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ABSTRACT 

 

Turkey has a large energy potential for reducing CO2 emissions by energy consumption in 

residential buildings, applying sustainable design strategies and renewable energies. Two 

critical elements of building energy consumption are climate and building energy 

standards, thus, a new detailed climate analysis of Turkey was prepared by using the 

classification methods in ASHRAE transactions 4610-4611. A review of building energy 

standards for selected countries allows for comparison with Turkey regarding standard 

updates or preparation. Four typical residential building types from Turkey were selected 

and analysed as to their energy consumption and thermal comfort, using the TRNSYS 

simulation program. Three of the building types are pre-fabricated and one is realised in a 

traditional building technology, which represents a significant number of dwellings in 

Turkey. The thermal simulation of the building types was carried out for three different 

climatic zones of Turkey: Hot, Moderate and Cold. The variation of design parameters 

shows, that high energy savings can be achieved by basic design strategies, including 

ventilation, orientation of large window areas with respect to solar heat gain, thermal 

insulation of building envelope, and utilization of thermal mass. It is shown in a systematic 

approach, how the thermal comfort and the energy performance for typical building s and 

climatic zones of Turkey can be improved to a level, which is comparable with advanced 

European standards of high comfort and low energy buildings. The remaining energy 

demand can partly be provided by integrating renewable energy technologies in the 

building such as solar thermal or photovoltaic panels. 

Ümit Esiyok, September 2006 
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1. Introduction 

 

Energy consumption, energy conservation and energy efficiency in buildings have been 

important research areas for countries due to increasing energy demand, lack of the natural 

sources caused by utilization of fossil fuel based energy sources and environmental issues 

like the greenhouse effect, acid rain and ozone depletion. Energy consumption is partly 

dependent on the weather, for example, in a cold year more energy is consumed to 

maintain comfortable internal temperature than in a warmer year. However not only 

climate characteristics but also buildings themselves have influence on energy use. A 

building with a weak envelope doesn’t perform as well as a building with an energy 

efficient envelope regarding energy use.  

Energy consumption is the amount of fossil fuels, renewable fuels and electricity 

consumed by end use sectors; industrial, residential, transport and service. One of the 

largest sectors that consume a significant amount of total energy in the world is the 

residential sector. For instance, in Europe the household and service sectors share 41% of 

total energy consumption; transport and industry follow with 30% and 29% of total 

demand respectively. In Turkey, the residential sector, placed in first place regarding 

energy consumption, represented almost one third of total energy consumption in 1990 (28, 

98 %-15358 Ktoe). In 2001 it decreased by 21,62 %,-18541 Ktoe, making the residential 

sector second after the industrial sector, according to the statistics presented by the 

Ministry of Energy and Natural Sources.[1]. 

The contribution of building to environmental problems is increasing significantly. A 

considerable amount of energy is being used for the heating and cooling of a building to 

maintain its resident’s thermal comfort. Due to this known fact scientists, organizations 

and academicians are looking for new solutions to decrease the energy consumption of 

buildings by using advanced design strategies, which perform to keep inhabitants thermal 

comfort within acceptable limits as well.  

The building’s envelope, which consists of everything that separates the indoor 

environment from the outdoor environment, including the basement slab, external walls 

and roof, plays an essential role in the energy demand of buildings. As a result, the design 
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of energy efficient housing can be obtained by using more industrialized methods in 

production and construction processes and can provide improved indoor comfort, reduced 

drafts, moisture and improved air quality. 

This work claims that pre-fabricated construction systems can be an adequate choice for 

energy efficient building envelopes since industrialized production and construction 

processes yield higher quality components that shape the building envelope (for example 

high quality in thermal insulation, the most important element of the energy efficient 

building) and flexible design that can affect solar heat gain and thermal mass (pre-

fabricated shutters, portable wall units, etc.) compared to the conventional construction 

system. Pre-fabricated construction offers a dense, uniform, continuous air barrier with 

fewer thermal bridges, thanks to its high quality insulation. Another reason to choose pre-

fabricated building technologies for simulation purposes is that these systems will 

dominate the building sector in the future due to their advantages with respect to its time 

saving, economic and quality advantages.  

The components in pre-fabricated systems work together, not as an individual part. For 

example, the practice of gluing the components together in addition to the conventional 

fastenings in some examples makes pre-fabricated systems tighter than conventional 

systems. In conventional construction systems, work quality also depends on the ability of 

workers; therefore, construction quality will not be the same as in pre-fabricated systems. 

Because of these reasons the thesis asserts that pre-fabricated systems are better than 

conventional systems with regards to thermal behavior and energy consumption. Due to 

the reduced waste during the production and construction process pre-fabricated systems 

are considered to be environmentally friendly systems. Beside those advantages, choice of 

materials and design details are important factors for thermal performance.  

In addition to all of those assessments mentioned above, energy sources, climate and 

geographical characteristics of Turkey are the starting point of this work. 

Along with these evaluations, this study examines energy consumption and thermal 

performance in residential buildings, mainly in pre-fabricated residential buildings, in 

Turkey.  
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1.1. Objectives of The Work 

This thesis deals with energy standards of residential buildings. Building energy standards 

for different countries from different regions and continents have been shortly examined 

and both prescriptive and performance requirements for residential building envelopes are 

illustrated. 

The first objective of this study is to define and examine energy and energy consumption 

matter in Turkey in general terms and the policies carried out by the government. 

Accordingly importance of building energy standards is investigated. Standards in Turkey 

and in some developed countries, such as the European Union (Sweden, Norway, and 

Denmark as the countries that represent the best building energy standards in the world), 

Germany, USA and other countries which have competitive standard applications, are 

briefly explained and compared to each other. With regard to Turkey’s application for EU 

membership, requirements for the candidate countries on the energy performance of 

buildings are main targets and following routes for Turkey in the light of “Directive 

2002/91/EC of the European Parliament and of the Council of 16 December on the Energy 

Performance of Buildings”, which explains and indicates requirements for buildings and 

should be applied by member countries by 2006. In October 2005, Turkey was accepted to 

start negotiations for EU membership; this fact encourages Turkey to reach EU standards 

in general and specifically in the energy field.    

Climate classification is an important element for setting energy standards. As a result in 

this work different climate classifications are assessed. A new climate classification for 

Turkey was prepared according to the ASHRAE Transactions 4610 and 4611, which 

describe the development of a new climate classification for use in characterizing the 

performance of energy efficiency measures for buildings. 

Following the simulations of selected systems, some comparisons are made between pre-

fabricated construction systems and traditional construction systems to see whether the 

developments in the former pre-fabricated housing construction systems, which are 

expected to be in high quality, are efficient regarding energy consumption and their 

thermal performance, otherwise the systems need to be re-evaluated. One of the sample 

building systems selected for thermal simulation is a reinforced concrete system that is a 
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compound of reinforced columns, beams and lightweight hollow bricks, representing most 

of the residential building technology in Turkey  

This work also aims at introducing new pre-fabricated residential building systems based 

on the proven performance of the buildings that were tested by the companies in developed 

countries, as regards energy consumption and thermal comfort. 

Pre-fabricated buildings are manufactured through an industrialized process improvement 

in quality brings many advantages in energy consumption and thermal comfort. One 

example for this system will be the Sekishui housing system developed by Sekishui 

Housing Business in Japan. The system includes completely finished units built in a 

covered area (Factory). Therefore, testing those units will be as easy as testing other 

factory made products that means each unit’s quality, the energy performance of each, will 

be equal. Then those units are connected and put together on the site by using 

industrialized techniques. The applications were not examined in just Japan, but also, in 

other countries such as Sweden, Canada and the USA, where the combination of energy 

efficient building and prefabrication is an important concern of residential building,  

Energy efficient and passive housing approaches were defined and examined briefly. 

Integration of the renewable energies in the residential buildings is an essential step to 

reduce CO2 emission, thus, some samples of PV (Photovoltaic) architectural integrations in 

the Netherlands, the USA, Germany and some other countries were illustrated. In addition, 

judgment of applicability and adaptability of those systems in Turkey was subsequently 

discussed. 

Another goal is to encourage the institutions related with energy (builders, building 

product manufacturers, industry organizations, academics, researchers and government) to 

focus on innovative technologies in energy and the pre-fabricated building sector by 

introducing new components, systems developed in industrialized countries and by 

providing a correlation between them to stress the importance of the energy efficiency in 

buildings, particularly in residential buildings.  
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The main tasks in this work are, 

� Introduction of a new climate classification of Turkey, for the cities in the 

METEONORM databank (over 50 cities), according to the ASHRAE Transactions 

4610 and 4611  

� a short energy regulation review of some countries in the world from different 

continents, regions with respect to building envelope and energy consumption 

requirements 

� determination, examination of the current situation of the selected residential buildings, 

which exemplify most of the housing types in Turkey and are made of different 

materials, both in pre-fabricated and conventional systems 

� analysis of overall energy consumption (heating, cooling) and thermal performance of 

residential buildings in different climate regions by using scientific methods, 

simulation program TRNSYS 

� comparisons between pre-fabricated and conventional systems regarding their energy 

efficiency performance 

� lastly, recommendations for general targets of overall energy consumption and 

appropriate measures for housing in Turkey 

1.2. Structure and Methodology 

- Methodology: 

Methods used for energy the analysis of the sample residential buildings in different 

regions are literature review, simulation programs, physical observations and the 

measurements done by other scientists. Much of the literature, related to the energy, pre-

fabricated residential building technologies in the universities, on the Internet, from 

companies and institutions was examined. Selected buildings systems could be 

investigated by using various simulation programs such as TRNSYS, DOE 2, and 

ENERGY PLUS etc. TRNSYS, a transient simulation program developed by Wisconsin 

University in the USA, is used for a simulation of the selected building systems. The 

components of TRNSYS are written in FORTRAN language. TRNSYS consists of the 
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TRNSHELL, ISIBAT, PRESIM sub programs. Building envelope and some strategies of 

simulation are described in PREBID; the building model component.  All weather data are 

provided from METEONORM. 

- Structure:  

After a brief introduction in chapter one, geographical characteristics of the country, 

energy sources and their potentials (especially renewable energy potential) in Turkey are 

analyzed in the second chapter.  

In the third chapter,  climate characteristics of Turkey according to different scientists 

and climate classification methods are examined. In addition, the new climate 

classification of Turkey is introduced by using the classification method described in 

ASHRAE Transaction 4610 and 4611climate. Building energy performance standards in 

different countries around the world are investigated in the fourth chapter. Some 

recommendations are made with respect to improving Turkish energy standards. 

The fifth chapter aims at indicating energy efficient and passive housing approaches, new 

pre-fabricated building systems, integration of renewable energy sources, specifically 

integration of photovoltaic in residential buildings (PV) in developed countries such as 

Germany, USA, Japan and Scandinavian countries. Some residential building systems in 

Turkey were described as inputs for simulations. 

The simulation program TRNSYS, assumptions and strategies used for simulations and an 

energy analysis of four residential building systems are explained in the sixth chapter. In 

addition, climate characteristics of the three selected cities are assessed. Design strategies 

and assumptions are graphically detailed. The results are analyzed with respect to four 

different conditions: heating-cooling energy demand, zone temperatures higher than 26°C, 

zone temperatures on the hottest day of year and different design strategies, including 

ventilation, glazing variables, thermal mass internal walls, shading, orientation variables 

and insulation. In this chapter the economic efficiency of the insulation thickness applied 

to a traditional system is graphically illustrated and assessed. 

In conclusion, after reviewing all results derived from the study, the importance of the 

energy consumption, energy efficient design and factory made residential buildings is 
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underlined. General recommendations for targets of overall energy consumption and 

appropriate measures for housing in Turkey are given in the last chapter.  

In this thesis, the factors influencing energy demands of a building are classified into two 

main classes: climate and regulations. Improved building energy regulations, which are 

presented and formulated by using climate data, decrease energy consumption, since the 

main target is to reach or exceed required values of standards. 

Several research projects were carried out regarding energy efficient residential buildings 

in Turkey. One of them is a research project that funded by TUBITAK – The Scientific 

and Technical Research Council of Turkey- and carried out by four scientists in 1997. The 

research project is entitled “Developing Energy Efficient External Envelope by Retrofitting 

in Rehabilitation of Existing Residential Buildings”. The main objective of this research 

project was to develop applicable economic and energy efficient retrofitting systems for 

the external envelope of existing residential buildings in Istanbul. A five story reinforced 

concrete building block was selected as a model. Improvements were classified with 

regards to building area, dimensions (width/length) and physical properties. The DOE-2.1E 

computer program was used for the simulations. [43]. 

Obviously, that research project was done just for Istanbul and applied only for reinforced 

concrete systems. In addition, ventilation variables were not investigated, however their 

influence on energy loss were explained. Energy losses with regards to different variables 

(insulation thickness, glazing types, orientation and number of floors) were investigated. 

Some of the results of this research are as follows:  

- increasing thickness of the thermal insulation material results in increased energy savings 

- replacing single glazing with energy efficient glazing has longest payback period if 

applied with improved opaque elements 

This thesis can also be considered as supplementary work to complete that research work 

by taking different cities and different residential building systems into account, since it is 

important to examine and investigate different cities and building technologies for a 

comparison. 
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2. Energy Sources in Turkey  

 

2.1. Geographical Characteristics of Turkey 

Turkey is one of the largest countries in Europe and Middle East with its 779452 km² total 

area (23764 km² on the European side, 755688 km² on the Asian side). The country lies 

between 36-42 north latitude and 26-45 east longitude (roughly rectangular in shape) and 

situated between two continents - Europe and Asia (Figure 2.1). 

It is surrounded by three seas with a total of 8372 km total coastline; the Aegean with 2805 

km, the Mediterranean with 1577 km, the Black Sea with 1695 km and the inner sea 

Marmara with 972 km. The Marmara connects the Black Sea and the Aegean via two 

straits: Istanbul and Canakkale straits. The country has seven geographical regions: 

Marmara, Aegean, Mediterranean, Southeast Anatolia, East Anatolia, Black Sea and 

Central Anatolia. The neighboring countries are Greece and Bulgaria to the northwest, 

Armenia and Georgia to the northeast, Iraq and Iran to the southeast and Syria to the south 

(Figure 2.2). The highest mountain in Turkey is Mount Ararat (5165 m) and biggest lake is 

Lake Van: both are located in eastern Anatolia. 

 

     Figure 2.1: Turkey’s location between Europe and Asia (Source: www.Worldpress.org) 
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Turkey is the fifteenth most populated country in the world with approximately 73 million 

inhabitants. Istanbul houses almost 15 million of these inhabitants, making the city one of 

the most populated cities in the world (2005 World Population Data Sheet, www.prb.org) 

                               

                            Figure 2.2: Geographical map of Turkey (Source: www.Worldpress.org) 

2.2. Energy Sources and Problems in Turkey 

As a developing country an in conjunction with its fast growing economy and population -  

a population increase of almost one million inhabitants per year - Turkey’s energy 

consumption has increased rapidly between 1996 and 2004. While total primary energy 

consumption in 1996 was 70.77 Mtoe, in 2004 it raised 87.78 Mtoe. On the other hand, 

total energy production in 1996 was 28.29 and 24.17 in 2004 (Figure 2.3).  

The industrial sector accounted for 36% of total energy consumption, while residential and 

commercial sectors represented 35% in 1997. In recent years, the difference between the 

industrial and residential sectors has increased much more than in former years, according 

to the MENR (Ministry of Energy and Natural Resources) statistics. Among the EU 

candidate countries, Turkey has the second largest energy consumption, 50.1 Mtoe, after 

Poland, 58.4 Mtoe, according to the European Commission Yearbook “Statistical yearbook 

on candidate countries” in 2003.  
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Figure 2.3: Energy production and consumption in Turkey  

 

As it can be seen, Turkey is an energy importing country and dependent on the imported 

energy sources. Furthermore this trend seems to be continuing in the future. Although it 

has a wide variety of energy sources, the quality and quantity of most of the sources are not 

sufficient to produce energy. Some of the energy sources in Turkey are hard coal, lignite, 

asphalt, oil, natural gas, hydropower, geothermal, wood, animal and plant wastes (bio 

mass), solar and wind energy (Table 2.1). The proven reserves of lignite, the most 

abundant domestic energy source, is 7300 million ton and found in almost all of the 

country’s regions. Lignite has the largest percentage in total energy production with its 

42.5 percent share. After lignite, wood has the greatest share in total energy production 

with its 20% and oil accounts for 13%, 12.4% hydro and the final 15% includes animal 

wastes, solar, hard coal, natural gas, geothermal electricity and geothermal heat. 
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Table 2.1: Primary energy sources in Turkey (Source: MENR) 

Source Apparent Probable Possible Total 
Hard Coal (million tons) 428 449 249 1126 

Lignite (million tons) 7339 626 110 8075 

Asphaltite (million tons) 45 29 8 82 

Bituminous schist (million tons) 555 1086   1641 

Hydropower (MW/year) 35.045 - - 35.045 

Oil (million tons) 48,4 - - 48,4 

Natural gas (billion tons) 8,8 - - 8,8 

Nuclear (tons)       

  Uranium 9129 - - 9129 

  Thorium 380.000 - - 380.000 

Geothermal (MW/year)         

  Electric 200   - 4300 4500 

  Thermal 2250   - 28.850 31.100 

Solar (Mtoe/year)         

  Electric   -   -   - 8,8 

  Heat   -   -  -  26,4 

 

Turkey’s various renewable energy sources represent its second largest energy source after 

coal. Biomass and animal waste account 67.3 %, hydropower 29.5 %, geothermal 2 % and 

wind and solar account for 1.2 % each of total renewable energy production  

There are many rivers in Turkey, thus water sources are one of the most important energy 

sources. 19 % of electricity generation was provided by hydropower in 2001, and it 

increased to 26 % in 2002. Turkey’s largest hydroelectric power plant is the Atatürk Power 

Plant, which has the 6th largest capacity in the world, with the capacity of 2400 MWe 

Karakaya with 1800 MWe Keban 1330 MWe Thirty four hydro plants are under 

construction, and 329 more hydro power plants are projected. The largest hydro power 

project in Turkey is the Southeastern Anatolia Project (GAP), which covers 74000 km2 of 

the country. Upon competition, GAP will have an installed capacity of 7476 MW 22% of 

Turkey’s total estimated economic potential [1] [2]. 

In spite of its high energy productivity benefits the power plants cause major 

environmental and social problems such as migration of residences, loss of valuable 

agriculturally productive alluvial bottomland, alteration of ecosystem. 
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In addition to water sources, Turkey has significant reserves of other renewable energy 

sources such as wind, solar, biogas and geothermal energy. Wind energy: western, 

northern and southeastern Anatolia is favorable for wind power generations, as annual 

wind speed is around 2.5 m/second (Figure 2.4). The first wind power facility which has 12 

wind turbines for a capacity of 7.2 Mwe, was commissioned in 1998 in Izmir. In addition 

to this build-operate-transfer power station, 17 more were approved in 2001 and more 

applications are under evaluation by the Ministry of Environment and Natural Resources. 

Turkey had a total installed capacity of 18.9 MW in 2002. 
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                                             Figure 2.4: Turkey’s wind direction  

Another renewable energy source for which Turkey has significant potential is the 

geothermal energy source, which represents one eighth of the world’s total geothermal 

potential. Much of this potential does not have a high quality, which is required to produce 

electricity. Thus it mainly is used for heating purposes. By the end of 2001 geothermal 

energy potential of electricity and thermal was predicted to be 4500 MW/y and 31100 

MW/s respectively. The total installed capacity for heating was 820 MWth, all of which 

provided heating for 51600 residences. Geothermal districts which have temperatures 

above 40 °C are around the West, Northwest and Middle Anatolia. It has been expected 

that five million houses will be heated by using geothermal energy sources. The country’s 

geothermal energy potential is determined by the fact that Turkey lies on the Alpine 

Himalayan organic belt [2]. 



 

Energy Sources in Turkey                                                                                                    13 

 

Solar energy use in Turkey has increased dramatically in recent years, mostly for water 

heating purposes. Turkey’s average annual sunshine duration is 2640 h (7.2 hours/day) and 

average solar intensity 3.6 kWh/m² day (Table 2.2). The main solar energy utilization in 

Turkey comes from flat plate collectors in the domestic hot water systems. Flat plate solar 

collectors can be seen at the top of a residential building’s roof with a water tank almost in 

every region especially in the southern and western regions even in the villages. [3] 

         Table 2.2: Turkey’s monthly solar energy and sunshine duration (Source: MENR) 

SUNSHINE DURATION
(Kcal/cm2-month)                                              (kWh/m2-month)            (hours /month)

January 4.45 51.75 103
February 5.44 63.27 115

March 8.31 96.65 165

April 10.51 122.23 197

May 13.23 153.86 273
June 14.51 168.75 325

July 15.08 175.38 365

August 13.62 158.4 343

September 10.6 123.28 280
October 7.73 89.9 214

November 5.23 60.82 157

December 4.03 46.87 103

TOTAL 112.74 1311 2640
AVERAGE 308,0 cal/cm2-day 3,6 kWh/m2-day 7,2 hours/day

MONTHS
      MONTHLY TOTAL SOLAR ENERGY
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China 50.84%

EU 12.70%
Turkey  9%

Japan 7%

Other 1.70%

South Africa 0.50%

India  0.90%

Australia 1.40%

United States 1.80%

Brazil  2.10%

Israel 4.40%

 

Figure 2.5: Share of existing solar hot water/heating capacity in the World (Source: Renewable 2005 Global 

Status Report) 

Turkey is one of the leading countries in the world for total installed capacity with a total 

of collector area 8.2 million m² as of 2002. After China and the European Union, Turkey 

has the third largest solar hot water/heating capacity with 9% (Figure 2.5). [4]. Total 

energy production in 1998 was 210000 TOE it increased to 290000 TOE in 2001. There 

are almost 100 solar energy companies with the 750000 m2 of annual manufacturing 

capacity. Photovoltaic systems are used rarely in Turkey, since they are limited by the 

applications of governmental works such as telecom stations, forest fire observation towers 

and highway emergencies.  

Turkey’s solar energy potential has been estimated to be 26.4 million tons as thermal and 

8.8 million tons as electricity. On the other hand, new preparations of solar energy source 

potential statistics are being prepared by MENR. Southeastern Anatolia has the highest 

sunshine duration (2993 hours/year) and is followed by the Mediterranean region (2956 

hours/year), the East Anatolia (2664 hours/year) and the Aegean region (2738 hours/year) 

(Figure 2.6) 
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              Figure 2.6: Sunshine duration hours of Turkey (Source: MENR) 

Turkey uses a substantial amount of bio energy resources, including animal and plant 

wastes. For instance in 1997 animal and plant wastes accounted for nearly 6% of (6575 

Ttoe) total energy production, but this number declined to 5790 Ttoe in 2001 and is 

expected to decline even more in the future. Turkey’s biogas potential was identified as 3-4 

bcm (1.5-2 million tons of oil equivalents, Mtoe) per year. In 2001, the quantity of raw 

material available was 4739 million tons as animal dung and 1790 million tons as wood 

residues. These sources are mainly used for heating purposes in rural regions. 

Turkey’s CO² emissions have increased parallel with its energy consumption. Turkey was 

ranked third among IEA member countries regarding the CO2 emissions increase rate 

between 1990 and 1995, when it increased from 138.50 Mt to 160.50 Mt, and it has been 

expected that it will increase to 308.20 Mt in 2005 and to 424.50 Mt in 2010. Since 1990 

Turkey’s energy-related carbon emissions have increased from almost 138.50 Mt/year to 

210.46 Mt/year. In contrast, the share of the residential sector was 16% in 1990, and it 

remained at 16% in 2000. In Turkey, total CO2 emission per year from dwellings is 25.948 

million tons, which at 5.3% ranks Turkey seventh among twenty European countries, 

according to the survey prepared by EURIMA (European Insulation Manufacturers 

Association) in 2001. [5]   

According to the European Commission Yearbook “Statistical yearbook on candidate 

countries” in 2003 Turkey had the highest (227 Mt, 3.4 tons per capita) total CO2 

emissions among the EU candidate countries (Figure 2.7). 
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Even though Turkey became a member of UNFCCC (United Nations Framework 

Convention on Climate Change) on May 24, 2004, Turkey is not a party to Kyoto Protocol, 

but it is placed in Annex-1 countries which were defined in Marrakech in 2001.  

 

                Figure 2.7: Total CO2 emissions per year from dwellings (Source EURIMA) 
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3. Climate and Climate Classifications 

 

Climate is defined in the Oxford Dictionary as “the general weather conditions prevailing 

in an area over a long period”. Another detailed definition made in the intergovernmental 

panel on climate change report in 2001 is:  

“Climate in a narrow sense is usually defined as the “average weather”, or more 

rigorously, as the statistical description in terms of the mean and variability of relevant 

quantities over a period of time ranging from months to thousands or millions of years. 

The classical period is 30 years, as defined by the World Meteorological Organization 

(WMO). These quantities are most often surface variables such as temperature, 

precipitation, and wind. Climate in a wider sense is the state, including a statistical 

description, of the climate system” [6] 

Among other variables such as building envelope, heating system, type of use, etc., climate 

is the most important element and has the greatest influence on the energy consumption of 

buildings. Building envelopes are mainly shaped by climate characteristics of the 

surrounding environment where they are built. Therefore, analyzing the climatic conditions 

of buildings or places is one of the essential phases of design, which focuses on providing 

comfortable and energy efficient living spaces. Although a building may have a very good 

envelope construction, it still consumes more heating energy in a cold climate than that in 

hot climate. As a result, climate considered design plays a vital role for designers, 

engineers and architects, who should consider climate elements that influence both human 

comfort and a building’s thermal performance.  

Some climatic elements considered in building design are: 

-air temperature 

-radiation, diffuse and beam radiation, or long wave short wave. 

-wind speed 

-relative humidity 

-sky conditions 
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-rainfall 

-air movement [7] 

Climate classification becomes an essential matter at this point due to the determination 

and selection of the design strategies and material choices, since most energy performance 

standards are established by referring to regional climate classifications. The “Degree Day 

Method” is used in determining new generation climate classifications. They are used for 

calculating heat losses as well.  

� Degree Days 

Degree days are originally used to evaluate energy demand and energy consumption. They 

represent energy demand of a place and are an essential indicator for estimating energy 

needs. In many standards such as ASHRAE, TS 825, degree days are taken into account in 

order to calculate energy demands and energy losses. Once the climate classifications are 

made with the help of degree days, reference values of energy consumptions for each 

climate class are determined and used in calculations of energy demands.  

� Heating Degree Day (HDD) 

The heating Degree Day can be defined as the sum of the differences between average 

ambient temperature and the lowest reference temperature. Degree days can be calculated 

weekly, monthly or yearly. Internal base temperature is specified according to climate 

regions and buildings. For example in the USA the base temperature for heating degree 

day is generally defined as 65 °F (18. 3 °C), while in the UK base temperature is 15.5°C. 

We choose 18°C, above which the building is assumed not to need heating. If the daily 

average temperature is lower than the 18 °C reference temperature, the difference between 

those temperatures gives heating degree days. 

Heating Degree Days (HDD) Gt = ∑
=

−
Z

n

adknamim
1

]/.)[,( θθ                             (1) 

Where imθ : Reference temperature for heating 

          amθ : Average ambient temperature 
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� Cooling Degree Day (CDD) 

The cooling Degree Day is the sum of the difference between average ambient temperature 

and the upper reference temperature. The internal base temperature may be determined 

according to the building structure. In this work we choose the base temperature of 10°C 

referring ASHRAE transactions 4610-4611. 

Cooling Degree Days Gt, K = ∑
=

−
Z

n

adknamim
1

]/.)[,( θθ                                           (2) 

Where imθ : Reference temperature for cooling  

         amθ : Average ambient temperature. [8] 

In some cases, the Degree-hours (DH) method is used. Degree-hours are the result of the 

mean ambient temperature compared to an inside reference temperature. They help to 

monitor energy consumption of a house, as well as to detect possible anomalies. Degree 

hours together with the calculation of the thermal energy index are the two components of 

the energy signature of a building. Degree hours are not only a representative indication of 

the heating and cooling energy consumption but also it is an indication of energy saved for 

cooling and natural ventilation.[9] [15] 

Heating and cooling degree days for the selected cities - Antalya, Istanbul and Erzurum - 

are illustrated in Figure 3.1. Degree days are calculated by referring to ASHRAE 

Transactions 4610 and 4611 which describe climate classification methods for ASHRAE 

standards. Heating degree days and cooling degree days are calculated by taking the base 

temperatures of 18°C and 10°C respectively. However, it seems that the cooling degree 

day’s base temperature can be increased to 18 °C or 20 °C after reviewing the simulation 

results that we gained in this work. For instance, average ambient temperature doesn’t 

exceed 20°C in Erzurum due to that reason it can be estimated and a higher base 

temperature may be used for calculating cooling degree days.  
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         Figure 3.1: Heating and cooling degree days of selected cities (ASHRAE Method and  
                             CDD -18.3°C base) 

The relation between degree days and energy consumption can also give prior approximate 

information before construction starts. In the research work done by A. Matzarakis and C. 

Balafoutis, it is concluded that a residential building in Florina (Greece), which has 1784.4 

HDDs, spends almost nine times more energy to enjoy the same heating comfort than on 

the island of Rhodes (Greece), while the HDD ratio between those cities are approximately 

nine fold as well. Along with the degree days calculated for this work, the relation between 

degree days and energy consumption is also graphically illustrated. [10]  

The Figures 3.2a and 3.2b represent the relations between energy demand and HDD and 

CDD for Antalya, Erzurum and Istanbul. It gives some information about climate as well 

and answers the question of how cold or hot the cities are. After examining the relation 

between degree days and energy consumption, we concluded that there is an almost linear 

relation between them. Heating and cooling degree days, heating and cooling energy 

demands of selected cities indicated in (Figure 3.2a, 3.2b), for instance the heating energy 

demand for Erzurum is almost 7 times that in Antalya. The heating degree day number of 

those cities shows almost the same relation for traditional construction. In addition, the 

ratio between cooling energy demand and cooling degree days is almost 1:2. However, the 
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correlation between degree days and energy consumption depends on construction features 

as well.  

As it is illustrated in the Figure 3.2a and 3.2b, four different construction systems in three 

different climate regions are investigated with regards to degree days and their energy 

consumption before improvements are made for the simulations. The linear regression 

method is used to evaluate the relation between two variables energy consumption and 

degree days for three cities Istanbul, Antalya and Erzurum. The energy consumption of the 

reference cases for each building types in these cities were obtained through the energy 

simulations by TRNSYS. The linear regression line of traditional building system differs 

from other systems because of its worst cooling energy performance in Antalya. In 

addition, only three cities were investigated, more data can provide appropriate regression 

line. The intersection points of energy consumption and degree days represent the 

performance of the different systems, for instance, if we investigate energy consumption of 

the traditional system in another city out of three cities that have cooling degree days of 

1500, it can be estimated that the cooling consumption of this traditional building in 

selected city would be around 15 kWh/m²a The energy consumption values are taken from 

simulation results of the selected three cities in the reference case. 
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Figure 3.2a: The relation between cooling energy demand and degree days 
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Each residential building system represents different relations between degree days and 

heating/cooling energy consumption. For example, both systems with insulation have 

higher cooling degree days in a cold climate, while they perform better in hot climates with 

regards to cooling energy. 
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Figure 3.2b: The relation between heating energy demand and degree days 

3.1. Climate Characteristics of Turkey 

The world is divided into five main climatic zones according to Köppen Classification: 

tropical, arid, temperate, continental and polar climates. [44] Turkey is situated in the 

temperate Mediterranean climatic and geographical zone. The country has three main 

climatic zones: the Black Sea region is mild and generally rainy throughout the year with 

the temperature neither very low in winter nor very high in summer. The southern and 

western coastlines have a typical Mediterranean climate with mild winters and hot, dry 

summers. The Interior parts of Anatolia, with high land plains and a mountainous region 

east of Anatolia are marked by cold and snowy winters, hot and dry summers. 
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Figure 3.3: World climate zones (Source: http://encyclopedia.farlex.com) 

Although the country has three main climate zones, the climate shows different 

characteristics and can be grouped into five climate groups (according to the scientists) 

because of their different geographical characteristics. For example in the Mediterranean 

region, mountains (Taurus Mountains) run parallel to the coasts and prevent the clouds 

from passing over into the interior parts of the country therefore the coastal side of the 

region receives more rainfall than the other part of the region. In conclusion it can be 

concluded that Turkey shows both continental climate and subtropical climate 

characteristics.  

In the “Turkey Baseline Report on Climate Change” Turkey is divided into five climate 

zones [11]. 

� The Mediterranean climate 

Characteristic of the Mediterranean climate are hot, moderately dry summers and mild, 

rainy winters. This climatic region represents all Mediterranean and a big part of the 

Aegean geographical regions.  The highest annual average temperature reaches 20 °C on 

the eastern parts of the coast. The Mediterranean climate is classified into two classes:  

         - Humid Mediterranean climate, 
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         - Semi-humid Mediterranean climate. 

-   Humid Mediterranean  climate 

Mean January temperature changes between 8 °C and 10°C, average temperature in July 

and August, the hottest months, reaches 28°C. Annual average precipitation is 1060mm 

mostly in winters, in January 240mm, in December 250mm. 

- Semi-humid Mediterranean climate   

Mean temperature varies between 5°C and 8°C in the coldest month, January. In the 

winters short term frost can be seen more than in the humid Mediterranean climate region. 

The rain season is in the winter. The annual mean precipitation is 650mm-850 mm.  

Particularly in summers, evaporation is high. 

� The Black Sea climate 

The Black Sea climate region receives the highest amount of rainfall throughout the year in 

Turkey. The eastern part of the Black Sea region has 2200mm annual average precipitation 

some years it even reaches 2300mm. The Black Sea Climate region covers all Black Sea 

coasts and includes the northern part of the Marmara region. Average temperature is 8°C-

12°C. The region receives most of the rainfall in autumn and winter. The percentage of the 

rainy days in the summer is the highest. 

� The Semi-humid Marmara climate 

This climate zone includes the entire Marmara region except The Black Sea coasts of the 

region and a small part of the western cities of the Marmara which are influenced by 

eastern Europe’s climate. The climate is moderate. Annual average temperature is 14°C. 

The hottest months of the region, July and August, have an average temperature of 23°C. 

The highest recorded temperature for those months is 37 °C. The coldest month is January 

with a 5°C average temperature. Annual precipitation varies between 500mm-700mm. The 

share of summer rainfall is %10-%15. 
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� Steppe climate  

Central Anatolia, the Lake District, the Midwest Anatolia, Southeastern Anatolia, part of 

the west Marmara region and the interior regions of the Black Sea region are the regions 

affected by the steppe climate. It is divided into two groups:  

- The Semi - arid Central Anatolia climate 

- The Semi-arid Southeastern Anatolia climate 

- The Semi- arid Central Anatolia climate 

Winters are cold, intensity increases towards the northeastern part of Central Anatolia. 

Mean temperature in the coldest month, January, fluctuates between –3°C and 0°C. In 

August it is 20°C-22°C. Average annual precipitation varies between 350mm and 500mm. 

- The Semi-arid Southeastern Anatolia climate 

Summers are very hot; the average temperature is greater than 30°C in the hottest months, 

July and August. January and February are the coldest months with temperatures of 3°C 

and 4°C respectively. Summers are dry and long lasting. Amount of annual rainfall is 

350mm- 800mm. This climate region is the most arid region of Turkey. 

� The Continental Eastern Anatolia climate 

The continental Eastern Anatolia climate has the coldest weather in Turkey. Mean 

temperature is –8°C - 10°C in the winter. The hottest months do not exceed 20°C. Due to 

its high mountains, this region sometimes referred to as Turkey’s roof [11] 

3.2. Climate Classifications for Building Energy Standards 

3.2.1. Climate Classification Used for TS-825 (Turkish Standard-825)  

The Turkish State Meteorological Service and TSE (Turkish Standards Institution) 

classified Turkish climate regions as “Thermal Insulation Regions” by using a degree-day 

method which was developed by the Turkish State Meteorological Service. The 
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classification, the number of temperature over 10 °C which is derived from 236 stations 

between 1981 and 2001, has been calculated as follows: 

Effective Total Temperature (Degree Days) = ( ) NM *10−                                    (3)  

M : Monthly mean temperature,  

N: Number of days in the month [12] 

Degree days for all cities and some towns are listed by using monthly mean temperatures 

in the equation. Degree days are not classified as heating and cooling degree days like it 

was mentioned in the ASHRAE classification. According to this classification Turkey is 

divided into four insulation regions: this was used for the Turkish Standard 825 (thermal 

insulation in buildings) to determine consumption values and insulation requirements. 

(Appendix A) The Climate classification of Turkey is made also by scientists but not used 

for standards.  

- Classifications Created by Different Scientists 

Different climate classifications for Turkey have been formulated by scientists. They have 

classified the climate according to the drought coefficients of the cities. These climate 

classifications differ in calculating water balances. The long range average weather data 

were used for classification. Some of the classifications are the Aydeniz classification, the 

Erinc classification and the Thornthwaite classification. The Aydeniz classification is 

illustrated in the Figure 3.4. As shown in the figure climate is divided according to the 

drought coefficient from very dry to wet [10]. 
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       Figure 3.4: Classification of climate zones in Turkey according to the Aydeniz formula (Source:MENR) 

3.2.2. Climate Classification Used for ASHRAE Standards (ASHRAE Transactions 

4610-4611) 

The climate classification was developed to be used in the implementation of building 

energy codes, standards, design guidelines and building energy analyses in the Unites 

States.  

Compared to the climate classification used for the Turkish Standard TS-825, ASHRAE 

Transactions 4610 and 4611 are more detailed than the Turkish classification. The 

classification in the ASHRAE Transactions was made in two phases: 

Firstly, climate regions were divided into three main groups, and each group has its own 

definition: marine definition, dry definition and humid definition. These definitions were 

made according to the some criteria for the locations, for instance; locations meeting the   

following criteria are defined as Marine definition; 

• Mean temperature of coldest month between -3°C and 18°C and 

• Warmest month mean temperature < 22°C and 

• At least four months with mean temperature over 10°C and 

• Dry season in summer. 
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Dry definition; 

• Not marine and <2.0 * (Tc+7) where  

      Pcm: annual precipitation in cm, Tc: annual mean temperature in degrees Celsius 

Humid definition; 

• Not marine and Pcm = 2.0 * (Tc+7) (Appendix B) 

Having those major climate definitions, the next step is thermal zone definition by using 

cooling degree day and heating degree day reference temperatures with the help of the 

Köppen Classification (Appendix C). The USA is divided into 8 climate zones. With sub-

climate zone definitions, seventeen climate zones are explained with regards to thermal 

criteria and their names in the Köppen Classification. At the end of this research some of 

the cities around the world are classified as well. [13] 

The zone boundaries of the CDD and HDD temperatures are selected according to the 

conditions in the USA, but from previous experience in other countries it can be said that 

CDD and HDD reference temperatures will be different for other countries, for instance for 

Europe. 

3.2.3. New Turkish Climate Classification According to the ASHRAE Method 

In this chapter Turkey’s new climate classification has been made by using the climate 

classification method used for the ASHRAE standards. All definitions in ASHRAE 4610 

and 4611 for zone and thermal classifications were integrated in Microsoft Excel and the 

weather data were taken from METEONORM for each city. For that classification purpose 

precipitation and monthly mean temperature data are needed. The method is applied to 51 

cities in Turkey. Hourly weather data, including average temperature and precipitation 

over 10 years, are used for classification purposes. One problem with using this 

classification for Turkey and Europe could be the determination of base temperatures for 

CDD and the boundary of climate classification, since the parameters mainly reflect the 

United States of America. The reason to reclassify Turkey’s climate regions according to 

ASHRAE classification is to compare it to the old climate classification of the country and 

to show the way to present and prepare classifications, especially since the classification 

that used by TS 825 is not sufficiently detailed  
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Some similarities can be seen among some cities when we compare two climate 

classification maps of Turkey used for energy standards. These two maps show the 

classification mentioned in TS-825, “Insulation regions in Turkey”, and the classification 

done by using the ASHRAE Transaction 4610-4611 method. Especially the cities by the 

sea show the same properties in both climate maps. The interior regions are divided into 

more divisions in the ASHRAE 4610-4611 classification than in the TS-825 classification 

mainly due to specific geographical characteristics of the cities. The Mediterranean, 

Aegean, Marmara and some parts of the Black Sea regions showed similar characteristics 

in two classifications. In the new classification some cities which have extreme climates 

can be easily seen. (Figure 3.6) 

The new classification made for Antalya, Istanbul and Erzurum indicated that the 

classification of these cities seems to be at the right climate zones. Antalya, Istanbul and 

Erzurum found places in warm, mixed and cold climate zones respectively, reflecting the 

city’s climate characteristics more accurately (Figure 3.5). 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Heating Degree-Days, Base 18,3°C [Kd/a]

C
oo

lin
g 

D
eg

re
e-

D
ay

s,
 B

as
e 

10
°C

 [K
d/

a]

MODERATE (C) HUMID (A) DRY (B) NO MAJOR TYPE (-)

(1) VERY HOT

 (2) HOT

(3) WARM

(4) MIXED

(5) COOL (6) COLD (7) VERY COLD
(8) SUB-
ARCTIC

Athens

Bordeaux

Lyon Falkenberg

Braintree

Norwich

Madrid

St. Augustin

Walford

JoensuuKristinehamn

Berlin

Biberach

Freiburg

La Rochelle

Florence

Recanati

Navarra

Güimar

La Valetta

Antalya

Istanbul

Erzurum

 
Figure 3.5: ASHRAE climate classification of three selected cities with some European cities.   
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1 Yalova 15 Denizli 29 Cankiri 43 Nigde 57 Bayburt 71 Van
2 Kocaeli 16 Mugla 30 Ankara 44 Nevsehir 58 Erzincan 72 Bitlis
3 Istanbul 17 Antakya 31 Kirikkale 45 Yozgat 59 Tunceli 73 Mus
4 Kirklareli 18 Burdur 32 Kirsehir 46 Corum 60 Bingol 74 Agri
5 Edirne 19 Isparta 33 Konya 47 Kastamonu 61 Elazig 75 Igdir
6 Tekirdag 20 Afyon 34 Karaman 48 Sinop 62 Malatya 76 Kars
7 Canakkale 21 Eskisehir 35 Mersin 49 Samsun 63 Adiyaman 77 Erzurum
8 Balikesir 22 Bilecik 36 Adana 50 Amasya 64 Urfa 78 Rize
9 Bursa 23 Sakarya 37 Hatay 51 Ordu 65 Mardin 79 Artvin

10 Izmir 24 Duzce 38 Osmaniye 52 Tokat 66 Diyarbakir 80 Ardahan
11 Manisa 25 Zonguldak 39 Kilis 53 Sivas 67 Batman 81 Aksaary
12 Kutahya 26 Bartin 40 Gaziantep 54 Giresun 68 Siirt
13 Usak 27 Karabuk 41 K.Maras 55 Trabzon 69 Sirnak
14 Aydin 28 Bolu 42 Kayseri 56 Gumushane 70 Hakari  

 

Figure 3.6: New Turkish climate classification according to the classification methods used 

                    for ASHRAE Standards 

Sun path (stereographic) diagrams of three selected cities help us to evaluate sun shine 

time, solar radiation on the surfaces and sun declination according to the seasons. As it can 

be seen, sun declination is lower during the winter seasons and higher in the summer 

seasons due to Turkey’s geographical situation. Regarding all those variations, design 

improvements - for instance shading devices, solar heat gains through windows, walls and 
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roofs - can be formulated easier. For example; the sun shines almost at a 90° angle in June 

in Antalya, accordingly solar heat gain should be mostly received on roofs and the south 

exterior wall of a given building, thus, the construction design and strategies for the roof 

and the south wall construction become more important issues. Another important 

reference derived from sun path diagrams is the decision for orientation of a building. 

Designers can orientate the situation of exterior walls according to the heat gain and loss 

parameters.  

In case of cold climates (Erzurum), the south surface should be designed carefully with 

regards to the maximum solar energy gain during the winter, even sometimes during the 

summer. Due to this reason the window area on the south surface determines the amount of 

solar heat gain through the windows, and in summer the windows may be shaded to 

prevent overheating. (Appendices D, E and F) 
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4. Building Energy Standards 

 

The building envelope is responsible for most of the heating and cooling energy loads that 

mainly depend on the structure of the building elements (walls, roofs, windows, etc.). In 

order to minimize those effects on energy use, it is essential to develop or improve building 

energy standards which are composed of requirements, maximum and minimum thermal 

transmittance values of building envelope elements and energy efficient strategies for 

building envelopes in different climate regions. A large amount of energy savings can be 

achieved by applying energy efficient standards, as it has been shown in many simulations 

and improvements of envelopes.  

       

      Figure 4.1: Impact of thermal building code improvements between 1975 and 2000 in Germany (Source: 
Franunhofer Institute) 

As an example, Figure 4.1 above shows energy load reduction after updating thermal 

insulation codes between 1975 and 2001 in Germany. In Germany a new residential 

building in 2001 consumes approximately 30 % of a residential building in 1975, 

according to the research done by the Fraunhofer Institute. [14] 
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In a significant number of countries, energy standards have not yet been successfully 

enforced, and many countries do not even have any energy regulations at all. Considering 

the number of the countries that do not have any energy regulations, the net energy loss in 

the World is very high. Having looked at the general energy regulation circumstances of 

the World, it can be mentioned that some of the countries became aware of the importance 

of building energy regulations very late, except Sweden, Denmark, North America, Europe 

and some other countries from different regions. The regulations either are not mandatory 

or are just for non-residential buildings. (Figure 4.2)  [15] 

 

 

Figure 4.2: Status of building energy standards in the World (Source: www.deringergroup.com) 

4.1. Building Energy Regulations in Turkey 

In this chapter, the regulations with respect to energy performance of buildings and energy 

efficiency in heating and cooling energy consumption will be discussed. Regulations 

regarding energy conservation and saving issues are not sufficient or detailed in Turkey. 
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Due to Turkey’s application for EU membership, in recent years the country has reviewed 

and followed EU regulations and directives for member countries. Many legislative actions 

and energy directives are going to be harmonized and adapted from EU rules about energy 

efficiency in buildings [16]. 

TS-825 “Thermal Insulation in Buildings”, which became mandatory in June 2000, is the 

most important and detailed standard related to energy conservation and heating energy 

consumption in buildings.  

� Thermal Insulation Standards in Buildings, TS-825 

TS-825 defines the rules of calculation of heating energy demand in buildings and gives 

the reference and permeable values for heating energy. However, these rules are not 

defined for the buildings which include passive solar energy systems. In addition, cooling 

energy demands of the buildings are calculated by using international standard PrEn ISO 

13791. The TS-825 standard was prepared by adapting ISO 9164² and EN 832 standards to 

Turkey’s condition [3]. 

Energy performance of the different types of buildings, the calculation method of annual 

heating energy demand, thermal transmittance “U” values (for walls, floors, windows, 

glazing and ground floor) for each region, which is defined by using the “degree day 

method” in TS-825, and the maximum heating demand values according to regions were 

described. Both prescriptive and performance based requirements were given (Table 4.1). 

The main objectives of the standard are; 

- to limit heating energy loads in Turkey in order to increase energy saving  

performance 

-  to indicate and determine the calculation methods and their values 

-  to determine the heating energy consumption of existing buildings 

-  to indicate energy retrofit performance before the renovation of a building  
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                       Table 4.1: “U” values for building envelope in TS-825 standard 

Regions 
defined in 
TS-825                    
  

Walls 
UD (W/m²K) 

Ground 
floor 

UT (W/m²K)  

Floor 
Ut (W/m²K)  

Windows 
UP (W/m²K)  

1.Region 0.80 0.50 0.80 2.80 

2.Region 0.60 0.40 0.60 2.80 

3.Region 0.50 0.30 0.45 2.80 

4.Region 0.40 0.25 0.40 2.80 

                               

The monthly outdoor temperature and solar radiation, which were taken into consideration 

in this standard to calculate heating loads of buildings, are classified separately according 

to each region and month. In addition, maximum heating loads were given according to the 

A/V (Area/Volume) rates of buildings for each region in terms of area and volume (Table 

4.2). Having seen the insulation regions in Turkey and the A/V rates for each region, the 

heating load requirements (reference values of heating loads) for the three cities, selected 

for simulation in this work, are as follows: 

for the A/V value smaller than 0.2: Istanbul which is in the second region 48 kWh/m² 

Antalya, which is in the first region 27 kWh/m², and Erzurum,  which is in the fourth 

region 104 kWh/m². [17] 

Table 4.2: Heating energy demands for each region according to TS 825 for lowest and highest A/V rate 

   
for A/V ≤ 

0.2 
for A/V ≥ 1.05 Unit 

Q'1REG 27 66 kWh/m² 

  8.5 21 kWh/m³ 

Q'2REG 48 104 kWh/m² 

  14.7 33 kWh/m³ 

Q'3REG 64 121 kWh/m² 

  20.4 39 kWh/m³ 

Q'4REG 104 175 kWh/m² 

  33.4 56 kWh/m³ 
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4.2. Regulations in Developed Countries 

Many countries in the World have formulated building energy standards by referencing 

other detailed standards mostly from neighbor countries and ASHRAE fundamentals. 

Some countries adapted the rules for developed standards for their climatic conditions and 

construction types. For instance Canada, ASEAN countries and many other countries used 

USA standards as a reference. [18]  

Turkey has reviewed EU directives and standards, ISO standards and DIN standards and 

adapted them to its conditions. Along with those adaptations of mostly European standards, 

some other standards in the World may have given interesting ideas about the preparation 

and measures of energy standards for Turkey, thus, in this work energy efficiency 

standards will be investigated in various countries in the World. Generally the prescriptive 

requirements (maximum thermal transmittance of the building envelope elements) will be 

introduced for most of the selected countries.  

4.2.1. European Union (EU) 

Energy regulations within the European Union (EU) vary according to the climate and 

geographic features of the countries. In most of the European countries, energy regulations 

are mandatory for both residential and commercial buildings. Many countries adapt their 

energy regulations according to the EU directives. One of the important directives 

concerning building energy is the “EU Building Energy Performance Directive”. 

4.2.1.1. EU Building Energy Performance Directive 

The European Union (EU) prepared a directive for all member and candidate countries 

entitled “Directive 2002/91/EC of the European Parliament and of the Council of 16 

December on the Energy Performance of Buildings” which was adopted in November 

2002 and published in the Official Journal of the European Communities. This Directive is 

important because it obliges all EU member and candidate countries to implement various 

measures in the field of energy efficiency of buildings. [19] 
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Directive 2002/91/EC of the European Parliament and of the Council of 16 December 

on the Energy Performance of Buildings: 

The objective of this directive is to promote improvements in the energy performance of 

buildings within the European Union community, taking into account outdoor climate and 

local conditions, as well as indoor climate requirements and cost-effectiveness (Directive 

2002/91/EC of the European Parliament and of the Council of 16 December on the energy 

performance of buildings, January 2003). According to the requirements indicated by the 

directive member countries must: 

- define a building energy performance calculation methodology, which takes 

national or regional conditions into account 

- apply minimum requirements for new buildings 

- apply minimum requirements for large existing buildings that will be renovated 

- administer energy performance certification of buildings when they sold or rented 

- and implement regular inspection of boiler and air-conditioning 

According to the directive the building energy performance calculation methodology 

should include the following aspects: 

- thermal characteristics of the building (envelope and internal partitions) 

- heating installation and hot water supply, including their insulation characteristics 

- air-conditioning installation 

- ventilation 

- built-in lighting installation 

- position and orientation of buildings, including outdoor climate 

- passive solar systems and solar protection 

- natural ventilation 
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- indoor climate conditions, including designed indoor climate, in addition building 

types should be classified [20] 

4.2.1.2. German Regulations 

Germany has detailed regulations, named DIN. Germany adopted its first thermal 

insulation ordinance in 1977 and reviewed it several times. In 2001, ENEV 

(Energiesparverordnung), a law for energy saving, was released, and in 2004 some changes 

were made. The requirements for thermal insulation and heating systems for major 

renovations and new buildings are detailed in this law. It lists both elemental and system 

requirements. This energy ordinance saves almost 60% more heating energy than the old 

ordinance in 1977. (Table 4.3) [21] 

Table 4.3:  Maximum values of the heat transition coefficients during first renovation, replacement and 

renewal of construction units 

 

      Buildings according  Buildings according  
       to §1Sect. 1Nr.1  to §1Sect. 1Nr.2 
Line Elements According to Maximum Thermal Transmittance 

      Umax (W/m²K) 

  1 2 3 4 

1a External Walls General 0.45 0.75 
b   Nr.1 b, d and e 0.35 0.75 

2a Windows 
  Glass doors 
  Skylights 

Nr. 2 a 1.7 2.8 

b Glazing Nr. 2c 1.5 No requirement 
c Curtain walls  General 1.9 3 

3a Windows 
  Glass doors 
  Skylights with special glazing 

Nr. 2a and b 2 2.8 

b Special glazing Nr. 2c 1.6 No requirement 
c Curtain walls with  
  special glazing 

Nr. 6 Sent 2 2.3 3 

4a Ceilings, roofs and  
  pitched roof area 

Nr. 4.1 0.3 0.4 

b Roofs Nr. 4.2 0.25 0.4 

5a Ceilings and walls near to  
  unheated rooms 

Nr. 5b and e 0.4 No requirement 

b Or ground Nr. 5a,c, d and f 0.5 No requirement 

 

According to the new energy regulations, there is no requirement for thermal transmittance 

(U-W/m².K) values for the new buildings; however, systems performance requirements are 
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given according to annual primary energy consumptions with respect to A/V value 

(Appendix G). This new approach for buildings energy performance sets the requirements 

for new and old buildings. Thermal insulation requirements are explained for two seasons, 

in winter and in summer. [22] Turkey adopted some of the DIN regulations in developing 

its own standards  

4.2.1.3. Swedish, Norwegian and Danish Regulations 

Sweden is known for having high quality regulations with respect to housing standards. 

Almost 50 years ago Sweden implemented a thermal insulation standard for buildings. 

Norway followed shortly thereafter and Denmark after fifty years, and both adopted the 

Swedish standards to their own. In “Building Regulations-BBR” the mandatory 

requirements and general recommendations for energy were published under the ninth 

chapter (Energy Economy and Heat Retention). In this chapter the building envelope 

requirements were given with regards to thermal insulation and transmission losses, air 

tightness, ventilation, production and distribution of heat. The reason for concentrating on 

the thermal loses is the cold climate of Sweden. The Swedish housing requirements for 

new apartments were defined as follows (BFS 2002). [23] 

               Table 4.4: Maximum “U” values defined in Swedish and Norwegian standards 

Sweden Norway 
Elements 

Maximum transmission coefficient (U-W/m²K) 

External Walls 0.18 0.22 

Ceilings Under Roofs 0.2 0.15 

Floors next to ground  0.2 0.22 

Windows 1.5 1.6 
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                                        Table 4.5: Maximum “U” values defined in Danish standards 

Element 
Maximum transmission 
coefficient (U-W/m²K) 

External Walls 
0.2 (timber frame) 0.3 for 
brick/block construction 

    0.3 for brick/block 
Ceilings with voids 
above 

0.15 

Attic type roofs 0.2 
Ground floors     0.2 (timber frame)  
  0.3 (brick/block) 
Windows and Outer  
Doors Including 
Skylights 

1.8 

                            

4.2.1.4. UK Regulations 

In the UK the standard for the thermal performance of buildings is called “Conservation of 

Fuel and Power”. In this regulation there are three different methods to investigate energy 

consumption requirements and envelope requirements. These are:  

- Elemental Method 

- Target U-value Method 

- Carbon Index Method 

The Elemental Method indicates maximum U-values of the building elements for two 

different heating systems. Types of heating systems mentioned in this standard are “Gas or 

oil central heating with boiler” and “Other gas or oil central heating, or any electric heating 

system or solid fuel central heating or undecided”. Thermal transmittance values of each 

building envelope include the wall between unheated and heated spaces, roof attics, walls 

and flat roofs [24]. (Figure 4.3) 
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Figure 4.3: Maximum U-values using the Elemental Method in the UK standard. 

4.2.2.  USA (ASHRAE Standards) 

ASHRAE (The American Society of Heating, Refrigerating and Air-Conditioning 

Engineers) was founded in 1894 in New York City. ASHRAE publishes standards, 

handbooks, transactions and journals. Having compared it to other standards in the World, 

it can be easily concluded that ASHRAE is the most detailed building energy standard in 

the World. Thus, many countries referenced ASHRAE standards in the process of 

preparing their own standards regarding the field of heating, ventilation, air-conditioning 

and refrigeration. Many laboratories, researchers and government organizations have 

contributed to the preparation process of ASHRAE. The standards are periodically 

reviewed, revised and published.   

ASHRAE Standard 90.2-2001: Energy-efficient design of low rise residential 

buildings 

One of the standards reviewed for this work is the ASHRAE Standard 90.2-2001, entitled 

“Energy-Efficient Design of Low Rise Residential Buildings”.  Purpose of this standard is 

to provide minimum requirement for the energy efficient design of low-rise residential 

buildings. This standard provides three different methods by which compliance can be 

determined for low-rise residential buildings: the prescriptive method, performance path 

a) Gas or oil central heating with boiler                         b) Other gas or oil central heating, or any 
                                                                                            electric heating system or solid fuel central 
                                                                                            heating or undecided 
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method and annual energy cost method. In the prescriptive path method, minimum R-

values of elements of the building envelope, the maximum U-factors and maximum 

SHGC-values for fenestration have been specified. The performance path method indicates 

the maximum U-value of the building envelope and the SHGC value of glass openings. 

[25] (Appendix H) 

Some states in the USA have their own standards, which are more detailed and localized 

than ASHRAE. For example California, Oregon and Florida all have very advanced 

standards which were developed by using computer based methods. After the energy crisis 

in California in recent years, the state reviewed the 2001 standards and released the “2005 

Building Energy Efficiency Standards for Residential and Nonresidential Buildings” which 

came into effect in October 2005. The ASHRAE Standard 90 series are used as a reference 

for those states and other countries.  

4.2.3. Japan and Korea Regulations 

• Japan 

The Japan Energy Conservation Center (ECCJ) has published the guidelines “Design and 

Construction Guidelines on the Rationalization of the Energy Use for Houses” and 

“Criteria for Clients on the Rationalization of Energy Use for Buildings”, which were 

reviewed in 1999. Japan is classified into six climate regions. The guideline is divided into 

these sub-sections: 

- standards related to the heat-insulation performance of building frames: standards 

for heat coefficient and standards for heat resistance of heat-insulation materials are given 

and illustrated according to the different residential building construction types (wooden, 

reinforced concrete and other houses) in this sub-section  

- standards for the  heat-insulation performance, etc., of openings 

- standards for ventilation plans 

- standards for heating and cooling and hot water supply plans  

- standards for airflow plans 
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Maximum values of heating and cooling loads are also illustrated and their calculation 

methods described. For example according to the standard, heating shall be performed by 

setting the room temperature at 18°C or higher and the outdoor temperature at 15°C or 

below. (ECCJ) For the cooling load calculation, the room temperature is set at 27°C or 

below and relative humidity at 60% or below. [26] 

• Korea 

Korea implemented mandatory building energy standards in June 1992 and referenced 

ASHRAE and Japanese building energy standards. [18] Korea is divided into three thermal 

regions. The thermal insulation requirements were specified for each region with respect to 

building envelopes, thermal transmittance, “U-value” and thickness of the insulation [27]. 

4.2.4. Other Countries 

Nowadays many other countries are becoming aware of the need to set energy efficient 

standards after seeing its benefits for the environment, economy and other benefits. In this 

sub-section two countries with hot climates, Egypt and Dubai, are shortly examined. Both 

countries are situated in North Africa and the Middle East, where the use of air-

conditioning is very important due to high cooling loads. 

Especially the preparation and methodology of the energy standards proposal for Egypt, 

which was prepared by a team of scientists and researchers who had many years 

experience in the development of building energy standards in the USA and other 

countries, can be a reference for the countries lying in the same region and for the 

countries that don’t have detailed standards. The preparation process includes surveys of 

existing buildings physical and energy use and the use of computer simulations to analyze 

building energy performance. A key component of the development of these codes was the 

use of the DOE-2 hourly energy program. The information obtained from a survey of 

building energy use is very useful for defining prototypical buildings for use in computer 

analysis. In the conclusion a very detailed standard for Egypt is proposed [28]. 

The municipality of Dubai has developed the “Regulations of Technical specifications for 

Thermal Insulation Systems and Control of Energy Consumption for Air-conditioned 

Buildings in the Emirate of Dubai”, which became mandatory in 2003. It is adopted from 
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the ASHRAE standards, since ASHRAE is often used as a reference. This regulation 

contains three chapters, chapter one defines requirements of building envelope elements 

(roof, wall, glass openings.), the calculation of heat load and the design of air-conditioning 

systems. Chapter two includes specifications of thermal insulation materials and their 

installation. Chapter three gives general information about the regulations. In defining 

requirements for the building envelope, the overall transmission coefficient value “U” and, 

in addition, for glass openings the shading coefficient “SC” was used. The thermal 

transmittance U-value should not exceed the values shown in Table 4.6. Dry bulb 

temperature, wet bulb temperature, relative humidity and other variables were indicated for 

heating load calculation. [29]  

                                        Table 4.6: Building envelope requirements for Dubai 

Building    
Elements 

Maximum transmission 
coefficient (U-W/m²K) 

Shading 
Coefficient 
(SC) 

Roof 0.44 - 

Wall 0.57 - 

Windows 3.28 0.4 
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4.3. Conclusions and Discussions 

Having a brief review of energy standards of the different countries from different regions 

in the world, the impact of building energy standards on energy consumption can be 

judged from their experience of standards over several years. Some research findings and 

figures for energy consumption in buildings show that building energy standards are an 

essential part of the energy saving issue. For instance the EU investigation into the 

implementation of a common building code for Europe in 2000 indicates that if the Danish 

building codes had been adopted to all EU member countries as a model, a large amount of 

energy could have been saved (for some countries more than 50%, such as for Portugal and 

Italy which are situated in Mediterranean region) (Figure 4.4) [30]. 

 

Figure 4.4: Energy consumption in EU countries after adjusting the Danish regulations as a model. (Source: 

http://europa.eu.int/comm/energy/library) 

Although Turkey prepared its standards by reviewing European standards, there are some 

other standards which can be examined and referenced. Comparing the thermal insulation 

standard (TS-825) to some European countries, the thermal transmittance coefficient (U-

value) requirements for new dwellings in TS-825 for building envelope elements are high, 

which results in waste of energy. For example in Sweden, Denmark and Germany thermal 

transmittance coefficient U-values for exterior walls are 0.18 W/m²K, 0.20 W/m²K and 
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0.35 W/m²K respectively,  while they are 0.80 W/m²K for the hottest region and 0.40 

W/m²K for the coldest region in Turkey. Similar comparisons for glazing, which is a very 

important element of the building envelope, can be a good illustration of seeing the 

differences between standards. The thermal transmittance “U value” requirement for 

windows is 2.8 W/m²K, while under DIN standards it is just 1.7 W/m²K. Those short 

comparisons indicate that the thermal transmittance “U values” of building envelope 

elements should be reviewed and updated to reasonable values. In addition, there is no 

requirement about cooling loads of buildings in T 825; it gives Pr EN ISO 13791 as a 

reference regarding the calculation of cooling energy load, the most important energy 

consumption variable for the southeastern and Mediterranean parts of Turkey. An 

overview of the regulations in Turkey and the other countries examined is illustrated in 

Table 4.7. One of the results of this work indicates that applying insulation leads not only 

to a decrease in heating energy decrease but also to a reduction in cooling demand in hot 

climates as well.  

In standard TS 825, the calculation of degree days, which is used for determining thermal 

insulation region classification, was not illustrated. In contrast, the climate classification 

method, for example, is explained very detailed in ASHRAE Transactions 4610 and 4611. 

Energy conservation and rational energy use are Turkey’s main problem areas for the 

household sector. Because of the quality of the dwellings in Turkey, people consume more 

energy to reach and maintain the comfort level. In order to minimize the problems in these 

areas, the legislation side of those issues should be prepared carefully. In 2005, Turkey 

published the “Energy conservation Law” in the light of the “EU Energy Performance of 

the Buildings Directive”. After adapting this law, every building will have energy 

certification. Private engineering offices determined and controlled by the Energy Ministry 

of the country, will be responsible for giving energy certifications. Energy certification will 

provide an essential amount of energy savings if the control mechanism of private 

engineering offices works properly. This is due to the fact that, if the standards were not 

mandatory in Turkey and would not be attached to any penalties, then most of the users 

would not be aware of possible savings. On the other hand after some years during the 

utilization, due to the energy prices they would face, they would be forced to spend a large 

amount of money for renovations. In order to apply the energy certification law, similar 

programs in some developed countries should be examined, for instance Energy Star Home 
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(USA), R-2000 Certification (Canada), Klima Haus (Switzerland), Casa Clima (Italy) and 

Energie Pass (Germany). Some of those programs are mandatory energy labeling programs 

and is expected to be enforced in some of the countries, like Germany and Italy, by 2006. 

Energy labels are usually given for industrial products and household appliances to show 

their energy efficiency level, but buildings were also classified as products. For instance in 

Switzerland they were given European labels from “A” to “G”. Buildings are labeled and 

rated according to their annual energy consumption; letters represent each class.  

Energy labeling can be utilized for pre-fabricated (factory made) buildings elements, such 

as wall, roof and window by treating those elements as factory made products. Labeling 

may be prepared in terms of thermal transmittance “U values”. 

Even if Turkey has a thermal regulation standard, new standards can be developed by 

using energy simulation tools for different representative buildings of the country in 

different climates. This different process in preparing new energy codes can give more 

significant and detailed results that are close to reality. One of the samples is the Egypt 

energy code proposal. In developing energy codes for this country energy simulation tools 

were used by experienced researchers. This standard developing process can be run 

following these steps: 

• new climate classification, more detailed variables, the ASHRAE standard for climate 

classification can be a reference, 

• energy survey of buildings; this step is based on the information regarding energy use in 

buildings (shape, orientation, climate zone, number of residences, heating cooling 

equipment, structure, insulation status, etc) 

• utilization of energy simulation tools; after collecting of the data from the surveys a 

simulation process close to reality could be achieved by using competitive simulation 

programs 

• having the simulation results, the public should be informed with respect to rational 

energy utilization, energy conservation and the standards for a trail period 

• Turkish regulations mostly advocate administrative regulations; methods should also be 

investigated and examined 
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Table 4.7: Overview of the building energy regulations in selected countries   

Opaque Heating Cooling Total Energy Demand
U Value SC (Shading Coefficient) SHGC (g-Value) U Value Qh Qc QT

Turkey X X X
Germany X X X
United Kingdom X X X
Sweden X X X
Denmark X X
Norway X X
Japan X X X X
Korea X X
USA X X X X X X
UAE (Dubai) X X X

Building Envelope Elements
Transparent Countries

Building Energy Demand 

 

. 
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5. Prefabricated Residential Building Systems in Some Developed 

Countries and Description of Selected Residential Building Systems in 

Turkey 

 

Two different types of housing construction systems were selected for simulation purposes. 

One is a traditional system, which represents most of the dwellings in Turkey and has a 

high amount of energy saving potential if it is properly constructed or renovated. The 

second consists of , three pre-fabricated housing systems, chosen as the representatives of 

new generation housing systems, which are going to dominate building systems in the 

future because of their advantages with respect to time, economy and flexibility. Each 

system utilizes different building materials. These three systems are: 

- Interlocking brick system, 

- Lightweight steel structure system, 

- Aerated concrete system. 

In this chapter, after explaining pre-fabricated residential building systems, energy efficient 

and passive housing approaches in developed countries, the selected systems in Turkey are 

evaluated with regards to their structure and materials, which are going to be used as 

“reference cases” in simulations. The retrofitted cases of building systems are explained in 

the next sub-chapters. For “base case” simulation window types of four systems are 

assumed to be single pane.  

5.1. Prefabricated Residential Building Technologies, Passive and Energy Efficient 

Housing in Developed Countries 

5.1.1. Energy Efficient and Passive Housing Approach 

Energy efficiency and passive housing are new terms for Turkey, where people generally 

look for mechanical solutions for their energy needs. It will be informative to investigate a 

passive house in this work for a Turkish energy society in order to introduce passive house 

applications in Germany and in Sweden, where climates are colder and the number of 

passive houses higher than those of in Turkey. The second reason is to encourage Turkish 
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construction, society and organizations by focusing on Turkey’s passive home design 

potential as a result of its climate. A passive house is a house that provides comfortable 

indoor climates without using any mechanical heating and cooling.  

The definition from the Passive Haus Institute in Germany is;  

“Passive houses are buildings, whose yearly heating heat requirement is so small that 

without an active heating system can be heated, for example small heating requirement can 

be supplied by supply air.” 

A passive house is also called as “zero energy house” or as “house without heating” 

Passive houses are defined by a standard (functional requirements), not by a building 

method. 

Criteria for passive houses are defined as follows: 

� maximum constant energy load 10 W/m²k 

� maximum annual space energy  requirement 15 W/m²a 

� maximum annual total amount of energy load 42 W/m²a  

In addition to the general requirement of energy consumption, envelope thermal 

transmittance values for passive houses are also regulated, but these are not mentioned as 

mandatory requirements due to the flexibility in architectural design. According to the 

Passive Energy Institute in Germany, thermal transmittance values (U value) of opaque 

and transparent building envelope elements (windows) should be smaller than 15 W/m²K 

and 0.8 W/m²K respectively.  

Some of the key elements of passive houses can be classified as follows: 

-  Super insulation  

Passive houses should have effective, continuous insulation within envelope without 

thermal bridges  
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-  Air tightness 

Another essential approach for passive house design is tightness of the building envelope 

due to heat loss through air change. In Germany, the requirements for air tightness of 

passive houses are defined by the Passive Haus Institute. For passive houses, the value 

should be smaller than 0.6h-1. 

-  Heat recovery from exchange air 

-  Maximum solar heat gain. [36] 

Finally, design should be done carefully in order to receive maximum solar heat during the 

winter and to block direct solar heat during the summer, preventing overheating. This is 

done by reviewing and determining the amount of heating demand. Thus, the minimization 

of heat loss by reducing uncontrolled air change via tight structure and building envelope 

enrichment should be considered during the design phase.  

5.1.2. Prefabricated Residential Buildings 

The construction has become more industrialized year by year due to the importance of 

time, economy and quality aspects of buildings. Builders do not desire to be dependent on 

weather. Accordingly, most of the construction process has being carried from the 

construction site to the factory. The percentage of the factory process (production) 

determines pre-fabrication rate of a construction. Building envelope plays an essential role 

in estimating energy performance of the buildings; thus, quality and applications of 

materials have significant influences. This can be achieved by using industrialized methods 

during the production process in a covered area, a factory.    

Pre-fabricated homes can be classified into four classes: manufactured homes, factory 

made homes, modular homes and panelized homes. Prefabricated construction brings the 

following advantages; 

- a rational production process, assembly line automation like a commodity (for example: 

car production) 

- time independency, fast production and installation, weather independency 
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- all elements of the construction system are produced in a covered area along with the 

materials used; this results in high quality  

- for mass production it is economic   

- prefabricated homes require less heat energy due to a high level of insulation applied in 

walls and roof   

in addition to these advantages in production process, components can be supervised with 

regards to energy efficiency and performance. [37] 

This section will briefly illustrate different kinds of prefabricated housing techniques, 

which represents the last level in prefabricated housing and some advanced housing 

techniques, from some countries. Some pre-fabricated housing companies and applications 

of panelized systems and unit systems, which represent most of the modern prefabricated 

housing around the world, will be described and evaluated in this chapter. 

5.1.3. Prefabricated Residential Buildings in Some Developed Countries 

The production process of a factory made home is similar to other industrialized goods, 

like a car production, which follows a pre-defined production process. A significant part of 

new prefabricated housing can be divided into main types: panelized housing and modular 

housing. 

Prefabricated housing, so-called factory made housing, can be an important way of 

producing new temporary and permanent residential buildings, especially for a country like 

Turkey, which experiences high temporarily housing demand after natural disasters and 

permanent energy efficient housing demand in general. In this section of the work 

permanent prefabricated homes in some countries are investigated with respect to their 

energy performance, production process and level of prefabrication. These sample systems 

are chosen from different regions of the world; Germany, USA, Sweden, Japan and 

Canada. 
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5.1.3.1. Germany 

In Germany, prefabricated housing builders mainly concentrate on the energy efficiency of 

residential buildings.  

Company Wolf has a panelized system with wall panels consisting of 28 cm thickness 

sizes with thermal transmittance (U-value) of a 0.20 W/m²K. Another prefabricated 

building company, HAAS Fertigbau has an envelope system that consists of walls that 

have U-values of 0.155 W/m²K, a roof with 0.13 W/m²K and windows with three layer 

glazing with U-values of 0.8 W/m²K. Both companies use a panelized system.  

Baufritz in Germany developed an ecological external wall panel that consists of wood 

shavings as insulation and roof panels as well. This innovative wall system, 40 cm 

thickness, has a U value of 0.13 – 0.16 (W/m²K). The panels are carried to the construction 

site and assembled there. 

A research project from the Technical University of Munich focuses on a prefabricated 

building that can be built in 24 hours, thanks to fast connectors developed by a research 

team in Germany [40].  

One of the interesting housing systems in Germany is the LBS System house which is built 

by using prefabricated brick elements and modules. This system uses small traditional 

materials like brick but the production process of wall units and modules takes place in 

factory not on site. [41] 

5.1.3.2. Japan 

Japan has one of the most advanced prefabricated home sectors in the world, especially 

with respect to the factory production process; they use robots to achieve the most rational, 

advanced techniques and apply them to produce panels or units of dwellings: 

Sekisiu Corp., is one of the companies, that represents this housing production strategy. 

The company has two methods of home construction. Both systems are both made of box-

shaped prefabricated units. The production process is illustrated in Figure 5.1. 

One of the systems is called “Unit Housing”, in which living spaces are formed by using 

prefabricated unit boxes. The boxes are made of a steel frame structure covered by three 



 
 

Description of Model building systems                                                                                54 

kinds of cladding material compound panels of aluminium plate and gypsum boards, 

Synthelite (a compound board made of cement and wood chips) and press-attached 

porcelain tiles. Both systems have an 80% factory completion ratio. The company has 14 

kinds of basic structural units, with cut units, large space units, functional units and over-

hung units: there are more than 80 kinds of units. After transportation of ten to fifteen units 

from the factory to the construction site, a crew of six to seven workers and a crane install 

the units in approximately four hours.  

The units are tested in the factory in an artificial weather room with respect to heat 

insulation, sound insulation, floor vibration, sweat resistance and water proof performance. 

This advantage indicates a significant quality difference between prefabricated and 

traditional construction techniques.  
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     a - Assembly line in a factory                b - Utilization of the robots in production 

            

    c,d - Construction of a Unit box                

           

    e – Attaching the wall to unit                         f – installation of units at site 
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Figure 5.1: Production and installation process of Sekisiu (Japan) home (a – e) 

5.1.3.3. Scandinavian, Ireland 

Housing companies in Scandinavian countries are renowned as the most energy efficient 

and, the prefabricated housing builders are concerned about energy efficient design and 

standards, two essential factors of construction because of the climate characteristics in 

Scandinavia. This defines Swedish attitude toward a residential building, energy efficiency 

is important for consumers as well as builders. The origins of the prefabricated housing 

industry, had origins date back to the 18th century, so that this type of housing now 

represents 90% percent of the dwellings in Sweden. There are no big quality differences 

between manufacturers of homes, since the building regulations and standards are stringent 

in the country. The factory production process allows continuity of construction in 

Sweden, where the winter lasts six months, which is why duration construction on site is 

not possible.  

Reviewing some Swedish housing manufacturers, two types of factory made housing 

systems are available; panelized and modular systems representing 76% and 24% of 

housing construction respectively.  

Top Housing AB is a Swedish company that applies international projects. After we 

investigated their pre-fabricated home system, it was obvious that the most important 

element of the building envelope in Sweden is insulation. The wall and roof insulation 

sizes are 12 cm and 14.5 cm respectively, the system has an insulation layer which 

separates the foundation and ground floor as well. It helps to protect cold air flow from the 

ground.   
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An Irish company, Scandinavian Homes LTD., is a company that combines energy 

efficiency, Swedish tradition and factory made housing approaches together. They build 

insulation fitted walls and roof for wood frame dwellings. 

5.1.3.4. Canada, USA 

In Canada and the USA there is a significant number of prefabricated housing companies 

representing different kinds of pre-fabrication levels, from big or small modular homes to 

panel homes. In the USA some organizations have been working on advanced housing 

technologies. One of them is PATH (Partnership for Advancing Technology in Housing), a 

public-private organization that aims to accelerate the use of new technology to improve 

quality, energy efficiency, durability environmental performance and affordability of 

housing in the USA. 

Clayton Homes Inc. is a manufacturer of pre-fabricated homes; their home as a single unit 

in the factory. For this system, transportation and the distance between factory and 

construction site are main issues that must be solved. On the other hand the factory 

completion ratio increases the quality of the homes which are built as ENERGY STAR 

homes. 

Les Industries Bonneville, a Canadian company, produces module boxes and panels, which 

are connected on site according to the plans, for instance a one-story house consist of two 

units and a two story home has four units.   

Another building system, called “Quad-lock System”, is an Insulating Concrete Form 

System made of Expanded Polystyrene (EPS) tied by High Density Polyethylene (HDPE) 

and developed in Canada. Although the Quad-lock system is not a totally pre-fabricated 

system, the energy performance of its building envelope makes the system competitive, 

with 3 different structures and “U values” of 0.28 -0.20- 0.15 W/m²K respectively.  

5.1.4. Integration of the Renewable Energies to Residential Buildings   

After reducing energy use through the application of energy efficient design strategies, the 

rest of the energy demand can be provided by renewable energy sources such as solar 

panels, photovoltaic and small sized wind tribunes. As explained in the second chapter of 

this work, Turkey has the third largest installation of solar water /heat capacity in the 
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world. However, the architectural integration of renewable energies, such as solar panels, 

is not successful enough, with regards to solar potential. The next planned work after this 

will be the integration of renewable energies to reduce energy use in residential buildings 

starting from the design phase. Combining this idea with the pre-fabrication approach will 

be the future of home technology, for which construction time, profitability and advanced 

passive design strategies are the most important features. 

Photovoltaic (PV) integration will be briefly investigated in this subchapter. Roof and 

façade integrations represent most of the applications, along with some other solutions of 

integration for example: wall and balcony. The integration of PV elements can be divided 

into 5 classes: 

- applied invisibly 

- added to design 

- adding to architectural image 

- determining architectural image  

- leading to a new architectural concept [38] 

Some integration samples from different countries are illustrated pictorially. The countries 

that don’t have as much solar energy potential as Turkey such as Sweden, Denmark or 

Germany, have more PV (photovoltaic) applications than Turkey. Thus the application 

pictures of renewable energy elements can give some ideas about architecturally integrated 

solar elements and encourage Turkish energy society, who is mostly dependent on fossil 

fuel energy sources. 
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Canadian Solar Decathlon house.  

Concordia University and Université de Montréal 

Roof integration of PV. 

 

University of Michigan, Solar Decathlon house 

External envelope integration 

 

University of Maryland, Solar Decathlon houses 

The roof elements with the PV-modules have been 

prefabricated. The yearly solar electricity output 

from the 19 semi-detached houses with PV is 

expected to be 48000 kWh. Amersfoort - 

Netherland, Artes Architekten & Adviseurs, Jan 

Gizezen 
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The PV-lamella system, yearly solar electricity 

output of all the PV-systems in the 

'Waterwoningen - Gele Lis' sub-project is 

expected to be 9600 kWh. Amersfoort – 

Netherlands, Atelier Z., Zderek Z.   

 

 

Solgaarden-Kolding Apartments,   Solgaarden - 

Kolding ,  Denmark, Roof- and facade 

integration.  PV System Power:  107    

Architect: Kjaer + Tichter A/S 

 

Breisach, Germany. Single family house, Grid 

connected. PV system power 5, 4. Type of 

application sunscreens.  PV-integration in this 

project is facade integration as well as building 

element and sunscreen. 

Architect: Prof. Thomas Spiegelhalter 

 

 

Row houses IGA, Stuttgart, Germany and 

demonstration houses EXPO 2000, grid-

connected, PV System Power:  5, 3, Type of 

application: sunscreens.  

Architect: Hegger - Lühnen, Schleiff 
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Roof renovation, Rappaneck, Germany 

 

The PV-system is fitted on the roof, as well as 

high efficiency solar thermal collector, covered 

with transparent insulation. Transparent insulation 

is also used for the façade. Freiburg, Germany, 

residential building, PV system power 4.2, type of 

application roof, single crystalline silicon 

Architect: Hölker + Berghoff, D. Möller 

 

Haus der Zukunft, Wels, Austria, residential 

building, grid connected, 3, 47 kWp, facade + roof 

application. 

Architect: Sture Larsen 

 

Solar low energy house with PV, solar thermal 

collectors. Pietarsaari Solar House,  

Pietersaari, Finland, residential house, roof 

integrated PV, grid-connected, PV system power 

2,2 , roof application,  amorphous silicon   
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5.2. Prefabricated and Traditional  Residential Building Systems in Turkey  

The pre-fabricated residential buildings selected for this research are not totally pre-

fabricated (factory made) systems. They are called pre-fabricated systems since the 

systems have some factory made components, pre-fabricated wall units, floor units, etc. the 

definition of the pre-fabrication level varies according to the system’s construction. Each 

selected system represents a unique building envelope alternative (concrete interlocking 

bricks, steel skeleton with insulation and aerated concrete blocks). 

5.2.1.  Interlocking Brick System 

The interlocking brick construction system consists of interlocking bricks for external and 

internal walls and pre-fabricated pre-stressed concrete hollow core panels for slabs (Figure 

5.2). 

Interlocking wall blocks, which are used for load-bearing walls and non load-bearing 

walls, are made of cement, fly ash and aggregates. They are produced in different size. 

Hollow core panels are used for flooring.  

Wall units: 

a) Load-bearing walls units; consist of concrete masonry blocks. 

      Size; 19cm thickness, 39cm length, 19cm width 

b) Non load-bearing wall units; are used for decorative purposes. 

      Size; 9cm thickness, 39cm length, 19cm width 

Floor units: 

a) “Panelton”; is a pre-fabricated pre-stressed concrete hollow core panel. These panels 

can also be used as floor or wall panels but in this work, they are used as a floor unit. Size; 

15cm thickness, 120cm width and the length of the panels can be determined according to 

the project by considering the load-bearing capacity.  

In addition to above mentioned units, there are also reinforced horizontal and vertical bond 

beams, which are created by using special interlocking brick units as a permanent 

formwork. The size of the heat insulation that is used for walls varies between 6cm and 

8cm and for the roof 10cm. [31] 



 
 

Description of Model building systems                                                                                63 

      Figure 5.2: Interlocking brick system, a perspective. (Source: Yapi merkezi) 

5.2.2. Lightweight Steel Framed System 

The lightweight steel structure system is composed of a steel skeleton, which is constructed 

with lightweight cold-formed steel members, covered with OSB panels (Oriented Strand 

Board) from the exterior side of the wall and with plaster board from the interior side. The 

system is made up of sheets of 4cm polystyrene insulation applied on OSB panels and 

16cm mineral wool insulation sandwiched between OSB panels and plaster boards; all 

installations are equipped between steel studs and those panels. The roofing structure is 

also the same as the wall structure, but with additional sheeting covered as a finishing 

layer. The floor structure is steel stud framing, on which OSB panels are layered. As with 

the wall wall and roof structure, insulation is placed between the OSB panel flooring and 

the plaster board ceiling. (Figure 5.3) The structures of selected building envelope 

elements are assumed like in Appendix I. [32] 
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  Figure 5.3: The lightweight steel system, a perspective. (Source: Kosk yapi) 

5.2.3. Aerated Concrete System 

The aerated concrete system is built by using gas concrete (aerated concrete blocks) units 

as wall, floor and in some cases roof elements. Since it has in-situ works, like columns, 

foundation and beams at the floor level, on top of which floor units are installed, the 

system is not totally pre-fabricated. (Figure 5.4) This system is made up of aerated 

concrete wall and roof blocks covered with cement mortar from the exterior and gypsum 

plaster from the interior face. Flooring consists of aerated concrete units with 15cm 

thickness as well. [33]  

   

Figure 5.4: A perspective for the aerated concrete system. (Source: YTONGTURK) 
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5.2.4. Traditional (reinforced concrete) System 

The traditional system chosen for simulation represents most of the dwelling structures in 

Turkey, the so-called, reinforced concrete structure system. This system consists of hollow 

clay brick external and internal walls and the load-bearing skeleton, composed of 

reinforced concrete floors, beams and columns. Both the external and internal walls are 

covered by cement plaster from both sides. Figure 5.4 illustrates an incomplete reinforced 

concrete system with its skeleton and walls but without finishing. The other detail is the 

typical detail of the floor and wall connection for the reinforced concrete system. 

Significant parts of the reinforced concrete dwellings in Turkey have no insulation. (Figure 

5.5) 

   

Figure 5.5: Typical reinforced concrete system in Turkey without plasters. 
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5.3. Conclusion and Recommendations 

Energy efficiency and energy conservation are essential problem areas for Turkish housing 

stock. The quality of dwellings and their application without standards cause waste of 

energy, time, and natural artificial resources. Most of these problems are determined by 

their construction methods and materials, which is mainly the traditional construction 

(reinforced concrete) system in Turkey. Because of Turkey’s quality housing demand in 

the future, pre-fabrication methods can be a solution for building healthy and energy 

efficient dwellings in a short amount of time. On the other hand, applications of 

prefabricated dwelling constructions are economic for mass housing.  The passive housing 

approach, which uses natural resources for energy needs, should also be investigated and, 

likewise Turkey’s potential analyzed: users of residential or commercial buildings are 

likely to use mechanical solutions even for the smallest energy needs without looking for 

natural solutions. As we saw in the simulations made for this work, natural solutions, so- 

called passive housing strategies reduce energy use dramatically, especially in extreme 

climates. Thus, common user ideas should be broken by recognizing these strategies which 

can create more economic and healthier living spaces. In addition, some new technologies 

like the shading system are equipped with sensors that schedule the shading devices which 

work according to (depend on) the solar radiation on the transparent surfaces or indoor 

temperature.    

Pre-fabricated systems, investigated in this chapter from different developed countries, are 

good reference points. For instance, the system from Japan can be one with respect to 

production and assembly methods: the other systems, for which the energy efficiency 

aspect is most important, such as in Germany and Sweden, are also very competitive 

systems regarding their envelope properties, especially for cold climates. These sample 

building systems in Germany and Sweden have wall structures that give homes a very 

thick insulation layer: the optimum insulation thickness determined for there cities in this 

work can be the reference point for Turkey. The prefabricated systems for some countries 

and the systems that selected for this work in Turkey can be summarize regarding their 

degree of factory completion, energy efficient design, thermal transmittance values and 

insulation (Table 5.1). 
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Table 5.1: Properties of the prefabricated building systems for some countries  

Countries and Building Systems 
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Traditional ─ ─ 1,65  ─ 
Interlocking Brick 40% X 0,31 X 
Lightweight 40% X 0,17 X 

Turkey 

Aerated Concrete 50% ─ 0,87  ─ 
Germany Panelized  70% X 0,13-0,20 X 

Factory made  90% X NA X 
Panelized  70% X NA X USA, Canada 
Semi-prefabricated 50% X 0,15-0,28 X 
Panelized  70% X NA X 

Scandinavian 
Modular  70% X NA X 

Japan Factory made 80% X NA X 

 

- Applicability of New Techniques in Turkey (discussion about the economy, climate 

and stability)  

Applicability of new pre-fabricated systems mentioned in this chapter in Turkey can be 

successful, if the public is given information about pre-fabrication. Prefabricated housing 

has a negative stigma in the Turkish community due to a lack of information and bad 

applications after large earthquakes in Turkey. This introduction of pre-fabricated systems 

should include these aspects: 

- Pre-fabrication is not always applied for temporary buildings, but also permanent and 

high quality buildings. The Izmit earthquake in 1999 was very bad advertisement for 

prefabricated homes, since those that were built after the earthquakes as temporary 

prefabricated dwellings were of poor quality and had a negative influence on the users 

and Turkish public opinion. 

- definition of prefabrication,  

- energy efficiency, energy efficient pre-fabricated homes  
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- economic efficiency 

- technology level for the production process  

Regarding integration of renewable energies, in the long term PV applications could also 

boom in Turkey like solar thermal panels if the prices of PV are affordable. It is very 

essential to investigate profitability of renewable energies in general and PV application 

specifically. This may be assessed by either different simulation programs or site 

measurements, choosing different climate regions of Turkey as prototypes.  

- Some General Proposals of Prefabricated Energy Efficient Residential Buildings 

Prefabrication is more open to innovations than traditional systems. Innovative solutions 

can be developed to minimize the energy loads of dwellings. For instance portable walls 

which work as a thermal mass or include some shading, ventilation ideas, prefabricated 

glazing units integrated with factory made panels or units, thick hollow brick wall panels, 

through which pipes runs to cool the buildings by circulating ground water and panel 

connectors - these are all very important for time saving and flexibility factors of the 

building construction.  

Portable thermal mass walls: Pre-fabricated mobile thermal mass walls may be applied to 

store hot daytime temperature and for cold climates to release stored heat into the room at 

night. It can be called as “Mobile Tromble Wall”  

Brick blocks for hot dry areas: Hollow brick block elements with a minimum thickness of 

40 cm can be used for the building envelope and roof. Hollow brick performs well with 

regards to cooling loads. In addition, further cooling can be achieved by running pipes 

through these brick blocks through which ground water circulates. 

Innovative connectors for panels: Some innovations are being made by different 

companies for quick pre-fabricated panel connectors.  

New sandwich panels or boxes that contain all services: After assessing the energy 

performance of the envelopes, wall or unit elements can be proposed for every climate 

type. 
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6. Energy Analysis of The Sample Building Systems in Turkey 

 

6.1. Methods 

The dynamic Transient System Simulation program (TRNSYS), which was developed by 

University of Wisconsin, is used to simulate and analyze the thermal performance of the 

selected residential building systems. TRNSYS is a transient system simulation program 

with a modular structure where each component is described and written in FORTRAN 

language. Some of the utility programs of TRNSYS are PREBID (building description 

program), ISIBAT, TRNSED and TRNSHELL.  

PREBID: building envelope definitions (wall, ground, roof, floor structure, orientation of 

the envelope and their size), part of the simulation strategies and orientation information, 

in short, all building descriptions are defined in this TRNSYS utility program. Firstly, the 

(*.BUI) file is one of the components of the building description, in which geometry and 

thermal properties of the building are created (TRNSYS Manual). This file is processed by 

the program BIDWIN, which uses information in the (*.BUI) file to generate two new 

files: (*.BLD) and (*.TRN). (*.BLD) is a file containing geometric information about 

building and the (*.TRN) file contains ASHRAE transfer functions for the walls. BIDWIN 

generates an information file (*.INF) which indicates inputs and outputs of a multi-zone 

building model (TYPE 56).  

In the definition of building envelope materials, there is a material library in this multi- 

building zone component. New materials can also be defined when the user enters required 

values for materials. Ventilation, cooling, heating, infiltration and internal gains (number 

and activity of residents, electrical devices, appliances etc) are some of the variables that 

can be defined in this program. It takes the multi-zone building description and integrates it 

into the ISIBAT program as a component to run the simulation. There are significant 

numbers of outputs in PREBID program that are related to energy use, heat gain and loss, 

air temperature, relative humidity, etc. 

ISIBAT is a general simulation environment program, which houses the TRNSYS 

simulation engine and most of the stand-alone utility programs. In this program a graphical 
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interface is created by the user and contains inter-connected components to run the 

simulation. Some of those components used in this work are Type 9d (data reader which 

contains weather data), Type 16 (solar radiation processor; the orientation information, 

latitude and other inputs related to radiation are given in this component), Type 69 (fictive 

sky temperature for long-wave radiation exchange), Type 33 (dew point temperature and 

relative humidity), Type 56 (multi-zone building); printer and monitor components. More 

components can be added according to the simulation features. (Figure 6.1) [34] 

            

             Figure 6.1: TRNSYS simulation window interconnected components (ISIBAT) 

The weather data are obtained from METEONORM, a meteorological database for energy 

applications, which has over 7400 meteorological stations worldwide, including many 

cities in Turkey and the cities used for the simulations. METENORM can provide very 

detailed hourly (8760 hours in a year) data, from radiation to precipitation values, in 

different formats. The TRNSYS weather format is used for the simulation purposes and 

includes average data from a span of 10 years on solar radiation (global, beam radiation 

and diffuse radiation), relative humidity and ambient temperature.  
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6.2. Climate and Geographical Characteristics of the Selected Cities 

Three cities - Antalya, Istanbul, Erzurum – each representing different climate zones in 

Turkey, are selected for the energy simulation of sample building systems. The hourly 

annual weather data is obtained from the METEONORM program as a component of the 

simulations; however, in this sub chapter general climate and geographical characteristics 

of the three cities are examined and illustrated graphically [35]. 
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Figure 6.2: Climate characteristics of Antalya 

Figure 6.2 above shows maximum, minimum and average ambient temperatures, relative 

humidity and precipitation for each month in Antalya. Both the Aegean and Mediterranean 

regions of Turkey have a typical Mediterranean climate: mild winters and hot summers. 

Antalya’s rainy season is in the winter, from October to April. In the summer rainfall is 

quite low in contrast to the winter. The total amount of yearly rainfall reaches 1079 mm. 

The average mean temperature during the summer is 28 °C and in winter does not fall 

below 10 °C. The maximum temperature can increase to 40°C in the summer, and the 

difference between maximum and minimum ambient temperature is approximately 20°C. 

Relative humidity is generally around 55% and 60%. 
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Figure 6.3: Climate characteristics of Erzurum 

Erzurum is the one of the coldest city in Turkey because of its geographical characteristics. 

The city is located on a high plateau, with an altitude of 1823 m. The winters are very cold 

and rainy; the average winter temperature does not exceed 0 °C. The minimum winter 

temperature can drop to approximately -30°C, and even in the summer the minimum 

temperature is not over 5°C. Summers are mild with an average temperature of 20 °C. The 

city receives rainfall throughout the year, and the highest amount of rainfall is between 

April and June and reaches over 60 mm. August is the driest month of year. Relative 

humidity varies between 60% and 70% throughout the year (Figure 6.3). 
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Figure 6.4: Climate characteristics of Istanbul 

Istanbul receives rainfall mainly in winter but also throughout the year due to its 

geographical situation; it is surrounded by three seas and has a Black Sea coast. Generally, 

rainfall appears between September and April; the highest amount of rainfall is over 100 

mm in the December. The driest season is summer, when monthly mean temperature 

doesn’t exceed 25°C, and in winter the temperature is between 5°C-10°C. The difference 

between maximum and minimum ambient temperature is nearly 15°C. In winter the 

temperature can fall below 0°C but not less than -5°C. In addition, the climate is also 

influenced by the city’s structure and planning (Figure 6.4).  

                      Table 6.1: Altitude and geographical situation of the cities 

                 
Cities 

Height 
above sea 
level [m] 

Latitude Longitude 

Antalya 0 36.53 N 30.42 E 

Erzurum  1823 39.57 N 41.17 E 

Istanbul 2 41.02 N 28.57 E 
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Antalya lies in the Mediterranean region of Turkey and is surrounded by high mountains; 

however, the city is situated at an altitude of 0 m. Erzurum is situated at an altitude of 1823 

m at the foot of Palandoken Mountain. The city is the largest city in the eastern Anatolian 

Region. Istanbul is one of the most populated cities in Europe, connecting Asia and 

Europe. The city is surrounded by the Black Sea and Marmara Sea and has an altitude of 2 

m (Table 6.1). 
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Figure 6.5: Global horizontal radiation in Antalya, Erzurum, Istanbul and Dortmund  

Figure 6.5 above shows solar radiation intensities of the three cities in Turkey and 

Dortmund. All cities, including the coldest city in Turkey, have higher solar intensities 

than Dortmund. As seen in the graph, Antalya has the highest solar global horizontal 

radiation, thus, the primary goal of building design should be to lower solar heat gain, 

while using maximum solar heat gain as much as possible in Erzurum is the best solution 

for this heating dominated climate. In summer Istanbul has almost the same amount of 

solar intensity as Antalya. During the winter solar radiation is almost one-third of that in 

the summer for Antalya, however for the other cities Erzurum and Istanbul this ratio 

changes to 1/3 and 1/4 respectively. 
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6.3. Building Model 

The model project is chosen as a two story multi-family building (Figure 6.5). Each story 

is divided into two thermal zones named Room first (RF), Room ground (RGR), Saloon 

first (SF), Saloon ground (SGR), due to their orientations, type of use and the amount of 

thermal mass internal walls. Both zones are separated by a common load bearing wall and 

have different usage: a daytime and a nighttime use. The long surfaces of the model 

building are faced northeast and southwest. Floor height is 2.80 m. Total internal wall area 

is 165.36 m², mostly within the RF and RGR zones. The dimensional properties of the 

model project are given in Table 6.2. Plan and elevations of model building is given in the 

Appendix L. 

This prototype project is applied for all selected systems in order to accurately compare 

their thermal performance. In the simulation process, the materials of the envelope systems 

are varied according to the systems.  

                                              

                   Figure 6.6: Floor plan of selected building model for simulations (Source: Yapi Merkezi) 

 

 

N 

Zone RF 

Zone SF 
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                        Table 6.2: Some geometrical dimensions of the model building 

Floor Area (m²) 157.32 

Volume (m³) 440.5 

A/V ratio 0.36 
External Wall area (m²)-without windows 189.85 
o SE Wall 32.88 

o SW Wall 63.12 

o NE Wall 58.09 

o NW Wall 35.76 

Internal wall area (m²) 165.36 

Window Area (m²) 15.12 

o SE Windows 5.76 

o SW Windows 0.72 

o NE Windows 5.76 

o NW Windows 2.88 

Wall/Window ratio (%) 7.3 

o SE  14.9 

o SW  1.12 

o NE  9.02 

o NW  7.5 

Roof Surface Area (m²) 90.06 

- NE 45.03 

- SW 45.03 

                      

6.4. Strategies and Assumptions for the Simulations 

Thermal modelings of four residential building systems were based on some assumptions. 

Simulations were performed in two phases, “Reference case” and “Improved case”. Firstly, 

the reference cases of systems were determined and simulations were carried out. In the 

second phase, all energy efficient design strategies and improvements were applied to 

compare and see energy saving performance of the systems between the reference case and 

the improved energy efficient case. Having the results of both simulation cases, two main 

comparisons were made: the cooling and heating energy demand of each building system 

in the three cities. 

The second comparison between the building systems is to indicate the exact temperature 

over 26 °C and for cold climates the exact temperature below 20 °C, along with ambient 

temperature, which gave us a picture to evaluate the performance of the building envelope 

of each system and the energy efficient design strategies. The design strategies are 

investigated one by one in order to show their influence on the energy saving performance 
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of the building systems. The improvements of the systems for each city (climate) differ 

with respect to some strategies. For instance, in this work for Istanbul, Erzurum and 

Antalya different orientation strategies were used due to their climate characteristics. 

Those strategies are shortly defined by the following graphics. The improvements were 

applied for both in PREBID and ISIBAT according to the variables. 

“Reference case” strategies: Heating and cooling reference temperatures are set at 20°C 

and 26°C respectively for all zones. Gains are considered as; four people use the zones in 

the given time schedule. The air-change rate is calculated/estimated as hygienic ventilation 

of 0.7-h during the day and night, which is calculated according to the DIN 1946-T2 (30 m³ 

per person). The ASHRAE 2001 fundamentals defined ventilation air requirement for 

houses, essentially 035-h with at least 8L/s per occupant. 

“Improved case” strategies: For improved cases the nighttime set up heating strategy was 

applied during the night between 24:00 and 08:00 hours. The heating temperature was set 

at 18°C (night) and 20°C (day), and the cooling reference temperature remained the same 

as in the reference case, 26°C. The most important goal of this thesis was to compare 

energy performance of the selected building systems. Accordingly due to that reason some 

internal gains from appliances, computers etc. that do not have a significant influence on 

energy use for such a model are not considered in the simulations. 

In the improved case, window sizes are decreased from 1.44 m² to 1.2 m² for Erzurum in 

order to minimize heat loss through the transparent openings. 

The user schedule is defined equally in both the reference and improved case as:  

- for both RF and RGR zones: 4 people between 23:00 and 08:00 

- for both SF and SGR zones: 2 people between 08:00 and 23:00 
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Figure 6.7: Ventilation strategy for Antalya in the improved case (Night Ventilation)   

As seen in the Figure 6.7 the ventilation strategy for Antalya is set up as night ventilation 

to get cool-night ambient air inside by opening and closing the windows. It is assumed that 

the windows are opened during the night between 22:00 and 08:00 with an air-change rate 

of 5-h, if the room temperature is greater than the ambient temperature and the ambient 

temperature is higher than 20°C. In addition, the ventilation rate remains constant during 

the day with a rate of 0.7-h to supply hygienic air for residents. As it is illustrated in the 

graphic, between 08:00 and 22:00, only a hygienic air-change rate of 0.7-h is applied. The 

reason for choosing night ventilation was the high daytime ambient temperatures in 

Antalya. 

For both of the heating dominated cities, Istanbul and Erzurum, the same ventilation and 

infiltration strategies were assumed in the simulations. The strategy was considered as 

follows: if the room temperature is greater than the ambient temperature and over 25 °C, 

the building is ventilated by half-opened windows with an air change rate of 5-h, otherwise, 

just the infiltration rate stays with the value of 0.7-h.   
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       Figure 6.8: Shading strategy of the improved case for Antalya   

In the regions with hot summers, a climate like Antalya and other southern regions, 

shading strategy is a very important energy saving element. The strategy chosen for 

Antalya depends on global radiation and ambient temperature, a mathematical equation 

representing the shading device is set up in the ISIBAT program. Boundary ambient 

temperatures were selected as 10° C and 23 °C and their match of global radiation values 

of 120 W/m² and 250 W/m² (Figure 6.8). Thus, if ambient temperature is between 0°C and 

10 °C and global radiation is more than 250 W/m² the shading device will be closed. In the 

simulations that were carried out for Istanbul and Erzurum, no shading devices were 

applied because for those climates cooling loads were small in the reference case 

simulations. 

Figure 32 shows heating and cooling strategies used in simulations for Antalya. Cooling is 

going to be applied after the room temperature reaches over 26°C, and heating is activated 

when the room temperature is under 18°C between 0:00-8:00 during the nighttime set up; 

during the day the heating reference temperature is set up as 20°C (Figure 6.9). 
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    Figure 6.9: Heating and cooling strategy for Antalya in the improved case (with nighttime set up)  

Heating and cooling strategies for Istanbul and Erzurum:  

- cooling will be activated when the indoor operative temperature is higher than 

26°C, 

- the zones will be heated if indoor operative temperature is lower than 18°C 

Constructional properties for each system before and after improvements are presented in 

Appendix J and K. The criteria for selection of the systems are; 

• One of the thesis goals is to analyze energy performance of the prefabricated 

residential buildings in Turkey and compare it with reinforced concrete residential 

buildings. The yearly housing demand in Turkey is almost 300.000 according to 

the government report in 2002. Thus, the country needs fast, economic and energy 

efficient housing stock, prefabricated systems can supply these 3 requirements. 

Three prefabricated systems have many applications of new housing projects in 

Turkey; therefore it will be useful to investigate these systems regarding their 

energy consumption. In addition, among the prefabricated residential building 

systems these systems share first three places.  
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• A significant number of the residential buildings in Turkey is reinforced concrete 

buildings and not insulated. Thus, improvement of the reinforced concrete 

residential building systems is an essential task with respect to energy saving and 

conservation.       
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6.5. Analysis of the Simulation Results 

The simulations of four different residential building systems were performed with respect 

to different aspects of energy use and thermal performance:  

- Analyzing the results with regard to heating and cooling loads  

- Analyzing the results with regard to number of zone temperatures over 26°C and below 

20°C 

- Analyzing the results with regard to building performance on the hottest day of year  

- Analyzing the results with regard to different design strategies  

The traditional System, which represents most of the residential buildings in Turkey and is 

generally built without insulation, shows the worst performance in both the hot region 

(Antalya) and the cold region (Erzurum): especially in Erzurum the heating requirement is 

almost two and a half times the maximum requirement in Turkish Standard-825. Other 

prefabricated systems perform better than traditional systems before and after the 

improvement of the systems. 

Primary energy is calculated according to the DIN-4701. It is overall energy, including the 

energy used to generate the delivered energy (final energy) and to transport it to a building. 

The factor for multiplication with the delivered electricity is based on a country’s energy 

mix for generation of electricity. Energy delivered to the building, like gas, oil or other 

fuel, electricity, district heat etc. Effective energy is the amount of energy which has to be 

provided by the technical systems in order to satisfy the needs of the rooms. [46] (Figure 

6.10). The TRNSYS simulation results give building energy use. Primary energy source 

for heating is natural gas, for which primary energy factor (fp) is 1.1, and the loss during 

the distribution of energy to the building is 15% of delivered energy (final energy). 

Primary energy source for cooling is electricity with primary energy factor of 2.9. 
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        Figure 6.10: Primary, delivered and effective energy (Source: www.euleb.info) 

6.5.1. Analysis of the Results with Regard to Heating and Cooling Energy Loads 

In hot climates like Antalya, all systems have significant amounts of cooling loads. The 

reference simulation highlighted the interlocking brick system and lightweight steel 

skeleton system, which accommodate insulation and show better performance than the 

systems without insulation, the aerated concrete system and the traditional system. 

Although the most important issue for Antalya is cooling, heating demand for the 

traditional system exceeded the maximum required amount mentioned in TS-825 standard 

in the reference case simulation. Surprisingly, the lightweight system showed the second 

best cooling and heating energy performance after the interlocking system because of its 

lower thermal transmittance features, which result in a minimum heat gain and heat loss 

(Figure 6.11). 
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Figure 6.11: Energy loads (primary energy) in Antalya before and after the improvements    

After applying energy efficient strategies - including ventilation, shading, insulation and 

different glazing types – the cooling and heating energy demands sank dramatically for all 

building systems. Improving reference systems indicated the highest energy use decrease 

in the traditional system and the aerated concrete system. The decreases in heating loads, 

due to the application of a 5 cm thick insulation in the improved case and some design 

strategies, are (from 70 kWh/m².a to 18 kWh/m².a) over 70% in the traditional system and 

over 60% in the aerated concrete system, which is under the required load required in the 

Turkish standards (54, 68 kWh/m².a). Energy use for the other two pre-fabricated systems, 

the interlocking brick and the lightweight system, is reduced by almost 50 % and had 60 % 

respectively.  

Advanced design strategies are mainly applied to lower cooling demand for Antalya. In 

such a climate this is more important than heating demand, which is why design strategies 

resulted in large decreases in cooling demand for all systems, especially in traditional 

system with more than an 80% decrease. It can be concluded that thermal mass systems 

with a small insulation size can perform better performance with regards to cooling and 

heating loads without having any improvements. Not only applied design strategies have 
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influence in decreasing energy use, but also thermal transmittance values of the building 

envelope limit heat loss and gain. Thus, the lightweight system indicates best performance 

even in a hot climate with the help of shading and high daytime ventilation, which blocks 

solar heat gain through the windows during the day and exhausts hot air during the night.  
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Figure 6.12: Energy loads (primary energy) in Istanbul before and after improvements 

In moderate climates like Istanbul, due to the cold winters, heating loads are more 

important than cooling loads. In the reference case two systems, the interlocking brick and 

lightweight steel systems, show the best performances regarding heating energy, thanks to 

their insulation. The interlocking brick and the lightweight systems had heating energy 

savings of 57% and 68% respectively after modification of the reference building. The 

other two systems exceeded the maximum standard value of heating energy demand 

mentioned in standard TS-825. In the simulation process, installation of 5 cm insulation for 

both the aerated and the traditional systems resulted in a large heating demand decrease 

(from 167 kWh /m².a to 53 kWh /m².a). Heating energy savings of 70% for the aerated 

system and 67% for the traditional system were achieved. Especially applying small sized 

insulation to the aerated concrete resulted in significant energy savings. All systems 
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achieved more than a 50% cooling load decrease; the traditional and interlocking brick 

systems had the lowest cooling loads out of the four systems (Figure 6.12). 
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Figure 6.13: Energy loads (primary energy) in Erzurum before and after improvements 

Erzurum, which is situated at an altitude of 1800 m, has a very cold climate. Accordingly, 

almost all systems, with the exception of the interlocking brick system, failed to meet the 

standards under the TS-825 heating energy requirement, which was defined for Erzurum in 

the reference case. Even in the improved case, the traditional system is close to the 

maximum reference heating demand. Although the city is too cold important heating 

energy savings are achieved close to 60%, by applying new design strategies; especially 

the impact of insulation on heating demand was significantly effective.  

Heating loads sank almost to one-third of the reference case demand after improvements 

for all systems except the interlocking brick system, in which heating loads decreased just 

50 kWh/m²a one-third of the heating load. Insulation for the traditional and aerated 

concrete systems has the greatest influence on the minimization of heating demand because 

of the climate conditions in Erzurum. Having regarded to very few cooling dominated 

days, the lightweight system shows the worst performance with regard to cooling demand. 
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This is a consequence of the transmittance properties of the building envelope, which is not 

thermal mass and has the smallest thermal transmittance value out of the four systems.  
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6.5.2. Analysis of the Results with Regard to Zone Temperatures Greater Than 26°C 

for Improved Systems  

The second general evaluation of these systems was made by comparing the temperatures 

that exceeded 26°C for the three climates for cooling load evaluation. The results represent 

the temperatures without considering mechanical cooling or heating, so-called, free 

running temperatures. In addition, the systems can be compared with respect to 

temperature frequency higher than 26°C as a result the capacity of cooling systems can be 

deduced from those charts.  
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Figure 6.14: The RF-zone temperatures greater than 26°C in Antalya (after improvements) 

In Antalya, the temperature range for the interlocking brick system and the traditional 

system, both thermal mass systems, is between 26°C and 29°C. The temperatures generally 

concentrated between 26°C and 27°C, which are close to the reference temperature for 

cooling. On the other hand the lightweight system and the aerated system have higher 

temperatures than those two thermal mass systems. Consequently, those systems need 

more cooling energy to reach the comfort level. As we see in the chart, the aerated concrete 

and lightweight systems have greater temperature fluctuations between 26°C and 31°C. 

The higher the temperature is, the higher the cooling energy it needs. (Figure 6.14)  
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After improvements, the difference between the ambient temperature and the indoor 

temperatures for the systems increased all systems showed better performance than in 

reference case. 
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Figure 6.15: The RF-zone temperatures greater than 26°C in Erzurum  

In Erzurum, the temperatures exceeding 26°C are not as high as in the other cities; 

however, the systems do have cooling demands for some days of the year. The lightweight 

system shows the worst performance regarding cooling loads in Erzurum, although just 

140 hours in a year are over the 26°C reference temperature, while the other systems have 

fewer temperatures exceeding 26°C (Figure 6.15). In addition, the number of temperatures 

lower than 20°C can give significant information to asses how important the heating needs 

are. 
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Figure 6.16: The RF-zone temperatures greater than 26°C in Istanbul 

Istanbul lies in a moderate climate; differences between systems can be seen more clearly 

than that in the hot climates. The fluctuation of temperature does not change itself, but the 

temperatures exceeding 26°C are higher in the lightweight and aerated concrete systems 

than in the interlocking brick and traditional systems. The temperature range was mainly 

situated between 26°C and 28°C for the interlocking brick and traditional systems, while 

for the lightweight and aerated systems temperature fluctuates between 26°C and 30°C. 

Both the lightweight and aerated concrete systems have higher temperatures than the 

interlocking brick and traditional systems they were between 28°C and 30°C. This means 

more energy efficient improvements are needed for these systems in order to decrease the 

temperature to an adequate level (Figure 6.16). 
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6.5.3. Analysis of the Results with Regard to Zone Temperatures for Improved 

Systems on the Hottest Two Days 

- Hot Climate (Antalya) 

Some of the general simulation results for a hot climate are as follows: the first floor is 

warmer than the ground floor. All systems exceeded the cooling reference temperature of 

26°C in Antalya due to the high ambient temperature. During the night, temperature 

difference between the zones was lower than during the day because of the night 

ventilation until 8 o’clock. Consequently, the zone temperatures increased after 8:00 am. 

The zone temperatures do not follow the ambient temperature curve thanks to the shading 

strategy and the help of the thermal mass internal walls, which had a large influence on 

keeping the zone temperatures almost constant throughout the day. The zones that have 

more internal walls have a cooler indoor climate than the zones without any internal 

partitions. 
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Figure 6.17: Temperature of the RF-zones (Room first floor) on the hottest day in Antalya for all building 

systems 

Figure 6.17 illustrates the temperature comparison of the RF-zone (Room first zone) 

between the four residential systems on the hottest day of the year and on the following 
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day (July 21 and 22) in Antalya. The interlocking brick and traditional systems reach their 

peak temperature value at night; mostly because of the heat storage capacity of the thermal 

mass construction. The solution for this problem can be clearly seen in the graphic night 

ventilation should be applied after 22:00. to cool down the rooms. During the daytime, the 

lightweight system has the highest temperature, followed by the aerated concrete system. 

However, the temperature difference between the systems is not as high as that in Istanbul. 

The impact of night ventilation on the zone temperature varies between 1°C - 3°C for the 

zones with thermal mass internal walls, while it varies between 2°C and 6°C for the zones 

without thermal mass internal walls. The maximum daily RF-zone temperatures do not 

exceed 30°C. The temperature difference between ambient temperature and the highest 

room temperature is approximately 10°C, when the ambient temperature is at the peak 

point of the day (14 o’clock). 
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Figure 6.18: Temperature of the SALF-zones (Saloon first floor) on the hottest day in Antalya for all 

building systems 

Figure 6.18 highlights the temperatures in the SALF-zones, which have no internal thermal 

mass partition walls like the RF-zone. Both the “SALF” and “SALGR” zones, which 

represent saloon zones in the first floor and ground floor, have higher temperatures than 

the room zones the smaller internal thermal mass partition walls lead to the higher daily 

temperature.  
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The lightweight system has higher temperatures than the other three systems because the 

system can not absorb the heat during the day as much as the thermal mass building 

systems. On the other hand it shows better performance at night. It is important to use 

heavyweight structures in such hot climates. The daily room temperatures vary between 

34°C and 27°C for these two hot days, while during the night all four zone temperatures 

are almost equal to the ambient temperature.  

The traditional system showed one of the best performances with regards to zone 

temperature, which lies 10°C under the ambient temperature. The zone temperatures vary 

within the limit of 4°C. The zone temperatures are between 29°C and 26°C, while the 

ambient temperature is at the peak point of 40°C at 15 o’clock  

The zone temperatures of the aerated concrete system do not exceed 34°C, while the 

ambient temperature varies between 40°C and 38°C. As it can clearly be seen, due to the 

night ventilation the zone temperatures at night decrease drastically by the ambient 

temperature, which is also over 26°C, the cooling reference temperature at that time. The 

temperature difference between ambient and zone temperatures fluctuates between 8°C and 

10°C. 
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- Moderate Climate (Istanbul) 
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Figure 6.19: Temperature of the RF-zones (Room first floor) on the hottest day in Istanbul for all building 

systems 

Although in simulations, there is no shading device considered for Istanbul, for some days 

it could be considered in order to lower solar heat gain through the windows. The day time 

temperatures of zones indicate that the heavyweight structure keeps the rooms cool. On the 

other hand, it lets the stored heat out into the rooms in the night, thus, the zone 

temperatures are higher than the ambient temperature. The RF-zone temperatures of the 

systems between during day and night vary between 3°C-5°C. The night ventilation 

strategy is not used for Istanbul, but rather formulated as follows: if the ambient 

temperature is lower than the zone temperature and the zone temperature is higher than 

25°C, then the zone will be ventilated with 5-h. Thus, the worst case of room temperatures 

will be equal to ambient temperature, and it will never be over ambient temperature. In this 

moderate climate of Istanbul, the RF-zone temperatures fluctuate in the context of 24°C 

and 30°C, while the difference between day and night ambient temperatures is 10°C. RF-

zone temperature fluctuations of the four systems are lightweight 24°C-30°C, aerated 
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concrete 25°C-28°C, interlocking brick 25.5°C-27°C and the traditional system 25°C-

27°C. (Figure 6.19) 
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Figure 6.20: Temperature of the SALF-zones (Room first floor) on the hottest day in Istanbul for all building 

systems 

The figure represents the hottest day in Istanbul: thus, daytime room temperatures are 

closer to the ambient temperature. Even if the lightweight structure does not have a large 

thermal capacity the zones RF and RGR have more internal partitions On these hottest 

days, the minimum night ventilation can help to provide more comfortable indoor spaces 

as seen in the graph. However, it is normally not necessary to use night ventilation in 

Istanbul.  

The temperature difference between day and night fluctuates between 10°C and 8°C, the 

SALF-zone temperatures vary within the limits of 3°C and 7°C, generally below the 

cooling reference temperature of 26°C. The highest change is seen in the lightweight 

system.  

The figure demonstrates how the reinforced concrete building can maintain comfortable 

indoor temperatures in Istanbul. In the morning and at night, the zone temperatures are 
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lower than 26°C due to night ventilation. In the hot daytime, the windows are closed to 

prevent hot ambient air from entering the rooms. In addition, with the help of thermal mass 

walls the daily temperatures of the zones are approximately 2°C lower than the ambient 

temperature (Figure 6.20).  
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Figure 6.21:  Temperature of the RF-zones (Room first floor) on the hottest day in Erzurum for all building 

systems 

The RF zone temperatures of all systems in Erzurum show a constant trend during the two 

hottest days of the year. Despite that Erzurum has a large temperature difference between 

night and day, which can reach a difference of 20°C for some days, even on the hottest 

day. At night the room temperatures are under the cooling reference temperature, 26°C, 

determined for the simulations. Both the traditional system and the interlocking brick 

system show better performances than the aerated concrete and lightweight systems with 

regards to room temperature. The zone temperatures of both thermal mass systems do not 

exceed 26°C, while those of the aerated concrete and lightweight systems are over 26°C, 

except during the night. The ventilation rate of 1-h eliminated the disadvantage of the 

thermal mass systems at night. (Figure 6.21) 
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Figure 6.22: Temperature of the SALF-zones (Room first floor) on the hottest day in Erzurum for all 

building systems 

Figure 6.25 indicates the SALF-zone temperatures of the selected building systems for 

Erzurum. The zone temperatures are generally under the cooling reference temperature of 

26°C, even on this warmest day, on which ambient temperature decreases by 

approximately 12 °C against morning at 4:00. Nevertheless, the lightweight system has 

higher temperatures than the other systems. During the day the zones that have no internal 

walls have higher temperatures than those with thermal mass internal partitions. Although 

some days at night the ambient temperature can get as low as 12°C, the zone temperatures 

do not fall below 24°C, thanks to the insulated envelopes of the building system and the 

lowrate of ventilation.  
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6.5.4. Analysis of the Results with Regard to Different Design Strategies for Improved 

Systems 

6.5.4.1. Ventilation 

Ventilation strategy is one of the critical elements of the building energy use because of 

heat gain and loss through the air change. In this section, the influence of five air change 

rates (between 0-h and 5-h) on cooling loads are investigated for 4 buildings systems. The 

natural ventilation is applied by controlling the windows. The hygienic ventilation rate of 

0.7-h, which was calculated according to the DIN 1946, is used for the cold and moderate 

climates in order to provide a minimum healthy, clean and comfortable atmosphere for the 

occupants. On the other hand for the hot climate, high night ventilation rate of   5-h is used 

to exhaust warm indoor temperature through the cool night ambient temperature. In 

addition, the hygienic ventilation rate of 0.7-h is used during the day to minimize influence 

of warm ambient daily temperature. The natural ventilation depends on wind speed and the 

temperature difference between inside and outside air. The high ventilation rates can be 

achieved by using cross ventilation. Following air-change rates can be given as rough 

calculations [45]: 

Table 6.3: Types of window openings and their air-change rates         

Types of window openings Air-change 
rate [-h] 

Closed windows and doors 0 - 0.5 

Tilted windows 0.3 - 1.5 

Half-opened windows 5.0 - 10.0 

Completely opened windows 10.0 - 15.0 

Oppositely located windows up to 40.0 
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Figure 6.23: Influence of night ventilation on cooling loads (Primary Eenergy) for Antalya  

The graphic shows the influence of the six different air-change values, from 0-h to 5-h on 

cooling loads of the four different systems in Antalya. The ventilation strategy is shown in 

this chapter graphically and can be summarized accordingly during the day (between 8:00 

and 22:00) windows are closed, with a minimum hygienic air change value of 0.7-h and 

during the night (between 22:00 and 8:00) windows are opened to reach a maximum air 

change of 5-h. As seen in the graph increasing the air-change values results in significant 

reductions in the cooling loads of the four different construction systems in Antalya. The 

interlocking brick system and the traditional system indicate the best performances, with 

70% and 60% of reductions in cooling loads when just hygienic air-change is applied and a 

5-h air-change value, which eliminates the disadvantage of the thermal mass structure 

during the night.  

When applying just the hygienic air-change, the lightweight system has the lowest cooling 

load out of the four systems. Other heavyweight systems store more heat during the day 

than the lightweight building, and they let out the stored heat into the living spaces at night. 

Thus, if enough ventilation is not applied to sweep the hot air out of living spaces, they 

will be overheated even at night. Consequently greater air-change rates are applied; this 
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resulted in a high cooling load difference between the interlocking brick and the 

lightweight structure, which is almost equal in the case of 5-h air-change. Out of six 

different air-change rates, the significant improvement can be succeeded by applying 1-h. 

Cooling loads of the interlocking brick system drop from 24 kWh /m²a to almost 14 kWh 

/m².a, which is already a 60% of decrease, for the lightweight system from 17.4 kWh /m².a 

to almost 10 kWh /m².a, for the traditional system from 25 kWh /m²a to 15 kWh /m²a and 

for the aerated concrete system from 23 kWh /m²a to 9 kWh /m²a. In addition to these 

results, optimum air-change rates for those four systems can be determined by examining 

the graphic above for Antalya. It can be concluded that air-change values greater than 3-h 

not have large influences on the cooling loads. Thus, the ventilation rates can be 

determined between 3-h and 4-h for traditional and aerated concrete buildings, 4-h and 5-h for 

interlocking brick and lightweight buildings (Figure 6.23).  
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Figure 6.24:  Influence of ventilation on cooling loads (Primary Energy) for Istanbul  

Figure 6.24 above highlights the performance of the four different systems with regard to 

different ventilation rates in the moderate climate. The ventilation strategy in Istanbul can 

be defined shortly as follows if room temperature is over 25°C windows will be opened 
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with 5-h air-change and will decrease from 25°C, if room temperature drops under 22°C the 

ventilation will be off and only hygienic ventilation will be applied.  

Traditional building has the lowest cooling load out of the four different building 

constructions, which ranked after the in the following order: interlocking brick, aerated 

concrete and lightweight buildings. In such a moderate climate, application of the high air-

change values can result in an increase in the cooling demand. As seen in the graphic after 

applying 4-h the cooling loads increase slightly. This can be caused by a high air-change of 

5-h, at which point the temperature fluctuation can be very high, thus, the ambient 

temperature can increase over the duration of an hour.  

The graphic clearly indicates that the interlocking brick building can perform well, if it is 

supported by sufficient ventilation, which is not more than 4-h in this moderate climate. 

The cooling loads of the lightweight building decreases sharply from 17 kWh/m².a to 10 

kWh/m²a, representing 75 % of the total decrease, if only 1-h air-change value applied. In 

contrast, the air-change rates, higher than 1-h, do not greatly reduce the cooling loads. The 

air-change values more than 4-h are also not adequate ventilation for aerated concrete. 

Optimum air-change rates can be proposed as 2-h for the lightweight building systems and 

3-h for the rest of the building systems. 
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6.5.4.2. Glazing Variables 
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Figure 6.25: Heating-cooling energy (Primary Energy) performance of different glazing types for Antalya  

Figure 6.25 shows the performance of four glazing types, including single glazing, double 

glazing, triple glazing and double low-e glazing for each building system in a hot climate 

region Antalya, with respect to heating and cooling loads. The simulated glazing types 

have the thermal transmittance “U-value” and solar heat gain coefficient values “g-value” 

as following:  

Single glazing     U-value: 5.8 W/m².K, g-value: 0.87 

Double glazing    U-value: 2.7 W/m².K, g-value: 0.777 

Triple Glazing     U-value: 1.8 W/m².K, g-value: 0.7 

Double low-e      U-value: 1.7 W/m².K, g-value: 0.597 

Since the main concern is to reduce cooling loads in such a climate, the ranking of the 

glazing types from best to worst regarding cooling demand will be triple glazing, double 

low-e glazing, double glazing and single glazing respectively for all building types. On the 

other hand, when using triple glazing, the heating loads decrease in comparison to the 
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single glazing case, but they have a higher heating energy use than the case of installing 

double glazing and double low-e glazing. Due to the solar thermal transmittance “g” value 

of 0.77, the building with double glazing shows one of the best cooling performances. The 

building with single glazing has the worst performance with regards to both cooling and 

heating loads with its higher “g-value” of 0.87; it describes a percent of transmitted solar 

heat gain through the windows and a higher “U-value” of 5.8 W/m²K. Consequently, when 

using single pane we have more overheated and more heating dominated thermal zones. 

Double low-e glazing is ideal for such cooling dominated climates because of its lower 

solar heat gain coefficient “g-value” of 0.59, compared to the four other glazing types. 

Improving glazing types from single pane to the others resulted in high decreases in both 

the heating and cooling demand of the buildings in Antalya. If the lightweight building is 

protected against daytime solar radiation by means of different design strategies, it 

represents one of the best performances in Antalya. Once the system receives solar heat 

gain it is difficult to release this hot air without the help of shading and special windows. 
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Figure 6.26: Heating-cooling energy (Primary Energy) performance of different glazing types for Istanbul  

Double glazing with a “U-value” of 2.7 W/m².K and “g-value” of 0.777 has the lowest 

heating loads for all building types in the moderate climate, Istanbul. However cooling 
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load performance of this glazing type represents the third out of four glazing types due to 

its higher “U-value” and “g-value”, which means the temperature flow between outside-

inside is higher, and it has more solar heat gain through the windows . Triple glazing and 

double low-e glazing keep the buildings cooler than the other window types mostly due to 

their lower “g”-values of 0.7 and 0.597 respectively. In addition smaller thermal 

transmittance values of both glazing types keeps the indoor environment warmer than that 

in double glazing. 

The lightweight building with double glazing performs better than other glazing types with 

regards to heating loads but has the second worst cooling performance. Traditional 

building has the highest heating demand for all types of glazing, while it performs best in 

cooling demand (Figure 6.26). 
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Figure 6.27: Heating-cooling energy (Primary Energy) performance of different glazing types for Erzurum 

In Erzurum, where the buildings have almost no cooling demand due to its extreme cold 

climate, the main concern is to heat the building and keep the heated air in the living 

spaces with minimum hygienic ventilation. The glazing types with lower thermal 

transmittance values and a higher solar heat gain coefficient can be ideal for such climates, 

because of getting as much as solar heat gain even in summer and keeping the heat loss 
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lower through the windows. The lightweight building performed better than the other three 

building types with respect to heating load largely due to its insulation thickness of almost 

20 cm.  Double glazing and double low-e glazing show nearly the same heating 

performance for each building system. Nevertheless double low-e glazing reduces cooling 

loads by more than 50% (Figure 6.27). 

6.5.4.3. Thermal Mass Internal Walls 
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Figure 6.28: Influence of thermal mass internal walls on cooling energy loads (Primary Energy) in Antalya 

There are no large temperature differences between day and night temperatures in Antalya, 

Thus, the systems with thermal mass internal walls with high heat storage capacity can 

overheat the room during the nighttime in the summer: however, it cools the room by 

emitting coming solar radiation during the day. As illustrated in Figure 6.28 thermal mass 

internal walls of the traditional, interlocking brick and aerated concrete buildings have a 

greater influence than the lightweight structure in Antalya when using maximum night 

ventilation in order to exhaust as much as released heat from the thermal mass walls. The 

traditional and interlocking brick systems show the two best two performances, with a 

reduction of 1.4 kWh/m²a cooling energy load, followed by the aerated concrete and 

lightweight systems, with a reduction of 1kWh/m²a and 0.8 kWh/m²a respectively. In the 
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winter thermal mass walls reduce heating loads unless the daytime temperatures are not 

extremely cold (Figure 6.28). 
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Figure 6.29: Influence of thermal mass internal walls on cooling energy loads (Primary Energy) in Istanbul 

As indicated in Figure 6.29, the cooling energy demand of the four structures decreases 

slightly. Thus, in moderate climates the heat storage capacity of walls does not play an 

essential role as it does in hot climates due to lower solar heat gains. Nevertheless, only the 

influence of internal partition walls is simulated in order to see its impact on energy use.  

Since the thermal mass walls are cooler, the heat is absorbed and conducted into these 

materials. If thermal mass walls are warmer than the temperature of the surrounding 

environment, it releases heat into the surroundings. Erzurum has extremely cold winters 

and cool summers: in addition, night temperatures even in summer do not exceede 15°C. 

Thus, thermal mass internal walls emit the heat from the surrounding area and decrease the 

room temperature. 
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6.5.4.4. Shading 
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Figure 6.30: Influence of shading on cooling loads (Primary Energy) of the four systems in Antalya  

Figure 6.29 displays the shading performances of the four different systems on cooling 

demand in a hot climate. The shading strategy is described according to the global solar 

radiation and ambient temperature. The shading factor is defined as the ratio of the non-

transparent area of shading element to the whole transparent area. It is assumed to be 85% 

in the simulations. The transparent openings with shading result in 45% cooling savings 

compared to those without shading elements. The biggest percentage of saving is seen for 

the lightweight building out of the four systems, because non-thermal mass walls do not 

emit heat during the day as much as thermal mass walls, which let out emitted heat into the 

living space at night and, thus, increase cooling loads. The low thermal transmittance value 

of the lightweight building is another reason for lower cooling demand when using a 

shading element. 
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6.5.4.5. Orientation 
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Figure 6.31: Influence of orientation variables for the traditional system in Antalya 

The model building is situated as it is illustrated in Figure 6.31, with long external surfaces 

that face northeast (NE) and southwest (SW), and short building surfaces that face 

southeast (SE) and northwest (NW). The reference surface is southeast (SE) representing 

0°in the graphic, and the model building is rotated every 45° counter-clockwise. The figure 

above shows the influence percentage of each orientation variable on cooling loads for 

Antalya from 0° to 315°. The greatest cooling energy saving can be made by rotating the 

model building 45° counter-clockwise. The reasons are that the southwest (SW) surface 

has no windows, and the short building surfaces face east and west. Thus, west and east 

surfaces of the building do not receive high solar radiation. The SW wall emits solar heat 

during the day, which keeps the indoor climate cool. The worst orientation variables are 

when the building is rotated 180°, 225° and 270°, due to higher solar heat gain from the 

large surfaces and windows. 

In the improved case of simulations for Istanbul and Erzurum, the model building is 

rotated 225°, which gives it lowest heating demand according to the simulations and 
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allows it to receive as much solar heat gain as possible, even sometimes in the summer for 

Erzurum. 

6.5.4.6. Insulation 

Insulation variables were simulated just for the traditional building, which represents a 

significant share of the residential building constructions in Turkey. The lightweight and 

interlocking brick systems have insulation in the wall and floors. Thus, insulation variables 

are not examined for these systems.  
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Figure 6.32: Influence of insulation thickness on heating and cooling loads (Primary Energy) for the 

Traditional System in Antalya 

Figure 6.32 shows the influence of different insulation thicknesses on the heating and 

cooling demand for traditional building in hot climates. In other regions (temperate and 

cold regions), insulation was a very important element of energy savings since it decreased 

the heating energy demand, but it has no influence on the cooling energy demand in 

heating dominated regions. On the other hand, as seen in the chart, a small amount of 

insulation has a large influence on the cooling energy demand in hot climates. For instance, 
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we applied just 2 cm of insulation to the external walls of the model building, and as a 

result we saved almost 50% of cooling loads.  

An insulation thickness of more than 2 cm does not have a big impact on the cooling 

demand. It can be concluded that the small amount of insulation keeps the cool air within 

the building, and the external insulation prevents and lowers the heat gain through the 

walls into the building. The conclusion can be made for heating loads as well, but the 

difference is that insulation thickness of 8 cm can be beneficial to take heating loads down. 

Heating loads are reduced by more than 60 % by using 8 cm insulation for the external 

walls. A similar attempt to decreasing the cooling demand by combining a minimum 

internal heat gain and insulation use in warm climates is the ECOFYS report created for 

the European Insulation Manufacturers Association. The report concluded that a 

combination of lowering internal loads and improving insulation can save 85% of the 

cooling demand for a residential building sample in Madrid [42]. 
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Figure 6.33: Influence of insulation thickness on heating energy load (Primary Energy) for the traditional 

System in Erzurum 

It is clear that insulation plays an essential role in decreasing the heating demand of a 

building situated in a cold climate zone. Figure 6.33 above indicates the simulation result 
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with different insulation thicknesses and their impacts on the heating demand Erzurum. 

Due to the cold climate in Erzurum, even 15 cm of insulation reduces the yearly heating 

demand of the city drastically, from 300 kWh/ m².a to almost 120 kWh/ m².a; more than 

50% saving is achieved. It shows us that in such cold climate zones the thicknesses of the 

walls should be greater than 20 cm with insulation in order to drop the energy demand to 

reasonable values by enriching the building envelope and, thus, minimizing heat loss  
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Figure 6.34: Influence of insulation thickness on heating and cooling loads (Primary Energy) for the 

Traditional System in Istanbul 

The simulation results for Istanbul conclude that applying insulation can only have an 

influence on the heating demand and very little influence on the cooling demand for such 

temperate climates. The graph indicates an almost constant cooling energy demand when 

the thickness of the insulation is increased, while heating energy demand sinks by 40 kWh 

/m².a. In other words, even if there is some cooling demand in temperate climates, the 

thickness of the insulation does not have a big influence on it. Installing even 2 cm 

insulation only has a very small affect on cooling demand (Figure 6.34). 
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- Economic Profitability of the Insulation for the Reinforced Concrete System 

To increase insulation thickness results in heating and cooling energy reduction. On the 

other hand, the initial costs of buildings will rise. Thus, an evaluation of the long-term 

payback period for different insulation thicknesses becomes a significant task. The actual 

cash value method (Barwert Method) is used in order to analyze the economic efficiency of 

different insulation thicknesses for Traditional building. Shortly, the actual value of 

investment after 50 years is monitored for each insulation thickness applied to external 

walls. Heating energy loads and cooling energy loads are taken into account in order to 

calculate the actual cash values of different insulation thicknesses. The yearly inflation rate 

is considered to be 5%. The initial costs of applying different insulation thicknesses are 

obtained from different companies and construction costs are determined by the 

construction ministry. The natural gas price is taken from the Istanbul Municipality gas 

company (IGDAS) tariffs 0.023 €/kWh as of 2005 and the electricity price 0.075 €/kWh, 

which is taken from the Turkish electricity distribution company (TEDAS) tariffs, as of 

2005. 
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Figure 6.35: Insulation investment and payback period for the traditional system in Antalya 

The graph indicates that the payback years buildings with different insulation thicknesses 

in Antalya vary between 7 and 8 years. An investment between 2000 € and 2500 € for 
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external wall insulation of the simulated building model will bring 17500 € and 22500 € 

profit after 50 years mostly because of the cooling demand. Taking the graph into 

consideration, some assumptions can be made regarding the optimum thickness of the 

insulation for this climate. As seen in the graphic, after 50 years there is no much 

difference between the actual values of investment for the building in Antalya. Thus, even 

applying a small amount of insulation to external walls will be enough (Figure 6.35).  
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Figure 6.36: Insulation investment and payback period for the traditional system in Istanbul 

Actual cash values of applying different insulation thicknesses for external walls in 

Istanbul differ in Antalya. The payback time varies between 8 and 10 years. After 50 years 

the differences between actual values of investments vary much more than in Antalya. 

Employing 2 cm insulation for external walls reflects the worst profit in comparison with 

other variables of insulation thickness regarding payback time and actual value of 

investment. Six thousand euros are gained just by increasing the insulation thickness to 4 

cm. It can be estimated that the insulation between 6cm and 8 cm is an optimal thickness 

for such moderate climates (Figure 6.36). 
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Figure 6.37: Insulation investment and payback period for the traditional system in Erzurum 

Due to its extreme cold weather, applying insulation to a building in Erzurum is the most 

profitable improvement among the other strategies. Even applying 2 cm insulation is as 

profitable as applying 16 cm insulation in the moderate climate of Istanbul. The differences 

between actual values of investments after 50 years are very large. For instance, investing 

in the installation of 2 cm thickness after 50 years is 26000 €, while that of 16 cm 

insulation increases by 46000 €. Thus, payback years for these different insulation 

thickness applications is reduced by 3-4 years, which is mainly influenced by the heating 

loads (Figure 6.37).  
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6.6. Summary of simulation results 

Cold climate Temperate Climate Hot climate 

� Insulation is the most 
important element, 
for cold climate, 
optimal insulation 
thickness varies 
between 10 cm and 
14 cm. 

� Economic 
profitability of 
insulation thickness 
over 8 cm is very 
high because of huge 
heating energy 
decreases. 

� Small ventilation 
rates of 1-h, more 
compact structure. 

� Lightweight 
materials for daily 
heat gain, heavy 
structure for nightly 
heat gain. The 
systems with good 
insulation features 
perform better. 

� Glazing with smaller 
thermal 
transmittance “U-
value” and higher 
solar heat gain “g-
value”. 

� Orientation east, west 
large surfaces for 
heat gain. 

 

� Optimum ventilation 
rates varies for the 
selected building 
systems between 2-4 

h 

� Insulation thickness 
can be optimized as 
6-8 cm. 

� Heating is main 
concern, but also a 
part of summer 
overheating problems 
can be seen  

� Aerated concrete 
system shows the 
best performance 
regarding heating 
energy demand 

� Shading can be 
considered for 
several days in 
summer. 

 

� Shading is very 
effective in order to 
balance daytime 
room temperature 

� Maximum night 
ventilation 
decreases room 
temperature during 
the night. 

� Thermal mass 
materials to cool 
indoor 
environment, 
traditional and 
interlocking block 
performed better 
regarding cooling 
demand. 

� Insulation thickness 
of 2 cm is enough 
for such climates 

� Orientation east, 
west short surfaces 
with minimum 
windows 

� Glazing with small 
thermal 
transmittance “U-
value” and solar 
heat gain “g-value” 
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7. Conclusions and recommendations 

The thesis illustrated that Turkish residential building stock may attain great energy saving 

performance just by applying advanced design strategies. In addition to these strategies, as 

a future research work, renewable energy integration should be investigated. No 

mechanical solutions, except the integration of solar and PV panels, are suggested as a 

renewable energy solution to energy demands. The conclusions and discussions addition to 

Chapter 4 and Chapter 5 can be summarized as follows: 

• The new climate classification done according to the ASHRAE transactions 4610-4611 

showed that a precise classification is needed and degree day method can be used for 

estimating energy needs of each city. The relation between energy consumption and 

climate analysis through the degree day method can give some information of estimating 

energy consumption in the pre design phase. Although in this work we selected just three 

cities and four building systems, more cities, respectively climate zones can be 

investigated by energy institutions in Turkey in order to create a reference for architects 

and homeowners.    

• Turkish energy standards should be updated after careful examination of the other 

standards in the World. Thermal transmittance values of the building components should 

be reviewed and updated. The preparation of the standards can be made by using new 

scientific methods, for instance; utilization of the simulation programs which is briefly 

explained in the Chapter. 4.  

• After simulating the four different construction systems in three cities from different 

regions, improvements of the systems and application of new energy strategies save large 

amount of energy between 50-80% with respect to heating and cooling energy. The 

energy simulation of some residential buildings helped to optimize energy design 

strategies of each city we selected. This optimization should be made by Turkish energy, 

institutions regarding ventilation rate, insulation thickness, type of glazing, orientation of 

building, construction system, shading element and other variables, after defining 

residential building types in Turkey with the help of real measurements and simulation 

tools. 
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Applying energy efficient design strategies is the first step of energy efficient building; 

second step can be integration of the renewable energies to building envelope. Thus, future 

works will focus on integration of the renewable energy sources. Especially solar energy 

integration both in terms of photovoltaic and solar thermal applications should be carefully 

examined. In addition, because of Turkey’s large housing demand, the need for energy 

efficient, economic and permanent residential buildings can be supplied by prefabricated 

buildings. In the future renewable energy integrated prefabricated building systems will 

dominate residential building sector.   
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Appendix A: The classification used for TS-825 standard                                               

 

 



 
 

                                                                                                                                             

Appendix B: Climate classification methods used for ASHRAE standards. First step;  

                           Definition of the main zones 

A. Major Climate Type Definitions (1) 
I. Marine (C) Definition  - Locations meeting the following criteria: 

              • mean temperature of coldest month between –3ºC (27ºF) and 18ºC (65ºF)(2) AND 

              • warmest month mean < 22ºC (72ºF)(3) AND 

              • at least four months with mean temperatures over 10ºC (50ºF)(4) AND 
• dry season in summer(5). The dry season in summer criterion is met when the month with the 
heaviest rainfall in the colder season has at least three times as much precipitation as the 
month in the warmer season with the least precipitation. The colder season is October, 
November, December, January, February, and March in the Northern Hemisphere and April, 
May, June, July, August, and September in the Southern Hemisphere. All other months are 
considered the warmer season, in their respective hemispheres. 

II. Dry (B) Definition (SI) - Locations meeting the  following criteria: 
              Not Marine and 

              Pcm < 2.0 × ( TC + 7) 
              where: 

              Pcm = annual precipitation in cm 

              TC = annual mean temperature in degrees Celsius  
III. Humid (A) Definition (SI) - Locations meeting the following criteria: 
              Not Marine and 

              Pcm ≥ 2.0 × ( TC + 7) 
Notes: 

1. Humid, dry, and marine zone definitions are based on Strahler 1963, Plate 2, except as noted. 

2. These criteria are necessary to exclude Köppen’s (D) “snow” climates and (A) “tropical” climates. 

3. This criterion excludes the (a) “hot in summer” climates, such as the South-eastern and Midwestern United States. 
4. This criterion excludes some marine climates in high latitude locations, such as Alaska, Iceland, and Northern 
Norway, from special treatment as marine climates. 
5. This “dry season in summer” definition is from Köppen 1931 (German text), p.129. The authors were unable to find 
in this text quantitative definitions for “colder season” and “warmer season,” only an acknowledgement of the inherent 
difficulty in defining these seasons in a way that is effective for all world climates. The month-based definitions  were 
created by the authors to make the climate definitions complete and computable. 
 Under the variants of the Köppen system reviewed for this work, the dry in summer criterion was part of the Cs 
(Mediterranean) but not the Cb (Marine, Cool Summer) subdivision. We included it in the general Marine zone 
definition for use in the United States because dry summers are a characteristic attribute of the Pacific marine 
climates that we felt were necessary to recognize in the classification. It was also in excluding isolated locations in 
other parts of the country from meeting the Marine zone criteria. Specifically, sites at higher elevations in the Southern 
Appalachian Mountains (such as Asheville, NC) and medium elevations in the South-western United States (such as 
Albuquerque, NM) otherwise marginally met the marine criteria. Outside of the United States, such as in Northern 
Europe where marine influences extend far inland and summers are not as dry, this criterion may not be useful and 
could be dropped. 

 

 

 

 

 
 



 
 

                                                                                                                                             

Appendix C: Climate classification methods used for ASHRAE standards. Second step;  

                           Thermal zone definition 

 

Zone 
No.

Climate Zone 
Name and Type 2

Thermal Criteria (1.3.8) Köppen 
Class. 5 

1A Very Hot – Humid 5000 < CDD10ºC Aw 

1B7 Very Hot – Dry 5000 < CDD10ºC BWh 
2A Hot – Humid 3500 < CDD10ºC = 5000 Caf 
2B Hot – Dry 3500 < CDD10ºC = 5000 BWh 
3A Warm – Humid 2500 < CDD10ºC = 3500 Caf 
3B Warm – Dry 2500 < CDD10ºC = 3500 BSk/BWh/H 
3C Warm – Marine HDD18ºC = 2000 Cs 

CDD10ºC = 2500 AND 

HDD18ºC = 3000 

4C Mixed – Marine 2000 < HDD18ºC = 3000 Cb 
5A Cool – Humid 3000 < HDD18ºC = 4000 Daf 
5B Cool – Dry 3000 < HDD18ºC = 4000 BSk/H 

5C7 Cool – Marine 3000 < HDD18ºC = 4000 Cfb 
6A Cold – Humid 4000 < HDD18ºC = 5000 Daf/Dbf 
6B Cold – Dry 4000 < HDD18ºC = 5000 BSk/H 
7 Very Cold 5000 < HDD18ºC = 7000 Dbf 
8 Subarctic 7000 < HDD18ºC Dcf 

Semiarid Middle Latitude/Highlands 
Humid Continental (Cool Summer) 

Subarctic 

Humid Continental (Warm Summer) 
Semiarid Middle Latitude/Highlands 

Marine (Cool Summer) 
Humid Continental (Warm Summer/Cool Summer) 

Arid Subtropical 
Humid Subtropical (Warm Summer) 

Semiarid Middle Latitude/Arid Subtropical/Highlands 
Dry Summer Subtropical (Mediterranean) 

Köppen Classification Description  6

Tropical Wet-and-Dry 
Tropical Desert

Humid Subtropical (Warm Summer) 

4B Mixed – Dry CDD10ºC = 2500 AND
HDD18ºC = 3000  

B. Thermal Zone Definitions 

4A Mixed – Humid 

Notes:
1. Column 1 contains alphanumeric designations for each zone. These designations are intended for use when the zones are referenced in the code. The numeric part of the designation relates to the thermal properties of the zone. The 
letter part indicates the major climatic group to which the zone belongs; A indicates humid, B indicates dry, and C indicates marine. The climatic group designation was dropped for Zones 7 and 8 because we did not anticipate any building 
design criteria sensitive to the humid/dry/marine distinction in very cold climates. Zones 1B and 5C have been defined but are not used for the United States. Zone 6C (Marine and HDD18ºC > 4000 (HDD65ºF > 7200) might appear to be 
necessary for consistency. However, very few locations in the world are both as mild as is required by the Marine zone definition and as cold as necessary to accumulate that many heating degree days. In addition, such sites do not appear 
climatically very different from sites in Zone 6A, which is where they are assigned in the absence of a Zone 6C.. 
2. Column 2 contains a descriptive name for each climate zone and the major climate type from Table 2A. The names can be used in place of the alphanumeric designations 
wherever a more descriptive designation is appropriate. 
3. Column 3 contains definitions for the zone divisions based on degree-day cooling and/or heating criteria. The humid/dry/marine divisions must be determined first before
these criteria are applied. The definitions in Table 2A and 2B contain logic capable of assigning a zone designation to any location with the necessary climate data anywhere
in the world. However, the work to develop this classification focused on the 50 United States. Application of the classification to locations outside of the United States is untested. 
4. Column 4 contains the name of a SAMSON station found to best represent the climate zone as a whole. See Section 4.3 for an explanation of how the representative
cities were selected. 
5. Column 5 lists the abbreviations for the climate groups based on a simplified version of the Köppen system (Finch et al. 1957). (see Figures 1 and 2). This information
relates the climate zones to a widely-used world classification system, and may facilitate application outside of the United States. 
6. Column 6 contains a verbal description derived from Köppen’s work that serves to explain the two- and three-letter codes in the previous column. 
7. Zones 1B and 5C do not occur in the United States, and no representative cities were selected for these zones due to data limitations. Climates meeting the listed criteria do
exits in such locations as Saudi Arabia; British Columbia, Canada; and Northern Europe. 
8. SI to I-P Conversions: 

                       2500 CDD10ºC = 4500 CDD50ºF                                             3000 HDD18ºC = 5400 HDD65ºF 
                       3500 CDD10ºC = 6300 CDD50ºF                                             4000 HDD18ºC = 7200 HDD65ºF 
                       5000 CDD10ºC = 9000 CDD50ºF                                             5000 HDD18ºC = 9000 HDD65ºF 
                       2000 HDD18ºC = 3600 HDD65ºF                                             7000 HDD18ºC = 12600 HDD65ºF 

Caf/Daf 

BSk/BWh/H 

Humid Subtropical/Humid Continental (Warm Summer)

Semiarid Middle Latitude/Arid Subtropical/Highlands 

Marine (Cool Summer) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

                                                                                                                                             

Appendix D: Sun path (Stereographic) diagram of Erzurum 

 

Appendix E: Sun path (Stereographic) diagram of Antalya 

 

 

 



 
 

                                                                                                                                             

Appendix F: Sun path (Stereographic) diagram of Istanbul 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

                                                                                                                                             

Appendix G: Maximum values of yearly primary energy consumption and specific transmission heat losses  

                       According to ENEV (Energiesparverordnung) – (Translated from ENEV) 

 

A/V e 

Ratio  

Annual Primary Energy Consumption Specifically, transmission heat 
losses related heat-transferring 
encompassing area 

 Qp in kWh/(m².a) related to the floor area Qp in 
kWh/(m³.a) 
related to the 
heated volume  

HT in W/(m²K)  

 Residential buildings 
(except the buildings 
defined by Column 3) 

Residential 
buildings with 
predominant 
electrical water 
heating 
systems  

Other 
buildings 

Non-
Residential 
buildings with 
the 
surface/windo
ws area of 
≤30% and 
residential 
buildings 

Non-Residential 
buildings with 
the 
surface/windows 
area of >30%  

1 2 3 4 5 6 
≤ 0.2 66.00 +2600/100+AN) 88.00 14.72 1.05 1.55 

0.3 73.53 +2600/100+AN) 95.53 17.13 0.80 1.15 

0.4 81.06 +2600/100+AN) 103.06 19.54 0.68 0.95 

0.5 88.58 +2600/100+AN) 110.58 21.95 0.60 0.83 

0.6 96.11 +2600/100+AN) 118.11 24.36 0.55 0.75 

0.7 103.64 +2600/100+AN) 125.64 26.77 0.51 0.69 

0.8 111.17 +2600/100+AN) 133.17 29.18 0.49 0.65 

0.9 118.70 +2600/100+AN) 140.70 31.59 0.47 0.62 

1 126.23 +2600/100+AN) 148.23 34.00 0.45 0.59 

≥1.05 130.00 +2600/100+AN) 152 35.4 0.44 0.58 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

                                                                                                                                             

Appendix H: Thermal transmittance “U” values of low-rise residential buildings for USA (Source: ASHRAE Standard 90.2-2001) 
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Appendix J: Constructional properties of the simulated systems after improvements 
 

U-value 

[W/m².K]

U-value  

[W/m².K]

U-value  

[W/m².K]

U-value  

[W/m².K]

U-value  

[W/m².K]

U-value  

[W/m².K]
Gypsum Plaster 1 cm Gypsum Plaster 1 cm Particle Board 2 cm Gypsum Plaster 1 cm Plywood 1 cm Gypsum Plaster 1 cm
Hollow Brick 19 cm Concrete Floor Panel 15 cm Cement Mortar 2 cm Concrete Floor Panel 15 cm Mineral Wool 8 cm Hollow Brick 10 cm
Polystren 8 cm Cement Mortar 2 cm Polystren 5 cm Plywood 1 cm Gypsum Plaster 0.5 cm
Air Space Particle Board 2 cm Cement Mortar 5 cm Bitumen Sealing 0.5 cm
Hollow Brick 10 cm Purnice Gravel 5 cm Roof Tile 5 cm
Gypsum Plaster   1 cm Gypsum Plaster 1 cm Particle Board 2 cm Gypsum Plaster 1 cm OSB Board 1.3 cm Gypsum Plaster 1 cm

OSB Board 1.3 cm Plaster Board 1.8 cm Polystren 5 cm Plaster Plate 1.3 cm Insulation 8 cm Mineral Wool 8 cm
Mineral Wool 16 cm Mineral Wool 8 cm Cement Mortar 5 cm Minerall Wool 8 cm OSB Board 1.1 cm Plywood  1,3 cm
Plaster Board 1.1 cm OSB Board 1.3 cm Purnice Gravel 5 cm OSB Panel 1.3 cm Bitumen Sealing 0.5 cm Gypsum Plaster 1 cm
Polystren 4 cm Particle Board Floor 2 cm Roof tile 5 cm
Cement Mortar 3 cm
Gypsum Plaster 1 cm Gypsum Plaster 2 cm Particle Board 2 cm Gypsum Plaster 2 cm Plywood 1 cm Gypsum Plaster 2 cm
Aerated Conc. Block 20 cm Aerated Conc. Block 15 cm Cement Mortar 2 cm Aerated Conc. Block 15 cm Mineral Wool 8 cm Aerated Conc. Block 10 cm
Polystren 5 cm Cement Mortar 2cm Polystren 5 cm Plywood 1 cm Gypsum Plaster 2 cm
Cement Mortar 3 cm Particle Board 2 cm Cement Mortar 5 cm Bitumen Sealing 0.5 cm cm

Purnice Gravel 5 cm Roof Tile 5 cm cm
Cement Mortar 2 cm Cement Mortar 2 cm Particle Board 2 cm Cement Mortar 2 cm Plywood 1 cm Cement Mortar 2 cm
Light Hollow Brick 20 cm Concrete Floor 12 cm Cement Mortar 2 cm Concrete Floor 12cm Mineral Wool 8 cm Light Hollow Brick 10 cm
Polystren  5 cm Cement Mortar 2 cm Polystren 5 cm Cement Mortar 2 cm Plywood 1 cm Cement Mortar 2 cm
Cement Mortar 3 cm Particle Board  2 cm Cement Mortar 5 cm Bitumen Sealing 0.5 cm

Purnice Gravel 5 cm Roof Tile 5 cm

3.8 0.41 2.1Traditional System 0.41 1.38 0.39

0.47

Aerated Concrete 0.35 0.72 0.39 1.09 0.4 1.35

Lightweight Steel 0.17 0.37 0.37

First Floor Ceiling Roof Floor Structure Ground Structure

Materials

0.45 0.45

2.3 0.4 3.4

Construction Types 

Wall Structure

Interlocking Brick 0.31 1.1 0.39

CONSTRUCTIONS OF SIMULATED BUILDINGS AFTER IMPROVEM ENTS

MaterialsMaterials Materials Materials Materials

Internal Wall

 
 
 
 
 



 
 

                                                                                                                                             

 
Appendix K: Constructional properties of the simulated systems before improvements 
 

U-value 
[W/m².K]

U-value  
[W/m².K]

U-value  
[W/m².K]

U-value  
[W/m².K]

U-value  
[W/m².K]

U-value  
[W/m².K]

Gypsum Plaster 1 cm Gypsum Plaster 1 cm Particle Board 2 cm Gypsum Plaster 1 cm Plywood 1 cm Gypsum Plaster 1 cm
Hollow Brick 19 cm Concrete Floor Panel 15 cm Cement Mortar 5 cm Concrete Floor Panel 15 cm Bitumen Sealing 0.5 cm Hollow Brick 10 cm
Polystren 8 cm Cement Mortar 2 cm Purnice Gravel 5 cm Roof Tile 5 cm Gypsum Plaster 0.5 cm
Air Space Particle Board 2 cm
Hollow Brick 10 cm
Gypsum Plaster   1 cm Gypsum Plaster 1 cm Particle Board 2 cm Gypsum Plaster 1 cm OSB Board 1.3 cm Gypsum Plaster 1 cm
OSB Board 1.3 cm Plaster Board 1.8 cm Cement Mortar 5 cm Plaster Plate 1.3 cm Insulation 8 cm Mineral Wool 8 cm
Mineral Wool 16 cm Mineral Wool 8 cm Purnice Gravel 5 cm Minerall Wool 8 cm OSB Board 1.1 cm Plywood  1,3 cm
Plaster Board 1.1 cm OSB Board 1.3 cm OSB Panel 1.3 cm Bitumen Sealing 0.5 cm Gypsum Plaster 1 cm
Polystren 4 cm Particle Board Floor 2 cm Roof tile 5 cm
Cement Mortar 3 cm
Gypsum Plaster 1 cm Gypsum Plaster 2 cm Particle Board 2 cm Gypsum Plaster 2 cm Plywood 1 cm Gypsum Plaster 2 cm
Aerated Conc. Block 20 cm Aerated Conc. Block 15 cm Cement Mortar 5 cm Aerated Conc. Block 15 cm Bitumen Sealing 0.5 cm Aerated Conc. Block 10 cm
Cement Mortar 3 cm Cement Mortar 2cm Purnice Gravel 5 cm Roof Tile 5 cm Gypsum Plaster 2 cm

Particle Board 2 cm

Cement Mortar 2 cm Cement Mortar 2 cm Particle Board 2 cm Cement Mortar 2 cm Plywood 1 cm Cement Mortar 2 cm
Light Hollow Brick 20 cm Concrete Floor 12 cm Cement Mortar 5 cm Concrete Floor 12cm Bitumen Sealing 0.5 cm Light Hollow Brick 10 cm
Cement Mortar 3 cm Cement Mortar 2 cm Purnice Gravel 5 cm Cement Mortar 2 cm Roof Tile 5 cm Cement Mortar 2 cm

Particle Board  2 cm

1.09 0.4 1.35

Traditional System 1.65 1.38 1.08 3.8 2.6 2.1

Aerated Concrete 0.87 0.72 1.08

2.3 0.4 3.4

Lightweight Steel 0.17 0.37 1.08 0.45 0.45 0.47

Interlocking Brick 0.31 1.1 1.08

Materials Materials Materials Materials

CONSTRUCTIONS OF SIMULATED BUILDINGS BEFORE IMPROVE MENTS

Construction Types 
Wall Structure Floor Structure Ground Structure First Floor Ceiling Roof Internal Wall

Materials Materials

 
 
 
 
 



 
 

                                                                                                                                             

Appendix L: Plan and elevations of the model building 
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