (νc, ec) (νc, S) (νc, S) (νc, ec) νc, (Hu, L)

R
′′

(νc, S) (νc, S) νc, (Hu, L) (νc, ec) νc, (Hu, L) (νc, ec)

Table 2.16: States in δ(27 + 2̄7) which remain massless after the compactification. States of

27 and 2̄7 are labeled here by the same symbol. For instance, νc stands for both χνc and χ̄νc .

Components of SUR(2) doublets are put into brackets.

If supersymmetry is exact, there are no negative mass squared terms needed to break UB−L(1)

down spontaneously by the Higgs mechanism.

m2
χ|χ̃νc |2 +m2

χ̄| ˜̄χνc |2 −m2
νc ij ν̃

c∗
i ν̃

c
j , |m2

χ̄|, |m2
χ|, |m2

νc ij | ∼ m2
soft (2.25)

These terms are assumed to come from the E
′

8 sector, where supersymmetry is considered

to break down spontaneously. In the gravity-mediated supersymmetry breaking scenario the

magnitude of the soft terms in the visible sector should be roughly of the order of msoft ∼
〈F 〉/MPl. For the commonly accepted value msoft ∼ 103 GeV the scale of supersymmetry

breaking in the hidden sector 〈F 〉 1
2 is about 1011 GeV. It is interesting to note that this value is

of the same order as the desired mass scale of the right-handed neutrinos. One can consider this

as a hint that at the stage when the right–handed neutrinos acquire masses, the temperature is

still high enough to produce them thermally.

SUC(3) ⊗ SUL(2) ⊗ U3(1) model. As is well known, the scalar potential consists of an F -

term and D-term coming from the chiral superfield trilinear couplings and the gauge interactions

respectively. The renormalizable superpotential (2.17) does not contain terms relevant for the

symmetry breaking. The scalar potential coming from gauge interactions (2.23) and soft super-

symmetry breaking is of the form

V =
g2
ω
′

0

2

[

ψ̃∗ T
ω
′

0
ψ̃ + qνcχ̃∗

νcχ̃νc − qνc ˜̄χ∗
νc ˜̄χνc

]2
−
[

m2
χ|χ̃νc |2 +m2

χ̄| ˜̄χνc |2
]

+m2
νc ij ν̃

c∗
i ν̃

c
j (2.26)

On the one hand, the VEVs of right-handed sneutrinos of δ(27+ 2̄7) are expected to be at least

of the same order as the masses of νc, i.e. 〈χ̃νc〉, 〈 ˜̄χνc〉 ≥ 1011 GeV; on the other hand, such a
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huge VEV should not generate large masses of scalar superpartners via the first term in (2.26).

Consequently, the symmetry breaking should occur in the D–flat direction 〈χ̃νc〉 = 〈 ˜̄χνc〉.
Combined with the requirement that all 〈ν̃c〉 be zero, this means that the contribution of

the first term in (2.26) vanishes. To have symmetry breaking by the Higgs mechanism in this

direction, the sum of the mass parameters in the second term should be positive:

m2
χ +m2

χ̄ > 0 (2.27)

Non-renormalizable terms arise due to the interactions with exchange of superheavy fields, which

correspond to excitations of internal degrees of freedom [68]. The general form of the non–

renormalizable superpotential is

W = M−1
c

[

aij1 ν
c
i ν
c
j χ̄νcχ̄νc + ai2 ν

c
iχνcχ̄νcχ̄νc + a3 χνcχνcχ̄νcχ̄νc

]

+M−3
c

[

b1 χνcχνcχνcχ̄νcχ̄νcχ̄νc + bi2 ν
c
iχνcχνcχ̄νcχ̄νcχ̄νc

+bij3 ν
c
i ν
c
jχνcχ̄νcχ̄νcχ̄νc + bijk4 νci ν

c
jν
c
kχ̄νcχ̄νcχ̄νc

]

+ . . . (2.28)

Given that all 〈ν̃c〉 are zero, only M3−2n
c (χνcχ̄νc)n terms in (2.28) are relevant for the analysis

of symmetry breaking. These terms are invariant with respect to χνc ↔ χ̄νc transformation,

whereas soft supersymmetry breaking terms in (2.26) are not, unless m2
χ = m2

χ̄. If this condition

is not satisfied, then 〈χ̃νc〉 cannot be equal to 〈 ˜̄χνc〉. Nevertheless, since the gauge coupling g

is of the order of unity, while msoft/Mc is many orders of magnitude smaller than unity, the

deviation from the D–flat direction 〈χ̃νc〉 = 〈 ˜̄χνc〉 is very small. Considering 〈 ˜̄χνc〉 − 〈χ̃νc〉 as a

small perturbation in (2.31) one finds

〈 ˜̄χνc〉 − 〈χ̃νc〉 ≃
m2
χ̄ −m2

χ

8 g2 v0
(2.29)

This effect can be entirely neglected in the analysis of the non–renormalizable superpotential

(2.28). As for gauge interactions, such a deviation from the D–flat direction will result in the

generation of masses of scalars ∼ m2
χ̄ −m2

χ via the first term in (2.26) which adds to the mass

terms coming from the soft supersymmetry breaking. To simplify the analysis m2
χ and m2

χ̄ are

taken to be equal in what follows.

If the first non-vanishing terms in (2.28) are M−1
c (νcχ̄νc)2 +M3−2n

c (χνcχ̄νc)n, then the gen-

erated VEV and the masses of right–handed neutrinos νc are

〈χ̃νc〉 = 〈 ˜̄χνc〉 ∼ (msoftM
2n−3
c )

1
2n−2 , Mνc ∼ (msoftM

n−2
c )

1
n−1 (2.30)

so that Mνc is of the order of 103 GeV for n = 2 and is of the order of 1011 GeV for n = 3.

Large masses of right–handed neutrinos suggest that n = 3 and, consequently, a3 = 0 in

(2.28). Moreover, ai2 and bi2, as well as the coefficient ci2 of the (not indicated) next similar term
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in (2.28), are zero to avoid nonzero 〈ν̃c〉 and a Dirac–type mass for νc. The discrete symmetry

of the compactified manifold possibly accomplishes these conditions [69] as well as the absence

of bare mass terms Mχνc χ̄νc and Mνc χ̄νc in the superpotential (2.17). There is no reason to

expect the scale M to be below the compactification scale Mc so that presence of the first term

would make spontaneous breaking of B − L by χνc and χ̄νc impossible, while the presence of

the second one makes νc a component of the super heavy Dirac neutrino. Just as there are no

Mχνc χ̄νc and Mνc χ̄νc terms, there are no soft supersymmetry breaking terms bχχ̄ χ̃νc ˜̄χνc and

bνcχ̄ ν̃c ˜̄χνc in (2.26). If present, the contributions of the b3 and b4 terms are small and will be

neglected in the following discussion. Then the classical potential is of the form

V = 4M−2
c u2̺i̺j

[

alia
∗
lju

2 + aija
∗
nm̺n̺m

]

+ 9b1b
∗
1M

−6
c u4v4

[

u2 + v2
]

(2.31)

+ 6M−4
c

[

b∗1aij + b1a
∗
ij

]

̺i̺jv
3u3 +

g2q2νc

2

[

̺i̺i + v2 − u2
]2

−
[

m2
χv

2 +m2
χ̄u

2
]

+m2
νc ij̺i̺j

with ̺i = 〈ν̃ci 〉, v = 〈χ̃νc〉, u = 〈 ˜̄χνc〉. For zero ̺i the D–flat direction is defined by u2 = v2 and

the minimum of the potential (2.31) corresponds to

v0 = 8

√

M6
c (m

2
χ +m2

χ̄)/(90|b1|2), M ij
νc

= 2aij1 v
2
0M

−1
c (2.32)

For nonzero ̺i the D–flat direction is defined by u2 = v2 + ̺i̺i. The set of products ̺i̺j being

considered as parameters, the minimizing of (2.31) with respect to v gives v as a function of

̺i̺j . The true vacuum corresponds to the set ̺i̺j which minimizes V (v(̺i̺j), ̺i̺j). Expanding

in powers of ̺i̺j in the vicinity of ̺i̺j = 0 and having in mind that the partial derivative with

respect to v is zero:

V (v(̺i̺j), ̺i̺j) ≃ V (v0, 0) +
(

m2 ij
νc −m2

χ̄ δ
ij
)

̺i̺j (2.33)

+ v4
0M

−2
c

[

4ali1 a
∗lj
1 + 6(b∗1a

ij
1 + b1a

∗ij
1 )v2

0M
−2
c + 45b1b

∗
1v

4
0M

−4
c δij

]

̺i̺j

Since the v0/Mc ratio is small while v2
0/Mc is large, the derivative (2.33) is dominated by the first

term in square brackets which is positive definite. Therefore, ̺i = 0 is at least a local minimum

of the potential (2.31) for a wide range of parameters.

For large ̺i̺j it is sufficient to keep only the first term in (2.31), and an explicit calculation

shows that V (v(̺i̺j), ̺i̺j) grows with growing ̺i̺j , i.e. ̺i̺j = 0 is a global minimum of the

classical potential:

V (v(̺i̺j), ̺i̺j) = −M2
c (m

2
χ̃νc +m2

˜̄χνc
)2(16ali1 a

∗lj
1 ̺i̺j)

−1 + (m2
χ̃νc δ

ij +m2 ij
νc )̺i̺j (2.34)

A discrete symmetry which allows nonzero aij1 , b1 and forbids nonzero ai2, a3, b2 couplings is

essential for having large Majorana masses for right–handed neutrinos after symmetry breaking.
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Suppose that right–handed neutrinos νc, χνc , χ̄νc acquire additional phases under transforma-

tions of the discrete symmetry:

νc → νc eiα, χνc → χνc eiβ , χ̄νc → χ̄νc eiγ (2.35)

Then from the requirement that a nonzero aij1 and b1 are allowed while ai2, a3, b
i
2, c

i
2 are set to

zero by the symmetry:

α+ γ = πk, β + γ =
2π

3
l, (α+ γ) + (β + γ) 6= 2πm, (2.36)

β + γ 6= πn, (α+ γ) + 2(β + γ) 6= 2πq, (α+ γ) + 3(β + γ) 6= 2πp.

Conditions (2.36) imply that 2
3 l is not integer and, consequently, that α− β 6= 2πj:

α− β = (α+ γ) − (β + γ) = π(k − 2

3
l) 6= 2πj 6= 0 (2.37)

In other words, νc and χνc have different transformation properties under the discrete symmetry.

If the last term in (2.17) which is responsible for both small neutrino masses via the see-saw

mechanism and leptogenesis is allowed by this symmetry, then the term χνc(LjH
u
k ) is necessarily

forbidden just as was assumed.

The bare mass termMχνcχ̄νc is not invariant under transformations of the discrete symmetry

and therefore is not allowed. From equations (2.36) it also follows that α + γ = πk with k –

odd, so that the bare mass term Mνcχ̄νc is forbidden as well. Finally, the coefficients b3 and b4

of the last two terms in (2.28) vanish for the same reasons.

After χ̃νc and ˜̄χνc develop nonzero VEVs, the U(1) symmetry, as well as the discrete sym-

metry (2.35), is broken down. The components of chiral (super)fields χνc , χ̄νc and the gauge

(super)field become massive. As m2
χ = m2

χ̄ is assumed, the VEVs of χ̃νc and ˜̄χνc are equal

and it is natural to introduce new fields h1 = (χ − χ̄)/
√

2 and h2 = (χ + χ̄)/
√

2. The imag-

inary component of h̃1 is ‘eaten up’ by the vector gauge field A, which acquires a large mass

MA = M = gqv0 ∼ 1014 GeV. The real component η of h̃1 acquires the same mass Mη = M .

From the analysis of gauge interactions alone, it follows that two-component spinors λ (super-

partner of A) and h1 (superpartner of h̃1) form a four–component Dirac spinor Mf (h1λ+λ+h+
1 )

with mass Mf = M . The non–renormalizable interactions induce a Majorana–type mass term

∼ msoft(h1h1 + c.c.). There is also a Majorana–type mass term ∼ msoft(λλ+ c.c.) coming from

the soft supersymmetry breaking, so that two linear combinations of h1 and λ are Majorana

fermions with large (∼ M) and close masses. The non–renormalizable interactions (2.28) also

induce masses ∼ msoft for the real component of h̃2 and its fermionic superpartner h2.

The gauge boson A, the fermion λ and the scalar η interact with other states in the fun-

damental representation of E6 (in particular with Higgses) so that the self–energy of scalars
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Figure 2.1: One–loop contributions to self–energy of scalars.

receives large contributions from diagrams with exchange of these heavy fields. For instance, see

the case of one loop in figure 2.1.

As has already been mentioned in the introduction, the supersymmetric structure of the

Lagrangian ensures that all large corrections, associated with the exchange of heavy fields,

cancel out and only terms proportional to the soft supersymmetry breaking parameters remain:

Π0(p2) = 4 g2
ω
′

0

q2
Φ̃
m2

Φ̃
B(m2

Φ̃
,M2), B(x, y) =

(2πµ)2ǫ

π2

∫

d4−2ǫk

[k2 − x][(k − p)2 − y]
(2.38)

SUC(3)⊗SUL(2)⊗SUR(2)⊗U2(1) models. Tables 2.15 and 2.16 show, that it is sufficient

to consider only the case of the first charge assignment and three SU(3)R → SUR(2) projections,

the other cases being completely analogous.

In the case of the left–right symmetric (R) model, the zero modes in δ(27 + 2̄7) are the

SUR(2) doublets χR = (χec ,χνc) and χ̄R = (χ̄νc ,χ̄ec). The scalar potential coming from the

gauge interactions (2.21) and soft supersymmetry breaking is of the form

V =
1

8

(

g2
YL
q2YL

+ g2
YR
q2YR

)

[(χ̃∗
Rχ̃R) − ( ˜̄χ∗

R
˜̄χR)]

2
+
g2
WR

2

[(

χ̃∗
R

τi
2
χ̃R

)

+
(

˜̄χ∗
R

τi
2

˜̄χR

)]2

−
[

m2
χ (χ̃∗

Rχ̃R) +m2
χ̄ ( ˜̄χ∗

R
˜̄χR)
]

(2.39)

Let v1 ≡ 〈χ̃νc〉, v2 ≡ 〈χ̃ec〉 and u1 ≡ 〈 ˜̄χνc〉, u2 ≡ 〈 ˜̄χec〉. The corresponding classical potential is

V =
1

8

(

g2
YL
q2YL

+ g2
YR
q2YR

) [(

|v1|2 + |v2|2
)

−
(

|u1|2 + |u2|2
)]

+
1

2
g2
WR

| [v∗2v1 + u∗1u2] |2 +
1

8
g2
WR

[(

|v2|2 − |v1|2
)

+
(

|u1|2 − |u2|2
)]

−
[

m2
χ

(

|v1|2 + |v2|2
)

+m2
χ̄

(

|u1|2 + |u2|2
)]

(2.40)

There are symmetry breaking directions, which are D – flat. Vanishing of the first and the third

terms in (2.40) requires that |v1| = |u1| and |v2| = |u2|. With these conditions being satisfied, the

second term in (2.40) vanishes if v1 = 0 or v2 = 0 or arg(u2) + arg(v2)− arg(u1)− arg(v1) = π.

The non-renormalizable superpotential, which bounds the classical potential from below,

is similar to (2.28) with νc, χνc and χ̄νc replaced with SUR(2) doublets ψR = (ec, νc), χR =
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(χec , χνc) and χ̄R = (χ̄νc , χ̄ec). Its explicit form is

W = M−1
c

[

aij1 (ψiRχ̄R)(ψjRχ̄R) + ai2(ψ
i
Rχ̄R)(ψiRχ̄R) + a3(χRχ̄R)(χRχ̄R)

]

+M−3
c

[

(χRχ̄R)(χRχ̄R)(χRχ̄R) + bi(ψiRχ̄R)(χRχ̄R)(χRχ̄R)

+ bij3 (ψiRχ̄R)(hjχ̄R)(χRχ̄R) + bijk4 (ψiRχ̄R)(ψjRχ̄R)(ψkRχ̄R)
]

+ . . . (2.41)

The freedom of SUR(2) gauge transformations allows to rotate away a possible VEV for one of

the isospin components of one of the scalar fields, so one can take u2 = 0 at the minimum of

the potential. Since the classical potential under consideration reaches its minimum in one of

the D – flat directions, v2 is equal to zero as well. Then the following analysis is the same as in

the case of the SUC(3) ⊗ SUL(2) ⊗ U3(1) model and furnishes the same result. The symmetry

is broken down to SUC(3) ⊗ SUL(2) ⊗ U2(1).

The second skew left–right symmetric (R
′′
) model differs from the one above in S instead

of ec being an SUR′′ (2) counterpart of the right–handed neutrino: χR′′ = (χνc , χS) and χ̄R′′ =

(χ̄S , χ̄νc). The symmetry is broken down to SUC(3) ⊗ SUL(2) ⊗ U2(1) as well.

In the case of the first skew left–right symmetric (R
′
) model, the right–handed neutrino is an

SUR′ (2) singlet. Massless states in δ(27+2̄7) are χνc , χR′ = (χHu ,χL) and χ̄νc , χ̄R′ = (χ̄L,χ̄Hu).

The classical potential coming from renormalizable and nonrenormalizable interactions is similar

to (2.31) and yields the same results. The symmetry is broken down to SUC(3) ⊗ SUL(2) ⊗
SUR′ (2) ⊗ U(1).

Since the Higgs doublets (χHu ,χL) and (χ̄L,χ̄Hu) are contained in δ(27+ 2̄7) as zero modes,

there are directions in which the D-term potential vanishes for whatever large VEVs of these

fields, i.e., there is a risk of breaking electroweak symmetry at a very high scale. To avoid it,

the part of the classical potential which comes from the soft supersymmetry breaking should be

positive in those directions, as is the case in the MSSM.

The coexistence of all the terms in the second row of (2.17) leads to the rapid proton decay,

mediated by new D and Dc quarks, unless those are very heavy. The VEV of S which gives

masses λijk5 〈Si〉 to D and Dc is also the source of the µ–term λijk4 〈Si〉. Although neither for

GU(1) nor for GSUR(2) the couplings λijk5 and λijk5 are related by symmetry, it is not natural to

expect D and Dc to be much heavier than 1 TeV which is insufficient to suppress the proton

decay. A solution to this problem may be provided by an appropriate discrete symmetry, which

forbids some of the couplings in (2.17).

If this is a Z2 symmetry, then there are only two models [70, 71] compatible with leptogenesis

and nonzero neutrino masses. In the first model L and ec, νc, D, Dc are odd, while the rest of

the states are even, so that λ9 = λ10 = 0. The second model differs from the first one in D and

Dc being even, so that λ6 = λ7 = λ8 = 0. Transformations of the discrete symmetry should
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Model R R
′

R
′′

dc uc Hu Hd ec νc Dc uc Hu L ec S Dc dc Hd L νc S

1 + + + + - - - + + - - + - + + - - +

2 + + + + - - + + + - - + + + + - - +

Table 2.17: Transformation properties of components of SUR(2) doublets.

commute with transformations of the gauge symmetry. Table 2.17 shows, that this condition is

satisfied only in the case of the left–right symmetric (R) model, while in both skew left–right

symmetric models the components of SUR(2) doublets transform differently. Therefore, if proton

stability is assured by such a discrete symmetry, the only allowed gauge group after breaking of

G is G
′

U(1) = SUC(3) ⊗ SUL(2) ⊗ U2(1).

As is clear from the discussion above, only the difference B−L (but not the lepton number L

and the baryon number B separately) is gauged before the symmetry breaking. Moreover both

B and L are violated at quantum level by the sphaleron processes. Consequently one can not

unambiguously assign baryon and lepton numbers to the states of the model. However it can

be done using the convention, that the Standard Model quarks have baryon number one third

and zero lepton number and the Standard Model leptons have zero baryon number and lepton

number equal to unity. Requiring that the total lepton and baryon charges of the term DQQ in

the model with λ8 = 0 be zero, we find that B(D) = −2
3 and L(D) = 0, so that D is a diquark

in this model. Requiring that the total lepton and baryon charges of the term Decuc present in

the model with λ8 6= 0 be zero, we find that B(D) = 1
3 and L(D) = 1, so that D is a leptoquark

in this model.

2.5 Superpotential and the Lagrange density

As has been argued above, after the breaking of the B−L symmetry the residual gauge group is

that of the Standard Model extended by one U(1) group: G
′

U(1) = SUC(3)⊗SUL(2)⊗U(1)⊗U(1).

After the symmetry breaking the right–handed neutrino acquires a large Majoran mass, so that

the superpotential takes the form

W = −λijk1 uc
i (QjH

u
k ) + λijk2 dc

i (QjH
d
k ) + λijk3 eci (LjH

d
k ) + λijk4 Si(H

u
jH

d
k ) + λijk5 SiDjD

c
k

+ [−λijk6 eciu
c
jDk + λijk7 Dc

i (QjLk) + λijk8 νc
i d

c
jDk] + [λijk9 Di(QjQk) + λijk10 D

c
iu

c
jd

c
k]

− λijk11 ν
c
i (LjH

u
k ) +

1

2
νci M̂ijν

c
j (2.42)

where either λ6 = λ7 = λ8 = 0 or λ9 = λ10 = 0 to ensure the proton stability. In the model with

λ8 = 0 the right–handed neutrino couples only to leptons and the Higgs, whereas in the model

with λ8 6= 0 it also couples to the new singlet quarks, which introduces new decay channels.
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In what follows we use the convention according to which the fermionic component of a chiral

superfield is denoted by the same symbol as the superfield itself, the scalar component is denoted

by the same symbol with tilde on top of it, and the auxiliary component is denoted by F with

the corresponding superscript. For instance, in the y–basis (see appendix B) the right–handed

neutrino chiral superfield is parametrized as

νc(y, θ) = ν̃c(y) +
√

2θνc(y) + θ2Fνc(y) (2.43)

In Feynman diagrams we will denote all scalars by dashed lines, whereas all fermions will be

denoted by solid lines.

Excluding the auxiliary fields F , we obtain some terms of the Lagrange density L = LF +LS
useful and relevant for the following analysis (we neglect the soft supersymmetry breaking terms).

LF = λijk11

[

ν̃ciLjǫH
u
k + νci L̃jǫH

u
k + νciLjǫH̃

u
k

]

− λijk8

[

νci d̃
c
jDk + ν̃ci d

c
jDk + νci d

c
jD̃k

]

+ λijk1

[

ũciQjǫH
u
k + uciQ̃jǫH

u
k + uciQjǫH̃

u
k

]

+ . . . (2.44a)

LS =
[

λijk11 λ
∗mnk
11 ν̃ci L̃jL̃

†
nν̃

c†
m + λijk11 λ

∗mjn
11 ν̃ci H̃

u
k H̃

u†
n ν̃

c†
m +Miλ

ijk
11 ν̃

c†
i (L̃jH̃

u
k )
]

+
[

λijk8 λ∗mnk8 ν̃ci d̃
c
j d̃
c†
n ν̃

c†
m + λijk8 λ∗mjn8 ν̃ci D̃kD̃

†
nν̃

c†
m +Miλ

ijk
8 ν̃c†i d̃

c
jD̃k

]

+
[

λ∗ijk11 λmnk1 ũcm(Q̃nL̃
†
j)ν̃

c†
i + λijk11 λ

∗mnk
1 ν̃ci (L̃jQ̃

†
n)ũ

c†
m

]

+ . . . (2.44b)

Since the vacuum expectation value of S̃ determines the value of the µ–term, which is ex-

pected to be of the order of 1 TeV, it is natural to assume, that the associated U(1) symmetry

is broken at a scale much below the Majorana neutrino mass scale 109 − 1011 GeV. The mass

terms coming from soft–supersymmetry breaking are also expected to be of the order of 1 TeV,

i.e. they are much smaller than the heavy neutrino mass as well. We also neglect the so–called

thermal masses of all particles but the Higgses. For this reason, all the species but the Majorana

neutrino are treated as massless in what follows.

2.6 Conclusions

In this chapter, a “low–energy” extension of the Standard Model compatible with the baryoge-

nesis via leptogenesis scenario has been derived from the superstring inspired E6 model.

The E6 model allows six charge assignments compatible with the Standard Model. Charge

conservation in processes involving states of different generations requires that the same charge

assignment must be used for all generations.

The initial gauge symmetry is broken in a sequence of stages. The first stage is due to

Calabi–Yau compactification and the effective Higgs mechanism. The condition that the proton

is long-lived requires that the symmetry is broken either to GU(1) or GSUR(2).
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As the temperature drops, supersymmetry breaks down spontaneously in the hidden sector.

The breaking of supersymmetry is mediated to the visible sector through gravity and manifests

itself in the soft terms.

At the next stage right–handed scalar neutrinos of the two additional (27 + 2̄7) generations

develop a nonzero VEV, breaking the B − L symmetry. The introduction of a simple discrete

symmetry ensures, that B−L is broken at a scale, which is sufficiently high for generating large

masses for the right-handed neutrinos, and that the right–handed scalar neutrinos of the three

known generations do not acquire a VEV. The same symmetry also forbids Yukawa couplings

which, if present, would induce large masses for the conventional neutrinos. The supersymmetric

structure of the theory ensures that large quantum corrections to masses of the scalars, associated

with the presence of heavy gauge fields, cancel out. Provided that a rapid proton decay mediated

by the new quarks is forbidden by a Z2 symmetry, the residual gauge symmetry after the breaking

of the B − L symmetry is given by G
′

U(1) = SUC(3) ⊗ SUL(2) ⊗ U(1) ⊗ U(1).

Apart from the additional (compared to the SM) U(1) symmetry, the characteristic feature

of this “low–energy” model is its extended particle content. In addition to the known particles

and right-handed neutrinos it contains a SM singlet S, new heavy quarks and three generations

of Higgses, as well as their superpartners. Since both the new quarks and the Higgses couple

to right-handed neutrinos, there are more B − L violating decay channels than in the SM or

its supersymmetric extension. At the same time there are more processes which washout the

generated B − L asymmetry.

The model is interesting not only from the viewpoint of successful leptogenesis, but also from

the viewpoint of “low–energy” phenomenology. More specifically, mixing of the new fermions

with the conventional ones and mixing of the additional “light” gauge boson with the Z–boson

may have interesting consequences observable at the next generation of particle colliders.
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Chapter 3

Leptogenesis in the E6 model

In chapter 1 we have discussed the influence of the effects of general relativity on generation

of the lepton and baryon asymmetries. These effects are to a large extent independent of the

used quantum field model. It is clear however, that the asymptotic values of the lepton and

baryon asymmetries strongly depend on the model we use for the calculation. In particular, new

decay and scattering channels, which appear in the supersymmetric and GUT extensions of the

Standard Model, may strongly influence the generation of the lepton asymmetry.

In this chapter we consider leptogenesis in the model discussed in the previous chapter. As

far as leptogenesis is concerned, the main difference of this model, whose gauge group after the

breaking of the B − L symmetry is given by SUC(3) ⊗ SUL(2) ⊗ U(1) ⊗ U(1), from the SM

is its extended particle content. Whereas in the Standard Model the right–handed neutrino

can only decay into a lepton and the Higgs, in the model under consideration the right–handed

neutrino can also decay into superpartners of the aforementioned species and, for certain values

of the parameters, into new quarks. Thus, there are more processes which generate the lepton

asymmetry, as well as more processes which wash it out. The goal of this chapter is to calculate

rates of these processes and solve the resulting system of the Boltzmann equations numerically.

The asymmetry is generated in the CP–violating decays of the heavy neutrinos and their

superpartners, discussed in section 3.1. Technically the CP asymmetry arises due to interference

of the corresponding tree–level and one–loop–vertex and tree–level and one–loop–self–energy

diagrams, discussed in the same section in the limit of strong hierarchy in the Majorana mass

matrix.

Scattering processes wash out the asymmetry generated in the decay of the Majorana neu-

trino. The two–body scattering processes mediated by the right–handed neutrino, which violate

lepton number by two units, are considered in section 3.2. We also calculate CP asymmetry

in the scattering processes and check that after summation over all initial and final states the

asymmetry in scattering vanishes, as is required by the unitarity.
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Two–body scattering processes with the Majorana neutrino in the initial state, which violate

lepton number by one unit, are considered in section 3.3. These processes are to leading order

CP conserving and contribute to the Boltzmann equation for the lepton number asymmetry

only if the latter one differs from zero.

Processes discussed in section 3.4 conserve total lepton number, but reduce the number of

the heavy (s)neutrinos and redistribute the lepton asymmetry between the leptons and their

superpartners.

In section 3.5 gauge mediated processes transforming leptons into scalar leptons and vice

versa are briefly discussed. As strength of these processes is determined by gauge couplings,

which are much bigger than the Majorana Yukawa couplings, the gauge mediated scattering

processes are in equilibrium and ensure equality of chemical potentials of leptons and their

superpartners.

Relations between chemical potentials of various species are considered in section 3.6. These

relations differ from those in the Standard Model due to the fact, that the supersymmetric E6

model contains two Higgs doublets per generation. We also derive relation between the baryon

and lepton numbers at temperatures where all Yukawa interactions, apart from the Yukawa

interactions of the right–handed neutrinos, are in equilibrium.

Finally in section 3.7 we derive an explicit form of the system of Boltzmann equations and

present numerical estimates of the lepton and baryon asymmetries.

3.1 Decay of the heavy neutrino

The CP violating and lepton number violating decay of the heavy Majorana neutrino is the

source of the lepton asymmetry in the baryogenesis via leptogenesis scenario. Lepton number

is violated by two units by the Majorana neutrino mass term, whereas the CP violation arises

due to complex couplings of the heavy neutrinos to other species in the model.

In the model we consider the heavy neutrino can decay into a lepton+Higgs pair and (if

λ8 6= 0) to a pair of quarks. Both processes violate lepton number (recall, that in the model

with λ8 6= 0 the exotic state D is a leptoquark) and violate CP, thus leading to the generation

of lepton and baryon number asymmetries. The fermion Majorana neutrino can decay either

into a lepton and a Higgs or into a slepton and a higgsino, whereas its superpartner can decay

into a slepton and a Higgs or a lepton and a higgsino (see figure 3.1). The generalization to the

case λ8 6= 0 is straightforward.

The decay amplitudes of the heavy neutrino and its superpartner are given at tree–level by

Tνc
i →L+H̃u = λijka (uαi v

j
α), Tν̃c

i →L+Hu = λijka (vαj v
k
α), T

ν̃c†
i →L̃+H̃u = Miλ

ijk
a (3.1)
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Figure 3.1: Decay of the Majorana neutrinos and their superpartners into leptons at tree and

one–loop level. Decays into quarks are not shown.
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The corresponding decay widths in the rest–frame of the decaying particle read (a = 11)

1

4
Γνc

i
= Γνc

i →L+H̃u = Γνc
i →L̄+H̃u† = Γνc

i →L̃+Hu = Γνc
i →L̃†+H̄u =

(λaλ
†
a)ii

16π
Mi (3.2a)

1

2
Γν̃c

i
= Γ

ν̃c†
i →L̃+H̃u = Γν̃c

i →L̃†+H̃u† = Γν̃c
i →L+Hu = Γ

ν̃c†
i →L̄+H̄u =

(λaλ
†
a)ii

8π
Mi (3.2b)

where we have summed over components of the electroweak doublets. In the model with λ8 6= 0

the Majorana neutrino can also decay into a (s)quark pair. The corresponding tree–level decay

widths differ from (3.2) in λ11 replaced with λ8 and, since the decay is into the SUL(2) singlet

(lepto)quarks, by an overall factor of three halves.

The CP is violated in all of these processes. That is, the probabilities of a decay into a

final state and its charge conjugate are not equal. Technically, the CP asymmetry arises due to

the interference between the tree–level and the one–loop–vertex [9] and the tree–level and the

one–loop–self–energy [10] diagrams shown in figure 3.1. The Majorana neutrino is an unstable

particle, and therefore a self–consistent treatment of processes with an intermediate Majorana

requires a resummation of all the self–energy diagrams, which leads to a resummed propagator

1

q̂ −M − Σ(q)
(3.3)

with the self–energy Σ(q). The resummation removes the divergence of the transition amplitude

in the case that the intermediate Majorana is the same as the initial one (see figure 3.1) and

predicts a resonant enhancement of the generated lepton asymmetry in the case of close Majorana

masses [72]. We consider only the case of non–resonant leptogenesis, i.e. assume that there is a

large hierarchy of the Majorana masses M1 ≪M2 ≪M3.

Let us first discuss the νc → L + H̃u and νc → L̄ + H̃u† decays at one–loop level. The

corresponding Feynman graphs are depicted in figure 3.1. Although in many cases the application

of Feynman rules can significantly simplify calculations, one should be careful when applying

Feynman rules to processes with intermediate Majorana fermions. The reason is that contrary

to the case of Dirac particles Majorana fermions have several propagators [73, 74], listed in

section B.3. In order to avoid possible confusion, the one–loop amplitudes have been calculated

by direct integration of the corresponding elements of the S–matrix. The calculation is to a

large extent standard, and the subtleties associated with the Majorana fermions in the initial

and intermediate states are easily handled. Using this approach we obtain for amplitude of the

one–loop vertex diagram in figure 3.1

Tfi = −λ∗imnλlmkλljn(v̄iα̇vjβ)
−i

(2π)4

∫

Mlδ
β
γ

k2 −M2
l

(k − p3)
µσ̄α̇γµ

(k − p3)2
1

(k − p3 + p1)2
d4k (3.4)

where p1, p2 and p3 are momenta of the initial Majorana neutrino, final lepton and final Higgs

respectively, while v̄iα̇ and vjβ are chiral amplitudes of the initial and final fermions. The first
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term under the integral comes from the lepton number violating Majorana propagator (B.20c),

the second one is the propagator of a massless lepton, and the third one is the propagator of the

(nearly) massless Higgs in the loop. The appearance of the intermediate Majorana neutrino mass

Ml is quite natural and expected from general considerations. The reason is that processes with

intermediate Weyl fermions are known to conserve lepton number; a good example would be the

Standard Model with massless neutrino. Moreover, since in the SM with massless neutrino all

the CP violating phases can be rotated away, CP is also conserved in the leptonic sector. Since

a Majorana fermion with vanishing mass is equivalent to a Weyl fermion, the amplitude of the

CP violating processes should vanish as Ml goes to zero.

The integral over k can be expressed in terms of three–point functions

1

iπ2

∫

1

k2 −M2
l

(k − p3)
µ

(k − p3)2
d4k

(k − p3 + p1)2
= Cµ(p

2
3, p

2
1,M

2
l , 0, 0) − pµ3C0(p

2
3, p

2
1,M

2
l , 0, 0) (3.5)

As is argued in appendix A, the vector integral can be decomposed into a vector constructed

from the external momenta p1 and p3. Taking additionally into account that p3 = p1 − p2 and

that due to the Weyl equation the contribution of the on–shell left–handed neutrino vanishes,

we obtain

Tfi = λ∗imnλlmkλljn(v̄iα̇σ̄
α̇β
µ pµ1v

j
β)

Ml

16π2

[

C0(0,M
2
i ,M

2
l , 0, 0) + C12(0,M

2
i ,M

2
l , 0, 0)

]

(3.6)

where a summation over all intermediate states is assumed. One would also expect (for the same

reason as above) the mass of the decaying heavy neutrino Mi to appear in the decay amplitude,

and this is indeed the case. Using relations (B.23) we find

(v̄iα̇σ̄
α̇β
µ pµi v

j
β) = −Mi(u

α
i v

j
α) (3.7)

which completes the calculation of the amplitude of the one–loop–vertex diagram.

In supersymmetric extensions of the Standard Model, one of which is considered here, there

is an additional one–loop vertex diagram with two scalars in the intermediate state, depicted in

figure 3.1. Proceeding as above we obtain for the amplitude of this diagram

Tfi = λ∗imnλlmkλljn(uαi v
j
α)
MiMl

16π2
C12(0,M

2
i ,M

2
l , 0, 0) (3.8)

so that the total contribution of one–loop vertex diagrams in supersymmetric extensions of the

Standard Model is given by

Tfi = −(uαi v
j
α)λ∗imnλlmkλljn

MiMl

16π2
C0(0,M

2
i ,M

2
l , 0, 0) (3.9)

A similar calculation yields for the total amplitude of the one–loop self–energy diagrams

Tfi = λ∗imnλlmkλljn(uαi v
j
α)

MiMl

M2
i −M2

l

CsCb
16π2

B1(M
2
i , 0, 0) (3.10)
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where b = 8, 11 and summation over indices of all the intermediate states is assumed. The

coefficient Cs = 2 takes into account that both particles and their superpartners run in the loop,

whereas the coefficient Cb accounts for the number of states of the multiplets in the loop: Cb = 2

in the case of a leptonic doublet and Cb = 3 in the case of a quark color triplet. The two–point

function B1 (see appendix A) comes from the integration over the momenta of the particles in

the loop, whereas the term with the difference of the heavy neutrino masses in the denominator

comes from the propagator of the intermediate Majorana neutrino.

Note that the structure of flavor indices of the vertex and self–energy contributions is different

due to the presence of three Higgs generations in the model under consideration.

Combining the tree–level and one–loop amplitudes and using relation (A.11) we obtain the

one–loop Yukawa coupling hijk of the Majorana neutrino to the lepton+Higgs pair and the

one–loop Yukawa coupling h̄ijk to the antilepton+antiHiggs pair (a = 11)

hijka = λijka − λ∗imna λlmka λljna
MiMl

16π2
C0(0,M

2
i ,M

2
l , 0, 0)

− λ∗imnb λlmnb λljka
MiMl

M2
i −M2

l

Cb
16π2

Cs
2
B0(M

2
i , 0, 0) (3.11a)

h̄ijka = λ∗ijka − λimna λ∗lmka λ∗ljna

MiMl

16π2
C0(0,M

2
i ,M

2
l , 0, 0)

− λ∗imnb λlmnb λljka
MiMl

M2
i −M2

l

Cb
16π2

Cs
2
B0(M

2
i , 0, 0) (3.11b)

The asymmetry in the decay is defined as

εi =
Γνc

i →L+H̃u − Γνc
i →L̄+H̃u†

Γνc
i →L+H̃u + Γνc

i →L̄+H̃u†

(3.12)

If the two– and three–point functions were real, then, as follows from (3.11), one could obtain

(3.11a) from (3.11b) by complex conjugation so that the asymmetry would vanish. Therefore the

CP asymmetry in the decay is proportional to the absorptive parts of the two– and three–point

functions. Although the terms of third order in λ are small compared to those linear in λ and

can safely be neglected in denominator of (3.12), they give the dominant contribution to the

numerator. To leading order

εi = −
∑

√

al

ai

[

Im(λ∗ijka λ∗imna λlmka λljna ) ln
(

1 + ai

al

)

+ Im(λ∗ijka λ∗imnb λlmnb λljka ) CsCb/2
al/ai−1

]

8π(λaλ
†
a)ii

(3.13)

where ai ≡
(

Mi

M1

)2
. To obtain (3.13) we have used the expressions for the imaginary parts of

the one–loop integrals (A.6), (A.13) and (A.16). The summation in the first term is over all the

intermediate and final states, whereas in the second term l 6= i so as to avoid division of zero by

zero. The resummation removes the uncertainty arising in this simplified treatment.
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Since supersymmetry is broken only softly, and the masses of all the species are assumed to

be much smaller than the masses of the heavy neutrinos, the CP asymmetry in the decay into

a slepton+higgsino pair is obviously given by (3.13) as well.

The same is true for the CP asymmetry in the decay of the heavy sneutrino into two fermions.

Moreover, even the amplitudes of the one–loop vertex and one–loop self–energy diagrams coincide

with (3.9) and (3.10) respectively (the only difference is that the chiral amplitude of the initial

Majorana is replaced by the chiral amplitude of the final higgsino). Although there is only one

one–loop vertex diagram in this case, since neither the propagators of the scalar particles in

the loop nor the lepton–number violating propagator of the Majorana neutrino are proportional

to the loop four–momentum vector kµ, the resulting amplitude automatically contains only

C0(0,M
2
i ,M

2
l , 0, 0) (see definition of the three–point functions in appendix A). Analogously,

although there is only one one–loop self–energy diagram, so that the supersymmetry factor

Cs = 2 does not arise, as both particles in the loop are scalars, the resulting amplitude is

proportional to the two–point function B0 which is twice as big as B1 arising in the case above.

Let us also note, that mass of the decaying sneutrino comes in this case from the triple scalar

coupling Miλ
ijk
a in (2.44b).

Though the CP asymmetry in the decay of the heavy sneutrino into two scalars is given by

(3.13), the amplitudes of the one–loop diagrams differ from those above. Since the propagators

of the two massless fermions in the one–loop vertex diagram (the second and the third terms

under the integral) are proportional to the corresponding four–momenta

T = λ∗imna λljna λlmka

i

(2π)4

∫ Mlδ
α̇
β̇

k2 −M2
l

(k − p2)νσ
ν
αα̇

(k − p2)2
(k − p2 + p1)

µσ̄β̇αµ
(k − p2 + p1)2

d4k (3.14)

the resulting amplitude is a combination of the two– and three–point functions

T = λ∗imna λljna λlmka

2Ml

16π2

[

B0(M
2
i , 0, 0) −M2

i C12(0,M
2
i ,M

2
l , 0, 0)

+ (M2
l −M2

i /2)C0(0,M
2
i ,M

2
l , 0, 0)

]

(3.15)

where the overall factor of two comes from convolution of the two σ matrices. The structure of

(3.15) differs from that of (3.9). However, since the asymmetry is determined by the imaginary

part of this combination, which differs from that of C0 by only an overall factor (2M2
i )

−1, the

resulting contribution to the CP asymmetry is just the same as in the decay into two fermions.

Analogously, because both lines in the loop are fermionic, the amplitude of the one–loop

self–energy diagram (3.16) is a combination of scalar and vector two–point functions.

T = −λ∗imnb λlmnb λljka
i

(2π)4
Cb

M2
i −M2

l

∫

qµσ̄β̇αµ
q2

(q − p1)νσ
ν
αβ̇

(q − p1)2
(3.16)



3.2. Processes mediated by the right–handed neutrinos 79

This combination reduces to the scalar two–point function B0 times M2
i /2. The latter factor

one-half is compensated by the factor of two coming from the convolution of the σ matrices.

Note that there is also an additional one–loop self–energy diagram with only scalars in the

intermediate state. It contributes to the sneutrino decay width, but does not contribute to the

CP asymmetry. The reason is that unlike (3.16) the amplitude of this diagram is proportional to

the product λimnb λ∗lmnb λljka , so that its contribution to the CP asymmetry, which is proportional

to Im[λijka λ∗imnb λlmnb λ∗ljka ], vanishes after summation over intermediate and final states.

The last process we consider in this section is the decay of the heavy scalar neutrino into

three scalars at tree level (see figure 3.2). There is a number of such processes including those

ν̃c

Q̃

L̃

ũc

Figure 3.2: Processes determined by quartic scalar couplings.

with the new quarks or the Standard Model singlet S in the final state. The leading contribution,

however, is due to the top quark, whose Yukawa coupling is of the order of unity. The partial

width of this decay channel is given by

Γν̃c
i →L̃†+Q̃+ũc =

3Λi(8)11,1

64π2
Mi (3.17)

where the factor of three is due to three color degrees of freedom and Λ(8) is defined in (D.28).

3.2 Processes mediated by the right–handed neutrinos

Lepton number violating two–body scattering processes are responsible for washout of the lepton

number asymmetry generated in the decay of the heavy Majorana (s)neutrino. Although of

higher order than the tree level decays, these processes have to be taken into account to avoid

the generation of an asymmetry in thermal equilibrium [38].

The effects of the CP violation in the scattering processes depicted in figure 3.3 can be taken

into account by the use of the one–loop couplings (3.11). Since the intermediate heavy neutrinos

are off–shell, the Majorana masses are to be replaced by square of the momentum transfer.

Let us first consider processes with one fermion and one scalar in the initial and the final

states in the model with λ8 = 0. These include the L + H̃u → L̄ + H̃u† scattering process

present already in the Standard Model supplemented by three right–handed neutrinos and,
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since the model under consideration is supersymmetric, also the processes L̃+Hu → L̃† + H̄u,

L̃ + Hu → L̄ + H̃u† and L + H̃u → L̃† + H̄u. The Feynman diagrams of these processes are

depicted in figure 3.3.

νc

L

H̃u

L̄

H̃u†

γ
(1)
νc +

H̃u L̄

νc

L H̃u†

νc

Hu

L̃

H̄u

L̃†

γ
(2)
νc +

L̃ H̄u

νc

Hu L̃†

νc

Hu

L̃

L̄

H̃u†

γ
(3)
νc +

L̃ H̃u†

ν̃c

Hu L̄

ν̃c

Hu

L

H̃u†

L̃†

γ
(4)
νc +

L H̃u†

νc

Hu L̃†

ν̃c

H̃u

L̃

Q̃

L̃†

ũcγ
(5)
νc +

H̃u L̃†

ν̃c

L̃

Q̃

ũc

Figure 3.3: Lepton number violating processes mediated by the heavy (s)neutrino.

The amplitude of the s–channel scattering Li + H̃u
m → L̄j + H̃u†

n is given by (a = 11)

T
(s)
fi = −(uαi vα j)

∑

η

(hηima hηjna )
Mη

s−M2
η

(3.18)

Keeping only the leading terms (i.e. those of the lowest order in λa) and replacing the mass of

the intermediate Majorana neutrino Mη by the center of mass energy we obtain

T
(s)
fi = (uαi vα j)

1

M1

∑

k,n,p,η

1

z − aη
[ − (ληima ληjna )

√
aη

+ (ληima ξηjna + ξηima ληjna ) + (ληima ηηjna + ηηima ληjna )] (3.19)
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where z = s/M2
1 and

ξηjna =
Cs

16π2

∑

l,p,q

λ∗ηpqa λlpqa λljna
√
al

z

z − al
B0(s, 0, 0), (3.20a)

ηηjna =
1

16π2

∑

l,p,q

λ∗ηpqa λlpna λljqa
√
alsC0(0, s,M

2
l , 0, 0) (3.20b)

have been introduced to shorten the notation. Coupling (3.20a) represents the one–loop self–

energy contribution, whereas (3.20b) represents the one–loop vertex contribution.

To obtain the amplitude of the charge conjugate process, apart from replacing the chiral

amplitudes with the conjugated ones we should also replace hηim by h̄ηim in (3.18). The resulting

amplitude, thus, differs from (3.19) by complex conjugation of all the coupling constants (but

not the two– and three–point functions) including those in (3.20).

A nonzero CP asymmetry is generated only if the corresponding one–loop integrals have

nonzero absorptive contributions. Since in the case of t–channel (or u–channel) scattering the

square of the momentum transfer is negative, the imaginary parts of the scalar one–loop integrals

B0 and C0 vanish (see appendix A). Consequently those processes are CP conserving to leading

order and the one–loop effects can be neglected. The tree–level amplitude of the t–channel

process is given by

T (t)fi = −(uαi vαj)
1

M1

∑

η

(ληina ληjma )

√
aη

y − aη
, y =

t

M2
1

(3.21)

The amplitudes of the remaining three processes differ from (3.19) and (3.21) only in the chiral

amplitudes entering the corresponding expressions: (uαmvαn), (uαi vαn) and (uαmvαj) instead of

(uαi vαj).

Denoting by σΣ the sum of the cross sections of all the four processes and by σCΣ the sum of

the cross sections of the charge conjugate ones, we define the CP asymmetry in scattering as

ε ≡ σΣ − σCΣ
σΣ + σCΣ

(3.22)

Using (3.19) and (3.21) and summing over components of weak isodublets we obtain for the

numerator of (3.22)

σΣ − σCΣ ∝ 1

16π3

l,p,q
∑

η,η̄

√
alaη

z − aη̄

{

Im

[(

λ∗ηima λ∗ηjna

2z

z − aη
− λ∗ηina λ∗ηjma ln

(

z + aη
aη

))

×
(

λη̄ima λ∗η̄pqa λlpqa λljna + λlima λlpqa λ∗η̄pqa λη̄jna

)]

z

z − al
CsIm [B0(s, 0, 0)]

+ Im

[(

λ∗ηima λ∗ηjna

2

z − aη
− λ∗ηina λ∗ηjma ln

(

z + aη
aη

))

×
(

λη̄ima λ∗η̄pqa λlpna λljqa + λliqa λ
lpm
a λ∗η̄pqa λη̄jna

)]

Im
[

sC0(0, s,M
2
l , 0, 0)

]

}

(3.23)
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The imaginary parts of the two– and three–point functions are given by (see appendix A)

Im [B0(s, 0, 0)] = π, Im
[

sC0(0, s,M
2
l , 0, 0)

]

= −π ln

(

z + al
al

)

(3.24)

Unitarity requires, that in thermal equilibrium the total CP asymmetry be zero [38]. Applied to

the case under consideration this means, that summed over all initial and final states σΣ should

be equal to σCΣ . Using (3.23) we find for the difference of the cross sections

σΣ − σCΣ ∝ 1

8π2

η,η̄,l,p,q
∑

i,j,n,m

√
alaη

z − aη̄

{

Im
[

λ∗ηima λη̄ima λ∗ηjna λljna λ∗η̄pqa λlpqa

] 2z

z − aη

2z

z − al
(3.25)

+ Im
[

λ∗ηina λ∗ηjma λη̄ima λ∗η̄pqa λlpna λljqa

]

ln

(

z + aη
aη

)

ln

(

z + al
al

)

− Im
[

λ∗ηina λ∗ηjma λη̄ima λ∗η̄pqa λlpqa λljna

] 2z

z − al
ln

(

z + aη
aη

)

− Im
[

λ∗ηima λ∗ηjna λη̄ima λ∗η̄pqa λlpna λljqa

] 2z

z − aη
ln

(

z + al
al

)}

It is straightforward to check, that under the permutation η ↔ l, i ↔ p, m ↔ q the imaginary

parts of the products of the couplings change their sign, and therefore the whole sum is zero as a

convolution of symmetric and antisymmetric matrices, as is required by unitarity. This confirms

the consistency of the presented calculation.

If the intermediate Majorana neutrino is on–shell, then the scattering process can be consid-

ered as an inverse decay followed by a decay. This implies, that in this case the CP asymmetry

in the scattering is twice the asymmetry in the decay. If we consider an (almost) on–shell in-

termediate neutrino, then η̄ = η (i.e. no summation over the intermediate states) and z → aη

so that the denominator of (3.22) is given approximately by (see the reduced cross section σ
(1)
νc ,

σ
(2)
νc and σ

(3)
νc in appendix D)

σΣ + σCΣ ≈
(λaλ

†
a)2ηη

2π

a2
η

(z − aη)2
(3.26)

For z → aη the leading terms in (3.25) are the first and the last term. Performing the redefinitions

η → i, n→ k, p→ m, q → n we find for the CP asymmetry (a = 11)

εi = −
∑

√

al

ai

[

Im
(

λ∗ijka λ∗imna λlmka λljka
)

ln
(

1 + ai

al

)

+ Im
(

λ∗ijka λ∗imna λlmna λljka
)

2
al/ai−1

]

4π(λaλ
†
a)ii

(3.27)

which is twice the asymmetry in the decay (3.12). Note that for the scattering mediated by an

on–shell heavy neutrino the parameter of CP violation εi, given by (3.12), only arises if we sum

over a certain set of diagrams.

Since particles in the thermal bath have non–zero velocities, contribution of the discussed

above processes to washout of the lepton asymmetry is obtained by integration over the phase



3.2. Processes mediated by the right–handed neutrinos 83

space of the incoming and outgoing particles. The integration gives the so–called reaction density

γ (see appendix C), which can be calculated using reduced cross section σ̂ of the process. Reduced

cross section of a 2 → 2 scattering can be calculated by integration of square of absolute value

of the process amplitude over the momentum transfer t, see (C.13). Tree–level amplitude of the

L+ H̃u → L̄+ H̃u† scattering process is given by a sum of (3.18) and (3.21).

Tfi = −(uαi vαj)
1

M1

∑

η

[

(ληima ληjna )

√
aη

x− aη
+ (ληina ληjma )

√
aη

y − aη

]

(3.28)

Note that the structure of flavor indices of the s– and t–channel contributions is different due

to the presence of the additional Higgses in the model. The contribution of on–shell s–channel

intermediate Majorana neutrino has already been taken into account as inverse decay followed

by a decay. In order to avoid double counting in the Boltzmann equations one has to subtract

the contributions of the real intermediate states (RIS), which is achieved by replacement of the

s–channel propagator by the RIS subtracted propagator of the form discussed in [35]. Taking

square of absolute value of (3.28), integrating over y = [−z..0] and making use of the RIS

subtracted propagator we obtain for the reduced cross section

σ̂
(1)
νc (z) =

∑

ηη̄

√
aηaη̄

8πz

{

C2
aΛ

ηη̄
(1)aa

[

z2

2Dηη̄(z)
+

z + aη
aη̄ − aη

ln

(

z + aη
aη

)

+
z + aη̄
aη − η̄

ln

(

z + aη̄
aη̄

)]

+ 2CaRe

(

Ληη̄(2)aa

Pη(z)

)

[

z − (z + aη̄) ln

(

z + aη̄
aη̄

)]}

(3.29)

where a = 11, Ca = 2 and Λ(1)aa and Λ(2)aa are combinations of the Majorana Yukawa couplings:

Ληη̄(1)aa =

j,n
∑

i,m

(ληima λ∗η̄im)(ληjna λ∗η̄jn), Ληη̄(2)aa =

j,n
∑

i,m

(ληima λ∗η̄in)(ληjna λ∗η̄jm) (3.30)

If there is only one generation of the Higgses, then Ληη̄(2)aa = Ληη̄(1)aa, and the expression for the

reduced cross section reduces to that in the Standard Model.

The RIS subtracted propagator Dηη̄(z) is defined as

1

Dηη̄(z)
=















1

Pη
− π

√
aηcη

δ(z − aη), η̄ = η,

1

Pη(z)P ∗
η̄ (z)

, η̄ 6= η,
(3.31)

where Pη = (z − aη)
2 + aηcη is square of absolute value of the inverse Breit–Wigner propagator

Pη(z)

1

Pη(z)
=

1

z − aη + i
√
aηcη

(3.32)

The reduced cross sections of the remaining diagrams in figure 1.3 are derived analogously and

can be found in section D.1. The reduced cross sections of the additional processes present in

the model with λ8 6= 0 can be found there as well.



84 Chapter 3. Leptogenesis in the E6 model
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Figure 3.4: Additional processes mediated by the heavy neutrino exchange, which contribute to

violation of the lepton number.
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Figure 3.5: Lepton number violating scattering processes mediated by the right–handed neutrino

in the t– and u–channels.
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The diagrams in figure 3.4 also receive contributions from exchange of the real intermediate

right–handed neutrino. As there are three particles in the final state in this case, one should

use the formula (C.16) in order to calculate the corresponding reduced cross sections. The RIS

subtracted reduced cross sections of these processes can be found in section D.1.

There are also t– and u– channel scattering processes depicted in figure 3.5, which conserve

CP to leading order (the square of the corresponding momentum transfer is negative so that

the absorptive parts of the two– and three–point functions vanish, see appendix A), but violate

lepton number. Consequently, the contribution of these processes to the Boltzmann equation

for the lepton asymmetry differs from zero only if the latter one is nonzero.

Let us sketch calculation of the reduced cross section of the first of the processes in figure

3.5, which is present already in the Standard Model. Amplitude of this process reads

Tfi = −(u
(α)
i vj(α))

1

M1

∑

η

[

(ληima ληjna )

√
aη

y − aη
+ (ληina ληjma )

√
aη

ς − aη

]

, ς ≡ u

M2
1

, (3.33)

where u is the standard Mandelstamm variable. Since mass of the incoming and the outgoing

particle is zero, s+t+u = 0. Taking this into account we obtain after integration over y = [−z..0]

σ̂
(8)
νc =

∑

ηη̄

√
aηaη̄

8π

{

C2
aΛ

ηη̄
(1)aa

[

1

aη − aη̄
ln

(

z + aη̄
aη̄

)

+
1

aη̄ − aη
ln

(

z + aη
aη

)]

+CaRe
(

Ληη̄(2)aa

) 1

z + aη + aη̄

[

ln

(

z + aη
aη

)

+ ln

(

z + aη̄
aη̄

)]}

(3.34)

where a = 11. Reduced cross sections of the remaining processes in figure 3.5 can be found in

section D.1. The processes γ
(8)
νc − γ

(12)
νc are quite important at low temperatures, as they are not

suppressed by the Boltzmann factor of the heavy neutrino.

3.3 Scattering off a top or a stop

There are also processes which conserve CP to the leading order but violate lepton number by

one unit. The simplest of such processes is the ν̃c + L̃↔ Q̃+ ũc scattering, which is determined

by quartic scalar couplings.

ν̃c Q̃

L̃ ũc

Figure 3.6: Lepton number violating process determined by scalar quartic couplings.

In addition, there are s– and t–channel two–body scattering processes mediated by the Higgs

or its superpartner (see figure 3.7), which violate lepton number by one unit. In the model with
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λ8 6= 0 there are additional processes of this type which we, however, neglect assuming smallness

of the corresponding Yukawa couplings.
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ũc

γ
(0)
t

ν̃c ũc
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Figure 3.7: Lepton number violating processes mediated by the Higgs and its superpartner.

Consider, for instance, the νc + L→ Q+ uc process, which present already in the Standard

Model supplemented by three right–handed neutrinos. Amplitude of this process is given by

Tfi =
i

M2
1

∑

k

(ληika λ∗knm1 )(u(α)iu(α)η)(ū(γ̇)nū
(γ̇)
m )

1

z − ah
, ah ≡ m2

h

M2
1

(3.35)

where a = 11. After integration over y = [aη − z..0] we obtain for the reduced cross section

σ̂
(3)
t = 3Λη(5)11,1

(

z − aη
z − ah

)2

(3.36)

where Λη(5)11,1 is a combination of the Yukawa couplings of the right–handed neutrinos and

quarks:

Λη(5)a,b =
1

4π

k,k̄
∑

i,m,n

(ληika λ∗ηik̄a )(λ∗nmkb λnmk̄b ) (3.37)

Reduced cross sections of the remaining processes in figure 3.7 can be found in section D.2.
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3.4 Annihilation of the right–handed (s)neutrinos

There are also processes which conserve the lepton number but reduce number of the heavy

right—handed neutrinos. These include annihilation of two Majorana (s)neutrinos (see figures

3.8 and 3.9) and scattering of the Majorana and its supersymmetric partner (see figure 3.10).

Processes of the fermion right–handed neutrino annihilation, γ
(2)
νcνc and γ

(3)
νcνc , are present

already in the Standard Model.
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Figure 3.8: Neutrino pair annihilation.

Let us sketch calculation of reduced cross section of νcη + νcη̄ → Li + L̄j process. Amplitude

of this process reads

Mfi =
1

M2
1

∑

n

[

(ληina λ∗η̄jna )(u(α)
η vi(α))(u

(β)
η̄ vj(β))

1

y
− (λη̄ina λ∗ηjna )(u

(α)
η̄ vi(α))(u

(β)
η vj(β))

1

ς

]

(3.38)

As the right–handed neutrinos are on–shell, one can use relations (B.24) in order to calculate

squared absolute value of the amplitude. Since the annihilating right–handed neutrinos are

massive, with massesMη andMη̄, the Mandelstamm variables are related by s+t+u = M2
η+M2

η̄ .

After integration over y in the range y = [ymin..ymax], where ymin/max =
aη̄+aη

2 − x
2 ∓

√

ληη̄ and

ληη̄ = [x− (
√
aη −√

aη̄)
2][x− (

√
aη +

√
aη̄)

2], we obtain for the reduced cross section:

σ
(2)
νcνc =

Ca
8πz

{

Ληη̄(6)aa

[

2
√

ληη̄ + (aη + aη̄)Lηη̄

]

− 2Re
(

Ληη̄(7)aa

) z
√
aηaη̄

z − aη − aη̄
Lηη̄

}

(3.39)
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where Lηη̄ = ln

(

z−aη−aη̄+
√
ληη̄

z−aη−aη̄−
√
ληη̄

)

and Ληη̄(6)aa and Ληη̄(7)aa are combinations of the Yukawa couplings

of the right–handed neutrino

Ληη̄(6)aa =
nn̄
∑

ij

(ληina λ∗ηin̄a )(λ∗η̄jnb λη̄jn̄b ), Ληη̄(6)aa =
nn̄
∑

ij

(ληina ληjn̄a )(λ∗η̄jnb λ∗η̄in̄b ) (3.40)

Note that the combinations (3.40) differ from Ληη̄(1)aa and Ληη̄(2)aa because the summation is over

the intermediate Higgses, not over the intermediate Majoranas. Reduced cross sections of the

remaining processes in figure 3.8 can be found in section D.3.
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Figure 3.9: Sneutrino pair annihilation.

Calculation of the reduced cross sections of the depicted in figure 3.9 sneutrino pair annihi-

lation processes is to a large extent similar to the calculation above. Reduced cross sections of

these processes, as well as reduced cross section of the neutrino–sneutrino scattering processes

in figure 3.10, can also be found in section D.3.
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Figure 3.10: Neutrino–sneutrino scattering.

At low temperatures the reaction densities of all of the above processes are strongly sup-

pressed by the Boltzmann factors, and their contribution is rather small.
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3.5 Gauge mediated scattering

Apart from the processes discussed above, some of the Majorana mediated processes conserve

total lepton number, but redistribute it among leptons and their superpartners. There are also

gauge mediated scattering processes transforming leptons into sleptons and vice versa. Let us

L L̃

γ
′

0

L L̃

+

L L̃

γ
′

0

L L̃

Figure 3.11: A gauge mediated processes redistributing total lepton number among leptons and

their superpartners.

consider for instance the process of annihilation of two leptons into two sleptons mediated by

the UY (1) gauge field1, which is depicted in figure 3.11. The relevant terms of the superpotential

are contained in (2.23).

The intermediate gauge field is a Majorana fermion with mass m
γ
′

0
of the order of the soft

supersymmetry breaking scale. This process is to a large extent analogous to the Majorana

mediated scattering of two leptons considered in section 3.2, and its reduced cross section reads

σ̂
γ
′

0
=
g4
γ
′

0

8π

[

z

z + a
γ
′

0

+
a
γ
′

0

z + 2a
γ
′

0

ln

(

z + a
γ
′

0

a
γ
′

0

)]

, a
γ
′

0
=

(m
γ
′

0

M1

)2

(3.41)

At the relevant range of temperatures x ≫ a
γ
′

0
, so that the ratio of the corresponding reaction

density to the expansion rate of the Universe is given approximately by

xγ̂
γ
′

0

H(M1)
≈

g4
γ
′

0

128π5

1

H(M1)
∼ 103 ≫ 1 (3.42)

where H(M1) and γ̂ are the dimensionless Hubble parameter and reaction density respectively.

As strength of this processes and the others alike is determined by gauge couplings, which

are much bigger than the Majorana Yukawa couplings, the gauge mediated scattering processes

are in equilibrium and ensure equality of chemical potentials of leptons and their superpartners.

3.6 Baryon number violation

The asymmetry generated in the decay of the heavy Majorana is immediately redistributed by

the sphaleron transitions and fast scattering processes between the Higgses and quarks, inducing

1Note that since the SUL(2) ⊗ UY (1) symmetry is unbroken at this stage, it would be incorrect to talk about

scattering processes mediated by the photino, wino or zino.
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nonzero chemical potentials of these species. It is straightforward to generalize the analysis of

chemical potentials, performed in section 1.6, to the case of the supersymmetric E6 model.

In addition to the Standard Model lepton and quark doublets, this model also contains two

Higgs doublets, Hu and Hd, per generation, which transform nontrivially under the SUL(2)

group. Since the superfields Hu and Hd also contain fermions, the relation (1.102) is modified

as

3µQ + µL + µHd + µHu = 0 (3.43)

After breaking of the additional U(1) group, which takes place at a scale of the order of 1 TeV,

the model under consideration is similar to the Minimal Supersymmetric Standard Model. The

U(1) symmetry is broken by a nonzero vacuum expectation value of the Standard Model singlet

S. The nonzero VEV of S induces a (presumable strong) mixing of the Hu and Hd states, so

that the sum of their chemical potentials turns to zero, just like it is the case in the MSSM. As

mass of the lightest right–handed neutrino is many orders of magnitude bigger than 1 TeV, the

VEV of the S is zero in the interesting range of temperatures. Consequently, the Hu and Hd

are not mixed and the sum of their chemical potentials differs from zero.

As has been argued in the previous section fast gauge mediated scattering processes are in

thermal equilibrium and equalize the chemical potentials of the particles and their superpartners,

so that we only have to consider reactions determined by the Yukawa interactions. Assuming that

all the processes, apart from those involving the heavy (s)neutrino, are in thermal equilibrium,

we find the following relations between the chemical potentials in the λ8 = 0 model

µuc + µQ + µHu = 0, µdc + µQ + µHd = 0, µec + µL + µHd = 0, µS + µHu + µHd = 0,

µS + µD + µDc = 0, µD + µQ + µQ = 0, µDc + µuc + µdc = 0. (3.44)

The notation is self explanatory. In the λ8 6= 0 model the last two equations are replaced by

µec + µuc + µD = 0, µDc + µQ + µL = 0. (3.45)

According to the discussion in chapter 2, after the breaking of the B − L symmetry the

residual gauge symmetry is SUC(3) ⊗ SUL(2) ⊗ U(1) ⊗ U(1), so that the chemical potentials

of the components of electroweak doublets and color triplets are equal, whereas the chemical

potentials of the corresponding gauge fields vanish. The U(1) charges of the matter fields can

be read off from equation (2.23). The requirement that the total U(1) charges be zero implies

µQ − µL − 2µuc + µdc + µec + µHu − µHd − µD + µDc = 0 (3.46a)

−6µQ − 3µuc − 6µdc + 9µDc + 6µD + 4µHu + 6µHd − 4µL − µec − 5µS = 0 (3.46b)
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where we have assumed, that the chemical potentials of states with the same quantum numbers

are equal. Note also, that unlike the Standard Model considered in section 1.6, the E6 model

contains three generations of Higgs doublets, so that the number of generations N = 3 appears

in (3.46) as an overall factor and can be omitted. In addition, each chiral superfield has the

same number of degrees of freedom, and therefore the coefficients in (3.46) are simply the U(1)

charges of the corresponding multiplets multiplied by the number of states in the multiplet.

Combining equations (3.46), (3.44) and (3.43) we obtain

µec = µQ = µHd = µS = µuc = µDc = −µL
2
, µHu = µdc = µD = µL (3.47)

It is straightforward to check, that relations (3.47) remain also valid in the model with λ8 6= 0.

Using once again that the chiral superfields have the same number of degrees of freedom, we

find, that up to a common overall coefficient the lepton and the baryon numbers are given in

the λ8 = 0 model by

L = N(2µL − µec), B = N(2µQ − µuc − µdc − 2µD + 2µDc) (3.48)

Note, that in the model under consideration the new qarks also contribute to the baryon num-

ber. From equations (3.47) and (3.6) it follows, that above the temperature of breaking of the

additional U(1) group the baryon and lepton numbers are related by B = −9
5L. The scattering

processes, which violate lepton number, are frozen long before the breaking of the U(1) symme-

try. Since the B − L is conserved by all the other processes, (B − L)∞ = −14
5 L∞, where L∞

denotes the lepton asymmetry at T ≪M1, is constant all the way down to zero temperatures.

In the λ8 6= 0 model the new states D and Dc are leptoquarks with baryon and lepton

numbers given respectively by ±1
3 and ±1. We therefore obtain

L = N(2µL − µec + µD − µDc), B = N(2µQ − µuc − µdc + µD − µDc). (3.49)

It is interesting to note, that substitution of (3.47) into (3.6) yields B = 0, i.e. the baryon

asymmetry carried by the leptoquarks is equal in absolute values and opposite in sign to that

carried by the Standard Model quarks.

After the breaking of the additional U(1) symmetry, the new (lepto)quarks D and Dc and

the Higgs doublets Hu and Hd acquire masses. As has been discussed above, the latter implies,

that the relation between the chemical potentials of the leptons and the quarks, implied by

the sphaleron transitions, reverts to that in the Standard Model. Provided that masses of

the (lepto)quarks are considerably bigger than the temperature of the electroweak symmetry

breaking TC , they decouple, as the temperature drops down to TC . The same is also true for the

superpartners of the SM states. This implies, that at T ∼ TC the system of equations for the

chemical potentials (3.46) and (3.47) also reverts to that discussed in section 1.6. The sphaleron
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transitions are fast down to the temperature of the electroweak phase transition. Consequently,

at the temperature, the sphalerons freeze out, the relation between the B, L and B−L are given

by (1.111), where n = 6 in the case under consideration.

3.7 Numerical estimates

The lepton number asymmetry is generated in the decay of all three generations of the Majorana

(s)neutrino. However, since we consider the scenario of non–resonant leptogenesis here, i.e. the

case of large hierarchy in the Majorana mass matrix, the asymmetry generated at the scales

T ∼M2 and T ∼M3 will be almost completely washed out by the lepton number violating two–

body scattering processes, which are fast at high temperatures. Consequently the asymmetry

we observe today has been generated in the decay of the lightest Majorana neutrino. Although

the two heavier Majorana (s)neutrinos can be neglected as free particles, they give an important

contribution to the lepton number violating processes, and thus have to be taken into account

as intermediate states.

Since the fast gauge mediated scattering processes, discussed above, are in thermal equi-

librium and equalize the chemical potentials of the particles and their superpartners, lepton

numbers carried by the scalar and the fermion leptons are equal. As the temperature drops

down, the scalars decay and the scalar lepton number is converted into fermion lepton number.

It is therefore sufficient to consider only the total lepton number nL ≡ nLf
+ nLs .

Let us first consider the model with λ8 = 0. In this model the Boltzmann equation for the

lepton number asymmetry takes the form

dYL
dx

=
x

H(M1)

{
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i

γ̂νc
i

[

ǫi
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Yνc
i

Y eq
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(3.50)

The first and the second term in the Boltzmann equation for the total lepton number (3.50) rep-

resent the contributions of the fermion (γ̂νc
i
) and the scalar (γ̂

(2)
ν̃c

i
) heavy neutrinos decaying into

two–particle final states. The third term represents the contribution of the heavy scalar neutrino
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decaying into a three–particle (γ̂
(3)
ν̃c

i
) final state and the contribution of the two–body scattering

process (γ̂22,i) in figure 3.6. Scattering processes mediated by the Majorana (s)neutrino (γ̂
(i)
νc ),

which violate lepton number by two units, as well as scattering processes mediated by the Higgs

(γ̂
(i)
tj

), which violate lepton umber by one unit, tend to washout the lepton asymmetry. The

coefficients cQ, cuc and cHu are ratios of the corresponding chemical potentials to the chemical

potential of the leptons. To shorten the notation we also introduce

c1 = 1 + cHu , c2 = 1 + (cHu − cuc − cQ)/2, c3 = 1 − cuc , c4 = 1 − cQ, c5 = cQ + cuc (3.51)

The difference nLf
and the sum neqLf

of number of fermion leptons and antileptons is given by

(1.25). The generalization to the model under consideration, which also contains scalar leptons,

obviously reads

nL = nLf
+ nLs = 2CsN

(

T 3

π2

2µℓ
T

)

, neqL = neqLf
+ neqLs

= 2CsN

(

2T 3

π2

)

, (3.52)

where Cs = 2 is the supersymmetry factor.

To derive (3.50) we used, that the chemical potential of the Majorana neutrino is zero, i.e.

that number of Majorana neutrinos with right helicity is equal to the number of Majorana

neutrinos with left helicity. In a supersymmetric model two polarization states of the fermion

Majorana neutrino correspond to two degrees of freedom of the complex scalar Majorana neu-

trino. To ensure self–consistency of our analysis we should assume, that the chemical potential

of the scalar neutrino is zero as well, i.e. that nν̃c
i

= n
ν̃c†

i
. Taking this into account, we obtain

Boltzmann equations for the number of the Majorana neutrino and its scalar superpartner
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(2)
ti

+ 2γ̂
(3)
ti

+ 4γ̂
(4)
ti

)

+
∑

j

(

1 −
Yνc

i

Y eq
νc

i

Yνc
j

Y eq
νc

j

)

4
∑

k=1

γ̂
(k)
νc

i ν
c
j

+ 2
∑

j

(

1 −
Yνc

i

Y eq
νc

i

Yν̃c
j

Y eq
ν̃c

j

)

2
∑

k=1

γ̂
(k)
ν̃c

j ν
c
i

}

(3.53)

dYν̃c
i

dx
=

x

H(M1)

{(
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Yν̃c

i

Y eq
ν̃c

i

)

(

γ̂
(2)
ν̃c

i
+ γ̂

(3)
ν̃c

i
+ 3γ̂

(2)
22,i

+ 2γ̂
(5)
ti

+ 2γ̂
(6)
ti

+ 2γ̂
(7)
ti

+ γ̂
(8)
ti

+ 2γ̂
(9)
ti

)

+ 2
∑

j

(

1 −
Yν̃c

i

Y eq
ν̃c

i

Yν̃c
j

Y eq
ν̃c

j

)

2
∑

k=1

γ̂
(k)
ν̃c

i ν̃
c
j

+ 2
∑

j

(

1 −
Yν̃c

i

Y eq
ν̃c

i

Yνc
j

Y eq
νc

j

)

2
∑

k=1

γ̂
(k)
ν̃c

i ν
c
j

}

(3.54)

Processes which determine the evolution of the heavy neutrino number density are the Majorana

decay, the Higgs mediated scattering and the annihilation of the Majorana (s)neutrinos.

The expansion rate of the Universe is characterized by the dimensionless Hubble parameter

H(M1) =

(

4π3g∗
45

)
1
2 M1

MPl
, MPl = 1.2 · 1019 GeV, (3.55)
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which is proportional to square root of the effective number of massless degrees of freedom.

At temperatures T ∼ M1 all species apart from the Majorana neutrinos can be considered as

massless. In the model under consideration there are 8 + 3 + 1 + 1 massless gauge fields and

Nf (27 − 1) massless chiral fields, where Nf = 3 is the number of generations. Since both

chiral and vector superfields contain two bosonic and two fermionic degrees of freedom, in the

interesting range of temperatures the effective number of massless degrees of freedom is given by

g∗ = 341.25. The related to it “equilibrium neutrino mass”, which is defined in (1.60), is given

in the model under consideration by m∗ ≈ 2 · 10−3 eV. Contribution of the heavy right–handed

neutrinos to the energy density, as has been discussed in chapter 1, are relatively small and can

be neglected to a first approximation.

As number of the heavy (s)neutrinos falls off rapidly with decrease of the temperature,

the processes with Majorana neutrino in the initial or final state (i.e. the neutrino decay and

the Higgs–mediated two–body scattering) are only important at high temperatures T > M1.

Contribution of the decay processes is proportional to the effective mass m̃1, which is defined in

complete analogy with (1.43)

x

H(M1)
γ̂νc

i
∝ m̃1,

x

H(M1)
γ̂

(2)
ν̃c

i
∝ m̃1,

x

H(M1)
γ̂

(3)
ν̃c

i
∝ m̃1. (3.56)

Since the only Higgs–mediated two–body scattering processes we consider are those with the

lightest Majorana (s)neutrino in the initial state (i.e. i = 1), their contributions, as well as

contribution of the two–body scattering process determined by quartic couplings, are also pro-

portional to m̃1

x

H(M1)
γ̂22i

∝ m̃1,
x

H(M1)
γ̂

(n)
ti

∝ m̃1. (3.57)

Contrary to the decay and the Higgs–mediated scattering processes, the Majorana–mediated

scattering processes are not strongly suppressed at low temperatures and play an important role

in washout of the lepton number asymmetry. From the definition of the dimensionless reduced

cross section (C.25) it follows, that at low temperatures (i.e. at large x) leading contribution to

the corresponding reaction densities comes from the small–z region. As has been argued in [36],

in this approximation the contribution of such processes in the case of the Standard Model is

determined by the mean square of the physical neutrino masses 3m̄2 = m2
1 +m2

2 +m2
3 and the

lightest Majorana mass M1. The model under consideration contains three generations of the

Higgses. This implies in particular, that the reduced cross sections depend now on two different

combinations of the Yukawa couplings, see for example (D.2) or (D.15). Thus, generally speaking,

it is no longer possible to express the contributions of such processes in terms of the mean square

of the physical neutrino masses. The masses of the light neutrinos are induced by nonzero VEVs

of the scalar Higgses H̃u
i , which also give masses to the up–quarks. As has been argued in [75],
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if quarks of a given charge receive their masses through the coupling to more than one Higgs,

strong flavor–changing neutral currents appear. Since experimental observations exclude this

possibility, it is natural to assume that the Higgses of the first and the second generations do not

acquire VEVs, so that the light neutrino masses are expressed through the Yukawa couplings of

the Higgs of the first generation and the right–handed neutrino masses in the same way as in the

Standard Model. If, furthermore, the Higgses of the second and the third generations are only

weakly coupled to the heavy neutrinos and up–quarks, so that the defined in (D.2) and (D.15)

couplings Ληη̄(i)aa (i = 1..4) are mainly determined by Yukawa couplings of the Higgs of the first

generation, then contribution of the scattering processes violating lepton number by two units

can again be expressed through the mean square of the physical neutrino masses.

x

H(M1)
γ̂

(i)
νc ∝M1m̄

2. (3.58)

Under these simplifying assumptions also the upper bound on the CP asymmetry in decay of the

lightest right–handed neutrino is expressed through mean square of the light neutrino masses

and mass of the lightest Majorana in the same way as in the Standard Model:

|ε| .
3

8π

M1(∆m
2
atm)

1
2

v2
≃ 3

√
3

8π

M1m̄

v2
. (3.59)

Note however, that v now stands for vacuum expectation value of H̃u
1 and, in general, is not

equal to expectation value of the Standard Model Higgs.

The lepton asymmetry generated in the decay of the right–handed (s)neutrino reaches an

asymptotic value L∞ long before the spontaneous breaking of the additional U(1) group. As

has been argued in the previous section, at this stage B − L = −14
5 L∞. At temperature, the

sphalerons freeze out, the baryon asymmetry is related to the B − L by (1.111). We, thus,

conclude, that the observed baryon asymmetry of the Universe is related to L∞ by

B = − 8N + 4n

22N + 13n

14

5
L∞ = −14

15
L∞ (3.60)

where we have used n = 6 for the evaluation. From the experimental value YB = (6.2−6.9)·10−10

we can infer the lepton asymmetry to be generated

YL = −(6.6 − 7.4) · 10−10 (3.61)

Typical numerical solutions of the system of Boltzmann equations (3.50), (3.53) and (3.54)

corresponding to the choice
√

3m̄ = 5 ·10−2 eV and ǫ1 = ǫmax1 are presented in figures 3.12–3.14.

We consider two values of the effective neutrino mass m̃1 = 10−4 eV and m̃1 = 10−2 eV.

As is commonly accepted at present, at the final stage of inflation the inflaton field decayed

into lighter particles. The decay of the inflaton field being a strongly out–of–equilibrium process,
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Figure 3.12: Typical numerical solutions of the Boltzmann equations. The red lines are solutions

for the lepton number asymmetry with chemical potentials of all the species except for the leptons

neglected. The blue lines correspond to the case when chemical potentials of all the species are

taken into account. The solid lines correspond to the initial condition Yνc(x0) = 0, while the

dashed lines to the initial condition Yνc(x0) = Y eq
νc (x0). The Majorana mass is given in GeV,

whereas the effective neutrino mass is given in eV.

the decay products were distributed non–thermally. As the decay products thermalized, the

Universe reheated. If the Majorana neutrinos have been created directly by the inflaton field,

then as an initial condition for the Majorana number density one should use the equilibrium

one (dashed lines in figure 3.12). On the contrary, if the heavy Majoranas have been created via

scattering of the high–energetic light particles (among those are the Higgs–mediated two–body

scattering processes discussed in section 3.3), then the initial Majorana number density is zero

(solid lines in figure 3.12). The cross sections of the latter processes depend on the Yukawa

couplings of the Majorana neutrinos determining also the light neutrino mass matrix. As may

be inferred from figure 3.12, for m̃1 = 10−4 eV the Yukawa interactions are too weak to create a

thermal population of the Majorana neutrinos, which results in the smaller upper bound on the

lepton asymmetry. Still with Y m
L = 2 · 10−8 it is more than an order of magnitude bigger than

the experimental value. For m̃1 = 10−2 eV the Yukawa interactions are strong enough to bring

the heavy Majoranas to equilibrium, so that the resulting upper bound on the lepton asymmetry

Y m
L = 1 · 10−8 is independent of the initial conditions. The decrease of Y m

L is a consequence

of stronger lepton asymmetry washout by the inverse decay and the Higgs–mediated scattering

processes.
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Note also that if the initial number of the heavy Majoranas is zero, then the lepton asymmetry

crosses zero (and, thus, changes sign) for both m̃1 = 10−4 and m̃1 = 10−2. This effect can easily

be understood. The Majorana neutrinos are created by the CP–conserving Higgs–mediated

scattering and by CP–violating inverse decay processes. The latter one obviously leads to a

generation of lepton asymmetry of opposite sign. As the temperature drops down, the decaying

Majorana neutrinos generate an asymmetry, which compensates the one generated earlier, so

that the lepton asymmetry reaches zero, and, after all the Majoranas have decayed, it reaches

its asymptotic value.

As has already been mentioned, the lepton asymmetry generated in the decay of the heavy

Majorana induces nonzero chemical potentials of the quarks, the Higgses, etc. As a consequence,

even the processes conserving CP tend to washout the lepton asymmetry. Consequently, the

resulting asymmetry is expected to be smaller than in the case if these chemical potentials are

neglected. For m̃1 = 10−4 solutions for the lepton number asymmetry with chemical potentials

of all the species except for the leptons neglected (red curves in figure 3.14) and with chemical

potentials of all the species taken into account (blue curves in figure 3.14) lie one upon the other,

which reflects the minor role of the washout processes. For m̃1 = 10−2 the washout processes

are stronger and the resulting upper bound is (a factor of two) smaller, as one would expect.

In figures 3.13 and 3.14 the development of the lepton asymmetry for the Majorana neutrino

masses M1 = 1010 GeV and M1 = 1011 GeV is presented. The increase of the upper bound

on Y m
L is mainly due to the increase of the upper bound on CP in the Majorana decay, which,

according to equation (1.45), grows linearly with the right–handed neutrino mass.

The development of the lepton asymmetry for M1 = 109 GeV and the effective neutrino

masses m̃1 = 10−3 eV and m̃1 = 5 · 10−2 eV is presented in figure 3.15. As may be inferred

from figure 3.15.a, for m̃1 = 10−3 eV the Yukawa interactions are sufficiently strong to create a

thermal population of Majorana neutrinos. The upper bound on the lepton asymmetry is more

than an order of magnitude bigger than the experimental value. For m̃1 = 5 · 10−2 eV on the

contrary, the theoretical upper bound is comparable the experimental bound (3.61), which, as

follows from equations (3.56) and (3.57), is a consequence of the stronger washout of the lepton

asymmetry by the inverse decay and the Higgs–mediated scattering processes.

Finally, let us briefly discuss the role of the additional processes present in the model with

λ8 6= 0. Additional decay channels present in this model lead to an increase of the Majorana

neutrino decay width and a decrease of deviation from thermal equilibrium, thus leading to a

decrease of the efficiency of leptogenesis. The decrease, however, is likely to be compensated by

the increase of the CP asymmetry in the decay. The reduced cross sections of the scattering

processes involving the leptoquarks coincide (up to an overall factor determined by the values
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Figure 3.13: Typical numerical solutions of the Boltzmann equations for the lepton number

asymmetry for a mass of the lightest Majorana M1 = 1010 GeV. The conventions are the same

as in figure 3.12.
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Figure 3.14: Typical numerical solutions of the Boltzmann equations for the lepton number

asymmetry for a mass of the lightest Majorana M1 = 1011 GeV. The conventions are the same

as in figure 3.12.

of the corresponding coupling constants and the number of states in the multiplets) with those

in the model with the Majoranas coupled to the leptons only. Therefore taking these processes

into account is equivalent to a modification of parameters in the model with λ8 = 0, considered
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Figure 3.15: Typical numerical solutions of the Boltzmann equations for the lepton number

asymmetry for a mass of the lightest Majorana M1 = 109 GeV and the effective neutrino masses

m̃1 = 10−3 eV and m̃1 = 5 · 10−2 eV. The conventions are the same as in figure 3.12.

already. The additional processes involving both the leptons and the quarks lead a to stronger

washout of the lepton asymmetry, thus decreasing the efficiency of leptogenesis. Depending on

the values of the Yukawa couplings and CP violating phases, the interplay of the aforementioned

effects may lead to a change of the asymmetry in either direction. If the Yukawa couplings of

the leptoquarks are comparable to the Yukawa couplings of the Higgses, one can expect that the

asymptotic value of the lepton asymmetry in the model with λ8 6= 0 will not be considerably

different from that in the model with λ8 = 0.

3.8 Conclusions

In this chapter a numerical analysis of the lepton asymmetry development in the superstring

inspired E6 model has been performed.

The asymmetry is generated in the decay of the heavy Majorana (s)neutrino into a scalar–

fermion, scalar–scalar or fermion–fermion pair. As has been shown by an explicit calculation,

since the supersymmetry is broken only softly, the associated violation of CP is the same in each

of the decay channels.

Scattering processes mediated by the Higgs or the Majorana neutrino tend to washout the

generated lepton asymmetry. The explicit calculation demonstrates, that the CP violation

induced by the latter ones vanishes after summation over all initial and final states, as is required
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by unitarity.

Scattering processes mediated by the gauge superfields conserve lepton number but redis-

tribute the lepton asymmetry between the fermions and the scalars. Since the corresponding

gauge couplings are of the order of unity, the rate of these processes exceeds the expansion rate

of the Universe, so that they are in thermal equilibrium. Consequently the fractions of the lepton

asymmetry carried by the scalars and the fermions are equal.

Fast Yukawa interactions together with the anomalous processes partially redistribute the

asymmetry between all the species in the model, thus inducing nonzero chemical potentials of

these species. The numerical analysis demonstrates, that this effect leads to a reduction of the

asymptotic value of the asymmetry.

The parameters of the model are relatively weakly constrained by the observables like the

light neutrino masses or mixing angles. One of the consequences is that the predicted upper

bound for the baryon asymmetry substantially exceeds the observed asymmetry. This is par-

tially explained by the fact, that due to the presence of new states, contributing to the total

energy density, the Universe expansion rate (characterized by the Hubble parameter) during

the period of leptogenesis is higher than that in the Standard Model; the bigger deviation from

thermal equilibrium leads, in turn, to an increase of the efficiency and larger asymptotic value

of the asymmetry. The dimensionless Hubble parameter, as well as the upper bound on the CP

asymmetry in the decay, are proportional to M1, and therefore with a decrease of the lightest

Majorana mass the degree of deviation from thermal equilibrium and the CP asymmetry in

the decay are expected to decrease along with the asymptotic value of the asymmetry. The

theoretical expectations are confirmed by results of the numerical simulations.

For a small (m̃1 . m∗) effective mass of the light neutrino the asymptotic lepton asymmetry

depends on the initial condition for the Majorana number density, because the Yukawa interac-

tions in this case are too weak to produce a thermal population of the heavy neutrinos. For a

large (m̃1 & m∗) effective mass of the light neutrino, on the contrary, the Yukawa interactions

are strong and the final lepton asymmetry is independent of the initial conditions.

The numerical analysis shows, that for m̃1 = 5 · 10−2 eV and M1 = 109 the final lepton

asymmetry is independent of the initial conditions. The theoretical upper bound on the baryon

asymmetry of the Universe is comparable in this case to the observed baryon asymmetry. The

difference from the experimental value can accounted for by a smaller value of the CP asymmetry

in the decay, or by a bigger value of the effective neutrino mass, or by both of these factors.
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Coherent neutrino scattering

An exciting feature of the Fukugita–Yanagida scenario is that it predicts a nonzero mass of the

conventional neutrino. Recent K2K and SNO observations confirmed that conventional neutrinos

indeed have nonzero masses. High precision measurements of neutrino masses and mixing angles

in the forthcoming experiments require a good understanding of the interactions of the neutrino

beam with the target material.

A new measurement by the K2K group at an average neutrino energy E1 = 1.3 GeV has set

an upper bound on the coherent pion production by neutrinos, which is far below the theoretical

expectations [24]. This has raised questions on how accurately the coherent cross section can be

calculated in such a low energy region, and whether detail event distributions may be predicted.

Coherent production of pions by neutrinos has been studied by many experimental groups

and measurements have been made for neutrino energies ranging from 2 to 80 GeV [76, 77, 78, 79,

80, 81, 82, 83]. The main characteristics of such cross sections is that the energy of the recoiling

nucleus and the invariant momentum transfer to it always remain very small. A characteristic

signature of these events is a sharp peak in the low |t| region. In addition to this, all experiments

have observed that the momentum transfer Q2 from the leptonic sector also remains very small,

sharply peaking at Q2 . 0.2 GeV2, while the dependence of the cross section on the neutrino

energy appears logarithmic at high energies.

In many models one starts with the Adler relation [25] in the Q2 = 0 limit and extrapolates it

to small Q2 values. In the work of Rein and Sehgal [84] the pole due to the a1(1260) resonance

is introduced together with other assumptions for estimating the pion–nucleus cross section.

In several articles, Kopeliovich et al. [85] have claimed that the pion pole term acting on the

leptonic current gives a small contribution proportional to the lepton mass, and they are led to

argue that the axial current must be dominated by heavy meson fluctuations like a1(1260) or

the ρπ branch point.

As is argued in section 4.1, a careful PCAC treatment determines the dominant terms in
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a unique way. We first decompose the leptonic current contribution into a spin=0 and spin=1

state with three helicity components. The inner product of the helicity zero polarization vec-

tor with the axial hadronic current leads to matrix elements which in the Q2 ≪ ν2 region

are determined by PCAC as fπT (πN → πN), with T being the amplitude for the coherent

pion–nucleus scattering, which is a smooth function of Q2, having no pion poles. This way, a

Goldberger–Treiman–type relation is obtained, determining the dominant contribution to coher-

ent neutrino–pion production. Contributions arising from the transverse (off shell) vector and

axial states, which are estimated phenomenologically here, turn out to be very small.

Since the kinematics for the charged current (CC) cross sections obey Q2
min ∼ m2

µ ∼ m2
π, all

mass terms are retained in the calculation of the density matrix of the leptonic current and the

phase space. For the neutral current (NC) reactions, the neutrino masses are of course negligible

and they are simplified.

The numerical analysis performed in section 4.2 demonstrates, that for energies of the inci-

dent neutrino of the order of a few GeV, the main contribution to the coherent neutrino–pion

production is determined by PCAC and the pion–nucleus coherent scattering data. The trans-

verse vector contribution is expressed in terms of the π0 coherent photoproduction data, and it

is thus reliably estimated. Estimating the axial transverse contribution is more difficult, but a

Regge analysis indicates that it should be comparable or probably smaller than the transverse

vector contribution. Contributions arising from both transverse off–shell vector and axial mesons

are very small.

4.1 The formalism

We first consider the coherent π+ production by neutrino scattering off a heavy nucleus N

νµ(k1) N(p1) → µ−(k2) π
+(pπ) N(p2) (4.1)

where the momenta are indicated in parentheses (see figure 4.1).

k1, ν ν, ℓ, k2

Z, W

π, A1, ρ

p1, N N , p2

π, p

Figure 4.1: Neutrino scattering off a nucleus.
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It is convenient to choose Lorentz–invariant quantities as kinematic variables. The com-

monly used variables are the square of the center of mass energy s = (k1 + p1)
2, the square of

momentum–transfer in the hadronic system t = (p2−p1)
2, the invariant mass of the pion–nucleus

pair W 2 = (p + p1)
2 and the square of momentum transfer to the final lepton Q2 = −q2. Here

q = k1 − k2 is the momentum four–vector transferred from the leptonic current to the nucleus

N . Its energy–component ν = q0 = E1 − E2 (with E1 and E2 being the νµ and µ− laboratory

energies respectively) denotes the energy given by the current to the π+N -pair in the laboratory

frame. Kinematic limits on these quantities are given in appendix E. In the coherent scattering

regime the nucleus spin is not flipped, and its recoil must be minimal, so that ν ≃ Eπ, with Eπ

being the pion energy in the laboratory frame. The existing experimental data also suggest that

in the coherence regime 0 ≤ Q2 . 0.2 GeV2, and that the squared momentum–transfer in the

hadronic system t is peaked at very small values.

The invariant amplitude for the process (4.1) may then be written as

TW = −GFVud√
2

ū(k2, µ
−)γρ(1 − γ5)u(k1, νµ)(V+

ρ −A+
ρ ) , (4.2)

where the first factor gives the (νµ → µ) – matrix element of the leptonic current, while

V+
ρ = 〈π+N |V 1

ρ + iV 2
ρ |N〉 , A+

ρ = 〈π+N |A1
ρ + iA2

ρ|N〉 , (4.3)

describe (in momentum space) the hadronic matrix elements of the charged vector and axial

currents respectively. Vud in (4.2) denotes the appropriate CKM matrix element.

Since the charged leptonic current is not conserved (mµ 6= 0), it contains spin=0 degrees of

freedom described by the vector

ǫρl =
qρ
√

Q2
, (4.4)

as well as spin=1 degrees of freedom describing off-shell gauge bosons with the helicity polar-

ization vectors

ǫρ(λ = ±1) = ∓















0

1

±i
0















ρ

, ǫρ(λ = 0) =
1

√

Q2















|~q|
0

0

q0















ρ

, (4.5)

when ~q is taken along the ẑ-axis. The λ = ±1 polarizations in (4.5) are often denoted as L(R)

respectively, the vanishing helicity vector ǫρ(λ = 0) is identical to ǫρS of [86], and ǫρ(λ)qρ = 0 is

of course always satisfied.

Anticipating that we later integrate over all relative angles between the (~k1,~k2)–leptonic

plane and the (~q, ~pπ) pion production plane, the only density matrix elements needed for the
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above spin=0 and spin=1 states hitting the nucleus N are

(L̃RR + L̃LL)

2
= Q2

[

1 +
(2E1 − ν)2

~q 2

]

−
m2
µ

~q 2

[

2ν(2E1 − ν) +m2
µ

]

, (4.6a)

(L̃RR − L̃LL)

2
= −

2
[

Q2(2E1 − ν) − νm2
µ

]

|~q | , (4.6b)

L̃00 =
2
[

Q2(2E1 − ν) − νm2
µ

]2

Q2~q 2
− 2

(

Q2 +m2
µ

)

, (4.6c)

L̃ll = 2m2
µ

(

m2
µ

Q2
+ 1

)

, (4.6d)

L̃l0 =
2m2

µ

[

Q2(2E1 − ν) − νm2
µ

]

Q2|~q | . (4.6e)

Using these and the hadronic current elements in (4.3), the square of the amplitude in (4.2),

summed over all µ− polarizations, is written as

|TW |2 = G2
F |Vud|2







(L̃RR + L̃LL)

2

∑

λ=L,R

|(V+ −A+) · ǫ(λ)|2

+
(L̃RR − L̃LL)

2

[

|(V+ −A+) · ǫ(R)|2 − |(V+ −A+) · ǫ(L)|2
]

+ L̃00|(V+
ρ −A+

ρ )ǫρ(λ = 0)|2 +
L̃ll
Q2

|(V+
ρ −A+

ρ )qρ|2

+
2L̃l0
√

Q2
ℜ
(

[(V+
ρ −A+

ρ )ǫρ(0)] · [(V+
µ −A+

µ )qµ]∗
)

}

, (4.7)

where the first two terms may be interpreted as giving the contributions from the transverse

spin=1 components of the hadronic currents, the third term gives the helicity λ = 0 hadronic

contribution, the fourth term arises from the spin=0 component, and finally the last term from

the interference of the latter two.

We first concentrate on the axial current matrix elements in the last three terms of (4.7),

which turn out to give the most important contributions, for the GeV– scale kinematic region

where coherence is relevant. The pion poles contained in these terms induce a singularity at low

Q2, which must be carefully separated, before any approximation is made.

To achieve this we note that the axial hadronic element in (4.3) consists of the pion pole

contribution, and the rest, which we call Rρ, induced by a1(1260) and any other isovector axial

meson that might exist. It is thus written as

−iA+
ρ =

fπ
√

2qρ

Q2 +m2
π

T (π+N → π+N) −Rρ , (4.8)

where T (π+N → π+N) is the π-nucleus invariant amplitude, fπ ≃ 92MeV , and Rρ is a very

smooth function of Q2 whose dependence on it may be ignored 1. The usual PCAC treatment

1In principle we could insert here some pole contribution from the a1(1260) axial vector boson, in order to
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then leads to

−iqρA+
ρ = 〈π+N |∂ρA+

ρ |N〉 =
fπm

2
π

√
2

Q2 +m2
π

T (π+N → π+N)

= − fπQ
2
√

2

Q2 +m2
π

T (π+N → π+N) − qµRµ , (4.9)

so that

qµRµ = −fπ
√

2 T (π+N → π+N) . (4.10)

Equation (4.10) reminds the classical Goldberger–Treiman treatment, where the pion pole de-

termines not only ∂µAµ, but in fact also the complete axial current coupling [87].

Using now (4.8), and ǫ(0)ρq
ρ = 0 implied by (4.4, 4.5), we conclude that

ǫ(0)ρA+
ρ = −iǫ(0)ρRρ ≃ i

fπ
√

2
√

Q2
T (π+N → π+N) , (4.11)

where in the first step the pion pole contribution vanishes identically, while the last step is due

to the smoothness of Rρ and the restriction to ν ≫
√

Q2, which justifies the approximation

ǫρ(0) ≃ qρ
√

Q2
. (4.12)

In order for our treatment to be valid, the kinematics should always be chosen so that this

approximation is satisfied. In figure 4.2 we plot kinematic limits on ν considered as a function of

Q2 at the incident neutrino energy E1 = 1.3 GeV for neutrino scattering off Carbon nucleus in

the cases of charged and neutral current scattering. According to the condition (4.12) we should

integrate only over a relatively small part of phase space lying between the νmax and ν = ξ
√

Q2

curves.

max(ξ
√

Q2, νmin) < ν < νmax (4.13)

For the numerical evaluation we choose ξ = 3. As is clear from figure 4.2 this condition auto-

matically restricts Q2 to small values required by the coherence.

It might be worth emphasizing that it would be incorrect to apply the approximation (4.12)

directly on the ǫ(0)ρA+
ρ computation using (4.8), because that would replace the identically

vanishing expression ǫµ(0)qµ/(Q
2 + m2

π) arising there, by the non-vanishing and in fact large

quantity −
√

Q2/(Q2 +m2
π)

2.

The relations (4.9) and (4.11) fully determine the axial current contribution to the last three

terms of (4.7). We also remark that these results are consistent with the Adler theorem in the

parallel lepton configuration [25], provided that we set mµ = 0.

describe a possible Q2 dependence in R
ρ; but this resonance is so far away from the relevant Q2 region, that such

an effort does not seem useful.
2See e. g. also at C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill 1980, p.535, particularly

the remark immediately after equation (11-113).
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Figure 4.2: ν as a function of Q2 at E1 = 1.3 GeV for neutrino scattering off Carbon nucleus.

Furthermore, the vector hadronic elements in the last three terms of (4.7) give no contri-

bution, since the vector current is conserved, and the applicability of (4.12) for calculating

ǫρ(λ = 0)V+
ρ is guaranteed by the absence of any low mass singularity, compare (4.3). More-

over, since in the coherence regime there is no R − L polarization sensitivity to the vector or

axial–vector boson cross sections, there will not be any contribution from the second term in

(4.7).

Thus, expressed in terms of the leptonic density matrix elements defined in (4.6) the CC

neutrino coherent pion production cross section off a nucleus N takes the form

dσ(νN → µ−π+N)

dQ2dνdt
=
G2
F |Vud|2ν

2(2π)2E2
1

{

f2
π

Q2

[

L̃00 + L̃ll

( m2
π

Q2 +m2
π

)2
+ 2L̃l0

m2
π

Q2 +m2
π

]dσ(π+N → π+N)

dt

+
(L̃RR + L̃LL)

2

[ 1

2πα

dσ(γN → π0N)

dt
+
dσ(A+

TN → π+N)

dt

]

}

, (4.14)

In deriving this expression we have integrated over all angles between the lepton- and (~q, ~pπ)–

planes, and ignored any vector–axial interference in (4.7), since it will anyway cancel out after

the t–integration we do, before comparing to the experimental data. Notice that in contrast to

(4.7), the presentation in (4.14) first gives the numerically most important terms arising from

the λ = 0 and the spin=0 components of the leptonic current, and then the less important

contributions from its transverse vector and axial components.
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We next turn to the last two terms within the curly brackets in (4.14), which are induced by

the transverse components of all off-shell vector and axial vector mesons coupled to the V+
ν and

A+
ν matrix elements at very small Q2; compare (4.3). The vector term is directly related, (after

an isospin rotation producing a factor of 2), to π0 photoproduction for unpolarized photons. In

deriving this, it is important to realize that the isoscalar part of the electromagnetic current

does not contribute to the coherent π0 amplitude. This contribution is estimated in the next

section, using the experimental data [88].

The transverse axial term within the curly brackets

dσ(A+
TN → π+N)

dt
=

∑

λ=L,R |A+ · ǫ(λ)|2

128πν2M2
N

, (4.15)

is expressed in terms of the axial matrix element (4.3) and describes the cross section of π+ –

production through “transversely polarized charged axial currents”. To calculate it, we would

need to know all possible a+
1 (1260) – type mesons that couple to the axial current, their couplings

to it, and the corresponding (a+
1 N → π+N) off–shell cross sections, at very small Q2. We also

estimate this in the next section.

A similar procedure may be carried out for the NC coherent π0-production, for which the

result

dσ(νN → νπ0N)

dQ2dνdt
=

G2
F ν

4(2π)2E2
1

{

f2
π

Q2
L̃00

dσ(π+N → π+N)

dt

+
(L̃RR + L̃LL)

2

[

(1 − 2s2W )2

2πα

dσ(γN → π0N)

dt
+
dσ(A+

TN → π+N)

dt

]

}

(4.16)

is found, provided the assumption

dσ(π+N → π+N)

dt
≃ dσ(π0N → π0N)

dt
, (4.17)

is made, which in fact is on the same footing as the isospin rotation we used in writing (4.14) in

terms of the π0 photoproduction data.

In (4.16), the leptonic density matrix elements are given by the same expressions as in (4.6),

with the obvious substitution mµ → 0. Comparing the NC result (4.16), to the CC in (4.14) we

see that there is no CKM factor now, and that the axial contribution to the NC cross section is

a factor 2 smaller than the CC one. For the vector contribution though, an extra reduction by

a factor (1 − 2s2W )2 appears, which is due to the fact that Z couples not only to the SUL(2) –

current, but also to the isovector part of the electromagnetic current.

4.2 Numerical estimates and results

For numerical estimates we must calculate the three cross sections appearing in equations (4.14)

and (4.16). The dominant cross section is σ(π+N → π+N) for which we use data on coherent
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scattering of pions on nuclei. This being the dominant term, we calculate it precisely and present

the results in the figures below. The other two cross sections involve coherent photoproduction

of pions and the a+
TN → π+N process, where the axial vector particles are transversely polarized

and give smaller contributions. We have estimated them using available data and showed that

they are very small. Thus, assigning to the latter two cross sections an uncertainty even as large

as 50%, does not affect our results.

For isoscalar targets, like C12, O16, etc., isospin symmetry implies dσ(π+N) ≃ dσ(π−N) ≃
dσ(π0N). In the actual calculation we use the coherent pion–Carbon scattering data [89, 90].

Additional data on other nuclei and other energies are available in [91, 92]. Plots of the differ-

ential pion–Carbon cross section at kinetic energies of the incident pion 120, 180 and 260 MeV

are presented in figure 4.3. In all cases, the energy transfer ν is identified with the laboratory
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Figure 4.3: Differential cross section of coherent pion–Carbon scattering at kinetic energies of

the incident pion 120, 180 and 260 MeV plotted in the logarithmic scale. Only the experimental

points right to the vertical lines have been used for computation.

pion energy and the pion–Carbon cross section dσ
dt (π

+C → π+C) is integrated from the kine-

matically allowed |t|min given in (E.5), to |t|max ≃ 0.05 GeV2 corresponding to the first dip of

the pion–Carbon cross section (see figure 4.3). As can be seen in figure 4.3, at very small |t|
the differential pion–Carbon cross section has a sharp peak induced by virtual photon exchange

(the Coulomb contribution). As we consider here neutrino scattering mediated by either W or

Z boson, the Coulomb contribution should be subtracted. To this end we note that at moderate

|t| the differential cross section plotted in logarithmic scale is to a good approximation a linear

function of |t| and we extrapolate this dependence to smaller values of |t|. The pion–Carbon

cross section integrated over t in the range discussed above, considered as a function of ν and

the momentum transfer squared Q2, introduced through the lower limit of the t–integration, is



4.2. Numerical estimates and results 109

presented in figure 4.4.
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Figure 4.4: Pion-Carbon cross section integrated over t in the range discussed in the text, as a

function of ν, at different values of Q2.

Integrating next (4.14) and (4.16) over ν in the range (4.13), we obtain the differential

cross sections dσ(νN → µ−π+N)/dQ2 and dσ(νN → νπ0N)/dQ2 of the CC and NC reactions

depicted in figure 4.5. We notice that the shapes of the CC and the NC distributions are different,

most notably because of the muon mass effects. The results in figure 4.5 correspond to ξ = 3.

We also note that such shape differences as indicated in figure 4.5, must be taken into account

in the comparison with the Adler parallel configuration.

Finally, integrating over Q2 in the region (E.2), we obtain the results presented in figures 4.6

and 4.7.

We next turn to the transverse vector and axial contributions supplying the terms propor-

tional to the density matrix elements L̃RR + L̃LL in (4.14) and (4.16). For the photon induced

reaction, there exist data on the photoproduction of mesons off nuclei [88, 94, 95]. The A-

dependence reported in [95] is A2/3 which indicates that the same shadowing as in π-nucleus

interactions takes place. Using then the data on Pb from figure 9 of [88] at Eγ = 200 − 350

MeV, and integrating them over the first peak, we obtain

1

2πα

∫ 0.01GeV2

|tmin|

dσ(γN → π0N)

dt

(

12

207

)2/3

≃ 1.40 mb , (4.18)

where the factor 1/2πα comes from the elimination of the electromagnetic coupling, and (12/207)2/3

from changing the cross section from Lead to Carbon. The numerical value in (4.18) should be
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Figure 4.5: Differential cross sections of the coherent pion production by neutrinos dσ(νN →
µ−π+N)/dQ2 and dσ(νN → νπ0N)/dQ2. Only contributions of the leading terms have been

taken into account. The curves correspond to ξ = 3.

compared with the uppermost curve in our figure 4.4. We note that the transverse vector cur-

rent contribution is approximately 1% of the pion contribution. In addition the ratio of their

coefficients in (4.14), (L̃RR + L̃LL)/2 to f2
π [L̃00 + ...]/Q2 in the interesting kinematic region is

∼ 0.2. We conclude therefore, that the transverse vector–current contribution to (4.14) and

(4.16) is negligible, compared to the pion contribution.

Estimates of the transverse axial current contribution at low energies are more difficult,

because of the absence of data. However, as argued below, this contribution to (4.14) and (4.16)

should be very small and in fact smaller than the transverse vector one.

A very rough estimate for (4.15) may be obtained by assuming that it receives important

contributions from the a+
1 (1260) resonance. We need two kinds of measurements for this. The

first one is the partial decay width Γ(τ− → a−1 ντ ), which determines the a1 coupling to the axial

current fa1 , defined through (compare (4.3))

〈0|A1
ρ + iA2

ρ|a+
1 〉 =

m2
a1

fa1

ǫρ(a1) , (4.19)

using

Γ(τ− → a−1 ντ ) =
G2
Fm

2
a1
m3
τ

16πf2
a1

(

1 − m2
a1

m2
τ

)2(

1 +
2m2

a1

m2
τ

)

, (4.20)

where ma1 and ǫρ(a1) are the a1 mass and polarization vector, and mτ is the τ mass. The a1
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Figure 4.6: Cross section of the charged current coherent pion production by neutrinos per

Carbon nucleus. Only contributions of the leading terms have been taken into account. The

upper bound is from K2K including one standard deviation. Dotted line represents the integrated

cross section with a threshold value for the muon energy Eµ > 450 MeV. The theoretical curves

correspond to ξ = 3.

subsequently decays into a 3π final state. Unfortunately the data for τ− → a−1 ντ do not show a

clear 3π resonant state.

Using as an alternative the corresponding coupling of the ρ-meson to the isovector current

f2
ρ ≃ 32, determined from e. g. the Γ(ρ0 → e−e+) data, and taking into account the fact that

the a1–coupling to the axial current could not be stronger [96], we expect

f2
a1

& 32 . (4.21)

If in addition some data on dσ(π±N → a±1TN)/dt for transverse a1 production were available,

we would estimate
dσ(A+

TN → π+N)

dt
∼ 2

f2
a1

dσ(π+N → a+
1TN)

dt
, (4.22)

where the laboratory energy of the incident pion is again identified with ν.

To get a feeling on the relative magnitude of the transverse axial, versus transverse vector

contribution, we compare the integrated π−p → a−1 p data at Eπ = 16 GeV of [97], to the

γp→ π0p data at Eγ = 15 GeV of [98].

The integrated diffractive cross section found in [97] at Eπ = 16 GeV is σ(π−p → a−1 p) =

250± 50 µb. Most of this is of course helicity conserving and refers to the production of a1 with
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Carbon nucleus. Only contributions of the leading terms have been taken into account. The
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vanishing helicity. According to the authors estimate [97], the transverse helicity part constitutes

a fraction of 0.16 ± 0.08 of this. Substituting this in (4.22) and using (4.21) we find

∫

dσ(A−
T p→ π−p)

dt
dt . 2.5 ± 1.2 µb , (4.23)

which should be compared with the transverse vector contribution [98, 99]

1

2πα
σ(γp→ π0p) ≃ 5 µb (4.24)

at Eγ= 6 GeV.

In comparing (4.23) and (4.24) we should remember that the transverse vector and axial

processes in (4.14), are both determined by helicity–flip amplitudes. But in contrast to the

ω–Regge trajectory which contributes uninhibitedly to the coherent vector amplitude [84], the

only established Regge singularity that can contribute to the coherent axial amplitude would

had been the Pomeron, provided the associate a1–particles had helicity zero. Since the currents

we consider are transverse though, the only possible contributions to the axial amplitude arises,

either from the small s–channel helicity violating component of the Pomeron [100, 101], or the

generally unimportant σ–trajectory. On this basis we conclude that (4.23) is very likely an

overestimate. The limited amount of data forced us to use proton targets in the estimates of

(4.23) and (4.24); for coherent production on a Carbon target, these should be scaled up by a



4.2. Numerical estimates and results 113

factor 122/3 ≃ 5.2, always remaining very small compared to the pion–Carbon coherent cross

section (the uppermost curve in the figure 4.4).

To sum up, the limited amount of data forced us to use phenomenological estimates which

imply that the transverse contributions are very small in comparison to the pion term. Our

results in figures 4.4 – 4.7, based on the pion–nucleus data only, can be considered as lower

bounds, with the actual cross sections being a few percent above them.

We next turn to the implications for the oscillation experiments. Figure 4.6 shows our

results for the charged current coherent contribution to the neutrino–pion production σCCcoh (E1)

for ν ≥ ξ
√

Q2 with ξ = 3. We note that there is a rapid growth of the cross section up to E1 ∼ 5

GeV. In fact at E1 = 2.0 GeV the cross section is almost three times bigger than at 1.0 GeV.

For E1 = 1.3 GeV and ξ = 3 the predicted coherent charged current cross section on a Carbon

target with the E2 ≡ Eµ > 450 MeV cut applied is σCCcoh = 2 × 10−40 cm2. The corresponding

experimental upper bound for coherent pion production on Carbon [24] is

σCCcoh . (7.7 ± 1.6 (stat) ± 3.6 (syst)) · 10−40 cm2 (4.25)

which is consistent with our value.

Finally, we apply our work to the coherent production of π0 in neutral current reactions.

This reaction is an important background in oscillation experiments searching for the oscillation

of νµ’s to νe’s. Several oscillation experiments use two detectors with a long–baseline. The far

away detector searches among other channels also for νe → e− interactions. The π0s produced

via coherent scattering decay to two photons whose Cherenkov light mimics that of electrons.

Furthermore, when the oscillation is to other types of active neutrinos all species contribute

equally to coherent scattering, but only νe’s produce electrons through the charged current.

Thus a good understanding of coherent π0 production is very important.

The neutral current cross section is calculated from (4.16), assuming σ(π0C → π0C) ≃
σ(π+C → π+C), which follows from isospin symmetry. The neutral current cross section is

approximately half as big as the charged current one. The result is shown in figure 4.7 with the

solid curve again corresponding to ξ = 3. We also plotted results of several experiments carried

out at three different energies and targets made of Carbon, Aluminum and Freon, respectively.

We use Carbon as our reference nucleus and scale the results for other nuclei by the A
2
3 rule, as

we discussed earlier. Rescaling the Aachen and Gargamelle data we obtain the points in figure

4.7. The three points have large errors and are consistent with the theoretical curves. As in the

charged current case, we should mention though that the ξ = 3 cut was not imposed in these

data. If this was done, the experimental cross sections would had been reduced considerably.
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4.3 Conclusions

In this chapter the coherent pion production by neutrino scattering off nuclei has been considered.

The main reason for returning to this old topic are the new data from the K2K group [24] that

has set an upper bound on the coherent pion production by neutrinos far below the theoretical

expectations.

The approach presented here is based on the decomposition of the leptonic tensor into density

matrix elements. A careful application of PCAC leads to the formulas (4.14) and (4.16) which

should be valid for small values of Q2 provided that ν ≫
√

Q2. Numerical estimates show,

that the dominant contribution comes from the zero helicity component of the leptonic tensor.

Contributions arising from the transverse (off shell) vector and axial states, which have been

estimated phenomenologically, turn out to be very small.

We kept the charged lepton mass in both the matrix element and the phase space of charged

current scattering. As is clear from figure 4.5 by neglecting the muon mass the integrated charged

current cross section is overestimated by a factor of two.

Finally we computed the total cross sections shown in figures (4.6) and (4.7). It should be

stressed that in the analysis presented here we integrate over a relatively small part of the phase

space where the approximations we used are applicable. Thus a comparison with experimental

data requires similar kinematic cuts on the experimental side. Of course, our results are in

agreement with the upper bound for the total cross section of coherent neutrino pion production

obtained by the K2K group.
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Conclusions

At present, the scenario of baryogenesis via leptogenesis suggested by M. Fukugita and T.

Yanagida is one of the most attractive explanations of the observed baryon asymmetry of the

Universe. The generation of the lepton and baryon asymmetries is a complex phenomenon, which

is affected by many factors. In particular, the generation of a nonzero asymmetry requires

deviation from thermal equilibrium. In a nonuniform model of the Universe the degree of

deviation from thermal equilibrium is a function of space coordinates. We have investigated

the influence of the associated effects of general relativity for superhorizon–size perturbations

and found, that the generation of the asymmetry has been slightly more efficient in the regions

of higher energy density. In other words, even before structure formation began shortly after

the onset of the matter–dominated epoch, seeds of the future galaxies and other large scale

structures contained a higher–than–average number of baryons and leptons.

The second class of the effects is associated with the fact, that the asymmetry generated in the

decay of the right–handed neutrino induces nonzero chemical potentials of quarks and the Higgs.

This effect results in a modification of coefficients of individual terms in the Boltzmann equations

for the lepton number asymmetry and leads to a decrease of the efficiency of leptogenesis. In

addition, the fact that the lepton asymmetry is instantly converted to the baryon asymmetry by

the sphaleron processes, which are in equilibrium at this stage of the Universe history, implies,

that the Boltzmann equations describe the development of the lepton asymmetry and not the

development of the B − L number, as has been tacitly assumed by some researches. As a

consequence, the baryon asymmetry is one half, rather than one third of the solution of the

Boltzmann equation.

Numerical analysis shows, that theoretical upper bound on the baryon asymmetry of the

Universe in the Standard Model is consistent with the experimental observations. However, the

Standard Model is very likely to be a part of a more fundamental theory. The exotic interactions,

which are strongly suppressed at low energies, will certainly affect the generation of the lepton

and baryon asymmetries, which takes place at very high temperatures. Contribution of the new

decay and scattering processes constitute the third class of the effects. We have investigated
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the generation of the lepton and baryon asymmetries in the superstring inspired E6 model. The

model is likely to be of interest from the point of view of “low–energy” phenomenology and

also introduces many new decay and scattering processes, which affect the generation of the

asymmetry. The efficiency of leptogenesis turns out to be bigger than in the Standard Model.

This is partially explained by the fact, that in this model the Universe expands faster at the

temperature where most of the asymmetry is generated. A theoretical upper bound on the

baryon asymmetry, consistent with the experimental observations, can easily be obtained for

reasonable values of the parameters.

The parameters which determine the lepton and baryon asymmetry of the Universe are

related to those measured at low–energy experiments only in a model–dependent way. Never-

theless, any improvement in determination of the masses and mixing angles of the light neutrino

brings us closer to the ultimate goal of predicting the baryon asymmetry, instead of estimating

the theoretical upper bounds. High precision measurements of neutrino masses and mixing angles

in the forthcoming experiments require a good understanding of the interactions of the neutrino

beam with the target material. We have considered coherent pion production by neutrino scat-

tering off nuclei using a decomposition of the leptonic tensor into density matrix elements and

PCAC. We have computed the total cross section of the charged current scattering keeping the

charged lepton mass in both the matrix element and the phase space and the cross section of

the neutral current scattering. The numerical results are in agreement with the upper bound for

the total cross section of coherent neutrino pion production recently obtained by K2K group.



117

Appendix A

One–loop integrals

We summarize here some standard formulas for one–loop integrals, useful for the calculation of

the CP asymmetry in the decay of the heavy right–handed neutrino. We use the notation and

conventions adopted in [102] with a flat space–time metric gµν = (1,−1,−1,−1).

A.1 One–point function

In n = 4 − 2ǫ dimensions the scalar one–point function reads

A0(m1) =
µ4−n

iπ2

∫

dnk

Dm1(k)
, Dm1(k) = k2 −m2

1 + iε (A.1)

In the limit ǫ→ 0 it is given by

A0(m1) = m2
1

[

∆ − ln

(

m2
1

µ2

)

+ 1

]

+ O(n− 4) (A.2)

with the UV–divergence contained in

∆ =
1

ǫ
− γ

E
+ ln 4π (A.3)

where γ
E

= 0.577216 is Euler’s constant.

A.2 Two–point functions

The scalar two–point function reads

B0(p
2
1,m1,m2) =

µ4−n

iπ2

∫

dnk

Dm1(k)Dm2(k, p1)
, Dm2(k, p1) = (k + p1)

2 −m2
2 + iε (A.4)

In the limit ǫ→ 0 it is given by [102, 103]

B0(p
2
1,m1,m2) = ∆ −

∫ 1

0
dx ln

(

p2
1x

2 − x(p2
1 −m2

1 +m2
2) +m2

2 − iε

µ2

)

+ O(n− 4) (A.5)
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In particular, in the limit of zero m1 and m2 the following identity emerges

B0(p
2
1, 0, 0) = ∆ + 2 − ln

( |p2
1|
µ2

)

+ iπθ(p2
1) (A.6)

whereas if p2
1 and one of the masses are zero, then

B0(0,m, 0) = B0(0, 0,m) = ∆ + 1 − ln

(

m2

µ2

)

=
1

m2
A0(m

2) (A.7)

Lorentz covariance of the tensor integrals allows us to decompose them into tensors constructed

from the external momenta p1 and the metric tensor gµν . In the case of the vector integral

Bµ(p
2
1,m1,m2) =

µ4−n

iπ2

∫

kµ d
nk

Dm1(k)Dm2(k, p1)
(A.8)

such a decomposition is very simple

Bµ(p
2
1,m1,m2) = p1,µB1(p

2
1,m1,m2) (A.9)

where the coefficient of decomposition B1 is given by

B1(p
2
1,m1,m2) =

1

2p2
1

[

A(m1) −A(m2) + (m2
2 −m2

1 − p2
1)B0(p

2
1,m1,m2)

]

(A.10)

In the case of vanishing or equal masses

B1(p
2
1,m1,m2) = −1

2
B0(p

2
1,m1,m2) (A.11)

A.3 Three–point functions

The scalar three–point function reads

C0(p
2
1, p

2
2,m1,m2,m3) =

µ4−n

iπ2

∫

dnk

Dm1(k)Dm2(k, p1)Dm3(k, p1 + p2)
(A.12)

The explicit expression for the scalar three–point function in the limit ǫ→ 0 which can be found

in [102] is rather complicated. We will need only the imaginary part of it. In the case two of the

masses are zero, it takes the form

Im[C0(p
2
1, p

2
2,m, 0, 0)] = −πθ(p

2
2)

p2
2

ln

(

1 +
p2
2

m2

)

(A.13)

Decomposing the vector integral

Cµ(p
2
1, p

2
2,m1,m2,m3) =

µ4−n

iπ2

∫

kµ d
nk

Dm1(k)Dm2(k, p1)Dm3(k, p1 + p2)
(A.14)

into tensors constructed from the external momenta p1 and p2 we obtain

Cµ(p
2
1, p

2
2,m1,m2,m3) = p1,µC11(p

2
1, p

2
2,m1,m2,m3) + p2,µC12(p

2
1, p

2
2,m1,m2,m3) (A.15)
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In the case of two vanishing masses and two light–like momenta p2
1 = 0 and (p1 + p2)

2 = 0 the

decomposition coefficients read

C12(p
2
1, p

2
2,m, 0, 0) =

1

2(p1p2)

[

B0(0,m, 0) −B0(p
2
2, 0, 0) −m2C0(p1, p2,m, 0, 0)

]

(A.16)

C11(p
2
1, p

2
2,m, 0, 0) = 2C12(p

2
1, p

2
2,m, 0, 0) (A.17)

The imaginary part of C12 is given by

Im[C12(p
2
1, p

2
2,m, 0, 0)] =

πθ(p2
2)

p2
2

[

1 − m2

p2
2

ln

(

1 +
p2
2

m2

)]

(A.18)
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Appendix B

Spinor Notation and Conventions

In this appendix we introduce the notation and summarize some standard formulas of spinor

algebra. Greek indices α, β and α̇, β̇ run from one to two and denote the components of Weyl

spinors, while all other Greek letters denote Lorentz–indices. We follow here the conventions of

[104] with a flat space–time metric gµν = (1,−1,−1,−1).

B.1 Weyl fermions

Two–component Weyl spinors describe massless fermions with two spin degrees of freedom.

Under a Lorentz transformation M ∈ SL(2,C) two–component spinors with upper or lower

dotted or undotted indices transform as follows:

ψ
′

α = Mα
βψβ, ψ̄

′

α̇ = M∗
α̇
β̇ψ̄β̇ (B.1a)

ψ
′α = M−1

β
α
ψβ , ψ̄

′α̇ = (M∗)−1
β̇

α̇
ψ̄β̇ (B.1b)

Spinors with dotted indices transform under the (0, 1
2) representation of the Lorentz group, while

those with undotted indices transform under the (1
2 , 0) conjugate representation.

The connection between SL(2,C) and the Lorentz group is established through the Pauli

matrices

σ0 =





1 0

0 1



 , σ1 =





0 1

1 0



 , σ2 =





0 −i
i 0



 , σ3 =





1 0

0 −1



 (B.2a)

The antisymmetric tensors εαβ and εαβ

εαβ =





0 −1

1 0



 , εαβ =





0 1

−1 0



 (B.3)
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are invariant under Lorentz transformations. Spinors with upper and lower indices are related

through the antisymmetric ε–tensor:

ψα = εαβψβ , ψα = εαβψ
β (B.4)

An analogous treatment holds for the ε–tensor with dotted indices. The ε–tensor may also be

used to raise the indices of the σ–matrices:

σ̄µα̇α = εα̇β̇εαβσµ
ββ̇

(B.5)

From the definition of the Pauli matrices it then follows that

(σµσ̄ν + σν σ̄µ)α
β = 2gµνδα

β (B.6a)

(σ̄µσν + σ̄νσµ)α̇β̇ = 2gµνδα̇β̇ (B.6b)

Tr(σµσ̄ν) = 2gµν (B.6c)

σµαα̇σ̄
β̇β
µ = 2δα

βδα̇
β̇ (B.6d)

Since spinors anticommute, the following spinor summation conventions are valid

ψχ ≡ ψαχα = −ψαχα = χαψα = χψ (B.7a)

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄ (B.7b)

(χψ)† = (χαψα)† = ψ̄α̇χ̄
α̇ = ψ̄χ̄ = χ̄ψ̄ (B.7c)

We will also need products of Weyl–spinors involving Pauli matrices which read as

χσµψ̄ = −ψ̄σ̄µχ , (B.8a)

(χσµψ̄)† = ψσµχ̄ , (B.8b)

χσµσ̄νψ = ψσν σ̄µχ , (B.8c)

(χσµσ̄νψ)† = ψ̄σ̄νσµχ̄ . (B.8d)

B.2 Dirac fermions

Four–component Dirac spinors describe massive fermions with four spin degrees of freedom. A

Dirac spinor can be combined of two two–component spinors introduced above.

ΨD =





χα

ψ̄α̇



 (B.9)
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In the four–component notation the analogs of the Pauli matrices are the four Dirac matrices

γµ, which satisfy the following anticommutation relations:

{γµ, γν} = 2gµν (B.10a)

{γ5, γν} = 0, γ5 = iγ0γ1γ2γ3 (B.10b)

γ5γ5 = 11 (B.10c)

The explicit form of the Dirac matrices depends on the choice of representation. In the so–called

chiral representation the Dirac matrices take the form

γµ =





0 σµ

σ̄µ 0



 , γ5 =





-11 0

0 11



 (B.11)

In the case of vanishing mass only two of the four degrees of freedom are independent and the

four–component spinors are equivalent to two–component Weyl spinors. Even in this case one

can use the four–component notation provided that unphysical degrees of freedom are removed

by chiral projectors. In the chiral representations the chiral projectors read

PR =
1 + γ5

2
=





0 0

0 11



 , PL =
1 − γ5

2
=





11 0

0 0



 (B.12)

For a Dirac spinor (B.9) and its Dirac conjugate (B.13)

Ψ̄D = Ψ†
Dγ

0 = (ψα, χ̄α̇) (B.13)

one has

PLΨD = χα , PRΨD = ψ̄α̇, (B.14a)

Ψ̄DPL = ψα , Ψ̄DPR = χ̄α̇ (B.14b)

For fermions the operation of charge conjugation is defined as

ΨC
D ≡ CΨ̄T

D (B.15)

where the charge conjugation matrix C is given by

C = −iγ2γ0 =





εαβ 0

0 εα̇β̇



 (B.16)

and fulfills the following useful identities

CT = C† = C−1 = −C, C2 = −1 (B.17)

Using (B.13) and the explicit form of the charge conjugation matrix in the spinor representation

(B.16) we obtain

ΨC
D =





ψα

χ̄α̇



 (B.18)
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B.3 Majorana spinors

Majorana spinors describe massive fermions with two spin degrees of freedom. A Majorana

fermion is a truly neutral particle, i.e. it is invariant with respect to charge conjugation. Equa-

tions (B.9) and (B.18) imply then

ΨM = ΨC
M =





ψα

ψ̄α̇



 (B.19)

i.e. a Majorana fermion can be described in terms of one two–component spinor.

Whereas for Weyl and Dirac fermions there is only one propagator, for Majorana neutrinos

several propagators can be introduced:

〈ψα(x)ψ̄β̇(y)〉 = i

∫

d4k

(2π)4

kµσ
µ

αβ̇
e−ik(x−y)

k2 −M2 + iǫ
(B.20a)

〈ψ̄α̇(x)ψβ(y)〉 = i

∫

d4k

(2π)4
kµσα̇βµ e−ik(x−y)

k2 −M2 + iǫ
(B.20b)

〈ψα(x)ψβ(y)〉 = i

∫

d4k

(2π)4
Mδα

β e−ik(x−y)

k2 −M2 + iǫ
(B.20c)

〈ψ̄α̇(x)ψ̄β̇(y)〉 = i

∫

d4k

(2π)4

Mδα̇β̇ e
−ik(x−y)

k2 −M2 + iǫ
(B.20d)

Violation of lepton number in scattering processes mediated by Majorana neutrino is described

by the propagators (B.20c) and (B.20d) and is associated with chirality flipping. In the limit

of vanishing Majorana mass both (B.20c) and (B.20d) vanish, which reflects the fact that for

massless particles helicity and the associated lepton number are conserved.

Although in most cases the introduction of Feynman rules leads to a great simplification of

analytical calculations, due to the aforementioned complication the direct calculation in terms

of helicity amplitudes may turn out to be simpler in the case of Majorana fermions. Using the

standard decomposition of spinor fields

ψα(x) =
∑

pσ

1
√

2εpV

(

apσupσ,αe
−ipx + a+

pσvpσ,αe
ipx
)

(B.21)

and the Lagrange equations of motion

iγµ∂µΨM −MΨM = 0, (B.22)

one can easily derive useful summation relations for on–shell Majorana fermions

pµσ
µ

αβ̇
ūβ̇ +Mvα = 0, pµu

βσµβα̇ +Mv̄α̇ = 0 (B.23a)

pµσ
µ

αβ̇
v̄β̇ −Muα = 0, pµv

βσµβα̇ −Mūα̇ = 0 (B.23b)

pµσ̄α̇βµ uβ −Mv̄α̇ = 0, pµūβ̇σ̄
β̇α
µ −Mvα = 0 (B.23c)

pµσ̄α̇βµ vβ +Mūα̇ = 0, pµv̄β̇σ̄
β̇α
µ +Muα = 0 (B.23d)
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Analogously for products of chiral amplitudes summed over spin projections we find

∑

σ

upσ, αv
β
pσ = Mδβα,

∑

σ

v̄α̇pσūpσ, β̇ = Mδα̇
β̇

(B.24a)

∑

σ

upσ, αūpσ, β̇ = pµσ
µ

αβ̇
,
∑

σ

v̄α̇pσv
β
pσ = pµσ̄

µ α̇β (B.24b)

∑

σ

vpσ, αu
β
pσ = −Mδβα,

∑

σ

ūα̇pσv̄pσ, β̇ = −Mδα̇
β̇

(B.24c)

∑

σ

vpσ, αv̄pσ, β̇ = pµσ
µ

αβ̇

∑

σ

ūα̇pσu
β
pσ = pµσ̄

µ α̇β (B.24d)

B.4 Superfield Products

In the so–called y–basis, where yµ = xµ− iθσµθ̄, a chiral superfield written in terms of its scalar,

fermion and auxiliary components has the form

Φ(y, θ) = A(y) +
√

2θΨ(y) + θ2F (y) (B.25)

By Taylor expansion in θ and θ̄ we can write a chiral superfield as a function of xµ, θ and θ̄:

Φ(x, θ, θ̄) = A(x) − iθσµθ̄∂µA(x) − 1

4
θ2θ̄

2
�A(x)

+
√

2θΨ(x) +
i√
2
θ2∂µΨ(x)σµθ̄ + θ2F (x) (B.26)

Using relations (B.27)

θαθβ = −1

2
εαβθ2 (B.27a)

θαθβ =
1

2
εαβθ

2 (B.27b)

θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄

2
(B.27c)

θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄

2
(B.27d)

θσµθ̄θσν θ̄ =
1

2
θ2θ̄

2
gµν (B.27e)

which follow from formulas of section B.1 we obtain products of two and three superfields. Up

to a total derivative these read as

ΦiΦj = AiAj +
√

2θ(ψiAj + ΨjAi) + θ2(AiFj +AjFi − ΨiΨj) (B.28)

ΦiΦjΦk = AiAjAk +
√

2θ(AiAjΨk +AiΨjAk + ΨiAjAk)

− iθσµθ̄(AiAj∂µAk +AiAk∂µAj +AjAk∂µAi)

+ θ2(AiAjFk +AiAkFj +AjAkFi −AiΨjΨk −AjΨkΨi −AkΨiΨj) (B.29)
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Analogously for the kinetic terms one obtains

Φ̄iΦj = A∗
iAj +

√
2(A∗

i θΨj + Ψ̄iθ̄Aj) + iθσµθ̄(∂µA
∗
iAj −A∗

i ∂µAj)

+ 2(θ̄Ψ̄)(θΨ) +
i√
2
θ2(∂µΨjσ

µθ̄A∗
i − Ψjσ

µθ∂µA
∗
i +

√
2Ψ̄iθ̄Fj +A∗

iFj)

− i√
2
θ̄2(θσµ∂µΨ̄Aj + θσµΨ̄∂µAj − θΨiF

∗
j + F ∗

i Aj)

+ θ2θ̄2(F ∗
i Fj + ∂µA

∗
i ∂

µAj +
i

2
Ψ̄iσ̄

µ∂µΨj −
i

2
∂µΨ̄iσ̄

µΨj) (B.30)
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Appendix C

Kinetic theory

This appendix contains useful formulas needed for the calculation of reduced cross sections and

reaction densities of the decay as well as the 2 → 2 and 2 → 3 scattering processes.

C.1 Decay

The quantity that enters the Boltzmann equations is the so–called reaction density of the decay

defined as

γD =

∫

dΠidΠY (2π)4δ4(PY − Pi)f
a
eq|M(i→ Y )|2 (C.1)

where dΠ is the Lorentz–invariant element of phase space

dΠ =
d3p

(2π)3
g

2E
, (C.2)

and |M(i → Y )|2 is the decay amplitude. We assume in what follows that f ieq is given by the

Maxwell–Boltzmann distribution

feqi = exp(−Ei/T ) (C.3)

Multiplying and dividing by twice the decaying particle mass 2Mi we rewrite the decay reaction

density as follows

γD =

∫

gi
d3p

(2π)3
Mi

E
f ieq

∫

1

2Mi
dΠY (2π)4δ4(PY − Pi)|M(a→ Y )|2 (C.4)

The second integral is the decay width Γi, calculated in the rest frame of the decaying particle,

which does not depend on the integration variable p. The first integral can then be written as

γD =
gi

2π2
x
√
aiT

3Γi

∫

y2dy
√

aix2 + y2
exp (−

√

aix2 + y2) =
gi

2π2
x2aiT

3ΓiK1(x
√
ai) (C.5)

where x = M1/T , ai = M2
i /M

2
1 , and K1 is a modified Bessel function. Introducing an equilib-

rium particle number density

neq =
gi

(2π)3

∫

feqi d
3p =

gi
2π2

x2aiT
3K2(x

√
ai) (C.6)
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we can finally write the thermally averaged decay width in the form

γD(x) = neqΓi
K1(x

√
ai)

K2(x
√
ai)

(C.7)

For the numerical analysis it is also useful to introduce a dimensionless reaction density of the

Majorana neutrino decay

γ̂D(x) ≡ γD
T 3M1

=
Γi
M1

x2ai
π2

K1(x
√
ai) (C.8)

C.2 Two–body scattering

It is convenient to split the calculation of the thermally averaged cross section of 2 → 2 and

2 → 3 processes into two steps: calculation of the reduced cross section of the process, which in

many cases can be done analytically, and computation of the corresponding reaction density.

C.2.1 Reduced cross section of 2 → 2 process

The dimensionless reduced cross section σ̂(s) is the amplitude summed over final states

σ̂(s) = 8πΦ2(s)

∫

dΠcdΠd(2π)4δ4(Pf − Pi) × |M(ab→ cd)| (C.9)

where Φ2(s) is the two–body phase space for the initial state

Φ2(s) =

∫

dΠadΠb(2π)4δ4(Pf − Pi) =
gagb
8πs

w(s,m2
a,m

2
b) (C.10)

and the triangle function w is defined as

w(a, b, c) =
(

a2 + b2 + c2 − 2ab− 2ac− 2bc
)

1
2 (C.11)

We now multiply and divide (C.9) by the flux factor I = 1
2w(s,m2

a,m
2
b) and, using the expression

for the two–body scattering cross section

σ =
1

4I

∫

dΠcdΠd(2π)4δ4(Pf − Pi) × |M(ab→ cd)| =
1

64π

∫

|M(ab→ cd)|dt
I2
, (C.12)

rewrite the reduced cross section in the form convenient for actual calculations [73]

σ̂(z) =
gagbgcgd

8πz

∫

|M(ab→ cd)| dy , z =
s

M2
1

, y =
t

M2
1

(C.13)

C.2.2 Reduced cross section of 2 → 3 process

Generalizing equations (C.9) and (C.12) to the case of 2 → 3 scattering we obtain

σ̂(s) =
2w2(s,m2

a,m
2
b)

s
σ(ab→ cde) (C.14)
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where σ(ab → cde) is the cross section summed over all final and initial spin states which can

be written in the form

σ(ab→ cde) =
1

(4π)5

∫ |M(ab→ cde)|
I

d3pc
pc

2√
s

p2
d dΩd√
s− 2pc

(C.15)

At temperatures of the order of the Majorana neutrino mass all other particles can approximately

be treated as massless. In this case equation (C.15) can be further simplified and a standard

calculation yields

σ̂(z) =
gagbgcgdge

256π3

M2
1

x

∫ x

0

dξ

x− ξ

∫ x−ξ

0
dη

∫ 0

ξ−x
dy |M(ab→ cde)| (C.16)

where the dimensionless variables of integration are defined as

ξ =
(pd + pe)

2

M2
1

, η =
(pc + pe)

2

M2
1

, y =
(pa − pc)

2

M2
1

(C.17)

C.2.3 Reaction density

The quantity that enters the Boltzmann equations is the reaction density, which for 2 → 2

scattering is defined as

γS =

∫

dΠadΠbdΠcdΠd(2π)4δ4(Pf − Pi)f
eq
a f

eq
b |M(ab→ cd)|2 (C.18)

Using the definition of the reduced cross section (C.9) we obtain

γS =

∫

dΠadΠbf
eq
a f

eq
b

σ̂(s)

8πΦ2(s)
(C.19)

The remaining integral can be traced back to the two–body phase space (C.10). To this purpose

we insert a factor

1 =

∫ ∞

smin

ds

∫

d4Qδ(Q− pa − pb)δ+(Q2 − s) (C.20)

so that the reduced cross section takes the form

γS =

∫ ∞

smin

ds

∫

d4Q

(2π)4
δ+(Q2 − s)feqa f

eq
b

σ̂(s)

8πΦ2(s)

∫

dΠadΠb(2π)4δ(Q− pa − pb) (C.21)

=
1

128π5

∫ ∞

smin

dsσ̂(s)

∫

d4Qδ+(Q2 − s)feqa f
eq
b

Assuming Maxwell–Boltzmann statistics for both incoming particles we obtain

J ≡
∫

d4Qδ+(Q2 − s)feqa f
eq
b =

∫

d4Qδ+(Q2 − s)e−
Q0

T =

∫ ∞

0

d3Q

2EQ
e−

EQ
T (C.22)

Integrating over the angles and using | ~Q|d| ~Q| = EQdEQ we obtain

J = 2π

∫ ∞

√
s
| ~Q|e−

EQ
T dEQ = 2πT

√
sK1

(√
s

T

)

(C.23)
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The reaction density takes the form

γS(x) =
T

64π4

∫ ∞

(ma+mb)2
ds
√
sK1

(√
s

T

)

σ̂(s) =
TM3

1

64π4

∫

dz
√
zK1

(√
zx
)

σ̂(z) (C.24)

where again z = s/M2
1 and x = M1/T . It is also useful to introduce a dimensionless reaction

density

γ̂S(x) ≡ γS
T 3M1

=
x2

64π4

∫

dz
√
zK1

(√
zx
)

σ̂(z) (C.25)

From the derivation of (C.24) it is evident, that the same formula also holds for 2 → 3 scattering.
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Appendix D

Reduced cross sections

In this appendix we collect the reduced cross sections of the processes discussed in chapter 3.

The definition of the reduced cross section along with some useful formulas for the calculation

of reduced cross sections of 2 → 2 and 2 → 3 scattering processes can be found in appendix C.

Supersymmetric leptogenesis has been discussed by a number of authors. In particular,

reduced cross sections of various processes in the supersymmetric SO(10) model have been cal-

culated in [16]. Since the model under consideration contains three generations of Higgses, the

structure of flavor indices of the one–loop self–energy and one–loop vertex contributions is differ-

ent, which makes the expressions for the reduced cross sections more complicated. An additional

complication comes from the fact, that in the model under consideration the heavy (s)neutrino

can decay not only into a lepton and a Higgs, but also into a pair of quarks. Expressions for the

reduced cross sections obtained here differ from those in [16] due to the use of a Real Intermediate

State subtracted propagator of the form discussed in [35].

D.1 Processes mediated by the right–handed neutrinos

To begin with, let us consider Majorana (s)neutrino mediated processes depicted in figure 3.3

which violate lepton number by two units.

Since supersymmetry is broken only softly, the reduced cross sections of the L+H̃u ↔ L̄+H̃u†

and L̃+Hu ↔ L̃† + H̄u processes are equal and given by

σ̂
(1a)
νc (z) = σ̂

(2a)
νc (z) =

∑

ηη̄

√
aηaη̄

8πz

{

C2
aΛ

ηη̄
(1)aa

[

z2

2Pη(z)P ∗
η̄ (z)

+
z + aη
aη̄ − aη

ln

(

z + aη
aη

)

+
z + aη̄
aη − aη̄

ln

(

z + aη̄
aη̄

)]

+ 2CaRe

(

Ληη̄(2)aa

Pη(z)

)

[

z − (z + aη̄) ln

(

z + aη̄
aη̄

)]}

(D.1)
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where a = 11 and

Ληη̄(1)ab =

j,n
∑

i,m

(ληima λ∗η̄ima )(ληjnb λ∗η̄jnb ) and Ληη̄(2)ab =

j,n
∑

i,m

(ληima λ∗η̄ina )(ληjnb λ∗η̄jmb ) (D.2)

have been introduced. The coefficient C11 = 2 takes into account that the SUL(2) doublets L

and Hu have two components. From the definition (D.2) it follows that the diagonal components

Ληη(1)aa and Ληη(2)aa are real. It should also be noted, that if there is only one generation of Higgses

then m = n and Ληη̄(1)aa = Ληη̄(2)aa.

The dimensionless s–channel Breit–Wigner propagator is defined as

1

Pη(z)
=

1

z − aη + i
√
aηcη

(D.3)

In order to avoid double–counting in the Boltzmann equation, the contributions of an on–shell

Majorana neutrinos in the s–channel should be subtracted. This is achieved by the use of the

Real Intermediate State (RIS) subtracted propagator [35]

|D−1
η (z)|2 = |P−1

η (z)|2 − π
√
aηcη

δ(z − aη) (D.4)

Note that |D−1
η (z)|2 only occurs in the squared amplitude pertaining to an s–channel diagram.

It is thus convenient to introduce

1

Dηη̄(z)
=















1

Pη
− π

√
aηcη

δ(z − aη), η̄ = η

1

Pη(z)P ∗
η̄ (z)

, η̄ 6= η
(D.5)

where Pη = (z − aη)
2 + aηcη is the inverse Breit–Wigner propagator modulo squared. The RIS

subtracted propagator D̃ηη̄(z) and the square of the inverse Breit–Wigner propagator P̃η of the

scalar neutrino are defined analogously.

The interference terms with η 6= η̄ are always small and can safely be neglected. Subtracting

the contribution of the real intermediate states we obtain

σ̂
(1a)
νc (z) = σ̂

(2a)
νc (z) =

∑

η

aη
8πz

{

C2
aΛ

ηη
(1)aa

[

z2

2Pη(z)
+

z

aη
− ln

(

z + aη
aη

)]

(D.6)

+ 2CaΛ
ηη
(2)aa

z − aη
Pη(z)

[

z − (z + aη) ln

(

z + aη
aη

)]}

− z
C2
a

16

∑

η

Ληη(1)aa

√

aη
cη
δ(z − aη)

In the model with λ8 6= 0 there are two analogous processes dc+D̃ ↔ d̄c+D̃† and d̃c+D ↔ d̃c†+D̄

whose reduced cross sections differ from (D.6) in λ11 replaced with λ8 and C8 = 3. There are

also s–channel processes L + H̃u ↔ d̄c + D̃†, L + H̃u ↔ d̃c† + D̄, L̃ + Hu ↔ d̄c + D̃† and

L̃+Hu ↔ d̃c† + D̄ with reduced cross sections given by

σ̂
(1b)
N (z) = σ̂

(2b)
N (z) =

∑

ηη̄

√
aηaη̄

16πz
C8C11Λ

ηη̄
(1)11,8

z2

Dηη̄(z)
(D.7)
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Reduced cross sections of similar t–channel processes L + d̃c → D̄ + H̃u†, Hu + d̃c ↔ D̄ + L̃†,

L+ D̃ ↔ d̄c + H̃u† and Hu +D ↔ L̃† + d̃c† are given by

σ̂
(1c)
N (z) = σ̂

(2c)
N (z) =

∑

ηη̄

√
aηaη̄

8πz
C8C11Λ

ηη̄
(1)11,8

{

z + aη
aη̄ − aη

ln

(

z + aη
aη

)

+
z + aη̄
aη − aη̄

ln

(

z + aη̄
aη̄

)}

(D.8)

The reduced cross section of the L+ H̃u ↔ H̄u + L̃† process reads

σ̂
(3a)
νc (z) =

∑

ηη̄

√
aηaη̄

8πz

{

C2
aΛ

ηη̄
(1)aa

[

z2

2Dηη̄(z)
+

aη
aη − aη̄

ln

(

z + aη
aη

)

+
aη̄

aη̄ − aη
ln

(

z + aη̄
aη̄

)]

+ 2CaRe

(

Ληη̄(2)aa

Pη(z)

)

[

z − aη̄ ln

(

z + aη̄
aη̄

)]}

(D.9)

where a = 11. Apart from the similar process D+ d̃c ↔ d̄c+ D̃† (a = 8) there are also t–channel

processes L̃+D ↔ H̃u† + d̄c and L+ D̃ ↔ H̄u + d̃c† with reduced cross sections given by

σ̂
(3b)
N (z) =

∑

ηη̄

√
aηaη̄

8πz
C8C11Λ

ηη̄
(1)11,8

{

aη
aη − aη̄

ln

(

z + aη
aη

)

+
aη̄

aη̄ − aη
ln

(

z + aη̄
aη̄

)}

(D.10)

The reduced cross sections of the L + Hu ↔ L̃† + H̃u† (a = 11) and D + dc ↔ D̃† + d̃c†

(a = 8) processes read

σ̂
(4a)
νc (z) =

∑

ηη̄

√
aηaη̄

8π

{

C2
aΛ

ηη̄
(1)aa

[

z

D̃ηη̄(z)
+

1

aη̄ − aη
ln

(

z + aη
aη

)

+
1

aη − aη̄
ln

(

z + aη̄
aη̄

)

]

+ 2CaRe

(

Ληη̄(2)aa

P̃η(z)

)

ln

(

z + aη̄
aη̄

)}

(D.11)

For the s–channel processes L+Hu ↔ D̃† + d̃c† and D + dc ↔ L̃† + H̃u† we get

σ̂
(4b)
N (z) =

∑

ηη̄

√
aηaη̄

8π
C8C11Λ

ηη̄
(1)11,8

z

D̃ηη̄(z)
(D.12)

whereas the reduced cross sections of the L+ dc ↔ H̃u† + D̃†, L+D ↔ H̃u† + d̃c†, Hu + dc ↔
L̃† + D̃†, and Hu +D ↔ L̃† + d̃c† t–channel processes read

σ̂
(4c)
N (z) =

∑

ηη̄

√
aηaη̄

8π
C8C11Λ

ηη̄
(1)11,8

{

1

aη̄ − aη
ln

(

z + aη
aη

)

+
1

aη − aη̄
ln

(

z + aη̄
aη̄

)}

(D.13)

Making use of the formula for the reduced cross section of 2 → 3 scattering (C.16) we obtain

for the reduced cross section of the L̃+ H̃u → L̃† + ũc + Q̃ process

σ̂
(5)
νc (z) =

∑

ηη̄

3
√
aηaη̄

32π2z

{

C2
aΛ

ηη̄
(3)ac

[

z2

2D̃ηη̄(z)
+

z + aη
aη̄ − aη

ln

(

z + aη
aη

)

+
z + aη̄
aη − aη̄

ln

(

z + aη̄
aη̄

)

]

+ 2Ca

(

Ληη̄(4)ac

P̃η(z)

)

[

z − (z + aη̄) ln

(

z + aη̄
aη̄

)]}

(D.14)
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where a = 11, c = 1 and

Ληη̄(3)ac =
1

4π

q,q̄
∑

i,j,k,m,n

(ληija λ∗η̄ija )(ληkqa λ∗η̄kq̄a )(λ∗mnqc λmnq̄c ), (D.15a)

Ληη̄(4)ac =
1

4π

q,q̄
∑

i,j,k,m,n

(ληija λ∗η̄kja )(ληkqa λ∗η̄iq̄a )(λ∗mnqc λmnq̄c ) (D.15b)

have been introduced to shorten the notation. The leading contribution is due to the stop whose

Yukawa coupling is of the order of unity. There are also similar processes like, for instance,

D̃ + d̃c ↔ D̃† + H̃d + Q̃ which we neglect, however, assuming smallness of the corresponding

Yukawa couplings.

Let us now consider 2 → 3 scattering processes depicted in figure 3.4. For the reduced cross

section of the Q̃+ ũc → L̃+ L̃+ H̃u scattering we obtain

σ̂
(6)
νc =

∑

η

3

64π2

aη
z

{

C2
aΛ

ηη
(3)11,1

[

z − aη
√

aη c̃η

(

arctan

(

z − aη
√

aη c̃η

)

+ arctan

(
√

aη
c̃η

)

)

(D.16)

− 1

2
ln

(

(z − aη)
2 + aη c̃η

aη(aη + c̃η)

)]

+ CaΛ
ηη
(4)11,1

∫ z

0

dξ

P̃η(ξ)

[

ξ − aη
2

ln

(

(z − ξ − aη)
2 + aη c̃η

aη(aη + c̃η)

)

+
√

aη c̃η

(

arctan

(

z − ξ − aη
√

aη c̃η

)

− arctan

(
√

aη
c̃η

)

)]}

− 3C2
a

64π
Ληη(3)11,1

√

aη
c̃η

Θ(z − aη)

z

where Θ(z − aη) = z − aη if z − aη is positive and zero otherwise. For the process L̃† + Q̃ →
L̃+ ũc† + H̃u we obtain

σ̂
(7)
νc =

3

64π2

∑

η

aη
z

{

C2
aΛ

ηη̄
(3)11,1

[

−1

2
ln

(

(z − aη)
2 + aη c̃η

aη(aη + c̃η)

)

+
z

aη
− ln

(

z + aη
aη

)

(D.17)

+
z − aη
√

aη c̃η

(

arctan

(

z − aη
√

aη c̃η

)

+ arctan

(
√

aη
c̃η

)

)]

+ 2CaΛ
ηη̄
(4)11,1

[

−1

2
dilog

(

z − aη − i
√

aη c̃η

z − i
√

aη c̃η

)

− 1

2
dilog

(

z − aη + i
√

aη c̃η

z + i
√

aη c̃η

)

+
1

2
dilog

(

aη + i
√

aη c̃η

−z + i
√

aη c̃η

)

+
1

2
dilog

(

−aη + i
√

aη c̃η

z + i
√

aη c̃η

)

− 1

2
ln

(

z + aη
aη

)

ln

(

z2 + aη c̃η
a2
η + aη c̃η

)]}

− 3C2
a

64π
Ληη(3)11,1

√

aη
c̃η

Θ(z − aη)

z
(D.18)

Let us now consider the t–channel and u–channel lepton number violating processes depicted

in figure 3.5.

For the processes L + L ↔ H̃u† + H̃u† and L̃ + L̃ ↔ H̄u + H̄u (a = 11) as well as for the

similar processes D +D ↔ d̃c† + d̃c† and D̃ + D̃ ↔ d̄c + d̄c (a = 8) we get

σ̂
(8)
νc = σ̂

(9)
νc =

∑

ηη̄

√
aηaη̄

8π

{

C2
aΛ

ηη̄
(1)aa

[

1

aη − aη̄
ln

(

z + aη̄
aη̄

)

+
1

aη̄ − aη
ln

(

z + aη
aη

)]

+ CaRe
(

Ληη̄(2)aa

) 1

z + aη + aη̄

[

ln

(

z + aη
aη

)

+ ln

(

z + aη̄
aη̄

)]}

(D.19)
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The reduced cross sections of the L+ L̃↔ H̄u+ H̃u† (a = 11) and D+ D̃ ↔ d̄c+ d̃c† (a = 8)

processes are given by

σ̂
(10)
νc =

∑

ηη̄

√
aηaη̄

8π

{

C2
aΛ

ηη̄
(1)aa

[

1

aη − aη̄
ln

(

z + aη̄
aη̄

)

+
1

aη̄ − aη
ln

(

z + aη
aη

)]

− CaRe
(

Ληη̄(2)aa

) 1

z + aη + aη̄

[

ln

(

z + aη
aη

)

+ ln

(

z + aη̄
aη̄

)]}

(D.20)

For the reduced cross section of the H̃u + Q̃† → L̃† + L̃† + ũc process we get

σ̂
(11)
νc =

∑

ηη̄

3

32π2

√
aηaη̄

z

{

C2
aΛ

ηη̄
(3)11,1

[

z + aη
aη̄ − aη

ln

(

z + aη
aη

)

+
z + aη̄
aη − aη̄

ln

(

z + aη̄
aη̄

)]

(D.21)

+
Ca
2

Re
(

Ληη̄(4)11,1

)

[

ln

(

z + aη
aη

)

ln

(

z + aη + aη̄
aη̄

)

+ ln

(

z + aη̄
aη̄

)

ln

(

z + aη + aη̄
aη

)

− dilog

(

aη
z + aη + aη̄

)

− dilog

(

aη̄
z + aη + aη̄

)

+ dilog

(

z + aη
z + aη + aη̄

)

+ dilog

(

z + aη̄
z + aη + aη̄

)]}

The 2 → 3 process L̃+ L̃→ H̃u† + Q̃+ ũc (a = 11) gives

σ̂
(12)
νc =

∑

ηη̄

3

64π2

√
aηaη̄

z

{

C2
aΛ

ηη̄
(3)11,1

[

z + aη
aη̄ − aη

ln

(

z + aη
aη

)

+
z + aη̄
aη − aη̄

ln

(

z + aη̄
aη̄

)]

+ 2CaRe
(

Ληη̄(4)11,1

)

[

ln

(

z + aη
aη

)

ln

(

z + aη + aη̄
aη̄

)

+ ln

(

z + aη̄
aη̄

)

ln

(

z + aη + aη̄
aη

)

+ dilog

(

z + aη + aη̄
aη̄

)

+ dilog

(

z + aη + aη̄
aη

)

+
π2

6
+

1

2
ln

(

aη
aη̄

)2
]}

(D.22)

D.2 Scattering off (s)top

Scattering processes mediated by the Higgs or its scalar superpartner (see figure 3.7) violate

lepton number by one unit and reduce the number of the heavy (s)neutrinos. The corresponding

reduced cross sections read

σ̂
(0)
t =

3

2
Λη(5)11,1

z2 − a2
η

(z − ah)2
(D.23)

σ̂
(1)
t = 3Λη(5)11,1

z − aη
z

[

−2z − aη + 2ah
z − aη + ah

+
z + 2ah
z − aη

ln

(

z − aη + ah
ah

)]

(D.24)

σ̂
(2)
t = 3Λη(5)11,1

z − aη
z

[

− z − aη
z − aη + ah

+ ln

(

z − aη + ah
ah

)]

(D.25)

σ̂
(3)
t = 3Λη(5)11,1

(

z − aη
z − ah

)2

(D.26)

σ̂
(4)
t = 3Λη(5)11,1

z − aη
z

[

z − 2aη + 2ah
z − aη + ah

+
aη − 2ah
z − aη

ln

(

z − aη + ah
ah

)]

(D.27)

where

Λη(5)a,b =
1

4π

k,k̄
∑

i,m,n

(ληika λ∗ηik̄a )(λ∗nmkb λnmk̄b ) (D.28)
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To regularize an infrared divergence in the t–channel diagrams an effective Higgs mass was

introduced

ah =

(

µ

M1

)2

(D.29)

In the numerical computation the Higgs mass has been set to µ = 800 GeV.

For the reduced cross sections of the similar processes involving a scalar neutrino we obtain

σ̂
(5)
t =

3

2
Λη(5)11,1

(

z − aη
z − ah

)2

(D.30)

σ̂
(6)
t = 3Λη(5)11,1

z − aη
z

[

−2 +
z − aη + 2ah

z − aη
ln

(

z − aη + ah
ah

)]

(D.31)

σ̂
(7)
t = 3Λη(5)11,1

[

− z − aη
z − aη + ah

+ ln

(

z − aη + ah
ah

)]

(D.32)

σ̂
(8)
t = 3Λη(5)11,1

aη(z − aη)

(z − ah)2
(D.33)

σ̂
(9)
t = 3Λη(5)11,1

aη
z

[

− z − aη
z − aη + ah

+ ln

(

z − aη + ah
ah

)]

(D.34)

D.3 Neutrino pair creation and annihilation

The reduced cross sections of the processes νc + νc ↔ L̃ + L̃† (a = 11) and νc + νc ↔ d̃c + d̃c†

(a = 8), depicted in figure 3.8, which conserve lepton and baryon numbers but reduce the number

of the heavy neutrinos read

σ̂
(1)
νcνc =

Ca
8πz

{

Ληη̄(6)aa

[

−2
√

ληη̄ + zLηη̄

]

− 2Re
(

Ληη̄(7)aa

)

√
aηaη̄(aη + aη̄)

z − aη − aη̄
Lηη̄

}

(D.35)

where

Ληη̄(6)ab =
nn̄
∑

ij

(ληina λ∗ηin̄a )(λ∗η̄jnb λη̄jn̄b ), Ληη̄(7)ab =
nn̄
∑

ij

(ληina ληjn̄a )(λ∗η̄jnb λ∗η̄in̄b ) (D.36)

and

ληη̄ = [z − (
√
aη −

√
aη̄)

2][z − (
√
aη +

√
aη̄)

2], Lηη̄ = ln

(

z − aη − aη̄ +
√

ληη̄

z − aη − aη̄ −
√

ληη̄

)

(D.37)

have been introduced.

The reduced cross sections of the similar processes νc + νc ↔ L+ L̄ (a = 11) and νc + νc ↔
dc + d̄c (a = 8) read

σ
(2)
νcνc =

Ca
8πz

{

Ληη̄(6)aa

[

2
√

ληη̄ + (aη + aη̄)Lηη̄

]

− 2Re
(

Ληη̄(7)aa

) z
√
aηaη̄

z − aη − aη̄
Lηη̄

}

(D.38)

The reduced cross sections σ
(3)
νcνc and σ

(4)
νcνc of the processes νc+νc ↔ H̃u+H̃u† and νc+νc ↔

D̃u + D̃† and the processes νc + νc ↔ Hu + H̄u and νc + νc ↔ D̃u + D̃† obviously differ from
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(D.35) and (D.38) only in Λ(6) replaced by Λ(8) and Λ(7) replaced by Λ(9), where

Ληη̄(8)ab =
nn̄
∑

ij

(ληnia λ∗ηn̄ia )(λ∗η̄njb λη̄n̄jb ), Ληη̄(9)ab =
nn̄
∑

ij

(ληnia ληn̄ja )(λ∗η̄njb λ∗η̄n̄ib ) (D.39)

The reduced cross sections of the processes involving one neutrino and one scalar neutrino

ν̃c + νc ↔ L̄+ L̃ (a = 11) and ν̃c + νc ↔ d̄c + d̃c (a = 8) are given by

σ̂
(1)
νcν̃c =

Ca
8πz

{

Ληη̄(6)aa(z − aη + aη̄)Lηη̄ − 2Re
(

Ληη̄(7)aa

)√
aηaη̄

z − aη + aη̄
z − aη − aη̄

Lηη̄

}

(D.40)

whereas the reduced cross sections σ̂
(2)
νcν̃c of the ν̃c†+νc ↔ H̄u+H̃u (a = 11) and ν̃c†+νc ↔ D̄+D̃

(a = 8) processes differ from (D.40) only in Λ(6) replaced with Λ(8) and Λ(7) replaced with Λ(9).

For the annihilation of scalar neutrinos into two leptons ν̃c+ ν̃c† ↔ L+ L̄ (a = 11) or quarks

ν̃c + ν̃c† ↔ dc + d̄c (a = 8) one has

σ̂
(1)
ν̃cν̃c =

Ca
8πz

Ληη̄(6)aa

{

−2
√

ληη̄ + (z − aη − aη̄)Lηη̄

}

(D.41)

whereas the reduced cross sections σ̂
(3)
ν̃cν̃c of the processes ν̃c + ν̃c ↔ Hu + H̄u (a = 11) and

ν̃c + ν̃c ↔ D + D̄ (a = 8) differ from (D.41) only in Ληη̄(6)aa replaced with Ληη̄(8)aa.

Finally there are processes of annihilation of the right–handed scalar neutrinos into two scalar

leptons ν̃c + ν̃c† ↔ L̃+ L̃† (a = 11) or squarks ν̃c + ν̃c† ↔ d̃c + d̃c† (a = 8), whose reduced cross

sections are given by

σ
(2)
ν̃cν̃c =

Ca
4πz

{

Ληη̄(6)aa
√

ληη̄ − Re
(

Ληη̄(7)aa

)√
aηaη̄Lηη̄

}

(D.42)

whereas the reduced cross sections σ̂
(4)
ν̃cν̃c of the ν̃c + ν̃c† ↔ H̃u + H̃u† (a = 11) and ν̃c + ν̃c† ↔

D̃ + D̃† (a = 8) processes differ from (D.42) only in Λ(6) replaced with Λ(8) and Λ(7) replaced

with Λ(9).
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Appendix E

Kinematics of 2 → 3 scattering

We consider here the kinematics of the ν(k1) +N(p1) → ℓ(k2) +N(p2) + π(p) process, where ℓ

stands either for the electron e (charged current scattering) or the neutrino ν (neutral current

scattering). The latter one can safely be considered as massless here.

The commonly used kinematic variables are the square of the center of mass energy s =

(k1 + p1)
2, the square of the momentum–transfer in the hadronic system t = (p2 − p1)

2, the

square of the momentum transfer to the final lepton Q2 = −q2 = −(k1 − k2)
2 and the invariant

mass of the pion–nucleus pair W 2 = (p+ p1)
2. The minimal value of the latter one is obviously

just a sum of the nucleus and pion masses squared.

W 2
min = (MN +mπ)

2 (E.1)

At a given value of the center of mass energy s momentum transfer square Q2 varies in the range

Q2
min/max =

(s−M2
N )

2s

[

s∓ w
(

s,m2
ℓ ,W

2
min

)]

− 1

2

[

W 2
min +m2

ℓ −
M2
N

s
(W 2

min −m2
ℓ )

]

(E.2)

where mℓ is the mass of the final lepton. In the rest frame of the initial nucleus the energy

transfer to the final lepton ν = k0
1 − k0

2 ≡ E1 −E2 varies at fixed values of s and Q2 in the range

νmin/max =
W 2

min/max(Q
2) +Q2 −M2

N

2MN
(E.3)

where W 2
min is defined in (E.1) whereas W 2

max(Q
2) is given by

W 2
max(Q

2) =

(

s−M2
N

)2 (
s−m2

ℓ

)2 −
[

2sQ2 − s
(

s−M2
N

)

+m2
ℓ

(

s+M2
N

)]2

4s
(

s−M2
N

) (

Q2 +m2
ℓ

) (E.4)

Finally for fixed values of Q2 and ν the kinematically allowed range for the square of the mo-

mentum transfer in the hadronic system t

tmin/max =
(Q2 +m2

π)
2 −

[

w(W 2,−Q2,M2
N ) ∓ w(W 2,m2

π,M
2
N )
]2

4W 2
(E.5)
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where according to equation (E.3) W 2 = M2
N −Q2 + 2MNν.

The other two commonly used variables are y = ν
E1

and x = Q2

2MNν
. The kinematic range for

the former one is trivially obtained from (E.3)

ymin/max =
W 2

min/max(Q
2) +Q2 −M2

N

s−M2
N

(E.6)

Combining equations (E.1), (E.4) and (E.2) we find for the kinematically allowed range for the

latter one

xmin/max =
Q2
min/max

Q2
min/max +W 2

max/min(Q
2) −M2

N

(E.7)
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