
STATISTICAL METHODS FOR THE

STANDARDIZATION OF DIAGNOSTIC

ASSAYS

Dissertation

zur Erlangung des Grades
eines Doktors der Naturwissenschaften

der Universität Dortmund

Dem Fachbereich Statistik
der Universität Dortmund

vorgelegt von

Andrea Ulrike Geistanger

Dortmund, Juli 2007



Gutachter:

Prof. Dr. Claus Weihs
Prof. Dr. Wolfgang Urfer

Tag der mündlichen Prüfung:
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Abstract

Diagnostic assays are measurement systems, measuring the concentration of analytes
in human body liquids. To ensure the stability of the measured values over time, each
diagnostic assays should be standardized against a so-called master sample. This is a
sample with known concentration, which is measured by a very specific and precise
measurement method. From this master copies are made subsequently, such that at the
end of the chain a patient sample is measured on the standardized system.
A main problem for standardization systems of diagnostic assays is the definition of a
master, which is stable, as analyte may be lost over time. Manufacturers of diagnostics
assays as well as international organizations, especially the IFCC∗ have recognized the
need for standardization systems of diagnostic assays that ensure stability.
Networks of laboratories are formed, which measure master samples with a reference
measurement method and the averaged value of these measurements becomes the value
of the master, the so-called assigned value. This value assignment is repeated after a
certain time span for the next master sample, such that if the network is stable the con-
tinuity of master samples will be guaranteed.

In the context of such laboratory networks several statistical questions arise, which
are discussed and answered throughout this thesis.

First it must be clear how the assigned value of the respective master and the un-
certainty associated with this value is derived. The first part of the thesis examines a
routine process of standardization within a laboratory network. The main sources of
uncertainty within this process are revealed and how these sources have to be combined
to obtain the uncertainty of the assigned value is shown. Especially the question how
the uncertainty of the master is transferred to the uncertainty of the copies is discussed.
A Bayesian model is presented which enables the inclusion of the uncertainty of the
master within the calibration process. Based on a simulation study it is shown that this

∗International Federation of Clinical Chemistry
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model leads to much better results for the estimation of a measured value as well as
its uncertainty, than the conventional calibration models. Further it is shown how so
derived measured values should be combined to obtain the assigned value and its un-
certainty.

The second part is dedicated to the identification of outliers in data of standardiza-
tion networks. This is important for two reasons: one reason is that new laboratories
may want to join a standardization network. As the network should ensure the stabil-
ity of the master, the new laboratory must fit to the network. The other reason is that
failures of measurements of the members of the network need to be detected before the
assigned value is calculated. For both questions rules have to be defined which are valid
for multiple value assignments.
The outlier identification for both tasks is based on robust estimation methods for lin-
ear mixed models. First it is shown how outlier identification rules for general linear
mixed models can be defined. Afterwards two special cases, the one-way random ef-
fects model and the random coefficients model are regarded. Both are useful for the
analysis of data from laboratory networks, the first one if only one sample within the
network is regarded, the second if multiple samples are of interest. Finally an inter-
pretation of the impact of these rules for allowable measurement deviations within a
laboratory network is given.

The third part of the thesis deals with repeated method comparison studies which
are necessary, if a standardization system is replaced by a new one. This might happen
if global standardization system replace existing national systems, or if a more specific
measurement method is established. In these cases, assigned values might change and
recalculation formulas are needed for the transformation of new values into old ones
and vice versa. Concepts are presented for the comparison of repeated method compar-
ison studies.
Further the combination of these studies via hierarchical Bayesian models, to obtain a
recalculation formula, is presented. The focus lies especially on the impact of the prior
distributions on the results and the definition of appropriate prior distributions based on
posterior predictive checks.

The presented statistical methods are applied to data of the IFCC network for stan-
dardization of HbA1c.
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Chapter 1

Introduction

The standardization of the measurement of length goes back to ancient Egypt, where
about 3000 BC the first unit of length was defined. The ”Royal Egyptian Cubit” was de-
fined as the length of the forearm from the elbow to the tip of the Pharaoh ruling at that
time plus the width of his palm. The master cubit was carved out of a block of granite to
endure for all times. The workers at the building sites were supplied with cubits made
of wood or granite and it was the responsibility of the architects to maintain them. All
workers had to bring back their cubit sticks at each full moon to compare them to the
master. The death penalty faced those who forgot this duty. [How03]
The standardization system of ancient Egypt already included the definition of the mea-
surand, a master unit, and copies of this master unit, which were distributed to workers.
Based on this standardization system the Egyptians were able to build their vast pyra-
mids with high accuracy. These properties are the main parts of modern standardization
systems, too.

Diagnostic assays are also measurement systems, measuring the concentration of
analytes in human body liquids. However, in contrast to the measurement of length,
standardization systems for many analytes are still not in place. For important analytes
such as HbA1c ([JKB+02]), Cholesterol ([MKW+00]) or Total Thyroxine ([TUM+05])
working groups have been established to provide worldwide accepted masters for them.
Their main idea is to form networks of laboratories, such that master samples are mea-
sured with a specific measurement method in these laboratories to obtain an assigned
value of the masters. For the analysis of this data different statistical questions arise,
which are discussed throughout the thesis.

In this chapter we explain basic elements of standardization systems for diagnostic

1



1.1. Standardization of diagnostic assays 2

assays and introduce the three parts of the thesis - assigned value derivation, outlier
identification and method comparison studies. Further on we present the IFCC∗ net-
work for standardization of HbA1c†, as we apply the statistical methods to data of this
network.

1.1 Standardization of diagnostic assays

An important element of today’s medical diagnosis is the diagnostic assay that deter-
mines the concentration of a biologically meaningful analyte within a patient sample.
It supports physicians with diagnostic information on the functional status of tissues or
organs, as well as on infections and other diseases.
To achieve comparability of the results of the diagnostic assay over space and time, the
results must be traceable to the highest possible reference system. This means that the
result of a patient sample measured within a routine system should be comparable to
the result of that sample, measured within the reference system. To achieve this trace-
ability, copies of the reference system are derived through a so-called standardization
cascade. In Figure 1.1, a theoretical standardization cascade for diagnostic assays is
shown. The standardization cascade starts with a reference measurement procedure,
which is able to measure the well defined analyte very precisely and specific. By means
of this reference measurement procedure, values are assigned to human samples. In the
second step, based on these human samples, copies, the so-called master calibrators, are
derived. This cascade goes down, until the routine laboratory measures patient samples,
to assign values to these samples. It is clear that going down the cascade the uncertain-
ties of the assigned values increases. The calculation of the uncertainties at each level
of the cascade is one of the statistical questions, which will be considered in this thesis.
To be able to calculate the uncertainty of the values, one needs to know how these val-
ues are transferred from the higher metrological‡ level to the next lower level. There are
several possible approaches, in this thesis we regard only the so-called sample reading
approach.
Diagnostic assays do not directly measure the concentration of an analyte in human
blood, but some indirect signal, e.g. a photospectrometrical signal. The relationship
between this signal and the concentration of the analyte is described by the calibration
function. Prior to the measurement, this calibration function needs to be set up based

∗International Federation of Clinical Chemistry
†beta-N-terminal glycated hemoglobin A
‡Metrology is the science of measurement, not to be confounded with meteorology, the science of the

weather.
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Figure 1.1: Scheme of the standardization cascade.
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on calibrators. These are samples with already known concentration. This concentra-
tion value is called assigned value of the calibrator. Hence, the measurement procedure
can be divided into two stages: the calibration stage in which the calibration function
is established and the sample reading stage, in which the unknown concentration of
a sample is determined. This procedure is not only used for the measurement of pa-
tient samples, but also in the sample reading standardization approach: Samples with
assigned values from the metrological higher level are used as calibrators of the next
measurement method, and the concentration values of the samples of the next lower
level are read from this calibration function.
To minimize systematic deviations of these readings, the readings take place in differ-
ent laboratories and multiple measurements per laboratory. At the end of the day, these
multiple measurements need to be combined to the assigned value of the respective
sample.
The different laboratories of one level form a network, they can be viewed as the ref-
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erence measuring system of a particular metrological level. For example, the IFCC
network for standardization of HbA1c consists of up to 15 laboratories. Each labora-
tory measures the same set of human samples with the specific reference measurement
method [JKB+02].

1.2 Assigned value derivation

In the first part of the thesis the calculation of the posterior distribution of the assigned
value of a calibrator, derived via the sample reading approach, is discussed. In each
standardization step not only a point estimate of the assigned value has to be deter-
mined, but also the uncertainty of this value. The ”International Vocabulary of Metrol-
ogy” ([VIM93]), published by the ISO, defines uncertainty as ”parameter, associated
with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand.”
The ”Guide to the Expression of Uncertainty in Measurement” ([GUM93]) defines the
standard deviation of the assigned value as its uncertainty. [GUM93] proposes to use an
error-propagation formula, based on a Taylor expansion of degree 1, to approximate the
standard deviation of the assigned value (see e.g. [Die91] for its derivation). However,
this approximation is doubtful in complex nonlinear situations.
Therefore, instead of working with the error-propagation formula we use a Bayesian ap-
proach for uncertainty calculation. In this way the posterior distribution of the assigned
value is obtained. In our eyes this is the most natural way for uncertainty calculation, as
we obtain automatically posterior distributions of the parameter of interest, instead of
approximate confidence intervals. Moreover practitioners mostly interpret confidence
intervals in a Bayesian way, instead of the frequentist approach to them ([Rub84]).
For the calculation of the posterior distribution of the assigned value, two questions
must be answered. The first one is the question how the uncertainty of the calibrators
used for sample reading can be included in the objective posterior distribution. This is
important, as going down the standardization cascade, the uncertainty from the higher
levels must be transferred to the lower ones. The second question is how to combine
multiple measurements from different laboratories to obtain the assigned value.
In Chapter 3 we focus on the reading of a single measurement from the calibration func-
tion and define models of the calibration and sample reading step, where the uncertainty
of the calibrators is incorporated. With this approach we will show, how the uncertainty
of the assigned values of the samples of the higher metrological level is transmitted to
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the posterior distribution of single measurements of samples of the next lower level.
In Chapter 4 we discuss how multiple measurements of the same sample from differ-
ent laboratories can be combined to obtain the posterior distribution of the assigned
value. This type of data is often modelled as a heteroscedastic one-way random effects
model. We will compare this approach which our approach, where we incorporate the
whole posterior distributions of the measurements, given by the sample reading process
discussed in Chapter 3.

1.3 Outlier identification

The second part of the thesis is dedicated to the identification of outliers within data
of laboratory networks. Within this data different types of outliers can occur. For in-
stance, a whole laboratory can be regarded as an outlier, if its results over all samples
are extreme in comparison to the measurements of the other laboratories. A single mea-
surement within a laboratory can be regarded as an outlier, if it is extremely different to
the other measurements within the particular laboratory.
The identification of outliers can serve different purposes: based on the identification
of laboratories as outliers, rules can be defined for laboratories which want to join a
network. For laboratories, being already members of the network, quality control rules
can be defined.
The outlier identification is based on linear mixed models, where the laboratory effects
are modelled as random effects. We will define rules for the identification of extreme
laboratories based on the random effects, and rules for outliers within laboratories based
on the residuals of the linear mixed models.
We regard two models for data from laboratory networks: the one-way random effects
model and the random coefficients model. The first one is used if data from only one
particular sample is regarded and one wants to detect extreme laboratories and extreme
measurements within laboratories for this particular sample.
The second one is appropriate, if multiple samples are taken into account simultane-
ously. In this case the measurement behavior of the laboratories over multiple samples
is analyzed.
[WG03] defined already outlier identification rules for the one-way random effects
model, applied to data from laboratory networks. They developed a robust estima-
tion method for this particular model. We generalize their ideas, such that they can be
applied to more complex linear mixed models.
We generalize the identification rules, to adopt them to multi-dimensional random ef-
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fects and we use a robust estimation method, based on t-linear mixed models, which
can be applied to more general linear mixed models.
Our concepts are visualized by several examples, mostly from data of the IFCC network
for standardization of HbA1c.

1.4 Method comparison studies

From time to time standardization systems are replaced. For instance a national stan-
dardization system is replaced by an international one, or a new more specific mea-
surement method is introduced. In these cases the measured values of patient samples
might change. To check to which extend this change occurs so-called method compari-
son studies are performed.
In method comparison studies a set of human samples is measured within two measure-
ment methods, for instance in a measurement method based on the national standardiza-
tion and a measurement method based on the international standardization. Hence, for
each sample one obtains a pair of measured values, such that a regression line between
both methods can be derived.
On one hand side this experiment should reveal, if the two methods are exchangeable,
which is the case if the intercept of the regression line is near zero and the slope close
to one. On the other side it provides a transformation rule for values of one method to
the other, if the two methods are not exchangeable.
As method comparison studies are a well-known tool for diagnostic assays there is a
lot of literature for the analysis of one particular study (see e.g. [RRR01], [MRR02],
[PB83]). These articles discuss especially the best regression method to use. In most
cases both methods are subject to error, hence errors-in-variable models are appropriate
for the derivation of the regression line (see e.g. [CVN99], [Ful87] for an introduction
to errors-in-variables models).
We work on two different issues for these experiments, especially when they are re-
peated after a certain time period or in different laboratories, such that we obtain repe-
titions of these studies.
The first issue concerns the equality between multiple regression lines. Even if the re-
gression lines indicate that the methods are not exchangeable, it is of interest to know
if this relationship is stable over time, or in different laboratories. We present a test
developed by [LJZ04] to test whether two regression lines are equal.
Afterwards we extend this test to identify whether a new regression line is equal to a
reference regression line. This might be another approach to show the exchangeability
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of two methods over a specified concentration range.
The second issue discusses, how these multiple regression lines should be compared,
to obtain an average regression line. To answer this we use a Bayesian approach for
hierarchical linear models. We extend the usual Bayesian hierarchical linear model ap-
proach to incorporate the errors in both methods. Further we present a method to check
the adequacy of different prior settings and provide a measure for the derivation of the
most adequate prior.

1.5 The IFCC network for standardization of HbA1c

Many of the examples presented throughout the thesis base on data of the HbA1c stan-
dardization network, hence, we shortly present this network.
The measurement of HbA1c in percent of total hemoglobin (HbA1c and HbA0§) in
human blood is the most important biomedical marker for long-term assessment of the
glycemic status in patients with diabetes mellitus. Goals for therapy are set at spe-
cific HbA1c target values [DCC93]. The International Federation of Clinical Chem-
istry (IFCC) recognized the need for a reliable anchor of this major biomedical analyte
and installed the IFCC Working Group on HbA1c standardization [HM96]. This group
succeeded to develop a reference system of highest metrological order which has been
approved by all member national societies of the IFCC [JKB+02].
The components of the HbA1c reference system cover the upper part of the standardiza-
tion cascade: HbA1c is defined on basis of it’s molecular structure. Based on artificial
HbA1c and HbA0 standards, primary calibrators for the reference measurement proce-
dure are obtained. These primary calibrators are mixtures of the artificial standards, for
a detailed explanation of their production process see [KAS+06]. The reference mea-
surement procedure is an approved reference method (enzymatic digestion followed by
HPLC [JKB+02]) and the secondary calibrators are whole blood panels to which values
have been assigned with the reference method.
Each year a set of primary calibrators is produced. The set of primary calibrators is used
to calibrate the reference method in the year after production. The reference measure-
ment method, in which values are assigned to the secondary calibrators is not operated
only in one laboratory but in different laboratories all over the world, forming the IFCC
network for standardization of HbA1c.
The value assignment of the secondary calibrators takes place in so-called studies,
which are performed twice a year. Within a study whole blood samples are shipped

§non-glycated hemoglobin A
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to the member laboratories of the network and are measured by the reference method
in each laboratory. Dependent on the study the network consists of 9 − 15 member
laboratories and up to 3 candidate laboratories. Candidate laboratories must prove their
ability of performing the reference method and each member laboratory is controlled,
too.
Different types of samples are measured in each study:

(i) Control samples with already known concentration of HbA1c, they serve as intra-
laboratory control samples.

(ii) Primary calibrators with known percentage of HbA1c in total hemoglobin, derived
from the production process of the calibrators. By measuring these samples
within the network, assigned values from production are checked and stability
problems are addressed.

(iii) Secondary calibrators, also called intercomparison samples, for the determination
of their percentage of HbA1c.

Within each laboratory the measuring design is the following: The measuring method
is an enzymatic digest, all samples are split into two digests, afterwards every sample is
measured in two repetitions per digest.
The key task of the IFCC network for standardization of HbA1c is the assignment of
HbA1c values to unknown samples with high accuracy and reliability. These values
shall be used for the worldwide standardization of HbA1c.
However, nowadays there are national standardization networks for HbA1c in Europe,
the Unites States and Japan. Hence, the introduction of the worldwide IFCC standard-
ization scheme will cause a shift in reported HbA1c values, which are based on the
national standardization networks.
Therefore, twice a year method comparison studies are launched between the IFCC and
the other networks. A set of samples is measured based on the IFCC standardization
and on the national standardizations. Afterwards a regression line between these values
is fitted. Now, the obtained regression lines need to be compared, to be sure that the
relationship between the networks has not changed. Further an average regression line
has to be derived, such that IFCC values can be transformed in values of the national
networks and vice versa.



Part I

Assigned value derivation

9
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The goal of a standardization system is the determination of the concentration of
an analyte in particular samples. As these samples will serve as calibrators for other
samples, more effort has to be put in this value assignment, compared to the routine
reading of patient samples. The so obtained concentration value of a calibrator is called
assigned value. This value assignment can be done in different forms, we focus on the
sample reading process.
The sample reading process is divided into two stages: Within the calibration stage a
calibrator is used to establish the calibration function. In the reading stage the concen-
tration of a new sample can be determined, by transferring, via the calibration function,
the signal of the sample into a concentration value. If the new sample should serve as
calibrator of the next standardization level, it is measured in different laboratories and
repetitions within the laboratories, to account for laboratory specific effects.
In this part of the thesis we deal with the question how to derive the assigned value of
a calibrator and its uncertainty within the sample reading process. We will express the
uncertainty of the assigned value in terms of its posterior distribution. One part of its
uncertainty is made up of the variation seen in the data due to the multiple measure-
ments. But also variation sources due to the previous standardization steps have to be
considered. Therefore we divide this task into two stages:
In the first stage we regard a single measurement of a sample and show how the poste-
rior distribution of the measured value can be derived. We model explicitly the errors in
the assigned values of the used calibrators, such that the uncertainty sources of the pre-
vious standardization steps are already incorporated in the posterior distribution. This
is explained in detail in Chapter 3.
This sample reading problem goes back to [Eis39], who considered the problem of pre-
diction from the inverse of a linear calibration function. [Kru67] derived an estimator,
known as inverse estimator, as he considered the regression of the concentrations to the
signals, but [Ber69] showed that this estimator is not consistent. However, all of these
authors considered the assigned values of the calibrators to be error-free.
Milestones for the Bayesian approach to the sample reading problem are [Hoa70] and
[HL81], who derived two different models for this problem. Both models do not take
into account the errors of the assigned values. [RPWS91], [DS95], [GCS04] considered
these errors, however they restricted the analysis to the estimation of the parameters of
the calibration curve. We will expand the ideas of [DS95] and [Hoa70] to derive the un-
certainty of the inverse predicted value by taking into account the errors of the assigned
values of the calibrators.
In the second stage, we discuss how multiple measurements can be combined to ob-
tain the assigned value of a calibrator. It is quite forward to model such a situation
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as a one-way random effects model. In the case that the posterior distributions of the
measurements are known we have a one-way random effects model with known error
variances. In Chapter 4 we compare several approaches for the derivation of the as-
signed value of a calibrator based on different one-way random effects models.
In Chapter 2 we give a short introduction to Bayesian inference and simulation algo-
rithms, which will be used throughout the thesis for the derivation of posterior distribu-
tions.



Chapter 2

Revision of Bayesian inference

In this chapter we review the main concepts and tools for bayesian inference, which
will be used throughout the thesis. Besides a short introduction to Bayesian analysis we
present simulation algorithms for the derivation of posterior distributions. Further we
discuss model checking techniques, to reveal the adequacy of the model and the prior
settings compared to the observed data.
Bayesian analysis combines the information on a parameter Θ ∈ Rd, contained in the
observed data y, with information that is available about Θ before the data is observed.
This prior information is summarized in a prior distribution on Θ, denoted as p(Θ).
The analysis results in the derivation of the posterior distribution of Θ, p(Θ|y), which is
determined via Bayes’s Theorem:

p(Θ|y) =
p(Θ) · p(y|Θ)

p(y)
, (2.0.1)

where p(y|Θ) denotes the probability density function of the observed data conditional
on Θ. This function can also be viewed as a function of Θ and is referred to as likelihood
function.
p(y) denotes the marginal distribution of y, given by

p(y) =

∫
Θ

p(Θ)p(y|Θ)dΘ.

The derivation of the marginal distribution is often cumbersome, as it may require mul-
tidimensional integration. Hence the calculation of the posterior distribution of the pa-
rameter via Bayes’s Theorem is impractical for elaborated statistical models. In these
cases, samples from the posterior distribution of the parameters can be obtained by
simulation algorithms. They will be explained in detail in the next section.

12
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2.1 Simulation algorithms

In this section we shortly introduce the acceptance-rejection sampling algorithm as well
as the Metropolis-Hastings algorithm and its special case the Gibbs sampler. In order to
keep this section as short as possible we will pass on convergence proofs and Markov
Chain Monte Carlo theory. The interested reader is referred to [Tie94], [CG95], [CG92]
and the book of [GRS96], which is full of applications.
The following notations will be used: Let π be the absolute continuous density function
from which we want to sample, with π(Θ) = f (Θ)/K, where f is the unnormalized
density and K the unknown normalizing constant.

2.1.1 Acceptance - rejection sampling

Acceptance-rejection sampling requires an envelope function c · h(Θ), with h, a density
from which we can simulate values, and with a constant c, such that

f (Θ) ≤ c · h(Θ), ∀Θ ∈ Rd.

The idea of the acceptance-rejection algorithm is to draw samples from h and each
sampled point Θ is subject to an accept/reject test, i.e. each sampled point Θ is accepted
with probability f (Θ)/(c·h(Θ)). If the point is not accepted, it is discarded and sampling
restarts, until one point is accepted. Hence, the algorithm is given by

Step 1 Sample Θ from h.

Step 2 Sample U from the uniform distribution on [0,1].

Step 3 If U ≤ f (Θ)
c·h(Θ) accept Θ, else go to Step 1.

The crucial part for this method to be efficient is the selection of the constant c. Setting
c = supΘ

f (Θ)
h(Θ) provides the most efficient acceptance rate, however the evaluation of this

constant might be time-consuming, too.
In cases where the objective density function is proportional to a likelihood function
times a prior, as given for the posterior distribution according to Bayes’s Theorem, i.e.

π(Θ) = p(Θ|y) ∝ p(y|Θ) · p(Θ),
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[SG92] propose to set the constant c = p(y|Θ̂), where Θ̂ maximizes the likelihood
function. Samples are drawn from the prior distribution of Θ. The likelihood function
acts as a resampling probability, as the acceptance probability now becomes

α =
p(Θ) · p(y|Θ)
p(Θ) · p(y|Θ̂)

=
p(y|Θ)
p(y|Θ̂)

.

Hence, those Θ of the prior with a high-likelihood are more likely to be retained in the
posterior.
However, the sharper the likelihood is in contrast to the prior, the less efficient and
slower becomes the algorithm.

2.1.2 Markov Chain Monte Carlo algorithms

Markov Chain Monte Carlo (MCMC) algorithms may be more efficient than acceptance-
rejection sampling, but they do not produce independent samples but dependent sam-
ples, as the sampling distributions of a particular step depends on the results of the
previous step. In this section, we introduce the Metropolis-Hastings algorithm and the
Gibbs sampler, being a special case of the former. Further we discuss how hybrid algo-
rithms can be constructed out of these.

Regarding the Metropolis-Hastings algorithm, we denote with q(Θn,Θn+1) the can-
didate generating density, that is, if the sampling process is at the point Θn, the density
generates a point Θn+1 from q(Θn, ·). In order that the generated chain converges to the
searched target density π(Θ), the sampled point must be subject to an accept/reject test
similar to the acceptance-rejection sampling. The acceptance probability is given by
(see [CG95] for its derivation)

α(Θn,Θn+1) =

 min
{
π(Θn+1)q(Θn+1,Θn)
π(Θn)q(Θn,Θn+1) , 1

}
if π(Θn)q(Θn,Θn+1) > 0

1 otherwise.

The other difference to the sampling-resampling algorithm is, that if the new sampled
point is not accepted, the previous point is taken as sampled point in the sequence. In
short, the algorithm may be written as:
For n = 1, ..,N

Step 1 Sample Θ̃ from q(Θn, ·).
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Step 2 Sample U from the uniform distribution on [0,1].

Step 3 If U ≤ α(Θn, Θ̃) set Θn+1 = Θ̃, else set Θn+1 = Θn.

The question arises how the candidate generating density should be chosen.
One common choice is the random walk, where q(Θn,Θn+1) = q̃(Θn+1 − Θ), with q̃
being usually a multivariate normal distribution centered at Θn and appropriate scale
parameter. For example, the implementation of the random walk in the R function
MCMCmetrop1R in the package MCMCpack [MQ06] uses the approximate Hessian
matrix for the determination of the scale parameter.
Another option, suggested by [CG94], is useful for target densities, which can be written
as

π(Θ) ∝ p(y|Θ) · p(Θ).

Here p(y|Θ) is uniformly bounded and p(Θ) is a density from which we can sample. By
setting q(Θn,Θn+1) = p(Θn+1), the acceptance probability becomes

α(Θn,Θn+1) = min
{

p(y|Θn+1)
p(y|Θn)

, 1
}
.

Other candidate-generating densities e.g. the independence chain or pseudo-dominating
densities are introduced in [Tie94].

A special case of the Metropolis-Hastings algorithm is the Gibbs sampler (see
[CG95] for a proof of this relationship). The d-dimensional parameter vector Θ ∈ Rd is
divided into q subvectors. Denote with Θq the qth - subvector of Θ and with Θ−q the pa-
rameter vector, where the qth subvector is discarded. Further define the full conditional
distribution of Θq as p(Θq|Θ−q, y). If we can sample from the defined full conditional
distributions, we have a very efficient simulation algorithm, the so called Gibbs sampler.
The Gibbs sampler cycles through the full conditional distributions and draws the val-
ues conditional on the others. [CG92] proof that the so generated sequences converge
to the posterior distribution of Θ.

The high efficiency is given, as every draw is accepted. However, if a lot of full condi-
tional distributions are used, convergence can be slow.

For models, where not all full conditional distributions have a closed form, so called
hybrid algorithms can be used: For full conditionals with known closed form these
distributions are used, for the remaining a Metropolis-Hastings algorithm is taken.
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2.2 How many iterations?

When starting a simulation algorithm, we need to specify the number of iterations of
the algorithm, which we denote with n.
For MCMC algorithms the draws are not independent, thus it is useful to save only every
kth value to reduce autocorrelation between the samples. This technique is known as
thinning of the chains, but to apply thinning, the value k must be determined.
Further on the algorithms need starting values, so the first m draws might be affected
from them. Therefore it is necessary not to take these values into account.
[RL96] developed methods for the determination of the numbers n, k,m for a single
long chain based on a pilot sample. The determination is guided by the idea that the
precision for the value of interest, derived from the posterior distribution, should be
specified. For example, if the real interest lies in the median of the distribution it is
clear that less samples are necessary, than for the derivation of the 0.975 quantile, given
the same precision. Precision is defined as follows: The estimator of the posterior
probability P(U ≤ u|y) should be included within the interval ±r with probability s,
where U is a function of Θ and u is the quantile of interest.
The number of thinning iterations is determined by regarding the sequence

Zt =

{
1 if Ut < u
0 otherwise,

which is a binary 0-1 process, but no Markov process, due to higher dependence in Zt.

Regarding however the sequences Zk
t for k = 1, 2, .., consisting of every kth iteration of

the original process, will result in a Markov process choosing k reasonably large. Thus,
based on model fitting criteria, the appropriate thinning factor can be found.
For the determination of the number of burn-in iterations to be discarded, [RL96] regard
the probability of

P(Zk
m = i|Zk

0 = j),

which should be smaller than a predefined ε. Using standard results of Markov chain
theory they derive

m∗ =
log( (α+β)ε

max(α,β) )

log(1 − α − β)
,

where α is the probability of changing from the first state to the second state and β is
the probability of changing from the second state to the first state. Taking the number
of thinning iterations into account we have m = m∗ · k.
The estimate of P(U ≤ u|y) is given by Z̄k

n = 1/n
∑

t Zk
t , which is approximately nor-
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mally distributed with mean q and variance

1
n

(2 − α − β)αβ
(α + β)3 .

Thus the requirement
P(q − r ≤ Z̄k

n ≤ q + r) = s

implies that

n∗ =
(2 − α − β)αβ

(α + β)3

{
Φ−1(1/2(s + 1))

r

}2

,

where Φ is the standard normal cumulative distribution function. Thus we have n = n∗ ·k
as number of total iterations.
These methods are implemented in the statistic software R2.3.1 [R D06] in the function
raftery.diag of the coda package [PBCV06].

[GR92] pointed out that the lack of convergence can also be assessed from multiple
independent sequences by calculating the potential scale reduction factor R̂. Consider,
we have j · n draws of a random variable from j independent chains and n repetitions
per chain. From the j chains we can make j different inferences and compare them to
the inference obtained from mixing the j chains together.
Suppose we are interested in a scalar summary ψ (e.g. mean or variance) from the target
distribution. The potential scale reduction factor is defined as the ratio of ”between
interval length” and ”mean within interval length” of the empirical confidence interval
of ψ. This means that from each individual chain the length of the centered (1 − α)%
interval is calculated as well as the mean length. On the other side the length of the
centered (1 − α)% interval is calculated from the entire j · n simulated values:

R̂ =
length of total-sequence interval

mean length of the within-sequence interval
.

If R̂ is large, this suggests that either ”the between interval length” can be decreased by
further simulations or that ”the mean within interval length” will be increased, since the
simulated sequences have not made a full tour of the target distribution. If R̂ is close to
1, we can conclude that each chain of the n simulated observations is close to the target
distribution.
To monitor convergence dependent on the run-length, [BG98] propose the following
graphical approach: The j chains are divided into batches of length b. R̂(i) is calculated
based on the second half of the observations of a sequence of length 2ib, for i = 1, .., j/b.
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Afterwards R̂ as well as the nominator and denominator are plotted against 2ib. [BG98]
pointed out that besides the converge of R̂ towards 1, it is important to check whether
the two individual terms stabilize as functions of n.
OpenBUGS2.2.0 [STBL05] calculates for every parameter this convergence statistic in
terms of the width of the central 80% interval. The statistics are calculated in bins of
length 50 (see [STBL05] for details).

2.3 Model checking

The posterior distributions of a Bayesian analysis depend on the prior distributions and
the likelihood function. A way to check if the inferences drawn from these posteriors
are appropriate, is to combine the observed data with data predicted from these distri-
butions. This enables us to compare different prior settings and/or likelihood functions.
This method, called posterior predictive check, was proposed and applied by [Gut67],
[Rub81] and [Rub84]. [GCSR04] present this method in detail and give some applica-
tions to examples.
Posterior predictive checks may be used for two purposes - to assess whether the as-
sumed model is appropriate and to find the most adequate prior distributions for the
analysis.
We introduce the following notations: Let y be the observed data and Θ the param-
eter vector of the model. Define by yr the replicated data, i.e. the data that would
be observed, if the experiment is carried out a second time. The posterior predictive
distribution is then given by

p(yr|y) =

∫
p(yr|Θ) · p(Θ|y) dΘ.

The discrepancy between the model and the data will be measured by test quantities
T (y,Θ), being summaries of parameters and data. By these, data and simulations from
the posterior predictive distribution are compared.
[GCSR04] propose to compare the lack-of-fit by the p-value of the test quantity, defined
by

Pr(T (yr,Θ) ≤ T (y,Θ)).

P-values close to 0.5 mean that the predicted data from posterior distribution lead to
the same inferences as the observed data. P-values close to zero or 1 indicate that the
derived posterior distributions do not fully explain the observed data.
However, p-values are influenced by the spread of the test statistic. Hence, in our eyes
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this measure lacks an important detail: When comparing different prior distributions,
we may obtain approximately the same p-values, all close to 0.5 for different prior def-
initions. But the spread of the distribution of the test statistic may be very different. In
this case we would like to choose the prior setting, which provides the best compromise
between still acceptable p-value and the spread of the distributions. Therefore we sug-
gest another measure of discrepancy, namely a mean-square error of the test statistic,
defined by

MS ET =

∫
(T (yr,Θ) − T (y,Θ))2 d(Θ, yr).

In practice we have n simulations from the posterior distribution of the parameter vector
Θ. The ith simulated value of yri is obtained by drawing from the sampling distribution
of y, given the simulated value of the parameter vector Θ.

The p-value of interest is the proportion of the n simulations, for which

T (yri,Θi) ≤ T (y,Θi), ∀i = 1, .., n.

MS ET is obtained by

MS ET =
1
n

n∑
i=1

(T (yri,Θi) − T (y,Θi))2.



Chapter 3

Sample reading

In this chapter we show, how the posterior distribution of a single sample, which is read
of a calibration function, can be determined. Especially we regard the situation when the
assigned values of the calibrators are subject to error. We introduce first the statistical
model and estimation algorithms. At the end of the chapter we discuss a simulation
study, to emphasize the need of the incorporation of the errors of the assigned values of
the calibrators.
Sample reading can be formalized as a two stage process:

(i) In the calibration stage we observe assigned values xi and signals yi of the calibra-
tors, which are estimates of the respective true values ui and ηi. For these true
values the signal-to-concentration relation, expressed as a calibration function,
holds

ηi = f (ui,Θ).

The aim of this stage is to obtain an estimator for the parameter vector Θ of the
calibration function.

(ii) In the second stage a sample is set on the measurement system, for which it is
assumed that the same calibration function holds for its true values, with the goal
of predicting the true concentration u0, given an observed signal value y0.

We present first the Bayesian approach to sample reading of [Hoa70] and propose an
extension of the later, to include also the uncertainty of the assigned values of the cal-
ibrators in the model. As in this second case no closed forms of the posteriors can be
derived, we present an MCMC algorithm for the simulation of the posteriors.

20
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3.1 The Hoadley model

[Hoa70] was the first to present a Bayesian model for the sample reading problem of
a linear calibration function. Denote with Y1 = (y1, .., yn)′ the obtained signals of the
calibrators and with Y2 = (yn+1, .., yn+m) the obtained signals of the sample. The Hoadley
model then reads

E(yi) = b0 + b1 · xi

yi ∼ N(E(yi), σ2
y), ∀i = 1, .., n (3.1.1)

yi ∼ N(Y0, σ
2
y), ∀i = n + 1, .., n + m

Y0 = b0 + b1 · x0,

which requires the definition of a prior distribution p(Θ = (b0, b1)′, σ2
y , x0). Hoadley

regards a general form of the prior distribution, i.e.

p(Θ, σ2
y , x0) ∝ p(Θ, σ2

y) · p(x0)

and uses the non-informative Jeffrey’s prior for p(Θ, σ2
y) ∝ σ−2

y . For this case he showed
that the posterior of x0 is proportional to

p(x0|Y1,Y2) ∝ p(x0) · L(x0),

with L(x0) being a kind of likelihood function. But as L(x0) is not integrable, it is nec-
essary that p(x0) is a proper density function to obtain a sensible posterior distribution.
For m = 1 he deduces that setting

p(x0) ∼ tn−3(0, (n + 1)/(n + 3))

leads to

p(x0|Y1,Y2) ∼ tn−2

(
x̂I ,

(
n + 1 + x̂2

I /R
F + n − 2

))
,

where F is the F-statistic used for testing that b1 = 0. Further R = F/(F + n − 2) and x̂I

is the inverse estimator for x0, which would be obtained by regression of X on Y.
[HL81] also presents a Bayesian model for the sample reading from a linear calibration
function. The main differences between both models are that [Hoa70] demands a prior
distribution for the unknown concentration of the sample x0, whereas [HL81] demands
a prior for the mean of the signals of the unknown sample, Y0, as the second stage of
their model is based on the inverse calibration function. However, in the discussion of
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this paper several authors (see [Law81], [Hil81], [Lwi81], [Orb81]) point out, that it is
more appropriate to assign a prior distribution to x0 than to Y0.

We agree with this view, as in most situations it will be possible to assign at least a
uniform prior to the concentration of the sample between 0 and the maximal expected
amount in human body liquids. But signals of the assays reaction will and can vary
from laboratory to laboratory in unknown amounts. Hence, we proceed by expanding
the Hoadley model to an arbitrary calibration function and by incorporating in the model
the errors in the assigned values of the calibrators.

3.2 Incorporation of calibrator uncertainty

Many authors dealing with the sample reading problem exclude the uncertainty of the
assigned values of the calibrators based on the argument, that this uncertainty is much
smaller than the signal uncertainty (see [Eno99]). This might be true for routine assays,
however for reference measurement methods this is not. Reference measurement meth-
ods have very precise and specific signals, however they mostly need calibrators, too.
Their calibrators are artificially produced and their uncertainty is often at least as big
as the uncertainty of the signals, (see e.g. [KAS+06] for the situation within the IFCC
network for standardization of HbA1c). It is clear that in these cases the uncertainty
of the assigned values of the calibrators is not longer to be omitted. In Section 3.3.1,
we give an example of the impact of measurement error in the assigned values for the
estimation of the parameters of the calibration function.
Expanding the Hoadley-Model to a general calibration function and modelling explic-
itly the measurement error of the assigned values leads to the following model:

ηi = f (ui,Θ)

yi j|ui ∼ N(ηi, σ
2
y), ∀i = 1, .., n, j = 1, .., Ji

xi ∼ N(ui, σ
2
xi

), ∀i = 1, .., n (3.2.1)

yi ∼ N(η0, σ
2
y), ∀i = n + 1, .., n + m

η0 = f (u0,Θ).

Now the signal of each calibrator is measured multiple times Ji, such that yi j denotes
the measured signal of calibrator i and repetition j. The observed assigned values are
modelled as random variables, which vary around their true value ui, with known vari-
ance σ2

xi
. It is appropriate to assume the variance σ2

xi
known, as this value is derived in

the previous standardization step of the calibrators.



3.2. Incorporation of calibrator uncertainty 23

In Model (3.2.1) a prior distribution

p(Θ, σ2
y , u0, ui, i = 1, .., n)

needs to be specified.
The measurement error model of the assigned value is sometimes assumed to be multi-
variate normal, to account for the correlation between these values (see e.g. [RPWS91],
[KAS+06]).

3.2.1 MCMC algorithms

We will use Markov Chain Monte Carlo updating schemes to obtain samples of the
posterior distribution of the parameters of Model (3.2.1).
According to Bayes Theorem (2.0.1) the full posterior distribution of Model (3.2.1) is
proportional to

p(Θ, σ2
y , u0,u|Y1,Y2, x) ∝ p(Y1|u,Θ, σ2

y) · p(x|u) · p(Y2|Θ, σ
2
y , u0) · p(u,Θ, σ2

y , x0).

Although the above full conditional posterior is correct from a statistical point of view,
there is a problem from the practical point of view. The updating scheme for the param-
eters of the calibration function and the measurement error variance incorporates not
only the calibration stage, but also the reading stage. It is obvious, that for each read
sample, the knowledge about these parameters increases, which means, that for samples
read at the end of the calibration period the posterior distribution would be sharper than
for samples read at the beginning. However, in practice this is not done. Each reading
step is only based on the information obtained in the initial calibration step.
To treat all samples equally within a calibration period, the above model can be divided
in the two explicit stages, the calibration stage and reading stage. For each sample only
the information on the calibration parameters and measurement error variance from the
calibration stage is incorporated in the reading stage.
Hence, the full posterior of the calibration stage becomes

p(Θ, σ2
y ,u|Y1, x) ∝ p(Y1|u,Θ, σ2

y) · p(x|u) · p(u,Θ, σ2
y), (3.2.2)

and for the reading stage

p(Θ, σ2
y , u0|Y2) ∝ p(Y2|u0,Θ, σ

2
y) · p(u0,Θ, σ

2
y). (3.2.3)
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The priors of the reading stage p(σ2
y), p(Θ) are the posteriors of the calibration stage.

Although for each read sample we obtain a posterior distribution for σ2
y and Θ, this in-

formation is not included in the reading of the next sample.

The function MCMCmetrop1R of the MCMCpack package [MQ06] in R2.3.1 [R D06]
provides possibilities for the implementation of a random walk algorithm (see Section
2.1.2), where all parameters are updated in one step. In the calibration step, we obtain
simulated values from the full conditional distribution (3.2.2) and in the reading step
from (3.2.3).
However, closed forms of the prior distribution of the parameter in the reading step are
needed for this approach. But as these are derived in the calibration step, only simulated
values of them are available. One way to use this algorithm nevertheless is to approxi-
mate these distributions by closed forms distributions, and to estimate there parameters
from the simulated values.
This algorithm is quite fast, so that we could perform a simulation study with different
parameter settings for the linear calibration case, which is presented in detail in Section
3.3.2.

The other possibility is to divide the parameter vector of the calibration stage into
three subvectors σ2

y , Θ and u and to perform a hybrid Metropolis-Hastings algorithm
based on the conditional posterior distributions

p(σ2
y |Θ,u,Y1, x) ∝ p(Y1|u,Θ, σ2

y) · p(σ2
y)

p(Θ|σ2
y ,u,Y1, x) ∝ p(Y1|u,Θ, σ2

y) · p(Θ)

p(u|σ2
y ,Θ,Y1, x) ∝ p(Y1|u,Θ, σ2

y) · p(x|u) · p(u).

However, at least for the last conditional posterior no closed form exists, such that in
this case a Metropolis-Hastings step is necessary.
For the reading step the parameter vector is divided into the subvectors σ2

y , Θ, u0, with
conditional posterior distributions

p(σ2
y |Θ, u0Y2) ∝ p(Y2|u0,Θ, σ

2
y) · p(σ2

y)

p(Θ|σ2
y , u0,Y2) ∝ p(Y2|u0,Θ, σ

2
y) · p(Θ)

p(u0|σ
2
y ,Θ,Y2) ∝ p(Y2|u0,Θ, σ

2
y) · p(u0).

For the reading step, this approach has the advantage that there is no need to approxi-
mate the prior distributions of σ2

y and Θ, as they are given by sampled values from the
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calibration step. So the updating is based on a Metropolis-Hastings step, as described
in Section 2.1.2, where the candidate value is sampled from the prior distribution and
the acceptance probability is based on the ratios of the likelihoods.

3.3 Linear calibration case

We will now examine in more detail the influence of measurement errors in the assigned
values of the calibrators for the linear calibration case. First we give a small example
and afterwards present a simulation study for different data situations.

3.3.1 Example

To clarify the need for modelling the measurement errors in the assigned values of the
calibrators, we regard the following example:
Suppose the true concentration values of the calibrators are given by u = (3, 6, 9, 12, 15).
The observed assigned values X have the variance-covariance matrix ΣX = 1 · I5, such
that we observe assigned values x = (5.54, 6.31, 7.76, 12.90, 15.73), instead of the true
values u.
The expected mean of the signals is given by η = 0 + 1 · u, the variance of the observed
signals is σ2

y = 0.1. Note that the variance of the errors of the assigned values is 10
times higher than the variance of the errors of the signals. For each assigned value,
we have four repeated measured signals. We are especially interested in the measured
value of a sample with true concentration value u0 = 5.
We analyze the data by explicitly modelling the measurement error of the assigned val-
ues according to the algorithm described in Section 3.2.1, as well as by ignoring this
error according to the basic Hoadley model. We regard the posterior distributions of
the parameters of the calibration function b0, b1, the variance of the signals σ2

y and the
concentration of the read sample u0. These posterior distributions are calculated with
the MCMCmetrop1R function of package MCMCpack [MQ06] in R2.3.1 [R D06] for
both models.
To determine the number of iterations of the algorithm, we use the method of [RL96],
which is explained in Section 2.2. A burn-in of 1000 iterations, and 10.000 iterations
taken thereafter are sufficient for the estimation of the 0.05 and 0.95 quantiles of the
posterior distributions with a precision of ±0.025. In the calibration step, we assign an
InvGamma(0.001, 0.001) prior to σ2

y and a N2((0, 1)′, 103 · I2) prior to the coefficients
of the calibration function.
In Figure 3.1 the signals are plotted against the true values u (black) and the observed
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values x (red). Three regression lines are plotted, too. The dashed black line is the
least-squares regression line of the observed signals vs. the true concentration values of
the calibrators. This is the regression line one obtains with error-free calibrator values.
The solid black line is the regression line estimated based on the observed signals and
observed calibrator values, by taking the measurement error of the observed calibrator
values into account. The solid red line is estimated based on these values too, however
the measurement errors of the calibrator values are not considered. When modelling the
measurement error explicitly, normal priors with mean given by the observed values x
and variance 4 are assigned to each unknown ui. The priors of the u′i s are chosen such
that the order of the calibrators is still in place. A uniform prior between (1, 16) is as-
signed to the unknown u0.

In Table 3.1, the median as well as the 0.05 and 0.95 quantiles of the MCMC samples
of the reading step are given. Taking the measurement error in the assigned values not
into account, leads especially to an overestimation of the variance of the signals, which
in turn leads to much too wide confidence intervals for the read value of the sample.
To examine this situation in more detail for different situations of the measurement er-
rors of the assigned values, we make a simulation study. It is explained in the next
section.

Table 3.1: Results of the linear calibration example, without and with taking the
measurement error of the assigned values into account.

Parameter True Value Without measurement error With measurement error
q0.05 Median q0.95 q0.05 Median q0.95

σ2
y 0.1 1.19 1.93 3.70 0.06 0.11 0.23

b0 0 -2.26 -0.84 0.49 -3.78 -1.58 0.53
b1 1 0.90 1.03 1.16 0.89 1.11 1.34
u0 5 3.22 5.66 7.94 4.72 5.95 6.95

3.3.2 Simulation Study

For the linear calibration case we examine different data situations, dependent on the
slope of the linear calibration function, the relationship between the variance of the
errors of the assigned values and the signals, and the correlation of the assigned values
of the calibrators. We simulate 12 different data situations, listed in the first column of
Table 3.2, and analyze them (i) according to the calibration model with measurement
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Figure 3.1: Plot of the signals versus true values of the calibrators (black) and
signals versus observed values of the calibrators (red) with estimated linear cali-
bration functions.
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error, with the algorithm given in Section 3.2.1 and (ii) according to the calibration
model with not accounting for the error in the assigned values of the calibrators.
The goal of this simulation study is to compare both models for each parameter situation
in terms of bias, coverage and length of the confidence intervals of the parameters of
the calibration function and the read sample.
All data sets are simulated according to the following algorithm:

(i) Generation of assigned values of the calibrators, given the true values of the calibra-
tors ui, i = 1, .., n and the variance-covariance matrix Σx :

x ∼ Nn(u,Σx).

(ii) Generation of the signals of the calibrators, given the true values of the calibrators
ui, i = 1, .., n, the parameters of the calibration function b0, b1 and the variance of
the signals σ2

y :

ηi = b0 + b1 · ui

yi j ∼ N(ηi, σ
2
y), ∀i = 1, .., n, j = 1, .., J.

(iii) Generation of the signal of the read sample, given the true values of the sample u0,
the parameters of the calibration function b0, b1 and the variance of the signals
σ2

y :

η0 = b0 + b1 · u0

y0 ∼ N(η0, σ
2
y).

For all data sets, the assigned values of the calibrators are set to u = (3, 6, 9, 12, 15), the
variance of the signals σ2

y = 0.01 and the intercept of the calibration function b0 = 0.
Four independent signals are generated for each calibrator. The true value of the read
sample is set to u0 = 5. The other parameters of the simulation vary, according to

b1 ∈ {1, 5}, Cor(xi, x j) ∈ {0, 0.8} ∀i , j, σ2
x ∈ {0.01, 0.1, 1},

resulting in 12 different data situations. For each of these settings, 100 data sets are sim-
ulated and analyzed. The posterior distributions are calculated with the MCMCmetrop1R
function of package MCMCpack [MQ06] in R2.3.1 [R D06] for both models.
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For each MCMC algorithm, the first 1000 samples are used as burn-in, afterwards
10.000 samples are saved. In Table 3.2, the bias, the coverage of the 90% empirical con-
fidence interval and the length of this interval are given for the parameters σ2

y , b0, b1, u0,

derived in the reading step. For each data set the median of the samples of the posterior
distributions is taken as point estimator of the parameter. The mean of these estimates
averaged over the 100 data sets minus the true value becomes the bias for each data
situation. The 90% empirical confidence interval is defined as the interval between the
5% and 95% empirical quantiles of the samples. The coverage is calculated by count-
ing how many times the 90% empirical confidence interval covers the respective true
value. The length of the confidence interval is the averaged length over the 100 data sets.

Summarizing Table 3.2, we see that for all data situations taking the errors of the
assigned values not into account, leads to an overestimation of σ2

y . This becomes worse
with increasing σ2

x. The overestimation is also greater if there is no correlation between
the assigned values.
The coverage of the confidence intervals for σ2

y , b0 and b1 drops very fast with increas-
ing σ2

x and is even less for a steeper slope. The coverage of the confidence interval of
u0 seems to be stable in cases of no correlation between the assigned values, however
this is especially due to the high overestimation of σ2

y . For correlated assigned values,
the effect of overestimation of σ2

y is less, hence the coverage of the confidence intervals
for u0 drops with increasing σ2

x, too.
Regarding the case of steeper calibration curve (b1 = 5 in the simulation of the data
sets) we note that these effects are amplified.

If the errors of the assigned values are taken into account we obtain nearly in all
cases an unbiased estimation of σ2

y .

The coverage of the confidence intervals for σ2
y , b0, b1 and u0 is stable in situations

without correlation and drops slightly in the correlation case.
The confidence intervals of u0 are sometimes even shorter than in the case of not ac-
counting for the errors of the assigned values with approximately the same coverage.
This is due to the large overestimation of σ2

y , if the errors of the assigned values are not
modelled explicitly.
In summary we can say that the coverage results are quite satisfactory for all data situa-
tions, if the errors of the assigned values are taken into account, except for the last data
situation (σ2

x = 1, Cor(xi, x j) = 0.8, b1 = 5), although even in this situation the results
are better than for the simple algorithm. In this case u0 is underestimated, because of
the overestimation of b0. This leads to the smaller coverage.
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This simulation study shows the necessity of modelling the errors in the assigned
values and to incorporate this knowledge in the calibration and sample reading stage.
The need for this modelling even grows, the steeper the calibration function becomes.
A focus in the improvement of diagnostic assays is nowadays to obtain a steeper cal-
ibration function, as in this case the errors of the signals are attenuated. We showed
however, that the steeper the calibration function, the more important become the errors
of the assigned values. Only if they are modelled in the right way, a steeper calibration
function might be an improvement of the diagnostic assay.
The incorporation of the measurement errors of the assigned values in the calibration
process can easily be done by MCMC simulation algorithms, to obtain the posterior
distribution for a single measured value of a sample.
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Table 3.2: Bias, coverage and length of the 90% empirical confidence interval for
the linear calibration, without and with taking the error of the assigned values into
account.

Simulation Without measurement error With measurement error
σ2

y b0 b1 u0 σ2
y b0 b1 u0

σ2
x = 0.01 Bias -0.01 -0.02 0.000 -0.02 -0.01 -0.02 0.001 -0.02

Cor(xi, x j) = 0 Coverage 84% 83% 77% 90% 87% 87% 90% 92%
b1 = 1 Length CI 0.14 0.60 0.060 1.19 0.14 0.69 0.086 1.21
σ2

x = 0.1 Bias -0.08 -0.02 0.001 0.02 -0.01 -0.01 0.000 0.02
Cor(xi, x j) = 0 Coverage 55% 76% 70% 95% 88% 94% 95% 93%
b1 = 1 Length CI 0.22 0.75 0.075 1.50 0.14 1.24 0.132 1.35
σ2

x = 1 Bias -0.59 -0.06 0.012 0.00 -0.01 0.07 -0.003 -0.03
Cor(xi, x j) = 0 Coverage 5% 52% 46% 93% 90% 86% 84% 88%
b1 = 1 Length CI 0.85 1.45 0.150 2.88 0.15 3.00 0.310 2.11
σ2

x = 0.01 Bias -0.18 -0.05 0.005 0.00 -0.01 -0.06 0.010 0.00
Cor(xi, x j) = 0 Coverage 27% 61% 64% 97% 80% 94% 97% 97%
b1 = 5 Length CI 0.35 0.93 0.093 0.37 0.15 1.83 0.336 0.43
σ2

x = 0.1 Bias -1.94 0.02 -0.010 0.01 -0.00 0.08 -0.015 0.01
Cor(xi, x j) = 0 Coverage 0% 52% 52% 94% 83% 87% 92% 91%
b1 = 5 Length CI 2.49 2.45 0.25 0.962 0.14 5.26 0.619 0.73
σ2

x = 1 Bias -4.63 -0.87 0.114 0.07 -0.11 0.24 -0.010 -0.02
Cor(xi, x j) = 0 Coverage 0% 26% 23% 75% 63% 77% 79% 79%
b1 = 5 Length CI 5.81 3.76 0.37 1.57 0.71 11.83 1.39 1.69
σ2

x = 0.01 Bias -0.01 -0.01 0.000 -0.01 -0.01 -0.02 0.000 -0.01
Cor(xi, x j) = 0.8 Coverage 85% 83% 92% 89% 85% 89% 93% 92%
b1 = 1 Length CI 0.13 0.59 0.059 1.17 0.14 0.69 0.084 1.26
σ2

x = 0.1 Bias -0.01 -0.12 0.004 0.07 -0.00 -0.13 0.004 0.08
Cor(xi, x j) = 0.8 Coverage 88% 50% 90% 78% 91% 81% 98% 85%
b1 = 1 Length CI 0.14 0.60 0.060 1.20 0.13 1.15 0.090 1.50
σ2

x = 1 Bias -0.14 -0.11 0.012 -0.01 -0.01 -0.12 0.009 0.01
Cor(xi, x j) = 0.8 Coverage 28% 34% 59% 63% 84% 76% 90% 76%
b1 = 1 Length CI 0.30 0.86 0.086 1.72 0.15 2.31 0.170 2.26
σ2

x = 0.01 Bias -0.04 -0.04 0.004 0.00 -0.00 -0.07 0.009 0.00
Cor(xi, x j) = 0.8 Coverage 74% 45% 74% 78% 89% 89% 95% 94%
b1 = 5 Length CI 0.17 0.65 0.070 0.26 0.14 1.77 0.290 0.51
σ2

x = 0.1 Bias -0.37 0.20 -0.003 -0.04 -0.01 0.16 -0.002 -0.03
Cor(xi, x j) = 0.8 Coverage 14% 31% 45% 53% 87% 84% 93% 84%
b1 = 5 Length CI 0.59 1.20 0.120 0.47 0.16 4.67 0.410 0.94
σ2

x = 1 Bias -3.19 -1.24 0.024 0.23 -0.07 -1.29 -0.003 0.28
Cor(xi, x j) = 0.8 Coverage 1% 12% 43% 39% 74% 56% 84% 56%
b1 = 5 Length CI 4.05 3.06 0.310 1.25 0.37 10.39 1.070 1.80



Chapter 4

Combining Multiple Measurements

In Chapter 3 we showed, how the posterior distribution of a single measurement of a
sample is derived. This posterior distribution contains already the errors of the assigned
values of the calibrators.
In standardization networks the derivation of the assigned value of a sample is based on
multiple measurements of this sample, obtained in different laboratories and multiple
measurements per laboratory. In this way it is accounted for laboratory specific effects
which would otherwise introduce a bias in the estimation of the assigned value of a
sample. In this chapter we discuss, how these multiple measurements, made in different
laboratories should be combined to estimate the assigned value of the sample.
This problem was first considered by [Coc37] and revised several times in [YC54],
[Coc54] and [RKC81]. They all modelled this data situation as a one-way random ef-
fects model and examined maximum-likelihood estimation techniques.
We will follow another way in this chapter, which is appropriate if not only the mea-
surement results are known, but also the posterior distribution of these results.

4.1 One-way random effects models

Suppose we have i = 1, .., I laboratories with j = 1, .., Ji repetitions per laboratory.
Denote with Yi j the measurement of the concentration of a sample made in laboratory
i and repetition j, further with Ȳi. = 1/Ji ·

∑
j Yi j the mean of the measurements of

laboratory i and with Ȳ.. = 1/I ·
∑

i Ȳi. the overall mean.
Each laboratory has an individual effect on the measurements, such that we model this

32
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data as a one-way random effects model:

Yi j = µ + ai + εi j, i = 1, .., I, j = 1, .., Ji.

The parameter µ denotes the true concentration of the sample, ai the effect of laboratory
i and εi j the error term. The laboratory effects ai, i = 1, .., I, have mean zero and vari-
ance σ2

a - the so-called between-laboratory variance. The errors terms have mean zero
and variance σ2

εi
- called the within-laboratory variances. In most applications labora-

tory effects and error terms are assumed normally distributed.
Dependent on the number of replicates within the laboratories and the within-laboratory
variances different one-way random effects models can be formulated.
We will shortly present the two most common models and estimation techniques, af-
terwards we introduce our estimation approach. This new approach takes the whole
posterior distribution of each single measurement into account.
The three approaches are compared based on a simulation study, which is explained in
detail in Section 4.2.

If the number of replicates in the laboratories is equal and the within-laboratories
variances are equal, too, i.e.

Ji = J, σ2
εi

= σ2
ε, ∀ i = 1, .., I,

we speak about the balanced, homoscedastic one-way random effects model.
In this model all observations are treated equally for the estimation of the unknown
parameters (µ, σ2

a, σ
2
ε). [SCM92] give a broad overview of the different estimation tech-

niques for these parameters. The most common approach is based on the ANOVA table
of the model, which is given in Table 4.1, and the derivation of the expected mean
squares.

Table 4.1: ANOVA Table for the homoscedastic one-way random effects model.

Sum of Squares DF Mean Squares Expected Mean Squares

S S A = J
∑

i(Ȳi. − Ȳ..)2 I − 1 MS A = S S A
I−1 Jσ2

a + σ2
ε

S S E =
∑

i
∑

j(Yi j − Ȳi.)2 I(J − 1) MS E = S S E
I(J−1) σ2

ε
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The mean squares are unbiased estimators of the expected mean squares. Hence,
setting the two expressions equal and solving the resulting equations for the σ′s gives
unbiased estimators for σ2

a and σ2
ε. This leads to

σ̂2
a =

MS A − MS E
J

, σ̂2
ε = MS E. (4.1.1)

An unbiased estimator for µ is given by µ̂ = Ȳ.. (see [SCM92]), with variance

σ2(µ̂) =
1
I
σ2

a +
1
IJ
σ2
ε.

Under normality assumptions a two-sided 1 − α (0 < α < 1) coverage interval for µ is
given by

Ȳ.. ± tI−1,1−α/2 · σ̂(µ̂),

where tI−1,1−α/2 denotes the 1 − α/2 quantile of the t-distribution with I − 1 degrees of
freedom.

Coverage intervals for σ2
ε and σ2

a can also be derived. For σ2
ε an exact coverage

interval is available, as S S E/σ2
ε ∼ χ

2
I(J−1). Hence, a two-sided 1 − α coverage interval

for σ2
ε is  S S E

χ2
I(J−1),1−α/2

,
S S E

χ2
I(J−1),α/2

 .
For σ2

a only approximate coverage intervals are available. [BG92] derive such intervals
based on the Cornish-Fischer expansion [FC60]. The interested reader is referred to
[BG92] for more details on this issue.

The unbalanced, heteroscedastic one-way random effects model is given, if the num-
ber of replicates within the laboratories as well as the within-laboratory variance are not
equal in all laboratories. [RKC81] give an overview of estimators for (µ, σ2

a, σ
2
εi

) for this
case.
[MP70] and [PM82] developed a simplified iterative estimation algorithm for the pa-
rameters of this model, called the Mandel-Paule algorithm. It is widely used to combine
several sets of measurements from different laboratories. Therefore we will present this
algorithm in short and compare it to our proposed algorithm.
The Mandel-Paule algorithm is based on the following ideas: In the heteroscedastic
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one-way random effects model the variance of an individual measurement is given by

Var(Yi j) = σ2
a + σ2

εi
, ∀i = 1, .., I, j = 1, .., Ji

and the correlation between two measurements of the same laboratory by

Cor(Yi j,Yik) = σ2
a, ∀i = 1, .., I, j, k = 1, .., Ji, j , k.

Therefore, the variances of the laboratory means calculate to

Var(Ȳi.) = σ2
a +

1
Ji
σ2
εi
, ∀i = 1, .., I.

Hence, the estimator of the parameter µ is a weighted means statistic

µ̃ =

∑
i wi · Ȳi.∑

i wi
, (4.1.2)

with weights given by

wi =
1

Var(Ȳi.)
=

1
σ2

a + 1
Ji
σ2
εi

.

The within-laboratory variances are estimated in advance from the repeated measure-
ments in each laboratory by

σ̃2
εi

=
1

Ji − 1
·

Ji∑
j=1

(
Yi j − Ȳi.

)2
.

As the estimator of µ requires a plug-in estimator of σ2
a, too, an iterative estimation

algorithm is set up.
Because

F(σ2
a) =

I∑
i=1

(
Ȳi. − Ȳ..

)2

σ2
a + 1

Ji
σ2
εi

∼ χ2
I−1,

we have E
(
F(σ2

a)
)

= I − 1, which motivates the estimating equation

F(σ2
a) = I − 1 or G(σ2

a) = F(σ2
a) − (I − 1) = 0. (4.1.3)

The searched σ2
a can be found by using a truncated Taylor expansion of G.

More precisely for a given value σ2
at

we want to find an adjustment dσ2
a, such that
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G(σ2
at

+ dσ2
a) = 0. Using the truncated Taylor expansion of G around σ2

at
, we have

G(σ2
at

+ dσ2
a) ≈ G(σ2

at
) +

(
∂G
∂σ2

a

)
σ2

at

dσ2
a = 0.

Hence it follows that

dσ2
a = −

G(σ2
at

)(
∂G
∂σ2

a

)
σ2

at

.

Having everything together we define the Mandel-Paule algorithm by:
Start with an initial value for σ2

a, say σ2
a0
.

Step 1 Compute weights

wit = σ2
at−1

+
1
Ji
σ2
εi

and

µt =

∑
i wit · Ȳi.∑

i wit
.

Step 2 Compute

dσ2
at

=
F(σ2

at−1
) − (I − 1)∑

i w−2
it
· (Ȳi. − µt)2

.

Step 3 If dσ2
at
> ε compute

σ2
at

= σ2
at−1

+ dσ2
at
,

set t = t + 1 and go to Step 1.
Else stop, set µ̃ = µt and σ̃2

a = σ2
at−1
.

Mandel and Paule [PM82] approximate the variance of µ̃ by

Var(µ̃) ≈
1∑I

i=1 wi
,

by ignoring the variation within the weights. An 1 − α coverage interval for µ can then
be defined by

µ̃ ± tI−1,1−α/2 ·
√

Var(µ̃)
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where tI−1,1−α/2 denotes the 1 − α/2 quantile of the t-distribution with I − 1 degrees of
freedom.
[RV98] and [RBV00] showed, that the Mandel-Paule algorithm can be seen as a special
form of maximum-likelihood or restricted maximum-likelihood estimation.

In our eyes both models lack an important detail. Each single measurement is re-
garded as a single value, the repeated measurements within a laboratory give informa-
tion on the error variance of the measurements within the laboratory.
However, if we use the Bayesian approach to sample reading developed in Chapter 3,
we do not have only a point estimate of each single measurement, but a whole posterior
distribution for it. From this distribution one can calculate the variance of the errors,
such that we can speak in this case of an unbalanced one-way random effects model
with known error variance.
We write this model in following way:

Yi j|µ, ai ∼ p(Yi j), ∀i = 1, .., I, j = 1, .., Ji,

E(Yi j|µ, ai) = µ + ai, ∀i = 1, .., I, j = 1, .., Ji, (4.1.4)

ai|σ
2
a ∼ N(0, σ2

a), ∀i = 1, .., I.

The likelihood function of the model is given by the product of the posterior distribu-
tions of the measurements, i.e.

p(Y|µ, a) =

I∏
i=1

Ji∏
j=1

p(Yi j).

The full posterior distribution of this model is proportional to

p(µ, σ2
a|Y) ∝ p(Y|µ, a) · p(a|σ2

a) · p(µ, σ2
a).

If the likelihood functions p(Yi j) are approximated by normal distributions and the pri-
ors for µ and σ2

a are defined as full conditional priors, Gibbs sampling can be used to
obtain samples of the posterior. Otherwise Metropolis-Hastings algorithms may be ad-
equate.
In the following section we compare the three estimation approaches based on a small
simulation study.
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4.2 Comparison of the models

In this section we compare the outcomes of a balanced one-way classification model
with (i) homoscedastic within-laboratory variance, (ii) heteroscedastic within-laboratory
variance and (iii) known variance of each measurement, for the estimation of µ and σ2

a.

We regard the 12 different data situations already introduced in Section 3.3.2, for the
errors of the assigned values of the calibrators. For each data situation 8 laboratories are
simulated, with four repeated measurements per laboratory. 100 data sets are regarded
for each data situation.
In each laboratory the same set of calibrators is used. Each calibrator has an assigned
value, that carries already an uncertainty. Similar to the simulations in Chapter 3 there
are 5 calibrators with true values u = (3, 6, 9, 12, 15). Dependent on the data situa-
tion the variance of the assigned values is σ2

x ∈ {0.01, 0.1, 1} and their correlation
Cor(xi, x j) ∈ {0, 0.8}. In each laboratory a linear calibration function (b0 = 0, b1 ∈ {1, 5})
is derived based on the signals and assigned values of the calibrators. The variance of
the signals is set to 0.01. From each calibration function a sample with true concentra-
tion value of 5 is read.
As we apply for the calibration and the reading the Bayesian model established in Chap-
ter 3, we do not only obtain a point estimate of the concentration of the sample, but the
whole posterior distribution. The posterior distribution of the measurements is derived
based on the MCMC algorithm of Section 3.2.1, where the errors of the assigned values
of the calibrators are taken into account.
To include a laboratory effect in this data, we draw for each laboratory a laboratory
effect ai, from a normal distribution with mean 0 and variance 0.5. Afterwards, the de-
rived posterior distributions are shifted by this specific laboratory effect.
Finally, heteroscedasticity is included in the data by assigning to each laboratory a
further error variance between 0.1 and 1, such that to each sample of the posterior dis-
tributions a normally distributed error term with mean zero and the respective variance
is added.
In Figure 4.1 a randomly selected data set for the first and third data situation is shown.
For the estimation of the parameters µ and σ2

a by the homoscedastic or heteroscedastic
one-way random effects models only the point estimator (given by the median of the
posterior distribution) of the measured values is used, whereas in the third model more
information of the posterior distributions is incorporated.
For this simulation study we approximate the posteriors by a normal distribution, with
variance estimated from the simulated samples and mean given by the median of them.
All three models are fit with the algorithms described in Section 4.1.
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Figure 4.1: Boxplots of the posterior distributions of a read sample in 8 laborato-
ries and 4 measurements within each laboratory. Two data situations, dependent
on the variance structure of the assigned values of the calibrators is shown
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To fit the third model MCMC algorithms based on OpenBUGS2.2.0 [STBL05] and
BRugs [Lig06] are used. The prior of µ is uniform between 0 and 16, whereas the pri-
ors of the unknown between-laboratory variance is chosen as InvGamma(0.001, 0.001).
A burn-in of 1000 simulations is used, afterwards every 50th sample is saved, until
10.000 values are obtained. Three different chains are run, such that the convergence of
the chains could be assessed by the potential scale reduction factor (see Section 2.2).
In Table 4.2 the bias, the coverage of the 95% confidence intervals and the length of the
confidence intervals are given. All three models give unbiased estimates for µ. Regard-
ing the estimates for the between-laboratory variance we note that the Bayesian model
underestimates this variance. Neither do the derived confidence intervals cover the true
value with enough confidence. Regarding the confidence intervals for µ we note that
the Bayesian model has the lowest coverage, but which is still acceptable, whereas the
other two models have sometimes even a higher coverage than 95%. On the other side
the confidence intervals of the third model are much smaller than the one of the other
models. Note especially that in these intervals the uncertainty of the calibrators of the
reading step is already included.
Regarding the different data situations we see that the behavior concerning the length of
the confidence intervals of µ is the same as already seen in Chapter 3. If the uncertainty
of the assigned values of the calibrators, or their correlation increases, they become
wider. A steeper slope results in smaller confidence intervals.
In summary we see that the uncertainty information of the measurement process can
easily be incorporated into the combination of multiple repeated measurements, to ob-
tain reasonable estimates of the assigned value of a calibrator and its uncertainty.
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Table 4.2: Bias, coverage and length of the 95% empirical confidence intervals for
the parameters µ and σ2

a from the different one-way random effects models.

Simulation Homoscedastic
model

Heteroscedastic
model

Model with
known σ2

εi j

µ σ2
a µ σ2

a µ σ2
a

σ2
x = 0.01 Bias -0.04 0.01 -0.04 -0.01 -0.05 -0.12

Cor(xi, x j) = 0 Coverage 97% 95% 96% 96% 96% 89%
b1 = 1 Length CI 1.30 1.74 1.30 1.74 1.23 1.17
σ2

x = 0.1 Bias 0.03 -0.07 0.03 -0.09 0.03 -0.15
Cor(xi, x j) = 0 Coverage 95% 84% 95% 82% 92% 87%
b1 = 1 Length CI 1.37 1.98 1.37 1.98 1.29 1.22
σ2

x = 1 Bias -0.05 -0.03 -0.06 -0.04 -0.06 -0.15
Cor(xi, x j) = 0 Coverage 97% 90% 98% 90% 97% 88%
b1 = 1 Length CI 1.41 2.07 1.43 2.07 1.32 1.27
σ2

x = 0.01 Bias -0.01 -0.09 -0.01 -0.09 -0.01 -0.19
Cor(xi, x j) = 0 Coverage 94% 92% 93% 90% 93% 78%
b1 = 5 Length CI 1.37 1.96 1.37 1.96 1.30 1.21
σ2

x = 0.1 Bias -0.04 0.07 -0.03 0.06 -0.04 -0.06
Cor(xi, x j) = 0 Coverage 97% 87% 95% 88% 95% 92%
b1 = 5 Length CI 1.21 1.54 1.21 1.54 1.13 1.08
σ2

x = 1 Bias -0.01 0.029 -0.01 0.01 0.00 -0.13
Cor(xi, x j) = 0 Coverage 95% 91% 97% 90% 95% 87%
b1 = 5 Length CI 1.35 1.90 1.38 1.90 1.26 1.20
σ2

x = 0.01 Bias -0.03 -0.02 -0.03 -0.03 -0.03 -0.13
Cor(xi, x j) = 0.8 Coverage 96% 93% 96% 91% 96% 88%
b1 = 1 Length CI 1.33 1.83 1.32 1.83 1.25 1.19
σ2

x = 0.1 Bias 0.06 0.001 0.07 0.01 0.05 -0.11
Cor(xi, x j) = 0.8 Coverage 94% 87% 95% 89% 92% 90%
b1 = 1 Length CI 1.33 1.82 1.35 1.82 1.24 1.19
σ2

x = 1 Bias 0.03 0.02 0.03 -0.02 0.03 -0.22
Cor(xi, x j) = 0.8 Coverage 100% 95% 100% 94% 98% 79%
b1 = 1 Length CI 1.51 2.30 1.59 2.30 1.41 1.35
σ2

x = 0.01 Bias -0.04 0.01 -0.04 -0.03 -0.03 -0.11
Cor(xi, x j) = 0.8 Coverage 96% 86% 94% 89% 93% 89%
b1 = 5 Length CI 1.27 1.69 1.28 1.69 1.20 1.13
σ2

x = 0.1 Bias 0.01 -0.01 0.01 -0.02 0.01 -0.13
Cor(xi, x j) = 0.8 Coverage 95% 90% 97% 90% 92% 87%
b1 = 5 Length CI 1.31 1.80 1.32 1.80 1.23 1.16
σ2

x = 1 Bias 0.20 0.09 0.22 0.07 0.20 -0.18
Cor(xi, x j) = 0.8 Coverage 95% 97% 95% 95% 92% 85%
b1 = 5 Length CI 1.48 2.11 1.58 2.11 1.33 1.26
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Outlier identification
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The second part of the thesis deals with the identification of outliers within data
from laboratory networks. Let us remind the structure of data from laboratory net-
works: Samples of different concentration are sent to each laboratory where multiple
readings per sample are made. Hence, we have a hierarchy in the data: the lowest level
consists of several observations within a laboratory, from one or more samples. The
individual laboratories form the next higher level. Hence, different types of outliers
within the data can be defined.
A laboratory is an outlier within the network if its measurements of all samples are dif-
ferent, compared to the measurements of the other laboratories. A single measurement
of a sample within a laboratory is an outlier, if it is extreme compared to the other mea-
surements of this specific sample in the respective laboratory.
[Man95] addressed already this issue, having the idea to model data from multiple sam-
ples, measured within a laboratory network as a linear model for each laboratory. How-
ever, he takes not into account the inherent variability between laboratories. Linear
mixed models, especially the random coefficients model, close this gap: The coeffi-
cients of each laboratory are seen as random draws from a multivariate normal distri-
bution, which marks the variability between laboratories. In consequence, laboratories
with extreme coefficients can be regarded as outliers within the network.
The linear mixed model approach can also be used to identify extreme single measure-
ments of individual samples, in cases that single samples are regarded. [WG03] propose
a robust one-way random effects model for this setting. But, the robust estimation meth-
ods used therein are especially applicable to this model.
In Chapter 5, maximum-likelihood estimation of linear mixed models is introduced
and outlier identification rules for this model class are developed. But, working with
normal-linear mixed models, may lead to masking or swamping effects for such identi-
fications, as maximum-likelihood estimation is highly influenced by extreme observa-
tions. Masking occurs if outliers are not identified due to the incorrect estimation of
parameters. Swamping means that data points, which are no outliers, are falsely identi-
fied (see [GD93]). In Chapter 6, we present a robust estimation approach based on linear
mixed models with t-distributed random effects. This robust estimation approach can
be used for the random coefficients model and for the one-way random effects model,
such that both identification tasks can be performed based on this estimation method.
Finally in Chapter 7, we present how outlier identification rules for laboratory networks
can be derived that hold for different studies. If these rules should be applied to different
studies over the course of time, the dispersion parameters of the linear mixed models
must be set in advance, such that the same limits hold. We present how these parameters
can be derived from historical data and give an interpretation of them.



Chapter 5

Linear mixed models

Linear mixed models are a powerful tool, if data from different subjects is gathered and
one wants to model subject-specific effects as well as population effects. In case of
data from laboratory networks these subjects are the individual laboratories. Therefore
we will refer from now on to laboratory effects. [Man95] has been the first to model
data from multiple samples, measured within a laboratory network, as a linear model.
However he does not introduce a variation structure between laboratories.
In this chapter we present some general tools and techniques for dealing with linear
mixed models. For more detailed discussions on this large issue we refer to [VM00] or
[PB00].
Furthermore we discuss two particular linear mixed models and their application to
laboratory network data.

5.1 General model

Suppose I laboratories contribute to the data. For laboratory i, the general form of the
linear mixed model is given by (see [LW82])

Yi = Xib + Ziβi + εi

βi ∼ Nk(0,D) (5.1.1)

εi ∼ Nni(0,Ri),

where Yi ∈ R
ni denotes the data vector from laboratory i, Xi ∈ R

ni×p is the design
matrix of the fixed effects b ∈ Rp, Zi ∈ R

ni×k the design matrix of the random effects
βi ∈ R

k. The random effects are assumed to be normally distributed with mean 0 and

44
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variance-covariance matrix D. Finally εi is the residual vector of laboratory i, normally
distributed with mean 0 and variance-covariance matrix Ri, independent of βi. Further-
more it is assumed that the random variables of different laboratories are independent
from each other.
The variance-covariance matrix Ri of the errors allows the modelling of correlation
structures among the errors. To avoid the estimation of many parameters, it is often
assumed that this matrix is known up to a laboratory-specific constant. For our applica-
tions we will set Ri = σ2

ε · Ini .

We introduce the linear mixed model with random effects and errors being multivariate
normally distributed, which is the most common approach. The normal distribution al-
lows for an easy derivation of maximum-likelihood estimators of the parameters. How-
ever, as this estimation is sensitive to the presence of outliers, we will introduce a robust
estimation procedure in Chapter 6.
It follows from (5.1.1) that conditional on the random effects βi, Yi is normally dis-
tributed with mean Xib + Ziβi and variance-covariance matrix Ri. The marginal density
function of Yi is then

Yi ∼ Nni (Xib,Vi) , (5.1.2)

where Vi = ZiDZ′i + Ri. Note that the marginal model follows from the general linear
mixed model (5.1.1) but this is not true the other way round. Model (5.1.1) is much
more restrictive, as all variance-covariance matrices D, Ri, need to be positive definite.
In the marginal model this needs only to be true for the matrix Vi.

Denote with Θ = (b, γ) the vector of the unknown parameters, where γ contains all
dispersion parameters. Let Ω = Ωb × Ωγ be the parameter space of the fixed effects
and dispersion parameters. Regarding model (5.1.1), Ωγ is the set of values, such that
D and Ri are positive definite. For the marginal model, Ωγ comprises all values for γ,
such that the Vi’s are positive definite.

For the analysis of data from laboratory networks two particular models are of in-
terest.
The one-way random effects model is appropriate, if data from one particular sample
are regarded. We introduced this model already in Chapter 4, where we focus on the
estimation of the overall sample mean and its uncertainty. Now we are interested in the
estimation of the variance parameters and the prediction of the laboratory effects.
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The one-way random effects model is written as

Yi j = µ + ai + εi j, ∀ i = 1, .., I, j = 1, .., ni

or in matrix notation ∀ i = 1, .., I

Yi = 1niµ + 1niai + εi

ai ∼ N(0, σ2
a) (5.1.3)

εi ∼ Nni(0, σ
2
εi
· Ini),

where Yi is the vector of measurements of laboratory i. The parameter µ denotes the
overall sample mean, the ai’s the laboratory effects, and εi the normally distributed error
vector of laboratory i. The variance of the laboratory effects is referred to as between-
laboratory variance, whereas σ2

εi
as within-laboratory variance.

The one-way random effects model is well studied (see e.g. [SCM92]) and closed forms
of the estimators of the model parameters are available. However, it can also be viewed
as a special linear mixed model, which is treated like a general linear mixed model.
[WG03] developed an outlier-identification technique for this particular model, where
extreme laboratories as well as extreme observations within a laboratory, can be de-
tected. They use some robust estimation procedure, derived from the closed forms of
the estimators of the parameters and defined inlier- as well as outlier-regions for the
estimated laboratory effects and errors.
We will extend their ideas to other linear mixed models, and we present a robust esti-
mation method which can be applied to general linear mixed models, too.

The second model is the random coefficients model. It is useful if data from multi-
ple samples that are distributed over the whole concentration range are considered. This
approach can be used for the approval of laboratories to participate within a network. It
can be seen as a further extension of the ideas of [Man95].
The main idea is, that on one hand side to each sample k an overall sample concentra-
tion Ck can be assigned. On the other side we have measurements Mik j of this sample
in laboratory i. We regard the differences Mik j −Ck, ∀ i, j, k and model them as a linear
mixed model dependent on the Ck’s. [Man95] shows that this is equivalent to model a
sample-specific and laboratory-specific effect for the differences as well as an interac-
tion effect between sample and laboratory.
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The linear mixed model can be written in matrix notation as

Yi =



Mi11 −C1

Mi12 −C1
...

MiK1 −CK
...

MiKni −CK


=



1 C1

1 C1
...

...

1 CK
...

...

1 CK


(

b0

b1

)
+



1 C1

1 C1
...

...

1 CK
...

...

1 CK


(
β0i

β1i

)
+ εi, ∀ i = 1, .., I

(
β0i

β1i

)
∼ N2

( 0
0

)
,D =

 σ2
β0

ρσβ0σβ1

ρσβ0σβ1 σ2
β1

 (5.1.4)

εi ∼ Nni

(
0, σ2

ε · Ini

)
,

where K denotes the number of measured samples, L the number of repeated measure-
ments per sample, (b0, b1)′ the overall deviation from the overall sample location, which
is expected to be close to zero.
We are interested in the prediction of the laboratory specific coefficients (β0i, β1i)′, which
can be seen as a laboratory specific systematic effect β0i and proportional effect β1i. They
are the measure, the approval of laboratories within a network is based on. Further the
estimation of the variance-covariance matrix D and of the variance of the errors σ2

ε is
of interest.

5.2 Maximum-likelihood estimation

The basic approach for the estimation of the parameters of a linear mixed model is
maximum-likelihood estimation, based on the maximization of the likelihood of the
marginal model with respect to Θ. The log-likelihood function of model (5.1.2) is given
by

LML = ln

 I∏
i=1

{
(2π)−ni/2|Vi|

−1/2 · exp{−
1
2

(yi − Xib)′V−1
i (yi − Xib)

} =

= −
1
2

I∑
i=1

(
ni ln(2π) + ln |Vi| + (yi − Xib)′V−1

i (yi − Xib)
)

(5.2.1)
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[LW82] showed that the MLE of b conditional on γ is given by

b̂(γ) =

 I∑
i=1

X′iV
−1
i Xi

−1 I∑
i=1

X′iV
−1
i yi. (5.2.2)

Hence, after replacing b by (5.2.2) the MLE of γ is obtained by maximizing (5.2.1).
This approach is quite forward, when the estimation of b and γ is considered simul-
taneously by maximizing the joint likelihood. The maximization of (5.2.1) is usually
done by Newton-Raphson based procedures, as e.g. in SAS PROC MIXED or in R with
the lme function of the nlme package. For a detailed discussion of SAS PROC MIXED
see [MSLW96], the reference for the nlme package is [PB00].
The maximum-likelihood estimation of the variance components does not take into ac-
count the loss of degrees of freedom, due to the estimation of the fixed effects. Ac-
counting for this loss [Har74] introduced the restricted maximum-likelihood function
(REML):

LREML(θ) =

∣∣∣∣∣∣∣
I∑

i=1

X′iV
−1
i Xi

∣∣∣∣∣∣∣
−1/2

+ LML(θ). (5.2.3)

In the examples that follow we estimate the parameters by REML estimation.

5.3 Best linear unbiased prediction

To detect extreme laboratories in the data of laboratory networks the random effects of
both models must be estimated. They are estimated by best linear unbiased predictors
(BLUP). According to [Rob91] this means:
”BLUP estimates of the realized values of the random variables [..] are linear in the
sense that they are linear functions of the data [..]; unbiased in the sense that the aver-
age value of the estimate is equal to the average value of the quantity being estimated;
best in the sense that they have minimum mean squared error within the class of lin-
ear unbiased estimators; and predictors to distinguish them from estimators of fixed
effects”.
It can be shown (e.g. [SCM92]) that the best linear unbiased predictor (BLUP) of the
random effect βi is given by

β̂i = BLUP(βi) = DZiV−1
i (yi − Xib). (5.3.1)
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Note that the BLUP’s are functions of the dispersion parameters of the linear mixed
model, they cannot be estimated independent of them. As the best linear unbiased pre-
dictor depends on the unknown parameters of the model, estimates of these parameters
are plugged in the above equation for predicting the random effects.
The BLUP of the random effects is a shrinked estimator of the laboratory effects towards
the overall mean. This means that its components are less spread then the least-square
estimator, which will be obtained, if the components of β are regarded as fixed effects.
Maximum-likelihood estimation and best linear unbiased prediction, based on the nor-
mal distribution is sensitive to the presence of outliers within the data, see e.g. [PLW01].
As the important aim in the analysis of laboratory network data is the detection of devi-
ating laboratories, we have to investigate more into this issue. In Chapter 6, we present
an algorithm for the robust estimation of the parameters in the linear mixed model and
compare both fitting strategies, by applying them to different data from laboratory net-
works.

5.4 Outliers in linear mixed models

The identification of extreme data is a very important point in the analysis of laboratory
network data. It leads on one hand side to the formulation of rules for the approval of
laboratories as members of the network. On the other side it points towards data which
should not enter the calculation of the assigned value of a sample.
In linear models, residuals are often regarded to detect extreme observations. This
concept is extended to the random effects of linear mixed models.
According to the formulation of the linear mixed model, certain types of outliers can be
defined.

(i) Laboratory i is defined as location outlier, if its specific random effect βi deviates
from the majority of the random effects β j, j = 1, ..i − 1, i + 1, .., I.

(ii) If the variance-covariance matrix of the errors is modelled as Ri = σ2
ε · R, ∀ i =

1, .., I laboratory i is defined as scale outlier, if the laboratory-specific variation is
extremely different from the pooled laboratory variation.

(iii) An observation within a laboratory is defined as location-outlier, if it is extreme in
comparison to the other observations within this laboratory.

The given outlier definitions can be translated to the two linear mixed models in the
following way: For the one-way random effects model we have
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(i) Laboratory i as location-outlier, if all measurements of the specific sample are higher
or lower than the measurements in the other laboratories.

(ii) Laboratory i as scale-outlier, if the variation of its measurements of the specific
sample is higher than the variation of the measurements in the other laboratories.

(iii) A location-outlier within a laboratory, as an extreme single measurement within
this laboratory.

For the random coefficients model we can translate these definitions to:

(i) Laboratory i is a location-outlier, if its systematic and/or proportional effect are quite
different to these effects of the other laboratories.

(ii) Laboratory i is a scale-outlier, if the variation of the measurements around the
laboratory-specific regression line is higher than for the other laboratories.

(iii) A location-outlier within a laboratory, is a single measurement, which deviates
extremely from the laboratory-specific regression line.

[WG03] show how these types of outliers can be detected within a one-way random
effects model. The basic ideas are to estimate the parameters of the model as well as the
predictors of the random effects in a robust way. Afterwards inlier-regions are defined,
in which the respective effects are supposed to lie with a given confidence. Effects
outside these regions are considered as outliers.
We extend the concept of outlier/inlier regions to the class of linear mixed models,
defined in (5.1.1). The definition of the inlier-regions is based on the decomposition of
the residual sum of squares. One can show that the residual sum of squares

δ2
ti = (Yi − Xib)′(ZiDZ′i + Ri)−1(Yi − Xib),

can be split up in the sum of squares of the random effects δ2
βi

and the sum of squares of
the conditional residuals δ2

εi
. More precisely we have

δ2
ti = (Yi − Xib)′(ZiDZ′i + Ri)−1(Yi − Xib) =

= β′iD
−1βi + (Yi − Xib − Ziβi)′R−1

i (Yi − Xib − Ziβi)

= δ2
βi

+ δ2
εi
. (5.4.1)

In linear mixed models with normally distributed random effects and residuals, the dis-
tributions of these quadratic forms are known ([Sea71]):

δ2
βi
∼ χ2

k δ2
εi
∼ χ2

ni
.
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As E(δ2
βi

) = k it follows that E(δ2
βi
/k) = E(δ2

εi
/ni) = 1.

Outlier-regions for laboratories as location-outliers, as well as laboratories as scale-
outliers can be defined based on the statistics δ2

βi
/k, δ2

εi
/ni.

According to the ideas of [GD93], the specified confidence level needs to be adjusted
to the number of laboratories under consideration. For a given pre-specified level α and
I laboratories under consideration, this can be done by setting αI = 1 − (1 − α)(1/I), in
analogy to multiple testing strategies.

Hence, we define the following outlier identification rules for 0 ≤ α ≤ 1:

(i) Laboratory i is an α−location-outlier, if

δ2
βi

k
>

qk
1−αI

k
,

where qk
1−αI

denotes the 1 − αI quantile of the χ2
k distribution.

(ii) Laboratory i is an α−scale-outlier, if

δ2
εi

ni
>

qni
1−αI

ni
,

where qni
1−αI

denotes the 1 − αI quantile of the χ2
ni

distribution.

Under the assumption that the residuals have the same variance and are uncorrelated,
i.e. Ri = σ2

ε · Ini , δ
2
εi

can be split up into the individual squares of the residuals. Then
we can examine, if the scale differences are caused by a single extreme measurement,
or due to a higher variation of all measurements within the respective laboratory.
Define εi j the jth component of the conditional residual vector (Yi − Xib − Ziβi). Then
we have

δ2
εi

=
1
σ2
ε

ni∑
j=1

ε2
i j,

with
1
σ2
ε

ε2
i j ∼ χ

2
1.

Hence, we define the measurement yi j within laboratory i as α−location-outlier, if

1
σ2
ε

ε2
i j > q1

1−αn
,
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where q1
1−αn

denotes the 1 − αn quantile of the χ2
1 distribution and n =

∑
ni.

The above outliers rules are defined on the following considerations: For a prespecified
α ∈ (0, 1)

P(∃ i : δ2
βi
> lβ) = α

P(∃ i : δ2
εi
> sε) = α

P(∃ i, j :
1
σ2
ε

ε2
i j > lε) = α,

under model (5.1.1).
Under the assumption that the random effects and residuals are normally distributed the
critical values lβ, sε, lε become the respective Chi-square quantiles. It should be clear
that when applying these rules to estimates of the dispersion parameters and predictors
of the random effects this might no longer be true. Nevertheless we use these quantiles
as a first approximation to the right critical values. Further research is needed to deter-
mine more appropriate values, for example through simulation studies.

Clearly in the presence of outliers, a robust estimation procedure for linear mixed
models would be more appropriate. The robust estimation procedure for the one-way
random effects model of [WG03] cannot be extended to more general models. [PLW01]
developed an EM-algorithm for the robust fitting of linear mixed models, based on
the t-distribution. The random effects and residuals are no longer assumed normally
distributed, but t-distributed with appropriate degrees of freedom. Hence, the parameter
space is extended to the degrees of freedom of the multivariate t-distribution. These can
either be estimated from the data, or set in advance, corresponding to a tuning parameter
for the robustness of the algorithm. The algorithm and its application to the models,
which appear in the context of laboratory networks, is presented in Chapter 6.
In the last section of this chapter we present the application of the different outlier rules
to the one-way random effects model and to the random coefficients model, based on
the standard non-robust maximum-likelihood method.

5.5 Outlier identification by normal-linear mixed mod-
els

In this section we present the application of the outlier identification rules to the one-
way random effects model as well as to the random coefficients model for data from
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laboratory networks. Parameters of the models are estimated by REML estimation
based on the linear mixed models with normally distributed random effects and errors.

5.5.1 One-way random effects model

For the one-way random effects model, we regard two examples, the first one is the
data from an intercomparison trial of radon measurements, given in [WG03]. [WG03]
demonstrated on this example the concepts of their outlier identification procedures,
based on robust estimators of the parameters and outlier regions for (i) laboratories as
location-outliers, (ii) laboratories as scale-outliers and (iii) measurements within labo-
ratories as location-outliers.
They define outlier regions for the random effects and residuals, as well as for the in-
dividual within-laboratory variance. The limits of the outlier regions are found by sim-
ulation and they are defined such that the pre-specified confidence levels over all lab-
oratories, or measurements are expected to hold. However, this procedure is specially
designed for the one-way random effects model and can not be extended to general lin-
ear mixed models.
In a first step we want to apply our definitions of outliers, as given in Section 5.4, to
the radon data, to see if we receive comparable results. In Figure 5.1, the radon mea-
surements, obtained in 5 laboratories and 5 measurements within each laboratory, are
shown. [WG03] identified with a confidence level of α = 0.1 (i) laboratory 3 as a
location-outlier within the laboratories, (ii) the lowest and highest observations of lab-
oratory 3 and the lowest observation of laboratory 5 as location-outliers within these
laboratories. No laboratories are identified as scale-outliers.
Modelling the data as a one-way random effects model with normally distributed ran-
dom effects and errors and estimating the between-laboratories variance and within-
laboratories variance by REML leads to σ̂2

a = 986.4, and σ̂2
ε = 689.6. These esti-

mates are much higher than the variances, estimated in a robust way by [WG03], being
σ̃2

a = 87.723, and σ̃2
ε = 83.456. This is mostly due to the very high variation of labora-

tory 3, with empirical variance of 2548.
Setting α = 0.1, the limits for the outlier statistics defined in Section 5.4 are

qK
1−αI

/k = q1
1−α5

/1 = 5.33,

qni
1−αI

/ni = q5
1−α5

/5 = 2.66,

q1
1−αn

/1 = q1
1−α25

/1 = 8.19.
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Figure 5.1: Radon measurements from [WG03], obtained in 5 laboratories and 5
measurements per laboratory.
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Applying the outlier identification rules from Section 5.4, we do not identify laboratory
3 as location-outlier, neither the two lowest measurements of laboratory 3 and 5 as
location-outliers within these laboratories, due to the much higher variance estimates.
See Figure 5.2 for the calculated outlier statistics δ2

βi
, δ2

εi
/5, δ2

εi j
and the respective limits

indicated as green line. The outlier statistic of the residual vector of laboratory 3, δ2
ε3
, is

outside the respective limit. Regarding the individual residuals of laboratory 3, it seems
that this is mostly due to the higher variation, not due to an extreme single measurement
within this laboratory.

The second example for the application of the one-way random effects model to data
from an individual sample measured in different laboratories, comes from the IFCC net-
work for standardization of HbA1c. As already mentioned in Section 1.5, in each stan-
dardization study samples are distributed among different laboratories. These laborato-
ries measure each sample in two so-called digests (sample preparation steps) and make
two repetitions per digest. However, in our analysis the digest effect is not taken into
account, as the number of factor-specific observations would become too low. Further,
various analyses ([KBA+06], [KAS+06]) have also shown that the digest effect is mostly
negligible, compared to the variation between and within the laboratories. Therefore,
we pool the data from each laboratory and treat them as four repeated measurements.
Within the graphics the two different digests are indicated by different colors.
As an example we regard a calibrator sample (CAL) as well as an intercomparison
sample (ICS), both measured within the Orlando 2 study. In Figure 5.3, the scatterplots
of both samples are given. For the CAL sample, laboratory 16 measures substantially
higher than the other laboratories, and the highest observation of laboratory 16 is quite
different from the three other measurements within this laboratory.
For the ICS sample, laboratory 10 seems to measure lower than the other laboratories.
Regarding the variation of the measurements within the different laboratories, we ob-
serve a quite higher one in laboratory 13, as well as in laboratory 16.
We fit a one-way random effects model to the data from these two samples, to inspect
whether these exploratory observations can be confirmed.
For the CAL sample, the estimated between-laboratory variance is σ̂2

a = 0.0086 and
the within-laboratory variance σ̂2

ε = 0.0022, whereas for the ICS sample, the estimated
variances are σ̂2

a = 0.0024, and σ̂2
ε = 0.0064. Note that for the ICS sample the within-

laboratories variance is much higher than for the CAL sample, although both samples
are from the same concentration range. This is an indication that this estimator is influ-
enced by the much higher variation in laboratory 13 and 16.
Regarding the outlier identification statistics (with α = 0.05), given in Figure 5.4, with
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Figure 5.2: Outlier identification statistics for radon measurements from [WG03]
based on the normal-linear mixed model. The outlier limits (α = 0.1) are indicated
as green line, the expected value of the outlier statistics as dashed line.
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limits printed in green, we note that for the CAL sample laboratory 16 has the highest
distance of the laboratory effect, however it is still within the limits. The variation of
laboratory 16 is also not significantly higher than for the other laboratories.

For the ICS sample, laboratory 16 is identified as a scale-outlier due to its highest
measurement, which is also extreme compared to the other measurements of laboratory
16. Laboratory 13 is not conspicuous in regard to its variation, neither laboratory 10 for
its location.

5.5.2 Random coefficients model

The random coefficients model is a useful statistical method to analyze the measurement
behavior of laboratories within a network. For the IFCC network for standardization of
HbA1c this is an important question in each study. Candidate laboratories need to be
approved and laboratories being already member need to be re-approved. We choose
data from two studies as examples, the Kyoto 1 study and the Orlando 2 study.
In the Kyoto 1 study 13 laboratories participated. Each laboratory measured 5 intercom-
parison samples in two digests and two repetitions per digest. Similar to the one-way
random effects model, we pool data from a single laboratory and sample, as the digest
effect is negligible. In Figure 5.5, the plot of the differences between the individual
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Figure 5.3: Measurements of [%] HbA1c from two samples measured within the
IFCC network for standardization of HbA1c. The different colors indicate the two
different digests in each laboratory.
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Figure 5.4: Outlier identification statistics for the CAL and ICS sample of the
IFCC network for standardization of HbA1c, based on the normal linear mixed
model. The outlier limits (α = 0.05) are indicated as green line, the expected value
of the outlier statistics as dashed line.
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measurements and the overall median against the overall median are given for each
laboratory. Besides the data points, the least-square regression line per laboratory is
displayed.

Examining the scatterplots in Figure 5.5, there is some variation between the rela-
tionship of the differences and the overall medians among the laboratories. Especially
laboratory 15 c, has a very high slope and measures quite differently from the other
laboratories within the study. The assumed linear relationship fits the data in each lab-
oratory quite well, except for laboratory 12. Here is the variation of the residuals quite
higher than in the other laboratories.
In Figure 5.6, the estimated coefficients and residuals are plotted for each laboratory.
As already noted in Figure 5.5, the coefficients of laboratory 15 c are far away from
the point (0,0), but also the coefficients of laboratory 10. The residuals of laboratory 12
show a much higher variation than for the other laboratories. But are these observations
also significant in terms of the defined outlier identification rules?

In Figure 5.7, the calculated outlier identification statistics are given, together with
the limits based on the adjusted 0.95 quantiles of the respective Chi-Square distribu-
tions. Examining these, neither laboratory 15 c nor laboratory 10 are identified as
location-outliers within the laboratories. Laboratory 12 is identified as scale-outlier,
as the variation of the residuals is higher than in the other laboratories. The estimates of
the variance-covariance matrix of the coefficients, as well as the estimates of the vari-
ance of the residuals are highly influenced by the data of laboratories 10, 12 and 15 c.
Hence, the resulting estimated values are too high and lead to masking effects. We will
see in Section 6.4 that applying a robust estimation procedure to this data leads to more
reliable results.
In the Orlando 2 study, 14 laboratories participated, each laboratory measured 5 in-
tercomparison samples in two digests and two repetitions per digest. In Figure 5.8,
the plots of the differences between individual measurements and the overall median
against the overall median for each laboratory are given. Differences in the relationship
between the laboratories are observable, although there seems to be not such a highly
deviating laboratory as laboratory 15 c in the Kyoto 1 study. The variation of the resid-
uals seems to be highest in laboratory 3a.
Figure 5.9 shows the estimated coefficients and residuals for each laboratory and Fig-
ure 5.10 the outlier statistics, based on the estimators of the normal linear mixed model.
The variation of the residuals is higher in laboratory 3a than in the other laboratories,
and laboratory 16 shows an extreme residual. Based on the outlier identification statis-
tics, no laboratory is detected as location-outlier. Laboratory 3a is a scale-outlier due to
the higher variation of its residuals.
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Figure 5.5: Plot of the differences between individual measurements and overall
median against the overall median for each laboratory from the Kyoto 1 study.
The solid lines are linear least-square fits, the dashed line indicates the zero line.
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Figure 5.6: Plot of the systematic and proportional effect of each laboratory for the
Kyoto 1 study estimated by the normal random coefficients model. The plot on the
right hand side shows the residuals for each laboratory; different colors indicate
the different samples.
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Figure 5.7: Outlier identification statistics for the Kyoto 1 study based on the
normal-linear mixed model. The outlier limits (α = 0.05) are indicated as green
line, the expected value of the outlier statistics as dashed line.
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Figure 5.8: Plot of the differences between individual measurements and overall
median against the overall median for each laboratory from the Orlando 2 study.
The solid lines are linear least-square fits, the dashed line indicates the zero line.
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Figure 5.9: Plot of the systematic and proportional effect of each laboratory for
the Orlando 2 study estimated by the normal random coefficients model. The plot
on the right hand side shows the residuals for each laboratory; different colors
indicate the different samples.

●

●

●

●

●

●
●

●

●
●

●

●
●

●

−0.10 −0.05 0.00 0.05 0.10

−
0.

4
−

0.
2

0.
0

0.
2

Orlando 2

Proportional Effect

S
ys

te
m

at
ic

 E
ffe

ct

●
●
●

●
●
●

●
●
●

●
●
●

●
●

1
10
12

13
16
17a

17b
2
3a

3b
6
7

8
9

●●
●

●
●●
●●

●●●
● ●

●

●

●

●
●
●

●

●●●●
●

●
●● ●●●●

●
●
●

●
●●
●● ●●

●
● ●●●●

●●
●●

●●●●

●

●
●

● ●●●● ●●
●●

●

●

●

●

●●●
●

●
●●●

●

●●● ●●
●
●

●
●

●

●

●
●●●

●
●
●
●

●●

●●
●●●● ●●

●

●
●
●

●

●
●
●●●

●●●
●

●
●

●

●

●

●

●

●
●
●
●●

●

●
●● ●●

●●
●
●●

● ●●

●●
●●●●

●●●● ●●
●● ●●

●
●●●

●

● ●●●● ●●●●

●

●

●

●
●
●
●● ●●

●
●

●
●

●

● ●●
●
●

●
●

●
● ●●●● ●

●
●●

●●
●
● ●●●●

●

●
●

●

●●
●
●

●●●●
●●●●

●

●

●

●
●

●

●● ●
●●●

●
●

●● ●●
●
●

●

●

●●

●●●●
●
●
●●

●
●●
●

●●

●●
●
●●
●

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Orlando 2

Laboratory

R
es

id
ua

l

1 10 12 13 16 17
a

17
b 2 3a 3b 6 7 8 9

●
●
●
●
●

Orlando 10
Orlando 6
Orlando 7
Orlando 8
Orlando 9

Figure 5.10: Outlier identification statistics for the Orlando 2 study based on the
normal linear mixed model. The outlier limits (α = 0.05) are indicated as green
line, the expected value of the outlier statistics as dashed line.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

δβi

2 2

La
bo

ra
to

ry

1

10

12

13

16

17a

17b

2

3a

3b

6

7

8

9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

Orlando 2

δεi

2 20

La
bo

ra
to

ry

1

10

12

13

16

17a

17b

2

3a

3b

6

7

8

9

●●●●

●●●●

●●●●

●●●●

●●● ●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

● ●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●●●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●● ●●

●●●●

●●●●

●●●●

●●●●

●●●●

0 10 30 50

δεij

2

La
bo

ra
to

ry

1

10

12

13

16

17a

17b

2

3a

3b

6

7

8

9



Chapter 6

Robust estimation in linear mixed
models

The use of the multivariate normal distribution in the formulation of the linear mixed
model, leads straightforward to maximum-likelihood estimation of the parameters (see
Section 5.2). However, estimation procedures based on the normal distribution will be
inefficient if outlier are present in the data (see for example [PLW01]). Outlier identifi-
cation procedures based on these estimates are sensible to masking or swamping effects,
as shown in Section 5.5. Robust estimation procedures avoid these problems as outly-
ing data are downweighted during the estimation. Hence, estimates of the parameters
of the distributions are not influenced in a disproportional way.
[PLW01] present an algorithm for the robust estimation of linear mixed models based on
the multivariate t-distribution. That is, the multivariate normal distribution is replaced
by the multivariate t-distribution, either with known or unknown degrees of freedom.
This replacement results in downweighting extreme data, dependent on the degrees of
freedom.

6.1 The t-linear mixed model

The normal-linear mixed model (5.1.1), may also be written in the following form:(
Yi

βi

)
∼ Nni+k

((
Xib
0

)
,

(
ZiDZ′i + Ri ZiD
ZiD D

))
, i = 1, .., I. (6.1.1)

To introduce robustness into the estimation procedure, the multivariate normal distribu-
tion is replaced by the multivariate t-distribution with νi degrees of freedom, resulting

63
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in (
Yi

βi

)
∼ tni+k

((
Xib
0

)
,

(
ZiDZ′i + Ri ZiD
ZiD D

)
, νi

)
, i = 1, .., I. (6.1.2)

The marginal distribution of the observations is then given by

Yi ∼ tni(Xib,ZiDZ′i + Ri, νi), i = 1, .., I. (6.1.3)

According to the definition of the multivariate t-distribution, Model 6.1.2 (see e.g.
[GCSR04]) may be written in the form of a hierarchical model(

Yi

βi

)
|τi ∼ Nni+k

((
Xib
0

)
,

1
τi

(
ZiDZ′i + Ri ZiD
ZiD D

))
τi ∼ Gamma

(
νi

2
,
νi

2

)
, i = 1, .., I,

or by taking into account the hierarchical structure of the random effects

Yi|βi, τi ∼ Nni

(
Xib + Ziβi,

1
τi

Ri

)
βi|τi ∼ N

(
0,

1
τi

D
)

(6.1.4)

τi ∼ Gamma
(
νi

2
,
νi

2

)
, i = 1, .., I.

Model (6.1.4) provides the basis for the natural implementation of an expectation-
maximization (EM) algorithm for the maximum-likelihood estimation of the param-
eters.
Another form of the t-linear mixed model is written as

Yi = Xib + Ziβi + εi

βi ∼ tk(0,D, νi) (6.1.5)

εi ∼ tni(0,Ri, νi), i = 1, .., I.

This form allows the identification of laboratories as location-outliers, as well as labo-
ratories as scale-outliers based on the outlier statistics defined in Section 5.4.
The mean of the observations is given by E(Yi) = Xib and for νi > 2

Var(βi) =
νi

νi − 2
D, Var(εi) =

νi

νi − 2
Ri.



6.1. The t-linear mixed model 65

This results in two differences between the normal-linear mixed model and the t-linear
mixed model:
First, depending on the different degrees of freedom for the laboratories, the random
effects are allowed to have different variations. However, to avoid the estimation of a
large number of parameters in what follows we set νi = ν ∀i.
[PLW01] restrict the different degrees of freedom to groups of subjects which are known
in advance. For our application we can not define groups of laboratories in advance,
therefore we take the same degrees of freedom for all laboratories. Additionally we are
restricted to a small number of laboratories, which makes the estimation of the degrees
of freedom even more difficult.
The matrices D and Ri have different meanings in both models. In the normal-linear
mixed model they are the variance-covariance matrices of the random effects and resid-
uals, respectively. In the t-linear mixed model they must be multiplied by the factor ν

ν−2
for obtaining the respective variance-covariance matrices.
To apply the EM algorithm for the estimation of the model parameters the conditional
distributions of βi|Yi, as well as τi|Yi must be known. Some calculus leads to

βi|Yi ∼ tk

(
DZ′i(ZiDZ′i + Ri)−1(yi − Xib), (6.1.6)

D − DZ′i(ZiDZ′i + Ri)−1ZiD, ν
)

and

τi|Yi ∼ Gamma
(
ν + ni

2
,
ν + δ2

i (b,D,Ri)
2

)
, (6.1.7)

where δ2
i (b,D,Ri) refers to the residual sum of squares, given by

δ2
i (b,D,Ri) = (Yi − Xib)′(ZiDiZ′i + Ri)−1(Yi − Xib).

The split of the residual sum of squares into a part considering only the random effects
and another considering the residuals, as shown in (5.4.1), holds, too. Therefore we can
easily calculate the outlier identification statistics defined in Section 5.4, based on the
estimators from the t-linear mixed model algorithm.

Note that the conditional mean of τi|Yi is given by

E(τi|Yi) =
ν + ni

ν + δ2
i (b,D,Ri)

,
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i.e. it decreases with δ2
i . In comparison to the normal-linear mixed model, the t-linear

mixed model allows each laboratory to have its own scale τi, which is unobservable
and needs to be imputed from the data. The different individual scales result in different
weights for the estimation of the model parameters. As E(τi|Yi) decreases with δ2

i , labo-
ratories with larger residual sum of squares will have less weight in the determination of
the parameter estimates. On the other side, the influence of the residual sum of squares
on the scales τi is controlled by the degrees of freedom ν; the smaller ν, the larger the
influence of δ2

i on τi. Hence, setting the degrees of freedom in advance is equal to the
definition of a robustness parameter.

6.2 The expectation-maximization algorithm

The expectation-maximization (EM) algorithm ([DLR77]) is an iterative algorithm for
models with incomplete data. The observed data vector y is viewed as being incomplete
and is regarded as an observable function of the so-called complete data.
In that sense in the t-linear mixed model (6.1.4), both βi and τi are treated as missing,
though of course they are never observable in a data sense.
Denote with yc = (y′, y′m)′ the complete data vector, with gc(yc,Θ) the probability den-
sity function of the random vector Yc, corresponding to the complete-data vector yc,

and with Θ the parameter vector defined on the parameter space Ω.

The complete-data log-likelihood function that could be formed if yc were fully observ-
able, is given by

ln Lc(Θ) = ln gc(yc,Θ).

But as this log-likelihood is not observable, it is replaced by its conditional expectation
given y, using the current fit of Θ.

Let Θ(0) be some initial value of Θ. In the first iteration, the expectation step (E-step)
requires the calculation of

Q(Θ; Θ(0)) = EΘ(0) (ln Lc(Θ)|y) .

In the maximization step (M-step) Q(Θ; Θ(0)) is maximized with respect to Θ over the
parameter space Ω. In the (k+1)th iteration, the E-step and M-step are defined as:

E-step: Calculate Q(Θ; Θ(k)) = EΘ(k)(ln Lc(Θ))
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M-step: Choose Θ(k+1) ∈ Ω such that

Q(Θ(k+1); Θ(k)) ≥ Q(Θ; Θ(k)) ∀Θ ∈ Ω.

[DLR77] showed, that after every EM iteration, the log-likelihood of the incomplete
data increases, i.e.

L(Θ(k+1)) ≥ L(Θ(k)).

Thus, convergence is obtained for a sequence of likelihood values that are bounded
above.
The M-step in the EM algorithm is difficult to implement, it will often be useful to re-
place it with a sequence of constraint maximization steps (CM-steps). In each CM-step
Q(Θ; Θ(k)) is maximized over Θ, in order to update some of the elements of Θ while
the other elements of Θ are fixed. This is known as the ECM algorithm ([MR93]). In
[Bil98] a good introduction is given to the application of the EM algorithm to mixed
models.

6.3 ECM-algorithms for t-linear mixed model

We describe two algorithms for the fitting of the t-linear mixed model, both presented
in [PLW01]. The first one regards the βi as well as τi as missing values and results in
closed form estimators. It is presented to clarify the scheme of the ECM-algorithm.
The second one integrates the βi out, resulting in a computationally more intensive CM-
step. However, this step can easily be solved with standard statistic software, hence we
decided to use this algorithm to fit the t-linear mixed models to our data.

6.3.1 Algorithm with βi and τi missing

Formulation (6.1.4) of the t-linear mixed model, leads to some straightforward applica-
tion of the ECM algorithm. The coefficients βi and scales τi are viewed as missing data,
although they are never observable in a data sense.
Let y = (y′1, .., y

′
I)
′, β = (β′1, .., β

′
I)
′, and τ = (τ1, .., τI)′. Furthermore we assume that the

variance structure of the errors is known up to a constant and equal over all laboratories,
i.e. Var(ε) = σ2Ri, where Ri are known matrices. In our applications they will be the
identity matrix. All parameters of the model are collected within the parameter vector
Θ = (b,D, σ2, ν).
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The log-likelihood for the complete data in the t-linear mixed model with unknown
degrees of freedom is

L(b,D, σ2, ν|y, β, τ) = ln

 I∏
i=1

PΘ(Yi|βi, τi) · PΘ(βi|τi) · PΘ(τi)

 =

= L1(b, σ2|y, β, τ) + L2(D|β, τ) + L3(ν|τ) + const.,

with

L1(b, σ2|y, β, τ) = −

I∑
i=1

ni

2
ln(σ2) −

I∑
i=1

τi

2σ2 trace(R−1
i (yi − Ziβi)(yi − Ziβi)′)

+

I∑
i=1

τi

σ2 b′X′iR
−1
i (yi − Ziβi) −

I∑
i=1

τi

2σ2 b′X′iR
−1
i Xib

L2(D|β, τ) = −
I
2

ln(|D|) −
1
2

trace

D−1
I∑

i=1

τiβiβ
′
i


L3(ν|τ) = −

I∑
i=1

ln
(
Γ

(
ν

2

))
− ln(τi) +

ν

2

(
ln

(
ν

2

)
+ ln(τi) − τi

)
.

The E-step requires the calculation of the conditional mean of the log-likelihood func-
tion, using the current fit of Θ denoted as Θ̂. Based on the three terms of the log-
likelihood function and the conditional distributions of τi|yi and βi|yi, we have

E(L1(b, σ2|y, β, τ)|y,Θ = Θ̂) = −

I∑
i=1

ni

2
ln(σ2) −

I∑
i=1

τ̂i

2σ2 b′X′iR
−1
i Xib

+

I∑
i=1

τ̂i

σ2 b′X′iR
−1
i (yi − Ziβ̂i)

−

I∑
i=1

1
2σ2 trace

(
R−1

i

(
τ̂i(yi − Ziβ̂i)(yi − Ziβ̂i)′ + ZiΩ̂iZ′i

))
E(L2(D|β, τ)|y,Θ = Θ̂) = −

I
2

ln(|D|) −
1
2

trace

D−1
I∑

i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

)
E(L3(ν|τ)|y,Θ = Θ̂) =

I∑
i=1

(
ν

2

(
ln

(
ν

2

)
+ E(ln τi|y, Θ̂) − τ̂i

)
−E(ln(τi)|y, Θ̂) − ln

(
Γ

(
ν

2

)))
,
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where τ̂i = E(τi|y,Θ = Θ̂), β̂i = E(βi|y,Θ = Θ̂) and Ω̂i = τ̂i ·Cov(βi|y,Θ = Θ̂).

Note that for the derivation of the conditional mean the following property of the
mean is used: For two random variables A, B we have E(A ·B) = E(A) ·E(B)+Cov(A, B)
from which it follows that E(AB2) = E(A) · E(B)2 + E(A) · Var(B) + Cov(A, B2).

The conditional expectations and variance are derived from the conditional distri-
butions of τi|y and βi|y (see (6.1.7) and (6.1.6)), resulting in

τ̂i = E(τi|y,Θ = Θ̂) =
ν̂ + ni

ν̂ + δ2
i (b̂, D̂, σ̂2)

(6.3.1)

β̂i = E(βi|y,Θ = Θ̂) = D̂Z′i(ZiD̂Z′i + σ̂2Ri)−1(yi − Xib̂) (6.3.2)

Ω̂i = τ̂i ·Cov(βi|y,Θ = Θ̂) = D̂ − D̂Z′i(ZiD̂Z′i + σ̂2Ri)−1ZiD̂. (6.3.3)

Hence the steps of the EM-algorithm for fitting the t-linear mixed model are the follow-
ing:

E-step: Given Θ = Θ̂, compute τ̂i, β̂i and Ω̂i, for i = 1, .., I using (6.3.1), (6.3.2),
(6.3.3).

M-step: This step is divided in 4 constrained maximization steps.

CM-step 1: For updating b̂,we fixσ2 = σ̂2 and maximize E(L1(b, σ̂2|y, β, τ)|y,Θ = Θ̂)
over b, leading to

b̂ =

 I∑
i=1

τ̂i

σ̂2 X′iR
−1
i Xi

−1 I∑
i=1

τ̂i

σ̂2 X′iR
−1
i (yi − Ziβ̂i),

as
∂E(L1)
∂b

=

I∑
i=1

τ̂i

σ̂2 X′iR
−1
i (yi − Ziβ̂i) −

I∑
i=1

τ̂i

σ̂2 X′iR
−1
i Xib.

CM-step 2: Fix b = b̂ and update σ2, by maximizing E(L1(b̂, σ2|y, β, τ)|y,Θ = Θ̂)
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over σ2, which results in

σ̂2 =

 I∑
i=1

trace
(
R−1

i (τ̂i(yi − Ziβ̂i)(yi − Ziβ̂i)′ + ZiΩ̂iZ′i)
) / I∑

i=1

ni

−

 I∑
i=1

2τ̂ib̂′X′iR
−1
i (yi − Ziβ̂i) −

I∑
i=1

τ̂ib̂′X′iR
−1
i Xib̂

 / I∑
i=1

ni

=

I∑
i=1

(
τ̂i(yi − Xib̂ − Ziβ̂i)′R−1

i (yi − Xib̂ − Ziβ̂i) + trace(Ω̂iZ′iR
−1
i Zi)

)
/

I∑
i=1

ni.

The last equation holds as trace(Abb′) = b′Ab and by combining the terms to a
quadratic form.

CM-step 3: The closed form of the updated D̂, maximizing E(L2(D|β, τ)|y,Θ = Θ̂)
over D, is obtained by taking the partial derivative of E(L2(D|β, τ)|y,Θ = Θ̂) with
respect to D−1. Based on the identities (A.0.6) and (A.0.7) given in Appendix A,
we obtain

∂E(L2(D|β, τ)|y,ΘΘ̂)
∂D−1 =

I
2

(2D − diag(D))

−
1
2

2 I∑
i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

)
− diag

 I∑
i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

)
=

ID −
I∑

i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

)
−

1
2

diag

ID −
I∑

i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

) .
Setting this partial derivative to zero, implies that

ID −
I∑

i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

)
= 0,

from which it follows that

D̂ =
1
I

I∑
i=1

(
τ̂iβ̂iβ̂

′
i + Ω̂i

)
.

CM-step 4: Updating ν̂ by maximizing E(L3(ν|τ)|y,Θ = Θ̂) over ν would result in a
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one-dimensional search of

ν̂ = arg max
v

I∑
i=1

(
ν

2

(
ln

(
ν

2

)
+ E

(
ln(τ̂i)|y,Θ = Θ̂

)
− τ̂i

)
− ln

(
Γ

(
ν

2

)))
.

However, E
(
ln(τ̂i)|y,Θ = Θ̂

)
does not have a closed form and therefore conver-

gence might be very slow. To circumvent this problem, this step is transformed in
a constraint maximum-likelihood step, i.e. ν is found as the value that maximizes
the constrained likelihood over the degrees of freedom, with b,D, σ2 fixed at their
current estimates. The constrained likelihood is computed using the marginal
model of the observations, that is

Yi ∼ tni

(
Xib,ZiDZ′i + σ2Ri, ν

)
.

This results in the log-likelihood function

L(ν; y) =

I∑
i=1

(
ln

(
Γ

(
ν + ni

2

))
− ln

(
Γ

(
ν

2

))
+
ν

2
ln(ν) −

ν + ni

2
ln

(
ν + δ2

i (b̂, D̂, σ̂2)
))
.

The updated ν̂ is the value, which maximizes this log-likelihood function over
the parameter space of ν. This requires only a one-dimensional search, too, but
all terms are written in closed form.

When the degrees of freedom are known, or set in advance, CM-step 4 of the EM-
algorithm is omitted and the known ν is used in place of ν̂ in the remaining steps.

6.3.2 Algorithm with τi missing

In this algorithm the βi are integrated out of the complete data likelihood, hence only
the τi are treated as missing data. This results in a more complex CM-step, however this
can be solved using standard statistical software, which facilitates its implementation.
We present the derivation of the algorithm for the case that the degrees of freedom of
the t-distribution are set in advance. If they are also estimated from the data, CM-step
4 of the above algorithm is simply added.
The log-likelihood function of the complete data (y, τ)′ is based on the marginal distri-
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bution of the observations, given in (6.1.3):

L(b,D, σ2|y, τ) = L1(b,D, σ2|y, τ) + const,

L1(b,D, σ2|y, τ) = −
1
2

I∑
i=1

ln |Vi| + τi(yi − Xib)′V−1
i (yi − Xib),

where Vi = ZiDZ′i + σ2Ri.

It follows that

E(L1(b,D, σ2|y, τ)|y,Θ = Θ̂) = −
1
2

I∑
i=1

ln |Vi| + τ̂i(yi − Xib)′V−1
i (yi − Xib),

where τ̂i = E(τi|y,Θ = Θ̂) is defined in (6.3.1).
Hence, the algorithm is given by the following two steps:

E-step: Given Θ = Θ̂, compute τ̂i, defined in (6.3.1).

C-step: For fixed τ̂, update E(L1(b,D, σ2|y, τ)|y,Θ = Θ̂),which is equivalent to maximum-
likelihood estimation in the normal-linear mixed model, ỹi = X̃ib + Ziβi + εi, i =

1, .., I, where ỹi =
√
τiyi and X̃i =

√
τiXi (see (5.2.1) for the log-likelihood func-

tion of the normal linear mixed model). This can easily be done e.g. in the SAS
software [SAS06] with PROC MIXED or in the R software [R D06] with the lme
function of the nlme package [PBD+06].

Estimators of the random effects are obtained by BLUP according to Formula (5.3.1)

β̂i = D̂Z′iV
−1
i (yi − Xib̂).

6.3.3 Derivation of the starting values

As the EM algorithm is an iterative algorithm, we need to compute starting values
for the parameters. By fitting for each laboratory separate regression models and using
method of moments estimators, we derive the initial values of the fixed effects and of the
dispersion parameters. More concretely, let β̌i be the estimates of the coefficients and
σ̌2

i of the residual variance, both derived by least-square regression for each laboratory
individually. Initial values for the fixed effects and dispersion parameters are obtained
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as

b(0) =
1
I

I∑
i=1

β̌i,

D(0) =
1

I − 1

I∑
i=1

(b(0) − β̌i)(b(0) − β̌i)′,

σ2(0) =
1
I

I∑
i=1

σ̌2
i .

In the case that the degrees of freedom also need to be estimated, we set ν(0) = 20,
according to the recommendations of [PB00].

In the next section we apply the ECM algorithm of Section 6.3.2 to the data and
models, which were already presented in Section 5.5.

6.4 Outlier identification by t-linear mixed models

In Section 5.5, we presented examples involving data from standardization networks,
which were modelled as normal-linear mixed models. Especially we discussed the one-
way random effects and random coefficients model. We inspected that the parameter
estimators were very sensitive to the presence of outliers, such that the outlier identifi-
cation statistics of Section 5.4 were subject to masking effects. In this section we regard
the same data, but this time we model them by t-linear mixed models to achieve a more
robust estimation of the parameters.

6.4.1 One-way random effects model

Formulating the one-way random effects model (5.1.3) in terms of a t-linear mixed
model according to (6.1.5), we have

Yi = µ · 1ni + ai · 1ni + εi, i = 1, .., I,

ai ∼ t1(0, σ2
a, ν)

εi ∼ tni(0, σ
2
ε · Ini , ν).
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The parameters of this model are the fixed effect µ, the between-laboratories variance
σ2

a, the within-laboratories variance σ2
ε and the degrees of freedom ν. The degrees of

freedom can either be estimated from the data or set in advance. In the second case
they are robustness tuning parameters; the smaller ν, less influence is given to extreme
values (see Section 6.1).
For the example of radon measurements from [WG03], we obtain the following estima-
tors of the parameters, in the case that the degrees of freedom are estimated from the
data, too: µ̂ = 163, σ̂2

a = 115.6, σ̂2
ε = 116.4 and ν̂ = 1.26.

The estimator of the fixed effect has the same interpretation as in the normal-linear
mixed model, so that these estimators are directly comparable. Based on the normal-
linear mixed model the estimator is 169,whereas the median-based estimator of [WG03]
results in 161. Hence, the estimator of the t-linear mixed model is less influenced by
the high results of laboratory 3 than the estimator of the normal-linear mixed model.
As already mentioned in Section 6.1, the estimators σ̂2

a, σ̂
2
ε are not directly comparable,

as in the t-linear mixed model the variance of the random effects and the residuals are

Var(ai) = ν/(ν − 2) · σ2
a,Var(εi j) = ν/(ν − 2) · σ2

ε

and exist only for ν > 2. In our case, the estimate of ν is less than 2, because there are
only 5 laboratories with quite different behaviors.
We refitted the data, this time setting ν = 4, to avoid the problem of ν < 2. Now the
estimate µ̂ = 162, which is very close to the median-based estimate. The variances are
estimated as σ̂2

a = 227.6 and σ̂2
ε = 198.9. Comparing these with the estimates of the

normal-linear mixed model, we have ˆVar(ai) = 2 · σ̂2
a = 455.2, compared to 986.4 and

ˆVar(εi j) = 2 · σ̂2
ε = 387.8, compared to 689.6 from the normal-linear mixed model. As

expected, the estimation via the t-linear mixed model results in lower variances of the
random effects and residuals.
Regarding the outlier identification statistics with α = 0.1 (see Figure 6.1), laboratory 3
is now clearly identified as location- and scale-outlier, as well as the lowest and highest
measurement of laboratory 3. The lowest measurement of laboratory 5 is also identi-
fied as location-outlier within this laboratory. Hence, based on these rules we found the
same outlier pattern within the radon data as [WG03].
For the CAL and ICS sample of the IFCC network for standardization of HbA1c the

estimates of the parameters of the t-linear mixed model are given in Table 6.1, fitted
with unknown degrees of freedom as well as by setting ν = 4. For the CAL sample
the estimated degrees of freedom are ν̂ = 9.24, therefore we observe some differences
between the two estimation approaches. Fixing ν = 4 leads to smaller estimators of σ2

a
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Figure 6.1: Outlier identification statistics for radon measurements from [WG03]
based on the t-linear mixed model with ν = 4. The outlier limits (α = 0.1) are
indicated as green line, the expected value of the outlier statistics as dashed line.
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and σ2
ε, but to higher variances of the random effects and residuals. For the ICS sample

the estimated degrees of freedom are ν = 3.03, hence the results of both algorithms do
not differ substantially.
For the CAL sample the estimate of the between-laboratory variance is much smaller
than derived via the normal-linear mixed model approach. This shows that the influence
of laboratory 16 on this estimate is smaller. The within-laboratory variances of the ICS
and CAL sample are now comparable.
Regarding the outlier identification statistics, plotted in Figure 6.2 (based on the esti-
mates of the model with fixed degrees of freedom ν = 4) for the CAL sample, labo-
ratory 16 is identified as location-outlier and the highest observation of laboratory 16
as location-outlier within this lab. Regarding the ICS sample, laboratory 16 and lab-
oratory 13 are identified as scale-outliers. Laboratory 16 is a scale-outlier due to its
highest measurement, which is also extreme in comparison to the other measurements
of laboratory 16. Laboratory 13 shows a high variation among its measurements, but
none of them is extreme compared to the others. Laboratory 10 has the largest distance
of the random coefficients, but it is still within the allowable range.
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Figure 6.2: Outlier identification statistics for the CAL and ICS sample of the
IFCC network for standardization of HbA1c, based on the t-linear mixed model
with ν = 4. The outlier limits (α = 0.05) are indicated as green line, the expected
value of the outlier statistics as dashed line.
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Table 6.1: Estimated parameters of the t-linear mixed model for the CAL and
ICS sample, with (i) unknown degress of freedom and (ii) setting the degrees of
freedom to 4.

Sample t-model µ̂ σ̂2
a σ̂2

ε ν̂ ˆVar(ai) ˆVar(εi j)
CAL ν unknown 2.99 0.0056 0.0018 9.24 0.0071 0.0023

ν = 4 2.99 0.0045 0.0016 4 0.0089 0.0032
ICS ν unknown 3.49 0.0027 0.0022 3.03 0.0079 0.0066

ν = 4 3.49 0.0027 0.0025 4 0.0053 0.0049

6.4.2 Random coefficients model

In this section we apply the t-linear mixed model to the data from the Kyoto 1 and Or-
lando 2 study. For the Kyoto 1 study there is at least one laboratory, which shows high
deviation from the other laboratories, as seen in Figure 5.5. However, based on the vari-
ance estimators from the normal-linear mixed model, this deviation is still acceptable.
In Figure 6.3, the estimated coefficients as well as the residuals, based on the t-linear
mixed model, are plotted for each laboratory. The coefficients of laboratory 15 c are far
away from the point (0,0), but also the coefficients of laboratory 10. The residuals of
laboratory 12 show a much higher variation than the residuals of the other laboratories.
The estimated coefficients from the t-linear mixed model are further shrinked towards
the mean compared to those from the normal-linear mixed model.
The calculated outlier statistics are given in Figure 6.4, together with the limits based
on the adjusted 0.95 quantiles of the respective Chi-Square distributions. Examining
those of the Kyoto 1 study, laboratory 15 c and laboratory 10 are clearly identified as
location-outliers within the laboratories. Laboratory 12 and laboratory 15 c are identi-
fied as scale-outlier, as the variation of their residuals is higher than in the other labora-
tories. One measurement of laboratory 1 CE is also extreme in comparison to the other
measurements within this laboratory.
The results of the Orlando 2 study are quite similar to the Kyoto 1 study. Therefore
we show only the plot of the outlier identification statistics. This time laboratory 3a is
clearly a scale-outlier and a measurement of laboratory 16 is extreme compared to the
other measurements within this laboratory.
We examined, that the robust estimation of the parameters of a linear mixed model
leads to more reliable estimators of the involved variances, and therefore to better out-
lier identification based on the statistics defined in Section 5.4.
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As threshold for the outlier limits, we choose the adjusted quantiles of the respective
Chi-Square distributions. Under the assumption of the normal-linear mixed model, the
outlier statistics follow this distribution. However, as we calculate the empirical sum of
squares based on estimates of the random effects and residuals, this assumption need
no longer to hold. It rests for further research to define more appropriate thresholds for
these statistics for example based on simulation studies.

Table 6.2: Estimates of the parameters of the t-linear mixed model for the the
Kyoto 1 and Orlando 2 study, with (i) unknown degrees of freedom and (ii) setting
the degrees of freedom to 4.

Study t-model b̂ D̂ σ̂2
ε ν̂

Kyoto 1 ν unknown
(

0.014
−0.003

) (
0.0193 −0.0054
−0.0054 0.0023

)
0.0100 2.38

ν = 4
(

0.010
−0.001

) (
0.0203 −0.0058
−0.0058 0.0025

)
0.0103 4

Orlando 2 ν unknown
(
−0.048
−0.010

) (
0.0142 −0.0016
−0.0016 0.0004

)
0.0065 4.31

ν = 4
(
−0.048
0.010

) (
0.0142 −0.0016
−0.0016 0.0004

)
0.0064 4
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Figure 6.3: Plot of the systematic and proportional bias of each laboratory for the
Kyoto 1 study estimated by the t-linear mixed model with ν = 4. The plot on the
right hand side shows the residuals for each laboratory; different colors indicate
the different samples.
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Figure 6.4: Outlier identification statistics for the Kyoto 1 study based on the t-
linear mixed model with ν = 4. The outlier limits (α = 0.05) are indicated as green
line, the expected value of the outlier statistics as dashed line.
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Figure 6.5: Outlier identification statistics for the Orlando 2 study based on the
t-linear mixed model with ν = 4. The outlier limits (α = 0.05) are indicated as
green line, the expected value of the outlier statistics as dashed line.
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Chapter 7

Quality control with linear mixed
models

In Chapter 6, we demonstrated how outliers in linear mixed models can be detected,
when the dispersion parameters of a linear mixed model are estimated based on the
data at hand. However, this is not appropriate for quality control procedures, as these
procedures are applied to a multitude of data-sets, which should all be treated equally.
For quality control the acceptable quality needs to be defined in advance, for example
based on preliminary experiments. Afterwards measurements are judged based on this
quality.
We define quality in terms of acceptable variation, such that the outlier identification
rules for linear mixed models can be applied. This means that the dispersion parameters
for the definition of the outlier regions are set in advance.
In this chapter we show how these quality parameters can be derived and how they can
be interpreted. We restrict ourself to data from the IFCC network for standardization of
HbA1c and the one-way random effects and random coefficients model.

7.1 Quality control with one-way random effects mod-
els

Within a study of the IFCC network for standardization of HbA1c multiple samples are
measured, each within each member laboratory. The measured results of a sample need
to be combined to obtain the assigned values of each sample. Data from each sample
needs to be scanned for extreme laboratories or extreme measurements within a labora-
tory.

81
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In Section 6.4 we showed how this can be done by modelling this sort of data by a
one-way random effects model. The model parameters are estimated in a robust way
and the outlier identification statistics of Section 5.4 can then be applied. The disper-
sion parameters of the one-way random effects model are σ2

a - the between-laboratory
variance, which describes the variation between the location of the network laborato-
ries, and σ2

ε - the within-laboratory variance, describing the variation of the repeated
measurements within the laboratories.
For the definition of a quality control rule, the two variances must be set in advance and
the outlier identification statistics are based upon these. The definition of these param-
eters is either fully guided by external demands, e.g. by medical decision rules, or they
are derived from preliminary experiments.
For the IFCC network for standardization of HbA1c data from 6 studies were already
available, so that we decided to use these data to derive suitable variances.

7.1.1 Derivation of the dispersion parameters

The quality control rules for single samples are applied to different samples, with dif-
ferent percentages of HbA1c, ranging from 3% to 15%. So the first question to answer
is if the between-laboratories variance and within-laboratories variance depend on the
percentage of HbA1c within a particular sample.
In the 6 studies under consideration, 38 samples with an artificial matrix∗ and 63 whole
blood samples were measured. For each sample we estimate the parameters σ2

a and σ2
ε,

based on the t-linear mixed model algorithm with 4 degrees of freedom, as this algo-
rithm will also be used for quality control.
Afterwards we plot the estimated between- and within-laboratory standard deviations
against the estimated concentration of the samples. We fit a linear regression line with
intercept and without intercept to this data. Thus, we analyze how the standard devia-
tions depend on the percentages of HbA1c within a sample.
Two questions are to be answered:

(i) Are there differences between these regression lines for samples with different ma-
trices?

(ii) Is either the intercept or slope significant?

If the intercept is not significant for this variance function, we will be in the situation
of a constant coefficient of variation over the measurement range, a well known behav-

∗In clinical chemistry the matrix of a sample are all substances of the sample, except the analyte under
consideration.
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ior in clinical chemistry. If the slope is not significant, the standard deviation will stay
constant over the measurement range.
In Figures 7.1 and 7.2, the estimated between-laboratories standard deviations and
within-laboratories standard deviations are plotted versus the percentage of HbA1c in
each sample. The standard deviations grow with growing amount of HbA1c and the
linear modelling of the relationship is appropriate.

Regarding the estimates given in Table 7.1 in detail, we observe that both intercept
and slope are significant in all cases except one. Only for the between-laboratory stan-
dard deviation for whole blood samples the intercept is not significant with a p-value
of 0.258. For the between-laboratory standard deviation the functions differ for the two
types of samples, whereas for the within-laboratory standard deviation they are equal.
The linear fit is better for the within-laboratory standard deviation. This is an expected
effect, as it comprises only the variation within the laboratories, whereas the between-
laboratory variance is a mixture of several variation sources.
Based on the derived variance functions we can define quality control rules for samples

Table 7.1: Estimates and fit statistics for the functions of the between-laboratory
standard deviation and within-laboratory standard deviation dependent of the
percentage of HbA1c.

Sample Model Coefficient Estimate p-value
σa Whole Blood With. Int. Intercept 0.020 0.258

Slope 0.016 7 · 10−8

No Int. Slope 0.018 < 2 · 10−16

Artificial With. Int. Intercept 0.071 1 · 10−3

Slope 0.009 6 · 10−4

No Int. Slope 0.017 1 · 10−4

σε Whole Blood With. Int. Intercept 0.025 3 · 10−6

Slope 0.006 2 · 10−12

No Int. Slope 0.010 < 2 · 10−16

Artificial With. Int. Intercept 0.025 6 · 10−3

Slope 0.006 3 · 10−7

No Int. Slope 0.009 < 2 · 10−16

measured within the IFCC network for standardization of HbA1c:

(i) Fit an one-way random effects model with the t-linear mixed model algorithm with
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Figure 7.1: Estimated between-laboratories standard deviations versus the per-
centage of HbA1c for whole blood and artificial samples of the IFCC network for
standardization of HbA1c. The red line is the fitted least-square regression with
intercept, the green line without intercept.
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dardization of HbA1c. The red line is the fitted least-square regression with inter-
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4 degrees of freedom for data from each sample.

(ii) Based on the type of sample (artificial or whole blood sample) calculate the sample
specific σ2

a and σ2
ε, dependent on the estimated fixed effect µ̂:

σa =

{
0.018 · µ̂, for whole blood sample
0.071 + 0.009 · µ̂, for artificial sample.

(7.1.1)

σε = 0.025 + 0.006 · µ̂.

(iii) Calculate the outlier statistics for the random effects and residuals, given the cal-
culated σ2

a and σ2
ε.

(iv) If the calculated outlier statistics exceed the respective Chi-square quantiles, iden-
tify the laboratory or observation as not conforming to the defined quality.

To provide an easy interpretation of this QC-rule, we compute the parameters σ2
a, σ

2
ε for

given percentages of HbA1c ranging from 1% HbA1c to 15% HbA1c for artificial sam-
ples. Based on these, the 0.025 and 0.975 quantiles of the respective zero-mean normal
distribution are calculated. These quantiles represent extreme values of the laboratory
effects and measurements within laboratories, which are still accepted by the QC-rule.
We calculate also the quantiles of a normal distribution with mean 0 and variance given
by the sum of both variances, representing the allowable total variation of a single mea-
surement. Finally, these quantiles are set in relation to the amount of HbA1c to express
the effects in percentages of this amount. The plot of the quantiles is given in Figure
7.3.
The allowable variation increases with increasing percentage of HbA1c in the samples,
from 0.2% HbA1c in the lower measurement range, to 0.4% HbA1c in the higher range.
In terms of relative differences it becomes narrower for samples in the higher measure-
ment range: for samples with more than 5% HbA1c, the allowable variation for the
relative differences is less than 5%.

7.1.2 Application of the QA-rules to the CAL and ICS sample

In this section we will show the application of the quality control rules to the CAL
and ICS sample, which were already introduced in Section 6.4. The CAL sample is
an artificial sample, being a mixture of pure HbA1c and HbA0. (See [KAS+06] for a
detailed explanation of the production process of calibrator samples.) The ICS sample
is a whole blood sample.
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Figure 7.3: Absolute and relative deviation of the laboratory effects, repetition
effects and total variation allowed by the quality control rule for artificial samples.
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Fitting the one-way random effects model based on the t-linear mixed model algorithm
with ν = 4 to the data of both samples, we obtain µ̂CAL = 2.99 and µ̂ICS = 3.49. Based
on these estimates we calculate σ2

a and σ2
ε, according to the variance functions derived

in Section 7.1.1, leading to

σ̃2
a(CAL) = 0.0097, σ̃2

ε(CAL) = 0.0018,

σ̃2
a(ICS ) = 0.0039, σ̃2

ε(ICS ) = 0.0021.

Comparing these with the estimates of the variance parameters based on the t-linear
mixed model with ν = 4, given in Table 6.1, we note that they are a little bit higher.
This leads to smaller outlier identification statistics, i.e. it might be that laboratories or
measurements which were identified as outliers based on the t-linear mixed model, will
still agree with the quality defined by the quality control rules. Figure 7.4 shows these
outlier identification statistics for both samples. For the CAL sample, neither a labora-
tory is detected as location-outlier nor as scale-outlier, further no extreme measurements
within a laboratory are found. For the ICS sample the same extreme laboratories and
measurements are identified as in Section 6.4.
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Figure 7.4: Outlier identification statistics for the CAL and ICS sample of the
IFCC network for standardization of HbA1c, based on the quality control rules.
The outlier limits (α = 0.05) are indicated as green line, the expected value of the
outlier statistics as dashed line.
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7.2 Quality control with the random coefficients model

After the data from a study of the IFCC network for standardization of HbA1c is col-
lected, one has to decide which laboratories and candidate laboratory are approved as
members of the network. The random coefficients model is appropriate for the judge-
ment of the measurement behavior of the laboratories over the whole measurement
range, as shown in Section 6.4. The definition of quality control rules for laboratory
approval, which hold for multiple studies, requires to set the dispersion parameters of
the random coefficients model in advance.

7.2.1 Derivation of the dispersion parameters

The dispersion parameters of the random coefficients model are the matrix D and σ2
ε

- the variance of the residuals. They can be defined by external requirements, but this
starts to become difficult, for the definition of D. In Section 7.2.2, we will give some
interpretation of this matrix and show its impact on the variation of the coefficients of
the random coefficients model.
Another possibility to define this matrix is to derive the dispersion parameters from
older studies, similar to what we did in Section 7.1.1.
We regard the 6 studies, which were already used for the derivation of the variance
function for the quality control rules for single samples. For each study the t-linear
mixed model with ν = 4 is fitted to obtain estimates of D and σ2

ε. The estimate D̂ is
a 2 × 2 matrix. The diagonal elements correspond to the variances of the βi and the
off-diagonal element is the covariance of these coefficients, in the normal-linear mixed
model. Based on these, we calculate the correlation between the coefficients. The
estimates for each study are listed in Table 7.2. To derive reference parameters for the
quality control rules, we take the medians of the variances and of the correlations over
all studies under consideration. The reference covariance is then calculated from the
combination of the reference variances and correlation. Based on these 6 studies, the
dispersion parameters D̃, and σ̃2

ε used for the quality control rules are set to

D̃ =

(
0.0157 −0.0023
−0.0023 0.0006

)
, σ̃2

ε = 0.0087.

We define the quality control rules for the approval of laboratories from the IFCC net-
work for standardization of HbA1c based on these dispersion parameters:

(i) Fit a random coefficients model by the t-linear mixed model algorithm with ν = 4
for the data from the ICS samples of one study.
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Table 7.2: Estimates of the dispersion parameters of the random coefficients model
calculated by the t-linear mixed model algorithm for 6 studies of the IFCC network
for standardization of HbA1c.

Study D̂[1, 1] D̂[2, 2] ρ σ̂2
ε

Ma 0.0031 0.0002 -0.6332 0.0122
Ch 0.0219 0.0004 -0.9147 0.0094
Ky1 0.0203 0.0025 -0.8010 0.0103
Ky2 0.0044 0.0010 -0.1323 0.0080
Ba1 0.0247 0.0007 -0.7717 0.0075
Ba2 0.0111 0.0004 -0.8804 0.0067
Median 0.0157 0.0006 -0.7863 0.0087

(ii) Calculate the outlier identification statistics for the laboratory effects and residuals
with D̃, and σ̃2

ε.

(iii) If the calculated outlier statistics exceed the respective Chi-square quantiles, iden-
tify the laboratory or measurement as not conforming to the defined quality.

In the next section, we will give some interpretation for these quality control rules, to
clarify the impact of the matrix D̃ for the defined quality.

7.2.2 Interpretation of the variance-covariance matrix

The identification of laboratories as location-outliers in studies of the IFCC network
for standardization of HbA1c depends strongly on the specified variance-covariance
matrix D̃. However, it is difficult to interpret the impact of different definitions of this
matrix based on the elements of this matrix, especially as the correlation between both
coefficients is important. To visualize the impact of the specified variance-covariance
matrix, we regard the following steps for the matrices estimated in the 6 studies, as well
as for the derived variance-covariance matrix.
The set

{β ∈ R2 | β′iD
−1βi < c}

describes an elliptic region in the two-dimensional plane centered at (0, 0)′. Laborato-
ries, with estimated coefficients outside this region are considered as location-outliers
according to the defined quality control rule. We approximate the border of this plane by
200 datapoints and transform each point into a regression line. These lines vary around
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the zero line. In Figure 7.5, the elliptic region and the transformed regression lines are
given for the quality control rule. Within the measurement range of the HbA1c[%] as-
say, i.e. 0% − 15%, we calculate the maximal deviation from zero for the regression
lines as well as the maximal relative deviation on a grid of 0.5%. With these calcula-
tions, we visualize the maximal relative deviation profile over the whole measurement
range. Based on this profile the appropriate variance-covariance matrix could be cho-
sen, too.
In Figure 7.6 the maximal deviation and relative deviation profiles are shown for the
estimated variance-covariance matrices from the 6 studies, as well for D̃. The deviation
profiles based on D̃ are displayed as red lines, named ”QC” within the plot. Examining
the absolute deviation plot, there is a minimum in the absolute deviations for each study,
ranging from 0% HbA1c to 5% HbA1c. This is due to the negative correlation between
the intercept and the slope. Regarding the absolute deviations based on the reference
variance-covariance matrix D̃, the maximal allowable absolute deviation ranges from 1
% HbA1c for samples with an amount of HbA1c around 5%, to 3% HbA1c in the upper
measuring range.
The plot of the maximal relative differences shows that relative deviations of 6% for
samples with an amount of 5% HbA1c to 10% HbA1c are still allowable. For samples
with a higher amount the relative deviations are a little bit higher. For samples with
percentage of HbA1c higher than 3%, relative deviations stay below 10%. For the stud-
ies of the IFCC network for standardization of HbA1c there was an older rule for the
approval of laboratories as members of the network. It stated that laboratories were not
approved, if more than three samples within one study deviated with their laboratory-
mean more than 6% from the overall mean. This caused problems, as the number of
samples changed from study to study and also, because samples were treated equally
over the whole measurement range. In Figure 7.3 we see that for samples in the lower
measuring range the relative deviation can exceed 6%. The laboratory approval rule
based on the random coefficients model takes automatically this into account.

7.2.3 Application of the quality control rules

In this section we apply the quality control rule defined in Section 7.2.1, to the data of
the Kyoto 1 and Orlando 2 study.
The aim is to identify laboratories as location-outliers based on the laboratory effects, as
well as laboratories as scale-outliers according to the variation of the laboratory-specific
residuals. The laboratory effects are derived from the t-linear mixed model with ν = 4.
The outlier identification statistics are calculated with the reference matrix D̃ and σ̃2

ε,
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Figure 7.5: Two-dimensional elliptic region and transformed regression lines for
the quality control rule based on D̃.
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Figure 7.6: Absolute and relative deviation profiles for the quality control rule for
the identification of laboratories as location-outliers based on the random coeffi-
cients model.
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derived in Section 7.2.1.
Comparing the diagonal elements of the reference matrix D̃, with those estimated from
the data of the respective study, we note that they lie between the values estimated for
the Kyoto 1 study and those estimated for the Orlando 2 study. The same holds for the
variance of the residuals. In Figure 7.7 the outlier statistics are shown for both studies.
Within the Kyoto 1 study, 5 laboratories are not approved, compared to two laborato-
ries if the outlier statistics are calculated based on the estimated dispersion parameters
from the Kyoto 1 study. This dispersion is the widest compared with all other studies.
Perhaps one could also conclude that the whole study failed, as 5 out of 13 laboratories
could not achieve the requested quality. Laboratory 15 c and laboratory 12 are also
identified as scale-outliers, both due to a higher residual variation.
For the Orlando 2 study, we obtain a similar picture as in Section 6.4. No laboratory
is a location-outlier, laboratory 3a is a scale-outlier due to a higher residual variance,
laboratories 13 and 16 are borderline.
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Figure 7.7: Outlier identification statistics for the Kyoto 1 study based on the
quality control rule. The outlier limits (α = 0.05) are indicated as green line, the
expected value of the outlier statistics as dashed line.
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Part III

Method comparison studies
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Method comparison studies are an often used method to analyze the equivalence
between two measurement methods, measuring devices or standardization systems.
To compare for instance two measurement methods a set of human samples is measured
within both methods. Hence, for each sample one obtains a pair of measured values,
such that a regression line between both methods can be derived, in the case that the
linearity assumption holds.
On one hand side this experiment can reveal, if the two methods are exchangeable. If
the intercept of the regression line is near zero and the slope close to one, one can argue
that both methods are equivalent, or that they can be used exchangeable. If the two
methods are based on different standardization systems, for example a national and an
international one, the exchangeability is often not given. However, based on the though
derived regression line a transformation rule from one method to the other can be de-
fined. By means of this rule patient values of one method can be recalculated in values
of the other method and vice versa.
As method comparison studies are a well-known tool for diagnostic assays there is a lot
of literature for the analysis of one particular experiment (see e.g. [RRR01], [MRR02],
[PB83]). These articles discuss especially the best regression method to use. In most
cases both methods are subject to error, hence errors-in-variable models are appropriate
for the derivation of the regression line (for more details see e.g. [CVN99], [Ful87]).
In cases, where one is interested in a transformation rule from one method to the other,
it occurs that this experiment is repeated after a certain time and one would like to ex-
amine, if this transformation rule has changed. This is equal to the comparison of two
or more regression lines over a certain interval. In Chapter 8 we will derive a test statis-
tic for this comparison. The test statistic is based on a proposed test of [LJZ04] for the
least-square regression case. We extend this test approach to be able to compare a new
regression line with a reference regression line. This might be a new approach to show
the exchangeability of two methods.
In Chapter 9 we present how multiple regression lines can be combined, to obtain an
average regression line. We will use Bayesian hierarchical linear models, which are
extended to incorporate the errors in both methods. Bayesian approaches require the
specification of prior distributions, which might be difficult to assess. Hence, it is im-
portant to check the sensitivity of the results for different prior distributions as well as
to determine the most appropriate prior distribution. We present a method to check the
adequacy of different prior settings and provide a measure for the derivation of the most
adequate prior. Based on data of the IFCC network for standardization of HbA1c we
show the influence of the prior distributions and the model assumptions on the posterior
distribution of the parameters of the averaged regression line.



Chapter 8

Comparison of regression lines

If method comparison experiments are repeated after a certain time, it is sometimes
necessary to compare these sequentially obtained regression lines. We will base the
comparison of regression lines on the construction of simultaneous confidence bounds
for the differences of the predicted values over a given concentration range. [Spu99] de-
veloped exact confidence bounds for a contrast of regression lines under the assumption
of equal design matrices. However, this assumption is not fulfilled for method compari-
son studies, as different samples are used in each study. Therefore we base our work on
[LJZ04], where a test statistic with simulated probability density function is proposed.
With this approach multiple regression lines can be compared even with unequal design
matrices.
In a first step, we present the approach for the comparison of multiple regression lines.
Afterwards we extend this setting to compare a new regression line with a reference
regression line. At the end of this chapter we provide two examples to show the utility
of both approaches in the context of standardization of diagnostic assays.

8.1 Multiple regression lines

First we consider the comparison of multiple regression lines, developed by [LJZ04].
Suppose we have k linear regression models, given by

Yi = Xibi + εi, i = 1, .., k,

where Yi = (Yi1...Yini)
′ is the vector of the response variable of regression model i, bi ∈

Rp the coefficient vector of model i and εi the vector of the residuals, with all residuals
being independent normally distributed with mean zero and variance σ2(independent of

96
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the model). Finally, let Xi ∈ R
ni×p be the design matrix of model i with full rank. Hence,

X′iXi is nonsingular and the least-squares estimator of bi is given by b̂i = (X′iXi)−1X′iYi.

As the residuals are normally distributed, the estimator b̂i is also normally distributed
with mean bi and variance Var(b̂i) = σ2(X′iXi)−1.
The variance of the residuals is estimated by the pooled mean squares error over all
models, i.e.

σ̂2 =
1
k

k∑
i=1

1
ni − 2

S S Ei =
1
k

k∑
i=1

1
ni − 2

(yi − Xibi)′(yi − Xibi).

The comparison of the regression lines is based on the set of simultaneous confidence
bands for

x′bi − x′b j, ∀ (i, j) ∈ Λ, ∀ x ∈ S,

where Λ is an index set that determines the comparison of interest. If all pairwise
comparisons are of interest then Λ = {(i, j) | 1 ≤ i , j ≤ k}. If only the comparison of
one particular regression line i? with the others is of interest than Λ = {(i, j) | i = i?, 1 ≤
j ≤ k, j , i?}.
The set S denotes the p-dimensional region, on which the comparison of the regression
lines is of interest:

S = [cmin(1), cmax(1)] × [cmin(2), cmax(2)] × ... × [cmin(p), cmax(p)].

If an intercept is included in the model [cmin(1), cmax(1)] = 1.
The variance of x′b̂i − x′b̂ j is given by

Var(x′b̂i − x′b̂ j) = σ2x′
(
(X′iXi)−1 + (X′jX j)−1

)
x = σ2x′4i jx.

Therefore, the following set of simultaneous confidence intervals is constructed:

x′bi − x′b j ∈ x′b̂i − x′b̂ j ± c · σ̂
√

x′4i jx, ∀ (i, j) ∈ Λ, ∀ x ∈ S.

The critical value c must be chosen such that the confidence level of this set of simulta-
neous confidence bands is 1 − α, (0 < α < 1) i.e. P(T < c) = 1 − α, where

T = sup
(i, j)∈Λ

sup
x∈S

| x′
(
(b̂i − bi) − (b̂ j − b j)

)
|

σ̂
√

x′4i jx
.
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Since the critical value c will be determined by simulating the distribution of T, another
representation of T will be adopted from which a simulation algorithm can be devel-
oped easily.
The matrix 4i j is symmetric and positive-definite, hence there exists the Cholesky de-
composition of the matrix 4i j, i.e. there exist a nonsingular matrix Pi j ∈ R

p×p such
that

4i j = P′i jPi j, ∀ (i, j) ∈ Λ.

Let Zi ∈ R
p×1, i = 1, .., k, be independent normally distributed random vectors, inde-

pendent of σ̂2, with distribution Zi ∼ N(0, (X′iXi)−1). Define

Zi j = (P′i j)
−1(Zi − Z j), ∀ (i, j) ∈ Λ. (8.1.1)

Based on these definitions the distribution of T is the same as the distribution of

sup
(i, j)∈Λ

sup
x∈S

| x′(Zi − Z j) |

(σ̂/σ)
√

x′P′i jPi jx

= sup
(i, j)∈Λ

sup
x∈S

| (Pi jx)′Zi j |

(σ̂/σ)
√

(Pi jx)′Pi jx

= sup
(i, j)∈Λ

Qi j
‖ Zi j ‖

σ̂/σ
, (8.1.2)

where

Qi j = sup
x∈S

| (Pi jx)′Zi j |

‖ Pi jx ‖ · ‖ Zi j ‖
.

For p ≥ 3, [LJZ04] propose a gradient projection algorithm to directly calculate

Wi j = sup
x∈S

| x′(Zi − Z j) |

(σ̂/σ)
√

x′4i jx
, ∀(i, j) ∈ Λ,

by solving the optimization problem:
Maximize ∀(i, j)

f (x) =

(
x′(Zi − Z j)

)2

(σ̂/σ)2x′4i jx
subject to −xi ≤ −cmin(i), i = 1, .., p

xi ≤ cmax(i), i = 1, .., p.
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The interested reader is referred to [LJZ04] for details about this algorithm.
However, if the regression model has only two coefficients, say an intercept and a slope,
Qi j can be calculated based on geometrical reformulations.
Denote in this case the column vectors of Pi j by (p1

i j,p
2
i j) and define the set

Li j =
{
p1

i j + x2 · p2
i j : x2 ∈ [cmin(2), cmax(2)]

}
.

Then Qi j can be written as

Qi j = sup
w∈Li j

|w · Zi j|

||w|| · ||Zi j||

= sup
w∈Li j

cos(δ(w,Zi j)),

where δ(w,Zi j) denotes the angle between w and Zi j. Therefore, the calculation of Qi j

simplifies to the determination of the smallest angle between either w and Zi j or w and
−Zi j. This restricted search in the two-dimensional space is even easier. By a simple

Figure 8.1: The set Li j.
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geometrical argument (see also Figure 8.1), it is evident that if Zi j or −Zi j is in the cone
spanned by p1

i j + p2
i j · cmin(2) and p1

ij + p2
ij · cmax(2) then Qi j = 1, otherwise

Qi j = max

 | (p1
i j + p2

i j · cmin)′Zi j |

‖ (p1
i j + p2

i j · cmin) ‖ · ‖ Zi j ‖
,
| (p1

i j + p2
i j · cmax)′Zi j |

‖ (p1
i j + p2

i j · cmax) ‖ · ‖ Zi j ‖

 . (8.1.3)

With the above results, a random realization of the random variable T can be obtained
by the following algorithm:

1. Determine Pi j, ∀(i, j) ∈ Λ.
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2. Simulate independent draws Zi ∼ N(0, (X′iXi)−1), ∀(i, j) ∈ Λ and σ̂/σ ∼
√
χ2

v/v,
where v =

∑
i(ni − 2) and χ2

v/v denotes the Chi-square distribution with v degrees
of freedom.

3. Calculate Zi j according to (8.1.1).

4. Find Qi j according to (8.1.3).

5. Compute T from the new representation (8.1.2).

Steps 2 − 5 need to be repeated R times to simulate R replicates of the random variable
T . The (1 − α)Rth largest simulated value is the estimator of the critical value c.
To test whether the regression lines are the same, we calculate

LLi j = max
x∈S

{
x′b̂i − x′b̂ j − c · σ̂

√
x′4i jx

}
ULi j = min

x∈S

{
x′b̂i − x′b̂ j + c · σ̂

√
x′4i jx

}
,

which are in the case of a simple linear regression model with intercept and slope

LLi j = max
x2∈[cmin(2),cmax(2)]

{
b̂0i + b̂1ix2 − b̂0 j − b̂1 jx2 − c · σ̂

√
x′4i jx

}
ULi j = min

x2∈[cmin(2),cmax(2)]

{
b̂0i + b̂1ix2 − b̂0 j − b̂1 jx2 + c · σ̂

√
x′4i jx

}
.

LLi j denotes the maximum of the lower limits of the comparisons at each point x ∈ S,
whereas ULi j denotes the minimum of the upper limits of the comparisons in this region.
The pair of regression lines (i, j) will be considered equal in the region S, if the band
for the pair (i, j) includes 0 over the whole range, that is equivalent to LLi j < 0 < ULi j.
In the case of a simple linear regression model it is possible to do a grid search over the
defined interval to assess both limits.
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8.2 Comparison with a reference regression line

In method comparison studies of diagnostic assays a new regression line often needs to
be compared against a reference regression line, which was not necessarily derived in
the classical least-squares approach.
For example, to show the equivalence of two assays, there are specifications from clin-
ical point of views, defining in which case the assays can be used exchangeably. One
example might be that the intercept is allowed to vary between −1 and 1 and the slope
between 0.98 to 1.02.
We translate these specifications in terms of a reference regression line in the following
way: The best estimate of the coefficients of the reference regression line b is b̂ = (0, 1)′,
with

Var(b̂) = V =

(
0.52 0

0 0.012

)
.

To show the equivalence of a reference regression line and a new regression line the al-
gorithm of [LJZ04] must be adapted in a few steps, but the main ideas remain the same:
The comparison is based on the simultaneous confidence bands for the differences of
the predicted values over a specified range.
The regression line derived in a new experiment may be written as

Ys = Xsbs + εs,

with coefficient vector bs and design matrix Xs. The coefficients are estimated by stan-
dard least-squares regression, leading to the estimator b̂s =

(
X′sXs

)−1 X′sYs, as (X′sXs)−1

is nonsingular. The variance-covariance matrix of the estimator is given by Vs =

σ2
s ·

(
X′sXs

)−1. The estimator of the residual variance is given by σ̂2
s = 1

ns−2 (ys −

Xsb̂s)′(ys − Xsb̂s).
To test whether the reference regression line and the new regression line are equal, we
construct simultaneous confidence bands for

x′b − x′bs, ∀ x ∈ S.

The variance of the estimator of this difference is given by

Var
(
x′b̂ − x′b̂s

)
= x′ ·

(
V + σ2

s ·
(
X′sXs

)−1
)
· x = x′4sx.
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An estimator of 4s, denoted by 4̂s, is obtained by plugging σ̂2
s in the above equation.

Therefore, we construct the following set of simultaneous confidence bands(
x′b − x′bs

)
∈

(
x′b̂ − x′b̂s

)
± c ·

√
x′4̂sx, ∀x ∈ S.

The critical value c is determined so that the confidence level of the simultaneous con-
fidence band is equal to 1 − α. The critical value c can be found if the distribution of
Tms would be known, with Tms given by

Tms = sup
x∈S

| x′ ·
[(

b̂ − b
)
−

(
b̂s − bs

)]
|√

x′4̂sx
. (8.2.1)

Now the distribution of Tms is obtained via simulation, too. We apply another represen-
tation of Tms, from which the derivation of a simulation algorithm becomes easy. The
same ideas as in the last section are applied, with a few adjustments to account for the
different variance structure of the difference estimator.
For each fixed σ2

s > 0, there exists a Cholesky decomposition of V +σ2
s ·

(
X′sXs

)−1 , i.e.
there exists a nonsingular matrix P ∈ Rp×p such that

V + σ2
s ·

(
X′sXs

)−1
= P′P.

Let Z ∈ Rp×1 be a normal random vector with Z ∼ N(0,V) and Zs ∈ R
p×1 be a normal

random vector, independent of Z with Zs ∼ N(0, σ2
s ·

(
X′sXs

)−1).
Define Zms = (P′)−1 ·(Z−Zs). Then the distribution of Tms is the same as the distribution
of Qms· ‖ Zms ‖, where

Qms = sup
x∈S

| (Px)′Zms |

‖ Px ‖ · ‖ Zms ‖
.

The calculation of Qms in case of p = 2 is based on the same considerations as the
calculation of Qi j. But now the cone spanned by the column vectors of the matrix P is
regarded.
Based on these considerations, the distribution of Tms can be simulated by the following
algorithm:

1. Simulate σ̂2
s ∼ χ

2
n−2, where χ2

n−2 denotes a Chi-square distribution with n− 2 degrees
of freedom and calculate σ̂2

s
(
X′sXs

)−1 .

2. Calculate the Cholesky decomposition of V + σ̂2
s ·

(
X′sXs

)−1
= P′P.
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3. Simulate independent random vectors

Z ∼ N(0,V)

Zs ∼ N(0, σ̂2
s ·

(
X′sXs

)−1).

4. Calculate Zms = (P′)−1 · (Z − Zs).

5. Find Qms.

6. Compute Qms· ‖ Zms ‖ .

The main difference between the two simulation algorithms is that for the first one only
one Cholesky decomposition is needed for each variance-covariance matrix of differ-
ences, whereas in the second algorithm in each simulation step the Cholesky decom-
position of the variance-covariance matrix of the differences has to be computed. This
makes the first algorithm faster, however in regression models with a low number of
parameters the differences in computation time are negligible.
Steps 1 − 6 are repeated R time and the estimator of the critical c, is the (1 − α)Rth
largest simulated value ĉ. [LJZ04] examined the standard error of ĉ dependent on the
number of simulation steps. They found that after 200.000 steps one obtains an accurate
estimate of c.
To test whether the two regression lines are the same, the maximum lower limit of the
comparisons LLms at each point x ∈ S, as well as the minimal upper limit ULms of these
comparisons are calculated. The reference regression line and the new regression line
are considered equal in the region S, if the confidence band includes 0 over the whole
region, being equivalent to LLms < 0 < ULms.
If more than one regression line needs to be compared with the reference regression
line, the confidence limit α should be adjusted to the number of these comparisons,
say k. This can be done for example using the Bonferroni method by setting αad j =

1 − (1 − α)1/k.

8.3 Application to examples

For both presented algorithms, there are applications in the field of standardization of
diagnostic assays. As an example for the first one, we discuss how to compare method
comparison studies that are repeated after fixed time intervals. For the second algorithm
we present a problem from reagent-lot comparability studies.
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8.3.1 Annual comparison of standardization networks

The scope of the IFCC network for standardization of HbA1c is the development of a
reference material for HbA1c testing, such that all HbA1c assays worldwide available
are standardized to this material. However, up to now, there exist national standard-
ization networks with measurement methods that differ from the IFCC method. This
implies that reported HbA1c values are not comparable among the networks. For exam-
ple, a HbA1c value of 3.5% based on IFCC standardization is about 5.35% according
to the US standardization network, called NGSP∗ [HWJ+04]. Recognizing that HbA1c
changes of 1% will cause patients to change their treatment, these differences are not
acceptable in a clinical sense. Therefore, the relationship between these values needs to
be established, to transform values from other networks to IFCC values and vice versa.
Twice a year, method comparison studies are launched between the IFCC network and
networks in the US, Japan, Sweden and Australia, the so-called ”Designated Refer-
ence Methods” (DCMs). Based on the assumption that the differences between these
methods are systematic and/or proportional, a linear relationship is assumed. Hence, a
regression line between each national standardization network and the IFCC network
is determined twice a year. To check the stability of the relationships, these regression
lines have to be compared.
As an example we regard the comparison of the Barcelona 2 regression line between
the IFCC network and the NGSP network with all available studies up to this point, as
well as the regression line between the IFCC network and the Australian network. In
Table 8.1, the estimated parameters of the regression lines between these two networks
and the IFCC network are given.
As the coefficient of multiple determination R2 ([DS98]) is near to one for all regres-

sion lines, the assumptions of linear relationship holds for the IFCC - NGSP and the
IFCC - Australian relationship. Note that the slope and the intercept vary much more
from study to study for the IFCC - Australian relationship than for the IFCC - NGSP
relationship.
To compare the Barcelona 2 regression line with the other regression lines, we apply
the algorithm of Section 8.1. There are k = 5 comparisons, the set Λ is Λ = {(6, j) | j =

1, .., 5}. The comparison should be based on the measurement range of the HbA1c as-
says, which goes from 0% up to 20%. The derivation of the critical value is based on
200.000 simulations. A grid search over the measurement range is performed for the
estimation of LLi j and ULi j.

In Table 8.2, the minimal upper limit as well as the maximal lower limit for each com-

∗National Glycohemoglobin Standardization Program



8.3. Application to examples 105

parison are given. For the IFCC - NGSP relationship, all differences of the predicted
values stay within the simultaneous confidence bands, hence there are no differences
between the regression lines of the Barcelona 2 study with the other studies.
Regarding the IFCC - Australian relationship, the Barcelona 2 regression line differs
from the regression lines of the Kyoto 2, Chicago and Marrakech study. In these cases
the minimum upper limit is smaller than zero. Note especially ULi j of the comparison
with the Marrakech study.
The different behaviour of the two relationships is explainable: The NGSP network
consists of 10 laboratories whereas the Australian network only of one laboratory. Dif-
ferences from study to study of the single laboratory are directly reflected in the mean of
the measured values, whereas this kind of differences are mostly averaged in the NGSP
network.
We should keep this in mind, as in the next chapter we deal with the question how
multiple regression lines should be combined to an average regression line.
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Table 8.1: Estimated slope, intercept and R2 for the IFCC - NGSP and IFCC -
Australia relationship, for the studies Marrakech to Barcelona 2.

Relationship Study Intercept Slope R2

IFCC - NGSP Barcelona 2 2.21 0.90 0.9999
Barcelona 1 2.23 0.91 0.9999

Kyoto 2 2.18 0.91 0.9998
Kyoto 1 2.22 0.91 0.9993
Chicago 2.04 0.93 0.9991

Marrakech 2.14 0.92 0.9989
IFCC - Australia Barcelona 2 2.3 0.89 0.9995

Barcelona 1 2.07 0.94 0.9977
Kyoto 2 2.6 0.89 0.9992
Kyoto 1 1.94 0.95 0.9993
Chicago 1.79 1.0 0.9968

Marrakech 1.79 1.01 0.9989

Table 8.2: Comparison statistics of the IFCC - NGSP and IFCC - Australian rela-
tionship for the comparison of the Barcelona 2 study with previous studies, within
the range from 0% HbA1c to 20 % HbA1c.

NGSP Australia
Study(i) Study(j) LLi j ULi j LLi j ULi j

Barcelona 2 Barcelona 1 -.222 0.094 -.303 0.136
Barcelona 2 Kyoto 2 -.193 0.102 -.549 -.073
Barcelona 2 Kyoto 1 -.215 0.097 -.192 0.234
Barcelona 2 Chicago -.130 0.120 -.216 -.086
Barcelona 2 Marrakech -.219 0.033 -.183 -.238
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8.3.2 Reagent-lot comparability

As an example for the application of the second algorithm, we consider the approval
process of new reagent-lots for a diagnostic assay. Errors in the production process
of reagent-lots may cause a shift in the values of the measured samples, hence new
reagent-lots need to be compared with the reagent-lots at market.
The approval experiment for a new reagent-lot consists in a method comparison study,
where 50 samples are measured with the reagent-lot at market and with the new one.
At the moment the approval rule is based on a global criteria of intercept and slope. For
example, if the intercept of the fitted regression line falls within the range of 0±0.3 and
the slope within 1 ± 0.1, the reagent-lot will be approved. If either the intercept or the
slope lies outside these limits the reagent-lot will not be approved. In our example the
measurement range of the assay is 0 mg/l − 20 mg/l.
In Figure 8.2, the data of two comparisons together with the fitted regression lines are
shown. Note that for reagent-lot A, the global approval rule would cause the reagent lot
not to be approved. However, in the region around 5 mg/l the regression line intersects
the bisection line, so that at least in this region the new lot could be used interchange-
able to the lot-at-market. To answer, whether this holds for the whole measurement
range of the assay, the algorithm of Section 8.2 is used.
The regression line drawn in Figure 8.2 is derived by simple least-squares regression.

However, as the values of both axes are measured by the same methods, both axes are
subject to error and a orthogonal regression method would be more appropriate. But
as the coefficient of determination (R2) is in both cases very close to 1, both regres-
sion method result approximately in the same estimates [CVN99]. Therefore, the error
made by the usage of the less appropriate least-squares regression method is negligible.
It rests for further research to accommodate the algorithms of Section 8.1 and 8.2 to the
orthogonal regression case.
To apply the algorithm of Section 8.2 to the presented problem, we translate the accep-
tance rules of this experiment in the following way: The best estimate of the reference
regression line is b̂ = (0, 1)′, with

Var(b̂) =

(
0.152 0

0 0.052

)
.

The region of interest for differences between the new reagent-lots and the lot-at-market
is the measurement range 0 mg/l−20 mg/l.We are interested in the construction of 95%
simultaneous confidence bands for the differences of predicted values within this range.
To obtain the critical value c,we repeat the simulation of the random variable T, 200.000
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Figure 8.2: Plot of the method comparison data for two new reagent-lots versus
the lot-at-market.
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times. The minimum upper and maximum lower differences are obtained by a grid
search in the interval, at 10.000 equally distant points.
In Table 8.3, the intercept and the slope of both regression lines are shown, as well as
the critical value c, the maximum lower difference LLms and minimum upper difference
ULms over the specified range. For reagent-lot A the minimum upper limit is negative,

Table 8.3: Intercept, slope and comparison statistics for the comparisons between
the new reagent-lots A and B with the lot-at-market, within the range 0 mg/l −
20 mg/l, with α = 0.95.

Reagent
- Lot

Intercept Slope T LLms ULms

Lot A 0.426 0.871 2.33 -0.21 -0.06
Lot B -0.001 0.953 2.33 -0.33 0.36

hence this regression line can not be considered equal to the reference regression line
over the region of interest. In Figure 8.3, the differences over the measurement range
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are shown together with the simultaneous confidence band for the differences. There
we note that the differences for reagent-lot A fall outside the confidence band at very
low concentration levels. The differences for reagent-lot B comparison are within the
confidence bands over the whole measurement range.

The presented approach for the approval of reagent-lots has some considerable ad-
vantages over the global approval rule, which is only based on the comparison of the
coefficients of the new regression line with the specified limits.
The most obvious advantage is that the approach focuses on the region of interest, which
is in most cases the measurement range of the assay.
The second one is that the two-dimensional problem of comparing intercept and slope
is reduced to a one-dimensional one, as the difference between predicted values is re-
garded. Hence it would be easy to incorporate also the correlation structure between
the intercept and the slope in the specifications.
Further on, in addition to the variation of the specifications, the variation of the new
regression line is taken into account, by this enhanced method.
However, it rests for further research to accommodate this approach to errors-in-variables
problems, e.g. to adopt it to orthogonal regression.
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Figure 8.3: Plot of the differences for reagent-lot A and B versus the lot-at-market.
The simultaneous confidence bands (α = 0.95) are printed in red.
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Chapter 9

Meta-analysis of regression lines

In this chapter we consider the problem of the combination of several regression lines,
being repetitions of the same method comparison experiment, to obtain an average re-
gression line. This problem appears usually, if the method comparison experiment is
repeated after a certain time. For instance the IFCC network for standardization of
HbA1c needs to compare its values with other national standardization networks for
HbA1c. So twice a year a method comparison study is launched to derive the relation-
ship between the IFCC-HbA1c values and the HbA1c values of another standardization
network. In each method comparison study another set of samples is used. After a cer-
tain number of studies an average regression line should be derived, which describes the
transformation rule of IFCC-HbA1c values to the other HbA1c values and vice versa.
Hierarchical linear models are appropriate for this situation, but as both methods are
subject to error, these models need to be enhanced to incorporate the measurement er-
rors in both axes. We consider now the situation, that there are replicates of each mea-
surement in both methods. This is different to the errors-in-variables model regarded in
Chapter 3.1. The goal of the analysis is the derivation of the averaged regression line
and its uncertainty.
In the first section, we repeat the main steps of fitting a hierarchical linear model in
a Bayesian approach and derive the main Gibbs sampling algorithm. Afterwards, we
extend this model and the algorithm to incorporate errors in both axes. For choosing
the appropriate prior distribution, we discuss an approach based on posterior predictive
checks. We finish with the analysis of the IFCC - Sweden relationship.

111
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9.1 Hierarchical linear models

From a Bayesian point of view, linear mixed models are named hierarchical linear mod-
els, as in Bayesian analysis no distinction is made between fixed and random effects -
all parameters of a model are regarded as random variables. The difference between
these two effects is that a hyper-distribution is assigned to the so-called random effects.
This introduces a further hierarchy in the model. Hence, the linear mixed model (5.1.1)
may be written in terms of a hierarchical model as

Yi j|xi j,b, βi, σ
2
ε ∼ N(b0 + β0i + b1xi j + β1ixi j, σ

2
ε), i = 1, .., I, j = 1, .., Ji,(9.1.1)

βi|D ∼ N2

((
0
0

)
,D

)
, i = 1, .., I.

As no closed forms of the posterior distributions of the parameters are available, their
derivation is based on Markov Chain Monte Carlo techniques. If the prior distributions
of the parameters are chosen appropriately a Gibbs sampling algorithm (see Section
2.1.2) can be set up. Gibbs samplers are most efficient when the parametrization is
done in terms of independent components. If highly dependent components are used
the convergence to the posteriors is slow. Centering and reparametrization can be used
to improve the converge of the Gibbs sampler.
In linear regression models, the estimators of intercept and slope are correlated as long
as the mean of the predictor values is not zero. This applies also to hierarchical linear
models. Hence, centering the predictor values around their mean breaks the correlation
between the coefficients; see e.g. [ZGF02] and [GSC95].
The parameters of Model (9.1.1) are (b, σ2

ε,D), for which prior distributions need to
be specified. Priors of parameters are specified either based on historical data, or non-
informative priors are assigned.
Most authors working on hierarchical linear models specify conjugate prior distribu-
tions, to achieve proper full conditional distributions, such that the Gibbs sampler is
easily applicable; see for example [LLV04], [ZGF02], [Car96]. The parameters of the
distributions are chosen such that these prior distributions are almost non-informative.
Nevertheless, the sensitivity of the results on the prior settings must be analyzed. Es-
pecially in cases of small sample sizes it is difficult to assess the vagueness of such a
prior; see for example [LSB+05] for a sensitivity analysis of different prior settings in
hierarchical linear models. We will discuss this issue further in Section 9.3.
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We will work with conjugate prior distributions for hierarchical linear models, given by

p(σ2
ε) = InvGamma(uy, vy),

p
((

b0

b1

))
= N2(M,Φ), (9.1.2)

p(D) = InvWhishart(Ω, λ).

To derive the Gibbs sampling algorithm, the full conditional posterior distributions of
the parameters need to be derived. In the following we will denote the conditional
posterior distribution of a parameter Θ, by p(Θ|·). That is the distribution of Θ given all
the other parameters and the data. For Model (9.1.1) they can be derived by considering
the following proportional relationships (see [Gil96]):

p(σ2
ε|·) ∝ p(Y|·) · p(σ2

ε),

p
((
β0i

β1i

)
|·

)
∝ p(Yi|·) · p

((
β0i

β1i

)
|D

)
, ∀ i = 1, .., I, (9.1.3)

p
((

b0

b1

)
|·

)
∝ p(Y|·) · p

((
b0

b1

))
,

p(D|·) ∝ p
((
β0i

β1i

)
|D

)
· p(D).

According to Model (9.1.1) the likelihood functions are given by

p(Yi|·) = (2p)−Ji/2 · |Ψi|
−1/2 · exp

(
−

1
2

(Yi − Xib − Ziβi)′Ψ−1
i (Yi − Xib − Ziβi)

)
,

p(Y|·) =

I∏
i=1

p(Yi|·),

where Ψi = σ2
ε · IJi and Xi = Zi, defined as

Xi =


1 xi1
...

...

1 xiJi

 .
Based on the prior settings and the proportional relationships given in (9.1.3), the con-
ditional posteriors can be deduced, leading to the following Gibbs sampling algorithm:
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Step 1 Generate initial values,

σ2
ε0 ,

(
β0i

β1i

)0

, ∀i = 1, .., I,
(

b0

b1

)0

,D0.

Step 2 Let t > 0. Given

σ2
εt ,

(
β0i

β1i

)t

, ∀i = 1, .., I,
(

b0

b1

)t

,Dt,

draw:

(a)

σ2
εt+1 ∼ InvGamma

uy +
1
2

n,
1
2

∑
i

∑
j

(yi j − E.yt
i j)

2 + vy

 , (9.1.4)

where E.yt
i j = bt

0 + βt
0i + bt

1xi j + βt
1ixi j and n =

∑
i Ji.

(b) ∀ i = 1, .., I(
β0i

β1i

)t+1

∼ N2

(
(Λt+1

i )−1(Yi − Xibt)(Ψt+1
i )−1Zi, (Λt+1

i )−1
)
,

(9.1.5)

where Λt+1
i = Z′i(Ψ

t+1
i )−1Zi + (Dt)−1.

(c) (
b0

b1

)t+1

∼ N2

(Λt+1)−1 ·

∑
i

((Yi − Ziβ
t+1
i )′(Ψt+1

i )−1Xi) + Φ−1M
 ,

(Λt+1)−1
)
, (9.1.6)

where Λt+1 =
∑

i X′i(Ψ
t+1
i )−1Xi + Φ−1.

(d)

Dt+1 ∼ InvWhishart

λ + I,Ω +
∑

i

β′t+1
i βt+1

i

 . (9.1.7)

This conditional posterior distribution is obtained, due to the property of the
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trace of a matrix, given in (A.0.3).

Step 3 Repeat Step 2 R times until the chains have converged to the posterior distribu-
tion. Criteria for assessing convergence are discussed in Section 2.2.

The OpenBUGS2.2.0 software [STBL05] provides an easy interface for the specifica-
tion of hierarchical linear models and the use of the Gibbs sampler. This software in
combination with the R package BRugs [Lig06] provides a comfortable way for the
derivation of the posterior distribution of the parameters.

9.2 Hierarchical linear models with errors in both axes

As already stated in the introduction of this chapter, both methods are subject to error in
method comparison studies. So these errors need to be incorporated in the hierarchical
model. In contrast to the model in Chapter 3, multiple measurements of each sample
are available for each method.
Let Xi jk, i = 1, .., I, j = 1, .., Ji, k = 1, ..,Ki j be the kth measurement of sample j and
experiment i of the first method and let Yi jl, i = 1, .., I, j = 1, .., Ji, l = 1, .., Li j be the
lth measurement of sample j in experiment i of the second method. Expanding Model
(9.1.1) to errors in both axes leads to

Xi jk = ηi j + δi jk, i = 1, .., I, j = 1, .., Ji, k = 1, ..,Ki j,

Yi jl = ξi j + εi jl, i = 1, .., I, j = 1, .., Ji, l = 1, .., Li j, (9.2.1)

ξi j = b0 + β0i + b1 · ηi j + β1i · ηi j, i = 1, .., I, j = 1, .., ni,

where the measurement errors δi jk and εi jk are independent normally distributed with
N(0, σ2

δi j
) and N(0, σ2

εi j
) respectively.

Just as for Model (9.1.1) we assume that the intercept-slope vectors of the experiments
are random draws from a multivariate normal distribution:

βi ∼ N2

((
0
0

)
,D

)
, i = 1, .., I, (9.2.2)
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independent of δi jk and εi jl.

In terms of a hierarchical linear model (9.2.1) and (9.2.2) may be written as

Xi j|ηi j, σ
2
δi j
∼ NKi j(ηi j1Ki j , σ

2
δi j

IKi j),

Yi j|ξi j, σ
2
εi j
∼ NLi j(ξi j1Li j , σ

2
εi j

ILi j), (9.2.3)

ξi =
(

1Ji ηi

)
· b +

(
1Ji ηi

)
· βi,

βi|D ∼ N2((0, 0)′,D),

with prior distributions on the parameters considered below.
Additional to the parameters of the simple hierarchical model, we have the parameters
ηi j - the true values of the samples in the X-method and ξi j - the true values of the sam-
ples in the Y-method and the respective measurement error variances σ2

δi j
, σ2

εi j
. Hence,

the Gibbs sampling algorithm expands to drawing from

p(ηi j|·) ∝ p(Xi j|ηi j, σ
2
δi j

) · p(ηi j), ∀i = 1, .., I, j = 1, .., Ji,

p(σ2
δi j
|·) ∝ p(Xi j|ηi j, σ

2
δi j

) · p(σ2
δi j

), ∀i = 1, .., I, j = 1, .., Ji,

p(σ2
εi j
|·) ∝ p(Yi j|·) · p(σ2

εi j
), ∀i = 1, .., I, j = 1, .., Ji,

p
((
β0i

β1i

)
|·

)
∝ p(Yi|·) · p

((
β0i

β1i

)
|D

)
, ∀ i = 1, .., I,

p
((

b0

b1

)
|·

)
∝ p(Y|·) · p

((
b0

b1

))
,

p(D|·) ∝ p
((
β0i

β1i

)
|D

)
· p(D).

The conjugate prior distributions of the parameters are given by

p(σ2
δi j

) = InvGamma(ux, vx), ∀i = 1, .., I, j = 1, .., Ji

p(σ2
εi j

) = InvGamma(uy, vy), ∀i = 1, .., I, j = 1, .., Ji (9.2.4)

p
((

b0

b1

))
= N2(M,Φ)

p(D) = InvWhishart(Ω, λ).

For ηi j we specify a uniform prior, for example uniform on the measurement range of the
assay. Based on these prior settings and the proportional relationships given above, the
conditional posteriors can be deduced, leading to a Gibbs sampling algorithm similar to
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the one given in Section 9.1. However, this time ηi j, σ
2
δi j

are drawn, too, and the design
and variance-covariance matrices are adapted to the situation of repeated measurements
and heteroscedastic variances.

9.3 Model checking

For the analysis of hierarchical linear models, different authors pointed out that with
the specification of proper prior distributions, especially the inverse Gamma or in-
verse Whishart distribution, it is hard to assess non-informativeness (see e.g. [LSB+05],
[NM98], [Gel06].)
Hence, it is necessary to analyze the sensitivity of the results to the specified prior distri-
butions and to choose the most appropriate one in cases where inferences are different.
We will do this by posterior predictive checks, as already described in Section 2.3.
In hierarchical linear models posterior predictive checks can be made on different levels
of the model. On the first level, the data of the observed experiments can be compared
to the posterior predictive distribution given the observed experiments. On the second
level, one can derive the posterior predictive distribution for a new experiment, and
compare it with an experiment which will be observed in the future.
The posterior predictive checks on the first level are adequate for choosing the best prior
distribution among different priors or to assess the best model, given the data at hand.
Posterior predictive checks of the second level may be used to assess whether a new
experiment still fits to the same conditions as the other experiments. For experiments
that are repeated over time, it might be that the experimental conditions change unper-
ceived. To check if these changes cause a change in the parameters of the regression
model, the posterior predictive checks of the second level may be used. As test quan-
tities we compare the study-wise coefficients of the observed studies to the study-wise
coefficients based on the replicated data.

Let us regard this in more detail by first considering Model (9.1.1).
The algorithm for the posterior predictive distribution given the observed experiments
is the following:

Step 1 For each experiment i = 1, .., I and each simulated value of the posterior distri-
bution n = 1, ..,N calculate

E.Yrn
i j = bn

0 + βn
0i + bn

1 · xi j + βn
1i · xi j.

Yrn
i j ∼ N(E.Yrn

i j , σ
2
εn).
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Step 2 For each simulated value n = 1, ..,N, calculate the study-wise coefficients βn
i

based on Yrn
i j ∀ i = 1, .., I, j = 1, .., Ji and the design-matrix Xi of experiment i

based on least-squares regression.

Step 3 Calculate for the intercept and the slope the p-values pi(β0i) and pi(β1i) as
the proportion of the N calculated intercepts and slopes, respectively, which are
smaller than β̂0i, β̂1i, which are the intercept and slope derived via least-squares
regression from the data of experiment i.

Step 4 Calculate for each experiment i, the mean squares error, given by

MS Ei =
1
n

∑
n

||βn
i − β̂i||

2.

Having calculated the p-values and MSE of different models and/or prior settings, the
model with still acceptable p-values and low MSE may be chosen as the most appropri-
ate one. In the example at the end of this chapter we will discuss this further.

Having data from a new experiment, we can check how well the chosen model
predicts the outcome of the new experiment, or regarding things the other way around,
how well the new experiment fits to the previous data situation.
Denoting with Xi′ the design matrix of the new experiment, the algorithm for posterior
predictive checks is

Step 1 For each simulated value n = 1, ..,N, calculate(
βrn

0i′

βrn
1i′

)
∼ N2

((
0
0

)
,Dn

)
E.Yrn

i′ j = bn
0 + βrn

0i′ + bn
1 · xi′ j + βrn

1i′ · xi′ j

Yrn
i′ j ∼ N(E.Yrn

i′ j, σ
2
εn), ∀ j = 1, .., Ji′ .

Step 2 For each simulated value the study-wise coefficients are calculated based on Yrn
i′ j

and the design matrix of the new experiment.

Step 3 p-values and MSE are obtained by the comparison of the calculated coefficients
based on the replicated data and the coefficients derived from the observed data
of the new experiment.

If the p-values of intercept or slope are further away from 0.5 than a certain level α,
(0 < α < 0.5) we may conclude that the experimental conditions have changed, since
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the actual model can only poorly explain the data from the new experiment.

Regarding the hierarchical linear model with errors in both axes, the simulation
algorithm for the posterior predictive checks is extended by drawing the repeated mea-
surements of the first method, too. Thus Step 1 is extended to

Step 1 For each experiment i = 1, .., I and each simulated value n = 1, ..,N, calculate

Xrn
i jk ∼ N(ηn

i j, σ
2n
δi j

), i = 1, .., I, j = 1, .., Ji, k = i, ..,Ki j

ξrn
i j = bn

0 + βrn
0i + bn

1 · η
n
i j + βrn

1i · η
n
i j i = 1, .., I, j = 1, .., Ji

Yrn
i jl ∼ N(ξrn

i j , σ
2n
εi j

).

P-values can be calculated for the means of the samples of the X-axis, as well as for the
study-wise coefficients.
In the next section, we present the application of these ideas to the derivation of the
average IFCC - Sweden relationship.

9.4 IFCC - Sweden relationship

We return to the method comparison studies of the IFCC network for standardization of
HbA1c, which we introduced already in Section 8.3.1. This time we regard the IFCC -
Sweden relationship in more detail, for which 10 comparisons are performed up to now.
Based on these data an average regression line, the so-called master equation shall be
derived, such that in the future HbA1c values based on the Swedish standardization can
be transformed into IFCC values and vice versa.
We will proceed in three steps to derive the master equation appropriately. In a first step,
we pool the data from all studies and apply a simple regression model to it. [HWJ+04]
already derived a master equation based on the first four studies by pooling all the data.
At that time this was perhaps the best way to do, due to the small number of studies.
We will show that now, having more studies, a hierarchical model is more appropriate.
It explains better the variation within the data and provides therefore a better estimate
for the relationship and its uncertainty.
In a second step, we turn to the hierarchical linear model, by ignoring the measurement-
error in the IFCC values. Instead of regarding the individual measurements, we fit the
model to the means of the Sweden and IFCC samples. This model is faster to fit and we
can already derive some settings for the prior distributions. We use the Gibbs sampling
algorithm given in Section 9.1.
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In the third step, the model based on the individual observations is fitted by the Gibbs
sampling algorithm of Section 9.2.
As the first two studies had a different design from the other ones, they are not included
in the derivation of the master equation. However, we can use them for the comparison
of the prediction of observations from new studies.
In each study 5 samples, distributed over the measurement range, are measured within
the IFCC and Swedish standardization network. As the IFCC network for standardiza-
tion of HbA1c consists of up to 10 laboratories, up to 40 repeated measurements for
one sample are available. For the Swedish network there are up to four measurements
per sample.
In Figure 9.1, a plot of the intercept/slope of the individual studies is shown. Studies
indicated in red are used for the model fit, the black ones are those not included in the
analysis.

9.4.1 Linear Bayesian model

By pooling the data over all studies, we obtain a set of 40 sample pairs (xi, yi), i =

1, .., 40, where xi denotes the IFCC - HbA1c value of the ith sample and yi the Sweden
- HbA1c value, respectively. Both values are the means of the repeated measurements
per sample. The likelihood function and the prior distributions of the linear Bayesian
model are given by:

Yi = b0 + b1(Xi − X̄) + εi

εi ∼ N(0, σ2
ε) (9.4.1)

p((b0, b1)′) = N((E.b0, E.b1)′,Φ)

p(σ2
ε) = InvGamma(u, v).

We analyze different prior distributions: For the prior distribution of the regression
coefficients, we set (E.b0, E.b1) = (5.54, 0.989), these are the coefficients of the master
equation derived by [HWJ+04], recalculated to the centered model. To achieve that the
normal distribution becomes non-informative, Φ was set to 103 and 106, respectively.
Regarding the inverse gamma distribution, three different pairs for (u, v) are analyzed:

(0.0001, 0.0001), (0.1, 0.1), (2, 0.018).

The first pair is the ”classical” set of parameters, it is used for example in almost all
OpenBUGS2.2.0 examples ([STBL05]). The third one is derived by setting E(σ2

ε) =
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0.0064, the value obtained by [HWJ+04] and Var(σ2
ε) = 106. The second pair is seen as

an intermediate one.
The analysis is done with OpenBUGS2.2.0 [STBL05], running three MCMC chains,
with starting points for σ2

ε being 1, 0.1, 0.01 and for (b0, b1) ((0, 10), (10, 10), (10, 0)).
After a burn-in of 100.000 values, every 50th value is saved until 5000 values are ob-
tained from each chain. Convergence of the three chains was assessed by regarding the
potential scale reduction factor.

The different settings for Φ have no influence on the posterior distribution of the
parameters. On the other side, the different parameter settings of the inverse gamma
prior lead to different posteriors of the coefficients and the error variance. In Table 9.1,
the 2.5%, 50% and 97.5% quantiles of the posterior distributions of the parameters are
given for these different settings. The posterior medians of the coefficients are the same

Table 9.1: 2.5%, 50% and 97.5% quantiles of the posterior distributions of the pa-
rameters for different parameters of the prior of σ2

ε, based on the linear Bayesian
model.

Parameters (u, v) 2.5% quantile 50% quantile 97.5% quantile
(0.0001, 0.0001) 0.915 1.008 1.099

b0 (0.1, 0.1) 0.897 1.008 1.120
(2, 0.018) 0.915 1.007 1.102

(0.0001, 0.0001) 0.955 0.968 0.981
b1 (0.1, 0.1) 0.952 0.968 0.983

(2, 0.018) 0.955 0.968 0.981
(0.0001, 0.0001) 0.090 0.111 0.142

σ2
ε (0.1, 0.1) 0.108 0.133 0.171

(2, 0.0018) 0.090 0.110 0.138

for all priors, but the range of the posterior distributions differ. The InvGamma(0.1,0.1)
prior leads to a wider range of the posterior distribution of the coefficients. The posterior
ofσ2

ε based on the InvGamma(0.1,0.1) prior is shifted to the right, compared to the other
two prior distributions.
The adequacy of the likelihood and the prior settings is analyzed by posterior predictive
checks, according to the first algorithm presented in Section 9.3. In Table 9.2, the p-
values and MSE obtained from the comparison of the study-wise coefficients for the
Kyoto 1, Kyoto 2 and Orlando 1 study are shown. Regarding Figure 9.1, we see that
intercept and slope of the Kyoto 1 study are away from the center of these parameters
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averaged over all studies. For the Kyoto 2 study, the intercept is to the right of this
center, whereas the slope is quite near to the average slope. Both parameters of the
Orlando 1 study are near to the center. Regarding the p-values we see, that the simple

Table 9.2: P-values and MSE from the posterior predictive checks for studies Kyoto
1, Kyoto 2, Orlando 1 for different parameters of the prior of σ2

ε, based on the
linear Bayesian model.

Study (u, v) p-value Intercept p-value Slope MSE
(0.0001, 0.0001) 0.07 0.96 0.065

Kyoto 1 (0.1, 0.1) 0.11 0.93 0.074
(2, 0.018) 0.06 0.96 0.065

(0.0001, 0.0001) 0.79 0.52 0.049
Kyoto 2 (0.1, 0.1) 0.74 0.52 0.061

(2, 0.018) 0.78 0.53 0.046
(0.0001, 0.0001) 0.43 0.59 0.021

Orlando 1 (0.1, 0.1) 0.44 0.58 0.030
(2, 0.018) 0.43 0.59 0.021

probability model does not explain the variation of the observations in an adequate
form. Especially for the Kyoto 1 study the p-values of intercept and slope are either
too low or too near at 1. The second prior seems to better explain the variability, as all
p-values are closer to 0.5 for this prior. However, this is due to the increased range of
the posterior, seen by the increased MSE.
In summary, we can conclude that the linear Bayesian model is not adequate to explain
the variation within the data. In the next section we extend this model to a hierarchical
linear model.

9.4.2 Hierarchical linear model

Modelling the data under consideration as hierarchical linear model, according to (9.1.1),
leads to I = 8 studies and Ji = 5, i = 1, .., 8 samples per study.
As observations Yi j we take the Sweden - HbA1c values of the respective sample and
Xi j the IFCC - HbA1c values.
The prior distribution of (b0, b1) is defined as N((5.54, 0.989), 106 · I2) and the prior of
σ2
ε as InvGamma(2,0.018), according to the arguments for the linear Bayesian model.

Different settings for the inverse Whishart distribution are analyzed, with λ = 3 and
Ω = 10−2 · I, 5 · 10−3 · I, 10−3 · I, 5 · 10−4 · I, 10−4 · I.
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Setting λ = 3 lets the Whishart distribution have a still finite density. For |Ω| → 0,
Jeffrey’s prior is obtained. However in this limiting case, the posterior would no longer
be proper, see e.g. [STH01] and [Sta06] for a further discussion of this issue.
Three chains are run with starting values for (b0, b1) = (0, 10), (10, 10), (10, 0). Conver-
gence for all priors could be assessed, based on the potential scale reduction factor, after
600.000 simulations. After the burn-in, every 50th value is saved until 5000 values are
obtained from each chain.
In Table 9.3, a summary of the posterior distribution of the mean coefficients for the
different prior settings is given. The smaller the absolute value of Ω, the smaller be-

Table 9.3: 2.5%, 50% and 97.5% quantiles of the posterior distributions of (b0, b1)
for different parameters of the prior of D, based on the hierarchical linear model.

Parameters Ω 2.5% quantile 50% quantile 97.5% quantile
10−2 · I 0.760 0.976 1.191

b0 5 · 10−3 · I 0.811 0.980 1.149
10−3 · I 0.864 0.983 1.106

5 · 10−4 · I 0.877 0.980 1.100
10−4 · I 0.897 0.994 1.096
10−2 · I 0.941 0.973 1.006

b1 5 · 10−3 · I 0.947 0.973 0.999
10−3 · I 0.953 0.972 0.990

5 · 10−4 · I 0.955 0.972 0.988
10−4 · I 0.955 0.970 0.985

comes the range of the posterior distribution of the coefficients. This is mostly due to
the fact that the non-informativeness of the inverse Whishart distribution is not given by
its flatness, but because of the lower probability of matrices with higher absolute value.
For these prior settings we make posterior predictive checks for the observed studies. In
Table 9.4, the p-values for the slope and the intercept as well as the MSE for the Kyoto
1, Kyoto 2 and Orlando 1 study are given. Based on these we discuss the choice of the
most adequate prior distribution from the ones considered here.
The p-values for slope and intercept of all studies have improved compared to the linear

Bayesian model. With decreasing absolute values of Ω they become worse, however
the first two priors give quite the same p-values. The minimum of the mean-square error
is given by the first prior for the Kyoto 1 study, by the second for the Kyoto 2 study and
by the third for the Orlando 1 study. Regarding all studies included in the analysis, we
have two studies for which the minimum mean-square error is reached for the first prior,
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Table 9.4: P-values and MSE from the posterior predictive checks for studies Kyoto
1, Kyoto 2, Orlando 1 for different parameters of the prior of D, based on the
hierarchical linear model.

Study Ω p-value Intercept p-value Slope MSE
10−2 · I 0.43 0.57 0.018

Kyoto 1 5 · 10−3 · I 0.39 0.62 0.019
10−3 · I 0.27 0.73 0.023

5 · 10−4 · I 0.22 0.79 0.027
10−4 · I 0.13 0.89 0.041
10−2 · I 0.52 0.55 0.027

Kyoto 2 5 · 10−3 · I 0.55 0.55 0.027
10−3 · I 0.62 0.51 0.029

5 · 10−4 · I 0.65 0.49 0.031
10−4 · I 0.73 0.47 0.039
10−2 · I 0.50 0.50 0.018

Orlando 1 5 · 10−3 · I 0.50 0.50 0.017
10−3 · I 0.50 0.50 0.017

5 · 10−4 · I 0.50 0.51 0.017
10−4 · I 0.48 0.53 0.018

and three studies for which the minimum mean-square error is reached for the second
or third prior, respectively. As for the two studies with minimum MSE in the first prior,
the change in the p-values as well as in the MSE is not large when going to the second
prior, we conclude that the second prior is the most adequate for this data.
Comparing the posterior distribution of the mean coefficients based on the hierarchical
linear model, with their posterior distribution from the linear Bayesian model, we see
that the range of the posterior distribution is wider. The location of the posterior is
slightly shifted (see also Figure 9.1).

Posterior predictive checks for new studies are exemplarily made for the data of the
Marrakech and the Chicago study. Based on the posterior distributions of the parame-
ters, derived with the second prior (Ω = 5 · 10−3 · I), p-values of the intercept and the
slope for the Marrakech study are (0.36, 0.82) and for the Chicago study (0.67, 0.20).
As all p-values are greater than 0.1 or less than 0.9 we can conclude that both studies fit
to the assumed model. No change in the experimental conditions has occurred.
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Figure 9.1: Plot of the intercept and slope for the method comparison studies be-
tween the IFCC network and the Swedish network for standardization of HbA1c.
Red indicates the studies used for the derivation of the master equation, black the
first two studies which are not included in the analysis. The solid line represents
the location of the posterior of intercept and slope based on the hierarchical linear
model, the dashed line based on the pooled model.
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9.4.3 Hierarchical linear model with errors in both axes

To account for the measurement error in both methods, we regard the repeated mea-
surements in both methods. For each sample measured within the IFCC network for
standardization of HbA1c about 40 values and for each sample measured in the Swedish
network four repeated values are available.
For the analysis four different prior settings are analyzed: The parameters of the inverse
Gamma distributions of the measurement errors of both networks (ux, vx), (uy, vy) are set
to (0.1, 0.1) or (2, 0.018), the parameter Ω of the inverse Whishart distribution is set to
5 · 10−3I, 10−3I. The other priors are the same as for the hierarchical linear model.

In Table 9.5, a summary of the posterior distribution of the mean coefficients for
the different prior settings is given. The range of the posterior distributions of the co-
efficients is much wider for the last two priors, than for the first two. For the first
prior setting it is comparable with the range from the hierarchical linear model. The
last two prior settings result in flatter posterior distributions. The same prior distri-
bution is assigned to both measurement error variances. However, the InvGamma(2,
0.018) is derived based only on information on the Swedish network and does not well
describe the information of the measurement error variance of the IFCC network, the
InvGamma(0.1, 0.1) is less informative.

Table 9.5: 2.5%, 50% and 97.5% quantiles of the posterior distributions of (b0, b1)
for different priors, based on the hierarchical linear model with errors in both
axes.

Parameters Ω (u,v) 2.5% quantile 50% quantile 97.5% quantile
5 · 10−3 · I (0.1, 0.1) 0.792 0.995 1.201

b0 10−3 · I (0.1, 0.1) 0.844 1.001 1.158
5 · 10−3 · I (2, 0.018) 0.497 1.006 1.507

10−3 · I (2, 0.018) 0.553 1.004 1.456
5 · 10−3 · I (0.1, 0.1) 0.939 0.970 1.001

b1 10−3 · I (0.1, 0.1) 0.946 0.969 0.993
5 · 10−3 · I (2, 0.018) 0.894 0.968 1.042

10−3 · I (2, 0.018) 0.903 0.968 1.034

In Table 9.6, the p-values of the intercept and the slope, as well as the MSE is shown
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for the different prior settings. The p-values of the priors are comparable to the p-values
of the hierarchical linear model, however there are huge differences in the MSE for the
different choices of the parameters of the inverse Gamma distribution. The last two
priors give no adequate results.

Table 9.6: P-values and MSE from the posterior predictive checks for studies Kyoto
1, Kyoto 2, Orlando 1 for different priors, based on the hierarchical linear model
with errors in both axes.

Study Ω (u,v) p-value Intercept p-value Slope MSE
5 · 10−3 · I (0.1, 0.1) 0.39 0.60 0.069

Kyoto 1 10−3 · I (0.1, 0.1) 0.32 0.69 0.072
5 · 10−3 · I (2, 0.018) 0.42 0.58 0.942

10−3 · I (2, 0.018) 0.40 0.61 0.910
5 · 10−3 · I (0.1, 0.1) 0.53 0.59 0.109

Kyoto 2 10−3 · I (0.1, 0.1) 0.59 0.55 0.105
5 · 10−3 · I (2, 0.018) 0.52 0.53 1.335

10−3 · I (2, 0.018) 0.53 0.53 1.294
5 · 10−3 · I (0.1, 0.1) 0.48 0.52 0.063

Orlando 1 10−3 · I (0.1, 0.1) 0.48 0.53 0.056
5 · 10−3 · I (2, 0.018) 0.48 0.52 0.938

10−3 · I (2, 0.018) 0.48 0.52 0.842

In Figure 9.2, the posterior densities of the coefficients of the IFCC - Sweden rela-
tionship are shown. The red line indicates the posterior density of the linear Bayesian
model, the black line of the hierarchical linear model, the green one of the hierarchical
linear model with errors in both axes. We see very clearly that the posterior density
becomes flatter the more variation sources are included in the model. The inclusion of
the study hierarchy is more important than the additional inclusion of the measurement
error in both axes.
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Figure 9.2: Plot of the posterior densities of b0 and b1 for the IFCC - Sweden
master equation derived from the different models. The red line indicates the pos-
terior density of the linear Bayesian model, the black line of the hierarchical linear
model, the green one of the hierarchical linear model with errors in both axes.
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Chapter 10

Discussion

A stable standardization concept for diagnostic assays is mandatory for the long-term
quality of these medical devices. It guarantees that the measured values are stable over
space and time, such that confidence is provided to physicians to support their medical
decisions. Statistical methods assist in achieving these goals. In this thesis, three major
standardization issues are analyzed from a statistical point of view:

(i) The derivation of assigned values for calibrators via sample reading and the calcula-
tion of their uncertainty by taking into account the uncertainties of metrologically
higher calibrators is discussed.

(ii) Techniques for the identification of outliers within data, coming from multiple labo-
ratories, are shown. These includes the possibility to define rules for the approval
of laboratories as members of standardization networks.

(iii) Procedures for the comparison and the combination of method comparison studies
are established.

The derivation of the assigned value of a calibrator is usually embedded in a whole stan-
dardization cascade, i.e. metrologically higher calibrators are needed for the derivation
of the assigned value and the particular calibrator might be used in the value assign-
ment of a metrological lower calibrator. The assigned values of calibrators carry an
uncertainty, its calculation is demanded by different institutions ([IVD98], [GUM93]).
However, up to now these uncertainty values are not used as valuable information in the
downstream standardization cascade.
We show that the incorporation of the uncertainty of the calibrators is necessary for the
establishment of a meaningful calibration curve, as well as for the reading of an un-
known sample from this calibration curve and for the derivation of the uncertainty of

129
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this reading.
In a simulation of the sample reading from a linear calibration curve, we analyze dif-
ferent situations for the error structure of the assigned values of the calibrators (low vs.
high uncertainty, no correlation vs. high correlation, flat calibration curve vs. steep
calibration curve). In all cases, the incorporation of the knowledge on the uncertainty
of the calibrators produces much better results in terms of point estimates of the value
of the read sample and coverage of the confidence intervals.
Bayesian modelling of the sample reading and MCMC algorithm are a good tool for
this situation. However, these calculations are still too slow to be incorporated in auto-
matic analyzers. Therefore it would be worth to analyze how approximations of these
models, as e.g. proposed by [CFH04], match the results of the Bayesian modelling.
Knowing the uncertainty of a single measurement, it is easy to combine multiple mea-
surements coming from different laboratories by a one-way random effects model and
known individual error variance. The combination of such structured data is a well
known issue for the value assignment of calibrators. However, most authors dealing
with it do not incorporate the uncertainty of the individual measurement in their mod-
els. We show that the incorporation provides better estimates of the assigned values and
narrower confidence intervals.

In the analysis of data from standardization networks the outlier detection plays an
important role. In the structure of the data different types of outliers can occur. A whole
laboratory is an outlier if its measured values are extreme in comparison to the mea-
sured values of the other laboratories on the same samples. Or a laboratory is an outlier,
if the variation of its repeated measured values is different to the variation of the other
laboratories. Further a single measurement within a laboratory can be an outlier, if this
value is extreme, compared to the other values within this laboratory. We provide rules
to detect these three types of outliers within data of standardization networks, based on
linear mixed models.
Two data situations are regarded: If data of a single sample is regarded, the one-way
random effects model is appropriate for modelling this situation. Based on the sum
of squares of the laboratory effects and the sum of squares of the residuals, outlier
identification rules are defined. If data from multiple samples is regarded the random
coefficients model is used to model laboratory effects. In this case a regression line is
estimated for each laboratory, such that for each laboratory a kind of systematic and
proportional effect is estimated.
For both situations limits are defined for the sum of squares of the laboratory effects
and residuals. The limits are given by Chi-square quantiles, as under the assumption
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of normally distributed laboratory effects and residuals the respective sums of squares
follow this distribution. However, it rests for further research to define better limits,
based on the distribution of the estimates of the laboratory effects and residuals.
Based on actual data, we show that the estimation of the parameters of the linear mixed
models with normally distributed laboratory effects and residuals leads to masking and
swamping effects for the outlier identification. Therefore we propose to use a more ro-
bust estimation method, based on the t-distribution with appropriate degrees of freedom.
Reanalyzing the data with this estimation method leads to better results concerning the
outlier identification.
Finally we discuss how these rules can be generalized to be used for multiple standard-
ization studies. This means that the limits for outlier identification are not derived from
the actual data, but set in advance. This is a kind of quality control procedure for data
of standardization networks. On this procedure rules can be defined to approve labora-
tories as members of a standardization network.
On one hand side we propose some ideas for the derivation of such limits, based on his-
torical data. On the other side we discuss how these limits can be interpreted in terms
of allowable deviations.

When new standardization principles for a diagnostic assay are introduced the old
and established values have to be linked to the new values, to ensure the continuity of
diagnostic and therapeutic decisions. The IFCC network for standardization of HbA1c
is a recent example for this problem. A new standardization approach is established
worldwide and replaces national standardizations. To compare the values based on
these national standardizations with the IFCC values, twice a year method comparison
studies are launched. This means that a set of samples is measured based on the na-
tional standardization and based on the IFCC standardization. A linear regression line
is afterwards fitted to the data.
We deal with two issues in the context of repeated method comparison studies. The
first one is the comparison of two or more of these regression lines. It is important to
know if there are differences between the outcome of these experiments. For this com-
parison we use the algorithm proposed by [LJZ04], which bases the comparison on the
construction of simultaneous confidence bands for the difference of predicted values.
Further we show how this algorithm can be changed to compare a new regression line
with a reference regression line.
Both algorithms are based on least-squares estimation of the respective regression line.
This is not always appropriate for the analysis of method comparison studies, as both
methods are subject to error. Hence, estimation techniques for errors-in-variables mod-
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els would be better. It would be interesting to adjust the algorithms to these estimation
methods.
The second issue deals with the combination of multiple regression lines to obtain an
averaged regression line and its uncertainty. Bayesian hierarchical models are used
for modelling the data of multiple method comparison studies, to obtain the posterior
distribution of the coefficients of the averaged regression line. We extend the simple
Bayesian hierarchical model to incorporate the errors in both variables.
As for Bayesian models prior distributions need to be assigned, the sensitivity of the
priors on the results must be checked. We present a method, based on posterior pre-
dictive checks, to analyze different prior settings. Finally we discuss based on data
of the IFCC network for standardization of HbA1c the importance for the hierarchical
modelling and the incorporation of the errors in both variables.
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Appendix A

Matrix Notations

The following matrix identities are used throughout the thesis.

The trace of a square matrix trace(A) is defined as the sum of the diagonal elements
of A. Given two square matrices of the same dimension A,B we have

trace(A + B) = trace(A) + trace(B) (A.0.1)

trace(AB) = trace(BA) (A.0.2)

∑
i

x′iAxi = trace

A
∑

i

xix′i

 . (A.0.3)

Also remember, that |A| denotes the determinant of a n × n matrix A, defined as

n = 1 |A| = a, where A = (a)

n ≥ 2 |A| =
n∑

i=1

(−1)i+ jai j|Ai j|, ∀1 ≤ i ≤ n,

where Ai j denotes the (n − 1) × (n − 1) matrix, which is obtained, by discarding the ith
row and jth column of A. (−1)i+ j|Ai j| is called the cofactor of the element ai j of A.

For the determination of the values that maximize the log-likelihood function, we
have to take derivatives of a function of a matrix f (A). Hence, we define ∂ f (A)

A , as the

141
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matrix, with i, jth entry (
∂ f (A)

A

)
i j

=
∂ f (A)
∂ai j

.

One can show, that the following identities hold (see e.g. [FHT96])

∂x′Ax
∂A

= (A + A′)x (A.0.4)

∂|A|
∂ai j

=

{
(−1)i+ j|Ai j|, if i=j
2(−1)i+ j|Ai j|, if i , j

∀A = A′ (A.0.5)

∂ln|A|
∂A

=

{
(−1)i+ j|Ai j|/|A|, if i=j
2(−1)i+ j|Ai j|/|A|, if i , j

= 2A−1 − diag(A−1) ∀A = A′ (A.0.6)

∂trace(AB)
∂A

= B + B′ − diag(B). (A.0.7)
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