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Chapter 1

Introduction

Many important processes in our organism are based on interactions be-
tween biomolecules. The consequences of these interactions depend on the
characteristics of the binding behaviour of the corresponding biomolecules.
Therefore, the understanding of the influence of diverse factors on particular
interactions is of special relevance. The analysis of biomolecular interactions
is a potential field of application of Partial Least Squares (PLS) regression
since only a limited number of experiments can be performed but a large
number of possibly relevant factors are taken into account.

The literature dealing with PLS regression and its application show a lack of
completeness in the statistical description of the details of the method, not
least the principles underlying its derivation and the statistical properties of
the resulting models and their estimates. It is especially in publications us-
ing PLS regression to investigate a particular interaction that the underlying
computations involved in the data analysis are inadequately explained. This
dissertation aims to provide a detailed explanation, using a uniform notation,
of the methodology of the PLS procedure as well as its application to the
analysis of biomolecular interactions. Consequently, it can be considered a
contribution to a comprehensive and advanced presentation of PLS regres-
sion within the context of one of its most important areas of application.
Particular emphasis is given to the problem of the occurrence of mutants of
viruses.

The objective of the analysis of biomolecular interactions is to obtain an
understanding of the influences on the interaction under study by modelling
the effects of a number of factors on the binding behaviour between certain
biomolecules. Often, interactions between an enzyme and its substrate or
an antigen and its antibody are under investigation. Potential factors that
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the binding process might depend upon are physico-chemical properties or
structural features of amino acids at particular positions in the sequence of
one or both of the binding partners as well as the composition of the buffer,
i.e. the chemical environment in which the interaction takes place.

Usually, in publications on biomolecular interactions, the explanations refer
to a particular binding process of interest. Based on these descriptions, a
general and comprehensive presentation of the performance of modelling the
influences on the binding between interacting biomolecules has been derived.

The binding behaviour can be characterized by kinetic parameters such as
the association and dissociation rate constant as well as the affinity constant.
These binding parameters can be measured with a high accuracy by biosensor
systems relying on the physical process of surface plasmon resonance (SPR).
In practice, the biosensor systems most frequently used are the Biacore in-
struments that are described in detail later for a comprehensive insight into
the biochemical and technological background of biomolecular interactions.

The measurements of the kinetic parameters are performed under various
conditions in order to obtain knowledge of the influences on the binding pro-
cess. In detail, the concentrations of diverse chemical additives and the levels
of the pH-value of the buffer are varied. Further, amino acid substitutions are
realized at specific positions in the sequence of the wild-type protein. Conse-
quently, binding parameters with respect to different modified proteins and
diverse buffers are obtained. The choice of possibly relevant buffer compo-
nents and appropriate mutation sites where amino acid replacements might
influence the interaction without preventing the binding requires the exper-
tise of biochemists. The exact experimental settings are based on a statistical
design plan.

In order to determine the effect of the factors of interest on the interaction
under examination, regression models are established with the help of the
available data. The measured binding parameters are used as values of the
response variables. Accordingly, variables representing the physico-chemical
properties or structural features of the amino acids at the mutation sites as
well as the buffer composition are incorporated as descriptor variables in the
regression models. By estimating the unknown model parameters, i.e. the
intercepts and the regression coefficients, of the respective regression models,
the influence of the modifications in the amino acid sequence and the chem-
ical environment on the interaction can be quantified.
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In practice, univariate regression models are developed individually for each
of the response variables under consideration, i.e. the association or dis-
sociation rate constant or the affinity constant. In general, the regression
models are established separately with respect to the different subgroups of
descriptor variables being considered. Consequently, the regression models
developed in the analysis of biomolecular interactions can be assigned to one
of the following types: quantitative buffer-kinetics relationship, quantitative
sequence-kinetics relationship, quantitative structure-activity relationship or
3D-quantitative structure-activity relationship. These are referred to respec-
tively as (QBKR), (QSKR), (QSAR) or (3D-QSAR)-models. This disserta-
tion presents a comprehensive formal description of these different kinds of
regression models that cannot be found in the articles published with respect
to a particular interaction.

After having specified the corresponding regression models, the measured
data can be interpreted. Beyond this, values of the response variables, i.e.
the kinetic parameters, can be predicted for specified values of the descriptor
variables. The information obtained with the help of the regression models
leads to an improved understanding of the interaction under investigation
allowing a basis for the explanation of the molecular regulation and function
of the interacting biomolecules. Gaining knowledge of the influences on the
interaction is of special relevance in pharmacology. In particular, the con-
clusions drawn from the results of the regression analysis can be used in the
development of drugs. For example, the binding properties of a potential
antibody can be optimized with respect to a specific antigen by determining
those amino acid substitutions resulting in a particular desired profile of the
corresponding binding parameters.

However, the study presented here deals with a different and important ap-
plication of the analysis of biomolecular interactions. In fact, the objective
of the current investigation is to obtain knowledge of the circumstances, es-
pecially the amino acid sequence of an antigen of a particular virus, under
which the corresponding available antibody can still be expected to be ef-
fective. Consequently, changes in the experimental settings were performed
by modifying the amino acid sequence of the antigen instead of that of the
antibody. Further, by considering different buffer compositions in the ex-
periments, the statements concerning the influence on the binding behaviour
of the mutations at the mutation sites can be determined with respect to
several chemical environments occurring in the cells of an organism.

The motivation for this kind of research is the fact that mutations in the
RNA or DNA of viruses might take place which lead to the expression of
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modified proteins of the capsid. Accordingly, as a result of the mutation,
the features of the coat protein might be altered. In unfavourable cases, the
existing antibodies are not able to bind to the virus any longer or at least
not as effectively as normally because of these changes in the capsid.

The binding characteristics of the interaction between an occurred mutant of
a virus and the corresponding available antibody can be predicted with the
help of the results of a regression analysis involving the virus of interest or a
similar one. These predictions can be easily computed since the amino acid
sequence of a particular mutant can be determined in laboratories, and the
values respecting the relevant physico-chemical properties of the amino acids
at the mutation sites can be used as values of the corresponding descriptor
variables in the established regression models. Comparing these predictions
of the association and dissociation rate constant with the binding parame-
ters of the wild-type virus yields conclusions on the efficacy of the existing
antibody with respect to the occurred mutant.

In this dissertation, the binding process under study is the interaction be-
tween a peptide of the antigen of the tobacco mosaic virus protein (TMVP)
and a Fab fragment of the monoclonal antibody 57P. Improved understand-
ing of this interaction is of special importance because the TMV is a virus
infecting a number of species such as tobacco, tomato, pepper and cucumber
and hence it might lead to enormous crop losses. Beyond this, information on
the TMV can be useful as well to elucidate the binding behaviour of other
similar viruses. For example, it is hoped that conclusions concerning the
Orthomyxovirus causing influenza may be drawn from the research on the
TMV. In the context of the Orthomyxovirus, the possibility of predicting the
binding characteristics between the occurrence of a mutant and the available
antibody in order to evaluate the efficacy of the antibody is especially rele-
vant because the application of ineffective vaccinations might be prevented.

The importance of being prepared for possible mutants of viruses is reflected
by the fact that several worldwide flu epidemics have happened in the last
100 years. The application of regression methods to measurements of par-
ticular biomolecular interactions contributes considerably to this ambitious
task.

In practical applications of regression analysis, a common problem is collinear-
ity amongst the descriptor variables, e.g. if the number of descriptor variables
exceeds the number of objects in the sample. In biomolecular interaction
studies, it is often the case that a limited number of observations is available
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but a relatively large number of descriptor variables is taken into account.
The reason for this situation is the fact that the production of modified pro-
teins is very expensive.

If the problem of collinearity among the descriptor variables arises, the classi-
cal Ordinary Least Squares (OLS) estimation of the unknown model parame-
ters cannot be performed. In order to specify the regression model neverthe-
less, alternative methods, which reduce the dimensionality of the data, have
to be applied. One of these alternative procedures is Partial Least Squares
(PLS) regression.

By applying PLS regression, it is possible to estimate the intercepts and
regression coefficients of models in cases when the OLS method fails. PLS
regression can be considered to have the advantage over the other avail-
able alternatives since the information inherent in the descriptor variables is
compressed effectively with incorporation of the information of the response
variables. Consequently, regression models established by the PLS method
provide reliable predictions, the most important characteristic of a good re-
gression model in practice. Therefore, PLS regression is the appropriate
procedure to apply to data obtained in biomolecular interaction studies.

The basic idea of PLS regression is to extract a few but relevant latent vari-
able vectors comprising the information of the descriptor variables. The
latent variable vectors are obtained by considering the information in the
response variables as linear combinations of the standardized descriptor vari-
ables. The extraction of the information by the successive construction of
latent variable vectors can be represented by decomposition models referring
to the descriptor and response variables, respectively.

The latent variable vectors as well as further terms are computed iteratively
by applying an algorithm to the standardized available data. Several vari-
ants of the PLS algorithm exist. These differ principally from each other
in the normalizations that are performed. In this dissertation, the NIPALS-
(Non-Iterative PArtial Least Squares-) algorithm is described. The term
PLS regression comes from the fact that a number of ”partial” regressions
are performed in the course of the algorithm. Since these partial regression
models show a reduced dimensionality compared with the original regression
problem, the OLS procedure is applied to them.

In contrast to the OLS method, the results obtained from a multivariate
regression analysis differ from those of several corresponding univariate re-
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gressions in the PLS procedure. Often, in PLS regression publications, either
the multivariate or the univariate PLS algorithm is explained. However, in
this dissertation, both the multivariate and the univariate algorithm are pre-
sented in detail, where the univariate algorithm is shown to be derived as a
special case of the multivariate case.

The different computations performed in the iterations of the PLS algorithm
are described and interpreted in detail. These comprehensive explanations
of the relationships between the obtained terms cannot be found in the cited
literature. In particular, the motivation for the calculation of the weight
vectors used to extract the latent variable vectors is generally presented in-
correctly. Therefore, in this thesis, the maximization problem in respect of
a certain covariance related to this context is explained by regarding the el-
ements of particular column vectors as realizations of corresponding random
variables.

The PLS algorithm has been reported in the literature in a different form
using a different formulation of the decomposition models. The equivalence
of this unnecessarily complicated presentation to the one described below is
shown.

With the help of the terms computed in the PLS algorithm, the unknown
model parameters of the regression model involving the standardized vari-
ables can be estimated. The derivation and computation of the formulae
of this estimation of the regression coefficients corresponding to the stan-
dardized variables is explained in detail, in fact in a comprehensiveness that
cannot be found in the articles listed in the references.

The estimates of the regression coefficients of the standardized variables can
be used to calculate the estimates of the regression coefficients of the original
variables. It is shown how the derivation of the formulae for the estima-
tion of the original regression coefficients is based upon the formulae for the
estimation of the standardized regression coefficients. The relationship be-
tween these estimation formulae for the regression coefficients belonging to
the standardized and original variables and thus the expression of the esti-
mated original regression coefficients and its dependence on the standardized
regression coefficients, has not been given before in any of the literature cited.
This presentation of the estimation formulae can be considered as important
contributions to the completeness of the statistical description of the PLS
regression.
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Generally, the explanations in the literature cited in the references of the
prediction of values of the response variables are vague. It is not described
accurately whether the descriptor variables are used in the standardized or
original form and accordingly nor whether the predictions refer to the stan-
dardized or original response variables. In this dissertation, two ways of
presenting the computation of predictions of the original response variables
are described on the basis of the previously derived estimation formulae. Fur-
thermore, a proof is given that the predictions obtained by these prediction
procedures coincide with each other.

The prediction accuracy of a regression model obtained after the performance
of the PLS algorithm depends upon the number of realized iterations since
the model parameters specifying the regression equation are estimated with
the help of the terms computed in the algorithm. The prediction accuracies
of models derived on the basis of different numbers of iterations are compared
so as to determine the optimal number of iterations resulting in the regression
model providing the most exact predictions. Usually, the calculation of the
prediction accuracy is performed by applying leave-one-out cross validation.

In the application of biomolecular interactions, the evaluation of the predic-
tion accuracy is of special relevance. The reliability of a specific prediction of
the binding parameters referring to specific values of the descriptor variables
concerning an occurred mutant can be judged additionally by computing a
prediction interval for the particular prediction. However, in contrast to the
OLS method, prediction intervals for PLS regression can only be computed
approximately.

In order to analyze the available data on the interaction under study, the
initial regression analysis is first summarized and reproduced. In detail, the
univariate subgroup models without interaction terms, i.e. the QBKR mod-
els per peptide and the QSKR models are established. After comparing the
results of the reproduced models with the earlier ones, explanations of the
differences in the specifications of the models are given.

A significance test of the regression coefficients is not implemented in the soft-
ware used for the application of the PLS regression. Since its performance
is not reported in the literature referred to, it could not be programmed.
Instead, another criterion usually applied in the context of PLS regression
was used for the evaluation of the relevance of the descriptor variables. In
fact, the VIP-values (Variable Importance for Projection) that are not au-
tomatically computed by the software employed were programmed for the
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descriptor variables included in the different regression models. Further, a
formula of the computation of the VIP-values was derived on the basis of the
descriptions in software manuals.

Usually, in a biomolecular interaction study, univariate regression models
without incorporation of interaction terms are established separately with
respect to the different subgroups of descriptor variables, though an alter-
native modelling procedure might be advantageous. Therefore, several novel
aspects of the analysis of binding processes are proposed, performed and eval-
uated. The aim of this research is to improve the prediction accuracy of the
resulting regression models. By realizing this advanced and comprehensive
regression analysis to the available data, the knowledge of the interaction
between the TMVP and the existing antibody 57P is extended.

Broadly, the novel aspects refer to the multivariate modelling, a unified mod-
elling, the incorporation of interaction terms as well as variables representing
a more detailed quantification of physico-chemical properties of amino acids.
In detail, it is proposed to perform multivariate regression analysis instead
of the usual univariate analysis. Additionally, a unified regression model in-
cluding all potential descriptor variables is presented. This is proposed as a
replacement for the diverse subgroup models presenting special cases of this
unified model. With the help of a unified model, the effects of both the amino
acid and buffer variables can be modelled and presented simultaneously in
one single compact model. Consequently, the novel unified modelling ap-
proach contributes to a facilitation of the biochemical interpretation of the
results of the regression analysis.

The incorporation of interaction terms in the regression models is proposed in
order to obtain information on the importance of interactions between the in-
cluded descriptor variables. The additional information contributes notably
to an improved understanding of the influences on the binding process under
investigation. The investigation of interaction terms in a unified regression
model is especially useful since this permits the modelling of the interactions
between the amino acid and buffer variables beyond those within the amino
acid variables or within buffer variables separately. Previous analyses of the
available data suggest that such interactions exist.

The physico-chemical properties of amino acids are usually quantified by
regression models involving only a few variables. A more detailed represen-
tation of the possibly relevant physico-chemical properties of amino acids is
proposed for use in the regression analysis since it permits a sophisticated
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modelling of the influences of the features of amino acids on the interaction.
Therefore, the consideration of the more detailed descriptor variables can be
expected to lead to an improved accuracy of prediction with the resulting
models.

In order to determine the benefit of the different novel modelling approaches,
the PLS regression is applied in several ways to the available data. The
evaluation of the novel modelling aspects is predominantly based on the
comparison of the prediction accuracies computed for the corresponding re-
gression models because of the importance of obtaining accurate predictions
in practice. The measure reported in general with respect to the prediction
accuracy is not automatically calculated by the applied software and so was
programmed.

The regression models determined to be optimal for the interaction under in-
vestigation are presented as well as further regression models being specified
in order to obtain some additional information. Finally, the results of the
established regression models are interpreted and used to draw novel and so-
phisticated biochemical conclusions concerning the interaction between the
tobacco mosaic virus protein and the corresponding antibody 57P. These
statements giving some first hints about functional domains in which the
TMVP might be helpful in the case of occurrence of a mutant of the tobacco
mosaic virus.

The dissertation comprises five chapters, an appendix and the bibliogra-
phy. Following the introduction, multivariate multiple linear regression is
explained. The next chapters deal with the methodology of PLS regression
and its general application to the analysis of biomolecular interactions. Fi-
nally, the analysis of the available data relating to the interaction of the
TMVP and the antibody 57P is presented. In the following, the contents of
the different chapters are listed.

In the next chapter, multivariate multiple linear regression is briefly de-
scribed, i.e. the general form of a regression model is given with various initial
considerations of regression analysis. Estimation of the unknown model pa-
rameters by applying the method of Ordinary Least Squares is explained and
it is shown how univariate linear regression can be derived as a special case.

The third chapter deals with the methodology of Partial Least Squares regres-
sion. In particular, the corresponding sections refer to the basic idea of this
method, both the multivariate and the univariate PLS algorithm and predic-
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tion intervals. With respect to multivariate PLS regression, diverse aspects
regarding the performance of the algorithm are considered. In detail, the
standardization of the descriptor and response variables, the representation
of the extraction of the information inherent in the data by latent variable
vectors in the form of decomposition models and the general realization of
the multivariate PLS algorithm are presented. Subsequently, the computa-
tions performed in the course of the multivariate PLS algorithm are listed
and explained in detail. Furthermore, the equivalence of the described multi-
variate algorithm to a reported alternative algorithm is shown. The formulae
for the estimation of the standardized regression coefficients are given and
used to derive the estimation formula for the original regression coefficients.
A description of the computations required to obtain predictions of values of
the original response variables is given and, finally, the determination of the
optimal number of iterations that should be performed during the PLS algo-
rithm is explained. In the section on univariate PLS regression, descriptions
of the performance of the univariate PLS algorithm are provided by analogy
with the multivariate case, where the differences between the multivariate
and univariate PLS algorithms are explained. With respect to the prediction
intervals, different approaches for approximate computations of approximate
PLS regression prediction intervals are presented and evaluated.

The application of the PLS method to the investigation of biomolecular in-
teractions is described in a general form in the fourth chapter. First, consid-
erations of biochemical interactions are provided and a detailed description
of surface plasmon resonance biosensors is given, consisting of aspects of the
biochemical background, the components of a Biacore instrument, the course
of the measurements, the mode of operation of the surface plasmon resonance
and the output obtained by interaction experiments. Next, the novel uni-
fied multivariate regression model is introduced in detail, and the different
subgroup models usually established in biomolecular interaction studies are
described theoretically by giving the forms of the corresponding regression
models.

The last chapter presenting the data analysis is introduced by a biochemical
motivation of the subsequent investigation. After a detailed description of
the data to be analyzed, the previous regression analysis relating to the in-
teraction under study is summarized and reproduced, and the corresponding
results are compared. Diverse novel approaches are motivated and explained
with the objective of optimizing the modelling procedure. Further, the es-
tablished regression models to be compared in terms of a particular novel
modelling aspect are described. Subsequently, the prediction accuracies as
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well as further measures of interest referring to the different regression models
are given. Using these model descriptions, the novel procedures are evaluated
to determine the optimal modelling approach. The optimal and other useful
regression models are specified. Finally, sophisticated biochemical conclu-
sions are presented on the basis of the developed regression models.

In the appendix, a number of additional tables is given. The literature re-
ferred to in the dissertation is listed in the bibliography.
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Chapter 2

The multivariate multiple
linear regression

2.1 General considerations

Multivariate multiple linear regression is a method that is applied to model
the functional relationship between k response variables yo

1, . . . , y
o
k and m

descriptor variables xo
1, . . . , x

o
m. In subsequent presentations, the descriptor

and response variables are used in a standardized form. For this reason, the
original variables and terms referring to the original variables are marked
accordingly by the superscript o in order to distinguish them from the stan-
dardized variables and their corresponding terms.

The response variables are presumed or known to be influenced by the de-
scriptor variables. This dependence can be expressed mathematically by the
following equation, the model for the regression of the l-th response variable
yo

l on m descriptor variables xo
1, . . . , x

o
m:

yo
l = fl

 xo
1
...

xo
m

 for l = 1, . . . , k.

In this equation, the term fl denotes a function of the descriptor variables
that reflects their functional relationship to the l-th response variable. The
objective of regression analysis is to specify the functions f1, . . . , fk referring
to the k response variables. In linear regression the connection between the
response and descriptor variables is considered to be linear and therefore the
functions f1, . . . , fk are modelled accordingly.
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In order to determine these functions, values for both the response variables
and the descriptor variables are measured on a sample of n objects. Thus,
the available data consist of (m + k)n observations since the realizations of
the response variables constitute kn values and mn measurements refer to
the descriptor variables.

With the help of these data, the functional relationship between the response
and descriptor variables is determined by establishing a regression model as
explained in the next section. Then, not only can the measured data be
interpreted but also values of the response variables can be predicted for
combinations of values of the descriptor variables.

The special case of a single response variable, namely univariate multiple
linear regression, is dealt with in subsection ??.

2.2 The regression model

In the following, the regression model relating the response variables to the
descriptor variables is presented in detail. This is realized by describing the
general form of the function fl in the multiple linear regression.

The dependence of the i-th observation yil of the l-th response variable on
the values of the m descriptor variables can be modelled as

yo
il = bo

0l +
m∑

j=1

bo
jlx

o
ij + eo

il, (2.1)

for i = 1, . . . , n; j = 1, . . . ,m and l = 1, . . . , k.

In this equation, the term xo
ij represents the i-th observation of the j-th

descriptor variable, and the expression eil denotes the error corresponding
to the i-th observation of the l-th response variable. Further, the terms
bo
0l, b

o
1l, . . . , b

o
ml represent the unknown model parameters of the regression

model of the original response and descriptor variables.

The regression coefficient bo
jl relates to the j-th descriptor variable and the l-

th response variable. It can be interpreted as the increase in value of the l-th
response variable if all of the values of the descriptor variables were to be kept
constant with the exception of the j-th descriptor variable which is increased
by one unit. Beyond this, the constant term bo

0l for the l-th response variable
is that value that the l-th response variable would acquire, if all of the values
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of the descriptor variables were to be set to zero. Hence, the parameter bo
0l

represents the intercept and the regression coefficients bo
1l, . . . , b

o
ml are the

parameters of the gradient of the regression equation for the l-th response
variable.

The multivariate regression model, incorporating the observations of the k
response and m descriptor variables from a sample of n objects, can be
expressed in matrix notation as

Y o = 1nb
o′

0. + XoBo + Eo,

where the components of this model are of the following dimensions:

Y o ∼ n× k, Xo ∼ n×m, 1n ∼ n× 1, bo
0. ∼ k × 1, Bo ∼ m× k,

and Eo ∼ n× k.

Further comments on the notation are that the term 1n is a column vector
of length n with all elements equal to 1 and that the expression bo′

0. denotes
the transposition of the vector bo

0..

The observed values of the k response variables on the n sample objects are
summarized in the matrix Y o. Each column of this matrix refers to one of
the response variables. Consequently, the i-th row of the matrix Y o consists
of the measurements of the k response variables obtained on the i-th object
of the sample.

The observations of the m descriptor variables are given in the matrix Xo,
where the j-th column of this matrix contains the values of the j-th descrip-
tor variable. Hence, the i-th row of the matrix Xo gives the measurements
of the m descriptor variables of the i-th object of the sample.

All of the regression coefficients of the corresponding response and descrip-
tor variables are included in the matrix Bo, whereas the column vector bo

0.

comprises the intercepts relating to the k response variables. Further, the
matrix Eo contains the errors.

The classical procedure for estimating the unknown intercepts and regression
coefficients is the application of the method of Ordinary Least Squares (OLS)
that is briefly explained in the following section.

14



2.3 Ordinary Least Squares estimation

The aim of regression analysis is to estimate the unknown model parameters,
i.e. the k intercepts and the mk regression coefficients, with the help of the
available data. These data are the matrix Y o comprising the measurements
of the response variables and the matrix Xo summarizing the observations
of the descriptor variables.

If the rank of the matrix Xo, defined as the number of linear independent
columns, equals the number m of descriptor variables, the matrix Xo has full
rank and is called regular. In this case, the matrix Xo′Xo is invertible, i.e.
the inverse (Xo′Xo)−1 of the matrix Xo′Xo exists. Then, the unambiguously
defined Ordinary Least Squares estimate B̂o

OLS for the matrix Bo of regression
coefficients can be obtained by calculating

B̂o
OLS = (Xo′Xo)−1Xo′Y o. (2.2)

Using this result, the intercepts summarized in the column vector bo
0. can be

estimated as
b̂o
0.,OLS = ȳo

.. − B̂o′

OLSx̄o
..,

where the terms ȳo
.. and x̄o

.. denote the column vectors of mean values of the
response or descriptor variables, respectively, i.e.:

ȳo
.. =

 ȳo
.1
...

ȳo
.k

 ∼ k × 1 and x̄o
.. =

 x̄o
.1
...

x̄o
.m

 ∼ m× 1.

In detail, the means are calculated with the help of the values of the re-
spective columns of the matrices Xo and Y o, where the mean x̄o

.j of the j-th
descriptor variable and the mean ȳo

.l of the l-th response variable, respectively,
are obtained by computing:

x̄o
.j = 1

n

n∑
i=1

xo
ij ∀j = 1, . . . ,m and

ȳo
.l = 1

n

n∑
i=1

yo
il ∀l = 1, . . . , k.

2.4 Univariate linear regression as a special

case

If only one response variable is taken into account, the multivariate regres-
sion model reduces to the univariate model that presents the functional re-
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lationship between this single response variable and m descriptor variables.
Therefore, univariate regression can be considered as a special case of multi-
variate regression.

The regression equation of the univariate case,

yo = 1nb
o
0 + Xobo + eo,

can be derived from the multivariate model by modifying some terms. In
detail, the column vector bo

0. is substituted by the scalar bo
0, and the matrix

Y o of response variables, the matrix Bo of regression coefficients and the
matrix Eo of errors are replaced by the corresponding vectors yo, bo and eo

with the following dimensions:

yo ∼ n× 1, bo ∼ m× 1 and eo ∼ n× 1.

Just as in the multivariate case, Ordinary Least Squares estimates for the
regression coefficients summarized in the vector bo can be obtained by com-
puting

b̂o
OLS = (Xo′Xo)−1Xo′yo,

presuming that the matrix Xo has full rank. Further, the estimate of the
intercept bo

0 can be obtained by the following formula:

b̂o
0,OLS = ȳo − b̂o′

OLSx̄o
...

In this equation, the scalar ȳo represents the mean of the values of the single
response variable, i.e.:

ȳo = 1
n

n∑
i=1

yo
i .

Instead of modelling the relationship between k response variables and m
descriptor variables simultaneously by one multivariate regression, an alter-
native procedure is to perform k separate univariate regressions, one for each
of the k individual response variables. However, both procedures lead to the
same results.
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Chapter 3

Methodology of Partial Least
Squares regression

3.1 Basic idea of PLS regression

If the matrix Xo of descriptor variables is not of full rank, it is called singular
and the matrix Xo′Xo is not invertible. In this case of collinearity among
the descriptor variables, problems concerning the application of the Ordinary
Least Squares procedure arise. The reason is that the classical estimation of
the regression coefficients summarized in the matrix Bo cannot be performed
according to formula ?? with respect to a singular matrix Xo.

This problem of collinearity occurs frequently in practical applications, es-
pecially when the number m of descriptor variables exceeds the number n of
objects in the sample. In this situation, the matrix Xo of descriptor variables
consists of more columns than rows. Therefore, the columns of the matrix
Xo cannot be linear independent and consequently, the matrix Xo is not of
full rank.

In order to solve this problem and nevertheless obtain reliable estimates of
the model parameters, it is necessary to reduce the dimensionality of the data
used for the regression. Methods that could be applied to a dataset showing
collinearity among the descriptor variables include the so-called ridge regres-
sion technique, principal component regression as well as stepwise selection
of variables. Neither will be dealt with in the following.

Another available procedure is Partial Least Squares (PLS) regression, whose
performance guarantees the effective compression of the information inherent
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in the available data. An advantage of PLS regression is that the reduction
of the amount of data is accompanied by a minimal loss of information. In
the following, the implementation of this method will be explained in detail.

During the operation of the PLS regression algorithm, the observed data is
used in a standardized form. For this reason, the original response and de-
scriptor variables are mean-centered and variance-scaled.

The basic idea of the PLS methodology is to construct so-called latent vari-
able vectors with the help of the standardized data summarized in the matrix
X of standardized descriptor variables and the matrix Y of standardized re-
sponse variables. The objective of the procedure is to derive only a few but
relevant latent variable vectors that contain the information inherent in the
matrix X of standardized descriptor variables in a compact form.

The latent variable vectors are computed as linear combinations of the stan-
dardized observations of the descriptor variables. They are extracted from
the matrix X by decomposing it using the information of the standardized
response variables. Since the construction of the latent variable vectors is
influenced by the standardized measurements of the response variables, the
effect of variations occurring in the descriptor variables is reduced if they
show no relevance to variations in the response variables.

The idea behind the calculations of PLS regression can be explained with the
help of decomposition models describing the extraction of the information of
the standardized measured data by the successive extraction of the latent
variable vectors. Both the matrix X of standardized descriptor variables and
the matrix Y of standardized response variables can be expressed in terms
of the latent variable vectors by decomposition models.

The latent variable vectors and further required components are calculated
iteratively by performing an algorithm incorporating the standardized data.
With the help of the terms computed in the course of the iterations of the
algorithm, the unknown parameters of the regression model involving the
standardized variables can be estimated. Subsequently, these estimates can
be used to compute those of the regression coefficients and intercepts refer-
ring to the original variables.

In this way, the application of the PLS algorithm leads to the establishment
of the originally required regression model in cases when the Ordinary Least
Squares regression cannot be applied. Regression models developed by the
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PLS method provide reliable predictions of values of the response variables
because the information of the descriptor as well as the response variables is
used in the computations. This is a property of special importance in prac-
tical applications.

The name of the PLS procedure is based on the fact that several ”partial”
regressions involving only one descriptor variable are obtained during the
PLS algorithm. These descriptor variables are particular terms obtained in
the course of the iterations of the algorithm. As the partial regression models
show a reduced dimensionality compared with the original regression prob-
lem, the Ordinary Least Squares procedure is applied to them.

The following section deals with several important aspects of multivariate
PLS regression. In the two subsequent sections, the univariate special case
and the computation of prediction intervals are presented.

After subsection ?? describing the standardization of the data, the decompo-
sition models of the matrices X and Y are given. The implementation of the
multivariate PLS algorithm is explained in subsection ?? and the exact cal-
culations, interpretations and relevant properties of all of the terms obtained
during the performance of the multivariate PLS algorithm are presented in
the following two subsections. Geladi et. al. (1986) gives an alternative but
more complicated version of the multivariate PLS algorithm. Subsection ??
contains the derivation of this alternative presentation of the PLS algorithm
and how it corresponds to the one below.

Subsection ?? describes in detail the estimation of the model parameters
of the original regression model, followed by explanations of two alternative
ways of obtaining predictions of the original response variables in subsection
??.

The usefulness of a regression model results mainly from its ability to provide
sufficiently correct predictions. Therefore, the determination of the optimal
number of iterations is based on a criterion judging the accuracy of the pre-
dictions obtained by regression models resulting from different numbers of
iterations. Subsection ?? deals with the choice of the number of iterations
which is also referred to as the number of dimensions of the PLS regression.
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3.2 The multivariate PLS algorithm

3.2.1 Scaling and centering

Before PLS regression can be applied to the dataset, both the original re-
sponse variables and the original descriptor variables are variance-scaled and
mean-centered. Then, the PLS algorithm is performed using these trans-
formed data.

Though mean-centering is not necessary for the implementation of the PLS
procedure, it is nevertheless conventionally performed. Mean-centering re-
sults in variables all having zero means. The original variables are mean-
centered by calculating the mean of the values of each original variable, i.e.
of each column of the matrices Xo and Y o, and subtracting these from the
corresponding original variables, i.e.:

xo
ij − x̄o

.j ∀i = 1, . . . , n;∀j = 1, . . . ,m and

yo
il − ȳo

.l ∀i = 1, . . . , n;∀l = 1, . . . , k.

The variance-scaling of the original variables is required since the PLS method
is not invariant to scaling, i.e. the effect of a variable during the calcula-
tions of the PLS regression would be influenced by the value of its variance.
Variance-scaling of the original variables results in variables all having vari-
ances of one.

To obtain variance-scaled variables, the standard deviation of the values of
each original variable is calculated. These standard deviations are denoted
so

x.j
, so

y.l
, respectively, and are computed as follows:

so
x.j

=

√
1

n−1

n∑
i=1

(xo
ij − x̄o

.j)
2 ∀j = 1, . . . ,m and

so
y.l

=

√
1

n−1

n∑
i=1

(yo
il − ȳo

.l)
2 ∀l = 1, . . . , k.

Then the mean-centered values of each of the original variables are divided
by the corresponding standard deviation, giving:

xij :=
xo

ij − x̄o
.j

so
x.j

∀i = 1, . . . , n;∀j = 1, . . . ,m and

yil :=
yo

il − ȳo
.l

so
y.l

∀i = 1, . . . , n;∀l = 1, . . . , k.
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In what follows, the observed responses and descriptors are used in their
standardized form, i.e. mean-centered and variance-scaled.

3.2.2 The decomposition models

In the following, the decomposition models of the matrix X of standardized
descriptor variables and the matrix Y of standardized response variables are
given. These models describe the representation of the information of the
standardized descriptor variables and the standardized response variables
in terms of the latent variable vectors. Hence, the decomposition models
contribute to the motivation as well as the understanding of the computations
performed during the PLS algorithm.

Decomposition of the matrix X of standardized descriptor variables

The matrix X of standardized descriptor variables can be decomposed into
a sum of weighted latent variable vectors and an additional residual matrix
XA as follows:

X =
A∑

a=1

t.ap
′
.a + XA.

The number A represents the number of iterations of the PLS algorithm.
This number has to be determined in each case for the respective application
of the PLS regression (see subsection ??).

In the decomposition model, the term t.a denotes the a-th latent variable
vector that contains the so-called factor scores for the matrix X, i.e.:

t.a =

 t1a
...

tna

 ∼ n× 1, where a = 1, . . . , A.

The i-th scalar tia of the a-th latent variable vector is that score that corre-
sponds to the i-th object of the sample.

The factor scores for the matrix X of standardized descriptor variables are
summarized in the matrix TA whose a-th column is determined by the a-th
latent variable vector, i.e.:

TA = (t.1, . . . , t.A) ∼ n× A.
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Further, the expression p.a,

p.a =

 p1a
...

pma

 ∼ m× 1,

denotes the column vector of loadings for the matrix X of standardized de-
scriptor variables. Each of the elements of the vector p.a refers to one of the
m standardized descriptor variables. In particular, the j-th scalar pja is that
loading of the a-th latent variable vector that belongs to the j-th standard-
ized descriptor variable.

The loadings can be given in the matrix PA, whose a-th column equals the
a-th vector of loadings as follows:

PA = (p.1, . . . , p.A) ∼ m× A.

That part of the matrix X of standardized descriptor variables that remains
unexplained by the linear combination of the latent variable vectors weighted
by their corresponding loadings is summarized in the residual matrix XA

which is of the following form:

XA =

 x11,A . . . x1m,A
...

...
...

xn1,A . . . xnm,A

 ∼ n×m.

Using matrix notation, the decomposition of the matrix X can be expressed
as well as

X = TAP ′
A + XA.

The decomposition model of the matrix X shows that each observation of
each standardized descriptor variable can be represented in terms of scores,
loadings and a residual scalar. In particular, the i-th observation xij of the j-
th standardized descriptor variable can be written as the following expression:

xij =
A∑

a=1

tiapja + xij,A,

i.e. as the sum of the corresponding residual term xij,A and the linear com-
bination of the i-th scores of the A latent variable vectors that are weighted
by the j-th values of the A loading vectors.

22



Decomposition of the matrix Y of standardized response variables

By analogy with the decomposition of the matrix X of standardized de-
scriptor variables, the matrix Y of standardized response variables can be
presented as a sum of the latent variable vectors multiplied by corresponding
weights and an additional residual matrix YA, i.e.:

Y =
A∑

a=1

t.aq
′
.a + YA. (3.1)

In this decomposition of the matrix Y of standardized response variables,
the column vector q.a of loadings,

q.a =

 q1a
...

qka

 ∼ k × 1,

contains the weights of the a-th latent variable vector. In detail, the l-th
scalar qla denotes the loading respecting the a-th latent variable vector and
the l-th standardized response variable.

The loading vectors are summarized as columns in the matrix QA that can
thus be written as

QA = (q.1, . . . , q.A) ∼ k × A.

The residual matrix YA,

YA =

 y11,A . . . y1k,A
...

...
...

yn1,A . . . ynk,A

 ∼ n× k,

represents that part of the matrix Y of standardized response variables that
is not explained by the latent variable vectors and the loading vectors.

With the help of these introduced expressions, the decomposition of the
matrix Y can be expressed in matrix notation as

Y = TAQ′
A + YA.

Incorporating the scores of the latent variable vectors, their corresponding
loadings and the residual scalar yil,A, the i-th observation yil of the l-th
standardized response variable can be given as

yil =
A∑

a=1

tiaqla + yil,A.
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3.2.3 Performance of the multivariate PLS algorithm

Several variants of the PLS algorithm exist that differ mainly from each other
in the normalizations of the computed terms. In the following, the multivari-
ate PLS algorithm is presented essentially according to Martens et. al. (1989)
who describe the NIPALS-algorithm (Non-Iterative PArtial Least Squares-
algorithm) developed by Svante Wold in 1983. Complementary explanations
are derived from Höskuldsson (1988), Manne (1987), Helland (1988), Geladi
et. al. (1986) and Gustafsson (2001).

The performance of the PLS algorithm begins with initializing settings and
ends after each iteration with an increase of the index number a of the iter-
ations.

A number of steps are performed successively in every iteration of the PLS
algorithm. Thus, each completed iteration leads to the computation of sev-
eral terms. In the a-th iteration of the algorithm, the following components
are obtained: the weight vector ŵ.a, the latent variable vector t̂.a, the loading
vector p̂.a for the matrix X of standardized descriptor variables, the loading
vector q̂.a relating to the matrix Y of standardized response variables and
the sequential latent variable vector û.a. These terms are denoted as esti-
mates since they can be shown to be equal or proportional to Ordinary Least
Squares estimates of corresponding partial regression models, as explained
in detail in subsection ??. The interpretation as OLS estimates is especially
important in relation to the loading vectors p̂.a and q̂.a referring to the stan-
dardized data matrices X and Y .

Further terms that are calculated in the a-th iteration of the algorithm are
the residual matrix Xa corresponding to the standardized descriptor variables
and the residual matrix Ya related to the standardized response variables.
These residual matrices represent those parts of the standardized data that
have not yet been expressed with the help of the components obtained in
the earlier iterations of the algorithm. Their calculation and interpretation
results directly from the corresponding decomposition models.

Within the a-th iteration of the multivariate PLS algorithm, several subitera-
tions are performed in which the sequential latent variable vectors û1

.a, û
2
.a, . . .,

the latent variable vectors t̂1.a, t̂
2
.a, . . ., the weight vectors ŵ1

.a, ŵ
2
.a, . . . and the

loading vectors q̂1
.a, q̂

2
.a, . . . referring to the matrix Y of standardized response

variables are generated iteratively until convergence. Therefore, in the a-th
iteration, the elements of the latent variable vector t̂h.a calculated in the h-th
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subiteration are compared with those of the latent variable vector t̂h−1
.a ob-

tained in the previous subiteration. If the elements of these vectors t̂h.a and
t̂h−1
.a are approximately the same, convergence is achieved. Then, the vectors

ŵh
.a, t̂

h
.a, q̂h

.a and ûh
.a computed in this final subiteration are denoted ŵ.a, t̂.a, q̂.a

and û.a, respectively, and are used in the following calculations of the a-th
iteration. This means that they are incorporated in the computations leading
to the loading vector p̂.a respecting the matrix X of standardized descriptor
variables as well as the residual matrices Xa and Ya.
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3.2.4 The computations of the multivariate algorithm

Set X0 : X, Y0 : Y, a : 1; h : 1, û1
.a : any column of Ya−1

w̃h
.a = X ′

a−1û
h
.a

ŵh
.a =

X ′
a−1û

h
.a√

ûh′
.aXa−1X ′

a−1û
h
.a

=
w̃h

.a

||w̃h
.a||

t̂h.a = Xa−1ŵ
h
.a

q̂h
.a =

Y ′
a−1t̂

h
.a

t̂h′.a t̂h.a
=

Y ′
a−1t̂

h
.a

||t̂h.a||2

check for convergence

→ no convergence

ûh+1
.a =

Ya−1q̂
h
.a

q̂h′
.a q̂h

.a

=
Ya−1q̂

h
.a

||q̂h
.a||2

Set h : h + 1

→ convergence

ŵh
.a := ŵ.a

t̂h.a := t̂.a

q̂h
.a := q̂.a

ûh
.a := û.a

p̂.a =
X ′

a−1t̂.a

t̂′.at̂.a
=

X ′
a−1t̂.a

||t̂.a||2

Xa = Xa−1 − t̂.ap̂
′
.a

Ya = Ya−1 − t̂.aq̂
′
.a

Set a : a + 1

26



3.2.5 Considerations concerning the components of the
algorithm

In this subsection, important explanations concerning the individual terms
obtained by the multivariate algorithm are given to provide a comprehensive
motivation for the computations performed in the algorithm. In particular,
the operation of the reduction of the dimension of the data by computing
latent variable vectors is presented in detail.

The calculations related to the weight vectors are described in the context
of a maximization problem respecting a particular covariance. The need
to perform subiterations in each iteration is explained in connection with
the computation of the sequential latent variable vectors. The calculation
of the latent variable vectors is described with reference to the influence of
the standardized response variables. The extraction of information of the
standardized data matrices by the latent variable vectors is explained by
presenting the decompositions of the matrices X and Y . These decomposi-
tions are performed by calculating corresponding residual matrices.

Further, the different partial regression models on which the computations
of the PLS algorithm are based are given. Their interpretation is of special
relevance in what concerns the loading vectors for the matrices X and Y .
In these regression models referring to the calculation of the respective load-
ing vectors, the latent variables take on the role of the descriptor variables.
Therefore, these regression models are required to quantify the extent of in-
formation of the standardized response and descriptor variables, respectively,
that can be explained by the corresponding latent variable vectors. This de-
termination is obtained by calculating the loading vectors representing the
unknown model parameters.

The weight vector

In the h-th subiteration of the a-th iteration, the weight vector w̃h
.a being of

the form

w̃h
.a =

 w̃h
1a
...

w̃h
ma

 ∼ m× 1,

is obtained. Its elements are calculated as linear combinations of the val-
ues of the residual matrix Xa−1 computed in the previous iteration. These
values are weighted by the elements of the corresponding sequential latent
variable vector. In particular, the j-th element w̃h

ja of the weight vector w̃h
.a
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is computed as follows:

w̃h
ja =

n∑
i=1

xij,a−1û
h
ia with j = 1, . . . ,m.

In this formula, the expression xij,a−1 presents that value of the residual
matrix Xa−1 obtained in the (a − 1)-th iteration that is related to the i-th
observation of the j-th standardized descriptor variable. Further, the term
ûh

ia denotes that value of the sequential latent variable vector computed in
the h-th subiteration of the a-th iteration that refers to the i-th object. In
the first iteration, the linear combination described above involves the values
of the standardized descriptor variables instead of those of the corresponding
residual matrix.

In the h-th subiteration of the a-th iteration, the weight vector w̃h
.a is di-

vided by its norm ||w̃h
.a||, resulting in the scaled weight vector ŵh

.a having
unit length.

With respect to the following explanations, it is important to note that in the
context of PLS regression, the elements of a column vector can be considered
as realizations of a particular random variable.

In detail, the j-th column vector xo
.j of the matrix Xo contains the n realiza-

tions of the j-th descriptor variable xj. Accordingly, the j-th column vector
x.j comprises the n elements of the j-th standardized descriptor variable.
Further, the j-th column vector x.j,a of the residual matrix Xa summarizes
the n elements of the a-th residual variable xj,a of the j-th standardized de-
scriptor variable.

The interpretations of the response variables can be described analogously to
those of the descriptor variables. In particular, the l-th column vector yo

.l con-
sists of the n realizations of the l-th response variable yl. The corresponding
standardized realizations are summarized in the l-th column vector y.l, and
the l-th column vector y.l,a of the residual matrix Ya contains the realizations
of the a-th residual variable yl,a of the l-th standardized response variable.

The n elements of the latent variable vector t̂h.a and the sequential latent
variable vector ûh

.a can be considered as realizations of random variables, in
fact of the a-th latent variable tha and the a-th sequential latent variable uh

a,
respectively. The sequential latent variable vector ûh

.a represents the infor-
mation of the standardized response variables as explained in more detail in
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the corresponding subsubsection.

With the help of these considerations, the statement that the j-th element
w̃h

ja of the weight vector w̃h
.a is proportional to the empirical covariance be-

tween the j-th residual variable xj,a−1 and the sequential latent variable uh
a

can be derived. This empirical covariance is defined as

ˆcovxj,a−1,uh
a

=
1

n− 1

n∑
i=1

(xij,a−1 − x̄.j,a−1)(û
h
ia − ¯̂uh

.a).

According to Geladi et. al. (1986), the sequential latent variables are cen-
tered around zero, i.e.:

n∑
i=1

ûh
ia = 0 ∀a = 1, . . . , A

and hence, the corresponding mean ¯̂uh
.a is zero as well. Moreover, the mean

x̄.j,a−1 of the (a − 1)-th residual variable xj,a−1 of the j-th standardized de-
scriptor variable is zero. This fact can be shown by expressing this mean as
follows:

x̄.j,a−1 =
1

n

n∑
i=1

xij,a−1 =
1

n

n∑
i=1

xij,a−2 − t̂hi(a−1)p̂j(a−1)

=
1

n

n∑
i=1

xij,a−2 −
1

n
p̂j(a−1)

n∑
i=1

t̂hi(a−1) = x̄.j,a−2.

In this reformulation, the centering of the latent variables around zero is used
(see Geladi et. al. (1986)), i.e.:

n∑
i=1

t̂hia = 0 ∀a = 1, . . . , A.

In the first iteration, the mean x̄.j,0 = x̄.j equals zero because of the mean-
centering of the original descriptor variables. Further, in the second iteration,
the mean x̄.j,1 equals this mean x̄.j,0 which is zero. In subsequent iterations,
the mean x̄.j,a is zero since it coincides with the mean x̄.j,a−1 of the mean-
centered residual variable xj,a−1 obtained in the previous iteration. Conse-
quently, the residual variables referring to each of the descriptor variables are
mean-centered in each of the A iterations and thus, the following equation is
valid:

x̄.j,a = 0 ∀j = 1, . . . ,m and a = 1, . . . , A.
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Using these results, the proportionality of the j-th element w̃h
ja of the weight

vector w̃h
.a and accordingly, of the j-th element ŵh

ja of the normalized weight
vector ŵh

.a, to the empirical covariance between the j-th residual variable
xj,a−1 and the sequential latent variable uh

a can easily be shown as follows:

ˆcovxj,a−1,uh
a

=
1

n− 1

n∑
i=1

(xij,a−1 − x̄.j,a−1)(û
h
ia − ¯̂uh

.a) =
1

n− 1

n∑
i=1

xij,a−1û
h
ia

=
1

n− 1
x′

.j,a−1û
h
.a =

1

n− 1
w̃h

ja.

As explained below, the j-th element ŵh
ja of the weight vector ŵh

.a is used to
weight the residual values of the j-th standardized descriptor variable in the
computation of the latent variable vector t̂h.a. Therefore, the residual values
of those descriptor variables exhibiting a high covariance with the sequential
latent variable uh

a receive a corresponding high weight in the calculation of
each element of the latent variable vector t̂h.a.

Since the residual values of the standardized descriptor variables contribute
to the computation of the elements of the latent variable vector t̂h.a to an
extent proportional to their empirical covariance with the sequential latent
variable uh

a, the latent variable tha shows a high covariance with the sequential
latent variable uh

a. Consequently, the computation of the elements of the
weight vector ŵh

.a leads to a maximization of the covariance between the
latent variable tha and the sequential latent variable uh

a.

The weight vector w̃h
.a is proportional to the Ordinary Least Squares solution

of the regression of the residual matrix Xa−1 on the sequential variable vector
ûh

.a, i.e. of the partial regression model

Xa−1 = ûh
.aw

′
.a + Ew,a.

The proportionality is proved easily by converting the OLS estimator ŵh
.a,OLS

of this regression equation as follows into a term involving the weight vector
w̃h

.a:

ŵh
.a,OLS =

X ′
a−1û

h
.a

ûh′
.a ûh

.a

=
w̃h

.a

ûh′
.a ûh

.a

.

The A weight vectors obtained in those subiterations of the A iterations for
which convergence could be ascertained are summarized in the matrix ŴA,
whose a-th column gives the a-th weight vector ŵ.a, i.e.:

ŴA = (ŵ.1, . . . , ŵ.A) ∼ m× A.
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A notable property of the weight vectors computed in the course of the
PLS algorithm is their mutual orthonormality. This characteristic can be
expressed mathematically as:

ŵ′
.aŵ.a∗ =

{
1 a = a∗

0 a 6= a∗, where a, a∗ ∈ {1, . . . , A}.

The orthonormality of the weight vectors results in the fact that Ŵ ′
AŴA is

the identity matrix. Hence, the following equation is valid:

Ŵ ′
AŴA =

 1 0
. . .

0 1

 ∼ A× A.

The latent variable vector

The latent variable vector t̂h.a obtained in the h-th subiteration of the a-th
iteration can be presented in form of the following column vector:

t̂h.a =

 t̂h1a
...

t̂hna

 ∼ n× 1.

The i-th element t̂hia of this vector is calculated as

t̂hia =
m∑

j=1

ŵh
jaxij,a−1 = xi.,a−1ŵ

h
.a with i = 1, . . . , n.

This equation illustrates that the i-th element t̂hia of the latent variable vector
t̂h.a is given as the linear combination of the i-th observations of the residuals
of the standardized descriptor variables. These residual scalars are multiplied
by the corresponding elements of the weight vector ŵh

.a. In the first iteration
the values of the standardized descriptor variables are used instead of the
residual terms in the calculation of the latent variable vector t̂h.1.

Obviously, the weight vectors that are derived with respect to the sequential
latent variable vectors representing the measurements of the standardized
response variables determine the computation of the latent variable vectors.
This fact reflects the important aspect of the PLS methodology that the con-
struction of the latent variable vectors and consequently, the decomposition
of the matrix X, is influenced by the information inherent in the standard-
ized response variables.

31



The calculation of the latent variable vectors can be considered as the di-
mensionality reduction of the matrix X of standardized descriptor variables.
The reason is that the latent variable vector t̂h.a consists of the scalars into
which the values of the residuals of the standardized descriptor variables are
projected. In detail, the i-th row of the residual matrix Xa−1 is projected
into the i-th element of the latent variable vector t̂h.a in the corresponding
subiteration of the a-th iteration.

As already explained, the elements of the weight vectors determine the contri-
bution of the different standardized descriptor variables to the construction of
the corresponding latent variable vectors. Therefore, comparing the elements
of the weight vectors of each iteration of the algorithm permits statements
concerning the importance of each of the standardized descriptor variables
during the dimensionality reduction. The larger the absolute value of an
element of a weight vector is, the more does the corresponding standardized
descriptor variable contribute to the projection of the residual matrix into
the latent variable vector computed in the respective iteration.

To illustrate this kind of examination, the elements of the weight vectors can
be plotted against the descriptor variables for each iteration. Further, the
elements of two weight vectors calculated in different iterations can be plot-
ted against each other to investigate whether the significance of a particular
descriptor variable is consistent among the iterations.

An interesting though not very important fact is that the latent variable
vector t̂h.a calculated in the h-th subiteration of the a-th iteration equals the
Ordinary Least Squares estimation of the regression of the residual matrix
Xa−1 on the transposed weight vector ŵh

.a, i.e. of the partial regression model

Xa−1 = th.aŵ
h′

.a + Et,a.

The proof of this correspondence is performed easily by taking into account
that the weight vector ŵh

.a has unit length since

t̂h.a,OLS =
Xa−1ŵ

h
.a

||ŵh
.a||2

.

The A latent variable vectors that are obtained in the iterations of the multi-
variate PLS algorithm can be summarized as columns in the matrix T̂A that
is hence defined as

T̂A = (t̂.1, . . . , t̂.A) ∼ n× A.
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Since the latent variable vectors are orthogonal to each other, i.e.:

t̂′.at̂.a∗ = 0 for a 6= a∗, where a, a∗ ∈ {1, . . . , A},

the matrix product T̂ ′
AT̂A can be presented as the following diagonal matrix:

T̂ ′
AT̂A =

 t̂′.1t̂.1 0
. . .

0 t̂′.At̂.A

 ∼ A× A.

The sequential latent variable vector

The initializing sequential latent variable vector û1
.a used in the first subiter-

ation of the a-th iteration is randomly chosen as one of the columns of the
residual matrix Ya−1 of the previous iteration. Thus, this sequential latent
variable vector û1

.a represents the observations concerning one standardized
response variable in the first iteration or its corresponding residual in subse-
quent iterations, respectively.

In the h-th subiteration of the a-th iteration, the sequential latent variable
vector being of the form ûh+1

.a ,

ûh+1
.a =

 ûh+1
1a
...

ûh+1
na

 ∼ n× 1

is calculated. The i-th element of this column vector is a weighted sum of
the measurements of the i-th object of the k standardized response variables
in the first iteration or their residuals in subsequent iterations, respectively.
The weights are the corresponding elements of the loading vector q̂h

.a obtained
in the h-th subiteration of the a-th iteration that are standardized by division
by the squared norm of the respective loading vector. Hence, the i-th element
ûh+1

ia of the sequential latent variable vector ûh+1
.a can be computed as

ûh+1
ia =

1

||q̂h
.a||2

k∑
l=1

q̂h
layil,a−1 =

1

||q̂h
.a||2

yi.,a−1q̂
h
.a with i = 1, . . . , n.

This formula reflects the fact that in the a-th iteration, each row of the resid-
ual matrix Ya−1 is projected into a single scalar. These n projections of the
residuals of the standardized response variables concerning a particular ob-
ject are summarized in the sequential latent variable vector ûh+1

.a .
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Consequently, the computation of the sequential latent variable vectors leads
to the dimensionality reduction in the standardized response variables. This
dimensionality reduction is required for the calculation of the weight vectors
that are relevant in the construction of the latent variable vectors.

The projection of the standardized response variables is performed by incor-
porating corresponding loading vectors. In contrast to the weight vectors
used in the projection of the standardized descriptor variables, these loading
vectors are not obtained on the basis of an optimization problem. Therefore,
different projections of the standardized response variables are obtained suc-
cessively until stable results for the projections of the standardized descriptor
variables are obtained. That is the reason why the subiterations are necessary
in each iteration until convergence of the latent variable vectors is reached.

In the derivation of the latent variable vectors, the sequential latent variable
vectors can be expressed as Ordinary Least Squares estimates. In particular,
the sequential latent variable vector ûh+1

.a calculated in the h-th subiteration
of the a-th iteration corresponds to the Ordinary Least Squares solution of
the partial regression model

Ya−1 = uh+1
.a q̂h′

.a + Eu,a,

i.e. of the regression of the residual matrix Ya−1 on the transposed loading
vector q̂h

.a of the h-th subiteration of the a-th iteration.

The matrix ÛA summarizes the A sequential latent variable vectors obtained
in the course of the iterations of the algorithm as follows:

ÛA = (û.1, . . . , û.A) ∼ n× A.

The vector of loadings for the matrix of standardized response
variables

In the h-th subiteration of the a-th iteration, the vector q̂h
.a of loadings con-

cerning the matrix Y of standardized response variables is obtained. This
vector has the form

q̂h
.a =

 q̂h
1a
...

q̂h
ka

 ∼ k × 1,

and consists of elements giving linear combinations of the values of the
columns of the residual matrix Ya−1. The weights involved in this linear com-
bination are standardized elements of the latent variable vector t̂h.a, where the
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standardization is performed by division by the squared norm of the respec-
tive latent variable vector. Thus, the l-th element q̂h

la of the loading vector
q̂h
.a is computed as follows:

q̂h
la =

1

||t̂h.a||2

n∑
i=1

t̂hiayil,a−1 =
1

||t̂h.a||2
y′

.l,a−1t̂
h
.a with l = 1, . . . , k.

This formula shows that the l-th column y.l,a−1 of the residual matrix Ya−1

is projected into the l-th element of the loading vector q̂h
.a.

The interpretation of the loading vector q̂h
.a is based on the fact that it is the

Ordinary Least Squares solution of the regression of the residual matrix Ya−1

on the latent variable vector t̂h.a of the h-th subiteration of the a-th iteration,
i.e. of the partial regression model:

Ya−1 = t̂h.aq
h′

.a + Eq,a. (3.2)

Therefore, the l-th element of the loading vector q̂h
.a gives the OLS estimates

of the regression of the l-th column of the residual matrix Ya−1 on the latent
variable vector t̂h.a, i.e. of the regression equation

y.l,a−1 = t̂h.aq
h′

la + e.lq,a .

Consequently, the l-th element q̂h
la of the loading vector q̂h

.a represents the
relationship between the l-th column of the residual matrix Ya−1 and the
latent variable vector t̂h.a. In other words, it describes to what extent the
residual of the l-th standardized response variable is explained by the latent
variable vector computed in the h-th subiteration of the a-th iteration.

The A loading vectors of the matrix Y of standardized response variables are
comprised in the matrix Q̂A that can hence be given as

Q̂A = (q̂.1, . . . , q̂.A) ∼ k × A.

The vector of loadings for the matrix of standardized descriptor
variables

The explanations of the vector p̂.a of loadings for the matrix X can be given
following those for the vector q̂h

.a of loadings. In fact, these loading vectors
have the same interpretation but refer to different data matrices. However,
the loading vectors respecting the standardized descriptor variables are not
computed within the subiterations as they are calculated without regard to
the sequential latent variable vectors.
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The elements of the vector p̂.a of loadings,

p̂.a =

 p̂1a
...

p̂ma

 ∼ m× 1,

obtained in the a-th iteration, are calculated as standardized linear combina-
tions of the values of the columns of the residual matrix Xa−1. These residuals
of the standardized descriptor variables are weighted by the respective ele-
ments of the a-th latent variable vector t̂.a. In particular, the j-th element
p̂ja of the a-th loading vector is computed as a standardized weighted sum
of the values of the j-th column of the residual matrix Xa−1. This weighted
sum is standardized by dividing it by the squared norm of the a-th latent
variable vector, i.e.:

p̂ja =
1

||t̂.a||2

n∑
i=1

xij,a−1t̂ia =
1

||t̂.a||2
x′

.j,a−1t̂.a with j = 1, . . . ,m.

Therefore, the a-th loading vector p̂.a of the standardized descriptor variables
can be interpreted as a projection of the residual matrix Xa−1 into a column
vector, where each column of this matrix is projected into a scalar.

By analogy with the loading vector q̂h
.a, the vector p̂.a of loadings corresponds

to the Ordinary Least Squares solution of the regression of the residual matrix
Xa−1 on the a-th latent variable vector t̂.a, i.e. of the partial regression model

Xa−1 = t̂.ap
′
.a + Ep,a. (3.3)

Accordingly, the j-th element p̂ja of the a-th loading vector represents the
estimated regression coefficient in the regression of the j-th column x.j,a−1 of
the residual matrix Xa−1 on the a-th latent variable vector, i.e. of the model

x.j,a−1 = t̂.apja + e.jp,a .

This partial regression model reflects the fact that the j-th element p̂ja of the
a-th loading vector p̂.a quantifies the effect of the a-th latent variable vector
t̂.a with respect to the explanation of the corresponding residual of the j-th
standardized descriptor variable.

The matrix P̂A summarizes the A loading vectors referring to the standard-
ized descriptor variables and is hence of the following form:

P̂A = (p̂.1, . . . , p̂.A) ∼ m× A.
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The residual matrix of the standardized descriptor variables

In the a-th iteration, the (n × m)-dimensional residual matrix Xa of the
matrix X of standardized descriptor variables is obtained by subtracting
the product of the a-th latent variable vector t̂.a and the transposed a-th
loading vector p̂.a from the residual matrix Xa−1 computed in the (a− 1)-th
iteration. This product can be interpreted as the estimated effect of the a-th
latent variable vector t̂.a on the residual matrix Xa−1 calculated in the former
iteration. The interpretation results from the partial regression model ??,
i.e. the regression of the residual matrix Xa−1 on the a-th latent variable
vector t̂.a, since the corresponding Ordinary Least Squares solution is the
a-th loading vector p̂.a.

Thus, by subtraction of this effect from the residual matrix Xa−1, that part
of the matrix X that is not yet explained after the performance of the a-
th iteration of the algorithm remains in form of the residual matrix Xa.
Consequently, the residual matrix Xa of the a-th iteration can also be written
as

Xa = X −
a∑

a∗=1

t̂.a∗ p̂
′
.a∗ .

In other words, the residual matrix Xa represents that share of the matrix
X that still has to be expressed in terms of the latent variable vectors in
subsequent iterations of the algorithm in order to explain the remaining in-
formation.

In this way, the matrix X is decomposed successively into the latent variable
vectors in the course of the algorithm. Therefore, the computations of the
residual matrices result in a gradual exhaustion of the information inherent
in the matrix X of standardized descriptor variables.

After A iterations of the PLS algorithm, the matrix X of standardized de-
scriptor variables can be expressed as

X =
A∑

a=1

t̂.ap̂
′
.a + XA,

where the sum
A∑

a=1

t̂.ap̂
′
.a

denotes that part of the matrix X that could be explained with the help
of the latent variable vectors calculated during the course of the algorithm.
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Further, the residual matrix XA comprises that share of the matrix X that
remains unexplained after A iterations.

The total variance inherent in the standardized descriptor variables can be
computed as tr[X ′X], since the columns of the matrix X are centered around
zero. The expression tr[X] denotes the trace, i.e. the sum of the diagonal el-
ements, of the matrix X. The percentage pctvardescrA

of the total variance of
the standardized descriptor variables that can be explained after completing
the PLS algorithm is obtained as

pctvardescrA
= 100

(
1− tr[X ′

AXA]

tr[X ′X]

)
because the columns of the residual matrix XA are also centered around
zero. Consequently, the percentage of the total variance of the standardized
descriptor variables that is not accounted for after the performance of A
iterations of the PLS algorithm can be calculated as

100− pctvardescrA
=

100tr[X ′
AXA]

tr[X ′X]
.

The computation of the explained percentage of the total variance of the stan-
dardized descriptor variables can be used to describe not only a characteristic
of the final regression model, but also to follow the process of extraction of
the information inherent in the data. Accordingly, after each iteration, the
percentage of the total variance that is already accounted for can be deter-
mined. In particular, the percentage pctvardescra of the total variance of the
standardized descriptor variables that is explained after a iterations can be
calculated with the help of the residual matrix Xa as follows:

pctvardescra = 100

(
1− tr[X ′

aXa]

tr[X ′X]

)
.

In this computation, the fact that the columns of the residual matrices ob-
tained in each iteration of the PLS algorithm are centered around zero is
used.

The residual matrix of the standardized response variables

The calculation and interpretation of the (n×k)-dimensional residual matrix
Ya of the standardized response variables computed in the a-th iteration of
the algorithm can be presented by analogy with the considerations concerning
the residual matrix Xa of the standardized descriptor variables.
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The residual matrix Ya of the standardized response variables is calculated
by subtracting that part of the residual matrix Ya−1 obtained in the previous
iteration that is explained by the a-th latent variable vector. This share is
given as the product of the a-th latent variable vector and the corresponding
transposed a-th loading vector since this product represents the extent to
which the a-th latent variable vector contributes to the explanation of the
residual matrix Ya−1. The interpretation can be derived from the partial
regression model ??, i.e. the regression of the residual matrix Ya−1 on the a-
th latent variable vector, that provides the a-th loading vector q̂.a as Ordinary
Least Squares estimation.

Thus, the residual matrix Ya contains that part of the matrix Y that results
after eliminating that share of the matrix Y that is already explained in
terms of latent variable vectors after the a-th iteration. Consequently, it can
be presented as

Ya = Y −
a∑

a∗=1

t̂.a∗ q̂
′
.a∗ .

This means that after the performance of a iterations, the information in
the residual matrix Ya remains to be expressed by the latent variable vec-
tors computed in further iterations. Hence, these calculations of the residual
matrices lead to a successive decomposition of the matrix Y of standardized
response variables into latent variable vectors.

In the derivatation of the standardized descriptor variables, the decompo-
sition of the matrix Y of standardized response variables can be expressed
as

Y =
A∑

a=1

t̂.aq̂
′
.a + YA

after the performance of A iterations. In this equation, the unexplained share
of the matrix Y is given in form of the residual matrix YA. Further, that
part of the matrix Y that is expressed in terms of the latent variable vectors
obtained in the A iterations is represented by the sum

A∑
a=1

t̂.aq̂
′
.a.

By analogy with the computations related to the standardized descriptor
variables, the percentage pctvarrespA

of the total variance of the standardized
response variables that is accounted for after the performance of A iterations
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can be obtained by computing

pctvarrespA
= 100

(
1− tr[Y ′

AYA]

tr[Y ′Y ]

)
.

Further, the percentage of the total variance that cannot be explained after
A iterations of the PLS algorithm can be determined as:

100− pctvarrespA
=

100tr[Y ′
AYA]

tr[Y ′Y ]
.

The percentage pctvarrespa of the total variance explained after the perfor-
mance of a iterations can be obtained by calculating:

pctvarrespa = 100

(
1− tr[Y ′

aYa]

tr[Y ′Y ]

)
.

According to the computations referring to the descriptor variables, these
calculations use the fact that the columns of the matrix Y as well as the
columns of the residual matrices obtained in each of the iterations are cen-
tered around zero.

3.2.6 An alternative presentation of the multivariate
PLS algorithm

In Geladi et. al. (1986), an alternative presentation of the multivariate
PLS algorithm is given that differs from that one described in subsection ??
in what concerns the decomposition model regarding the matrix Y of stan-
dardized response variables. Further, a normalization of the vector q̂h

.a of
loadings referring to the standardized response variables is performed dur-
ing the subiterations. Accordingly, the vector q̂.a of loadings used after the
subiterations is also normalized.

The alternative decomposition model involves the sequential latent variable
vectors instead of the latent variables. Assuming this decomposition model
results in the need to establish a so-called inner relation between the latent
variables and the sequential latent variable vectors in order to derive a de-
composition model of the matrix Y in terms of the latent variable vectors.
This decomposition model is called the mixed relation.

However, in the following, it is shown that this mixed relation equals the
previously explained decomposition model of the matrix Y of standardized
response variables presented in equation ??. This proof is performed at first
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by incorporating the unnormalized vector q.a of loadings. The following state-
ments may clarify this unnecessarily complicated version of the multivariate
PLS algorithm.

The alternative decomposition of the matrix Y of standardized response vari-
ables is presented in terms of the sequential latent variable vectors as

Y =
A∑

a=1

u.aq
′
.a + YA,

which can also be expressed in matrix notation:

Y = UQ′ + YA.

The inner relation between the decomposition models of the matrix X of
standardized descriptor variables and the matrix Y of standardized response
variables can be represented by the regression of the a-th sequential latent
variable vector on the a-th latent variable vector, i.e. by the equation

u.a = gat.a + e.a.

Because of the establishment of this inner relation, the Ordinary Least Squares
estimation of the regression coefficient ga of the inner relation, i.e. the cal-
culation

ĝa =
û′

.at̂.a

||t̂.a||2
,

is performed additionally during the computations of the algorithm presented
by Geladi et. al. (1986).

Using the inner relation in the context of the alternative decomposition model
of the matrix Y of standardized response variables leads to the so-called
mixed relation. This model is obtained by substituting the sequential latent
variable vectors of the alternative decomposition model by the vector gat.a of
the inner relation. Accordingly, the mixed relation represents the dependence
of the matrix Y on the latent variable vectors and can be described by the
following formula:

Y =
A∑

a=1

gat.aq
′
.a + YA.

In matrix notation, the mixed relation can be expressed as well as

Y = TAGAQ′
A + YA,
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where the matrix GA is a diagonal matrix containing the A regression coef-
ficients of the inner relation on its diagonal, i.e.:

GA =

 g1 0
. . .

0 gA

 ∼ A× A.

Consequently, in the a-th iteration of the algorithm from Geldai et. al.
(1986), the residual matrix Ya of the standardized response variables is com-
puted using the mixed relation as follows:

Ya = Ya−1 − ĝat̂.aq̂
′
.a.

However, the estimated regression coefficient of the inner relation attains the
value 1 in every iteration as can easily be proved as follows:

ĝa =
û′

.at̂.a

||t̂.a||2
=

q̂′.aY
′
a−1t̂.a

||q̂.a||2||t̂.a||2
=

q̂′.aq̂.a

||q̂.a||2
= 1.

Therefore, it is shown that the mixed relation can be converted into the
previously presented decomposition model ?? of the matrix Y of standardized
response variables. Further, the residual matrix defined by Geladi et. al.
(1986) equals the residual matrix YA obtained in the algorithm described in
subsection ?? since the expression ĝat̂.aq̂

′
.a coincides with the matrix t̂.aq̂

′
.a.

In order to normalize the vector q̂h
.a of loadings, the vector ˆ̃qh

.a having unit
length is calculated as

ˆ̃qh
.a =

q̂h
.a

||q̂h
.a||

.

Correspondingly, the vector ˆ̃q.a is also normalized. If the sequential latent
variable vectors are calculated with the help of the normalized vector of
loadings, the estimation of the regression coefficient of the inner relation is
obtained as

ĝa =
û′

.at̂.a

||t̂.a||2
=

ˆ̃q′.aY
′
a−1t̂.a

||t̂.a||2
=

q̂′.aq̂.a

||q̂.a||
=
||q̂.a||2

||q̂.a||
= ||q̂.a||.

In this case, the mixed relation incorporating the normalized vector of load-
ings also equals the decomposition model introduced previously. This fact is
easily proved since the term ĝat̂.a ˆ̃q′.a can be shown as follows to correspond
to the matrix t.aq̂

′
.a:

ĝat̂.a ˆ̃q′.a = ||q̂.a||t̂.a
q̂′.a
||q̂.a||

= t̂.aq̂
′
.a.

Accordingly, the resulting residual matrix coincides with that used in the
algorithm presented in subsection ??.
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3.2.7 Derivation of the estimation of the model param-
eters for the original regression model

In the following, the formula for estimating the regression coefficients re-
ferring to the standardized variables is given. Further, the derivation and
computation of this formula is explained in detail, in fact in a comprehen-
siveness that cannot be found so far in the PLS literature.

On the basis of this formula, the estimation of the regression coefficients
with the original variables is derived. This relationship between the estima-
tion formulae of the regression coefficients of the standardized and original
variables and thus the expression of the estimated original regression coeffi-
cients in terms of the standardized regression coefficients, is not given in any
of the publications listed in the references. Therefore, the following presen-
tations can be considered as important contributions to the completeness of
the statistical description of the PLS regression.

The regression model involving the standardized response and descriptor
variables is of the following form:

Y = 1nb
′
0. + XB + E.

The estimates of the intercepts that are summarized in the vector b̂0.,

b̂0. = ȳ.. − B̂′x̄..,

are zero since the means of the standardized response and descriptor variables
being the elements of the vectors ȳ.. and x̄.. are zero. As a result of this, the
intercepts can be omitted from the presentation leading to the simplified
model

Y = XB + E.

After the application of the PLS algorithm to the standardized measured
data, the unknown regression coefficients of the regression model involving
the standardized response and descriptor variables can be obtained by cal-
culating the following formula:

B̂PLS = ŴA(P̂ ′
AŴA)−1Q̂′

A. (3.4)

In this equation, the term ŴA denotes the matrix containing the weight
vectors, the expression P̂ ′

A represents the transposed matrix summarizing
the loading vectors referring to the standardized descriptor variables, and
the matrix Q̂′

A is the transposed matrix comprising the loading vectors for
the standardized response variables.
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For the derivation of this formula, the following relationship is used in order
to find an expression for the matrix T̂A of latent variable vectors respecting
the matrix X of standardized descriptor variables:

XŴA = T̂AP̂ ′
AŴA (3.5)

⇔ T̂A = XŴA(P̂ ′
AŴA)−1.

The assumption for relationship ?? is that the matrix X is entirely expressed
in terms of latent variable vectors, i.e. it can be written as:

X = T̂AP̂ ′
A.

However, this condition cannot be considered as a severe restriction of the
validity of the derivation because the sufficiently exact representation of the
matrix X by the matrix product T̂AP̂ ′

A can be achieved by incorporating
sufficient latent variable vectors. Then, the residual matrix XA resulting
after the performance of A iterations can be neglected.

The element [(P̂ ′
AŴA)−1]aa∗ in the a-th row and a∗-th column of the inverse

of the (A× A)-dimensional matrix P̂ ′
AŴA is calculated as:

[(P̂ ′
AŴA)−1]aa∗ =

δaa∗ −
∑

z<a∗
[(P̂ ′

AŴA)−1]az[P̂
′
AŴA]za∗

[P̂ ′
AŴA]a∗a∗

with a, a∗ ∈ {1, . . . A},

where the expression δaa∗ denotes Kronecker’s delta.

The elements of the matrix (P̂ ′
AŴA)−1 can be computed in this way since

the matrix P̂ ′
AŴA is upper bidiagonal, i.e.: the elements of this matrix equal

zero except for the elements whose index a for the row equals the index a∗ or
a∗ − 1, respectively, for the column, and the elements on the diagonal have
the value 1 (see Manne (1987) and Helland (1988)).

As it is shown below, formula ?? can be proved easily by taking into account
expression ?? for the matrix T̂A of latent variable vectors and the decom-
position model of the standardized response variables. The term Ŷ used
in the derivation denotes the matrix containing the estimated values of the
standardized response variables.

Ŷ = T̂AQ̂′
A = XŴA(P̂ ′

AŴA)−1Q̂′
A = XB̂PLS

⇒ B̂PLS = ŴA(P̂ ′
AŴA)−1Q̂′

A 2

44



The estimated regression coefficients of the matrix B̂PLS refer to the stan-
dardized, i.e. the variance-scaled and mean-centered data. Consequently, it
is necessary to reverse these transformations accordingly in order to obtain
regression coefficients with respect to the original response and descriptor
variables. Subsequently, these estimates of the regression coefficients corre-
sponding to the original variables can be used to compute the intercepts of
the original regression model.

The matrix B̂o
PLS gives the estimates of the regression coefficients belonging

to the original response and descriptor variables. These estimates can be ob-
tained from the estimates of the regression coefficients for the standardized
variables by calculating

B̂o
PLS =


1

sxo
.1

0

. . .

0 1
sxo

.m

 B̂PLS

 syo
.1

0
. . .

0 syo
.k

 . (3.6)

In particular, the regression coefficient bo
jl referring to the j-th original de-

scriptor variable and the l-th original response variable can be estimated
as

b̂o
jl =

b̂jlsyo
.l

sxo
.j

,

using the estimate b̂jl of the regression coefficient for the corresponding stan-
dardized variables. This relationship between the estimated regression co-
efficients concerning the original and standardized variables can be derived
as follows by transforming the estimated regression model incorporating the
original observations into the estimated regression model involving the stan-
dardized data.
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Ŷ o = 1nb̂
o′
0.,PLS + XoB̂o

PLS

⇔ Ŷ o = 1nȳ
o′
.. + (Xo − 1nx̄

o′
.. )B̂

o
PLS

⇔ Ŷ = (Xo − 1nx̄
o′
.. )B̂

o
PLS


1

syo
.1

0

. . .

0 1
syo

.k



⇔ Ŷ = (Xo − 1nx̄
o′
.. )


sxo

.1

sxo
.1

0

. . .

0
sxo

.m

sxo
.m

 B̂o
PLS


1

syo
.1

0

. . .

0 1
syo

.k



⇔ Ŷ = X

 sxo
.1

0
. . .

0 sxo
.m

 B̂o
PLS


1

syo
.1

0

. . .

0 1
syo

.k


⇔ Ŷ = XB̂PLS

⇒ B̂PLS =

 sxo
.1

0
. . .

0 sxo
.m

 B̂o
PLS


1

syo
.1

0

. . .

0 1
syo

.k



⇔ B̂o
PLS =


1

sxo
.1

0

. . .

0 1
sxo

.m

 B̂PLS

 syo
.1

0
. . .

0 syo
.k

 2

With the help of the estimated regression coefficients referring to the original
variables, the intercepts of the original regression model can be obtained by
computing

b̂o
0.,PLS = ȳo

.. − B̂o′

PLSx̄o
... (3.7)
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Therefore, the regression model involving the original response and descriptor
variables can be established as follows:

Ŷ o = 1nb̂
o′
0.,PLS + XoB̂o

PLS

= 1nȳ
o′
.. + (Xo − 1nx̄

o′
.. )B̂

o
PLS

= 1nȳ
o′
.. + (Xo − 1nx̄

o′
.. )


1

sxo
.1

0

. . .

0 1
sxo

.m


B̂PLS

 syo
.1

0
. . .

0 syo
.k

 .

In this way, the application of the PLS methodology permits the calcula-
tion of the model parameters related to the original descriptor and response
variables. Hence, PLS regression provides a procedure to specify regres-
sion models in cases where the requirements of the Ordinary Least Squares
method cannot be met.

3.2.8 Predictions of the original response variables

The main objective of the application of PLS regression is to obtain accurate
predictions. There are two possibilities for computing predictions of the
original response variables corresponding to combinations of values of the
original descriptor variables that have not been used during the algorithm
performed in order to establish a regression model. These two alternative
prediction procedures result in the same predictions as is shown below.

The prediction formulae described in the following differ from those given in
the publications in the references. The reason is that the presentations refer
to predictions of the original response variables that are consequently based
on the novel estimation formula introduced in the previous subsection.

The values of the original descriptor variables relating to the r objects for
which the values of the original response variables are to be predicted are
summarized in the matrix

X̃o =

 x̃o
11 . . . x̃o

1m
...

...
...

x̃o
r1 . . . x̃o

rm

 ∼ r ×m.
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For the application of one of the alternative prediction procedures, these val-
ues of the descriptor variables need to be standardized. Therefore, the obser-
vations of the original descriptor variables are mean-centered and variance-
scaled with those means and standard deviations from the original descriptor
variables used in the PLS algorithm. This normalization leads to the matrix
X̃ containing the values of the standardized descriptor variables, i.e.:

X̃ =

 x̃11 . . . x̃1m
...

...
...

x̃r1 . . . x̃rm

 ∼ r ×m.

The variance-scaling can be obtained in this way though it does not result in
variables with variance one because in the corresponding prediction proce-
dure, the variances of the variables do not affect the computations as becomes
clear in the following.

Further, the matrix Ỹ o being of the form

Ỹ o =

 ỹo
11 . . . ỹo

1k
...

...
...

ỹo
r1 . . . ỹo

rk

 ∼ r × k

denotes that matrix that comprises the unknown values of the original re-
sponse variables that have to be predicted. Thus, these values refer to the r
objects whose values of the original descriptor variables are summarized in
the matrix X̃o.

The predictions of these unknown values of the original response variables

are summarized in the matrix ˆ̃Y o:

ˆ̃Y o =

 ˆ̃yo
11 . . . ˆ̃yo

1k
...

...
...

ˆ̃yo
r1 . . . ˆ̃yo

rk

 ∼ r × k.

The unknown values of the original response variables can be predicted with
the help of the established original regression equation involving the estimates
of the model parameters referring to the original variables.

Alternatively, the predictions can be calculated by applying two steps of
the PLS algorithm to the standardized values of the descriptor variables
for which the predictions are required. This procedure incorporates some
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terms computed in the iterations of the algorithm performed to establish a
regression model. The objective of the reduced PLS algorithm is to obtain a
decomposition of the matrix X̃ similar to that of the matrix X involved in
the modelling process. Then, the predictions are calculated using the latent
variable vectors resulting from the application of the reduced PLS algorithm.

Predictions using the model parameters estimated by the PLS pro-
cedure

After applying the PLS algorithm, the regression model incorporating the
original variables can be developed using the estimates of the intercepts and
regression coefficients obtained from the formulae ?? and ??. Consequently,
by applying this regression equation, the values of the k original response
variables corresponding to the r objects whose values of the original descrip-
tor variables are summarized in the matrix X̃o can be predicted as follows:

ˆ̃Y o = 1rb̂
o′

0.,PLS + X̃oB̂o
PLS

= 1rȳ
o′

.. + (X̃o − 1rx̄
o′

.. )B̂
o
PLS. (3.8)

Predictions by applying computations of the PLS algorithm

The prediction of values of the k original response variables can also be ob-
tained by incorporating latent variable vectors that are derived with respect
to the matrix X̃. These latent variable vectors are obtained by decomposing
the matrix X̃ in the same way as the matrix X of standardized descriptor
variables is decomposed in the PLS algorithm performed during the process
of modelling the observed data.

In detail, the a-th latent variable vector ˆ̃t.a of the matrix X̃ is computed
using the a-th weight vector ŵ.a obtained previously during the algorithm
which derived the regression model. This is the reason why the descriptor
variables of the matrix X̃ do not have to be scaled to variance one since no
new weight vectors that would have been sensitive to the variances of the
descriptor variables are constructed. Further, the a-th loading vector p̂.a,
already calculated in the course of the modelling, is incorporated in the com-
putation of the a-th residual matrix X̃a of the matrix X̃.

Specifically, the decomposition of the matrix X̃ is performed by repeating,
after initializing settings, the following two steps of the PLS algorithm A
times:
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Set X̃0 : X̃, a : 1

ˆ̃t.a = X̃a−1ŵ.a

X̃a = X̃a−1 − ˆ̃t.ap̂
′
.a

Set a : a + 1

The number A equals the number of iterations obtained previously in the
course of the PLS algorithm applied to the standardized measurements of
the matrix X.

The resulting A latent variable vectors that are used to decompose the matrix

X̃ can be summarized in the matrix ˆ̃TA that can hence be presented as follows:

ˆ̃TA = (ˆ̃t.1, . . . ,
ˆ̃tA) ∼ r × A.

After the decomposition of the matrix X̃ in terms of latent variable vectors,
the values of the k original response variables corresponding to the r objects
are predicted as follows using these latent variable vectors and the A loading
vectors for the matrix Y of standardized response variables calculated earlier:

ˆ̃Y o = 1rȳ
o′
.. +

 syo
.1

0
. . .

0 syo
.k

 A∑
a=1

ˆ̃t.aq̂
′
.a

= 1rȳ
o′
.. +

 syo
.1

0
. . .

0 syo
.k

 ˆ̃TAQ̂′
A.

This prediction formula can be derived from the alternative prediction for-
mula ?? using the expression ?? for the matrix B̂o

PLS of estimated original
regression coefficients in terms of the matrix B̂PLS of estimated regression
coefficients of the standardized variables. It is proved below that the predic-
tions obtained by the two prediction procedures are identical.
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ˆ̃Y o = 1rȳ
o′

.. + (X̃o − 1rx̄
o′

.. )B̂
o
PLS

⇔ ˆ̃Y o = 1rȳ
o′

.. + (X̃o − 1rx̄
o′

.. )


sxo

.1

sxo
.1

0

. . .

0
sxo

.m

sxo
.m

 B̂o
PLS

⇔ ˆ̃Y o = 1rȳ
o′

.. + X̃

 sxo
.1

0
. . .

0 sxo
.m

 B̂o
PLS


syo

.1

syo
.1

0

. . .

0
syo

.k

syo
.k



⇔ ˆ̃Y o = 1rȳ
o′

.. + X̃B̂PLS

 syo
.1

0
. . .

0 syo
.k



⇔ ˆ̃Y o = 1rȳ
o′

.. + X̃ŴA(P̂ ′
AŴA)−1Q̂′

A

 syo
.1

0
. . .

0 syo
.k



⇔ ˆ̃Y o = 1rȳ
o′

.. + ˆ̃TAQ̂′
A

 syo
.1

0
. . .

0 syo
.k

 .

3.2.9 Determination of the optimal model complexity

In practical applications, the most important characteristic of an established
regression model is its ability to provide reliable predictions of values of the
original response variables for combinations of values of the original descrip-
tor variables. Because of the way that the computations of the PLS method
incorporate the information of the response variables, a regression model ob-
tained by applying the PLS algorithm can be expected to lead to sufficiently
accurate predictions.

The prediction accuracy of a regression model achieved after the performance
of the PLS algorithm depends on the number A of iterations since the esti-
mates of the model parameters specifying the regression equation are based
on terms obtained in these iterations. Consequently, the accuracy of the
predictions is influenced by the number of latent variable vectors that are
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used to decompose the data. The number of latent variable vectors incor-
porated in the computations leading to the establishment of the model, or
equivalently the number of iterations performed, represents the complexity
of the regression model. To determine the optimal model complexity requires
finding the regression model which provides the most exact predictions. So
the prediction accuracy of models derived on the basis of different numbers
of iterations has to be investigated.

One way to achieve this is to assess the prediction accuracy of the respective
resulting models after each iteration. If the prediction accuracy of the model
established after the (a+1)-th iteration is considerably better than that after
the a-th iteration, the iteration is continued. Otherwise, the latent variable
vector computed in the (a + 1)-th iteration is assumed not to contribute
relevantly to the representation of the observed data. Then, the regression
model from a iterations can be considered to be the one providing the most
correct predictions, indicating that this number a of iterations is the optimal
value of A.

Alternatively, the PLS algorithm could be run for a predefined number A∗
of iterations. Afterwards, the accuracy of the predictions of the models ob-
tained at each step is investigated simultaneously to find the optimal model
which has the best prediction accuracy.

If there is a model that is obtained after fewer than A∗ iterations that has a
prediction accuracy only slightly different from the optimal, the significance
of this difference in prediction accuracy should be investigated. Finally, that
number a of iterations is determined to be the required number that results
in that regression model being the least complex one showing an insignificant
difference in accuracy from the optimal regression model.

The final regression model should be derived from as few latent variable vec-
tors as possible. The reason is that those latent variable vectors calculated
in the first few iterations can be expected to contain the most relevant in-
formation in the data, whereas those obtained in subsequent iterations are
assumed to reflect mainly the noise in the measurements. Additionally, a
relatively simple model is preferable because of the resulting interpretability.

In practice, the assessment of prediction accuracy is generally performed us-
ing leave-one-out cross-validation. To obtain a more reliable measure of the
prediction accuracy, the blind cross-validation, a combination of leave-one-
out and random cross validation, can be applied. Depending on the available
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data, other validation methods could be chosen instead, e.g. the blocked or
the split-sample validation. These will both not be dealt with in the follow-
ing since they are rarely used in the context of the PLS regression.

During the leave-one-out cross-validation calculations n different regression
equations are obtained at each stage, i.e. for each level of complexity corre-
sponding to the a of PLS iterations. The i-th of these n models uses the n−1
observations in the sample after dropping the i-th, yielding the i-th regres-
sion equation which is used to predict the k responses for the i-th object and
these are compared with the observed responses for that case by calculating
the residuals.

The residual for the i-th object and the l-th original response variable is de-
fined as the difference between the i-th observed value yo

il of the l-th original
response variable and the corresponding predicted value ŷo

il,CVa
. This predic-

tion is based on the results of a iterations applied to the reduced dataset.

Omitting successively one object in turn from the sample used for specifying
the regression model and predicting the values of the original response vari-
ables results in nk residual terms. The sum of squared residual terms gives
the prediction residual sum of squares (PRESSa) for a given complexity a,
i.e.:

PRESSa =
n∑

i=1

k∑
l=1

(yo
il − ŷo

il,CVa
)2.

Large values of the PRESSa-measure indicate a high prediction inaccuracy.
Therefore, the number a of iterations for which the PRESSa-value is small-
est is chosen to be the optimal one that can be considered to result in a
regression model providing reliable predictions.

In practice, the determination of the optimal model complexity and the de-
scription of the prediction accuracy of the final regression model is conven-
tionally not based on the PRESSa-measure but on the Q2

a-statistic. The
reason is that the Q2

a-statistic provides a standardized measure in contrast
to the PRESSa-statistic. The Q2

a-value for a iterations is essentially a scaled
version of the PRESSa-value and is computed as follows:

Q2
a = 1−

n∑
i=1

k∑
l=1

(yo
il − ŷo

il,CVa
)2

n∑
i=1

k∑
l=1

(yo
il − ȳo

.l)
2

.

53



The Q2
a-value can be interpreted as an estimate of the fraction of the variance

of the response variables that could be explained by the model established
on the basis of a iterations of the PLS algorithm. To illustrate the results of
the validation analysis, the values of the Q2

a-statistic can be plotted against
the corresponding number of iterations, i.e. the complexity of the model.

If the predicted values of the original response variables coincides with the ob-
served ones for all of the n objects and all of the k original response variables,
the Q2

a-statistic would attain the value 1. Therefore, the optimal number a
of iterations is that corresponding to the largest value of the Q2

a-statistic, i.e.
to the value closest to 1.

However, assessing a regression model by whether it provides sufficiently ac-
curate predictions, i.e. by using the Q2

a-value leads to a false, in fact over
optimistic idea of its prediction accuracy. This is because the prediction ac-
curacy is computed without using an external test set which is not involved
in the modelling process. Consequently, over-fitting is a disadvantage of de-
termining the optimal model by the Q2

a-statistic. Therefore, models selected
by maximizing the Q2

a-value cannot be considered to be necessarily reliable.

An alternative is to evaluate the prediction accuracy by blind cross-validation.
This is performed by incorporating the performance of the leave-one-out
cross-validation in a random test set validation procedure. This results in
the computation of the P 2-statistic which can be considered to be a more
accurate measure of the prediction accuracy compared to the Q2

a- statistic
because it relies on some kind of external validation. Therefore, the P 2-
statistic should be calculated as well as the Q2

a-statistic so as to give a more
valid representation of the model’s prediction accuracy. It can be expected
that the resulting P 2-value is lower than the optimal Q2

A-value since the P 2-
statistic provides a less optimistic and hence more realistic measure of the
prediction accuracy.

In blind cross-validation, the available data are split randomly into a large
training dataset and a relatively small test dataset. Based on the training
dataset, a regression model is derived by applying the ordinary procedure of
the leave-one-out cross-validation, i.e. choosing the final regression equation
by optimizing the model’s complexity with respect to the Q2

a-value. Subse-
quently, this model is used to predict the original response variables from
the original descriptor variables of the test set. Thus, in contrast to the
ordinary leave-one-out cross-validation, the predictions correspond to obser-
vations that have not been incorporated at all in the derivation of a regression
model used to evaluate the prediction accuracy.
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Afterwards, another test set is randomly selected from the whole dataset.
From this training set, the procedure of deriving a regression model using
the Q2

a-statistic and calculating the predictions of observations of the test set
is repeated. These computations are continued until every object has been
included once and only once in the test set.

Subsequently, the blind cross-validated P 2-value can be calculated from these
predictions of the k original response variables as follows:

P 2 = 1−

n∑
i=1

k∑
l=1

(yo
il − ŷo

il,BCVa
)2

n∑
i=1

k∑
l=1

(yo
il − ȳo

.l)
2

.

In this equation, the term ŷo
il,BCV denotes the prediction of the l-th original

response variable for the i-th object in the testset. As with the Q2
a-statistic,

a P 2-value of 1 indicates that all of the predictions equal the measured values
of the respective original response variables.

A disadvantage of the P 2-statistic is that it is based on several models with
possibly different numbers of iterations from maximizing the Q2

a-statistic for
the respective training sets. In detail, the computation of the P 2-measure is
based on K1 regression models, where K1 is the number of random test sets
used to obtain the P 2-value. Consequently, the blind cross-validation cannot
necessarily be used to determine the optimal number of iterations and hence
a single final regression model unambiguously. However, conclusions on the
optimal model complexity can be drawn by considering the number of iter-
ations stated to be optimal with respect to the K1 regression models. If all
K1 optimal regression models are based on the same number a of iterations,
this number can be considered to be required to obtain the best prediction
accuracy. In this case, the final regression model providing the most accurate
predictions can be determined.

Nevertheless, the computation of the P 2-statistic is important anyway for
evaluating the prediction accuracy that can be expected on average from the
K1 regression models with the highest Q2

a-values amongst all models derived
during the various maximizations of the Q2

a-statistic. One single set of blind
cross-validation results in one P 2-value and K1 optimal Q2

A-values. From
these Q2

A-values, the mean can be calculated and compared with the P 2-
value. The difference between the mean of the Q2

A-values and the P 2-value
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indicates the extent of over-fitting inherent in the models selected by max-
imizing the Q2

a-statistic. Consequently, the computation of the P 2-statistic
can be used to detect models providing unreliable predictions though they
may show a high a Q2

A-value.

Freyhult et. al. (2005) give comprehensive explanations and extensions of the
computations performed to obtain the P 2-statistic as a reliable measure of the
prediction accuracy. In this paper, the procedure of blind cross-validation is
described as a double cross-validation loop. In this context, the model selec-
tion using the Q2

a-statistic is the inner loop within the outer loop calculating
the P 2-statistic.

However, maximization of the Q2
a-statistic is introduced on the basis of the

random validation rather than the leave-one-out cross-validation as explained
above. Further, within the inner loop, a joint selection of the number of latent
variable vectors and subsets of the descriptor variables used in the regression
analysis is performed during the determination of the optimal model with
respect to the Q2

a-value. This procedure of choosing additional descriptor
variable subsets by a variable ranking algorithm could be applied in cases
where the dataset comprises an extremely large number of descriptor vari-
ables.

The specific data partitioning used in the blind cross-validation procedure
influences the value of the P 2-statistic. Therefore, in Freyhult et. al. (2005),
a repetition of the blind cross-validation process is proposed to determine
the variability of the resulting P 2-values. After performing K2 blind cross-
validation computations, K2 corresponding P 2-values are obtained whose
mean and standard deviation can be calculated. Further, the mean and
standard deviation of the K2 means of the Q2

A-values obtained within the
inner loops can be computed and used for a comparison with the mean and
standard deviation of the P 2-values. If the repeated blind cross-validation
procedure results in a relatively high value of the P 2-statistic accompanied by
a small standard deviation, it can be assumed that this mean P 2-value gives a
reliable measure of the average prediction accuracy of the models maximizing
the Q2

a-statistic that can be considered to provide useful predictions.
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3.3 The univariate special case

3.3.1 Comparison with the multivariate case

The univariate PLS algorithm can be considered as a special case of the mul-
tivariate PLS algorithm. In the case of only one response variable the matrix
Y o summarizing the measurements of the k original response variables in
the multivariate situation is reduced to the vector yo. This column vector
contains the observations of the single original response variable in the uni-
variate case. Accordingly, the matrix Y of standardized response variables is
replaced by the vector y of the single standardized response variable. Thus,
in the univariate algorithm, the calculation of those terms that are computed
using the information of the response variable differs from that one in the
multivariate algorithm.

Those computations that refer to the standardized descriptor variables are
made identically to the multivariate PLS algorithm. Therefore, the formulae
for the a-th latent variable vector t̂.a, the a-th loading vector p̂.a and the
a-th residual matrix Xa of the standardized descriptor variables correspond
to those in the multivariate PLS algorithm.

In the univariate PLS algorithm, the residual column vector ya for the stan-
dardized response variable is calculated in the a-th iteration instead of the
residual matrix YA in the multivariate case. Consequently, the computation
of the a-th loading vector q̂.a for the standardized response variables differs
from the loading scalar q̂a calculated in the a-th iteration in the univari-
ate PLS algorithm. In this case, a scalar is obtained since its computation
incorporates the residual vector ya−1 which has a reduced dimension com-
pared with the residual matrix Ya−1 used to obtain the loading vector q̂.a

in the multivariate case. The A loading scalars calculated in the course of
the performance of the univariate algorithm are summarized in the (A× 1)-
dimensional column vector q̂.A.

Further, in the univariate PLS algorithm, no sequential latent variable vectors
are computed because the projection of the rows of the residual vector ya−1,
that is used instead of the residual matrix Ya−1, into a scalar is unnecessary.
Therefore, the subiterations performed within the iterations of the multivari-
ate PLS algorithm are omitted from the calculations in the univariate PLS
algorithm. This means that the a-th weight vector ŵ.a, the a-th latent vari-
able vector t̂.a and the a-th loading scalar q̂a are calculated directly instead
of generating the corresponding vectors ŵh

.a, t̂
h
.a and q̂h

.a iteratively within the
subiterations of the a-th iteration.
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Since the vector y of the standardized response variable or its residual vector
does not have to be projected into the sequential latent variable vector, the
calculation of the weight vector w̃.a incorporates the residual vector ya−1 in-
stead of the sequential latent variable vector û.a. Thus the covariance between
the latent variable ta and the (a− 1)-th residual variable of the standardized
response variable y is maximized by the computation of the weight vector ŵ.a

in the univariate PLS algorithm. This is different from the multivariate case.
The derivation of this fact can be presented noting the multivariate case by
taking into account that the residual variables of the standardized response
variable are centered around zero in every iteration. This property can be
shown by analogy with the explanations referring to the residual variables of
the standardized descriptor variables.

Theoretically, if k response variables are taken into account, the univariate
PLS algorithm might be applied to each of the standardized response vari-
ables individually instead of performing the multivariate PLS algorithm, i.e.
incorporating the k standardized response variables simultaneously in the
calculations. However, the application of k univariate PLS algorithms to the
standardized data would result in k different decompositions of the matrix X
since the information of the respective standardized response variable influ-
ences the decomposition. Therefore, the multivariate PLS algorithm results
in different results from those of k univariate PLS algorithms. To decide
which procedure should be preferred, the prediction accuracy of the corre-
sponding regression models can be examined.

3.3.2 Scaling and centering

The variance-scaling and mean-centering of the data in the univariate situ-
ation is performed as in the multivariate case. The computations referring
to the descriptor variables correspond to those in the multivariate situation.
However, there is a difference in the standardization since the calculations in
the univariate case are only performed for the single original response vari-
able yo instead of the k different ones in the multivariate case.

Thus, the mean-centering of the response variable is performed by calculat-
ing the mean of the values of the original response variable and subtracting
it from each of the observations of the original response variable, i.e. by
computing

yo
i − ȳo ∀i = 1, . . . , n.
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For the variance-scaling, the standard deviation

so
y =

√
1

n−1

n∑
i=1

(yo
i − ȳo)2

of the original response variable is calculated. Subsequently, the mean-
centered values of the original response variable are divided by this standard
deviation, resulting in the corresponding standardized values, i.e.:

yi :=
yo

i − ȳo

so
y

∀i = 1, . . . , n.

3.3.3 The decomposition models

In the univariate case, the decomposition model of the matrix X of standard-
ized descriptor variables equals that presented for the multivariate situation.
The information in the standardized response variable y can be decomposed
according to the decomposition of the matrix Y . However, particular terms
involved in the decomposition have a different dimension since the decompo-
sition is only related to a single standardized response variable.

Instead of the loading vectors respecting the matrix Y of standardized re-
sponse variables, loading scalars are used in the univariate situation. Further,
that part of the standardized response variable y that remains unexplained
by the A latent variable vectors is summarized in the column vector yA of
residuals,

yA =

 y1,A
...

yn,A

 ∼ n× 1,

replacing the matrix YA from the multivariate case.

Consequently, the decomposition model of the standardized response variable
y can be presented as

y =
A∑

a=1

t.aqa + yA,

which can be expressed in matrix notation as

y = TAqA + yA.
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In this equation, the term qA denotes the column vector containing the load-
ing scalars, i.e.:

qA =

 q1
...

qA

 ∼ A× 1.

Thus, the i-th observation yi of the standardized response variable can be
given as a sum of the i-th elements of the A latent variable vectors which
are weighted by the corresponding A loading scalars and the additional i-th
residual scalar as follows:

yi =
A∑

a=1

tiaqa + yi,A.

3.3.4 The computations of the univariate algorithm

Set X0 : X, y0 : y, a : 1

w̃.a = X ′
a−1ya−1

ŵ.a =
X ′

a−1ya−1√
y′

a−1Xa−1X ′
a−1ya−1

=
w̃.a

||w̃.a||
t̂.a = Xa−1ŵ.a

p̂.a =
X ′

a−1t̂.a

t̂′.at̂.a
=

X ′
a−1t̂.a

||t̂.a||2

q̂a =
y′

a−1t̂.a

t̂′.at̂.a
=

y′
a−1t̂.a

||t̂.a||2

Xa = Xa−1 − t̂.ap̂
′
.a

ya = ya−1 − t̂.aq̂a

Set a : a + 1

3.3.5 Derivation of the estimates of the model param-
eters for the original regression model

With the help of the terms obtained in the univariate PLS algorithm, the
regression coefficients summarized in the column vector b̂ can be estimated
by computing

b̂PLS = ŴA(P̂ ′
AŴA)−1q̂A.
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This formula for the estimates of the regression coefficients respecting the
standardized variables can be proved analogously to the multivariate case.
Using these estimates, the regression coefficients for the original variables
can be calculated as

b̂o
PLS =


1

sxo
.1

0

. . .

0 1
sxo

.m

 b̂PLS · so
y.

The intercept bo
0 of the original regression equation is then given as

b̂o
0,PLS = ȳo − x̄o′

.. b̂
o
PLS.

Consequently, according to the multivariate case, the univariate original re-
gression equation can be established as follows:

ŷo = 1nb̂
o
0,PLS + Xob̂o

PLS

= 1nȳ
o + (Xo − 1nx̄

o′
.. )b̂

o
PLS

= 1nȳ
o + (Xo − 1nx̄

o′
.. )


1

sxo
.1

0

. . .

0 1
sxo

.m

 b̂PLS · so
y.

3.3.6 Predictions of the original response variable

The predictions of the original response variable from r objects whose values
of the original descriptor variables are in the matrix X̃o can be obtained by
analogy with the multivariate procedure.

The predictions of the original response variable can be obtained using the
estimates b̂o

PLS of the regression coefficients, i.e.:

ˆ̃yo = 1rb̂
o
0,PLS + X̃ob̂o

PLS

= 1rȳ
o + (X̃o − 1rx̄

o′
.. )b̂

o
PLS.

Alternatively, the predictions can be computed with the help of the following
formula:

ˆ̃yo = 1rȳ
o + so

y

A∑
a=1

ˆ̃t.aq̂a

= 1rȳ
o + so

y
ˆ̃TAq̂A.
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According to the multivariate situation, the A latent variable vectors result
from the application of two steps of the univariate PLS algorithm to the
matrix X̃ comprising the standardized values of the descriptor variables. The
A loading scalars and further terms incorporated in the reduced algorithm
are taken from the calculations performed during the A iterations of the
univariate PLS algorithm for obtaining the regression model.

3.3.7 Determination of the optimal model complexity

In the univariate case, the determination of the optimal number A of itera-
tions and thus the optimal model complexity, can be performed by analogy
with the multivariate situation. However, since the computations are based
on the single original response variable yo instead of the k original response
variables, the formulae of the validation statistics, i.e. the PRESSa-measure,
the Q2

a-statistic as well as the P 2-statistic, are calculated as follows:

PRESSa =
n∑

i=1

(yo
i − ŷo

i,CVa
)2,

Q2
a = 1−

n∑
i=1

(yo
i − ŷo

i,CVa
)2

n∑
i=1

(yo
i − ȳo)2

and

P 2 = 1−

n∑
i=1

(yo
i − ŷo

i,BCVa
)2

n∑
i=1

(yo
i − ȳo)2

.

3.4 Prediction intervals in PLS regression

In practice, the main objective of applying regression methods is to obtain
reliable predictions of the values of the response variable corresponding to
given values of the descriptor variables. After having predicted a value of the
response variable, it is of great interest to gain knowledge about the accu-
racy of the prediction. On the one hand, measures of the overall prediction
accuracy of an established regression model can be computed (see subsection
??). On the other hand, a prediction interval can be calculated with respect
to a certain prediction in order to obtain information about the reliability of
the predicted value. Therefore, a comprehensive evaluation of the accuracy
of a particular prediction can be presented by determining additionally a
prediction interval.
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In the following, considerations of prediction intervals for PLS regression are
presented with respect to the prediction of a single response variable from
the values of the descriptor variables for one single object. In the multivari-
ate case, prediction intervals can be established separately for the different
response variables by a straightforward extension of the univariate case, the
only difference being that the terms used in the calculation of the prediction
intervals are obviously those obtained in the multivariate PLS algorithm. If
the prediction intervals are meant to be constructed simultaneously for the
predictions referring to r objects and not merely to one single object, a Bon-
ferroni correction has to be applied. In detail, the prediction intervals of
the values of the response variable for different objects are computed under
incorporation of the value α

r
instead of the value α in the determination of

the respective quantiles.

The true but unknown value ỹo
ir of the original response variable for the ir-th

of r potential prediction objects can be expressed as

ỹo
ir = bo

0 + x̃o′

ir.b
o + ẽo

ir with ir = 1, . . . , r.

In this equation, the term x̃o
ir. denotes the column vector containing the val-

ues of the ir-th row of the matrix X̃o, i.e. the values of the m descriptor
variables for the ir-th object for which the value ỹo

ir of the response variable
is meant to be predicted.

A (1−α)-prediction interval for this unknown value ỹo
ir is that interval [lb, ub]

defined by the lower and upper bound that contains the value ỹo
ir with prob-

ability 1− α for a given value α, i.e.:

P (lb ≤ ỹo
ir ≤ ub) = 1− α.

For the Ordinary Least Squares regression, a (1−α)-prediction interval is eas-
ily obtained under the assumption of normally distributed prediction errors
ẽo

ir = ỹo
ir − ˆ̃yo

ir as

PIα,OLS(ỹo
ir) =

[
ˆ̃yo
ir ∓ t1−α

2
,n−m−1sOLS

√
1 +

1

n
+ (x̃o

ir. − x̄o
..)

′(Xo′Xo)−1(x̃o
ir. − x̄o

..)

]
.

In this formula, the term

sOLS =

√√√√ 1

n−m− 1

n∑
i=1

(yo
i − ŷo

i )
2
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represents the root of the residual sum of squares divided by the term n −
m− 1. Furthermore, the scalar t1−α

2
,n−m−1 denotes the (1− α

2
)-quantile of a

t-distribution with n−m− 1 degrees of freedom.

In order to derive a formula for a prediction interval for a particular regression
method, it is necessary to know the statistical distribution of the unknown
prediction errors ỹo

ir − ˆ̃yo
ir with ir = 1, . . . , r. However, this distribution can-

not be obtained exactly for PLS regression because the estimation b̂o
PLS of

the original regression coefficients is a non-linear function of the vector yo of
the original response variable. Hence, it is quite a difficult task, compared
with the case of the Ordinary Least Squares regression, to provide prediction
intervals for PLS regression.

Denham (1997) proposes four different approaches for the computation of
prediction intervals in this case: firstly based on naive considerations, sec-
ondly a cross-validation procedure, thirdly a local linear approximation and
finally a bootstrapping method. The performance of the corresponding cal-
culations are presented in the following with the exception of those of the
bootstrapping procedure. The reason is that this approach can be considered
to be inappropriate for the application to PLS regression as could be shown
by Denham (1997). The inaccuracy of the bootstrapping method is caused
by the fact that it is based on the assumption that the distribution of the
unknown prediction errors is approximated sufficiently well by the distribu-
tion of the observed residuals. This situation can only be expected to be
valid if a multitude of objects is taken into account. Consequently, in case
of the PLS regression, this approach should not be used for the construction
of prediction intervals since usually, merely a relative small sample size is
available.

3.4.1 Approaches for the establishment of PLS predic-
tion intervals

The naive approach

The (1−α)-prediction interval based on the naive approach is constructed by
neglecting the non-linearity of the PLS predictor. Beyond this, an alternative
presentation of the estimated regression coefficients referring to the original
variables is used. In particular, the estimations of the original regression
coefficients can be expressed by the following formula:

b̂o
PLS = HAXo′yo,
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where the matrix HA is given as

HA = WA(W ′
AXo′XoWA)−1W ′

A.

According to Helland (1988), this expression can also be written as

HA = VA(V ′
AXo′XoVA)−1V ′

A

with
VA = (Xo′yo, Xo′XoXo′yo, . . . , (Xo′Xo)A−1Xo′yo).

Therefore, the prediction interval based on the naive approach is obtained by
analogy with the prediction interval for Ordinary Least Squares regression.
Substituting the number m of descriptor variables by the number A of latent
variable vectors in the determination of the quantile of the t-distribution and
replacing the matrix (Xo′Xo)−1 by the matrix HA results in the following
prediction interval formula:

PIα,naive(ỹ
o
ir) =

[
ˆ̃yo
ir ∓ t1−α

2
,n−A−1snaive

√
1 +

1

n
+ (x̃o

ir. − x̄o
..)

′HA(x̃o
ir. − x̄o

..)

]
.

In this expression, the term

snaive =

√√√√ 1

n− A− 1

n∑
i=1

(yo
i − ŷo

i )
2

denotes the corresponding standardized root of the residual sum of squares.

The cross-validation approach

As explained previously, in case of the PLS regression, using the quantile
of the t-distribution in the prediction interval formula is not appropriate in
contrast to the situation with Ordinary Least Squares regression. Therefore,
this value should be substituted by a more realistic one that is denoted cα.
The scalar cα can be found with the help of cross-validation. Incorporating
the term cα, the (1− α)-prediction interval can be presented as

PIα,CV (ỹo
ir) =

[
ˆ̃yo
ir ± cα

√
1 +

1

n
+ (x̃o

ir. − x̄o
..)

′HA(x̃o
ir. − x̄o

..)

]
.

The scalar cα is determined to be that value that leads to the narrowest
prediction interval showing a coverage probability of 1−α. Accordingly, the

65



minimum positive value satisfying the following inequality is chosen as the
scalar cα:

1

n

n∑
i=1

I{|ri,CVi
|>cα} ≤ α, where

ri,CVi
:=

yo
i − ȳo

CVi
− (xo

i. − x̄o
..,CVi

)′b̂o
PLSCVi

sCVi

√
n

n− 1
+ (xo

i. − x̄o
..,CVi

)′HA,CVi
(xo

i. − x̄o
..,CVi

)

.

In this expression, the subscript CVi indicates terms being computed with-
out the values of the respective i-th object. In the column vector xo

i., the
elements of the i-th row of the matrix Xo of original descriptor variables
are summarized. The vector b̂o

PLSCVi
contains the estimated original regres-

sion coefficients calculated on the basis of A iterations performed using the
dataset from which the values referring to the i-th object are excluded. Fur-
thermore, the term sCVi

denotes the corresponding standardized root of the
residual sum of squares, and the indicator function is defined as

I{|ri,CVi
|>cα} =

{
1 if the argument is true
0 else.

The term ri,CVi
is interpretable as a ”studentized” residual, because the nom-

inator of this expression equals the prediction error eo
i,CVi

= yo
i − ŷo

i,CVi
. The

prediction ŷo
i,CVi

of the response variable for the i-th object is calculated with
the help of the data omitting the values from the i-th object. The prediction
error eo

i,CVi
is divided by a term representing its estimated standard devia-

tion. Consequently, the required value cα is given as the (n(1− α))-th order
statistic of these studentized residuals. If the value n(1−α) is not an integer,
the next smallest integer value is chosen for the value cα.

The local linearization approach

The linear approximation method suggested by Denham (1997) is presented
according to the description given by Serneels et. al. (2004). The idea of the
local linearization approach is to approximate the vector of original regression
coefficients by a linear expression in order to derive an approximate estimate
of the residual standard deviation used in the formula for the prediction
interval. The local linear approximation of the vector of original regression
coefficients is obtained by expanding it as a Taylor series of first order about
some given vector y0, i.e.:

b̂o
PLS(yo) ≈ b̂o

PLS(y0) +

(
∂b̂o

PLS

∂yo

)
y0

(yo − y0).
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In this approximation, the matrix(
∂b̂o

PLS

∂yo

)
y0

∼ m× n

denotes the partial derivative of the vector of original regression coefficients
of the original response variable yo, evaluated at yo. An algorithm for the
computation of this partial derivative matrix is given both by Denham (1997)
and by Serneels et. al. (2004). With the help of local linearization, an
approximate (1− α)-prediction interval can be obtained as follows:

PIα,linear(ỹ
o
ir) =

ˆ̃yo
ir ± tα

2
,dfslinear

√√√√1 +
1

n
+ (x̃o

ir. − x̄o
..)

T
∂b̂o

PLS

∂yo

(
∂b̂o

PLS

∂yo

)T

(x̃o
ir. − x̄o

..)

 .

To avoid confusion with partial derivatives in this subsubsection, the trans-
pose of a term is denoted by an index T rather than a superscript ′. This
differs from the usual notation elsewhere.

The estimate slinear of the residual standard error used in the prediction
interval is computed as:

slinear =
r′r − ||r − r′r||2

df
.

In this formula, the term r denotes the residual vector

r = yo − ŷo

and the term r′ represents the first partial derivative of this residual vector
with respect to the original response variable, evaluated at yo. Furthermore,
the degrees of freedom are given as

df = Tr

(In −Xo ∂b̂o
PLS

∂yo

)T (
In −Xo ∂b̂o

PLS

∂yo

) ,

where the expression Tr denotes the trace of a term.

3.4.2 Evaluation of the approaches

The three prediction interval formulae for PLS regression above can be con-
sidered merely as approximate intervals because they are not derived on the
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basis of exact distributional properties of the prediction error. Thus, to judge
the accuracy of these different proposals, Denham (1997) estimated the cov-
erage probabilities for them with desired coverage probabilities of 80%, 90%
and 95% on both a real example and simulated data. The results of this
comparison of observed and expected coverage probabilities for the different
approaches are presented briefly in the following.

Generally, it can be stated that for every approach, the accuracy of the es-
tablished prediction intervals depends on the number A of iterations of the
PLS algorithm used to obtain the relevant terms.

The prediction intervals based on the naive approach tend to over-estimate
the coverage probability, especially if they are built using the results of more
than two iterations of the PLS algorithm.

The observed coverage probabilities of the prediction intervals of the cross-
validation approach depend on the number A of iterations performed to ob-
tain the terms that are included in the computation of the prediction inter-
vals. Cross-validation prediction intervals calculated on the basis of a few
iterations over-estimate the coverage probabilities, whereas those based on
more iterations under-estimate the coverage probabilities. A drawback of
the approach to provide prediction intervals by applying the cross-validation
procedure is the fact that the prediction intervals rely on quantiles of the
ordered absolute values of studentized residuals. This leads to a certain in-
exactness in case of a limited number of observations. However, according to
Denham (1997), the resulting inaccuracy is not too serious and this approach
can be considered to be useful nevertheless.

For prediction intervals calculated by the linear approximation of the vector
of the estimated original regression coefficients, the coverage probabilities are
over-estimated. But in contrast to the naive approach, the results are better
for prediction intervals established on the basis of the terms obtained in a
number of iterations.
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Chapter 4

Application of PLS regression
to the analysis of biomolecular
interactions

4.1 General considerations

The following statements concerning the application of PLS regression to the
investigation of biomolecular interactions are derived from Andersson (2004),
Andersson et. al. (2001), Andersson et. al. (1999), De Genst et. al. (2002)
and Choulier et. al. (2002). All of these publications show a lack of de-
scription of the theoretical statistical methodology the data analysis is based
upon.

The performance of the examination of biomolecular interactions is usually
explained for a particular interaction of interest. Based on the examples de-
scribed in the publications, a general and comprehensive presentation of the
performance of modelling characteristics of the binding between two inter-
acting biomolecules has been derived. Often, enzyme-substrate or antibody-
antigen systems are of special relevance in practice. However, any type of
ligand-receptor interaction could be studied using the procedure presented
below.

The binding behaviour of interacting biomolecules can be characterized by
three kinetic parameters, the association and the dissociation rate constant
as well as the affinity constant. The association rate constant reflects the
extent of recognition of the interacting biomolecules, whereas the dissocia-
tion rate constant represents the stability of the resulting complexes of bound
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biomolecules and the affinity constant indicates the binding strength between
the biomolecules involved in the interaction.

These binding parameters can be measured with a high accuracy by a biosen-
sor system in order to record the binding properties of the interacting biomo-
lecules. This biosensor system is based on the physical process of surface
plasmon resonance. Details of the technology of surface plasmon resonance
biosensors are given in the following section.

In biomolecular interaction studies, the objective of the investigation is the
quantification of the effect of a number of factors on the binding behaviour.
Potential factors that are usually incorporated in these kind of studies ei-
ther represent the physico-chemical properties or structural features of amino
acids at certain positions in the sequence of one or both of the binding part-
ners or describe the composition of the chemical environment in which the
interaction takes place.

The quantification of the effect of these factors is realized by establishing
regression models relating the measured binding parameters to the diverse
factors by applying PLS methodology. In these regression models, the asso-
ciation rate constant, the dissociation rate constant and the affinity constant
are the response variables, whereas the factors supposed to influence these re-
sponse variables are incorporated as the descriptor variables. Consequently,
the data on which the derivation of the regression models is based comprise
on the one hand the measurements of the three binding parameters and on
the other hand, values of the adjustments of the factors the interaction might
depend upon.

In order to obtain these data that can be used to establish the regression
models, the binding parameters respecting a particular biomolecular interac-
tion are measured under different conditions. The experiments are performed
by varying simultaneously the adjustments of the factors that are suspected
to have an effect on the interaction of interest. Therefore, the amino acids
situated at relevant positions in the sequence of the wild-type of one or both
of the binding parameters are substituted by several amino acids and the
composition of the buffers in which the interaction takes place is altered.

Some data might be missing owing to the fact that the binding either does
not take place or that the events of association and dissociation occur too
rapidly to be measured. This problem might either be caused by the modified
protein that does not interact with its binding partner or by the composition
of a specific buffer.
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By estimating the regression coefficients of the descriptor variables involved,
the effects the diverse factors have on the response variables, i.e. on the
binding parameters, can be quantified. In detail, if the descriptor variable
is increased by one unit the response variable changes by an amount given
by its regression coefficient up or down depending upon its sign. Therefore,
the extent of the influence of the respective descriptor variable can be deter-
mined.

The nature of the effect of a particular descriptor variable on the interaction
can be determined by inspecting the sign of the respective regression coeffi-
cient. A positive sign indicates that an increase in the value of this variable
leads to an increase of the corresponding binding parameter to an extent
given by the value of the regression coefficient, whilst a negative sign leads
to a decrease.

Therefore, examination of the signs of the regression coefficients reveals
whether changes of a particular descriptor variable disturb or favour the
association, dissociation or affinity, respectively. This means that statements
can be made about the settings of the descriptor variables that cause an
improved or disturbed recognition, a less or more stable complex of the in-
teracting biomolecules or a lower or higher binding strength, respectively.

In practice, univariate regression models referring individually to one of the
relevant response variables, i.e. the association rate constant, the dissociation
rate constant and the affinity constant, are developed instead of one single
multivariate model. Thus, the influence of the diverse factors is modelled sep-
arately for every response variable. Since the methodology of PLS regression
is applied to the data of biomolecular interaction studies, the results received
by the performance of one single multivariate regression analysis differ from
those obtained by establishing several univariate regression models.

Furthermore, univariate regression models are usually developed separately
for the different subgroups of potential descriptor variables. Hence, they
can be assigned to one of the following types: quantitative buffer-kinetics
relationship (QBKR)-, quantitative sequence-kinetics relationship (QSKR)-,
quantitative structure-activity relationship (QSAR)-, three-dimensional quan-
titative structure-activity relationship (3D-QSAR)- or quantitative sequence-
perturbation relationship (QSPR)-model. In this publication, a comprehen-
sive theoretical description of these different kinds of regression models is
given in subsections ??, ??, ?? and ?? that cannot be found in the articles
published with respect to a particular interaction.
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In QBKR investigations, the effect of the chemical environment on the in-
teraction is examined. Accordingly, the descriptor variables used in QBKR
models are concentrations of chemical additives and the pH value of the
buffer. The influence of the physico-chemical properties of some amino acids
at particular positions in the sequence of the biomolecules on the binding
behaviour is subject to QSKR modelling. Therefore, in QSKR models, vari-
ables quantifying the physico-chemical properties of amino acids at certain
positions of the sequence of a protein are incorporated as the descriptor vari-
ables.

QSAR examinations can either be considered to be equivalent to the QSKR
analysis or they are meant to comprise those investigations dealing with the
structure of the proteins of interest in addition to the physico-chemical prop-
erties. In particular, 3D-QSAR models denote those QSAR models that take
three-dimensional features of the biomolecules involved in the interaction into
account. Therefore, the descriptor variables used in QSKR models are sup-
plemented by variables quantifying structural features that are additionally
considered in QSAR- or 3D-QSAR-models, respectively.

Subsequent to the establishment of a QBKR and a QSKR model for a par-
ticular interaction, so-called QSPR models can be developed. QSPR models
relate the sensitivity of the binding behaviour concerning a particular chem-
ical additive to the physico-chemical properties of amino acids at certain
positions in the sequence.

In this publication, an alternative to the usual procedure of establishing sep-
arate univariate regression models for the different subgroups of descriptor
variables is proposed. This novel approach for modelling the data obtained
in biomolecular interaction studies is introduced by presenting a unified mul-
tivariate regression model. The different univariate regression models that
are usually referred to in literature can be derived as special cases from this
single regression model that is described in subsection ??.

The application of the PLS method in order to establish regression models
is preferred to the computations of the OLS procedure in situations when
the descriptor variables are linear dependent or when less experiments are
performed than descriptor variables incorporated in the model. In biomolec-
ular interaction studies, it is often the case that only a few observations, i.e.
kinetic measurements respecting the interaction under different conditions,
are available since the performance of numerous experiments is time con-
suming and expensive. The limited number of experiments is accompanied
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by relative large numbers of descriptor variables that could be taken into
consideration. Especially in 3D-QSAR studies, an extremely large number
of descriptors is required for a correct representation of the structure of the
biomolecules. Therefore, PLS regression is the appropriate method to apply
to the data obtained during the investigation of biomolecular interactions.

As the PLS procedure is able to deal with this challenging data situation,
it permits the incorporation of a sufficiently large number of descriptor vari-
ables in the regression model. Thus, it permits a comprehensive description
of the circumstances supposed to influence the binding properties of an in-
teraction, an essential prerequisite for an appropriate determination of the
predominant effects on the interaction. Consequently, the regression models
established by the PLS method provide an accurate characterization of the
binding behaviour of the interacting biomolecules by quantifying the effects
of the diverse factors on the interaction.

Obtaining knowledge about the extent of influence the various factors have on
the binding behaviour presents the basis for the explanation of the molecular
regulation and the function of the interacting biomolecules in vivo. Develop-
ing regression models in the context of the analysis of the binding between
biomolecules leads to an improved understanding of the interaction under
investigation. Furthermore, predictions of values of the association and dis-
sociation rate constant as well as of the affinity constant of the interaction
can be computed with respect to specified adjustments of the influencing
factors. Gaining this knowledge results in the possibility of determining the
conditions that have to be realized in order to obtain a particular predefined
profile of the binding parameters. Consequently, with the help of the conclu-
sions drawn from the established regression models, the binding properties
between two biomolecules can be optimized according to the purpose of the
investigation.

Therefore, the analysis of biomolecular interactions by means of the PLS
regression provides results that are of great importance with respect to di-
verse applications. For example, in pharmacology, this kind of knowledge is
required in the development of drugs. Furthermore, in biotechnology, the de-
termination of appropriate adjustments of the affinity chromatography can
be based on the obtained conclusions. The affinity chromatography is a
method that is based on the specific binding between two biomolecules and
is used in order to purify proteins.
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4.2 Surface plasmon resonance biosensors

The binding parameters characterizing a biomolecular interaction, the asso-
ciation and the dissociation rate constant, as well as the affinity constant,
can be measured sufficiently accuratly with the help of surface plasmon res-
onance (SPR) biosensors. In practice, the SPR biosensors most frequently
used are the Biacore systems produced by Biacore AB in Sweden. The fol-
lowing explanation of this instrument is based on the presentations given in
Andersson (2004) and on the homepage of Biacore (www.biacore.com). Fur-
thermore, the illustrations are taken from Wimmer (2005).

Biosensors based on SPR are appropriate for the investigation of biomolec-
ular interactions as they are able to trace the course of the binding process
in real time. The measuring method makes use of the fact that the binding
partners under examination interact in a specific way.

SPR biosensors show two predominant advantages compared to alternative
technologies applied to kinetic measurements. On the one hand, the measure-
ments are obtained with a high accuracy, in fact with respect to interactions
with a low as well as with a high binding strength. In detail, the affinity
constants may range between millimolar (mM) and picomolar (pM) units,
where molar (M) is defined as mol per liter (mol/liter). On the other hand,
the experiments can be performed very quickly.

The major prerequisite for the measurement of the kinetic parameters using
a SPR biosensor is the ability to immobilize one of the binding partners on
a sensor chip as explained below. The binding parameters of a wide range
of diverse biomolecules can be measured with SPR biosensors. In particular,
the method is applicable to interactions involving either proteins, peptides,
small potential drug compounds, DNA, RNA, viruses or whole cells.

4.2.1 The binding parameters

The binding behaviour of the interacting biomolecules of interest can be char-
acterized by the association rate constant ka, the dissociation rate constant
kd and the affinity constant. These binding parameters represent the speed
of the formation and the decay of the complexes of the binding partners,
respectively, as well as the binding strength.

The association rate constant ka, measured in amount per molar and per sec-
ond ([1/Ms]), indicates the number of complexes resulting per second from
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the reaction of the binding partners, given a one molar solution of the in-
teracting biomolecules. The dissociation rate constant kd, given in amount
per second ([1/s]), determines the fraction of the complexes consisting of the
binding partners that decompose each second. Hence, the dissociation rate
constant reflects the stability of the formed complexes.

Usually, the values of the association rate constant range between 1000
[1/Ms] and 10000000 [1/Ms], whereas the values of the dissociation rate
constant vary between 0.0000001 and 0.10 [1/s]. In practice, the values of
the association rate constant are often multiplied in the context of equi-
librium equations by the concentration of one of the binding partners in-
volved in the interaction. Typically, this concentration attains values be-
tween 0.0000000001 and 0.00001 [M ]. Consequently, the product of this
concentration and the association rate constant is measured in [s−1] and has
a similar range of values compared with that one of the measurements of the
dissociation rate constant.

Summarizing, the interpretation of these two kinetic parameters in the con-
text of the course of the reversible reaction of the binding of the biomolecules
can be expressed as follows:

A + B
ka



kd

AB.

In this presentation, the term A denotes the amount of free biomolecules of
one of the binding partners, the term B represents the amount of immobi-
lized biomolecules of the other binding partner and the term AB reflects the
amount of complexes consisting of the interacting biomolecules. High values
of the association and dissociation rate constants indicate a fast association
or dissociation process, respectively.

The affinity constant KD measured in molar (M) represents the binding
strength, i.e. the tightness of the binding occurring between the interact-
ing biomolecules. It is defined as the ratio of the dissociation rate constant
kd and the association rate constant ka, i.e.

KD =
kd

ka

.

Consequently, a high binding strength of an interaction, i.e. a low rate of
complex decay in relation to the forming of the complexes, is indicated by
small values of the affinity constant. Since interactions showing different
association and dissociation rate constants can have an identical binding
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strength, the values of the association and dissociation rate constants should
also be determined rather than using just the value of the affinity constant
as the only measure to characterize a biomolecular interaction.

The logarithmic values of the association and dissociation rate constants can
be interpreted as energy terms. Therefore, the logarithm of the observed
binding parameters might be used in the data analysis as the values of the
response variables instead of the raw data. The decision of whether to apply
the regression analysis to the raw or logarithmic data depends upon the bio-
logical process that is to be modelled, i.e. either the kinetic or the energetic
one.

4.2.2 Components of a Biacore instrument

Biacore systems are composed of three constituents, an optical detection
system, a disposable sensor chip and an integrated microfluidic cartridge
(IFC) as it can be seen in illustration ??. The sensor chip consists of a glass

Figure 4.1: The components of a Biacore instrument

slide that is covered with a thin layer of gold. A layer of dextran is attached
to this gold film, enabling the immobilization, i.e. the covalent binding, of
one of the binding partners to the surface of the sensor. Therefore, this layer
of biomolecules present at the surface of the sensor chip is specific in what
concerns the interaction of interest.
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The sensor chip is linked to the flow cells of the IFC that also comprises
channels with valves that allow a solution injected into the system to reach
the flow cells. Thus, the sensor chip can be supplied with liquid by the flow
cells.

The optical detection system consisting of a light source, a prism and a
detector is situated opposite to that side of the sensor chip where the IFC
can be found. The light source illuminates the sensor chip with a beam of
polarized light that covers a particular range of incident angles. The detector
records the response as explained in detail below.

4.2.3 The course of the experiments

In order to prepare the Biacore instrument for the investigation of a partic-
ular interaction, biomolecules of one of the binding partners involved in the
interaction under study are immobilized on the surface of the sensor chip.
This is done by binding the biomolecules covalently to the layer of dextran
attached to the gold film of the sensor chip.

Subsequently, biomolecules of the other binding partner are injected into
the system and reach the surface of the sensor chip owing to the distribu-
tion of the solution within the flow cells. Consequently, the immobilized
biomolecules interact with biomolecules in the solution leading to complexes
formed of the binding partners bound to each other during the process of
association. Afterwards, the solution containing the biomolecules of one of
the binding partners is replaced by a standard buffer. Hence, dissociation
begins to take place spontaneously, where the complexes between the inter-
acting biomolecules decompose.

In case of a very low dissociation, a regeneration solution such as glycine
buffer at pH 2.0 - 3.0 is used. As a result of this change in the chemical
environment, an increase of the dissociation is achieved without destroying
the biomolecules bound to the dextran. After the process of dissociation is
completed, i.e. when all complexes of the binding partners are decayed, the
next injection of the solution with biomolecules can be performed.

Altogether, the time such an analysis cycle takes ranges from 5 to 30 minutes,
where the solution of biomolecules is injected for a period of 1 to 5 minutes.
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4.2.4 Mode of operation of a Biacore instrument

Biacore instruments use the fact that changes in the amount of bound biomo-
lecules lead to a change of the refractive index within the system. By detect-
ing the absorbed light, conclusions concerning the state of the interaction
can be drawn. For a better understanding of the following complicated ex-
planations of the Surface Plasmon Resonance, an illustration of this physical
process is given in figure ??.

Figure 4.2: Illustration of the Surface Plasmon Resonance

The striking of the polarized light from the light source on the layer of glass
causes the generating of an evanescent wave, an electric field intensity. The
absorption of this wave by free electron clouds existing in the gold film results
in the emergence of plasmons, electron charge density waves. The presence
of these plasmons reduces the intensity of the beam that is reflected from the
glass slide.

The surface plasmon resonance takes place when the polarized light, in case
of total internal reflection, is directed toward the gold film that is electrically
conducting and situated at the interface between two media showing differ-
ent refractive indices. This difference of the refractive indices is present in a
Biacore system because the solution flowing in the IFC has a low refractive
index compared to the glass slide of the sensor chip showing a high refractive
index.
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The reflected light that is recorded by the detector shows an intensity mini-
mum with a particular angular position. This resonance angle at which the
intensity minimum occurs depends on the refractive index in the environment
of the sensor chip.

The interaction of the binding partners at the sensor chip results in an accu-
mulation of biomolecules that leads to an increase of the refractive index at
the surface of the sensor chip in most cases. Thus, when the biomolecules in
the solution bind at or dissociate from the immobilized biomolecules at the
surface of the sensor chip, the refractive index at the interface between the
surface of the sensor chip and the solution in the flow cells is changed. This
change in the refractive index alters the angle at which the polarized light of
reduced intensity is reflected from the glass slide.

As the extent of the change of this angle is proportional to the change of the
amount of bound biomolecules, the course of the interaction can be recorded.
This is done by the detector that registers the alterations that occur in the
refractive index in the environment of the gold layer.

4.2.5 Output of Biacore experiments

The detector of the Biacore system records the angular position of the in-
tensity minimum of the polarized light reflected from the glass slide. This
output being proportional to the amount of bound biomolecules is mea-
sured in resonance units (RU). It is known that 1000 resonance units corre-
spond approximately to 1 nanogram of biomolecules per quadrat millimeter
(ng/mm2). This relationship permits conclusions concerning the amount of
bound biomolecules dependent on time. Consequently, the course of the in-
teraction can be determined with the help of the observed data.

During the process of association that is accompanied by an accumulation
of biomolecules at the surface of the sensor chip, the response is increased
since the angle of the reflection intensity minimum is increased. When the
equilibrium of the interaction is reached, the response presents a constant
signal. The reason is that the measured angle remains unchanged when the
biomolecules in the solution neither bind to the immobilized biomolecules nor
dissociate from them. The state of the equilibrium is characterized by the
process of association and dissociation compensating each other. As soon as
the dissociation commences, the observed output begins to decrease. Then,
the amount of bound biomolecules at the sensor chip is reduced, resulting in
a decrease of the angle of the reflection intensity minimum.
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The obtained measurements can be illustrated by a so-called sensorgram that
represents the recorded response in relation to the time. Therefore, the sen-
sorgram visualizes the course of the interaction between the two kinds of
biomolecules of interest, providing a characteristic profile comprising both
the process of association and dissociation as it can be seen in figure ??.

Figure 4.3: A sensorgram showing the dependence of the measured resonance
units on the time

The association and dissociation rate constants as well as the affinity con-
stant can be determined with the help of the data measured by the Biacore
system. In contrast to the calculation of the dissociation rate constant, a dis-
advantage of the computation of the association rate constant is that it can
only be determined when the concentrations of both of the interacting types
of biomolecules are known, which is difficult to measure for the biomolecules
in the solution. Thus, problems respecting the exact calculation of the associ-
ation rate constant might arise. The affinity constant can easily be computed
as the ratio of the dissociation and the association rate constants.
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4.3 Application of PLS regression

4.3.1 The unified multivariate regression model

In practice, a number of univariate regression models are developed in order
to draw conclusions on the influence of the descriptor variables of interest on
the binding parameters. In contrast to this usual procedure, the multivari-
ate PLS algorithm could be applied once with the objective to establish one
single unified multivariate regression model. Hence, the statements derived
from the multitude of univariate regression models might be obtained as well
by one single multivariate regression model, where the compact results would
facilitate the interpretation.

In the unified multivariate regression model, all of the possible response and
descriptor variables relevant to the analysis of biomolecular interactions are
incorporated simultaneously. The two response variables taken into account
are the association and the dissociation rate constant. The affinity constant
is not included as a response variable in the multivariate regression model.
The reason is that it represents the ratio of the dissociation and the associ-
ation rate constant. Therefore, statements concerning the affinity constant
can be determined with the help of the results obtained with respect to the
association and dissociation rate constant.

All of the descriptor variables that can be assigned to different subgroups
are incorporated simultaneously in the unified multivariate regression model.
Accordingly, on the one hand, the multivariate regression model comprises
buffer descriptor variables, i.e. variables representing the composition of the
chemical environment in which the interaction takes place. On the other
hand, it involves the amino acid descriptor variables. This subgroup can
be divided in those variables that can be determined for every position of
interest in the sequence of the protein, e.g. variables describing the two- or
three-dimensional characteristics of an amino acid, and in those variables that
should be given only for the amino acids at positions of the protein where
mutations are carried out. Those variables represent the physico-chemical
properties of the amino acids. Examples are the so-called ZZ-scales and the
helix-forming tendency (HFT)-scale.

In the following corresponding subsections, the descriptor variables usually
used in biomolecular interaction studies are explained in more detail. How-
ever, it is possible to include various additional descriptor variables in the
regression model to obtain more information about the influences on the
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interaction of interest. In this case, the number of descriptor variables obvi-
ously increases and thus, the PLS regression is particularly useful.

The data on which the establishment of the unified multivariate regression
model is based on are measured for np proteins in nb buffers. Consequently,
the total number of experiments, i.e. the sample size n, equals the value npnb,
presuming that the values of the binding parameters are measured once for
the interaction of each of the np proteins in each of the nb buffers. In case of
repeated measurements, the sample size increases accordingly.

For clarity, the form of the unified multivariate regression model is intro-
duced by giving two alternative presentations of the regression equation for
the term yibipl, the value of the l-th response variable respecting the ip-th
protein in the ib-th buffer. The value yibipl can be expressed as the following
summation:

yibipl = b0l+

mb∑
jb=1b

bjblxibjb
+

mp∑
jp=1p

q∑
s=1

b(jp)slxip(jp)s+

rp∑
jp=1p

z∑
s=q+1

b(jp)slxip(jp)s+eibipl,

(4.1)
where

l = 1, . . . , k; ib = 1b, . . . , nb; ip = 1p, . . . , np; q < z and rp < mp.

As descriptor variables, mp amino acid descriptor variables and mb buffer
descriptor variables are involved in the model. In what concerns the amino
acid descriptor variables, rp of them can be determined for all of the z posi-
tions of interest, whereas mp − rp variables are merely given for q mutation
sites of the sequence.

The term xibjb
denotes the value of the jb-th buffer descriptor variable re-

specting the ib-th buffer. The regression coefficient bjbl corresponding to the
jb-th buffer descriptor variable refers to the l-th response variable. Thus, this
term indicates the quantity the l-th response variable would be increased by,
if the jb-th buffer descriptor variable would be increased by one unit, under
the assumption that the values of the other descriptor variables would be
kept constant.

Furthermore, the value of the jp-th amino acid descriptor variable concerning
the amino acid at the s-th position of the ip-th protein is denoted by the term
xip(jp)s . The expression b(jp)sl represents the regression coefficient respecting
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the l-th response variable and the jp-th amino acid descriptor variable at the
s-th position of the sequence. Consequently, the l-th response variable would
be increased by the value b(jp)sl, if the jp-th amino acid descriptor variable
referring to the amino acid at the s-th position would be increased by one
unit and the values of the other descriptor variables would be fixed.

The term b0l represents the intercept of the regression model for the l-th
response variable. Hence, the l-th response variable would attain this value,
if all of the descriptor variables would be set to the value zero. Furthermore,
the expression eibipl denotes the error corresponding to the value yibipl of the
l-th response variable.

With respect to a more compact presentation of equation ??, the values of
the descriptor variables belonging to different subgroups as well as the corre-
sponding regression coefficients can be summarized in column vectors. The
vectors containing the values of the descriptor variables are obviously of the
same dimension as the respective corresponding vectors including the regres-
sion coefficients.

The vector xibmb
comprises the values of the mb buffer descriptor variables

respecting the ib-th buffer. The regression coefficients referring to these de-
scriptor variables are given in the vector bmbl, i.e.:

xibmb
=

 xib1b

...
xibmb

 and bmbl =

 b1bl
...

bmbl

 ∼ mb × 1.

The elements of the vector xip(mp)q are the values of the mp amino acid de-
scriptor variables regarding both the physico-chemical properties and struc-
tural features at the q mutation sites. Accordingly, the corresponding regres-
sion coefficients are summarized in the vector b′(mp)ql as follows:

xip(mp)q =



xip(1p)1
...

xip(1p)q

xip(2p)1
...

xip(mp)q


and b(mp)ql =



b(1p)1l
...

b(1p)ql

b(2p)1l
...

b(mp)ql


∼ (mpq)× 1.

Furthermore, the vector xip(rp) q+1
→z

consists of the values of the rp descriptor

variables of structural features of amino acids at additional z − q positions
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of interest. The vector b(rp) q+1
→z

l contains the regression coefficients related to

these descriptor variables, i.e.:

xip(rp) q+1
→z

=



xip(1p)q+1

...
xip(1p)z

xip(2p)q+1

...
xip(rp)z


and b(rp) q+1

→z
l =



b(1p)q+1l
...

b(1p)zl

b(2p)q+1l
...

b(rp)zl


∼ (rp(z − q))× 1.

With the help of these column vectors summarizing the values of particular
descriptor variables or the corresponding regression coefficients, respectively,
the value yibipl can be expressed alternatively as follows:

yibipl = b0l + b′mbl
xibmb

+ b′(mp)qlxip(mp)q + b′(rp) q+1
→z

lxip(rp) q+1
→z

+ eibipl.

Compared with the general form of the multivariate regression model pre-
sented in equation ??, the unified multivariate regression model relating to
the application of the investigation of biomolecular interactions shows addi-
tional indices. In detail, the indices i and j are supplemented by the indices
p and b to indicate the reference to a protein or a buffer, respectively. For
a better distinction, these additional indices are written above the index i
denoting the object and underneath the index j representing the descriptor
variable. For the descriptor variables describing features of the proteins, the
additional index s is required to denote the position in the sequence the re-
spective variable refers to.

In this presentation of the unified multivariate regression model as well as
in the following explanations, it is assumed that only one of the interacting
biomolecules is modified and thus, represented by the descriptor variables.
Otherwise, if the amino acid sequence of both binding partners is altered and
described, two indices, ip1 and ip2 , are necessary to use instead of the index
ip respecting the single modified protein in order to refer to the two different
biomolecules.

Furthermore, the model is presented without interaction terms. However, in
order to permit a more sophisticated modelling, interaction terms between
the buffer descriptor variables, the amino acid descriptor variables and be-
tween the buffer and amino acid descriptor variables could be included. The
incorporation of interaction terms would result in an enormous number of
descriptor variables that would have to be dealt with. But this situation
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cannot be considered as a problem owing to the application of the PLS re-
gression that is able to take a multitude of descriptor variables into account.

In practice, several various univariate regression models are established sep-
arately with respect to the different subgroups of descriptor variables for the
association rate, dissociation rate and affinity constant as response variables.
Thus, 3np QBKR models, 3 QSKR or 3D-QSAR models, respectively, and
3mb QSPR models are obtained that can be derived from this unified multi-
variate regression model. The connection between these univariate regression
models and the single unified multivariate one is described in detail in the
following subsections.

4.3.2 Analysis of the quantitative sequence-kinetics re-
lationship

Amino acid replacements

In the analysis of quantitative sequence-kinetics relationships (QSKR), vari-
ous amino acid replacements are performed at particular positions in the se-
quence of one or both of the binding partners in order to investigate the effects
of these modifications on the binding behaviour. Thus, a number of mutants
of the wild-type protein are produced. Sometimes, modified oligopeptides
are used instead of whole proteins. In the following, it is assumed that the
amino acid substitutions are merely performed in the sequence of one of the
binding partners.

In general, two or three mutation sites are selected and usually, up to three
amino acid substitutions are realized simultaneously in one mutant. The
aim of these modifications is to receive proteins showing relative different
physico-chemical properties in order to cover a range as wide as possible of
the values of the amino acid descriptor variables.

Potential positions for modifications are those ones where introduced muta-
tions will probably influence the binding parameters up to a limited extent
without preventing the interaction completely. This means that only non-
essential positions with respect to the binding process are taken into account.
Accordingly, the chosen positions for amino acid substitutions are situated at
the periphery of the binding interface instead of being located at the center
of the interaction interface. The interface of the interaction denotes that area
of a protein that gets in direct contact with the binding partner.
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Furthermore, those positions are excluded from the choice of mutation sites
where modifications will presumably lead to large sterical clashes with the
binding partner, folding problems or dimerization. In summary, those posi-
tions whose modifications might have an effect on the protein‘s conformation
that disturbs the interaction significantly should not be chosen as locations
for the amino acid substitutions. There might be also some particular amino
acids that are suspected to cause these problems when they are introduced
at specific positions. Hence, these amino acids are not included in the choice
of conceivable amino acids for the replacements.

The suggestions of relevant positions for modifications and potential amino
acids to substitute are based on the results of previously performed investi-
gations of the biomolecules of interest. For example, knowledge about the
properties of the amino acids and their expected effect on the interaction
might be derived from the crystal structure of the binding partners. Eval-
uating the crystal structure contributes to a preliminary characterization of
the biomolecules involved in the interaction and thus it provides hints for ap-
propriate mutation sites in the amino acid sequence. Detailed explanations
about the crystal structure of proteins are given in subsection ??.

In general, individual modifications of the amino acids at those positions that
show a favourable flexibility in what concerns mutations result merely in a
moderate modulation of the binding characteristics. The amino acids located
at positions in the center of the interface of the biomolecular interaction de-
termine the binding behaviour predominantly. However, a significant change
in the binding parameters can be obtained by modifying the amino acids
simultaneously at several positions at the edge of the interface. Therefore,
these positions can be used for investigations with the objective of optimiz-
ing the binding parameters of an interaction, though the effect of the most
relevant positions cannot be determined by the QSKR analysis.

The amino acids of the protein under investigation are numbered according
to their appearance in the sequence. The modified proteins are denoted by
giving the amino acids at the mutation sites in their linear order occurring
in the sequence, where the amino acids are represented by their single letter
code (see table ??). For example, if a protein is modified at the two positions
x and y, the number x being smaller than the number y, by introducing the
amino acid threonine at position x and the amino acid serine at position y,
the resulting mutant is designated as TS.

Usually, the modified proteins are produced by substitutions with one of
the 20 natural amino acids. However, it is also conceivable to introduce
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non-natural amino acids. The use of non-natural amino acids in QSKR ex-
aminations would result in the possibility to achieve larger variations in the
physico-chemical properties by the modifications.

The predominant restricting factor in QSKR studies is the limited amount
of modified proteins that are available owing to the very cost-extensive pro-
duction. Considering merely the 20 natural amino acids as substituents, 19
modifications are possible for a particular position of the sequence. Thus, if
two positions are selected for amino acid replacements, 400 different proteins
could be investigated. However, only a small subset of all of these possible
mutants can be included in the analysis. Therefore, because of the limited
number of amino acid substitutions that can be performed, the appropriate
choice of the mutation sites and the amino acids used for the substitutions
is of special importance.

Furthermore, the established regression models might be only valid for a
subset of all conceivable mutants. Perhaps, the statements derived from the
models might only be reliable for proteins with a particular feature. For ex-
ample, if the amino acid substituents are chosen in order to avoid particular
structural features, such as sterical clashes, conclusions based on the obtained
models are not valid for those proteins that show this characteristic.

Quantification of the physico-chemical properties of amino acids

The properties of each of the modified proteins vary in accordance with the
performed amino acid replacements and distinguish the mutants from each
other. Analyzing the effect of the amino acid replacements by means of re-
gression analysis requires a quantification of the physico-chemical properties
of the amino acids chosen for the substitutions. In order to parameterize these
features of the amino acids, quantitative variables, the so-called ZZ-scales,
have been derived that can be used as descriptor variables in a regression
model.

These scales have been established by Sandberg et. al. (1998) based on the
results of evaluating the data collected for a sample of 87 amino acids, both
natural and non-natural ones. These amino acids have been characterized
by 26 variables indicating the diverse physico-chemical features of the amino
acids. The values of the 26 variables used by Sandberg et. al. (1998) are
given for the 20 natural amino acids in table ??. The three ZZ-scales reflect-
ing different types of properties have been derived from these 26 variables
that are listed in the following:
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• experimentally determined retention values in seven thin-layer chro-
matography systems (TL1-TL7)

• three nuclear magnetic resonance shift variables (NM1, NM7, NM12)

• six semi-empirical molecular orbital indices (EHOMO, ELUMO, HOF,
POLAR, EN, HA)

• four indicator variables representing hydrogen bond donor and acceptor
properties and side chain charge (HDONR, HACCR, Chpos, Chneg)

• total, polar and nonpolar surface area (Stot, Spol, Snp)

• molecular weight (MW)

• logP-value

• van der Waals volume of the side chain (vdW).

The ZZ1-scale represents the hydrophobicity, the ZZ2-scale describes the size
and polarizability and the ZZ3-scale corresponds to diverse electronic proper-
ties like charge, polarity, electrophilicity and electronegativity of the amino
acids. Thus, each amino acid, either a natural or a synthetic one, can be
characterized by its values of these ZZ-scales.

Another variable that can be used additionally to describe an important prop-
erty of the amino acids that might be relevant with respect to a biomolecular
interaction is the helix-forming tendency (HFT)-scale. This scale indicates
the tendency of an amino acid of being involved in a helical structure. The
values of the three ZZ-scales and the HFT-scale taken from Andersson et. al.
(2001) for the 20 natural amino acids are presented in table ??. By giving
the values of the three ZZ-scales as well as the HFT-scale for the amino acids
at the mutation sites, the specific features of the mutants can be quantified.

QSKR regression models

In QSKR investigations, the data to be analyzed is obtained by measuring
the binding parameters between the proteins modified in their amino acid
sequence and their binding partner in a defined standard buffer. With the
help of these data, a regression model describing the relationship between the
physico-chemical properties of the amino acids at the mutation sites and the
measured binding parameters is established by applying the PLS methodol-
ogy.
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Amino acid Code ZZ1 ZZ2 ZZ3 HFT

Alanine A, Ala 0.24 -2.32 0.6 1.49
Arginine R, Arg 3.52 2.5 -3.5 1.22
Asparagine N, Asn 3.05 1.62 1.04 0.77
Aspartic Acid D, Asp 3.98 0.93 1.93 0.92
Cysteine C, Cys 0.84 -1.67 3.71 0.97
Glutamine Q, Gln 1.75 0.5 -1.44 1.16
Glutamic Acid E, Glu 3.11 0.26 -0.11 1.50
Glycine G, Gly 2.05 -4.06 0.36 0.51
Histidine H, His 2.47 1.95 0.26 1.00
Isoleucine I, Ile -3.89 -1.73 -1.71 1.00
Leucine L, Leu -4.28 -1.3 -1.49 1.24
Lysine K, Lys 2.29 0.89 -2.49 1.17
Methionine M, Met -2.85 -0.22 0.47 1.36
Phenylalanine F, Phe -4.22 1.94 1.06 1.20
Proline P, Pro -1.66 0.27 1.84 0.49
Serine S, Ser 2.39 -1.07 1.15 0.74
Threonine T, Thr 0.75 -2.18 -1.12 0.79
Tryptophan W, Trp -4.36 3.94 0.59 1.09
Tyrosine Y, Tyr -2.54 2.44 0.43 0.79
Valine V, Val -2.59 -2.64 -1.54 0.99

Table 4.1: Values of the three ZZ-scales and the HFT-scale and code of the
20 natural amino acids

Since the physico-chemical properties of the amino acids incorporated in the
substitutions are represented by the ZZ-scales as well as the HFT-scale, these
variables are used as the descriptor variables in the regression model. The
QSKR models are developed separately for the association rate, the disso-
ciation rate and the affinity constant. Therefore, these binding parameters
present the response variables of the univariate models. Consequently, the
regression equation for the l-th response variable is of the following form:

yibipl = b0l +

mp∑
jp=(r+1)p

q∑
s=1

b(jp)slxip(jp)s + eibipl,

where
ip = 1p, . . . , np

with l ∈ {1, . . . , k} and ib, representing the standard buffer, being fixed for
each of the k = 3 univariate regression models. Alternatively, the QSKR
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model can be presented as

yibipl = b0l + b′((r+1)p)ql

→(mp)

x ip((r+1)p)q
→(mp)

+ eibipl.

In this equation, the vector x ip((r+1)p)q
→(mp)

denotes the vector summarizing the

values of the descriptor variables referring to the physico-chemical properties
of the amino acids at the q mutation sites, and the vector b ((r+1)p)ql

→(mp)

represents

the vector containing the corresponding regression coefficients, i.e.:

x ip((r+1)p)q
→(mp)



xip((r+1)p)1
...

xip((r+1)p)q

xip((r+2)p)1
...

xip(mp)q


and b ((r+1)p)ql

→(mp)

=



b((r+1)p)1l
...

b((r+1)p)ql

b((r+2)p)1l
...

b(mp)ql


.

In this QSKR model, the term yibipl denotes that value of the l-th response
variable that is measured for the interaction involving the ip-th protein and
taking place in the standard buffer. Thus, the sample size equals the number
np of different proteins incorporated in the experiments.

The value xip(jp)s represents that value of the jp-th amino acid descriptor
variable that refers to the amino acid situated at the s-th mutation site of
the ip-th protein. The numbering of the mutation sites is performed accord-
ing to their order in the amino acid sequence. For example, substitutions
of amino acids are realized at positions 20 and 30. Then, the index s = 1
indicates position 20 and the index s = 2 denotes position 30. Accordingly,
the number q corresponds to the number of mutation sites.

Furthermore, the number mp − rp of different descriptor variables is 4 be-
cause the three ZZ-scales and the HFT-scale are the descriptors incorporated
generally in the regression model. The number rp refers to the number of
descriptor variables referring to structural features that might be included
in regression models in biomolecular interaction studies (see the following
subsection). In case of the QSKR analysis, the term rp attains the value zero
since only physico-chemical properties are included in the regression model.
However, in the presentation of the QSKR model, the index jp is determined
to begin with the value (r + 1)p in order to show that the QSKR model can
be derived from the unified multivariate model that considers rp structural
descriptor variables.
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Altogether, the regression models derived in QSKR examinations comprise
4q descriptor variables. Thus, the number of descriptor variables increases
according to the number of mutation sites. This fact illustrates the useful-
ness of the application of PLS regression to data obtained in experiments
involving a number of mutation sites.

The constant term of the regression equation for the l-th response variable
is denoted by b0l. According to the number of descriptor variables, 4q cor-
responding regression coefficients are incorporated in each of the three uni-
variate regression models. The regression coefficient b(jp)sl refers to the jp-th
amino acid descriptor variable respecting the amino acid at the s-th muta-
tion site relating to the l-th response variable. Furthermore, the term eibipl

denotes the error regarding the l-th response variable and the ip-th interac-
tion in the standard buffer ib.

The univariate QSKR models that are established separately for each bind-
ing parameter result from the unified multivariate regression model by fixing
the index ib that refers to the standard buffer used in the course of the
experiments. Furthermore, the amino acid descriptor variables respecting
the physico-chemical properties of the amino acids at the mutation sites are
merely considered. Therefore, the index z of positions of interest is set to the
number q of mutation sites. In what concerns the descriptor variables, the
number mb of buffer descriptor variables included in the model equals zero,
as the number rp of amino acid descriptor variables referring to structural
characteristics does.

Interpretation of the QSKR models

Subsequent to the establishment of the three univariate QSKR models, the
effect of the modifications in the amino acid sequence on the interaction can
be analyzed with the help of the estimated regression coefficients. Thus, it is
possible to determine which physico-chemical properties at which positions
of the amino acid sequence influence the binding between the two interacting
biomolecules relevantly.

The contributions of the physico-chemical properties to the interaction can
be assessed by relating the descriptor variables, the ZZ-scales as well as the
HFT-scale, to the properties they describe, i.e. the hydrophobicity, the size,
the electronic properties and the helix-forming tendency of the amino acids.
Then, conclusions can be drawn on the amino acids that should be used for
the replacements at the positions taken into account as they show the pre-
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ferred physico-chemical properties that are required to improve the binding
behaviour. For example, it can be suggested whether a small or a large, a
hydrophilic or a hydrophobic, a polar or an apolar, an electrophilic or a non-
electrophilic amino acid should be present at the particular positions. Conse-
quently, the quantification of the influence of the physico-chemical properties
at the mutation sites on the binding process results in an improved under-
standing of the interaction under investigation.

Furthermore, with the help of the regression coefficients, values for the bind-
ing parameters can be predicted with respect to given modifications in the
amino acid sequence, i.e. for specified physico-chemical properties of the
amino acids at the mutation sites taken into consideration. Therefore, state-
ments concerning the properties that are desirable at particular sites of the
sequence in order to obtain specific values of the association and the disso-
ciation rate constant and hence, the affinity constant, can be derived.

If the processes of association, dissociation and affinity are influenced by dif-
ferent physico-chemical properties at the mutation sites, amino acids with
features providing a compromise concerning the optimization of the three
binding parameters are chosen for the substitutions at the positions of inter-
est. In order to determine the best compromise, the extents and directions
of the effects of the various properties are considered. Probably, a number of
amino acids can be proposed that are supposed to cause an improved binding
behaviour.

The determination of the influence of the amino acid replacements can only
be performed for those sites of the sequence that have been submitted to
modifications. Since those positions are chosen for the amino acid substitu-
tions that are located at the edge of the interaction interface, it is possible
that only limited effects on the binding parameters might be caused by the
modifications. Therefore, a QSKR analysis is merely of use when the per-
formed amino acid replacements result in a sufficiently notable change of the
binding parameters. However, the major factors contributing to the binding
behaviour cannot be detected by the QSKR approach because the effects of
amino acid substitutions at the predominantly influencing positions are not
investigated.

The conclusions that can be drawn from the QSKR models on the modifi-
cations in the amino acid sequence that might lead to an improved binding
behaviour can be useful in the context of designing new biomolecules as
drugs. In general, new potential drug molecules, for example antibodies, are
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obtained using libraries of native or synthetic compounds. Often, the binding
properties between these biomolecules and the corresponding binding part-
ner, e.g. the specific antigen, are not sufficiently satisfying. With the help of
the knowledge derived from the QSKR models, suggestions can be made on
how to alter the amino acid sequence of the potential drug in order to opti-
mize the binding characteristics of the interaction with the binding partner
of interest.

4.3.3 Analysis of the 3D-quantitative structure-activity
relationship

The aim of 3D-quantitative structure-activity relationship (3D-QSAR) exam-
inations is to determine which stereochemical features and physico-chemical
properties of amino acids at which positions have an effect on the interac-
tion under investigation. The 3D-QSAR investigation is performed instead of
the more simple QSKR analysis when the influence of structural features of
the interacting biomolecules on the binding behaviour is meant to be deter-
mined in addition to the effect of the physico-chemical properties considered
in QSKR modelling.

Therefore, in the 3D-QSAR analysis, the information about the physico-
chemical properties of the amino acids used for the substitutions, i.e. the
ZZ-scales and the HFT-scale incorporated in QSKR models, is supplemented
by structural information about a number of positions in the amino acid se-
quence. The structural properties of amino acids located in or near the
binding interface are of special interest.

The combination of structural information and knowledge about physico-
chemical properties applied in 3D-QSAR modelling permits a more compre-
hensive characterization of the biomolecules under examination than it would
have been obtained had only one type of information been incorporated. Con-
sequently, the inclusion of descriptors of the structure of the proteins might
result in a model providing more accurate predictions than a model for only
physico-chemical properties would be able provide.

However, the information necessary to deal with in 3D-QSAR investigations
is more complex than that used in the QSKR analysis. In contrast to the
physico-chemical properties, the structure of a protein is not easy either to
quantify by relevant descriptor variables or to alter in a controlled way.
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Especially, the performance of 3D-QSAR modelling with respect to protein-
protein interactions is more challenging compared with the analysis of inter-
actions involving only small molecules. The reason is that the description of
the structure of a complex protein can only be performed partially, whereas
the structure of a small compound can be represented more completely. Since
the usefulness of regression models relies on taking into account relevant de-
scriptor variables, the adequate representation of structural features as well
as the appropriate choice of positions of the sequence whose structure is
described is crucial to the success of the research of a protein-protein inter-
action.

Quantification of structural features

The description of the structure of proteins refers to statements concerning
the experimentally determined configuration of the biomolecules. Further-
more, spatial constraints can be taken into consideration in 3D-QSAR inves-
tigations.

In general, the variables used to represent the conformation of proteins are
the x−, y− and z−coordinates, measured in angstrom (Å), referring to the
backbone and the side chain, respectively, of the amino acids at the chosen
positions. Thus, each amino acid is characterized by 6 values of the corre-
sponding coordinates.

In particular, features of the backbone are quantified by giving the coordi-
nates of the α-carbons (cα) of the amino acids. Furthermore, the side chain
of an amino acid is described by the coordinates of its center that is calcu-
lated as the mean of the coordinates of all atoms in the side chain. These
descriptors included in the 3D-QSAR analysis are obtained with the help of
the crystal structure of the proteins of interest.

The x-ray crystallography provides information concerning the structure of
both single proteins and complexes of proteins. It is performed by preparing
crystals of the relevant proteins or protein complexes. The arrangement of
the atoms in the cells of these crystals is determined by the structure of the
proteins. Subsequently, x-rays are directed toward these crystals diffract-
ing this radiation according to the arrangement of the atoms in the crystal.
Therefore, a characteristic profile of the diffraction is obtained that presents
the basis for the development of a map of the density of the electrons in the
crystal. The structure of the examined protein or protein complex can be
derived with the help of this map.
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A structural characterization is determined experimentally for the wild-type
protein and for each mutant. A comparison of these different structures
reveals the influence of the performed amino acid substitutions on the struc-
tural features, i.e. how the coordinates of the amino acids taken into account
are changed as a result of the modifications. The differences in the struc-
tural effects observed between the different mutants are caused by particular
features of the amino acids used for the replacements.

It is possible that also the coordinates of those amino acids that are not
located at the mutation sites are altered owing to the introduced modifica-
tions since the amino acid replacements at a particular position might lead
to changes in the structure of the proteins at diverse positions. This is the
reason why in 3D-QSAR modelling, structural features of amino acids at
mutation sites as well as additional positions are represented by descriptor
variables. Consequently, the effect of changes of structural features of amino
acids at any position of interest can also be determined by 3D-QSAR regres-
sion models.

In case of observing only small deviations of the structure at a particular
position for the different mutants, the amino acid located there is obviously
fixed in its location. If an amino acid is too restrained in its position, i.e. its
coordinates are not changed by the introduced modifications, its relevance to
the interaction cannot be determined by the 3D-QSAR analysis. Neverthe-
less, this amino acid might contribute in a significant way to the interaction
of interest.

Beyond the quantification of structural features at several positions of in-
terest, diverse additional conclusions concerning structural properties of the
proteins can be drawn from the crystal structure of the complex of the inter-
acting biomolecules, For example, it can be determined which amino acids of
the binding partners are directly in contact and whether the amino acids are
involved in hydrogen bonds or disulfide (S-S) binding. Furthermore, it can
be stated whether amino acids can move quite freely without influencing the
interaction or if they are spatially restrained and thus, are not able to vary
their position. Some amino acids might be found to be located in a pocket
of the binding partner, for example. Beyond this, helical structures can be
detected. All these considerations provide important insights in the binding
process leading to an improved knowledge about the interaction under study.
Therefore, the evaluation of the crystal structure contributes to the choice
of conceivable mutation sites and amino acids that might be appropriate for
the replacements.
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An alternative but more complicated and hence not very common approach
to obtain descriptors of the 3D-structure of proteins is Comparative Molecu-
lar Field Analysis (CoMFA). This method provides a more detailed charac-
terization of the structural features than that one based on the coordinates
of the backbone and side chains of the amino acids. Therefore, when the
descriptors calculated by CoMFA are used, more descriptor variables have
to be dealt with compared with the number of descriptors derived from the
crystal structure.

3D-QSAR regression models

The three univariate 3D-QSAR models are similar to the QSKR regression
models. However, some terms have to be incorporated additionally in 3D-
QSAR models. These supplementary terms refer to the information about
structural features of the amino acids at some positions in the sequence. In
the following presentation, it is assumed that structural properties of only
one of the binding partners are taken into account.

The 3D-QSAR models are built separately for the association and the dis-
sociation rate constant as well as for the affinity constant that present the
response variables of the univariate regression models. The 3D-QSAR re-
gression equation respecting the l-th response variable is of the following
form:

yibipl = b0l +

mp∑
jp=1p

q∑
s=1

b(jp)slxip(jp)s +

rp∑
jp=1p

z∑
s=q+1

b(jp)slxip(jp)s + eibipl,

where
ip = 1p, . . . , np; rp < mp; q < z

with l ∈ {1, . . . , k} and ib, representing the standard buffer, being fixed for
each of the k univariate regression models.

Alternatively, the 3D-QSAR regression model can be presented more com-
pactly with the help of the column vectors introduced in subsection ?? as
follows:

yibipl = b0l + b′(mp)qlxip(mp)q + b′(rp) q+1
→z

lxip(rp) q+1
→z

+ eibipl.

The value yibipl of the l-th response variable, the constant term b0l and the
error term eibipl can be interpreted by analogy with the QSKR model.

The descriptors of the physico-chemical and structural properties of the
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amino acids at the mutation sites as well as the descriptors of the structural
features of the amino acids at a number of additional positions of interest
present the descriptor variables of the 3D-QSAR regression models. For an
amino acid at a mutation site, 10 descriptor variables are included in the
regression model since this amino acid is represented both by its physico-
chemical properties and its structural coordinates. An amino acid at a po-
sition of the sequence where no modifications are performed is described by
its 6 coordinate values. Thus, the total number of descriptor variables and
accordingly, of regression coefficients, is 4q + 6q + 6(z − q) = 4q + 6z, where
z is the number of all considered positions in the sequence and q the number
of mutation sites. This term shows that in 3D-QSAR modelling, there is a
huge number of descriptor variables that have to be dealt with during the
establishment of the regression models. Consequently, the application of PLS
regression is of particular use in this kind of research.

The numbering of the positions taken into account is based on their order in
the protein’s sequence according to the procedure performed in the QSKR
modelling. Hence, if, for example, amino acid substitutions are introduced
at positions 20 and 30, these positions are indicated by s = 1 and s = 2,
respectively, and the number q of mutation sites equals 2. If the structural
information of the amino acids at position 10, 25 and 60 is considered addi-
tionally, these positions are referred to by the indices s = 3, s = 4 and s = 5,
respectively. In this case, the total number z of positions where amino acids
are represented by descriptor variables is 5.

The total number mp of different descriptor variables is given as 10, as the
number rp = 6 of structural descriptors, i.e. the coordinates, are added to the
value mp− rp, i.e. the number of descriptors of the physico-chemical proper-
ties. For the backbone of the amino acid, the x−coordinate is indicated by
jp = 1p, the y−coordinate by jp = 2p and the z−coordinate by jp = 3p. In
what concerns the side chain of the amino acid, the index jp = 4p, 5p and 6p

refers to the x−, y− and z−coordinate, respectively. Furthermore, the index
jp equals (r + 1)p = 7p for the ZZ1-scale, (r + 2)p = 8p for the ZZ2-scale,
(r + 3)p = 9p for the ZZ3-scale, and (r + 4)p = mp = 10p for the HFT-scale.

Therefore, the term xip(jp)s , with jp = 1p, . . . , rp, denotes the value of the
coordinate that is indicated by the value jp and describes the amino acid at
the s-th of the z positions of interest. Accordingly, the value xip(jp)s , with
jp = (r + 1)p, . . . ,mp, refers to the corresponding value of one of the 4 de-
scriptor variables of the physico-chemical properties, the 3 ZZ-scales and the
HFT-scale, of the amino acid at the s-th of the q mutation sites.
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The univariate 3D-QSAR models can be derived from the unified multivariate
regression model by omitting the buffer descriptor variables and the respec-
tive regression coefficients. Furthermore, according to the QSKR model, the
index ib is fixed since the measurements are performed in one single standard
buffer. Beyond this, the index l determining the response variable is fixed
for each univariate regression model.

Interpretation of 3D-QSAR models

Evaluating the regression coefficients of the univariate 3D-QSAR models
reveals the influence of the ZZ-scales, the HFT-scale as well as the 3D-
descriptors on the association and dissociation rate constant and on the
affinity constant. With the help of the regression coefficients, it can be deter-
mined whether the structural features taken into consideration have an effect
on the interaction under examination beyond the influences of the physico-
chemical properties. Therefore, additionally to the information about the
effect of the ZZ-scales and the HFT-scale as obtained merely by establishing
QSKR models, the influence of the localization of the α-carbon and the side
chain of amino acids at several positions can be quantified with respect to
the interaction of interest.

For the l-th response variable, the regression coefficients relating to the
x−, y− and z−coordinates of the backbone or the side chain, respectively, of
the amino acid at a particular position s can be summarized in the vectors
bbbs,l and bscs,l, i.e.

bbbs,l :=

 b(1p)sl

b(2p)sl

b(3p)sl

 and bscs,l :=

 b(4p)sl

b(5p)sl

b(6p)sl

 .

In order to quantify the relative importance of the backbone, rel.imp.bbs,l
,

or the side chain, rel.imp.scs,l
, of an amino acid at a specific position s with

respect to the l-th response variable, it is common to calculate the roots of the
sums of the corresponding squared regression coefficients, i.e. the following
terms:

rel.imp.bbs,l
=
√

b2
(1p)sl + b2

(2p)sl + b2
(3p)sl

and
rel.imp.scs,l

=
√

b2
(4p)sl + b2

(5p)sl + b2
(6p)sl.
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Comparing the results obtained for the univariate models for the different
response variables permits conclusions on whether the recognition of the
biomolecules, the stability of the formed complexes or the binding strength
are influenced by different factors and are hence dependent on different phys-
ical processes.

Consequently, with the help of the regression coefficients, it can be deter-
mined which backbone or side chain of the amino acid at which position of
the sequence should be moved in which direction in order to obtain either a
lower or higher respective binding parameter.

4.3.4 Analysis of the quantitative buffer-kinetics rela-
tionship

Descriptor variables in QBKR models

The interaction between two biomolecules is influenced by the chemical en-
vironment, the buffer, in which the binding takes place. Thus, the binding
properties can be altered by varying the concentrations of the ingredients
the buffer contains or the pH value. A number of chemical additives possibly
have an effect on the association and dissociation rate constant as well as the
affinity constant.

Depending on the biomolecules under investigation, chemical components
that might be suspected to influence the binding behaviour without dis-
turbing the interaction completely are for example sodium chloride (NaCl),
dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA), urea,
potassium thiocyanate (KSCN), methyl sulfat (Me2SO) and the pH value.
The choice of the factors whose effect on the binding is examined should be
based on existing knowledge about the interacting biomolecules and their
kinetic parameters.

The number and kind of different concentrations of each of the chemical ad-
ditives and levels of the pH value that should be incorporated in the exper-
iments are selected according to the supposition concerning the effect that
might be caused by and depend on the purpose of the study. In order to
obtain knowledge about the binding between two biomolecules in vivo, for
example, the buffer composition used during the experiments should be cho-
sen to reflect the chemical environments existing in the corresponding cells
of an organism. If it is the case that the variations in the buffer composition
result merely in limited changes of the binding behaviour, the experiments
are of little use for the derivation of regression models.
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In order to quantify the effect of the presumed relevant buffer ingredients,
their adjustments are varied simultaneously. This results in a number of
so-called perturbation buffers with determined compositions, i.e. concentra-
tions of the chemical additives and levels of the pH value. One buffer that
is known to provide a chemical environment in which the interaction takes
place is defined to be the standard buffer. Kinetic measurements are per-
formed for the interactions between the wild-type as well as several mutants
of this protein and their binding partner in the perturbation buffers and the
standard buffer.

In order to determine the reproducibility of the realized measurements, the
binding parameters can be collected and compared for buffers with identical
concentrations of the ingredients and pH values.

QBKR regression models

The data obtained in the experiments performed during the analysis of quan-
titative buffer-kinetic relationships (QBKR) are used to establish regression
models by the application of the PLS methodology. The QBKR regression
equations present the relationship between the measured binding parameters
and the concentrations of the chemical additives and the level of the pH value
in the different buffers.

In practice, the univariate QBKR regression models are derived separately
for each of the different interactions involving one of the various proteins.
The association and dissociation rate constants as well as the affinity con-
stant are used as the response variables of the univariate models, whereas the
variables quantifying the buffer composition present the descriptor variables.

The value yibipl of the l-th response variable measured for the interaction
involving the ip-th protein in the ib-th buffer can be given as:

yibipl = b0l,ip +

mb∑
jb=1b

bjbl,ipxibjb
+ eibipl,

where
ib = 1b, . . . , nb

with l ∈ {1, . . . , k} and ip ∈ {1p, . . . , np} being fixed for each of the ipl uni-
variate regression models. The QBKR regression model can be expressed as
well as the following equation using the column vectors presented in subsec-
tion ??:
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yibipl = b0l,ip + b′mbl,ip
xibmb

+ eibipl.

In the context of QBKR regression models, the number of the sample size
equals the number nb of buffers used in the experiments. Furthermore, the
number of descriptor variables is given as the number mb of buffer descriptor
variables, i.e. the number of chemical components, including the pH value,
whose adjustments are varied. The number of different regression models de-
veloped for each of the three binding parameters corresponds to the number
of different interactions that are investigated, i.e. the number np of different
proteins incorporated in the experiments. Consequently, the total number of
regression models that are established during the QBKR analysis is 3np.

In the QBKR regression equation, the value xibjb
represents the value of the

jb-th buffer descriptor variable, i.e. the concentration of the correspond-
ing chemical additive or the level of the pH value, respectively, in the ib-th
buffer. Furthermore, the expression eibipl denotes the error concerning the
ib-th buffer, the ip-th interaction and the l-th response variable.

The constant term b0l,ip represents the intercept of the univariate regression
model of the l-th response variable for the ip-th interaction. The regression
coefficient referring to the jb-th buffer descriptor variable in the model of the
ip-th interaction referring to the l-th response variable is denoted by bjbl,ip .
Accordingly, the term bjbl,ip indicates that quantity the l-th response variable
is increased by with respect to the ip-th interaction by increasing the jb-th
descriptor variable by one unit.

By establishing these regression models relating the buffer composition for a
given interaction either to the association rate constant, the dissociation rate
constant or the affinity constant, the effect of the different buffer components
on the binding behaviour can be quantified with the help of the estimated
regression coefficients. Consequently, a characterization of the interaction
is obtained since the dependence of the binding behaviour on the chemical
environment is determined.

Furthermore, the regression models under study can be used to predict val-
ues of the binding parameters for a given interaction respecting particular
combinations of values of the buffer descriptor variables that have not been
incorporated in the experiments. However, reliable predictions by applying
the developed regression equations can only be guaranteed for values of the
descriptor variables within the range of adjustments of the buffer components
that is covered by the realized experiments.
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The QBKR models can be derived from the unified multivariate regression
model by fixing the index ip for each of the np univariate models built with
respect to the three binding parameters. Furthermore, the different kinds of
descriptor variables incorporated in the unified model are reduced to those
ones representing the buffer composition.

The establishment of one single multivariate regression model including in-
teraction terms between the buffer and amino acid descriptor variables would
provide more sophisticated statements compared to those ones obtained by
the 3np QBKR models. The reason is that these models can only be used
to determine the effects of the different buffer descriptor variables on the
binding behaviour for each of the interactions incorporating one of the mu-
tants. In contrast to the unified multivariate regression model, the QBKR
models are not able to provide explanations concerning the properties of the
proteins that cause the observed differences in the influences of the buffer
descriptor variables on the kinetic parameters with respect to the different
interactions. Therefore, in order to obtain this additional information, quan-
titative sequence-perturbation relationship (QSPR) models, described more
detailed in subsection ??, are required to establish subsequent to the devel-
opment of the QBKR models in practice.

Interpretation of the QBKR models

Since the QBKR models relate the binding parameters to the buffer compo-
sition, variations of the binding behaviour can be explained by variations of
the concentrations of the chemical additives and the levels of the pH value.
Analyzing the regression coefficients of the developed regression models leads
to conclusions concerning the influence of the buffer components on the inter-
actions involving the different mutants. Hence, the sensitivity of the binding
process under examination respecting varying adjustments of the chemical
environment can be determined.

Comparing the results obtained in the different regression models referring
to the various mutants permits the detection of differences and similarities
between the effects of the concentrations of chemical additives and the levels
of the pH value on the interactions. Based on the QBKR models derived
separately for the association and the dissociation rate constant as well as
for the affinity constant, the dependence of these binding parameters on the
buffer components can be analyzed. If the association rate and the dissoci-
ation rate constant are influenced by different factors, it can be concluded
that different binding forces contribute to the process of recognition between
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the interacting biomolecules and the stability of the complexes formed by the
binding partners.

Four different intermolecular forces can be distinguished that might be rele-
vant to an interaction, namely electrostatic forces, interactions between Lewis
acids and Lewis bases, van der Waal’s forces and direct hydrogen bonds. The
knowledge about the chemical factors having an effect on the binding is the
basis of conclusions relating to the forces that contribute to the interaction
under study. In the following, some examples describing what kind of infor-
mation can be derived from QBKR models are given.

If variations of the pH value ranging from values of 7.0 to 7.8 do not have
an effect on the binding parameters, it can be concluded that it is unlikely
that histidines are involved in the binding process. Furthermore, if EDTA
influences the interaction, there are probably metal ions contributing to the
binding. Otherwise, it can be suggested that hydrogen bonds or ionic inter-
actions are relevant. The effect caused by increasing concentrations of NaCl
permits statements concerning the contribution of electrostatic forces to the
interaction. The determination of the influence of KSCN can result in sug-
gestions respecting the water structure present in the complexes of bound
biomolecules. The importance of hydrophobicity during the binding process
can be judged by evaluating the effect of DMSO on the binding behaviour.

Desirable binding properties between the interacting biomolecules can be
achieved by adjusting particular chemical additives to specified levels in the
experimental conditions according to the results of the QBKR models. For
example, the conclusions from the QBKR analysis are relevant to the affinity
chromatography since the knowledge gained with the help of the regression
models can be used to improve the settings for this method. In the applica-
tion of the affinity chromatography, a rapid dissociation is required, i.e. a low
stability of the formed complexes of the biomolecules. Thus, respecting this
procedure, it is helpful to obtain knowledge in QBKR studies about those
chemical additives by which the interaction between the two biomolecules of
interest can easily be disturbed.

Furthermore, using the statements derived from the QBKR models concern-
ing the influence of the chemical additives on the interaction, conclusions can
be drawn respecting the compounds of the chemical environment whose con-
centrations should be controlled during an interaction experiment in order
to avoid undesired effects on the binding. Beyond this, the characterization
of a biomolecular interaction under varying experimental conditions, i.e. for
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several levels of the chemical additives instead of only one adjustment of
the buffer components, facilitates comparisons of the binding properties be-
tween different interactions. This is a desirable performance with respect to a
standardized exchange of knowledge about binding characteristics of diverse
interactions in data bases.

The chemical sensitivity fingerprint

In order to present the results of the QBKR analysis in a compact manner,
the regression coefficients of the numerous univariate regression models are
usually summarized in so-called chemical sensitivity fingerprints. These fin-
gerprints can be determined for each regression model, i.e. respecting each
mutant under investigation and each of the binding parameters.

The fingerprints are computed by dividing the regression coefficients refer-
ring to the different buffer descriptor variables by the constant term of the
respective equation and summarizing the resulting values in a vector. Thus,
the chemical sensitivity fingerprint fprl,ip for the ip-th interaction referring
to the l-th response variable is given as

fprl,ip :=



b1bl,ip

b0l,ip

b2bl,ip

b0l,ip

...
bmbl,ip

b0l,ip


.

Each element of the vector reflects the extent of the effect of one of the
chemical additives or the pH value, respectively, on the corresponding bind-
ing parameter in relation to the corresponding intercept. A negative value of
the intercept cannot be obtained since the binding parameters do not attain
negative values. Thus, a positive sign of an entry of the chemical sensitivity
fingerprint indicates a positive effect of the corresponding buffer descriptor
variable and vice versa.

The fingerprints derived from the univariate QBKR regression models present
a unique characterization of the interactions under study as they contain the
relevant information concerning the quantified effects of the buffer descriptor
variables in a compact form. Consequently, the fingerprints can be used to
compare the results obtained for the different modified proteins. Since the
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results of QBKR investigations become comparable by this presentation, dif-
ferences and similarities respecting the influence of the buffer composition on
the interactions, i.e. the sensitivity of the binding process in what concerns
changes in the chemical environment, can easily be determined. Therefore,
collecting the fingerprints of various kinds of interactions facilitates the ex-
change of information about biomolecular interactions.

4.3.5 Analysis of the quantitative sequence-perturbation
relationship

In order to relate the descriptors of the physico-chemical properties of the
amino acids at the mutation sites to the sensitivity of the binding behaviour
to changes in the concentration of a particular chemical additive or the pH
value of the buffer, quantitative sequence-perturbation relationship (QSPR)
models are established in practice. With the help of these models, it is
possible to explain on which physico-chemical properties of the amino acids
at which of the mutation sites the sensitivity of the interactions to the varying
adjustments in the chemical environment depends. The univariate QSPR
regression models are derived separately for each of the mb buffer components
by applying the PLS regression. The response variable refers either to the
association or the dissociation rate constant or the affinity constant.

The QSPR regression model respecting the jb-th chemical component and
the l-th response variable is of the following form:

bjbl,ip

b0l,ip
= b0l,jb

+

mp∑
jp=(r+1)p

q∑
s=1

b(jp)slxip(jp)s + eipl,jb
,

where ip = 1p, . . . , np

with l ∈ {1, . . . , k} and jb ∈ {1b, . . . ,mb} being fixed for each of the mbk
univariate regression models. Another presentation of the QSPR model can
be given under incorporation of the column vectors defined in subsection ??,
i.e.:

bjbl,ip

b0l,ip
= b0l,jb

+ b′((r+1)p)ql

→(mp)

x ip((r+1)p)q
→(mp)

+ eipl,jb
.

The ZZ-scales as well as the HFT-scale of the amino acids at the q mutation
sites present the descriptor variables of the QSPR models. Furthermore, the
elements respecting the jb-th buffer descriptor of the chemical sensitivity fin-
gerprints referring to the l-th binding parameter and the np mutants provide
the values of the response variable of the corresponding regression model.
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The constant term b0l,jb
denotes the intercept of the univariate regression

model respecting the l-th binding parameter and the jb-th buffer component.
The values of the descriptor variables and the regression coefficients of the
QSPR models regarding to the mb different buffer components can be inter-
preted according to those ones of the QSKR model. The error term eipl,jb

refers to the ip-th interaction, the jb-th buffer component and the l-th bind-
ing parameter. Furthermore, equivalently to the QSKR models, the number
q represents the number of mutation sites.

Analyzing the regression coefficients of the QSPR models reveals the effects
of the different physico-chemical properties of amino acids at the specific
positions of the sequence on the sensitivity of the interaction to a particu-
lar chemical compound. Based on this information, it is possible to suggest
which physico-chemical properties the amino acids at the chosen sites of the
sequence should show in order to obtain a biomolecule with a predefined
sensitivity to the different buffer components.

The form of the QSPR model cannot be derived directly from the unified
multivariate regression model though the descriptor variables are the same
as those ones included in the QSKR model. But the individual response
variables refer to estimations of regression coefficients of the QBKR mod-
els instead of measurements of the binding parameters as it is the case in
the multivariate model. However, as already explained in the context of the
QBKR analysis, knowledge obtained with the help of the unified multivariate
regression model incorporating interaction terms of the buffer and amino acid
descriptor variables can be considered to be equivalent to the information the
QSPR models provide.
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Chapter 5

Data analysis

The data analyzed in the following have been made available to us by Karl
Andersson who described and modelled these data in the publication ”Pre-
dicting the kinetics of peptide-antibody interactions using a multivariate ex-
perimental design of sequence and chemical space” from 2001.

The interaction under investigation is the binding between an antigen and its
antibody, namely a peptide of the antigen of the tobacco mosaic virus protein
(TMVP) and a Fab fragment of the monoclonal antibody 57P. The relevance
of studying this interaction is explained in the following section. This is fol-
lowed by a description of the data obtained by Biacore measurements of the
kinetic constants of this interaction under various circumstances.

Section ?? gives the results of the analysis of the interaction between the
tobacco mosaic virus protein and a Fab fragment of the antibody 57P per-
formed by Andersson et. al. (2001). The reproduction of the models devel-
oped in this publication using the PLS regression is described in section ??
and section ?? investigates the usefulness of the novel aspects of the mod-
elling of biomolecular interactions by applying various modifications of PLS
regression analysis.

5.1 Biochemical motivation

The following explanations concerning the components of the tobacco mosaic
virus (TMV) as well as its illustration in figure ?? are taken from the internet
page of wikipedia (www.wikipedia.org). Viruses consist of a so-called capsid
surrounding either RNA or DNA. The TMV belongs to the RNA viruses. Its
single RNA-strand comprises 6401 bases.
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The capsid is a coat protein whose function is the protection of the RNA from
the action of cellular enzymes. Furthermore, it determines the antigenicity
of the virus, i.e. which antibodies are able to bind to the virus. The capsid
of the TMV contains 2134 protein monomers. Each of these monomers has
a length of 158 amino acids. The RNA-strand and its capsid assemble by
themselves to functional viruses showing a helical rod-structure as it can be
seen in figure ??.

Figure 5.1: Electron microphotograph of TMV particles

As explained in more detail in the following, several mutations were intro-
duced in a peptide of a protein monomer of the TMV capsid by substituting
the amino acids at three positions in the sequence. Subsequently, the ki-
netic parameters of the interaction between these modified peptides and the
antibody 57P were measured in different chemical environments. First, this
procedure of modifying the amino acid sequence of the antigen instead of that
one of the antibody might be considered surprising. Often, a biomolecular
interaction analysis is realized in order to identify that modified antibody
showing optimal binding features for a particular antigen. Therefore, in
these cases, the kinetic experiments incorporate modified biomolecules of the
antibody instead of modified peptides of the antigen.

However, for the interaction under investigation, another kind of question is
to be answered. In fact, the aim of the current analysis is to obtain knowledge
about the circumstances, especially the amino acid sequence of the TMVP,
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under which the available antibody 57P can still be expected to be effective.
In particular, by modelling the relationship between the physico-chemical
properties of the amino acids at the mutation sites and the resulting kinetic
constants, it is possible to predict the binding characteristics of this interac-
tion for diverse potential mutations. Further, by considering different buffer
compositions as well in the experiments, the statements concerning the influ-
ence of the mutations at the chosen mutation sites on the binding behaviour
can be determined for several chemical environments that might occur in the
cells of an organism.

The motivation for this kind of research is the fact that mutations in the
RNA or DNA, respectively, of viruses might take place that result in the ex-
pression of modified proteins of the capsid. Consequently, the features of the
coat protein might be altered. In unfavourable cases, the existing antibodies
are not able to bind to the virus any longer or at least not as effectively as
usual because of these changes in the capsid.

Mutations in viruses can be caused either by the so-called antigenic drift or
the antigenic shift. If a mutation at a single position in the sequence occurs
randomly, this situation is called antigenic drift. Often, these mutations do
not influence the expression of the protein monomers and hence the features
of the capsid. Furthermore, usually, several mutations are necessary to lead
to relevant changes in the coat protein. This is the reason why different mu-
tation sites were taken into account in the kinetic experiments.

The antigenic shift refers to those mutations resulting from the combinations
of the RNA or DNA, respectively, of two different types of viruses being
present simultaneously in the same organism. The resulting virus particles
consist of the RNA or DNA, respectively, containing the new combinations
of bases. In general, mutations caused by the antigenic shift lead to notably
changes in the expressed protein monomers of the capsid. Consequently, the
new viruses show quite different features of the coat protein compared to
those of capsids of the original virus types.

With the help of the results of a regression analysis respecting the virus of
interest or a similar one, the binding characteristics of the interaction be-
tween an occurring mutant of the virus and the existing antibody can be
predicted since the amino acid sequence of the mutant can be determined in
laboratories. Thus, the relevant physico-chemical properties of the replaced
amino acids can be used as values of the descriptor variables in the estab-
lished regression models. Consequently, if a mutant of the virus occurs, it is
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easily and quickly possible to decide whether the available antibody is still
effective enough or whether it has to be modified in some way. Therefore,
no time must be wasted in testing the effectiveness of the antibody in vivo.
Further, the biochemical conclusions drawn from the regression analysis are
also useful in suggesting modifications of the antibody required to obtain an
effective new antibody, if necessary. Hence, in this case, the results of the re-
gression analysis in biomolecular interaction studies permit the performance
of specific relevant experiments for the development of a new antibody.

The TMV is a particularly suitable research object since it can readily be
produced in large quantities. Accordingly, it has often been used to study
general aspects of virus assembly and disassembly processes. However, the
examination of the interaction between modified antigens of the TMV and
the existing antibody 57P is of special interest for further reasons. The
TMV itself is a severe virus infecting members of nine plant families and ap-
proximately 125 individual species, especially tobacco, tomato, pepper and
cucumber. Therefore, an infection by this virus can cause enormous crop
losses. This is the reason why it is important to obtain information about
the efficiency of the available antibody 57P with respect to possible modified
viruses.

Furthermore, knowledge about the TMV can be used as well to elucidate the
binding behaviour of other similar viruses. For example, conclusions concern-
ing the Orthomyxovirus causing influenza are desired to be drawn from the
investigation of the interaction between the modified peptides of the TMV
and its antibody. For the Orthomyxoviruses, the possibility of predicting the
binding characteristics between an occurred mutant and the available anti-
body is especially relevant in evaluating the efficacy of the existing antibody
and hence to prevent the application of ineffective vaccinations.

In Orthomyxoviruses, antigenic shifts occur quite often. There have been
five worldwide flu epidemics since 1890. For example, the so-called Span-
ish influenza in 1918 cost 20 million of people their life. The frequency of
the antigenic shifts in the Orthomyxovirus illustrates the importance of being
prepared for possible mutants of viruses. The application of PLS regression to
measured binding parameters can contribute considerably to this ambitious
task. This is the reason why the optimization of the modelling procedure in
biomolecular interaction studies presents an important practical objective.
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5.2 Description of the data

As mentioned briefly above, changes in the experimental settings were per-
formed by modifying the amino acid sequence of the antigen of the TMVP as
well as by varying the buffer composition. The experiments were performed
following a statistical design plan to obtain appropriate data for the mod-
elling with a limited number of measurements.

Altogether, 20 buffers were used, one defined standard buffer and 19 per-
turbation buffers. The perturbation buffers contain the chemical additives
expected to be relevant, namely NaCl, urea, EDTA, KSCN and DMSO, in
three different concentrations and show three different levels of the pH value.
The exact buffer compositions chosen on the basis of a fractional factorial
design are given in table ?? that is taken from Andersson et. al. (2001).
Three of the 20 buffers, the buffers 17, 18 and 19, correspond to each other
in terms of the concentrations of the ingredients and the pH value. These
identical buffers might be used for the determination of the reproducibility
of the measurements.

Substitutions of amino acids were realized at three mutation sites, in fact at
the positions 142, 145 and 146 of the sequence of the wild-type TMV-peptide.
These positions were chosen since modifications at these localizations are sus-
pected to influence the binding behaviour to a limited extent without pre-
venting the interaction completely. The 17 modified peptides were obtained
by replacing amino acids at one, two or all of the three mutation sites si-
multaneously. The amino acid substitutions were determined according to
calculations of the condition number of the design matrix respecting the ZZ-
scales.

The wild-type peptide is characterized by Serine at position 142, Glutamic
Acid at position 145 and Serine at position 146 and is hence denoted by the
abbreviation SES. Some of the modified peptides have a length of 16 amino
acids, whereas some are 19 amino acids in length. Those mutants containing
16 amino acids comprise the positions 137-151 of the antigen and an addi-
tional N-terminal cysteine, and the 19 amino acids long peptides correspond
to the positions 134-151 and an additional N-terminal cysteine. With the
help of this additional N-terminal cysteine, the peptides are bound to the
sensor chip of the Biacore instrument. The different modifications of the
wild-type are summarized in table ?? that is taken partially from Andersson
et. al. (2001). Those amino acids deviating from the sequence of the wild-
type are emphasized by boldface letters.
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concentration [mM] of
buffer NaCl KSCN DMSO EDTA urea pH-value

standard buffer 150 0 0 3 0 7.4
buffer 1 150 4 30 3 40 7
buffer 2 150 4 300 23 400 7
buffer 3 150 22 30 23 400 7
buffer 4 150 22 300 3 40 7
buffer 5 550 4 30 23 40 7
buffer 6 550 4 300 3 400 7
buffer 7 550 22 30 3 400 7
buffer 8 550 22 300 23 40 7
buffer 9 150 4 30 3 400 7.8
buffer 10 150 4 300 23 40 7.8
buffer 11 150 22 30 23 40 7.8
buffer 12 150 22 300 3 400 7.8
buffer 13 550 4 30 23 400 7.8
buffer 14 550 4 300 3 40 7.8
buffer 15 550 22 30 3 40 7.8
buffer 16 550 22 300 23 400 7.8
buffer 17 350 13 165 13 220 7.4
buffer 18 350 13 165 13 220 7.4
buffer 19 350 13 165 13 220 7.4

Table 5.1: Composition of the buffers used in the experiments

For the interaction of interest, descriptor variables respecting the physico-
chemical properties of the amino acids at the mutation sites are considered in
the regression analysis. In particular, the influence of the three ZZ-scales and
the HFT-scale on the binding behaviour is meant to be quantified. Beyond
this, the 26 physico-chemical variables used by Sandberg et. al. (1998) for the
derivation of the ZZ-scales are conceivable to incorporate in the modelling.
Furthermore, the buffer descriptor variables representing the composition
of the chemical environment are taken into account. However, information
about the 3D-structure of the peptides under study is not available.

In order to obtain observations of the response variables of the regression
analysis, the association and dissociation rate constants of the interactions
involving the 18 different peptides and taking place in each of the 19 per-
turbation buffers and the standard buffer were measured with the help of a
Biacore instrument. Consequently, for each of the various mutants, 20 pairs
of binding parameters are available.
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amino acid at
mutation site number of

peptide 142 145 146 modifications

wild-type S E S 0
mutant 1 V Q E 3
mutant 2 M Y T 3
mutant 3 D Y D 3
mutant 4 G R A 3
mutant 5 G S Q 3
mutant 6 F G R 3
mutant 7 D R K 3
mutant 8 R V A 3
mutant 9 D S A 3
mutant 10 R D G 3
mutant 11 Q D F 3
mutant 12 M G S 2
mutant 13 N E S 1
mutant 14 S E A 1
mutant 15 S A S 1
mutant 16 A E S 1
mutant 17 E E S 1

Table 5.2: Summary of the amino acid substitutions at the three mutation
sites

For the determination of the reproducibility of the data, replicate measure-
ments were performed, i.e. the measurements of the binding parameters were
repeated a few times, in fact up to six times, for the interaction involving
a particular modified peptide in a specific buffer. Therefore, several values
of the association rate constant as well as the dissociation rate constant are
given for each mutant. The measurements of each of these binding parame-
ters should differ only slightly for the same adjustments of the experiment.

In table ??, the number of measurements in the standard buffer and the
corresponding average measured values and standard deviations referring to
the different peptides are presented. A missing value is indicated by a dot.
Apart from the fact that no observations of the association rate constant are
available for the mutants FGR and QDF, there are no further missing obser-
vations in the standard buffer measurements. For the perturbation buffers,
the measurements were repeated three times for the wild-type peptide, twice
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for the mutants DYD, SAS, GRA, RDG, RVA, NES and SEA and only one
single measurement was obtained for the remaining peptides.

number of number of
mean standard measure- mean standard measure-

[1/Ms] deviation ments [1/s] deviation ments
mutant of ka of kd

SES 762500 55861 2 0.000424 0.0001575 6
VQE 322000 1 0.004090 1
MYT 479000 1 0.024000 1
DYD 601500 102530 2 0.014250 0.0014849 2
GRA 816000 1 0.004913 0.0003365 3
GSQ 924000 1 0.034725 0.0040672 4
FGR . 0 0.067550 0.0111016 2
DRK 368000 74953 2 0.003840 0.0004808 2
RVA 378000 1 0.003373 0.0005519 3
DSA 681000 1 0.013350 0.0031820 2
RDG 708000 38183 2 0.012150 0.0000707 2
QDF . 0 0.004910 1
NES 569000 1 0.001717 0.0000569 3
SEA 824000 66468 2 0.000771 0.0000372 3
SAS 1130000 141421 2 0.005150 0.0002263 2
AES 606000 1 0.000825 0.0001351 2
EES 48000 1 0.003960 0.0005798 2

Table 5.3: Number of measurements, average measured values and standard
deviations for each peptide in the standard buffer

The numbers of missing values of both the association and dissociation rate
constant are listed in table ?? for each peptide and the perturbation buffers
and in table ?? regarding each of the 19 perturbation buffers. The values are
missing for several reasons. Either, the interaction did not take place since
the mutant of TMVP could not bind to the Fab fragment of the antibody
57P or the association or dissociation, respectively, proceeded too rapidly to
be recognized by the Biacore instrument. Furthermore, in a number of cases,
the measured value was judged to be false because of biochemical consider-
ations and was hence denoted as a missing value as well. If a value of the
response variables is missing, the respective observation is excluded from the
analysis. The peptide MGS is omitted completely from the analysis since it
did not bind in any of the buffers to the Fab fragment of the antibody 57P.
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number of number of
measurements per missing values

mutant perturbation buffer ka kd

SES 3 1 2
VQE 1 2 3
MYT 1 3 3
DYD 2 5 5
GRA 2 2 4
GSQ 1 1 6
FGR 1 4 3
DRK 1 2 2
RVA 2 8 4
DSA 1 3 3
RDG 2 5 10
QDF 1 5 2
NES 2 8 11
SEA 2 2 2
SAS 2 6 4
AES 1 1 2
EES 1 5 5

Table 5.4: Number of measurements and missing values for each peptide
regarding the 19 perturbation buffers

Regarding the association rate constant, the minimum observed value is
315000 [1/Ms] in the standard buffer and 42300 [1/Ms] in the perturba-
tion buffers. The maximum measured value of the association rate constant
is 1230000 [1/Ms] in the standard buffer and 1170000 [1/Ms] in the per-
turbation buffers. Furthermore, the mean of the available association rate
measurements is 668714 [1/Ms] in the standard buffer and 243497 [1/Ms]
in the perturbation buffers. In terms of the measurements of the dissocia-
tion rate constant, the values range between 0.00017 and 0.07540 [1/s] with
a mean of 0.01095 [1/s] in the standard buffer and between 0.00022 and
0.11000 [1/s] with 0.01165 [1/s] as the average obtained value in the pertur-
bation buffers.
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number of
missing values

buffer ka kd

buffer 1 4 4
buffer 2 1 1
buffer 3 1 1
buffer 4 2 4
buffer 5 2 4
buffer 6 3 4
buffer 7 2 4
buffer 8 1 4
buffer 9 1 3
buffer 10 3 2
buffer 11 14 10
buffer 12 3 8
buffer 13 1 0
buffer 14 3 2
buffer 15 4 7
buffer 16 3 2
buffer 17 5 4
buffer 18 0 1
buffer 19 10 6

Table 5.5: Number of missing values for each perturbation buffer

These statistical measures and further ones of interest are summarized in
table ?? for the association and dissociation rate constant, respectively. The
statistical measures are given separately for the dataset of standard buffer
measurements and for the dataset of perturbation buffers measurements. The
reason for this separate determination is the fact that usually in biomolec-
ular interaction studies, the establishment of the regression models is based
individually on the respective dataset. In particular, in QSKR modelling,
the values measured in the standard buffer are used, whereas the QBKR
modelling relies on the measurements obtained in the perturbation buffers.

In order to get a graphical impression of the available data, boxplots were
created. In detail, the measured association and dissociation rate constants,
respectively, are presented for the 19 different perturbation buffers in figure
?? and figure ??.
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in the standard in the perturbation
statistical measure buffer buffers

sample size n 21 494
number of missing values 0 63
minimum of 315000 42300
maximum the 1230000 1170000
mean ka- 668714 243497
standard deviation values 235236 152468
range [1/Ms] 915000 1127700
interquartile range 322000 167000

sample size n 41 494
number of missing values 0 71
minimum of 0.00017 0.00022
maximum the 0.07540 0.11000
mean kd- 0.01095 0.01165
standard deviation values 0.01668 0.01804
range [1/s] 0.07523 0.10978
interquartile range 0.01128 0.01244

Table 5.6: Statistical measures for both the association and dissociation rate
constant for the dataset comprising the measurements obtained in the stan-
dard buffer and the dataset containing the values measured in the perturba-
tion buffers, respectively

Examining the boxplots referring to the association rate constant, relatively
low measurements were obtained in buffer 16, whereas high values were mea-
sured in buffer 1. Since buffer 16 is characterized by high concentrations
of all of the chemical additives and high levels of the pH-value, and buffer
1 by low concentrations and low levels of the pH-value, it can be expected
that the buffer variables influence the association rate constant negatively.
Furthermore, relative high association rate constants were observed in the
buffers 2, 3, 4, 5, 9, 10 and 11. However, conclusions concerning the effect
of the buffer composition cannot be drawn from this fact as these buffers
vary from each other in terms of the concentrations of the chemical additives
and the levels of the pH-value. The measured values can be considered to
be sufficiently reproducible because the observations approximately coincide
with each other in the identical buffers 17, 18 and 19.
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Figure 5.2: Boxplots of the measurements of the association rate constant
depending on the 19 different perturbation buffers

The boxplots corresponding to the dissociation rate constant do not show no-
table deviations between the measured values regarding the different buffers.
Especially, the medians and the minimum observations do not vary consider-
ably from each other. Only the maximum measured values of the dissociation
rate constant differ with respect to the various buffers.

In figure ?? and figure ??, the boxplots of the measurements of the associ-
ation and dissociation rate constant, respectively, obtained in the standard
buffer are presented depending on the 17 different peptides.

For the different peptides, the association rate constants measured in the
standard buffer vary from each other. The mutants lead both to an in-
creased and a decreased association process compared to that one referring
to the wild-type peptide. Consequently, the extent of the binding between
the mutants and the Fab fragment of the antibody 57P is influenced rel-
evantly by the performed mutations. Obviously, even one single mutation
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Figure 5.3: Boxplots of the measurements of the dissociation rate constant
depending on the 19 different perturbation buffers

might cause notable changes in the association process since the association
rate constants of the mutants showing merely one amino acid replacement
differ remarkably from the association rate constant of the wild-type. Ex-
tremely small association rate constants are observed for the mutants VQE,
DRK and RVA, whereas the mutant SAS results in a relatively large value of
the association rate constants. However, it is not possible to suggest which
physico-chemical properties contribute to this fact.

In terms of the boxplots referring to the dissociation rate constant, notably
differences between the observed measurements in the standard buffer can
be determined for the different peptides as well. The wild-type peptide cor-
responds to the lowest observations of the dissociation rate constant. Con-
sequently, all of the produced mutants result in a faster dissociation process.
For the mutants NES, SEA and AES, only a limited increase of the dissoci-
ation rate constant is observed. These peptides like the mutants RVA and
SAS showing also a relatively low dissociation rate constant are those mu-
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Figure 5.4: Boxplots relating the association rate constants measured in the
standard buffer to the 17 different peptides

tants with only one single amino acid substitution. This result illustrates the
fact that more than one mutation is necessary to occur in the amino acid
sequence in order to lead to considerable changes in the dissociation pro-
cess. A relatively high increase in the dissociation rate constant compared
to that corresponding to the wild-type peptide is obtained for the interac-
tions incorporating the mutants FGR and GSQ. Further mutants resulting
in a moderately increased dissociation process are the peptides MYT, DYD,
RDG and DSA. Because of the diverse attained values of the amino acid
descriptor variables that might contribute to this effect, detailed conclusions
cannot be drawn directly from this observation.

The boxplots given in figure ??, figure ??, figure ?? and figure ?? give first
hints about the variations in the measurements for the different buffers or
peptides, respectively. However, graphics showing the relationship between
the descriptor variables taken into account in the regression analysis and the
respective response variable provide more detailed information. Accordingly,
scatterplots illustrating the relationship between either the association or the
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Figure 5.5: Boxplots relating the dissociation rate constants measured in the
standard buffer to the 17 different peptides

dissociation rate constant, respectively, and the quantitative descriptor vari-
ables could be created, i.e. for the three ZZ-scales, the HFT-scale and the
quantitative variables of the 26 physico-chemical properties of amino acids
(Sandberg et. al. (1998)) at the three mutation sites.

Furthermore, boxplots showing the measurements of the association and dis-
sociation rate constant, respectively, for the qualitative 26 physico-chemical
property variables from Sandberg et. al. (1998) at the three mutation sites
as well as on the buffer descriptor variables are conceivable to present. Ex-
amining the illustrations regarding the six buffer descriptor variables, box-
plots referring separately to the various peptides should be created instead of
scatterplots because only three different adjustments of each buffer descrip-
tor variable were investigated for the perturbation buffers.

However, if these boxplots referring to each of the descriptor variables are
meant to be presented, would require approximately 800 illustrations and so
are not shown here.
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5.3 Already realized analysis of the interac-

tion between the TMVP and a Fab frag-

ment of the antibody 57P

In Andersson et. al. (2001), several univariate QBKR models regarding the
different peptides and two univariate QSKR models are presented in order
to analyze the interaction between the tobacco mosaic virus protein and a
Fab fragment of the antibody 57P. These regression models were established
without incorporation of any interaction terms. Since structural information
concerning the TMVP was not available, a 3D-QSAR model could not be
developed. The numbers of iterations the different models are based on,
i.e. the numbers of extracted latent variable vectors, are not reported. The
software used by Andersson to apply PLS regression to the measured data
were MODDE 4.0 and SIMCA 8.0.

5.3.1 The already performed QSKR modelling

One univariate QSKR model was developed with the association rate con-
stant as response variable and one QSKR model incorporating the logarith-
mic measurements of the dissociation rate constant as values of the response
variable was established. Obviously, in Andersson et. al. (2001), information
about the energetic processes was meant to be obtained instead of knowledge
about the kinetic process of the dissociation. In the QSKR models relating
descriptor variables of the physico-chemical properties of amino acids to the
binding parameters measured in the standard buffer, 12 descriptor variables
were involved, namely the three ZZ-scales and the HFT-scale (see table ??)
respecting the amino acids at the three mutation sites.

The univariate QSKR models for the association rate constant and the log-
arithmic dissociation rate constant are specified as follows in Andersson et.
al. (2001):

ka = 1175000− 511000 ·HFT142 + 82200 · ZZ3145 and

log(kd) = −1.052− 1.11 ·HFT145 − 0.186 · ZZ3146.

Consequently, the QSKR modelling regarding the association rate constant
reveals that the value of the HFT-scale of the amino acid at position 142 and
the value of the ZZ3-scale of the amino acid at position 145 influence the
association of the interaction under study significantly. In detail, the larger
the value of the HFT-scale of the amino acid at position 142 is, the smaller
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is the value of the association rate constant, whereas the ZZ3-scale of the
amino acid at position 145 shows a positive effect on the association.

Furthermore, the QSKR analysis indicates that the logarithmic values of the
dissociation rate constant depend significantly on the value of the HFT-scale
of the amino acid at position 145. The corresponding QSKR model contains
additionally the ZZ3-scale at position 146 as relevant descriptor variable since
the incorporation of this variable improved the prediction accuracy. Both of
these descriptor variables were determined to have a negative influence on
the logarithmic dissociation rate constant.

In terms of the resulting prediction accuracies, the QSKR model referring
to the association rate constant leads to a value of 0.49 of the Q2

a-statistic,
whereas the Q2

A-value of the QSKR model related to the logarithmic disso-
ciation rate constant is reported to be 0.73.

5.3.2 The already realized QBKR modelling

The univariate QBKR models were not presented for the association rate con-
stant since, according to Andersson et. al. (2001), the obtained fingerprints
were too noisy to be interpreted and thus, the models could not provide reli-
able results. The reason for this circumstance is the fact that the correctness
of the association rate constant depends on the knowledge of the concentra-
tion of the Fab fragment of the antibody 57P in the different perturbation
buffers. However, this concentration that might vary in the different buffers
could not be determined exactly.

Accordingly, in Andersson et. al. (2001), QBKR models were merely es-
tablished for the dissociation rate constant as response variable. The QBKR
models describing the relationship between the six buffer descriptor variables
and the values of the dissociation rate constant measured in the 19 different
buffers were developed separately for each of the 17 peptides. Furthermore,
if repeated measurements were available, the QBKR models were derived
individually for these repetitions.

In Andersson et. al. (2001), the results of the QBKR analysis are summa-
rized by giving the values of the chemical sensitivity fingerprints referring
to the various peptides and the different repetitions. These fingerprints are
shown in table ??. However, only one fingerprint is available for each of the
mutants RVA, NES and SEA though the measurements were repeated twice
for these peptides. Beyond this, merely two fingerprints are given for the
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wild-type peptide for which three repeated measurements were performed.
The reason why the fingerprints referring to these repetitions were not pre-
sented is not explained in Andersson et. al. (2001).

According to Andersson et. al. (2001), the QBKR modelling shows that the
buffer components EDTA, KSCN and pH do not influence the dissociation
rate constant, whereas the chemical additives urea, DMSO and NaCl have
a significant effect on this response variable. The extents of these effects
vary with respect to the different peptides. However, information about the
prediction accuracy in form of the Q2

A-values of the obtained QBKR models
were not reported.

fingerprint referring to
peptide DMSO EDTA NaCl pH KSCN Urea

SES1 0.11000 0.02200 0.05600 -0.03400 0.03500 0.05900
SES2 0.10000 0.02800 0.02300 0.00950 0.01700 0.07700
VQE1 0.18000 -0.02400 -0.00960 0.00031 0.01100 0.08400
MYT1 -0.02500 -0.01300 -0.00710 0.00570 0.01200 0.05000
DYD1 0.17000 -0.01900 -0.05600 -0.02600 0.00580 0.08100
DYD2 0.17000 -0.00910 -0.07800 -0.03100 0.00190 0.05800
GRA1 0.20000 -0.01200 -0.05800 -0.01600 0.02300 0.11000
GRA2 0.17000 -0.02400 -0.02900 -0.02100 0.03400 0.13000
GSQ1 0.14000 -0.00430 -0.01700 -0.02000 0.04100 0.12000
FGR1 0.11000 0.01300 -0.00260 0.01300 0.02000 0.11000
DRK1 0.08500 -0.07000 -0.09200 0.00056 0.02100 0.08600
RVA1 0.14000 0.00037 0.06600 -0.01300 0.02400 0.10000
DSA1 0.13000 -0.00880 -0.05300 0.00620 0.02700 0.08900
RDG1 0.07900 -0.01400 0.04800 -0.01300 0.03700 0.07200
RDG2 0.07000 -0.02400 0.04700 -0.00940 0.03600 0.07000
QDF1 0.12000 -0.00035 0.05100 0.01300 0.05100 0.05000
NES1 0.14000 -0.00930 0.02600 -0.00300 0.01100 0.08900
SEA1 0.12000 -0.02500 0.04100 0.00370 0.01300 0.11000
SAS1 0.18000 -0.00510 0.03500 0.00074 0.01900 0.10000
SAS2 0.17000 0.01500 0.03800 -0.00870 0.02700 0.12000
AES1 0.06000 -0.00330 -0.01400 0.01100 0.01200 0.03900
EES1 0.16000 0.00390 -0.01000 0.00410 0.024000 0.06700

Table 5.7: Results of the already performed QBKR modelling for the different
mutants presented in form of the chemical sensitivity fingerprints, i.e. the
estimated regression coefficients divided by the corresponding intercept

124



5.4 Reproduction of the already performed

analysis

In order to reproduce the interaction analysis described in Andersson et.
al. (2001), the models presented in this publication were developed. In de-
tail, the univariate QSKR models with the association rate constant and the
logarithmic dissociation rate constant, respectively, as response variable were
established as well as the QBKR models determined separately for the differ-
ent peptides and repetitions for the dissociation rate constant. The software
used to apply the NIPALS-algorithm to the available data was SAS 9.1.

In SAS 9.1, by default, that optimal number A of iterations is determined
to be that which results in the minimum prediction residual sum of squares
(PRESS)-value, since, contrary to the Q2

a-statistic, small PRESS-values
indicate a good prediction accuracy. As explained previously, the final re-
gression model is meant to provide accurate predictions on the one hand, and
is desired to be based on relatively few iterations, i.e. extracted latent vari-
able vectors, on the other hand. In order to determine that model presenting
the best compromise between these two objectives, the test developed by van
der Voet can be performed by SAS 9.1. Then, the differences between the
minimum PRESS-value and those PRESS-values obtained after realizing
fewer iterations than the optimal number A are tested for significance. Fi-
nally, the smallest number A∗ showing an insignificantly larger PRESS-value
compared to the optimal one, i.e resulting in insignificantly larger residuals,
can be determined. Consequently, by applying van der Voet’s test, the final
regression model is based on that number A∗ of iterations instead of on the
optimal number A of iterations. If all of the PRESS-values referring to
smaller numbers of iterations than the optimal number A of iterations are
significantly larger than the optimal PRESS-value, then the model is spec-
ified with the help of the optimal number A of iterations. In the following,
the regression models were derived by applying this test by van der Voet and
both the optimal number A of iterations and the number A∗ of iterations
smaller than the number A and showing an insignificantly larger PRESS-
value are reported.

The Q2
a-statistic is not automatically computed in SAS 9.1. Therefore, the

calculation of the Q2
A∗-value was programmed, i.e. the Q2

a-statistic evalu-
ated for A∗ iterations to compare the prediction accuracies of the regression
models presented in Andersson et. al. (2001) with those of the reproduced
models. Further, the Q2

A∗-value is preferred to indicate the prediction accu-
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racy instead of the PRESS-value since the Q2
A∗-statistic is a standardized

measure in contrast to the PRESS-measure.

Beyond this, contrary to the program SIMCA 8.0 applied by Andersson, SAS
9.1 does not perform any significance testing of the estimated original regres-
sion coefficients. Instead, the importance of the descriptor variables can be
evaluated with the help of the so-called Variable Importance for Projection
(VIP)-measure that is also not computed automatically by SAS 9.1.

The VIP-value V IPj of the j-th descriptor variable is defined as follows:

V IPj =

√√√√√√m

A∗∑
a∗=1

ŵ2
ja∗

pctvarrespa∗

A∗∑
a∗=1

pctvarrespa∗

,

where the expression pctvarrespa∗ denotes the percentage of variation of the
response variable being explained in the a∗-th iteration. Accordingly, the
sum of these terms over the A∗ iterations indicates the total percentage of
variation of the response variable accounted for after the performance of A∗

iterations of the PLS algorithm. Consequently, the value V IPj reflects the
contribution of the j-th descriptor variable to the fitting of the model, in
other words, the importance for the projections performed during the PLS
algorithm. According to Chong and Jun (2005), descriptor variables with a
VIP-value larger than 1.00 can be considered to be relevant for the expla-
nation of the respective response variable. This threshold value is chosen
because the mean of the squared VIP-values equals the value 1.00. Conse-
quently, a VIP-value larger than the value 1.00 indicates that the correspond-
ing descriptor variable contributes to the modelling more than the average
importance for the projections among all descriptor variables. Therefore,
those descriptor variables showing a VIP-value larger than 1.00 are included
in the regression model.

5.4.1 The reproduced QSKR analysis

The results of the reproduction of the QSKR models are presented below.
Table ?? lists the VIP-values corresponding to the descriptor variables in the
modelling. The VIP-values larger than 1.00 are printed in boldface in this
table. Further, the VIP-values for those descriptor variables reported to be
significant by Andersson et. al. (2001) are indicated by a star.

For these descriptor variables already determined to be significant, the high-
est VIP-values were obtained for both the association and the logarithmic
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dissociation rate constants. Consequently, the computation of the VIP-values
can be considered to provide a reliable evaluation of the contributions of the
different descriptor variables to the explanation of the respective response
variable. However, the determination of relevant descriptor variables with
the help of the VIP-values presents a less strict decision rule compared to
the significance test performed by Andersson. This statement can be con-
cluded from the observation that more descriptor variables are found to be
important on the basis of the VIP-value criterion using the value 1.00 as
threshold value than are reported to be significant by Andersson et. al.
(2001).

However, Chong and Jun (2005) report that the proper cutoff value to de-
termine significant descriptor variables may be higher than the value 1.00.
Beyond this, comparing the VIP-values reveals that those VIP-values refer-
ring to the descriptor variables determined to be significant by Andersson et.
al. (2001) are all larger than the value 1.40. Therefore, this value is chosen
as the threshold value used to distinguish between descriptor variables pre-
sumed to be significant or not significant, though the latter may seeming not
to be irrelevant for the response in question. In table ??, VIP-values larger
than the value 1.00 but smaller than 1.40 are written in brackets to indicate
these latter descriptor variables.

Using the results of analyzing the computed VIP-values leads to the follow-
ing specification of the reproduced QSKR models for the association and the
logarithmic dissociation rate constants, respectively, as response variable:

ka = 1089483(−44551 · ZZ2142)− 422170 ·HFT142 + 53539 · ZZ3145

(−3391 · ZZ3146),

log(kd) = −2.039(−0.026 · ZZ2145)− 2.960 ·HFT145 − 0.315 · ZZ3146.

In these regression models, the descriptor variables with a VIP-value larger
than 1.00 are incorporated, where those descriptor variables showing a VIP-
value between the values 1.00 and 1.40 are included in brackets. The de-
scriptor variables determined in Andersson et. al. (2001) to be significant
are represented by boldface letters and numbers.

Compared to the regression models established in Andersson et. al. (2001),
two additional descriptor variables are incorporated in the model referring to
the association rate constant and one additional descriptor variable respect-
ing the logarithmic dissociation rate constant. In detail, in the QSKR model
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VIP-values referring to
response variable

descriptor variable position ka log(kd)

142 0.48 0.90
ZZ1 145 0.47 0.74

146 0.50 0.38
142 (1.21) 0.42

ZZ2 145 0.90 (1.19)
146 0.79 0.91
142 0.57 0.31

ZZ3 145 1.44* 0.61
146 (1.34) 1.44*
142 1.72* 0.49

HFT 145 0.82 2.19*
146 0.74 0.69

Table 5.8: The VIP-values for the descriptor variables considered in the
reproduced QSKR analysis for the association rate constant and the loga-
rithmic dissociation rate constant (further explanations in the text)

with the association rate constant as response variable, the ZZ2-scale at po-
sition 142 and the ZZ3-scale at position 146 are considered to be important
in addition to the HFT-scale at position 142 and the ZZ3-scale at position
145. For the QSKR model of the logarithmic dissociation rate constant, the
ZZ2-scale at position 145 is determined to be relevant beyond the HFT-scale
at position 145 and the ZZ3-scale at position 146.

In table ??, some measures describing the reproduced QSKR models are
summarized. In fact, the following kinds of information are listed:

• the optimal number A of iterations

• the smallest number A∗ of iterations resulting in insignificantly larger
residuals compared to those ones obtained on the basis of A iterations

• the Q2
A∗-value of the prediction accuracy after A∗ iterations

• the percentage pctvardescrA∗ of variation of the descriptor variables ac-
counted for after A∗ iterations and

• the percentage pctvarrespA∗ of variation of the respective response vari-
able explained after A∗ iterations.
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pctvar [%]
response variable A A∗ Q2

A∗ descrA∗ respA∗

ka 3 - 0.77 42.79 84.27
log(kd) 5 3 0.75 48.48 78.71

Table 5.9: Description of the reproduced QSKR models respecting the asso-
ciation rate constant and the logarithmic dissociation rate constant

For the reproduced QSKR model of the association rate constant, the mini-
mum PRESS-value is obtained after three iterations, whereas five iterations
are required to get the minimum PRESS-value for logarithmic dissociation
rate constant. For both QSKR models, the smallest number A∗ of iterations
with an insignificant difference between the respective resulting residuals and
those obtained for the optimal model is three. Consequently, for the model
for the association rate constant, no adequate smaller number of iterations
than the optimal number A could be found. Therefore, both the QSKR
model of the association rate constant and the logarithmic dissociation rate
constant are established on the basis of the computation of three iterations.

The prediction accuracies determined for the QSKR models approximately
coincide with each other. In detail, for the QSKR model of the association
rate constant, a Q2

A∗-value of 0.77 is obtained, and the Q2
A∗-value for the

QSKR model of the logarithmic dissociation rate constant is 0.75. Conse-
quently, both QSKR models can be considered to provide sufficiently accurate
predictions. The Q2

A∗-value computed for the logarithmic dissociation rate
constant approximately equals that Q2

A∗-value (0.73) reported by Anders-
son et. al. (2001). However, the Q2

A∗-value regarding the association rate
constant is much larger than that one (0.49) presented in Andersson et. al.
(2001).

Approximately 43% of the variation of the descriptor variables could be ex-
plained by the QSKR model of the association rate constant, a result a
little bit worse compared to the QSKR model of the logarithmic dissocia-
tion rate constant that accounts for approximately 48% of the variation of
the descriptor variables. Consequently, the latent variable vectors obtained
in the QSKR modelling represent the information inherent in the descrip-
tor variables only to a limited extent. Better results are obtained for both
models in terms of the explained percentage of variation of the respective
response variable. In particular, approximately 84% of the variation of the
measured association rate constants and approximately 79% of variation of
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the observed logarithmic dissociation rate constants could be accounted for
by the corresponding QSKR models. Since the explanation of the variation
of the respective response variable is more important than the explanation of
the variation of the descriptor variables to obtain a regression model provid-
ing accurate predictions, both QSKR models can be considered to be useful
in practical applications. The explained percentages of the total variation of
the descriptor variables or the respective response variable could not be com-
pared with those referring to the already derived models as this information
is not given in Andersson et. al. (2001).

5.4.2 The reproduced QBKR analysis

According to the performance presented in Andersson et. al. (2001), the
QBKR models were derived separately for the diverse peptides and the dif-
ferent repetitions, if repeated measurements were available. However, the
QBKR models were developed for each repetition of the measurements of
the wild-type and the mutants RVA, NES and SEA since it is not known for
which of the available repetitions of these peptides the models were reported
in Andersson et. al. (2001). It has to be noted, that the measurement-
numbers referring to the peptides are chosen randomly and hence, it cannot
be expected that they coincide with the notation used in the context of the
already realized analysis.

Those VIP-values larger than the value 1.00, computed for the six buffer
variables for the different peptides and repetitions, are listed in table ??.
According to the notation in the previous subsection, the threshold value of
1.40 is assumed to distinguish between relatively important and presumably
significant descriptor variables. Therefore, those VIP-values between the val-
ues 1.00 and 1.40 are written in brackets in table ??. The buffer components
determined to be significant by Andersson et. al. (2001) are indicated by a
star.

Comparing the computed VIP-values reveals that DMSO and urea are chemi-
cal additives influencing the dissociation rate constant for many peptides and
repetitions. In detail, DMSO corresponds to VIP-values larger than the value
1.00 for 20 of the 26 developed QBKR models, where merely five of these
VIP-values are smaller than the value 1.40. In terms of the buffer component
urea, a significant effect can be supposed for ten QBKR models and a relative
importance in 8 further cases. For both chemical additives DMSO and urea a
positive effect on the dissociation rate constant is determined. Consequently,
increasing the concentrations of these buffer components results in a faster
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dissociation process, i.e. more complexes of bound biomolecules decompose
per second. Further, the chemical additive NaCl shows a notably influence
on the dissociation rate constant for 8 models, where the effect is probably
significant for five of these models. The kind of influence of NaCl depends
on the particular peptide referred to.

However, the buffer components EDTA and KSCN as well as the pH-value
are not determined to have an important influence on the dissociation rate
constant. In particular, EDTA corresponds to VIP-values larger than the
value 1.00 for three models but a VIP-value larger than 1.40 is only com-
puted for one of these models. In terms of the pH-value, merely one of the
VIP-values is larger than the value 1.00 but is not even larger than the value
1.40. KSCN was not found to be relevant in any of the QBKR models.

The observation that the chemical additives DMSO, urea and NaCl have an
effect on the dissociation rate constant in contrast to the buffer components
EDTA and KSCN and the pH-value coincides with the statements reported
in Andersson et. al. (2001). The different extents of the influences of the
relevant chemical additives on the dissociation rate constant for the various
peptides can be evaluated not only with the help of the VIP-values but also
by comparing the chemical sensitivity fingerprints referred to subsequently.

Further information about the established QBKR models is summarized ac-
cording to the presentation in table ??. In fact, the optimal number A
of iterations, the smallest number A∗ of iterations resulting in insignificantly
larger residuals compared to those ones obtained on the basis of A iterations,
the Q2

A∗-value and the explained percentages pctvardescrA∗ and pctvarrespA∗

of the total variation of the buffer variables and the measurements of the
dissociation rate constant, respectively, are also given in table ??. The val-
ues of the optimal and used numbers of iterations, the obtained prediction
accuracies as well as the explained percentages of the total variation of the
buffer variables and the measured dissociation rate constants, respectively,
could not be compared with those referring to the already established models
since this kind of information is not given in Andersson et. al. (2001).

Examining the percentages of explained variation of the descriptor variables
reveals that only for four peptides, namely for the mutants DYD, GSQ,
RVA and EES, more than half of the total variation could be accounted for.
Consequently, the computed latent variable vectors cannot be expected to
represent the structure inherent in the buffer variables. Very good results
are obtained for the explained percentages of the variation of the measured
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dissociation rate constant. In detail, with the exception of five models, the
percentage of the variation that could be accounted for is larger than 80%.
Two models lead to explained percentages of approximately 83% and the
remaining 17 regression models result in more than 90% of variation that
could be accounted for.

Further, the Q2
A∗-values larger than 0.78, with the exception of five mod-

els, indicate sufficiently good prediction accuracies of the obtained QBKR
models. The five models for which less accurate predictions are provided
are identical to those models explaining less than 80% of the total variation
of the measured dissociation rate constants. These models referring to one
repetition corresponding to the wild-type and the mutants MYT, AES, NES
and VQE can be considered to be relatively useless in practical applications.
However, the other 19 developed QBKR models can be expected to provide
reliable predictions.

In table ??, the results of the reproduced QBKR analysis regarding the
dissociation rate constant are presented by giving the chemical sensitivity
fingerprints obtained for the different peptides and repetitions. The finger-
prints referring to a chemical additive showing a VIP-value larger than the
value 1.00 for a particular peptide and repetition are written in boldface in
this table. Further, the fingerprints corresponding to VIP-values between
1.00 and 1.40 are given in brackets. Conclusions on the reproducibility of the
measurements can be drawn by comparing the fingerprints for the repetitions
for one peptide. The reproduced fingerprints differ from those presented in
Andersson et. al. (2001), most probably for the same reasons explained in
the previous subsection.

For the QBKR models for one repetition of the wild-type and the mutant
SEA, respectively, the number A∗ of iterations leading to an insignificantly
larger PRESS-value than the optimal one is determined to be zero. This
observation can be interpreted as reflecting that these repeated measure-
ments are inappropriate for the model. This might be the reason why the
fingerprints for these peptides were not reported in Andersson et. al. (2001).
However, it cannot be explained why the second fingerprints referring to the
mutants RVA and NES are missing.
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VIP-values referring to pctvar [%]
mutant DMSO∗ EDTA NaCl∗ pH KSCN Urea∗ A A∗ Q2

A∗ descrA∗ respA∗

SES1 1.86 1 1 0.78 16.67 82.52
SES2 1.85 (1.07) 1.51 1.42 1 1 0.57 16.67 67.16
SES3 4 0 - - -
VQE1 1.94 (1.02) 5 1 0.61 18.95 75.68
MYT1 (1.18) 2.04 1 1 0.68 19.95 75.78
DYD1 1.61 (1.26) 6 4 0.97 58.78 98.62
DYD2 1.71 6 3 0.98 42.21 98.92
GRA1 1.79 (1.26) 4 3 0.98 42.24 98.81
GRA2 1.64 1.52 4 2 0.92 32.68 94.90
GSQ1 (1.30) (1.08) 1.51 5 3 0.96 54.00 98.40
FGR1 (1.35) 1.94 6 2 0.94 31.84 95.77
DRK1 (1.07) 1.51 (1.20) 2 1 0.90 18.79 92.61
RVA1 1.55 1.43 5 1 0.78 19.75 83.02
RVA2 1.63 1.50 3 3 0.92 50.00 96.23
DSA1 1.52 (1.28) 5 2 0.97 33.39 98.30
RDG1 (1.01) (1.28) 1.57 5 2 0.98 17.74 98.89
RDG2 (1.31) 1.58 6 2 0.95 33.90 96.90
QDF1 1.69 (1.29) 4 1 0.87 17.29 90.68
NES1 (1.21) 3 1 0.88 23.69 91.53
NES2 1.49 (1.11) 5 1 0.70 25.31 77.70
SEA1 1.44 1.77 2 1 0.88 16.78 91.28
SEA2 0 0 - - -
SAS1 1.81 (1.31) 6 2 0.95 31.01 95.93
SAS2 1.57 1.54 6 1 0.87 17.46 90.00
AES1 1.72 (1.34) 5 1 0.72 17.64 78.28
EES1 1.94 (1.26) 3 3 0.98 50.06 99.15

Table 5.10: Description of the reproduced QBKR models and VIP-values
corresponding to the buffer variables for the different peptides and repetitions
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fingerprint referring to
peptide DMSO EDTA NaCl pH KSCN Urea

SES1 0.00071 0.00187 0.00024 -0.07172 0.00331 0.00028
SES2 0.00166 (0.00612) 0.00026 0.05294 0.00407 0.00095
SES3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
VQE1 0.00387 0.00173 -0.00091 0.34628 0.02094 (0.00153)
MYT1 (-0.00024) -0.00080 -0.00002 0.02638 0.00131 0.00031
DYD1 0.00056 -0.00108 (-0.00016) -0.07509 0.00025 0.00026
DYD2 0.00046 -0.00034 -0.00020 -0.07635 0.00019 0.00016
GRA1 0.00083 -0.00087 -0.00022 -0.06026 0.00192 (0.00044)
GRA2 0.00061 -0.00190 -0.00008 -0.07226 0.00284 0.00048
GSQ1 (0.00059) -0.00032 0.00007 (-0.07589) 0.00326 0.00049
FGR1 (0.00312) 0.00457 -0.00019 0.40702 0.00956 0.00356
DRK1 0.00061 (-0.00903) -0.00064 0.04453 0.00356 (0.00057)
RVA1 0.00027 -0.00588 -0.00027 -0.04031 -0.00132 0.00013
RVA2 0.00081 0.00102 0.00030 -0.05522 0.00315 0.00056
DSA1 0.00138 -0.00217 -0.00046 0.07553 0.00553 (0.00092)
RDG1 (0.00039) -0.00093 (0.00023) -0.05263 0.00364 0.00037
RDG2 0.00036 -0.00271 (0.00023) -0.02980 0.00353 0.00044
QDF1 0.00172 0.00309 (0.00089) 0.10228 0.01269 0.00062
NES1 0.00038 -0.00347 0.00033 -0.06455 -0.00045 (0.00032)
NES2 0.00035 -0.00194 (0.00017) -0.05335 -0.00158 0.00021
SEA1 0.00337 -0.00545 0.00077 0.35986 0.01974 0.00309
SEA2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
SAS1 0.00160 -0.00082 0.00029 0.00630 0.00345 (0.00094)
SAS2 0.00096 0.00596 0.00024 -0.04704 0.00481 0.00071
AES1 0.00050 -0.00140 -0.00016 0.05793 0.00135 (0.00030)
EES1 0.00163 0.00076 -0.00010 0.03828 0.00490 (0.00067)

Table 5.11: Results of the reproduced QBKR modelling presented in form of
the chemical sensitivity fingerprints, i.e. the estimated regression coefficients
divided by the corresponding intercept
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5.4.3 Conclusions concerning the reproduced regres-
sion analysis

The reproduction of the already performed QSKR and QBKR modelling
showed that regression models providing relatively reliable predictions could
be developed with only a few exceptions. In the following section, novel
aspects of the modelling procedure are proposed and evaluated in order to
optimize the regression models.

The most important results of the regression analysis, i.e. the determination
of the relevant descriptor variables, could be reproduced for both the QSKR
and the QBKR models by applying the VIP-value criterion. However, the
reproduced estimated model parameters, i.e. the intercepts and the regres-
sion coefficients respecting the QSKR models and the chemical sensitivity
fingerprints for the QBKR models, respectively, differ from those reported in
Andersson et. al. (2001).

The differences between the results of the reproduced QSKR and QBKR
modelling and those ones presented in Andersson et. al. (2001) are probably
caused by the fact that the regression models were developed using different
software, where the exact performance in MODDE 4.0 and SIMCA 8.0 is
not described. Therefore, the modelling procedure could not be reproduced
in detail. Predominantly, two important aspects about the already realized
modelling are not reported in Andersson et. al. (2001).

On the one hand, the number of iterations on which the presented regres-
sion models are based are not mentioned. Probably, the models specified in
Andersson et. al. (2001) are derived with the help of a different number of
iterations than the number of iterations performed to obtain the reproduced
models. This distinction is caused by the fact that the useful test by van der
Voet was not applied during the development of the already specified models.
On the other hand, it is not known which variant of the PLS algorithm was
applied to the data, i.e. if also the NIPALS-algorithm was realized.

Furthermore, the significance test for the estimated regression coefficients
applied by Andersson et. al. (2001) is not implemented in SAS 9.1. Since
the performance of this test is not reported, neither in the literature referred
to nor in the manuals of MODDE and SIMCA, it could not be programmed.
Consequently, a different criterion, the VIP-value, was used to decide which
descriptor variables should be included in the final reproduced regression
models.
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In terms of the comparison of the obtained prediction accuracies, the values
of the Q2

a-statistic would not coincide with each other even if the reproduced
QSKR models would be identical with the already established models. The
reason is that SIMCA 7.0, and hence most probably SIMCA 8.0 as well, does
not use the standard formula for computing the Q2

a-values as explained by
Freyhult et. al. (2005). However, the standard formula was programmed in
SAS 9.1 in order to evaluate the prediction accuracy of the QSKR models
conventionally.

Therefore, it is not surprising that the results of the reproduced modelling
differ from those presented in Andersson et. al. (2001). The comparison be-
tween the reproduced models and the already developed ones illustrates the
importance of a detailed documentation of the applied modelling procedure
in order to allow for a reproduction of the results. The exact description
of the performance of the regression analysis is especially necessary for PLS
regression because of this method’s complexity.

5.5 Novel aspects of the analysis of the in-

teraction between the TMVP and a Fab

fragment of the antibody 57P

Usually, in a biomolecular interaction analysis, univariate regression mod-
els respecting the different subgroups of descriptor variables are established
without incorporation of interaction terms, though an alternative modelling
might be more advantageous. In this section, several novel aspects of the
analysis of binding processes are considered. The aim of this research is the
determination of that modelling procedure leading to an improved fitting
of the data and an increased prediction accuracy of the resulting regression
models. By applying this advanced and more comprehensive regression anal-
ysis to the data used in Andersson et. al. (2001), the knowledge about the
interaction between the tobacco mosaic virus protein and a Fab fragment of
the antibody 57P is extended.

To evaluate the benefit of the diverse modelling approaches, PLS regression
is applied in modified ways to the available data. Subsequently, the result-
ing regression models are compared with the help of the achieved prediction
accuracy and further measures of interest. In the following, the different
modelling approaches are motivated and explained.
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In practice, the regression models are specified separately for the different
subgroups of descriptor variables, i.e. individual QSKR and QBKR models
are developed. However, alternatively, one single unified regression model
incorporating both the amino acid and buffer descriptor variables can be es-
tablished. With the help of a unified model, the effects of all conceivable
descriptor variables can be modelled simultaneously. This novel modelling
approach can be considered to be preferable to that one of the separate sub-
group models since the results of the regression analysis can be presented in
a more compact form. Consequently, the unified modelling approach facili-
tates the biochemical interpretation of the results of the regression analysis.

Beyond this, in a unified model, relevant interaction terms can be taken into
account, not only individually among the amino acid descriptor variables
or buffer descriptor variables, but even between each amino acid and each
buffer descriptor variable. The incorporation of these interaction terms in
the unified model is especially relevant since in Andersson et. al. (2001),
different extents of the influence of the chemical additives urea, DMSO and
NaCl on the binding respecting the diverse mutants are reported. Obviously,
interactions between the physico-chemical properties of the amino acids at
the mutation sites and the concentrations of these buffer components exist.
These supposed interactions can be easily quantified and hence explained by
performing the unified modelling approach involving interaction terms.

In practice, it is often the case that QSPR models referring to the chemi-
cal additives are established in addition to the QBKR and QSKR models
in order to explain the different sensitivities to changes in the concentra-
tions of the buffer components for the diverse mutants. The values of the
response variables of these QSPR models are estimated regression coefficients
divided by the estimated intercept. Since these models involve estimations
instead of measurements as values of the response variables, they cannot be
expected to provide very reliable statements concerning the interaction be-
tween the amino acid sequence and the chemical environment. Therefore,
another advantage of specifying a unified regression model with interaction
terms instead of the subgroup models is that this complicated QSPR mod-
elling procedure becomes unnecessary to perform. Consequently, the estab-
lishment of a unified regression model including interaction terms replaces
not only the numerous subgroup models but also the diverse QSPR models.
This fact illustrates the contribution of the unified modelling approach for
simplifying the interpretation of the results.

In the following, interaction terms are not only incorporated in the unified
models but in all established regression models. Furthermore, the models are
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developed as well without interaction terms in order to determine the benefit
of taking into account interaction terms. Obtaining knowledge about the im-
portance of interaction terms contributes notably to an improvement of the
understanding of the influences on the binding process under investigation.

Usually, univariate models are developed in the analysis of biomolecular in-
teractions, though multivariate modelling might be a useful alternative. In
contrast to Ordinary Least Squares, multivariate PLS regression leads to dif-
ferent results compared to the univariate analysis. Therefore, multivariate
subgroup models as well as multivariate unified models are established in or-
der to examine whether the multivariate analysis approach can be considered
to be advantageous in comparison with the univariate modelling.

Instead of the commonly used three ZZ-scales, the 26 variables considered
in Sandberg et. al. (1998) to derive the ZZ-scales (see subsection ??) can
be incorporated as descriptor variables of the physico-chemical properties of
amino acids in the corresponding regression models, i.e. the QSKR and uni-
fied models. By quantifying the physico-chemical properties of the amino
acids at the mutation sites by these 26 variables, a more detailed represen-
tation of the possibly relevant features of amino acids can be used in the
modelling. Therefore, involving the 26 variables presented in Sandberg et.
al. (1998) in the regression analysis permits a more sophisticated modelling
of the influences of the physico-chemical characteristics of amino acids on the
interaction of interest. Consequently, the use of this quantification of physico-
chemical features, that is unusual in the regression analysis of biomolecular
interactions so far, can be suspected to lead to an improved prediction accu-
racy of the resulting models.

In Andersson et. al. (2001), the QBKR models are established separately
for the different peptides and repetitions. The QBKR models might be de-
veloped as well for each peptide, ignoring the different repetitions. This
performance leads to the specification of fewer regression models and would
hence contribute to a facilitation of the presentation of the results of the
QBKR modelling.

Furthermore, the application of the test from van der Voet already described
in the previous section presents a novel modelling aspect for the analysis of
the interaction between the tobacco mosaic virus protein and a Fab fragment
of the antibody 57P. The reason is that this test is not implemented in the
software used to develop the models presented in Andersson et. al. (2001).
The application of van der Voet’s test leads to the establishment of regres-
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sion models being based on less iterations than those models that would have
been specified without using this test. The final regression models are hence
easier to interpret in terms of the underlying latent variable vectors but show
merely an insignificant difference from the optimal obtainable prediction ac-
curacy.

In order to determine the benefit of the different novel modelling approaches,
a number of regression models are established and compared. Which model
comparisons are performed for which particular objective is explained in the
following subsection. Subsequently, the diverse obtained regression mod-
els are described by relevant measures, and the novel modelling procedures
are evaluated. Finally, the optimal and further useful regression models are
established, and the results of these models are used to draw biochemical
conclusions concerning the influences of the diverse descriptor variables on
the interaction between the tobacco mosaic virus protein and a Fab fragment
of the antibody 57P.

5.5.1 Model comparisons

The diverse regression models established for the evaluation of the different
modelling approaches are listed and numbered in table ??. In this table,
the incorporated response variable(s) and descriptor variables are indicated
by the symbol x for each regression model. Consequently, table ?? can be
used to identify whether the respective regression models are univariate or
multivariate models or whether they represent subgroup (QBKR or QSKR,
respectively) models or unified models.

In the respective subgroup models, the buffer descriptor variables (QBKR),
the HFT-scale and the three ZZ-scales or the HFT-scale and the 26 variables
presented by Sandberg et. al. (1998) (QSKR) are incorporated as descriptor
variables. The unified models involve either the buffer descriptor variables
and the HFT-scale and the three ZZ-scales or the buffer descriptor variables,
the HFT-scale and the 26 variables used by Sandberg et. al. (1998).

The QSKR models are based on the measurements obtained in the standard
buffer, whereas the QBKR models and the unified models are established
using the data measured in the perturbation buffers. None of the regres-
sion models, except model number 6, refers to the logarithmic measurements
since the biochemical interpretation of the results is meant to provide state-
ments concerning the kinetic and not the energetic processes. Model 6 with
the logarithmic dissociation rate constant as response variable is included in
the investigation because this modelling was described in Andersson et. al.
(2001). 139



The QSKR, QBKR and unified models were developed both under incor-
poration of all conceivable interaction terms and without interaction terms.
Exceptions refer to the models involving the 26 variables considered by Sand-
berg et. al. (1998). In fact, the QSKR models were only derived without
interaction terms since an extremely large number of interaction terms would
have been to be taken into account. Further, because of the same reason, the
corresponding unified models incorporate only the interaction terms between
the buffer variables and the HFT-scale and these 26 variables at the three
mutation sites. The respective regression models without and with interac-
tion terms are indicated by one common model number in ??.

For each conceivable constellation of incorporated descriptor variables, three
regression models are established, namely two univariate ones for the associ-
ation and dissociation rate constant, respectively, and one multivariate one
incorporating simultaneously both of these response variables.

For QBKR modelling, 17 models are obtained if the establishment was per-
formed separately for each peptide, and 26 models are specified in case of
realizing the regression analysis separately for each peptide and repetition.
Consequently, the model numbers in table ?? refer to a number of regression
models for the QBKR models.

The application of PLS regression is particularly useful for the establishment
of the regression models required for the evaluation of the novel modelling
approaches. The reason is that most of the models comprise a large number
of descriptor variables. In particular, by taking into account all conceivable
interaction terms or even some of them, an enormous number of descriptor
variables has to be dealt with additionally. Furthermore, the use of the 26
variables from Sandberg et. al. (1998) instead of the three ZZ-scales of the
amino acids at the mutation sites leads to an increase of the number of de-
scriptor variables by 69 in the corresponding regression models. For example,
the unified regression models taking into account the 26 variables from Sand-
berg et. al. (1998) involve 87 descriptor variables, i.e. the HFT-scale and the
26 physico-chemical property variables of the amino acids at the three muta-
tion sites and six buffer descriptor variables, and the corresponding enormous
number of interaction terms, not even considering the resulting interaction
terms.

The model comparisons performed for the investigation of the usefulness of a
specific novel modelling aspect are summarized in table ?? and are described
below. In this table, the model comparisons are indicated by the symbol ↔.
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descriptor variables
response variable buffer HFT-scale/ HFT-scale/

model number and name ka kd variables ZZ-scales 26 variables

(m1) QBKRs-ka x x
(m2) QBKRs-kd x x
(m3) QBKRs-ka,kd x x x
(m4) QSKR-ka x x
(m5) QSKR-kd x x
(m6) QSKR-logkd log(kd) x
(m7) QSKR-ka,kd x x x
(m8) QSKR-ka-26vars x x
(m9) QSKR-kd-26vars x x
(m10) QSKR-logkd-26vars x x
(m11) QSKR-ka,kd-26vars x x x
(m12) unified-ka x x x
(m13) unified-kd x x x
(m14) unified-ka,kd x x x x
(m15) unified-ka-26vars x x x
(m16) unified-kd-26vars x x x
(m17) unified-ka,kd-26vars x x x x

Table 5.12: The regression models taken into consideration

In order to investigate the usefulness of performing a multivariate regression
analysis instead of a univariate one, each of the multivariate regression mod-
els is compared to the two corresponding univariate models referring either to
the association or the dissociation rate constant. If the resulting prediction
accuracies and other measures of the multivariate models are better than the
prediction accuracies for the corresponding univariate models, the multivari-
ate modelling procedure should be preferred to the univariate analysis for
the interaction in question.

In general, the incorporation of interaction terms in the regression analy-
sis is advised in order to permit the determination of their relevance. The
usefulness of involving interaction terms in the modelling for the interaction
under study is evaluated by examining whether interaction terms are stated
to be important in the regression models developed including them. Further,
characteristics of all of the regression models with interaction terms are com-
pared to those without them. In particular, the regression models established
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novel aspect model comparisons

multivariate modelling m5 ↔ m1/m2, m6 ↔ m3/4, m9 ↔ m7/8,
m13 ↔ m11/12, m16 ↔ m14/15

use of interaction terms m1-m7, m12-17m with interaction terms ↔
m1-m7, m12-17m without interaction terms

use of 26 variables from m8 ↔ m4, m9 ↔ m5, m11 ↔ m7,
Sandberg et. al. (2001) m15 ↔ m12, m16 ↔ m13, m17 ↔ m14, m6 ↔ m10
unified modelling m12 ↔ m1/m4, m13 ↔ m2/m5, m14 ↔ m3/m7,

m15 ↔ m1/m8, m16 ↔ m2/m9, m17 ↔ m3/m11
QBKRs per peptide m1-m3 per peptide ↔ m1-m3 per peptide and repetition

Table 5.13:

by Andersson et. al. (2001) without interaction terms (see section ??) are
reproduced with interaction terms (m2, m4 and m6), and it is investigated
whether their inclusion improves them.

In order to determine whether the more sophisticated representation of the
physico-chemical properties of the amino acids at the mutation sites by the
26 variables used by Sandberg et. al. (1998) is advantageous compared to
the quantification of these features with the help of the three ZZ-scales, the
QSKR and unified models incorporating the 26 variables are compared to
the corresponding models involving the three ZZ-scales.

The unified modelling procedure should be preferred to the performance of
establishing different subgroup models because of the compactness of the
resulting model and the fact that the influences of the numerous descrip-
tor variables can be modelled simultaneously. However, it has to be in-
vestigated whether the respective unified regression models show at least the
same prediction accuracy obtained by the separate descriptor subgroup mod-
els. Therefore, the conceivable unified regression models are compared to the
corresponding QBKR and QSKR models.

The usefulness of establishing the QBKR models separately for each pep-
tide in contrast to the performance presented in Andersson et. al. (2001) is
evaluated by comparing these models with the corresponding QBKR models
developed separately for each peptide and repetition.
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5.5.2 Description of the regression models

In order to evaluate the novel modelling approaches for the interaction under
study, several measures of interest were determined and summarized in tables
for the diverse regression models. In fact, the number A of optimal itera-
tions, the smallest number A∗ of iterations resulting in insignificantly larger
residuals than those obtained by the optimal model are given as well as the
Q2

A∗-values indicating the respective prediction accuracies obtained after A∗

iterations. Further, the percentage pctvardescr of variation of the descriptor
variables accounted for after A∗ iterations and the percentage pctvarresp of
variation of the considered response variable explained after A∗ iterations
are listed. In case of a multivariate regression model, the percentages of ex-
plained variation of both the association and dissociation rate constant were
determined separately beyond the total variation of the response variables
accounted for.

In table ??, these measures are summarized for the QSKR and unified mod-
els incorporating the ZZ-scales or the 26 variables used by Sandberg et. al.
(1998), respectively. In terms of the QBKR models established per peptide
or per peptide and repetition, the corresponding measures are given in the
appendix in table ?? and table ??, respectively.
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inter- pctvar [%]
model response action descrA∗ respA∗

number type variable(s) terms A A∗ Q2
A∗ total ka kd

m4 ka 3 - 0.77 42.79 84.27
m4 ka x 7 3 0.81 44.56 87.84
m5 Q kd 3 1 0.82 23.74 85.17
m5 S kd x 15 2 0.93 26.63 95.23
m6 K log(kd) 5 3 0.75 48.48 78.71
m6 R log(kd) x 12 10 0.97 88.01 98.20
m7 ka, kd 6 4 0.70 60.20 86.83 80.07 93.58
m7 ka, kd x 7 5 0.80 66.69 90.16 90.06 90.26

m8 QS ka 1 0
m9 KR- kd 4 3 0.92 37.32 95.22
m10 26 log(kd) 12 4 0.94 45.51 94.81
m11 vars ka, kd 4 0

m12 ka 8 4 0.62 31.74 62.89
m12 ka x 15 - 0.78 76.76 79.81
m13 uni- kd 12 9 0.93 62.70 93.32
m13 fied kd x 15 13 0.99 73.25 99.30
m14 ka, kd 14 9 0.62 63.71 77.70 62.94 92.45
m14 ka, kd x 15 - 0.77 78.52 88.42 78.26 98.57

m15 ka 15 12 0.73 87.13 74.23
m15 uni- ka x 15 - 0.75 72.47 76.59
m16 fied- kd 15 13 0.98 90.48 97.93
m16 26 kd x 15 - 0.99 73.39 99.62
m17 vars ka, kd 15 - 0.73 93.36 85.96 74.21 97.70
m17 ka, kd x 15 8 0.68 44.66 82.35 68.51 96.20

Table 5.14: Description of the QSKR and unified models involving the ZZ-
scales or the 26 variables from Sandberg et. al. (1998) (further explanations
in the text)
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5.5.3 Evaluation of the novel modelling approaches

The evaluation of the novel modelling aspects is predominantly based on the
comparison of the prediction accuracies represented by the Q2

A∗-values of the
different regression models. The reason for this comparison is the impor-
tance of the characteristic of a regression model to provide exact predictions.
Though the Q2

A∗-values can be expected to present too optimistic an impres-
sion of the obtained prediction accuracies, they can be used to compare the
different regression models for this feature. The Q2

A∗-values for the univariate
QSKR and unified models are summarized in table ??, where the prediction
accuracies obtained by the modelling procedure applied in Andersson et. al.
(2001) are in bold.

model type QSKR QSKR-26vars unified unified-26vars
interaction terms x x x
response variable

ka 0.77 0.81 - 0.62 0.78 0.73 0.75
kd 0.82 0.93 0.92 0.93 0.99 0.98 0.99
logkd 0.75 0.97 0.94 - - - -

Table 5.15: Summary of the Q2
A∗-values obtained for the univariate QSKR

and unified models

Further, the percentages of explained variation of the descriptor variables are
taken into account. For the multivariate models, the percentages of explained
variation of both the association and dissociation rate constant are consid-
ered in addition to the total prediction accuracy because these percentages
also indicate the extent of exactness of the predictions that can be expected
from the models.

Comparing the multivariate QSKR and unified regression models with the
corresponding univariate models reveals that in most cases the multivariate
modelling leads to worse results than the univariate. In detail, the percent-
ages of variation accounted for by the multivariate models for the association
and dissociation rate constant, respectively, are lower than those explained
by the univariate models with two exceptions where these percentages are
slightly larger. These exceptions refer to the QSKR model without inter-
action terms for the dissociation rate constant and the QSKR model with
interaction terms respecting the association rate constant. The explained
percentages of variation of the association and dissociation rate constant co-
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incide with each other for the unified model incorporating the 26 variables
by Sandberg et. al. (1998) without interaction terms. All of the total Q2

A∗-
values referring to the multivariate QSKR and unified regression models are
lower than the respective Q2

A∗-values of the univariate models. A multivari-
ate QSKR model involving the 26 variables from Sandberg et. al. (1998)
could not be developed because the number A∗ of iterations resulting in in-
significantly larger residuals compared to those obtained by the model based
on the optimal number A of iterations was determined to be zero. For the
multivariate QBKR models, the total Q2

A∗-values are more often lower than
0.70 than those of the univariate QBKR models. Consequently, the multi-
variate modelling approach cannot be considered to be a useful alternative
to the univariate modelling procedure for the interaction under investigation
since it does not lead to more accurate predictions. This is the reason why
the multivariate models are not taken into account in the model comparisons
described below.

Many of the interaction terms included in the regression models show VIP-
values larger than the value 1.00 and some of them even refer to VIP-values
larger than the value 1.40. Consequently, interactions between the descrip-
tor variables contribute relevantly to the binding behaviour of the interaction
under study and should hence be incorporated in the regression analysis to
allow for an explanation of the interferences between the various variables.
A comparison of the prediction accuracies of the regression models involv-
ing interaction terms with those of the regression models without interaction
terms stresses the fact that it might be useful to take interaction terms into
account. In detail, the obtained prediction accuracies improved considerably
by including interaction terms in the QSKR models in terms of the dissocia-
tion rate and logarithmic dissociation rate constants as well as in the unified
model for the association rate constant. The prediction accuracies of the
other models incorporating interaction terms are only slightly better than
those of the models without interaction terms. In these cases, the inter-
action terms need not necessary be included in the models, and regression
models without interaction terms are preferred as they are easier to interpret.
Another interesting observation is that the inclusion of interaction terms in
the QSKR and unified models involving the ZZ-scales as descriptor variables
results in higher percentages of explained variation of the descriptor variables
than is achieved by extracting more latent variable vectors. However, for the
unified models using the 26 variables by Sandberg et. al. (1998) as descriptor
variables, the percentages of variation accounted for of the descriptor vari-
ables are lower with interaction terms than without. Obviously, the fitting
of the data suffers from taking into account too many descriptor variables
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showing no relevance to the binding behaviour, and the latent variable vec-
tors represent only a part of the data of the descriptor variables. Therefore,
in case of a large number of descriptor variables, it is advisable not to include
all conceivable interaction terms in the regression models but rather a subset
of them thought to be relevant by biochemists.

The incorporation of the more detailed representation of the physico-chemical
properties by the 26 variables mentioned in Sandberg et. al. (1998) seems to
be advantageous to the inclusion of the ZZ-scales summarizing these variables
since the prediction accuracies could be improved for almost all of the models
by using these 26 variables instead of the ZZ-scales. The only exceptions refer
to the unified model of the association and dissociation rate constant both
with interaction terms where the use of these 26 variables results in the same
or a slightly worse prediction accuracy, respectively. The QSKR model of the
association rate constant could not be established under incorporation of the
26 variables from Sandberg et. al. (1998). The reason for this observation
might be the fact that the experimental design was based on the values of
the ZZ-scales and not on the values of these 26 variables. Accordingly, it can
be expected that this model could be developed as well if a statistical design
plan were derived with the help of the 26 physico-chemical properties. If the
prediction accuracy of a model involving the 26 variables from Sandberg et.
al. (1998) at least equals that of the corresponding model using the ZZ-scales,
the model with the 26 variables should be preferred for interpretation and
reporting since it provides more detailed information about the influencing
physico-chemical properties of the amino acids at the mutation sites.

The unified modelling approach can be considered to be a useful alternative
to the commonly separately performed QSKR and QBKR modelling. Com-
paring the prediction accuracies of the unified models with the corresponding
QSKR models shows that the QSKR models in terms of the association rate
constant are better than the unified models with one exception. However, the
Q2

A∗-values of the unified models incorporating interaction terms only differ
slightly from the Q2

A∗-value of the QSKR model without interaction terms.
In comparison with the QSKR models of the dissociation rate constant, the
unified models result in better or at least equal prediction accuracies. It
has to be noted that for these unified models, Q2

A∗-values of 0.93 and 0.98
without interaction terms and 0.99 with interaction terms were computed.
Thus, these models can be expected to provide very reliable predictions in
practice. The unified model of the association rate constant incorporating
the 26 variables from Sandberg et. al. (1998) could be developed both with
and without interaction terms in contrast to the corresponding QSKR model
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and shows a sufficiently large value of 0.73 and 0.75, respectively, of the Q2
A∗-

statistic. Many of the QBKR models respecting the association rate constant
both with or without interaction terms and both established per peptide or
peptide and repetition show Q2

A∗-values smaller than the value 0.70 or cannot
be developed. Therefore, an alternative modelling procedure like the unified
modelling approach is required for the association rate constant in order to
obtain knowledge about the influence of the buffer variables. The results
of the QBKR models in terms of the dissociation rate constant are better.
Since the unified models in terms of the dissociation rate constant provide
very exact predictions, it is no problem using these models instead of the
QBKR models for the determination of the effect of the considered buffer
components. The unified modelling procedure should be preferred to the de-
scriptor variables subgroup models, not only if the resulting models lead to
more accurate predictions but also if the prediction accuracy is slightly worse.
This fact can be accepted because of the more compact presentation of the
results in form of one single model instead of a QSKR model and 17 or 26,
respectively, QBKR models and the resulting facility of the interpretation.
Beyond this, the unified modelling allows for the quantification of interaction
terms between the amino acid and buffer descriptor variables that might be
suspected to be relevant.

The question of whether the QBKR models should be established per peptide
or per peptide and repetition cannot be answered in general. If the QBKR
models developed per peptide and repetition show approximately the same
high Q2

A∗-values for a particular peptide, the specification of a single QBKR
model referring to this peptide is useful. Otherwise, the QBKR models per
peptide result in bad prediction accuracies or even cannot be specified and
hence, the models should be developed per peptide and repetition. This
complication respecting the decision on the exact performance of establish-
ing QBKR models also leads to the suggestion to prefer the unified modelling
procedure to the descriptor variables subgroup modelling.

Summarizing, the model comparisons revealed that some of the novel mod-
elling approaches can lead to an improvement of the exactness of the pre-
dictions compared to that one of the predictions calculated with the help of
the models established according to the common performance presented by
Andersson et. al. (2001). In particular, the incorporation of descriptor vari-
ables reflecting the physico-chemical properties of amino acids more detailed
than the commonly used ZZ-scales as well as the inclusion of interaction
terms improved the prediction accuracies of the developed regression mod-
els. Beyond this, the unified modelling procedure that should be preferred
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to the subgroup modelling because of the interpretability resulted in models
showing sufficiently large prediction accuracies regarding the association rate
constant and very well prediction accuracies referring to the dissociation rate
constant. Therefore, this modelling approach can be proposed as a standard
procedure of performing a regression analysis with respect to biomolecular
interactions.

The multivariate modelling cannot be considered advantageous to the uni-
variate one for the interaction under study. However, for other interactions,
multivariate models might be more appropriate than univariate ones. In con-
trast to this aspect that might be of different use for different interactions,
the statements concerning the incorporation of interaction terms and more
detailed descriptor variables as well as the unified modelling approach can be
expected to be valid in general for the analysis of biomolecular interactions.

5.5.4 Specification of the optimal regression models

In the following, the regression models which are optimal for the resulting
prediction accuracies are presented for the association rate and dissociation
rate constants as well as for the logarithmic dissociation rate constant. In
the established regression models, the symbol ∗ is used to indicate interac-
tion terms. Since some of the 26 variables from Sandberg et. al. (1998) are
indicator variables, the different adjustments of these variables are referred
to by giving the corresponding number in the brackets [] in the regression
models.

For both the association rate constant and the logarithmic dissociation rate
constant, the most accurate predictions are provided by a QSKR model in-
volving interaction terms, where the Q2

A∗-values are 0.81 and 0.97, respec-
tively. Consequently, the prediction accuracies of the models established
according to the performance described in Andersson et. al. (2001) could be
improved partially remarkably by merely including interaction terms in the
regression models. In terms of the dissociation rate constant, the best pre-
diction accuracy with a Q2

A∗-value of 0.99 was obtained by both the unified
model including the 26 variables from Sandberg et. al. (2001) and interaction
terms and the unified model with the ZZ-scales and interaction terms, where
the latter model is chosen to be presented in section ?? in the appendix.
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ka = 838227− 111847 ·HFT142(−7907 · ZZ2142)(+7538 · ZZ3145)(+883 · ZZ3146)

−5820 · ZZ1142 ∗ ZZ2142 − 97370 ·HFT142 ∗HFT146 − 4119 · ZZ1145 ∗ ZZ2145

+5836 · ZZ3145 ∗ ZZ1146(+820 · ZZ1142 ∗ ZZ3145)(−1245 · ZZ1142 ∗ ZZ3146)

(−7586 · ZZ2142 ∗HFT145)(−5955 · ZZ2142 ∗HFT146)(−3820 · ZZ3142 ∗ ZZ2145)

(+6627 · ZZ3142 ∗HFT145)(+1228 · ZZ3142 ∗ ZZ3146)(+8962 ·HFT142 ∗ ZZ3145)

(−15292 ·HFT142 ∗ ZZ1146)(−1880 ·HFT142 ∗ ZZ3146)(−1014 · ZZ1145 ∗ ZZ3146)

(−10529 · ZZ2145 ∗HFT145)(−3918 · ZZ2145 ∗ ZZ1146)(−2921 · ZZ2145 ∗ ZZ3146)

(+7362 · ZZ3145 ∗HFT145)(−307 · ZZ3145 ∗ ZZ3146)(+4778 · ZZ3145 ·HFT146)

(−7687 ·HFT145 ∗ ZZ2146)(+3694 ·HFT145 ∗ ZZ3146)(−769 · ZZ1146 ∗ ZZ3146)

(−627 · ZZ3146 ∗HFT146)

logkd = −4.534328− 0.672850 ·HFT145 − 0.106923 · ZZ3146(+0.038284 · ZZ1142)

(−0.075566 · ZZ2145)(+0.006403 · ZZ2146)0.242483 ·HFT142 ∗HFT145

−0.005436 ·HFT142 ∗ ZZ3146 − 0.102806 · ZZ1145 ∗HFT145

−0.028224 · ZZ1145 ∗ ZZ3146 − 0.101335 ·HFT145 ∗ ZZ3146

−0.091297 · ZZ3146 ∗HFT146(+0.059251 · ZZ1142 ∗HFT142)

(+0.016928 · ZZ1142 ∗ ZZ1145)(+0.018373 · ZZ1142 ∗HFT145)

(+0.128222 · ZZ2142 ∗ ZZ3146)(−0.044738 · ZZ3142 ∗ ZZ1145)

(−0.067007 · ZZ3142 ∗ ZZ2145)(−0.087835 · ZZ3142 ∗ ZZ3146)

(−0.046019 ·HFT142 ∗ ZZ2145)(−0.136094 · ZZ2145 ∗ ZZ3145)

(−0.135864 · ZZ2145 ∗HFT145)(−0.040037 · ZZ2145 ∗ ZZ1146)

(+0.000955 · ZZ2145 ∗ ZZ3146)(−0.000476 · ZZ2145 ∗HFT146)

(−0.041420 ·HFT145 ∗ ZZ1146)(+0.071831 ·HFT145 ∗ ZZ2146)

(−0.545765 ·HFT145 ∗HFT146)(−0.003467 · ZZ1146 ∗ ZZ2146)

(−0.029517 · ZZ1146 ∗ ZZ3146)

Further models are specified in section ?? in the appendix in order to pro-
vide information about the relevance of the 26 variables from Sandberg et.
al. (1998) and to determine the influence of the buffer variables and the in-
teractions between the amino acid and buffer variables. These models can be
considered to be useful in practice because of their potential of biochemical
conclusions that might be drawn from them though they show slightly worse
prediction accuracies compared to the optimal ones. The corresponding pre-
diction accuracies can be found in table ??.
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In detail, the QSKR model involving the 26 variables from Sandberg et. al.
(1998) is shown for the logarithmic dissociation rate constant. Furthermore,
the unified model incorporating these 26 variables without interaction terms
is presented for the dissociation rate constant. For the association rate con-
stant, the unified model including the ZZ-scales with interaction terms and
the unified model using the 26 variables from Sandberg et. al. (1998) without
interaction terms are established. Though the ZZ-scales do not represent the
physico-chemical properties of amino acids as detailed as these 26 variables
do, the model with the ZZ-scales is specified in order to permit a comparison
with the statements obtained with the help of the QSKR models.

The determination of the descriptor variables that have to be included in the
regression models is based on the VIP-value criterion, i.e. those variables are
considered to be relevant that show VIP-values larger than the value 1.00.
The descriptor variables referring to the VIP-values between 1.00 and 1.40
are judged to be less important than those belonging to VIP-values larger
than the value 1.40 and are hence given in brackets.

In order to present the relevance of the various descriptor variables for the
different regression models, the VIP-values were summarized in tables in the
appendix, where those values between 1.00 and 1.40 are given in brackets.
Because of the enormous number of interaction terms referring to VIP-values
larger than the value 1.00, these descriptor variables were not listed in these
tables.

In table ?? and table ??, the VIP-values referring to the QSKR models
involving the ZZ-scales or the 26 variables from Sandberg et. al. (1998),
respectively, are presented. Those VIP-values belonging to the unified mod-
els using the ZZ-scales or the 26 variables mentioned by Sandberg et. al.
(1998) are listed in table ?? and table ??, respectively. Furthermore, the
VIP-values referring to the QBKR models established per peptide or per
peptide and repetition, respectively, are summarized in table ?? and in table
??, respectively.

5.5.5 Biochemical conclusions

In the following, biochemical conclusions concerning the association and dis-
sociation rate constants as well as the logarithmic dissociation rate constant
are drawn from the regression models specified in the previous subsection and
in section ?? in the appendix. This task is of special importance in practice
in order to improve knowledge about the binding process under study and to
understand the predictions of the kinetic parameters for a particular mutant.
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With the help of the established regression models, it is possible to deter-
mine the relevant descriptor variables with respect to the interaction between
the TMVP and the antibody 57P as well as the nature of their influence.
However, further biochemical interpretations, in particular in case of which
constellation of the values of the association and dissociation rate constants
caused by a specific mutant with determined physico-chemical properties the
existing antibody can still be expected to be effective, requires the judgement
of a biochemist.

Statements concerning the affinity of the interaction under examination are
not presented since they can be concluded directly from those ones respecting
the association and dissociation rate constant that are more relevant.

Conclusions concerning the association rate constant

In the QSKR model involving the ZZ-scales with interaction terms that shows
the best prediction accuracy in terms of the association rate constant, the
HFT-scale at position 142 is determined to be relevant in accordance with
the statement in Andersson et. al. (2001). The ZZ3-scale at position 145
included in the model presented in Andersson et. al. (2001) though it was
not evaluated to be significant, is incorporated in brackets like the ZZ2-scale
at position 142 and the ZZ3-scale at position 146 in the model specified in
the previous subsection. Furthermore, four interaction terms showing a neg-
ative effect with one exception are incorporated in the model as well as a
number of additional interaction terms given in brackets since they refer to
VIP-values between 1.00 and 1.40.

Consequently, a mutant characterized by a larger value of the HFT-scale
at position 142 than that one of the amino acid serine, i.e. has a stronger
tendency to adopt a helical structure at this location than it is present in
the wild-type peptide, the association rate constant of the interaction with
the antibody 57P is reduced. Since the process of association between the
existing antibody and this particular mutant would be limited compared to
the association between the antibody and the wild-type peptide, the anti-
body might be not effective any more depending on the extent of reduction
of the association rate constant. However, the influences of the other possi-
bly relevant physico-chemical properties at the specific positions as well as of
the interaction terms determined to be important should also be taken into
account in these considerations to improve understanding of the interaction
under study.
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A unified model involving the ZZ-scales with interaction terms is specified in
the appendix in order to present additional information about the influence
of the buffer variables as well as of the interactions between the amino acid
and buffer variables on the association of the interaction of interest. Further,
a unified model incorporating the 26 variables from Sandberg et. al. (1998)
without interaction terms is established that can be used to obtain more
detailed knowledge of the relevant physico-chemical properties of the amino
acids at the mutation sites.

Both models reveal that the chemical additives NaCl and urea influence the
association process negatively, i.e. the higher the concentrations of these
buffer components, the smaller is the association rate constant. The obser-
vation that NaCl has an effect on the association rate constant leads to the
suggestion that electrostatic forces contribute to the binding process under
investigation. According to Andersson et. al. (2001), the fact that both the
pH-value and the chemical additive EDTA do not influence the association
rate constant indicates that Fab histidines as well as metal ions are probably
not incorporated in the binding process, but hydrogen bonds or ionic inter-
actions are relevant.

In the unified model with the ZZ-scales and the interaction terms, a number
of interaction terms refer to VIP-values larger than the value 1.40. In detail,
six buffer interaction terms were determined to be relevant, most of them
with a positive influence. All of the seven important interaction terms be-
tween the buffer variables and the physico-chemical properties of the amino
acids at the mutation sites show a negative effect on the association rate
constant.

For the 26 variables from Sandberg et. al. (1998) whose influences are quan-
tified in the unified model without interaction terms, it can be stated that
the physico-chemical properties of the amino acid at position 145 are pre-
dominantly important for the association rate constant. In particular, the
molecular weight, the van der Waals volume of the side chain as well as the
total surface area of the amino acid at this position have a negative effect
on the association of the interaction under study. Beyond this, one of the
nuclear magnetic resonance shift variables at this mutation site influences
the association positively.

Consequently, the three regression models established for the association rate
constant contribute relevantly to a better understanding of the binding pro-
cess under investigation by quantifying the influences of the physico-chemical
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properties of the amino acids at the mutation sites, of the buffer variables as
well as of the interactions between these variables. In order to obtain reliable
predictions of the association rate constant, the QSKR model involving the
ZZ-scales and interaction terms should be applied.

Conclusions concerning the dissociation rate constant

The optimal model concerning the dissociation rate constant, i.e. the unified
model incorporating the ZZ-scales and interaction terms, reveals that dif-
ferent physico-chemical properties of the amino acids at all of the mutation
sites influence the dissociation process. In detail, the ZZ-scale and HFT-scale
at position 145 and the ZZ3-scale at position 146 have a relevant negative
effect on the dissociation rate constant, whereas the ZZ1-scale at position
142 shows an important positive effect.

Accordingly, mutants characterized by larger values of the relevant physico-
chemical properties, compared to those for the wild-type peptide, at the
corresponding mutation sites with a negative influence show a smaller value
of the dissociation rate constant in comparison with that measured for the
wild-type peptide. In detail, mutants with amino acids at position 145 be-
ing larger and more polarizable and having a stronger tendency to adopt a
helical structure compared to the features of the amino acid glutamic acid
of the wild-type at this position or an amino acid with larger values of the
electronic properties at position 146 than serine lead to a reduced dissocia-
tion process compared to that one of the interaction involving the wild-type
peptide. Furthermore, mutants with larger values of the ZZ1-scale at posi-
tion 142, i.e. with a more hydrophobic amino acid than serine, lead to an
increased value of the dissociation rate constant compared to that one refer-
ring to the wild-type peptide.

A number of interaction terms are incorporated additionally in the unified
regression model, where many of them refer to VIP-values larger than the
value 1.40. The interaction terms respecting the physico-chemical properties
of the amino acids at the mutation sites show both a negative and a positive
effect, whereas the interactions between the buffer and amino acid variables
have a negative influence on the dissociation rate constant with one excep-
tion. The interaction terms between the buffer and amino acid variables can
be used to explain the differences of the influences of the chemical additives
between the various peptides observed in the QBKR models.

Buffer variables were not determined to be important in the unified model
though the VIP-values concerning the corresponding QBKR models indicate
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that DMSO, NaCl as well as urea influence the dissociation rate constant rel-
evantly. The reason for this observation that the buffer variables are not in-
cluded in the model might be the fact that the incorporated physico-chemical
properties of the amino acids already explain the respective influences. In
particular, the contribution of DMSO is known to reflect the importance of
hydrophobicity being represented by the ZZ1-scale determined to be rele-
vant. Further, the influence of NaCl reveals the contribution of electrostatic
forces. These forces are reflected as well by the ZZ3-scale incorporated in
the model. However, a corresponding relationship concerning the chemical
additive urea is not known but is expected to be existent with respect to
either the ZZ2-scale or the HFT-scale.

In order to obtain a more detailed identification of the physico-chemical prop-
erties influencing the dissociation rate constant, the unified model including
the 26 variables from Sandberg et. al. (1998) without interaction terms,
given in the appendix, is considered. According to the unified model using
the ZZ-scales, the HFT-scale at position 145 is determined to be relevant.
Beyond this, several additional physico-chemical properties at the position
142 and 146 refer to VIP-values larger than the value 1.40. This fact that
the model involving the 26 variables from Sandberg et. al. (1998) might be
relatively complex could be suspected from the observation that all of the
three ZZ-scales were determined to be relevant in the corresponding unified
model. In detail, the retention values TL4 and TL7 as well as the semi-
empirical molecular orbital index ELUMO of the amino acid at position
142 and the logP-value, the polar surface area and the hydrogen bond donor
property of the amino acid at position 146 influence the dissociation rate con-
stant relevantly. With the exception of the variable ELUMO, the effects are
positive. Obviously, large values of these physico-chemical properties might
correspond partially to small values of the ZZ-scales for which a negative
effect was determined.

Conclusions concerning the logarithmic dissociation rate constant

The optimal model respecting the logarithmic dissociation rate constant, i.e.
the QSKR model involving the ZZ-scales with interaction terms, shows that
the HFT-scale at position 145 and the ZZ3-scale at position 146 influence
the logarithmic dissociation rate constant in a negative way. Consequently,
amino acids with a higher value of the helix-forming tendency at position 145
lead to a reduction in the logarithmic dissociation rate constant as amino
acids with higher values of certain electronic properties like charge, polarity,
electrophilicity and electronegativity. This observation coincides with the
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results reported in Andersson et. al. (2001). However, the model specified
in the previous subsection can be expected to provide more exact predictions
than that one presented in Andersson et. al. (2001) as it is indicated by a
higher Q2

A∗-value.

Beyond the HFT-scale at position 145 and the ZZ3-scale at position 146,
a few interaction terms are determined to be relevant. The six interaction
terms corresponding to VIP-values larger than the value 1.40 have a nega-
tive effect on the logarithmic dissociation rate constant with one exception.
In addition to the HFT-scale at position 145 and the ZZ3-scale at position
146, the HFT-scale at the other two mutation sites as well as the ZZ1-scale
at position 145 contribute to the most relevant interaction terms. Further
interaction terms referring to VIP-values between 1.00 and 1.40 that are con-
sequently of minor importance were included in brackets in the model.

The statement that the ZZ3-scale at position 146 influences the logarithmic
dissociation rate constant relevantly gives first hints that electronic proper-
ties play an important role. In order to determine the contributing properties
more exactly, the QSKR model involving the 26 variables from Sandberg et.
al. (1998) without interaction terms were established in the appendix. This
model permits the detailed identification of those physico-chemical proper-
ties influencing the logarithmic dissociation rate constant.

In detail, a negative side chain at position 145 results in a lower value of
the logarithmic dissociation rate constant, whereas the factors of the indica-
tor variable representing the hydrogen bond acceptor properties show both
a negative or a positive effect on the logarithmic dissociation rate constant
in dependence on the position of the amino acid. A number of further de-
scriptor variables are included in the model that correspond to VIP-values
between 1.00 and 1.40 and are consequently relatively important as well.

Summarizing, the QSKR model involving the ZZ-scales with interaction
terms can be used to obtain accurate predictions of the logarithmic dis-
sociation rate constant and knowledge of the relevance of the considered
physico-chemical properties of the amino acids at the mutation sites. For
more detailed information about the physico-chemical properties of impor-
tance, the QSKR model including the 26 variables from Sandberg et. al.
(1998) without interaction terms can be taken into account.
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Summary of the biochemical conclusions

With the help of the established regression models, the relevant descriptor
variables could be determined and their effects on the interaction under study
could be quantified. In order to present a summary of the descriptor variables
influencing the association and dissociation rate constant predominantly, the
variables determined to be relevant in terms of these response variables are
listed in table ??, where the kind of the respective effect is indicated by a
plus or a minus. Interaction terms are not incorporated in this table.

The regression analysis revealed that different physico-chemical properties of
amino acids at different mutation sites influence the association and dissoci-
ation. Obviously, different intermolecular forces contribute to these kinetic
processes. Table ?? illustrates that most of the descriptor variables lead to
undesired kinetic characteristics when they attain larger values compared to
the values referring to the wild-type. This statement is based on the fact that
almost all of the relevant descriptor variables with respect to the association
rate constant have a negative influence, whereas most of the descriptor vari-
ables determined to be relevant regarding the dissociation rate constant show
a positive effect. Consequently, larger values of the respective descriptor vari-
ables compared to those of serine or glutamic acid of the wild-type peptide
result in a reduced association process or an increased dissociation process,
respectively, in comparison with those regarding the wild-type peptide.

response variable ka kd

descriptor variable position

HFT 142 -
145 -

MW 145 -
vdW 145 -
Stot 145 -

NM12 145 +
TL4 142 +
TL7 142 +

ELUMO 142 -
logP 146 +
Spol 146 +

[4] HDONR 146 +

Table 5.16: Summary of the influences of the most relevant descriptor vari-
ables on the association and dissociation rate constant
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By determining the mutation sites where amino acid replacements lead
predominantly to changes in the binding behaviour, functional domains of
the TMVP could be identified. In detail, position 145 can be considered to
be crucial for the association process, whereas positions 142 and 146 play an
important role in terms of the dissociation process.

Based on the results of the regression analysis, it is possible to judge the
efficacy of the antibody 57P for a particular occurred mutant. For mutants
presumably leading to an increased association process or a decreased disso-
ciation process compared to those ones referring to the wild-type peptide, it
can be expected that the existing antibody 57P is still effective. However, for
mutants resulting in a decreased association process or an increased dissoci-
ation process in comparison with that ones regarding the wild-type peptide,
the available antibody might not be efficient anymore, depending on the ex-
tent of change in the kinetic parameters. Whether a particular mutant will
show an increased or decreased association or dissociation process, respec-
tively, can be determined by taking into account the effects of the relevant
descriptor variables in the established regression models.

For any potential occurring mutant, the values of the important physico-
chemical properties at the relevant positions can be determined and used in
the established regression model to obtain a prediction of the association rate
constant of the interaction between this mutant and the existing antibody.
By comparing this prediction with that referring to the wild-type peptide,
conclusions can be drawn on whether the available antibody might be still
effective for the particular mutant. In this context, the additional knowledge
of biochemists is required.
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Chapter 6

Summary and outlook

This dissertation provides a comprehensive presentation of both the method-
ology of Partial Least Squares (PLS) regression and its application to the
analysis of biomolecular interactions. The explanations and derivations re-
ferring to the performance of PLS regression contribute to the completeness
of a statistically exactly described methodology of this procedure. Further-
more, the general realization of biomolecular interaction studies is presented
in detail. Beyond this, the modelling procedure with respect to a particular
binding process, the interaction between an antigen of the tobacco mosaic
virus protein (TMVP) and the corresponding antibody 57P, is optimized by
applying novel modelling approaches. Consequently, the knowledge of influ-
ences on this particular interaction are extended, providing the possibility
of determining functional domains of the TMVP and predicting the kinetic
parameters with respect to an occurred mutant of this virus.

PLS regression is a method that can be used in cases when the Ordinary Least
Squares procedure is not applicable to data showing collinearity among the
descriptor variables, e.g. if the number of descriptor variables exceeds the
number of objects in the sample. By applying PLS regression, the specifi-
cation of the corresponding regression model can nevertheless be performed.
In the course of the algorithm, latent variable vectors, which compress the
information of the descriptor variables using the information of the response
variables, are computed. Further terms obtained in the iterations of the
algorithm can be used to estimate the unknown model parameters of the
regression model.

In biomolecular interaction studies, the aim is to gain knowledge of the factors
a certain interaction depends upon. Therefore, regression models relating
measured kinetic parameters of the binding process to a number of potential
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descriptor variables are established. Since often only a limited number of
measurements can be performed but a multitude of possibly relevant factors
is included in the regression models, PLS regression is particularly useful in
this context.

The case-study concerns the interaction between an antigen of the tobacco
mosaic virus protein (TMVP) and a Fab fragment of the antibody 57P. In
particular, the objective was to establish useful regression models with the
help of the available data to draw biochemical conclusions concerning the
interaction of interest and to provide the possibility of judging the efficacy of
the existing antibody with respect to a specific mutation of the tobacco mo-
saic virus. This kind of information can also be used to elucidate the binding
behaviour of similar viruses such as Orthomyxovirus causing influenza.

By repeating the analysis of the data obtained for investigating the interac-
tion of interest, the most important conclusions on the relevant descriptor
variables could be reproduced from the VIP-value criterion. However, the
new model parameter estimates, i.e. the intercepts and regression coeffi-
cients, differed from those found earlier. Explanations for these differences
are given. The comparison between the new and old models illustrates the
importance of a detailed documentation of the application of PLS regression
to permit a reproduction of the regression analysis results.

In general, in biomolecular interaction studies, univariate regression mod-
els are presented that are specified individually with respect to the different
subgroups of descriptor variables. In detail, the following types of regression
models are developed: quantitative buffer-kinetics relationship, quantitative
sequence-kinetics relationship, quantitative structure-activity relationship or
3D-quantitative structure-activity relationship. These are referred to respec-
tively as (QBKR),(QSKR), (QSAR)or (3D-QSAR)-models.

Usually, interaction terms between the different descriptor variables are not
considered in the regression analysis. In this dissertation, alternative mod-
elling approaches were proposed and evaluated in terms of the improvement
in the resulting prediction accuracy.

Consequently, a number of different types of models were established. In
detail, both univariate and multivariate models were obtained by applying
either the univariate or the multivariate PLS algorithm. Further, the dif-
ferent subgroup models were derived as well as a unified regression model
incorporating simultaneously all of the potential descriptor variables. The
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regression models were developed both with and without interaction terms.
Additionally, regression models were established using different quantifica-
tions of the physico-chemical properties of amino acids, either the helix-
forming tendency- (HFT-)scale and the three ZZ-scales summarizing diverse
features or the HFT-scale and the 26 variables from Sandberg et. al. (1998).

The model comparisons showed that some of the novel modelling approaches
are advantageous compared with the commonly performed modelling proce-
dure with respect to the analysis of the interaction between the TMVP and
the antibody 57P. In particular, the prediction accuracies obtained for the
models based on the novel approaches could be improved substantially in
comparison with those already published.

The multivariate modelling did not improve the prediction accuracies of the
established models and hence, the univariate modelling should be preferred
to apply to the data available for the interaction under examination. How-
ever, it could be possible that the multivariate modelling leads to better
results than univariate in studies of other interactions. Consequently, both
modelling approaches should be performed and evaluated in future interac-
tion studies.

It is particularly of note that the inclusion of interaction terms led to models
providing considerably more accurate predictions than those without them.
However, it is advisable to involve only those interactions that are suspected
to be relevant by biochemists. In this research, interactions between the
amino acid and buffer descriptor variables were assumed to be present and
hence modelled. Therefore, with the exception of the QSKR model incorpo-
rating the 26 variables from Sandberg et. al. (1998), all potential interactions
were modelled. However, further biochemical knowledge on possible interac-
tions between the descriptors was not available.

Further, it was shown that the inclusion of descriptor variables representing
the physico-chemical properties of amino acids which are more sophisticated
than the commonly used ZZ-scales results in models with a higher predic-
tion accuracy. Consequently, the statistical design should be based on more
detailed variables such as the 26 variables from Sandberg et. al. (1998) in
order to optimize the results in future applications.

The unified modelling approach was demonstrated to be a useful alternative
to the usual method of developing separate regression models for the different
subgroups of descriptors. An important advantage of the unified regression
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models is the fact that the results of the regression analysis can be presented
in one single model. This considerably facilitates the biochemical interpreta-
tion. Additionally, it permits the quantification of interactions between the
amino acid and buffer variables, a relevant aspect in practice for obtaining
comprehensive information on the influences on the interaction of interest.

In summary, the optimal modelling procedure for the analysis of biomolec-
ular interactions is the construction of unified regression models involving
descriptors reflecting both the buffer composition and the physico-chemical
properties of amino acids in detail, as well as relevant interaction terms which
have biochemical justification. This is demonstrated by considering both the
resulting prediction accuracies of the derived models as well as their inter-
pretability. Consequently, these kinds of models should be developed in order
to draw biochemical conclusions on the interaction under study.

With the help of both the optimal models and further useful specified models
referring to the association and dissociation rate constant, biochemical con-
clusions improving the understanding of the interaction between the TMV
and the antibody 57P were drawn. In detail, the descriptor variables influ-
encing the interaction under study as well as the nature of their effect were
determined.

In relation to the association rate constant, the following physico-chemical
properties were evaluated to have a negative effect on the interaction of inter-
est: the helix-forming tendency of the amino acid at position 142 as well as
the molecular weight, the van der Waals volume of the side chain and the to-
tal surface area of the amino acid at the mutation site 145. Further, a nuclear
magnetic resonance shift variable at position 145 shows a positive effect. Be-
yond this, the chemical additives NaCl and urea also influence the association
process in negatively. Consequently, since changes in the physico-chemical
properties of the amino acid at the mutation site 145 lead predominantly
to changes in the association rate constant, this position in the sequence of
the TMVP can be considered to be crucial for the association process. At
position 142, only the helix-forming tendency plays an important role during
the association, whereas the mutation site 146 seems not to be incorporated
relevantly in the recognition of the biomolecules.

With respect to the dissociation rate constant, the following physico-chemical
properties show a negative influence: the helix-forming tendency and a semi-
empirical molecular orbital index at position 142, as well as the size and po-
larizability of the amino acid at the mutation site 145 and diverse electronic
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properties summarized by the ZZ3-scale at position 146. Positive effects were
determined for the hydrophobicity and two retention values of the amino acid
at the mutation site 142 and the logP-value, the polar surface area and the
hydrogen bond donor property of the amino acid at position 146. Obviously,
in contrast to the association process, the physico-chemical properties of the
amino acid at the position 145 seem to play a minor role during the disso-
ciation process. Instead, the mutation sites 142 and 146 are important with
respect to the rate of decay of complexes of bound biomolecules.

Summarizing, it can be stated that different physico-chemical properties as
well as different mutation sites are relevant with respect to the association
and dissociation rate constant of the interaction under investigation. Ob-
viously, different molecular forces at different positions in the sequence of
the TMVP contribute to the process of assembly and decomposition of the
complexes of studied biomolecules. These statements illustrate the fact that
the application of PLS regression to the analysis of biomolecular interactions
can be used to identify functional domains which are relevant to the different
kinetic processes.

In any case of the occurrence of a new mutant of the TMV, the respective
relevant physico-chemical properties at the important mutation sites can be
related to those of the amino acids serine or glutamic acid, respectively, i.e.
the amino acids of the wild-type peptide. This comparison permits state-
ments concerning the changes in the association and dissociation of the in-
teraction between the mutant and the antibody 57P that can be expected
with reference to the interaction between the wild-type virus and this anti-
body. The available antibody 57P can be expected to be less or even not at
all effective in case of a reduced association rate constant or an increased dis-
sociation rate constant in comparison with the kinetic parameters referring
to the wild-type of the TMV.

With respect to the association rate constant, mainly negative effects of the
relevant descriptor variables were determined, in contrast to the dissocia-
tion rate constant. Consequently, it is unfavourable if the physico-chemical
properties which negatively influence the association rate constant at the
particular mutation sites correspond to larger values for a mutant than those
at the respective positions in the wild-type peptide. Further, the larger the
concentrations of NaCl and urea in the cells of the organism infected by the
mutant are, the more the association rate constant is reduced. In relation to
the dissociation rate constant, it is disadvantageous if the physico-chemical
properties with a positive effect attain larger values at the specific mutation
sites of a mutant compared with the values in the wild-type peptide.
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Exact predictions of the kinetic parameters for the mutant can be obtained
by applying the established optimal regression models for the association and
dissociation rate constant. However, a reliable assessment of the efficacy of
the existing antibody for a particular mutant on the basis of the predicted
values of the association and dissociation rate constant requires the judge-
ment of a biochemist.

In order to extend the knowledge of the interaction between the TMVP and
the antibody 57P, further experiments might be performed. In particular,
additional mutation sites and replaced amino acids should be taken into ac-
count. Further, the range of the concentrations of the chemical additives in
the buffers might be extended.

A key problem is the question of for which other positions in the sequence
the statements derived for the mutation sites studied here are also valid.
This corresponds to extending the information about functional domains re-
garding the association and dissociation that can be achieved by taking into
account further mutation sites in the experiments. The determination of
functional domains is useful for improving the understanding of the binding
process. From this type of knowledge, in a case of a new mutant, it can be
concluded whether the mutation occurred at a crucial position for the inter-
action or whether or not it can be expected to influence the association or
dissociation. In this context, the additional knowledge of biochemists about
the virus under study is required. The possibility of generalizing the results
obtained with the help of the established regression models is important in so
far as the mutations in a virus might occur at any position of the sequence.

In Andersson et. al. (2001), problems arising during the QBKR modelling
of the association rate constant measured in the perturbation buffers are
described. In fact, some of the observations of the association rate con-
stant are quite unreliable because of a lack of the required knowledge of the
concentration of the Fab fragment biomolecules in the perturbation buffers.
Consequently, the measured data could be only used partially. Therefore, in
future investigations of the binding characteristics of particular interactions,
it is important to perform experiments in which the concentrations of the in-
volved biomolecules are determined exactly in order to obtain more reliable
measurements of the association rate constants.

In order to obtain improved results of regression models established in future
with respect to interactions respecting transmembrane proteins, variables
quantifying the 2D-structure of the transmembrane biomolecules might also
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be incorporated in the modelling. Consequently, results from the research of
the topology of the transmembrane proteins involved in the binding could be
used. For example, the prediction of the topology based on a Bayesian ap-
proach applying the Gibbs Sampling algorithm can be considered to provide
a reliable descriptor variable of the 2D-structure. This procedure presented
by Sousa et. al. (2004) and Kirschbaum (2005) in a more generalized form
results in a predicted localization for each amino acid in the protein sequence.

Conventionally, the ability of the resulting regression models to provide cor-
rect predictions is evaluated with the help of the Q2

a-statistic. However,
Freyhult et. al. (2005) propose determining the prediction accuracy of re-
gression models by performing a repeated blind cross validation procedure
and using the resulting mean of the P 2-values. This average P 2-value can be
considered to be a more realistic measure of the prediction accuracy than the
Q2

A∗-value. Therefore, the repeated blind cross validation method should be
applied to the regression models under examination in addition to the calcu-
lation of the Q2

A∗-value in future biomolecular interaction studies in order to
judge the prediction accuracy.

A future aim in the context of the application of PLS regression might be
the optimization of the modelling procedure with respect to other diverse
interactions of interest. Further, modifications of the performance of PLS
regression might be required in future applications of this methodology. For
example, another field of application of PLS methodology is the investigation
of mass spectrometry data in proteomics. The PLS procedure can be used
to identify biomarkers in samples whose protein expression levels are mea-
sured by the Matrix-assisted laser desorption / ionization time-of-flight mass
spectrometer (MALDI-TOF-MS) as presented by Podwojski et. al. (2006).
In this paper, the PLS method is applied as a classification procedure in
combination with linear discriminant analysis. By realizing this analysis,
those proteins presenting biomarkers for particular disease states can be de-
termined and it is possible to assign new probes to the given classes. Another
example for the successful application of the PLS procedure combined with
discriminant analysis (PLS-DA) is presented by Lee et. al. (2003). In this
article, the PLS method is also used to classify spectrometric data.

Finally, the analysis of dynamic protein expression from difference gel elec-
trophoresis deserves special interest. Jung et. al. (2005) discuss the prepro-
cessing of proteomic data and present a method for the imputation of missing
values. Their analysis of time dependent proteome changes resulting from
the activation of Tyrosinkinase receptors by their ligand NGF (nerve growth
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factor) identifies candidate tumor markers for neuroblastoma. Further new
statistical methods and their applications in functional genomics and clinical
proteomics can be found in Urfer and Amaral Turkman (2006).
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Appendix A

The 26 variables used by
Sandberg et. al. (1998)
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Table A.1: The 26 variables used for the derivation of the ZZ-scales
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Appendix B

Description of the regression
models

B.1 QBKR models per peptide

B.2 QBKR models per peptide and repeti-

tion
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 3 1 0.64 15.92 66.36
ka x 2 1 0.54 21.87 58.31

SES kd 0 -
kd x 0 -

ka, kd 1 - 0.64 15.81 36.20 66.43 5.98
ka, kd x 1 - 0.52 22.43 31.86 55.92 7.80

ka 4 0
ka x 6 0

VQE kd 5 1 18.95 75.68
kd x 1 - 0.53 23.71 73.60

ka, kd 4 0
ka, kd x 3 0

ka 1 - 0.65 20.48 75.39
ka x 1 0

MYT kd 1 - 0.68 19.95 75.78
kd x 6 1 0.62 19.92 69.99

ka, kd 2 - 0.61 40.40 75.59 75.35 75.83
ka, kd x 2 0

ka 3 2 0.74 32.40 82.07
ka x 8 2 0.63 41.18 73.61

DYD kd 5 2 0.95 32.49 95.49
kd x 4 - 0.91 63.95 94.21

ka, kd 6 2 0.72 35.80 86.90 80.71 93.09
ka, kd x 8 3 0.63 55.50 80.71 73.84 87.57

ka 0 -
ka x 0 -

GRA kd 2 1 0.79 18.24 81.45
kd x 3 1 0.70 23.21 73.80

ka, kd 6 2 0.72 35.80 86.90 80.71 93.09
ka, kd x 1 0

ka 5 1 0.90 16.67 92.51
ka x 1 - 0.71 24.36 82.19

GSQ kd 5 3 0.96 54.00 98.40
kd x 3 1 0.87 20.27 89.43

ka, kd 5 0
ka, kd x 5 0
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 3 1 0.62 18.52 75.64
ka x 10 1 0.64 19.38 76.47

FGR kd 6 2 0.94 31.84 95.77
kd x 2 1 0.88 18.92 90.94

ka, kd 4 2 0.64 37.34 84.90 78.87 90.94
ka, kd x 4 1 0.31 20.74 67.13 50.81 83.46

ka 3 1 0.73 18.30 85.56
ka x 10 1 0.40 26.40 71.87

DRK kd 2 1 0.90 18.79 92.61
kd x 6 1 0.93 16.47 94.26

ka, kd 4 2 0.71 37.12 89.19 85.72 92.66
ka, kd x 11 1 0.44 24.78 40.42 66.83 14.01

ka 2 0
ka x 1 - 0.46 16.31 53.76

RVA kd 1 - 0.42 17.00 47.20
kd x 1 0

ka, kd 4 1 0.27 17.31 38.03 35.79 40.28
ka, kd x 1 - 0.33 17.89 39.64 40.80 38.47

ka 4 2 0.88 33.52 92.78
ka x 2 1 0.75 22.87 85.26

DSA kd 5 2 0.97 33.39 98.30
kd x 10 8 0.99 95.85 99.52

ka, kd 6 3 0.84 54.33 94.03 91.46 96.60
ka, kd x 4 2 0.73 40.43 90.93 86.19 95.67

ka 4 1 0.83 17.84 87.37
ka x 10 2 0.72 41.96 79.22

RDG kd 6 2 0.95 35.86 96.19
kd x 9 2 0.91 47.19 93.65

ka, kd 4 1 0.76 20.41 85.36 80.63 90.09
ka, kd x 12 10 0.87

ka 3 1 0.68 20.02 85.07
ka x 10 2 0.60 41.62 83.67

QDF kd 4 1 0.87 17.29 90.68
kd x 2 1 0.84 26.03 87.14

ka, kd 6 1 0.62 22.08 84.93 81.55 88.32
ka, kd x 2 - 0.56 45.58 87.85 80.75 94.96
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 2 1 0.47 17.56 64.68
ka x 2 1 0.29 22.40 50.53

NES kd 4 1 0.76 24.21 79.64
kd x 2 1 0.75

ka, kd 5 0
ka, kd x 7 1 0.31 25.39 54.31 54.34 54.28

ka 1 - 0.48 17.50 56.61
ka x 1 - 0.36 24.61 46.80

SEA kd 1 0
kd x 1 0

ka, kd 2 1 0.44 17.48 32.21 53.07 11.34
ka, kd x 2 1 0.31 25.22 28.36 41.66 15.06

ka 3 1 0.80 18.87 83.81
ka x 9 2 0.72 41.51 79.22

SAS kd 6 2 0.93 31.00 93.64
kd x 3 2 0.91 41.50 92.85

ka, kd 6 2 0.78 35.53 87.28 83.59 90.96
ka, kd x 9 2 0.65 41.30 79.43 73.22 85.64

ka 3 - 0.85 46.47 91.79
ka x 2 1 0.78 18.26 85.09

AES kd 5 1 0.72 17.64 78.28
kd x 2 0

ka, kd 5 3 0.85 49.46 85.90 91.13 80.68
ka, kd x 3 2 0.80 38.25 82.56 87.67 77.44

ka 3 1 0.66 20.01 84.79
ka x 12 2 0.56 41.78 82.43

EES kd 3 - 0.98 50.01 99.15
kd x 12 2 0.93 45.98 97.08

ka, kd 6 2 0.63 39.70 91.15 85.04 97.26
ka, kd x 13 12 99.98 99.95 99.91 99.99

Table B.1: Description of the QBKR models established per peptide (further
explanations in the text)
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 2 1 0.74 16.67 86.74
ka x 8 1 0.43 24.05 70.70

SES kd 1 - 0.78 16.67 82.52
1 kd x 1 - 0.56 24.57 70.66

ka, kd 3 1 0.62 16.67 74.02 76.48 71.56
ka, kd x 2 1 0.36 24.73 63.27 62.08 64.46

ka 2 1 0.90 16.67 94.12
ka x 8 1 0.66 23.91 79.79

SES kd 1 - 0.57 16.67 67.16
2 kd x 1 - 0.63 24.39 69.01

ka, kd 3 2 0.90 33.33 80.64 94.12 67.16
ka, kd x 2 - 0.72 38.95 76.60 84.10 69.10

ka 4 3 0.88 46.47 94.13
ka x 2 1 0.81 18.33 87.17

SES kd 4 0
3 kd x 1 - 0.52 20.91 62.26

ka, kd 3 - 0.88 46.46 77.77 94.85 60.69
ka, kd x 2 - 0.84 35.99 76.33 90.76 61.89

ka 4 0
ka x 6 0

VQE kd 5 1 0.61 18.95 75.68
1 kd x 1 - 0.53 23.71 73.60

ka, kd 4 0
ka, kd x 3 0

ka 1 - 0.65 20.48 75.39
ka x 1 0

MYT kd 1 - 0.68 19.95 75.78
1 kd x 6 1 0.62 19.92 69.99

ka, kd 2 - 0.61 40.40 75.59 75.35 75.83
ka, kd x 2 0

ka 3 1 0.78 20.51 87.30
ka x 3 1 0.45 27.87 70.60

DYD kd 6 4 0.97 58.78 98.62
1 kd x 12 10 0.99 97.47 99.49

ka, kd 5 - 0.75 79.39 94.84 91.07 98.62
ka, kd x 5 2 0.49 44.93 80.98 74.80 87.16
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 2 0
ka x 9 0

DYD kd 6 3 0.98 42.21 98.92
2 kd x 10 4 0.92 63.41 97.50

ka, kd 4 2 0.58 37.16 86.86 81.15 92.58
ka, kd x 9 0

ka 2 1 0.75 19.08 87.43
ka x 9 1 0.43 27.61 72.71

GRA kd 4 3 0.98 42.24 98.81
1 kd x 12 3 0.95 54.79 97.83

ka, kd 6 1 0.45 18.65 64.67 63.32 66.01
ka, kd x 9 1 0.38 26.90 56.54 59.68 53.40

ka 2 1 0.82 16.67 86.50
ka x 10 9 0.93 95.07 97.21

GRA kd 4 2 0.92 32.68 94.90
2 kd x 12 3 0.95 54.79 97.83

ka, kd 6 1 0.45 18.65 64.67 63.32 66.01
ka, kd x 9 1 0.58 25.28 70.22 70.82 69.63

ka 5 1 0.90 16.67 92.51
ka x 1 - 0.71 24.36 82.19

GSQ kd 5 3 0.96 54.00 98.40
1 kd x 3 1 0.87 20.27 89.43

ka, kd 5 0
ka, kd x 5 0

ka 3 1 0.62 18.52 75.64
ka x 10 1 0.64 19.38 76.47

FGR kd 6 2 0.94 31.84 95.77
1 kd x 2 1 0.88 18.92 90.94

ka, kd 4 2 0.64 37.34 84.90 78.87 90.94
ka, kd x 4 1 0.31 20.74 67.13 50.81 83.46

ka 3 1 0.73 18.56 85.56
ka x 10 1 0.40 26.40 71.87

DRK kd 2 1 0.90 18.79 92.61
1 kd x 6 1 0.93 16.47 94.26

ka, kd 4 2 0.71 37.12 89.19 85.72 92.66
ka, kd x 11 1 0.44 24.78 40.42 66.83 14.01
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 2 - 0.93 31.56 95.42
ka x 3 1 0.89 16.29 92.03

RVA kd 5 1 0.78 19.75 83.02
1 kd x 2 1 0.75 20.21 80.07

ka, kd 6 3 0.92 47.77 90.86 95.83 85.89
ka, kd x 3 2 0.89 37.52 87.06 91.92 82.21

ka 6 1 0.87 14.80 93.18
ka x 3 1 0.78 16.42 87.50

RVA kd 3 - 0.92 50.00 96.23
2 kd x 4 - 0.97 57.58 98.92

ka, kd 4 2 0.88 33.79 93.58 94.02 93.13
ka, kd x 4 1 0.68 16.69 86.55 80.29 92.82

ka 4 2 0.88 33.52 92.78
ka x 2 1 0.75 22.87 85.26

DSA kd 5 2 0.97 33.39 98.30
1 kd x 10 8 0.99 95.85 99.52

ka, kd 6 3 0.84 54.33 94.03 91.46 96.60
ka, kd x 4 2 0.73 40.43 90.93 86.19 95.67

ka 2 1 0.68 17.85 84.28
ka x 1 - 0.39 25.40 69.30

RDG kd 5 2 0.98 17.74 98.89
1 kd x 9 4 0.97 65.27 99.04

ka, kd 3 1 0.58 20.92 92.70 84.49 76.29
ka, kd x 3 0

ka 2 1 0.93 17.82 95.90
ka x 2 1 0.71 25.02 84.84

RDG kd 6 2 0.95 33.90 96.90
2 kd x 12 1 0.73 26.60 86.36

ka, kd 5 1 0.84 20.04 89.58 89.34 89.82
ka, kd x 2 1 0.69 27.56 80.89 82.23 79.55

ka 3 1 0.68 20.02 85.07
ka x 10 2 0.60 41.62 83.67

QDF kd 4 1 0.87 17.29 90.68
1 kd x 2 1 0.84 26.03 87.14

ka, kd 6 1 0.62 22.08 84.93 81.55 88.32
ka, kd x 2 - 0.56 45.58 87.85 80.75 94.96
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 1 0
ka x 1 0

NES kd 3 1 0.88 23.69 91.53
1 kd x 10 2 0.80 48.27 90.44

ka, kd 3 0
ka, kd x 2 0

ka 4 2 0.90 30.61 94.29
ka x 2 1 0.74 17.90 84.35

NES kd 5 1 0.70 25.31 77.70
2 kd x 9 1 0.88 22.71 91.19

ka, kd 5 1 0.93 22.95 58.51 95.47 21.56
ka, kd x 5 3 0.89 62.90 94.67 96.18 93.16

ka 3 1 0.72 17.54 83.22
ka x 2 - 0.57 39.78 77.50

SEA kd 2 1 0.88 16.78 91.28
1 kd x 3 2 0.90 40.78 94.04

ka, kd 5 2 0.69 34.48 87.49 83.12 91.85
ka, kd x 3 1 0.33 24.74 64.99 57.69 72.28

ka 4 1 0.79 17.43 87.23
ka x 7 1 0.51 24.66 73.29

SEA kd 0 -
2 kd x 0 -

ka, kd 2 1 0.79 17.41 43.81 87.24 0.39
ka, kd x 1 - 0.49 24.89 36.47 72.08 0.85

ka 3 1 0.85 18.90 90.95
ka x 2 - 0.69 41.80 86.31

SAS kd 6 2 0.95 31.01 95.93
1 kd x 3 2 0.91 41.53 93.89

ka, kd 6 1 0.74 18.15 75.42 82.92 67.93
ka, kd x 4 - 0.67 70.15 91.11 86.71 95.50

ka 2 1 0.77 18.84 86.99
ka x 2 - 0.62 41.27 82.24

SAS kd 6 1 0.87 17.46 90.00
2 kd x 4 2 0.93 41.44 95.77

ka, kd 4 1 0.65 18.16 74.90 78.51 71.30
ka, kd x 4 2 0.55 40.57 82.20 78.77 85.62
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inter- pctvar [%]
response action descrA∗ respA∗

peptide variable(s) terms A A∗ Q2
A∗ total ka kd

ka 3 - 0.85 46.47 91.79
ka x 2 1 0.78 18.26 85.09

AES kd 5 1 0.72 17.64 78.28
1 kd x 2 0

ka, kd 5 3 0.85 49.46 85.90 91.13 80.68
ka, kd x 3 2 0.80 38.25 82.56 87.67 77.44

ka 3 1 0.66 20.01 84.79
ka x 12 2 0.56 41.78 82.43

EES kd 3 - 0.98 50.06 99.15
1 kd x 12 2 0.93 45.98 97.08

ka, kd 6 2 0.63 39.70 91.15 85.04 97.26
ka, kd x 13 12 99.98 99.95 99.91 99.99

Table B.2: Description of the QBKR models established per peptide and
repetition (further explanations in the text)
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Appendix C

Specification of the regression
models

C.1 Established regression models

C.1.1 Unified model with interaction terms respecting
the association rate constant

ka = 913593(−6098 · ZZ2142)(−45320 ·HFT142)(−10818 · ZZ2145)(+5226 · ZZ3145)

(−19281 ·HFT146)− 131 ·NaCl − 155 · urea(−39457 · pH) + 0.86 ·NaCl ∗KSCN

+0.02 ·NaCl ∗DMSO − 15 ·NaCl ∗ pH + 0.41 ·NaCl ∗ urea + 4 ·KSCN ∗ urea

−18 · pH ∗ urea(+2 ·NaCl ∗ EDTA)(+0.42 ·DMSO ∗ urea)(+7 · EDTA ∗ urea)

+6959 · ZZ2142 ∗ ZZ2145 − 5515 · ZZ3142 ∗ ZZ2145 − 55561 · ZZ1145 ∗ ZZ2145

−23109 · ZZ2145 ∗HFT145 + 6445 · ZZ3145 ∗HFT145 + 9900 · ZZ3145 ∗ ZZ1146

(+282 · ZZ1142 ∗ ZZ2142)(−3981 · ZZ1142 ∗ ZZ2145)(+1067 · ZZ1142 ∗ ZZ3145)

(−7557 · ZZ1142 ∗ ZZ3146)(+5800 · ZZ2142 ∗ ZZ3146)(−1875 · ZZ3142 ∗ ZZ3146)

(+6925 ·HFT142 ∗ ZZ3145)(−5983 · ZZ2145 ∗ ZZ1146)(+482 · ZZ3145 ∗HFT146)

−10 ·NaCl ∗HFT142 − 50 ·NaCl ∗ ZZ3145 − 103 ·NaCl ∗HFT145

−17 ·NaCl ∗HFT146 − 5736 · pH ∗HFT142 − 54 · urea ∗HFT142

−84 · urea ∗HFT146(−1 ·NaCl ∗ ZZ1145)(−24 ·NaCl ∗ ZZ1146)

(−255 ·KSCN ∗ ZZ3145)(−1137 ·KSCN ∗HFT146)(+7 ·DMSO ∗HFT142)

(−50 ·DMSO ∗ ZZ3145)(−78 ·DMSO ∗HFT146)(−1277 · pH ∗ ZZ2145)

(+479 · pH ∗ ZZ3145)(−2287 · pH ∗HFT146)(−295 · EDTA ∗ ZZ3145)

(−43 · urea ∗ ZZ3145)(−73 · urea ∗HFT145)
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C.1.2 Unified model involving the 26 variables from
Sandberg et. al. (1998) without interaction
terms respecting the association rate constant

ka = −740094− 357 ·NaCl − 273 · urea(−240 ·DMSO)(+18350 ·HFT142)

(+64293 ·HFT145)(−20420 ·HFT146)(−314 ·MW142)(−515 · vdW142)

(−4077 · POLAR142)(−279 · Stot142)(+10510 · [2]HACCR142)− 424 ·MW145

−760 · vdW145 + 241701 ·NM12145 − 381 · Stot145(+198310 ·NM1145)

(+213728 ·NM7145)(+225 ·HOF145)(−2877 · POLAR145)(−531 · Spol145)

(+50182 · [0]HDONR145)(+50182 · [0]HACCR145)(−4620 · [4]HACCR145)

(+4620 · [0]Chneg145)(−4620 · [1]Chneg145)(−14722 · EHOMO146)(−168 · Snp146)

C.1.3 Unified model involving the 26 variables from
Sandberg et. al. (1998) without interaction
terms respecting the dissociation rate constant

kd = 0.127912− 0.005101 ·HFT145 + 0.000091 · TL4142

+0.000010 · TL7142 − 0.009015 · ELUMO142(+0.001278 · [0]HDONR142)

(+0.001278 · [0]HACCR142)(+0.000067 · TL2142)(+0.000034 · TL3142)

(−0.000047 · TL5142)(+0.000041 · TL6142)(+0.000272 · POLAR142)

(−0.003915 ·HA142)(+0.000013 · Snp142)(−0.000018 ·MW145)(−0.000039 · vdW145)

(−0.000023 · Stot145)(−0.000027 · Spol145)− 0.003182 · logP146 + 0.000102 · Spol146

+0.012610 · [4]HDONR146 + 0.012757 · [3]HACCR146(+0.000027 ·MW146)

(+0.000039 · vdW146)(+0.001641 · EHOMO146)(+0.000286 · POLAR146)

(+0.000016 · Stot146)(−0.000516 · [0]Chpos146)(+0.000516 · [1]Chpos146)
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C.1.4 Unified model with interaction terms respecting
the dissociation rate constant

kd = 0.021526 + 0.000037 · ZZ1142 − 0.000359 · ZZ2145 − 0.004013 ·HFT145

−0.000860 · ZZ3146(+0.000278 · ZZ2146)(−0.000212 · ZZ1142 ∗ ZZ2142)

+0.000036 · ZZ1142 ∗HFT142(+0.000014 · ZZ1142 ∗ ZZ1145)

(+0.000077 · ZZ1142 ∗ ZZ2145) + 0.000066 · ZZ1142 ∗HFT145

(+0.000022 · ZZ1142 ∗ ZZ1146) + 0.000138 · ZZ1142 ∗ ZZ3146

+0.000055 · ZZ1142 ∗HFT146(+0.000347 · ZZ2142 ∗ ZZ1146)

(−0.000166 · ZZ3142 ∗ ZZ2145)− 0.000383 ·HFT142 ∗ ZZ2145

−0.000298 ·HFT142 ∗HFT145(+0.000154 ·HFT142 ∗ ZZ2146)

−0.000387 ·HFT142 ∗ ZZ3146(−0.000171 · ZZ1145 ∗ ZZ2145)

(−0.000133 · ZZ1145 ∗HFT145)(0.000017 · ZZ1145 ∗ ZZ2146)

−0.000192 · ZZ1145 ∗ ZZ3146(−0.000198 · ZZ2145 ∗HFT145)

−0.000273 · ZZ2145 ∗ ZZ1146 − 0.000354 · ZZ2145 ∗ ZZ2146

+0.000390 · ZZ2145 ∗ ZZ3146 − 0.000208 · ZZ2145 ∗HFT146

(+0.000566 · ZZ3145 ∗ ZZ1146)(+0.000214 ·HFT145 ∗ ZZ2146)

−0.000531 ·HFT145 ∗ ZZ3146 − 0.002349 ·HFT145 ∗HFT146

+0.000212 · ZZ1146 ∗ ZZ2146 +−0.000191 · ZZ1146 ∗ ZZ3146

−0.000402 · ZZ2146 ∗ ZZ3146(+0.000196 · ZZ2146 ∗HFT146)

−0.000818 · ZZ3146 ∗HFT146 − 0.0000008 ·NaCl ∗ ZZ3146

(+0.0000004 ·NaCl ∗ ZZ1142)(−0.00000005 ·NaCl ∗ ZZ2145)

(−0.0000005 ·NaCl ∗ ZZ2146)− 0.000023 ·KSCN ∗ ZZ3146

(+0.000012 ·KSCN ∗ ZZ1142)(−0.000012 ·KSCN ∗ ZZ2145)

(+0.000002 ·KSCN ∗ ZZ2146)− 0.000004 ·DMSO ∗ ZZ3146

(+0.0000002 ·DMSO ∗ ZZ1142)(−0.000003 ·DMSO ∗ ZZ2145)

+0.0000005 · pH ∗ ZZ1142 − 0.000048 · pH ∗ ZZ2145

−0.000504 · pH ∗HFT145 − 0.000119 · pH ∗ ZZ3146

(+0.000037 · pH ∗ ZZ2146)− 0.000009 · EDTA ∗ ZZ3146

(+0.000012 · EDTA ∗ ZZ1142)(−0.000014 · EDTA ∗ ZZ2145)

−0.000005 · urea ∗ ZZ3146(−0.0000005 · urea ∗ ZZ1142)

(−0.000003 · urea ∗ ZZ2145)(+0.000001 · urea ∗ ZZ2146)
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C.1.5 QSKR model involving the 26 variables from
Sandberg et. al. (1998) without interaction
terms respecting the logarithmic dissociation rate
constant

logkd = −2.883252− 0.391150 ·HFT145 − 0.370017 · [2]HACCR142

(+0.114110 · [0]HDONR142)(−0.163044 · [1]HDONR142)

(+0.114110 · [0]HACCR142) + 0.269987 · [2]HACCR145

−0.191431 · [4]HACCR145 + 0.191431 · [0]Chneg145 − 0.191431 · [1]Chneg145

(−0.002961 ·MW145)(+0.872085 ·NM1145)(+1.217089 ·NM7145)

(+1.378180 ·NM12145)(+0.001778 ·HOF145)(−0.004229 · Spol145)

+0.277160 · [3]HACCR146(+0.000976 ·MW146)(+0.001258 · vdW146)

(−0.814360 ·NM7146)(−0.103571 · logP146)(+0.010552 · POLAR146)

(+0.000572 · Stot146)(+0.003761 · Spol146)(−0.097428 · [1]HDONR146)

(+0.067619 · [2]HDONR146)(+0.245382 · [4]HDONR146)

(−0.110593 · [2]HACCR146)

C.2 VIP-values

C.2.1 QSKR models involving the ZZ-scales

C.2.2 QSKR models involving the 26 variables from
Sandberg et. al. (1998)

C.2.3 Unified models involving the ZZ-scales

C.2.4 Unified models involving the 26 variables from
Sandberg et. al. (1998)

C.2.5 QBKR models per peptide

C.2.6 QBKR models per peptide and repetition
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model type QSKR

response variable ka kd log(kd) ka,kd

interaction terms x x x x

descriptor
variable position

142 (1.34) 1.46 (1.07)
ZZ1 145

146
142 (1.21) (1.18) (1.05)

ZZ2 145 (1.28) (1.37) (1.19) (1.27) (1.11) (1.04)
146 (1.24) (1.34) (1.00)
142

ZZ3 145 1.44 (1.31) (1.35) (1.17)
146 (1.34) (1.20) 1.72 1.84 1.44 1.55 (1.20) (1.39)
142 1.72 1.84 (1.25) 1.40

HFT 145 1.75 1.93 2.19 2.41 1.73 2.08
146

Table C.1: VIP-values referring to the descriptor variables included in the
QSKR models
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model type QSKR-26vars

response variable ka kd logkd ka,kd

interaction terms

descriptor
variable position

142
HFT 145 1.76 2.10

146
142

TL1 145
146
142 (1.32)

TL2 145
146
142 (1.21)

TL3 145
146
142 1.45

TL4 145
146
142 (1.02)

TL5 145
146
142 (1.30)

TL6 145
146
142 (1.35)

TL7 145
146
142

NM1 145 (1.01)
146
142

NM7 145 (1.20)
146 (1.06)
142

NM12 145 (1.34)
146
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model type QSKR-26vars

response variable ka kd logkd ka,kd

interaction terms

descriptor
variable position

142
EHOMO 145

146 (1.04)
142 (1.11)

ELUMO 145
146
142

HOF 145 (1.29)
146
142

POLAR 145
146 1.42 (1.22)
142

EN 145
146
142 (1.17)

HA 145
146
142 [0] (1.22) [0] (1.10) [1] (1.02)

HDONR 145
146 [4] 1.71 [1] (1.09), [2] (1.01),
146 [4] (1.08)
142 [0] (1.22) [0] (1.10), [2] 1.66

HACCR 145 [2] (1.14), [3] 1.98, [2] 1.62, [4] 1.63
145 [4] (1.04)
146 [2] (1.33), [3] 1.53
142

Chpos 145
146 [0] (1.16), [1] (1.16)
142

Chneg 145 [0] (1.04), [1] (1.04) [0] 1.63, [1] 1.63
146
142

Stot 145 (1.30)
146 1.46 (1.29)
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model type QSKR-26vars

response variable ka kd logkd ka,kd

interaction terms

descriptor
variable position

142
Spol 145 (1.16) (1.30)

146 1.62 (1.26)
142 (1.06)

Snp 145
146
142

MW 145 (1.28) (1.01)
146 1.44 (1.20)
142

logP 145
146 1.62 (1.18)
142

vdW 145 (1.27)
146 1.50 (1.26)

Table C.2: VIP-values referring to the QSKR models involving the 26 vari-
ables from Sandberg et. al. (1998)
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model type unified

response variable ka kd ka,kd

interaction terms x x x

descriptor
variable position

142 1.53 1.65 (1.20) (1.28)
ZZ1 145

146
142 (1.01)

ZZ2 145 (1.09) 1.48 1.54 (1.33) (1.30)
146 (1.28) (1.30) (1.06) (1.06)
142

ZZ3 145 (1.36) (1.37) (1.05) (1.04)
146 1.92 2.00 1.55 1.60
142 (1.27) (1.37) (1.06) (1.14)

HFT 145 1.99 2.14 1.59 1.72
146 (1.15) (1.16)

DMSO (1.28)
EDTA
NaCl 2.07 2.02 (1.37)
pH (1.10)
KSCN
urea 1.46 1.41 (1.02)

Table C.3: VIP-values referring to the descriptor variables included in the
unified models
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model type unified-26vars

response variable ka kd ka,kd

interaction terms x x x

descriptor
variable position

142 (1.20) (1.27) (1.01) (1.06) (1.15)
HFT 145 (1.02) (1.37) 1.80 2.44 1.45 1.95

146 (1.05)
142 (1.18)

TL1 145
146 (1.28)
142 (1.37) 1.88 (1.05) 1.46

TL2 145
146 (1.11)
142 (1.15) 1.58 (1.27)

TL3 145
146
142 1.52 2.08 (1.14) 1.61

TL4 145
146
142 (1.14) 1.55 (1.21)

TL5 145
146 (1.34) (1.14)
142 (1.30) 1.78 (1.37)

TL6 145
146 (1.01)
142 1.44 1.97 (1.14) 1.57

TL7 145
146
142

NM1 145 (1.23) 1.91 1.48
146
142

NM7 145 (1.33) 1.99 1.52
146
142

NM12 145 1.49 2.33 (1.06) (1.15) 1.80
146
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model type unified-26vars

response variable ka kd ka,kd

interaction terms x x x

descriptor
variable position

142 (1.18)
EHOMO 145

146 (1.04) (1.07) 1.49 (1.01) (1.29)
142 1.48 2.05 (1.15) 1.59

ELUMO 145
146
142 (1.13)

HOF 145 (1.07) (1.23) (1.07)
146
142 (1.02) (1.11) (1.00) 1.41 (1.06) (1.35)

POLAR 145 (1.23) (1.20) (1.03) (1.04) (1.08)
146 (1.24) 1.71 (1.04) 1.40
142

EN 145
146 (1.15) (1.00)
142 (1.39) 1.91 (1.11) 1.51

HA 145
146
142 [0] (1.10) [0] 1.49 [0] (1.16)

HDONR 145 [0] (1.09) [0] (1.09) [0] (1.10), [0] (1.09)
145 [1] (1.04),
145 [2] (1.11)
146 [4] 2.07 [1] (1.01), [4] (1.59) [4] 2.24
146 [4] 2.83
142 [2] (1.37) [2] (1.35) [0] (1.10) [0] 1.49, [2] (1.10) [0] (1.16),
142 [2] (1.07) [2] (1.23)

HACCR 145 [0] (1.09), [0] (1.09) [0] (1.11), [0] (1.09),
145 [4] (1.13) [2] (1.32), [2] (1.14),
145 [3] (1.01), [4] (1.19)
145 [4] (1.36)
146 [3] 2.28 [1] (1.01), [3] 1.79 [3] 2.39
146 [2] (1.05),
146 [3] 3.04
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model type unified-26vars

response variable ka kd ka,kd

interaction terms x x x

descriptor
variable position

142
Chpos 145

146 [0] (1.34), [0] 1.81, [0] (1.06), [0] 1.45,
146 [1] (1.34) [1] 1.81 [1] (1.06) [1] 1.45
142

Chneg 145 [0] (1.13), [0] (1.36), [0] (1.19),
145 [1] (1.13) [1] (1.36) [1] (1.19)
146
142 (1.06) (1.12) (1.17) (1.01) (1.21)

Stot 145 1.41 1.49 (1.12) 1.49 (1.30) 1.49
146 (1.33) 1.83 (1.09) 1.47
142

Spol 145 (1.33) (1.35) (1.02) 1.40 (1.20) 1.41
146 1.53 2.10 (1.20) 1.63
142 (1.35) 1.86 (1.16) 1.55

Snp 145
146 (1.04)
142 (1.04) (1.10) (1.04) (1.12)

MW 145 1.47 (1.04) 1.41 (1.29) 1.46
146 (1.29) 1.78 (1.02) 1.42
142 (1.18)

logP 145
146 1.54 2.09 (1.22) 1.70
142 (1.04) (1.10) (1.08) (1.15)

vdW 145 1.44 1.52 (1.09) 1.44 (1.30) 1.48
146 (1.38) 1.89 (1.10) 1.51

DMSO (1.12)
EDTA
NaCl 2.73 1.57 1.82 (1.06)
pH
KSCN
urea 1.83 (1.13) (1.26)

Table C.4: VIP-values referring to the unified models involving the 26 vari-
ables from Sandberg et. al. (1998)

190



response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka 2.00 (1.22)
ka x 1.87 (1.14)

SES kd

kd x
ka,kd 1.90 (1.27)
ka,kd x 1.72 (1.17)
ka

ka x
VQE kd 1.94 (1.02)

kd x 1.83
ka,kd

ka,kd x
ka 1.61 (1.25)
ka x

MYT kd (1.18) 2.04
kd x (1.25) 2.15

ka,kd (1.16) (1.69)
ka,kd x
ka 1.75 (1.01)
ka x 1.68

DYD kd 1.75 (1.15)
kd x 1.79 (1.24) (1.16)

ka,kd (1.37) 1.46
ka,kd x (1.39) 1.60 (1.00)
ka

ka x
GRA kd 1.76 1.40

kd x 1.69 (1.35)
ka,kd

ka,kd x
ka (1.12) 1.51 1.44
ka x (1.34)

GSQ kd (1.30) (1.08) 1.51
kd x (1.04) 1.55

ka,kd

ka,kd x
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka (1.02) 1.57 1.55
ka x 1.51 1.49

FGR kd (1.35) 1.94
kd x (1.32) 1.90

ka,kd (1.28) (1.12) 1.75
ka,kd x (1.33) 1.84
ka 1.40 1.56
ka x (1.29) 1.44

DRK kd (1.07) 1.51 (1.20)
kd x (1.03) (1.14) 1.60 (1.27)

ka,kd 1.46 (1.39)
ka,kd x (1.14) 1.76
ka

ka x (1.05) 1.74
RVA kd 1.70 (1.38)

kd x
ka,kd 1.67 1.67
ka,kd x 1.56 1.59
ka 1.79 1.48
ka x 1.70 1.41

DSA kd 1.52 (1.28)
kd x 1.48 (1.06) (1.24)

ka,kd (1.18) (1.38) 1.42
ka,kd x (1.10) 1.53 (1.27)
ka (1.16) 1.64 (1.27)
ka x (1.05) 1.51 (1.16)

RDG kd (1.30) 1.56
kd x (1.17) 1.43

ka,kd (1.13) 1.52 1.44
ka,kd x (1.04) (1.31) (1.26)
ka (1.08) 1.62
ka x

QDF kd 1.69 (1.29)
kd x 1.41 (1.08)

ka,kd (1.18) 1.41
ka,kd x
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka 1.82 (1.04)
ka x 1.88 (1.07) (1.02)

NES kd (1.31) (1.35) (1.27)
kd x (1.30) (1.35) (1.27)

ka,kd

ka,kd x (1.07) 1.63 (1.24)
ka 1.82 (1.14)
ka x 1.74 (1.10)

SEA kd

kd x
ka,kd 1.48 (1.20)
ka,kd x (1.26) (1.09)
ka 1.93
ka x 1.84

SAS kd 1.68 1.42
kd x 1.40 (1.18)

ka,kd (1.30) 1.44 (1.21)
ka,kd x (1.16) 1.40 (1.04)
ka 2.15 (1.01)
ka x 2.13

AES kd 1.72 (1.34)
kd x

ka,kd (1.18) 1.61 (1.22)
ka,kd x (1.15) 1.65 (1.12)
ka 1.85
ka x 1.83

EES kd 1.94 (1.26)
kd x 1.74 (1.12)

ka,kd 1.57 (1.29) (1.01)
ka,kd x (1.37) (1.33)

Table C.5: VIP-values referring to the QBKR models established per peptide
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka

ka x 1.63 (1.25)
SES1 kd 1.86

kd x 1.68
ka,kd 1.41 1.43 (1.23)
ka,kd x (1.29) (1.28) (1.10)
ka 1.72 (1.35)
ka x 1.60 (1.25)

SES2 kd 1.85 1.42
kd x 1.53 (1.17)

ka,kd (1.34) (1.34) (1.38)
ka,kd x (1.18) (1.28) (1.18)
ka 2.17
ka x 2.15

SES3 kd

kd x 1.59 (1.19)
ka,kd (1.15) 1.73 1.14
ka,kd x (1.02) 1.54 (1.09)
ka

ka x
VQE1 kd 1.94 (1.01)

kd x 1.83
ka,kd

ka,kd x
ka 1.61 (1.24)
ka x

MYT1 kd (1.18) 2.04
kd x (1.25) 2.15

ka,kd (1.16) 1.69
ka,kd x
ka 1.99
ka x 1.80

DYD1 kd 1.61 (1.26)
kd x 1.65 (1.35) (1.01)

ka,kd (1.20) 1.51
ka,kd x 1.64
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka

ka x
DYD2 kd 1.71

kd x 1.76 (1.06) (1.21)
ka,kd 1.45 (1.34)
ka,kd x
ka 1.55 (1.36)
ka x 1.44 (1.26)

GRA1 kd 1.79 (1.26)
kd x 1.67 (1.17)

ka,kd 1.67 1.56
ka,kd x 1.49 1.42
ka (1.22) (1.02) 1.79
ka x (1.04) (1.00) 1.54

GRA2 kd 1.64 1.52
kd x 1.51 1.40

ka,kd 1.53 1.72
ka,kd x 1.42 1.60
ka (1.12) 1.51 1.44
ka x (1.35) (1.28)

GSQ1 kd (1.30) (1.08) 1.51
kd x (1.34) (1.05) 1.55

ka,kd

ka,kd x
ka (1.02) 1.57 1.55
ka x 1.51 1.49

FGR1 kd (1.35) 1.94
kd x (1.32) 1.90

ka,kd (1.28) (1.12) 1.75
ka,kd x (1.33) 1.84
ka 1.40 1.56
ka x (1.29) 1.44

DRK1 kd (1.07) 1.51 (1.20)
kd x (1.03) (1.14) 1.60 (1.27)

ka,kd 1.46 (1.39)
ka,kd x (1.14) 1.76
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka (1.15) (1.06) 1.69
ka x (1.08) 1.60

RVA1 kd 1.55 1.43
kd x 1.60 1.48

ka,kd (1.26) (1.07) (1.28) (1.15)
ka,kd x 1.50 (1.29)
ka 2.03
ka x 1.97

RVA2 kd 1.63 1.50
kd x (1.36) (1.24)

ka,kd (1.39) 1.78
ka,kd x (1.31) 1.68
ka 1.79 1.48
ka x 1.70 1.41

DSA1 kd 1.52 (1.28)
kd x 1.48 (1.06) (1.24)

ka,kd (1.18) (1.38) 1.42
ka,kd x (1.30) (1.02) 1.50
ka (1.15) 1.65 (1.20)
ka x (1.08) 1.55 (1.13)

RDG1 kd (1.01) (1.28) 1.57
kd x (1.15) 1.42

ka,kd (1.11) 1.52 1.45
ka,kd x
ka (1.16) 1.62 (1.35)
ka x (1.06) 1.48 (1.23)

RDG2 kd (1.31) 1.58
kd x (1.22) 1.49

ka,kd (1.14) 1.51 1.45
ka,kd x (1.04) (1.38) (1.33)
ka (1.08) 1.62
ka x (1.00) 1.60 (1.02)

QDF1 kd 1.69 (1.29)
kd x 1.41 (1.08)

ka,kd (1.36) 1.52
ka,kd x (1.18) 1.41
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka

ka x
NES1 kd

kd x (1.16) 1.48 (1.27)
ka,kd

ka,kd x
ka 2.15
ka x 2.17

NES2 kd 1.49 (1.11) (1.21)
kd x 1.42 (1.05) (1.14)

ka,kd 1.98 (1.28)
ka,kd x
ka 1.86 (1.05)
ka x 1.78

SEA1 kd 1.44 1.77
kd x (1.24) 1.52

ka,kd (1.09) (1.34) 1.46
ka,kd x (1.12) 1.41
ka 1.74 (1.29)
ka x 1.65 (1.22)

SEA2 kd

kd x
ka,kd 1.78 (1.30)
ka,kd x 1.58 (1.17)
ka 1.99
ka x 1.89

SAS1 kd 1.81 (1.31)
kd x 1.53 (1.09)

ka,kd (1.28) 1.48 (1.18)
ka,kd x
ka 1.85
ka x 1.77

SAS2 kd 1.57 1.54
kd x (1.26) (1.24)

ka,kd (1.24) 1.34 (1.35)
ka,kd x (1.06) (1.35) (1.10)
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response interaction buffer variable
peptide variable terms DMSO EDTA NaCl pH KSCN Urea

ka 2.15 (1.01)
ka x 2.13

AES1 kd 1.72 (1.34)
kd x

ka,kd (1.18) 1.61 (1.22)
ka,kd x
ka 1.85
ka x 1.83

EES1 kd 1.94 (1.26)
kd x 1.74 (1.12)

ka,kd 1.57 (1.29) (1.01)
ka,kd x (1.06) (1.20) (1.39)

Table C.6: VIP-values referring to the QBKR models established per peptide
and repetition
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