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Thought and science are raising problems which
their terms of study can never answer, many of
which are doubtless problems only for thought. The
trisection of an angle is similarly an insoluble prob-
lem only for compass and straight-edge construction,
and Achilles cannot overtake the tortoise so long
as their progress is considered piecemeal, endlessly
halving the distance between them. However, as
it is not Achilles but the method of measurement
which fails to catch up with the tortoise, so it is not
man but his method of thought which fails to find
fulfillment in experience. This is by no means to say
that science and analytic thought are useless and
destructive tools, but rather that the people who
use them must be greater than their tools. To be an
effective scientist one must be more than a scientist,
and a philosopher must be more than a thinker. For
the analytic measurement of nature tells us nothing
if we cannot see nature in any other way.

Alan W. Watts
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Introduction

Considering physics as it is done today one notices that physics separates into two formally and conceptually
different parts. There is on the one hand classical physics that deals with macroscopic phenomena and there
is on the other hand quantum physics that deals with microscopic phenomena. Penrose [96] described this
situation as a disturbing analogy to ancient Greece, where two different sets of laws for earth and heaven
were applied. So immediately the question arises if one really has to use different formalisms on different
scales or if it is possible to describe physics in a unified way. In order to investigate this question one first
has to consider how classical and quantum physics are related. Quantum mechanics results from classical
physics by a procedure called quantization and classical physics is reobtained by taking the classical limit.
Both procedures are heavily plagued by problems [61, 100]. In the first chapter the mathematical problems
of quantization will be addressed and it will be described how the star product formalism circumvents these
problems. The star product formalism has the advantage that there is no formal break if one goes from
classical physics to quantum physics. This formal advantage and the resulting beauty is then used as a
guiding principle for the further development.

The first question that arises is if the spin can be described in the star product formalism. That this is
indeed possible is shown in the second chapter. As a starting point the spin description with pseudoclassical
mechanics as it was developed by Berezin is used. One can then construct a fermionic star product and
apply it for deformation quantization of pseudoclassical mechanics. In analogy to the bosonic star product
formalism one obtains spin Wigner functions that act as spin projectors. Besides the nonrelativistic case it
is also possible to formulate Dirac theory with star products. The Clifford algebra of the gamma matrices
is hereby described as a deformed version of a four dimensional Grassmann algebra. The fermionic star
product in combination with the bosonic Moyal product leads to a supersymmetric star product formalism
that can be used to describe supersymmetric quantum mechanics and in the relativistic case to describe
the supersymmetric structure of Dirac theory. The other direction of generalization of the star product
formalism is the application of star products in quantum field theory that is described in chapter three. After
constructing a suitable normal product it is shown that the algebraic structures of perturbative quantum
field theory appear also in the star product formalism, which is an expression of the algebra morphism of
the operator and the star product formalism. But moreover the quantum group structure that was recently
found in perturbative quantum field theory is shown to be a natural algebraic structure of the star product.

The essential advantage of deformation quantization is that the classical limit has a well defined meaning.
In the context of the spin description with star products this leads to the question of the classical limit of spin,
or equivalently to the question of the physical status of pseudoclassical mechanics. In chapter four it is shown
that this question is solved if one realizes that the fermionic sector together with the fermionic star product
describe the underlying geometric structure. The deformation of a Grassmann algebra leads to a Clifford
calculus that is equivalent to geometric algebra. The formulation of geometric algebra in the star product
formalism is given in chapter four. One sees there that geometric algebra as the most fundamental geometric
formalism that unifies all geometric structures that appear in physics can be described in a supersymmetric
manner that parallels the bosonic star product structures.

Having obtained a formulation of geometry with fermionic star products this formalism is then applied
in the fifth chapter to physical problems. As examples for the application of geometric algebra in classical
physics the rigid body and the Kepler problem are considered. In both cases the formalism of geometric
algebra gives the most elegant formulation of the problem. In the quantum case one can then combine the
fermionic star product formalism that describes the underlying geometric structure with the bosonic star
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product that describes the noncommuative structure of quantum mechanics. The result is a noncommutative
version of geometric algebra that leads to a natural appearance of spin terms. The same idea applied on
the phase space leads to the split in supersymmetric partner systems. Geometric algebra gives in this way a
natural geometric foundation of supersymmetric quantum mechanics. Similarly one can interpret the hidden
BRST-structure of classical mechanics that was found by E. Gozzi and M. Reuter in the path integral
formalism from a star product point of view.
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Chapter 1

The Star Product Formalism

The first chapter should give a short introduction to the star product formalism which allows a formulation of
quantum mechanics on the phase space. After giving the motivation for doing quantum theory on the phase
space the star product will be constructed with the help of the operator formalism. With the star product
it is then possible to formulate an autonomous approach to quantum theory. As examples the harmonic
oscillator and angular momentum are then discussed.

1.1 Quantization and its Problems

The standard approach to quantum theory relies on a procedure called canonical quantization, which was
first formulated by Dirac in [28]. Starting point is a classical Hamiltonian system with d degrees of freedom,
which can be described on a 2d-dimensional phase space. Scalar functions on the phase space can be
multiplied pointwise, i.e. (fg)(x) = f(x)g(x), where the multiplication fulfills for f, g, h ∈ C∞(P ) and λ ∈ R
the following conditions:

fg = gf commutativity,
f(g + λh) = fg + λfh linearity,
f(gh) = (fg)h associativity,

so that the functions together with the addition and the pointwise multiplication form a commutative and
associative algebra. Moreover there exists a differential-geometric structure on the phase space, called the
Poisson bracket, which fulfills for f, g, h ∈ C∞(P ) and λ ∈ R the following conditions:

{f, g}PB = −{g, f}PB antisymmetry,
{f, g + λh}PB = {f, g}PB + λ{f, h}PB linearity,
{f, {g, h}PB}PB + {g, {h, f}PB}PB + {h, {f, g}PB}PB = 0 Jacobi identity,

so that the functions together with the addition and the Poisson bracket form a Lie algebra. For the special
coordinates (qi, pi) the Poisson bracket can be written explicitly as

{f, g}PB =
d∑

n=1

(
∂f

∂qn

∂g

∂pn
− ∂f

∂pn

∂g

∂qn

)
. (1.1)

The pointwise multiplication and the Poisson bracket are intertwined by the following relation

{f, gh}PB = {f, g}PBh+ g{f, h}PB , (1.2)

so that both structures together with the addition constitute a Poisson algebra.

5



The new mathematical feature that enters physics in quantum theory is non-commutativity. The non-
commutativity can be described if one notices that the above mentioned classical structures have analogs
in the space Op(H,D) of formally self adjoint operators on a Hilbert space H, and common invariant dense
domain D ⊂ H. It is then possible to multiply the operators of Op(H,D), so that a associative, but not
commutative algebra of operators is created, and taking the Lie product as 1

i~ [·, ·] one obtains a Lie-algebra.
These two structures are intertwined for Â, B̂, Ĉ ∈ Op(H,D) by[

Â, B̂Ĉ
]

=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
. (1.3)

In order to go over from classical theory to quantum theory one needs then a map Q that maps the set
Pol(P ) of phase space polynomials in (qi, pi) to Op(H,D):

Q : Pol(P ) → Op(H,D), f 7→ Q(f) = f̂. (1.4)

This map should fulfill the following conditions:

1) The constant function 1 should be mapped on the unit operator:

Q(1) = 1̂. (1.5)

2) Q should be linear:
Q(f + λg) = Q(f) + λQ(g). (1.6)

3) The Lie structures on Pol(P ) and on Op(H,D) should be compatible:

Q({f, g}PB) =
1
i~

[Q(f),Q(g)] . (1.7)

4) Q should be consistent with Schrödinger quantization (which means that Q(qi) and Q(pi) act irre-
ducibly up to at most finite multiplicity of internal quantum numbers):

(Q(qi)ψ)(q) = qiψ(q) and (Q(pi)ψ)(q) = −i~∂qiψ(q). (1.8)

Groenewold and van Hove showed in [71] and [108] that such a map Q does not exist. The proof of this
no-go-theorem will be sketched for a two dimensional phase space in the following steps (for more detailed
proofs that include internal quantum numbers or curved phase spaces see [61], [62], [63], [64]):

In the first step one proves the following identities:

q̂n = q̂n, p̂n = p̂n and q̂p =
1
2
(q̂p̂+ p̂q̂). (1.9)

The first equation can be proved if one considers (1.7) for f = qn and g = q. (1.7) gives then 0 = 1
i~
[
q̂n, q̂

]
,

so that q̂n has to be a polynomial hn in q̂ = q. Setting then in (1.7) f = qn and g = p gives with
{qn, p}PB = nqn−1 and (1.8):

nq̂n−1 =
1
i~
[
q̂n, p̂

]
⇒ nhn−1(q) = ∂qhn(q), (1.10)

so that q̂n = q̂n follows (an integration constant can be calculated as zero [61]). The second equation of
(1.9) follows analogously. The third equation of (1.9) can be proved by setting in (1.7) f = q2 and g = p2.
With {q2, p2}PB = 4qp this gives

q̂p =
1

4i~

[
q̂2, p̂2

]
=

1
4i~

[
q̂2, p̂2

]
=

1
4i~

[
q̂2, p̂2

]
=

1
2
(q̂p̂+ p̂q̂), (1.11)
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where in the last step (1.3) was used.
In the second step one proves the following identities:

q̂2p =
1
2

(
q̂2p̂+ p̂q̂2

)
and p̂2q =

1
2

(
p̂2q̂ + q̂p̂2

)
. (1.12)

The proof is analogous to the ones in the last step. The first equation of (1.12) is for example obtained by
setting f = q3 and g = p2 and using then (1.3).
The third step is now to take the classical identity

1
9
{q3, p3} =

1
3
{q2p, p2q} (1.13)

and to quantize with (1.7) both sides of this equality. Using (1.9) and applying (1.3) leads for the left hand
side of (1.13) to

1
9i~

[
q̂3, p̂3

]
= q̂2p̂2 − 2i~q̂p̂− 2

3
~21̂, (1.14)

while quantizing the right hand side of (1.13) gives with (1.12)

1
3i~

[
q̂2p, p̂2q

]
= q̂2p̂2 − 2i~q̂p̂− 1

3
~21̂, (1.15)

which differs from the left hand side by − 1
3~21̂. This contradiction finishes the proof. 2

The Groenewold-van Hove theorem showed that a map Q fulfilling the requirements 1) to 4) does in
general not exist, it only exists if one restricts to polynomials of second order

{1, q, p, q2, p2, qp}
Q

−−−−→ {1̂, q̂, p̂, q̂2, p̂2,
1
2

(q̂p̂+ p̂q̂)} (1.16)

or the classes

{f(q)p+ g(q)}
Q

−−−−→ {1
2

(f(q̂)p̂+ p̂f(q̂)) + g(q̂)} (1.17)

and {f(p)q + g(p)}
Q

−−−−→ {1
2

(f(p̂)q̂ + q̂f(p̂)) + g(p̂)}, (1.18)

where f and g are arbitrary functions.
In order to quantize more general expressions one could then try to relax one of the conditions 1)

to 4). For example quantization without the irreducibility postulate 4) is the so called prequantization.
A prequantization exists for all C∞-functions on R2n, but it leads to physical problems if one wants to
calculate spectra (see for example [61]). If one on the other hand abandons condition 3), there is no
mathematical constraint that specifies the operator ordering anymore. Which operator ordering one chooses
is then a physical question. The rule of operator ordering is called a quantization scheme. The most
common quantization schemes are the standard ordering QS(qmpn) = q̂mp̂n, the antistandard ordering
QAS(qmpn) = p̂nq̂m and the Weyl ordering QW (qmpn) = (q̂mp̂n)W , where (q̂mp̂n)W means that one has to
sum over all possible products of m operators q̂ and n operators p̂ and then divide by the number of these
products, for example one has (q̂p̂2)W = 1

3 (p̂2q̂ + p̂q̂p̂+ q̂p̂2).
In [110] Weyl showed that QW (f(q, p)) can be represented by taking the Fourier transform f̃(u, v) =

1
(2π)2

∫
dqdp f(q, p) exp(−i(uq+vp)) of f(q, p) and forming an operator valued back-transformation according

to

QW (f(q, p)) =
∫
dudv f̃(u, v) exp(i(uq̂ + vp̂)). (1.19)
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In order to see that (1.19) leads to Weyl-ordering of operators one considers the case f(q, p) = qmpn. The
Fourier transform is then given by

f̃(u, v) =
1

(2π)2

∫
dqdp qmpne−i(uq+vp) =

∂m+n

∂um∂vn

im+n

(2π)2

∫
dqdp e−i(uq+vp) = im+nδ(m)(u)δ(n)(v), (1.20)

so that (1.19) gives

QW (qmpn) = im+n

∫
dudv δ(m)(u)δ(n)(v)ei(uq̂+vp̂) =

∞∑
r=0

im+n+r

r!

∫
dudv δ(m)(u)δ(n)(v)(uq̂ + vp̂)r. (1.21)

With
∫
du f(u)δ(m)(u) = (−1)mf (m)(0) one sees that in the sum only terms with r = m + n contribute

and that the result is the sum over all possible products of m operators q̂ and n operators p̂ divided by the
number (m+n)!

m!n! of such products.
Cohen generalized in [21] the integral representation of the Weyl scheme by introducing a filter function

φµ,ν,λ(u, v) = exp
[

~
4
(
µu2 + νv2 + 2iλuv

)]
. (1.22)

Different quantization schemes can then be parametrized by the parameters µ, ν and λ and represented as

Qφ(f(q, p)) =
∫
dudv f̃(u, v)φµ,ν,λ(u, v) exp(i(uq̂ + vp̂)). (1.23)

The standard ordering is for example given if one chooses µ = ν = 0 and λ = −1. The effect of the filter
function is that it generates under the integral additional terms in u and v. Proceeding then as described in
(1.21) the filter function terms left over after integration turn out to be just the correction terms needed to
go over from the Weyl ordering to another scheme. Just as it is possible to order with (1.23) the canonical
operators q̂ and p̂, it is also possible to order creation and annihilation operators â† and â [1]. Which values
of parameters one has to choose therefore in (1.22) is summarized in the following table. 1

Canonical coordinates
Standard ordering QS(qmpn) = q̂mp̂n µ = 0, ν = 0, λ = −1
Antistandard ordering QAS(qmpn) = p̂nq̂m µ = 0, ν = 0, λ = 1
Weyl ordering QW (qmpn) = (q̂mp̂n)W µ = 0, ν = 0, λ = 0
Holomorphic coordinates
Normal ordering QN (amān) = â†â µ = 1, ν = −1, λ = 0
Antinormal ordering QAN (amān) = ââ† µ = −1, ν = 1, λ = 0
Weyl ordering QW (amān) = (ââ†)W µ = 0, ν = 0, λ = 0

The integral representation of operator ordering described above works in the following way: One first
notices that (q̂ + p̂)r is the sum of all possible operator products of order r, i.e. QW ((q + p)r) = (q̂ + p̂)r.
More generally one has for all orders QW (exp(q + p)) = exp(q̂ + p̂). The problem is then to pick out the
right terms of the desired order and ordering. This is done by introducing additional variables u and v, so
that one has exp(uq̂ + vp̂). These variables carry the information of the order of q̂ and p̂. Picking out the
terms of the desired order is then done in the integral representation with δ-functions as described in (1.21).

1Note that this parametrization is not unique. The parametrization above is a parametrization with respect to the canonical
coordinates, i.e. one acts with the Fourier transformations on the canonical coordinates and the ordering schemes for the
holomorphic coordinates follow in a second step. But it is also possible to consider the holomorphic coordinates as primary
and do the Fourier transformation in holomorphic coordinates, so that the canonical ordering schemes follow in a second step.
Then the normal ordering would be parametrized for example with and µ = ν = 0, λ = 1 and the standard ordering would be
parametrized with µ = 1, ν = −1 and λ = 0. Such a parametrization will be used in section 3.3.
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This leads to the Weyl ordering and the other schemes can be obtained by introducing an filter function.
Picking out the terms of a given order can not only be done with δ-functions but in a much easier way also
with differential operators. One uses therefore that the Taylor expansion of f(q, p) around (q, p) = (0, 0) can
be written as

f(q, p) = f(∂u, ∂v)euq+vp|u,v=0 = eq∂u+p∂vf(u, v)|u,v=0. (1.24)

With QW (exp(uq + vp)) = exp(uq̂ + vp̂) one can then write the Weyl quantization as

QW (f(q, p)) = f(∂u, ∂v)euq̂+vp̂|u,v=0 = eq̂∂u+p̂∂vf(u, v)|u,v=0. (1.25)

Other quantization schemes can here be obtained analogously to the integral representation with the help
of a filter function.

So one sees that the quantization map Q is in several ways problematic. If one requires that Q should
fulfill the conditions 1) to 4) one sees that only polynomials up to second order can be quantized and
relaxing the conditions leads to operator ordering problems. Moreover quantizing with a map Q induces an
conceptual and formal break in physics when one goes over to quantum mechanics. So one could wonder if it
is possible to quantize without the problematic quantization map Q. This is indeed possible if one describes
the non-commutativity that enters quantum theory not by non-commuting objects like operators, but by a
non-commutative product. How such a product can be constructed will be discussed in the next section.

1.2 Star Products

If one wants to circumvent the quantization map Q by introducing a non-commuting product, called star
product, this product should emulate the non-commutativity of the operators. So the star product, denoted
by “∗”, should fulfill

Q(f)Q(g) = Q(f ∗ g), (1.26)

where different quantization schemes would lead to different star products. Equation (1.26) states that the
quantum mechanical algebra of observables is a representation of the star product algebra.

Since as shown above the Weyl scheme seems to be the most fundamental quantization scheme in the
sense that all other schemes can be constructed out of this scheme with a filter function, one first calculates
with (1.26) an explicit expression for the star product in the Weyl scheme. This case was first considered
by Moyal [92], so that the star product that corresponds to the Weyl scheme is called Moyal product. With
the integral representation (1.19) equation (1.26) can be written as:

QW (f)QW (g) =
∫
du1dv1du2dv2 f̃(u1, v1)g̃(u2, v2)e−i(u1q̂+v1p̂)e−i(u2q̂+v2p̂)

=
∫
du1dv1du2dv2 f̃(u1, v1)g̃(u2, v2)e−i((u1+u2)q̂+(v1+v2)p̂)e−

i~
2 (u1v2−v1u2), (1.27)

where the truncated Campbell-Baker-Hausdorff formula was used:

eÂeB̂ = e(Â+B̂)e
1
2 [Â,B̂]. (1.28)

Expanding now the last exponential in (1.27) and making the substitution u = u1 +u2 and v = v1 +v2 gives:

QW (f)QW (g) =
∫
dudv e−i(uq̂+vp̂)

×
∫
du1dv1

∞∑
m,n=0

(−1)m

m!n!

(
i~
2

)m+n

um
1 v

n
1 f̃(u1, v1)(u− u1)n(v − v1)mg̃(u− u1, v − v1). (1.29)

9



The expression in the second line of (1.29) is by the Fourier convolution theorem just the Fourier transform
of the expression for the Moyal product:

QW (f)QW (g) =
∫
dudv e−i(uq̂+vp̂)f̃ ∗M g = QW (f ∗M g). (1.30)

The Moyal star product can then be read off as:

(f ∗M g)(q, p) =
∞∑

m,n=0

(−1)m

m!n!

(
i~
2

)m+n

(∂m
p ∂

n
q f)(∂n

p ∂
m
q g)

= f(q, p) exp
[
i~
2

( ~

∂q
~∂p −

~

∂p
~∂q

)]
g(q, p), (1.31)

where the vector arrows indicate in which direction the differentiation acts.
This expression for the Moyal product can be derived even more simply in the differential representation

(1.25) for the Weyl scheme:

QW (f)QW (g) = f(u1, v1) exp
[ ~

∂u1 q̂ +

~

∂v1 p̂
]
exp

[
q̂~∂u2 + p̂~∂v2

]
g(u2, v2)

∣∣∣∣
ui,vi=0

= exp
[
q̂(∂u1 + ∂u2) + p̂(∂v1 + ∂v2)

]
f(u1, v1) exp

[
i~
2

(

~

∂u1
~∂v2 −

~

∂v1
~∂u1)

]
g(u2, v2)

∣∣∣∣
ui,vi=0

= exp
[
q̂∂u + p̂∂v

]
f(u, v) exp

[
i~
2

(

~

∂u
~∂v −

~

∂v
~∂u)
]
g(u, v)

∣∣∣∣
u,v=0

, (1.32)

where again (1.28) was used. With (1.24) for the Taylor expansion it is then easy to see that the Moyal
product can also be written by a shift formula:

(f ∗M g)(q, p) = f

(
q +

i~
2
~∂p, p−

i~
2
~∂q

)
g(q, p). (1.33)

Besides the differential representation (1.31) there is also a integral representation for the Moyal product;
this can be derived by applying the Fourier convolution theorem backwards, which gives

f ∗M g =
∞∑

m,n=0

(−1)m

m!n!

(
i~
2

)m+n

(∂m
p ∂

n
q f)(∂n

p ∂
m
q g)

=
1

(2π)2

∫
du1dv1du2dv2dq1dp1dq2dp2 e

iu2qeiv2pe
i~
2 (v1(u2−u1)−u1(v2−v1))

×e−iu1q1−iv1p1f(q1, p1)e−i(u2−u1)q2−i(v2−v1)p2g(q2, p2)

=
1

(2π)2

∫
du1dv1du2dv2dq1dp1dq2dp2 f(q1, p1)g(q2, p2)

× exp
[
iu2

(
q +

~
2
v1 − q2

)
+ iv2

(
p− ~

2
u1 − p2

)
− i(u1q1 + v1p1 − u1q2 − v1p2)

]
.

Rescaling the δ-functions according to δ(−q − (~/2)v1 + q2) = (2/~)δ(v1 + (2/~)q − (2/~)q2) gives:

f ∗M g =
1

~2π2

∫
dq1dq2dp1dp2f(q1, p1)g(q2, p2) exp

[
2
i~
(
p(q1 − q2) + q(p2 − p1) + (q2p1 − q1p2)

)]
,

The exponent in the above expression has an interesting geometric interpretation. Denote points in the two
dimensional phase space by vectors: ~x = (q, p)T , ~x1 = (q1, p1)T and ~x2 = (q2, p2)T , the area of the triangle
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in phase space spanned by ~x− ~x1 and ~x− ~x2 is then given by

A4(~x, ~x1, ~x2) =
1
2
(~x− ~x1) ∧ (~x− ~x2) =

1
2

[p(q2 − q1) + q(p1 − p2) + (q1p2 − q2p1)] , (1.34)

so that the integral representation of the Moyal product is eventually given by

(f ∗M g)(~x) =
1

~2π2

∫
d~x1d~x2 f(~x1)g(~x2) exp

[
4i
~
A4(~x, ~x1, ~x2)

]
. (1.35)

The integral representation can now be used to prove some basic properties of the Moyal product, for
example that the Moyal product is associative:

(f ∗M g) ∗M h = f ∗M (g ∗M h). (1.36)

Therefore one writes the left hand side with (1.35) as

(
(f ∗M g) ∗M h

)
(~x) =

1
~2π2

∫
d~x0d~x3 (f ∗M g)(~x0)h(~x3) exp

[
4i
~
A4(~x, ~x0, ~x3)

]
=

1
~4π4

∫
d~x0d~x1d~x2d~x3 f(~x1)g(~x2)h(~x3)

× exp
[
4i
~
(
A4(~x0, ~x1, ~x2) +A4(~x, ~x0, ~x3)

)]
. (1.37)

With (1.34) one obtains for the exponent

2
(
A4(~x0, ~x1, ~x2) +A4(~x, ~x0, ~x3)

)
= q0(−p+ p1 − p2 + p3) + p0(q − q1 + q2 − q3) + p1q2 + p2q1 + pq3 − p3q. (1.38)

The first two terms give together with the q0- and p0-integration the δ-functions δ(p − p1 + p2 − p3) and
δ(q− q1 + q2 − q3). The conditions p = p1 − p2 + p3 and q = q1 − q2 + q3, that the δ-functions impose, allow
to write the other terms of (1.38) as: p1q2 + p2q1 + pq3 − p3q = p1(q2 − q3) + p2(q1 − q3) + p3(q2 − q1) =
2A4(~x1, ~x2, ~x3). (1.37) can then be written as

(
(f ∗M g) ∗M h

)
(~x) =

1
~2π2

∫
d~x1d~x2d~x3 f(~x1)g(~x2)h(~x3)

× δ(p− p1 + p2 − p3)δ(q − q1 + q2 − q3) exp
[
4i
~
A4(~x1, ~x2, ~x3)

]
. (1.39)

Since the expression on the right hand side contains no information about the brackets on the left hand side
the Moyal product is associative.

Another important property of the Moyal product that can be seen in the integral representation is∫
dqdp f ∗M g =

∫
dqdp fg =

∫
dqdp g ∗M f. (1.40)

For the proof one considers the phase space integral of (1.35), which gives∫
dqdp f ∗M g =

∫
dq1dp1dq2dp2 f(q1, p1)g(q2, p2) exp

(
2
i~

(p1q2 − p2q2)
)

× 1
~2π2

∫
dqdp exp

(
2
i~
(
q(p2 − p1) + p(q1 − q2)

))
,

11



where the second line is the product of the δ-functions δ(p2 − p1) and δ(q1 − q2), so that (1.40) follows.
The discussion carried out so far for the star product that corresponds to Weyl ordering can in the same

way be repeated for another ordering. For example the star product that corresponds to standard ordering
is called the standard product and has the form

(f ∗S g)(q, p) = f(q, p) exp
[
i~

~

∂q
~∂p

]
g(q, p). (1.41)

Similarly one can discuss the different orderings in the case of holomorphic coordinates. The star product
that describes Weyl ordering in holomorphic coordinates is also called Moyal product and results from (1.31)
by transformation of variables:

(f ∗M g)(a, ā) = f(a, ā) exp
[

~
2
(

~

∂a
~∂ā −

~

∂ā
~∂a)
]
g(a, ā) (1.42)

and for the normal ordering one gets the normal star product as:

(f ∗N g)(a, ā) = f(a, ā) exp
[
~

~

∂a
~∂ā

]
g(a, ā). (1.43)

Just as it was possible to relate different orderings in the integral representation by a filter function (1.22),
it is also possible to relate different star products. This is done by the concept of c-equivalence. Two star
products ∗ and ∗′ are said to be c-equivalent, if there exists an invertible transition operator T =

∑∞
n=0 ~nTn,

where the Tn are differential operators, so that

f ∗′ g = T−1
(
(Tf) ∗ (Tg)

)
. (1.44)

It is known that for flat phase spaces all admissible star products are c-equivalent to the Moyal product. For
example the standard product is related to the Moyal product by

T (f ∗S g) = (Tf) ∗M (Tg) with T = exp
(
− i~

2
~∂q
~∂p

)
. (1.45)

One should note that the T -operators are just the filter functions, where one substitutes u by ∂q and v by
∂p.

1.3 Quantum Mechanics in the Star Product Formalism

So far one has succeded in describing the operator algebra of observables as a star product algebra of the
corresponding phase space functions. But in order to do quantum mechanics with star products on the phase
space one also needs phase space functions that correspond to quantum mechanical states. States on the
phase space can be constructed with the inverse of the quantization map. The inverse of (1.23) is given by
[1]:

Q−1
φ (f̂(q̂, p̂)) = 2π~Tr

[
f̂(q̂, p̂)

1
(2π)2

∫
dudv φ−1

µ,ν,λ(−u,−v) ei[u(q̂−q)+v(p̂−p)]

]
. (1.46)
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In the case of Weyl ordering this can easily be calculated as:

Q−1
W (f̂(q̂, p̂)) =

~
2π

∫
dudv e−i(uq+vp)Tr

[
f̂(q̂, p̂)ei(uq̂+vp̂)

]
(1.47)

=
~
2π

∫
dudv e−i(uq+vp)e−i ~

2 uvTr
[∫

dq′|q′〉〈q′|f̂(q̂, p̂) eivp̂eiuq̂

]
(1.48)

=
~
2π

∫
dudv e−i(uq+vp)e−i ~

2 uv

∫
dq′〈q′|f̂(q̂, p̂)eivp̂|q′〉eiuq′ (1.49)

=
~
2π

∫
dudvdq′ e−iu(q−q′− ~

2 v)〈q′|f̂(q̂, p̂)|q − ~v〉e−ivp (1.50)

= ~
∫
dv 〈q +

~
2
v|f̂(q̂, p̂)|q − ~

2
v〉e−ivp. (1.51)

The same calculation can be redone for other operator orderings, for example standard ordering leads to:

Q−1
S (f̂(q̂, p̂)) = ~

∫
dv 〈q|f̂(q̂, p̂)|q − ~v〉e−ivp. (1.52)

If one then applies Q−1 to the product of two operators one gets with (1.26) in the case of Weyl ordering:

Q−1
W (f̂ ĝ) = f ∗M g (1.53)

and the integrated version of this equation is with (1.40) and (1.51)∫
dqdpQ−1

W (f̂ ĝ) =
∫
dqdp f ∗M g =

∫
dqdp fg = 2π~Tr

[
f̂ ĝ
]
. (1.54)

With the map Q−1 one can construct the phase space analogue of a pure state |ψ〉, simply by calculating
the phase space function corresponding to the density matrix ρ̂ = |ψ〉〈ψ|. This calculation leads to the well
known phase space distribution functions (see for example [111] and [87]). For example in the case of Weyl
ordering equation (1.51) gives for f̂ = |ψ〉〈ψ| the Wigner function

π(q, p) = ~
∫
dv ψ̄(q +

~v
2

)ψ(q − ~v
2

)e−ipv. (1.55)

In contrast to the wave functions the Wigner functions describe a quantum mechanical state on the whole
phase space, but the wave functions can be reobtained by integration over one of the phase space coordinates:∫

dp π(q, p) = 2π~|ψ(q)|2 and
∫
dq π(q, p) = 2π~|ψ̃(p)|2. (1.56)

The phase space integral gives then the normalization condition for the Wigner functions∫
dqdp π(q, p) = 2π~. (1.57)

The phase space integral of two Wigner functions π1(q, p) and π2(q, p) is given with (1.54) by∫
dqdp π1(q, p)π2(q, p) = 2π~Tr

[
|ψ1〉〈ψ1|ψ2〉〈ψ2|

]
= 2π~

∣∣∣∣ ∫ dq ψ̄1(q)ψ2(q)
∣∣∣∣2. (1.58)

For ψ1(q) = ψ2(q) this leads to ∫
dqdp [π(q, p)]2 =

∫
dqdp π(q, p), (1.59)
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while for orthogonal ψ1(q) and ψ2(q) one has
∫
dqdp π1(q, p)π2(q, p) = 0. Then at least one of the Wigner

functions must be negative somewhere. This means that although the Wigner functions have the right
marginal probabilities (1.56) they can not be interpreted as probability distributions.

Nevertheless it is possible to do quantum mechanics with the Wigner functions. For example the expec-
tation value of an operator can be obtained with (1.54) as∫

dqdp f(q, p)π(q, p) = 2π~Tr
[
f̂ ρ̂
]

= 2π~〈f̂〉. (1.60)

Similarly the eigenvalue equation of quantum mechanics can be reproduced on the phase space. For example
for the Hamilton operator Ĥ one can calculate Q−1

W (Ĥρ̂) = H ∗M π(q, p), which gives for H = 1
2mp

2 + V (q)
with the shift formula (1.33):

H ∗M πE =
(

1
2m

(
p− i

~
2
~∂q

)2

+ V (q)
)

~
∫
dv e−iv(p+i ~

2

~

∂q)ψ∗(q − ~
2
v)ψ(q +

~
2
v) (1.61)

= ~
∫
dv

(
1

2m

(
p− i

~
2
~∂q

)2

+ V
(
q +

~
2
v
))2

e−ivpψ∗(q − ~
2
v)ψ(q +

~
2
v) (1.62)

= ~
∫
dv e−ivp

(
1

2m

(
i~∂v − i

~
2
~∂q

)2

+ V
(
q +

~
2
v
))2

ψ∗(q − ~
2
v)ψ(q +

~
2
v) (1.63)

= ~
∫
dv e−ivpψ∗(q − ~

2
v)Eψ(q +

~
2
v) (1.64)

= E ∗M πE . (1.65)

This equation is the phase space analogue of Ĥρ̂ = Eρ̂. In the same way one can calculate the time
development of the Wigner function by applying Q−1

W to the von Neumann equation i~ ∂
∂t ρ̂ =

[
Ĥ, ρ̂

]
, which

gives

i~
∂

∂t
π(q, p; t) = [H(q, p; t), π(q, p; t)]∗M

. (1.66)

The time development of the density matrix can also be calculated with the time development op-
erator, which acts as |ψ, t〉 = Û(t)|ψ, 0〉 = Û(t)|ψ〉H , where the index H indicates that |ψ〉H is the
time independent state in the Heisenberg picture. The time development of the density matrix is then
ρ̂(t) = Û(t)|ψ〉H〈ψ|H Û†(t), which translates into the phase space language as

π(q, p; t) = U(t) ∗M πH(q, p) ∗M U(t), (1.67)

where π(q, p; t) is the Wigner function in the Schrödinger picture, πH(q, p) = π(q, p; t = 0) the Wigner
function in the Heisenberg picture and Ū(t) the complex conjugate of U(t). The next task is then to find
the phase space analogue U(t) of the time development operator Û(t). The equation that Û(t) fulfills can
be translated directly to the phase space:

i~
d

dt
Û(t) = Ĥ(t)Û(t) ⇒ i~

d

dt
U(t) = H(t) ∗M U(t). (1.68)

Û(t) has then the form Û(t) = T exp
(
− i

h

∫ t

0
dt′ Ĥ(t′)

)
, where T is the time ordering operator. In the case

of a time independent Hamilton operator one has Û(t) = e−iĤt/~, what is expressed on the phase space by
the star exponential

U(t) = e
−iHt/~
∗M =

∞∑
n=0

1
n!

(
−it
~

)n

Hn∗M ≡ ExpM (Ht), (1.69)
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where
Hn∗M = H ∗M H ∗M · · · ∗M H︸ ︷︷ ︸

n times

. (1.70)

The time development of the observables in the Heisenberg picture can then also be given as

f̂H(t) = Û†(t)f̂ Û(t) ⇒ fH(t) = U(t) ∗M f ∗M U(t) (1.71)

and time-differentiation of these equations gives with (1.68) the von Neumann equation:

d

dt
f̂H =

1
i~

[
f̂H , Ĥ

]
+
∂f̂H

∂t
⇒ d

dt
fH =

1
i~

[fH ,H]∗M
+
∂fH

∂t
. (1.72)

Since in the following only the Heisenberg picture is used the index H will be dropped. One should note
that for the observables q and p the von Neumann equation leads to the classical equations of motion

dq

dt
=

1
i~

(q ∗M H −H ∗M q) = ∂pH and
dp

dt
=

1
i~

(p ∗M H −H ∗M p) = −∂qH. (1.73)

All the translation done above for the case of Weyl ordering can also be done for other orderings. So the
star product formalism circumvents the use of the problematic quantization map Q, but one is still plagued
by the ordering problem. Choosing different orderings leads to different star products and different phase
space distribution functions [87]. The question is then which ordering has to be chosen. This question can
be investigated by imposing reasonable requirements a phase space functions has to fulfill, for example it
should transform as a scalar function under the transformations of the Galilei group. Such requirements were
considered in [85] and it was shown that the Wigner function is the only phase space distribution function
that could meet theses requirements. So it seems that at least for nonrelativistic quantum mechanics the
Wigner function and the corresponding Moyal product are the canonical structures for doing quantum physics
on the phase space.

Having translated quantum mechanics from a version that works on a Hilbert space into a version
that works on the phase space suggests to forget about the operator formalism and to describe quantum
mechanics directly on the phase space. Starting point is then a classical system that is described in the
Hamilton formalism. A state of the system is described as a point of the phase space and the observables of
the systems are functions on the phase space. Physical quantities of the system at some time are calculated
by evaluating the observables at the corresponding phase space point x = (q0, p0) that characterizes the state
of the system at this time. The evaluation of the energy can for example be mathematically expressed as

E =
∫
dqdp δ(q − q0, p− p0)H(q, p). (1.74)

So the observables of the dynamical system are functions on the phase space and the states of the system are
positive functionals on the observables (here the Dirac δ-function) and one obtains the value of the observable
in a definite state by the above mentioned operation. As described in the beginning of the chapter there are
two additional structures. First there is the pointwise product of functions on the phases space, so that a
commutative classical algebra of observables is constituted and second there is the Poisson bracket that is
used to describe the time development of the system.

Going over to quantum theory means now to implement Heisenberg’s uncertainty relation, which implies
that the states can no longer be represented as points on the phase space. Moreover the uncertainty is
intimately connected to the non-commutativity of the algebra of observables. So uncertainty is realized by
describing physical states by phase space distribution functions that are not sharply localized, in contrast to
the δ-function that appears in the classical case. If one then evaluates an observable in some definite state
according to the quantum analogue of Eq. (1.74), values of the observabels in a whole region contribute to
the number that one obtains, which is thus an average value of the observable in the given state. On the
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other hand non-commutativity is incorporated by introducing a non-commutative product for functions on
phase space, so that one gets a non-commutative quantum algebra of observables. One can now make an
ansatz for this non-commutative product one is looking for:

f ∗ g = fg + (i~)C1(f, g) +O(~2) =
∞∑

n=0

(i~)nCn(f, g). (1.75)

In mathematics such a modified product was first considered by Gerstenhaber in [60], where the modification
was called deformation. The deformation of the pointwise product is here done in a continuous way, which
is described by the deformation parameter (i~). If ~ is identified with Planck’s constant, then what varies is
really the magnitude of the action of the dynamical system considered in units of ~: the classical limit holds
for systems with large action. In this limit, which is expressed by ~ → 0, the star product reduces to the usual
pointwise product. The expressions Cn(f, g) denote functions made up of the derivatives of the functions f
and g and they should be chosen in a way that the new product in non-commutative. But without further
restriction of these coefficients, the star product is too arbitrary to be of any use. Gerstenhaber’s discovery
was that the simple requirement that the new product be associative imposes such strong requirements on the
coefficients Cn that they are essentially unique (up to an equivalence relation that is just the c-equivalence).
Formally Gerstenhaber required that the coefficients satisfy the following properties:

(i)
∑

j+k=n

Cj(Ck(f, g), h) =
∑

j+k=n

Cj(f, Ck(g, h)),

(ii) C0(f, g) = fg,

(iii) C1(f, g)− C1(g, f) = {f, g}PB .

Property (i) guarantees that the star product is associative. Property (ii) means that in the limit ~ → 0 the
star product agrees with the pointwise product. Property (iii) has at least two aspects. Mathematically, it
anchors the new product to the given structure of the Poisson manifold. Physically, it provides the connection
between the classical and quantum behavior of the dynamical system. Property (iii) can be written with the
star commutator as

lim
~→0

1
i~

[f, g]∗ = {f, g}PB , (1.76)

which is the correct form of the correspondence principle. In general, the quantity on the left hand side
reduces to the Poisson bracket only in the classical limit. The source of the mathematical difficulties for-
mulating the correspondence principle that the operator formalism encounters is related to trying to enforce
equality between the Poisson bracket and the corresponding expressions involving the quantum mechanical
commutator. Eq. (1.76) shows that such a relation in general only holds up to corrections of higher order in
~.

For physical applications one usually also requires the star product to be hermitian:

f ∗ g = g ∗ f, (1.77)

where f denotes the complex conjugate of f . The star products that were constructed from the operator
formalism above have this property.

For a given Poisson manifold it is not clear a priori if a star product for the smooth functions on the
manifold actually exist, that is, whether it is at all possible to find coefficients Cn that satisfy the above list
of properties. Even if one finds such coefficients, it is still not clear that the series they define through (1.75)
yields a smooth function. For flat euclidian space such a star product exists. In this case the components of
the Poisson tensor Ωij can be taken to be constants. The coefficients C1 can then be chosen antisymmetric,
so that

C1(f, g) =
1
2
Ωij(∂if)(∂jg) =

1
2
{f, g}PB , (1.78)
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by property (iii) above. The higher order coefficients may be obtained by exponentiation of C1. This
procedure yields then the Moyal star product

f ∗M g = f exp
[(

i~
2

)
Ωij

~

∂i
~∂j

]
g, (1.79)

which is in canonical coordinates given by (1.31). If one does not demand according to property (iii) that
the coefficients C1 are antisymmetric one obtains more general products that will be called circle products,
denoted by “◦”.

Having established the star product on the phase space it is then possible to do quantum physics on
the phase space. Starting with the classical system that is described by the Hamiltonian H one proceeds
as follows. First one can for example calculate the star exponential Exp(Ht). For a time independent
Hamiltonian this can be done either by direct calculation according to

Exp(Ht) =
∞∑

n=0

1
n!

(
−it
~

)n

Hn∗ (1.80)

or by solving the defining time dependent Schrödinger equation

i~
d

dt
Exp(Ht) = H ∗ Exp(Ht). (1.81)

Since each state of definite energy E has a time-evolution e−iEt/~, the star exponential as the complete
time-evolution function can be written as:

Exp(Ht) =
∑
E

πEe
−iEt/~. (1.82)

This expansion is called the Fourier-Dirichlet expansion for the time-evolution function. Putting now (1.82)
into (1.81) leads to the ∗-eigenvalue equation

(H ∗ πE)(q, p) = EπE(q, p), (1.83)

which corresponds to the time independent Schrödinger equation. Eq. (1.82) and (1.81) give for t = 0 the
spectral decomposition of the Hamiltonian:

H =
∑
E

EπE . (1.84)

Substituting this expression for H in (1.83) gives

H ∗ πE =
∑
E′

E′πE′ ∗ πE = EπE , (1.85)

so that the phase space distribution functions fulfill

πE ∗ πE′ = δE,E′πE . (1.86)

Together with the completeness relation ∑
E

πE = 1, (1.87)

which follows from (1.82) for t = 0, one sees that the phase space distribution functions are projectors. This
reflects the fact that the πE are the phase space analogues of the density matrices |ψE〉〈ψE |. With the phase
space distribution functions one can calculate the energy expectation value as

〈H〉 =
1

2π~

∫
dqdp (H ∗ πE)(q, p) =

1
2π~

∫
dqdpH(q, p)πE(q, p) = E, (1.88)

which is the quantum mechanical generalization of (1.74).
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1.4 The Harmonic Oscillator in the Star Product Formalism

The formalism discussed in the last section will now be used to consider the example of the one dimensional
harmonic oscillator. The Hamiltonian is given by

H(q, p) =
p2

2m
+
mω2

2
q2. (1.89)

While the oscillator was treated in [10] with canonical coordinates, one can alternatively also use holomorphic
coordinates

a =
√
mω

2

(
q + i

p

mω

)
and ā =

√
mω

2

(
q − i

p

mω

)
. (1.90)

In holomorphic coordinates the Hamiltonian can be written as

H = ωaā. (1.91)

In order to consider the physical consequence of different orderings first the quantization scheme charac-
terized by the normal star product will be used. For the normal star product (1.43) one has

a ∗N a = a2, ā ∗N ā = ā2, ā ∗N a = āa and a ∗N ā = aā+ ~, (1.92)

so that
[a, a]∗N

= [ā, ā]∗N
= 0 and [a, ā]∗N

= ~. (1.93)

The defining equation for the starexponential (1.81) is given in the case of normal ordering by

i~
d

dt
ExpN (Ht) = (H + ~ωā∂ā) ExpN (Ht) (1.94)

with the solution
ExpN (Ht) = e−aā/~ exp

(
e−iωtaā/~

)
. (1.95)

Expanding the last exponential one directly obtains the Fourier-Dirichlet expansion:

ExpN (Ht) = e−aā/~
∞∑

n=0

1
~nn!

anāne−inωt. (1.96)

Comparing coefficients in (1.95) and (1.82) gives for the phase space distribution functions

π(N)
n =

1
~nn!

anāne−aā/~ =
1
n!

Hn

(~ω)n
e−H/~ω (1.97)

and for the spectrum En = ~ωn. Note that the spectrum does not include the zero-point energy. With
(1.97) and the energy levels one directly verifies the ∗-eigenvalue equation

H ∗N π(N)
n = Enπ

(N)
n (1.98)

and the spectral decomposition (1.84) of the Hamilton function

H =
∞∑

n=0

~ωn
(

1
~nn!

anāne−aā/~
)

= ωaā. (1.99)

Moreover one sees in (1.97) that the holomorphic coordinates work as creation and annihilation functions,
i.e.

π
(N)
n+1 =

1
~(n+ 1)

ā ∗N π(N)
n ∗N a and π

(N)
n−1 =

1
~n
a ∗N π(N)

n ∗N ā (1.100)
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and especially for the ground state one has a ∗N π
(N)
0 ∗N ā = a ∗N π

(N)
0 = 0. This allows one to write π(N)

n as

π(N)
n =

1
~nn!

ān ∗N π
(N)
0 ∗N an with π

(N)
0 = e−aā/~. (1.101)

In contrast to the operator formalism one must act in the star product formalism from both sides with the
creation and annihilation function ā and a in order to raise or lower phase space distribution functions,
because they contain the wave function and its complex conjugate and both wave functions have to be
lowered or raised.

It is easy to show that the π(N)
n are projectors. They are normalized according to

1
2π~

∫
dadā π(N)

n = 1 (1.102)

and with expression (1.97) one can immediately see the completeness relation
∑

n π
(N)
n = 1. The idempotency

(1.86) of the phase space distribution functions can be proved as follows. First show with (1.97) that
π

(N)
0 ∗N π

(N)
0 = π

(N)
0 . Then π(N)

m ∗N π
(N)
n can be calculated with [a, ān]∗N

= ~nān−1 and the idempotency of

π
(N)
0 , which gives

π(N)
m ∗N π(N)

n = δmnπ
(N)
n . (1.103)

The projectors π(N)
n can also be obtained from the density matrix. In holomorphic coordinates it is convenient

to work with the coherent states â|a〉 = a|a〉 and 〈ā|â† = 〈ā|ā, which are related to the energy eigenstates of
the harmonic oscillator |n〉 = 1√

n!
â†n|0〉 by

|a〉 = e−(1/2)aā/~
∞∑

n=0

an

√
n!
|n〉 and 〈ā| = e−(1/2)aā/~

∞∑
n=0

ān

√
n!
〈n|. (1.104)

In normal ordering one obtains the phase space function f(a, ā) corresponding to the operator f̂ by just
taking the matrix element between coherent states:

f(a, ā) = 〈ā|f̂(â, â†)|a〉, (1.105)

so that the phase space function corresponding to |n〉〈n| is

π(N)
n =

1
~n
〈ā|n〉〈n|a〉 =

1
~nn!

anāne−aā/~. (1.106)

For the off diagonal Wigner functions π(N)
mn that correspond to the density matrices |m〉〈n| one gets

π(N)
mn =

1√
~mm!

√
~nn!

anāme−aā/~. (1.107)

The Moyal quantization scheme can also be considered in holomorphic coordinates. The Moyal product
can be transformed straightforwardly into holomorphic coordinates (1.90), which leads to

f ∗M g = f exp
[

~
2

( ~

∂a
~∂ā −

~

∂ā
~∂a

)]
g. (1.108)

Here one has

a ∗M a = a2, ā ∗M ā = ā2, a ∗M ā = aā+
~
2

and ā ∗M a = āa− ~
2

(1.109)

19



and again as in the case of the normal star product

[a, a]∗M
= [ā, ā]∗M

= 0 and [a, ā]∗M
= ~. (1.110)

The value of the commutator of two phase space variables is fixed by the third property of the star product,
and cannot change when one goes to a c-equivalent star product. The Moyal star product is c-equivalent to
the normal star product with the transition operator

T = exp
(
−~

2
~∂a
~∂ā

)
. (1.111)

One can now proceed the same way as in the case of the normal star product, or one can use (1.111) to
transform the results already calculated in the case of normal star product into the Moyal star product
version. This approach can be advantageous because the calculations in the normal product scheme are
easier than the calculations in the Moyal product scheme.

The Moyal Wigner functions can be obtained according to

π(M)
n = Tπ(N)

n =
1

~nn!
T ān ∗M Tπ

(N)
0 ∗M Tan =

1
~nn!

ān ∗M π
(M)
0 ∗M an, (1.112)

which shows that the holomorphic coordinates act here also as creation and annihilation functions. Using
(1.112), [a, ān]∗M

= ~nān−1 and a ∗M π
(M)
0 = 0 one can then write the ∗-eigenvalue equation for the Moyal

product as

H ∗M π(M)
n = ω

(
ā ∗M a+

~
2

)
∗M π(M)

n = ~ω
(
n+

1
2

)
π(M)

n . (1.113)

So in the Moyal-case one obtains the spectrum En = ~ω
(
n+ 1

2

)
, which differs from the spectrum in the

normal-case by the zero point energy. The physical difference between different orderings or c-equivalent
star products is a shift in the spectrum. One may then ask which explicit form the Wigner functions π(M)

n

have. This can be answered for the ground state by first calculating

π
(M)
0 = Tπ

(N)
0 =

∞∑
k=0

1
k!

(
−~

2

)k

∂k
a∂

k
āe
−aā/~

=
∞∑

k=0

1
k!

(
−~

2

)k

∂k
a

(
−a

~

)k

e−aā/~

=
∞∑

k=0

1
k!

(
1
2

)k k∑
l=0

(
k

l

)(
∂l

aa
k
)
∂k−l

a e−aā/~

= e−aā/~
∞∑

k=0

k∑
l=0

k!
l!(k − l)!(k − l)!

(
−1

~
aā

)k−l

= e−aā/~
∞∑

k=0

(
1
2

)k

Lk

(
1
~
aā

)
= 2e−2aā/~, (1.114)

where one uses in the last step the generating function for the Laguerre polynomials

1
1 + s

exp
[
zs

1 + s

]
=

∞∑
n=0

sn(−1)nLn(z). (1.115)

20



The π(M)
n can then be obtained via (1.112) or they can be calculated directly as

π(M)
n = Tπ(N)

n = e−
~
2 ∂a∂ā

1
~nn!

anāne−aā/~

=
1

~nn!
anān exp

[
−~

2

( ~

∂a

~

∂ā +

~

∂a
~∂ā +

~

∂ā
~∂a + ~∂a

~∂ā

)]
e−aā/~

=
2

~nn!
anān exp

[
−~

2

( ~

∂a

~

∂ā +

~

∂a
~∂ā +

~

∂ā
~∂a

)]
e−2aā/~, (1.116)

where one uses in first step

exp [∂a∂ā] f(a, ā)g(a, ā) = f(a, ā) exp
[
(

~

∂a +

~

∂ā)(~∂a + ~∂ā)
]
g(a, ā) (1.117)

and in the second step (1.114). (1.116) can be further simplified to

π(M)
n = Tπ(N)

n =
2

~nn!
anān exp

[
−~

2

( ~

∂a

~

∂ā +

~

∂a
~∂ā

)]
e

~

∂āāe−2aā/~

=
2

~nn!
anāne

~

∂āā exp
[
−~

2

( ~

∂a

~

∂ā +

~

∂a
~∂ā

)]
e−2aā/~

=
2

~nn!
2nanān exp

[
−~

2

~

∂a

~

∂ā

]
e

~

∂aae−2aā/~

= (−1)n2Ln

(
2
~
aā

)
e

~

∂aae−2aā/~

= (−1)n2Ln

(
4H
~ω

)
e−2H/~ω, (1.118)

where f(x+ b) = eb∂xf(x) and
[
−~

2

( ~

∂a

~

∂ā +

~

∂a
~∂ā

)
,

~

∂āā
]

= 0 was applied. Since the result (1.118) depends
only on H one can directly see that it corresponds to the result obtained in canonical coordinates [10].
Furthermore one can also calculate π(M)

n in canonical coordinates according to (1.55). The wave functions
of the harmonic oscillator contain Hermite polynomials Hn(q) and with∫

dx
[
Hn(x− a)Hn(x+ a)e−x2

]
e−2ibx = 2n

√
π n! e−b2Ln(2(a2 + b2)) (1.119)

the expression (1.118) follows from (1.55). It is also easy to see that the π(M)
n satisfy just like the π(N)

n the
projector conditions [105].

Just as for the Wigner functions there are also several ways to calculate the star exponential in the Moyal
case. With the Wigner functions π(M)

n in (1.118), the energy levels En = ~ω
(
n+ 1

2

)
and (1.115) one can

calculate the star exponential according to the Fourier-Dirichlet expansions (1.82), which gives

ExpM (Ht) =
1

cos (ωt/2)
exp

(
2H
i~ω

tan
(
ωt

2

))
. (1.120)

The other possibility is to solve the defining differential equation for the star exponential, which with

H ∗M f(H) =
∞∑

m,n=0

(
~
2

)m+n (−1)n

m!n!
[∂m

a ∂
n
āH] [∂n

a ∂
m
ā f(H)]

= Hf(H)−
(

~
2

)2

ω2

[
d

dH
f(H) +H

d2

dH2
f(H)

]
(1.121)
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reads in the Moyal case for holomorphic coordinates

i~
d

dt
ExpM (Ht) = HExpM (Ht)− ~2

4
ω2 d

dH
ExpM (Ht)− ~2

4
ω2H

d2

dH2
ExpM (Ht). (1.122)

This differential equation is solved by (1.120).
The third possibility that demonstrates the connection of the star product formalism to the path integral

approach is to calculate the Feynman kernel [101], [22]

K(q2, t; q1, 0) = 〈q2|e−iĤt/~|q1〉. (1.123)

The Feynman kernel describes in the conventional approach the time development of a system. Substituting
a complete set of energy eigenstates one gets an expression resembling the Fourier-Dirichlet expansion

K(q2, t; q1, 0) =
∞∑

n=0

〈q2|n〉〈n|q1〉e−iEnt/~. (1.124)

Inserting the harmonic oscillator states gives

1
2nn!

√
mω

π~
exp

[
−mω

~
(q21 + q22)

] ∞∑
n=0

exp
[
−i
(
n+

1
2

)
ωt

]
Hn

(√
mω

~
q1

)
Hn

(√
mω

~
q2

)
=
√

mω

2πi~ sinωt
exp

[
imω

2~ sinωt
(
(q21 + q22) cosωt− 2q1q2

)]
, (1.125)

where one uses
1√

1− s2
exp

[
2xys− s2(x2 + y2)

1− s2

]
=

∞∑
n=0

sn

2nn!
Hn(x)Hn(y). (1.126)

Fourier transformation on both sides of (1.125) and applying (1.119) leads then to

∞∑
n=0

2(−1)nLn

(
4H
~ω

)
exp

(
−2H

~ω

)
exp

[
−i
(
n+

1
2

)
ωt

]
=

1
cosωt/2

exp
[

2H
i~ω

tan
ωt

2

]
. (1.127)

The left hand side is just the Fourier-Dirichlet expansion with the Wigner functions found in (1.118) and
the right hand side is the expression (1.120) for the star exponential.

1.5 Systems in Higher Dimensions and Angular Momentum

In order to show how the generalization to higher dimensional systems works one first considers the two
dimensional harmonic oscillator [10]. The Hamiltonian is given by H = p2

1
2m + mω2

2 q21 + p2
2

2m + mω2

2 q22 =
ω(a1ā1 + a2ā2) = H1 +H2 with an =

√
mω
2

(
qn + i

mωpn

)
and ān =

√
mω
2

(
qn − i

mωpn

)
. The Moyal product

generalizes in d dimensions to

∗M = exp

[
i~
2

d∑
n=1

( ~

∂qn
~∂pn −

~

∂pn
~∂qn

)]
= exp

[
~
2

d∑
n=1

( ~

∂an
~∂ān −

~

∂ān
~∂an

)]
. (1.128)

The Wigner functions of the two dimensional system are the product of the corresponding one dimensional
systems:

H ∗M π(M)
n1

(a1, ā1)π(M)
n2

(a2, ā2) = ~ω(n+ 1)π(M)
n1

(a1, ā1)π(M)
n2

(a2, ā2), (1.129)
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with n = n1 + n2, which shows the (n+ 1)-fold degeneracy of the system. The two one dimensional Wigner
functions can be combined into a two dimensional Wigner function corresponding to the energy level n:

π(M)
n (a1, ā1, a2, ā2) =

∑
n1+n2=n

π(M)
n1

(a1, ā1)π(M)
n2

(a2, ā2) = 4(−1)ne−2H/~ωL1
n

(
4H
~ω

)
. (1.130)

The star exponential is given by

ExpM (Ht) =
∞∑

n=0

π(M)
n (a1, ā1, a2, ā2)e−i(n+1)ωt

=
(

cos
ωt

2

)−2

exp
[(

2H
i~ω

)
tan

ωt

2

]
= ExpM (H1t)ExpM (H2t). (1.131)

This shows that the generalization to higher dimensional systems is just as in conventional quantum me-
chanics straightforward.

In the two dimensional system described above there exists also an angular momentum. The angular
momentum can most easily be described if one defines creation and annihilation operators for positively and
negatively rotating quanta:

a+ =

√
1
2
(a1 − ia2) , ā+ =

√
1
2
(ā1 + iā2) and a− =

√
1
2
(a1 + ia2) , ā− =

√
1
2
(ā1 − iā2). (1.132)

In these coordinates the Moyal product can be written as:

∗M = exp

[
~
2

2∑
n=1

( ~
∂an

~∂ān −
~

∂ān
~∂an

)]
= exp

[
~
2

( ~
∂a+

~∂ā+ −
~

∂ā+
~∂a+ +

~
∂a−

~∂ā− −
~

∂ā−
~∂a−

)]
. (1.133)

The Hamiltonian turns intoH = ωa+ā++ωa−ā− = ω(N++N−+~) = H++H− withN+(−) = ā+(−)∗Ma+(−)

and H+(−) = ω
(
N+(−) + ~

2

)
and for the angular momentum one obtains:

J3 = q1p2 − p1q2 = i(a1ā2 − a2ā1) = ā+a+ − ā−a− = N+ −N−. (1.134)

The Wigner functions (1.130) should now be turned into a form where they are also ∗-eigenfunctions of J3.
The decomposition of the Hamiltonian is analogous to the decomposition in conventional holomorphic coor-
dinates ān and an, moreover the Moyal product has the same structure in both types of coordinates as can be
seen in (1.133). So the calculations can be done analogously by substituting the indices (1,2) by (+,−). The
one dimensional Wigner functions are then π

(M)
n+(−)(a+(−), ā+(−)) = 2(−1)n+(−)e−2H+(−)/~ωLn+(−)

(
4H+(−)

~ω

)
and the energy levels are En = ~ω(n+ 1) = ~ω(n+ + n− + 1). The two dimensional Wigner functions are

π(M)
n (a+, ā+, a−, ā−) =

∑
n++n−=n

4(−1)ne−2H/~ωLn+

(
4H+

~ω

)
Ln−

(
4H−

~ω

)
. (1.135)

Each term π
(M)
n+,n− of (1.135) is hereby a ∗-eigenfunction of J3: J3 ∗M π

(M)
n+,n− = ~(n+ − n−)π(M)

n+,n− . Instead
of parametrizing with n+ and n− it is also possible to parametrize with n = n+ + n− and m = n+ − n− so
that

π(M)
n,m(a+, ā+, a−, ā−) = 4(−1)ne−2H/~ωL(n+m)/2

(
4H+

~ω

)
L(n−m)/2

(
4H−

~ω

)
(1.136)

and J3 ∗M π
(M)
n,m = mπ

(M)
n,m with m = n, n− 2, n− 4, . . . ,−n.
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The two dimensional harmonic oscillator can now be used as the basis for discussing angular momentum
in the star product formalism. One first notices that the angular momentum functions Ji = εjk

i qjpk form
with the Moyal product an su(2) algebra

[Ji, Jj ]∗M
= i~εijkJk. (1.137)

So they can be used to generate rotations. This is done in the star product formalism with the star
exponential:

ExpM (Jiϕ) ∗M ~q ∗M ExpM (−Jiϕ) = R(ϕ)~q, (1.138)

where R(ϕ) is the rotation matrix. In order to calculate the star exponential one has to represent Ji with
holomorphic coordinates as in (1.134), so that the star exponential corresponds to the one of the harmonic
oscillator.

The next question is to find the Wigner functions and the eigenvalues j and m for ~J2∗M and J3. From
the operator formalism it is known that j can have the values j = 0, 1

2 , 1,
3
2 , . . . and m can have the values

m = −j,−j + 1, . . . , j − 1, j. The half integer steps for j cannot be described with the purely bosonic two
dimensional harmonic oscillator, because the main quantum number is the energy expressed by the total
number of quanta in the system, which is an integer n = n+ + n− = 0, 1, 2, . . .; correspondingly the m vary
in steps of two. So in order to describe angular momentum one has to introduce a factor 1

2 , i.e.

j =
1
2
(n+ + n−) and m =

1
2
(n+ − n−). (1.139)

Using these definitions one just obtains the Schwinger representation of angular momentum [99]. With the
ladder functions J+ = ā+a− and J− = ā−a+ the angular momentum functions are then instead of (1.134)
defined by:

J1 =
1
2
(J+ + J−) =

1
2
(ā+a− + ā−a+), J2 =

1
2i

(J+ − J−) =
1
2
(iā−a+ − iā+a−)

and J3 =
1
2
(N+ −N−) =

1
2
(ā+a+ − ā−a−). (1.140)

For the square of the angular momentum one obtains:

~J 2∗M = J2∗M
1 + J2∗M

2 + J2∗M
3 =

1
2
(N+ +N−) ∗M

(
1
2
(N+ +N−) + ~

)
, (1.141)

so that with the Wigner functions π(M)
n+,n− = π

(M)
n+ π

(M)
n− of the two dimensional harmonic oscillator follows

~J 2∗M ∗M π(M)
n+,n− = ~2j(j + 1)π(M)

n+,n− and J3 ∗M π(M)
n+,n− = ~mπ(M)

n+,n− . (1.142)

The factor 1
2 that was introduced in (1.139) stems from the decomposition of the angular momentum into

spins that is achieved by the Schwinger representation. How this can be described in the star product
formalism will be discussed in the next chapter.
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Chapter 2

Fermionic Star Products

After having established the star product formalism for quantum mechanics the next task is to incorporate
spin in the formalism. This was done first using the bosonic Moyal product in [109]. But as shown in [11]
and [18] spin can be described most elegantly in the context of grassmannian mechanics. This approach will
be used here to obtain by deformation quantization of grassmannian mechanics a fermionic star product and
a description of spin. The fermionic star products can then in combination with the bosonic ones be used
to describe supersymmetric quantum mechanics, spin and Dirac theory.

2.1 Grassmannian Mechanics

Grassmannian mechanics differs from classical mechanics in a fundamental way, because space and velocity
are described by Grassmann variables η and η̇, so that a kinetic term 1

2 η̇
2 would be zero. A nontrivial ansatz

for a free Lagrangian is L = i
2ηη̇, where the product of two Grassmann variables makes L a bosonic function

and the additional i assures that L is real. The equation of motion following from this Lagrangian is η̇ = 0,
which means that the dynamical variable η itself is a conserved quantity.

Analogously a quadratic potential term would be zero, so that there is no one dimensional oscillator
in grassmannian mechanics. But it is possible to construct a two dimensional oscillator where the two
Grassmann variables η1 and η2 can be combined to complex Grassmann variables

η =
1√
2

(
η1 + iη2

)
and η̄ =

1√
2

(
η1 − iη2

)
. (2.1)

The Lagrangian for the (twodimensional) grassmannian oscillator is given by

L = iη̄η̇ + ωη̄η. (2.2)

The Euler-Lagrange equations

d

dt

∂LL

∂η̇
− ∂LL

∂η
= 0 and

d

dt

∂LL

∂ ˙̄η
− ∂LL

∂η̄
= 0 (2.3)

lead then to equations of motions ˙̄η = −iωη̄ and η̇ = iωη or in real coordinates η̇1 = −ωη2 and η̇2 = ωη1,
which can be combined to η̈α = −ω2ηα for α = 1, 2. Using the equations of motion the Lagrangian (2.2)
can be written in real coordinates as

L =
i
2
(
η1η̇1 + η2η̇2

)
+ iωη1η2. (2.4)
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With the complex canonical momentum ρ = ∂LL
∂η̇ = −iη̄ the Hamiltonian is

H = η̇ρ− L = −ωη̄η = iωηρ, (2.5)

which can be interpreted as a rotation in Grassmann space. In real canonical coordinates ηα and ρα =
− i

2δαβη
β one gets:

H = −iωη1η2. (2.6)

The Hamilton equations can be calculated by variation of the action S =
∫
dt (η̇αρα −H) which gives

η̇α = −∂
LH

∂ρα
and ρ̇α = −∂

LH

∂ηα
. (2.7)

One sees here that the structure of minus sign differs from the one in classical mechanics. This leads then
also to a different sign structure in the grassmannian Poisson bracket, because with the Hamilton equations
(2.7) it is possible to write the time derivative of a function F (η, ρ, t) as

dF

dt
= η̇α ∂

LF

∂ηα
+ ρ̇α

∂LF

∂ρα
+
∂F

∂t
= (−1)ε(F )

(
∂LF

∂ηα

∂LH

∂ρα
+
∂LF

∂ρα

∂LH

∂ηα

)
+
∂F

∂t
, (2.8)

where ε(F ) is the Grassmann grade of F . The grassmannian or fermionic Poisson bracket can then be defined
as

{F,G}FPB = (−1)ε(F )

(
∂LF

∂ηα

∂LG

∂ρα
+
∂LF

∂ρα

∂LG

∂ηα

)
. (2.9)

Under the assumption that the canonical coordinates are independent (which is for the grassmannian oscil-
lator not the case) the fundamental fermionic Poisson brackets are

{ηα, ηβ}FPB = 0, {ρα, ρβ}FPB = 0 and {ηα, ρβ}FPB = −δα
β . (2.10)

The fermionic Poisson bracket (2.9) can be combined with the classical Poisson bracket to a generalized or
super Poisson bracket. The derivation is analogous to (2.8), but now one has to calculate a time derivative
of a function F (q, p, η, ρ, t) that depends on bosonic and fermionic coordinates. This gives then the following
expression for the generalized Poisson bracket:

{F,G}GPB =
(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
+ (−1)ε(F )

(
∂LF

∂ηα

∂LG

∂ρα
+
∂LF

∂ρα

∂LG

∂ηα

)
. (2.11)

The symmetry of the generalized Poisson bracket (2.11) depends on the Grassmann grade of F and G and
is given by: {F,G}GPB = −(−1)ε(F )ε(G){G,F}GPB . Furthermore one has a generalized Leibniz rule

{F,GH}GPB = {F,G}GPBH + (−1)ε(F )ε(G)G{F,H}GPB (2.12)

and a generalized Jacobi identity

{{F,G}GPB ,H}GPB + (−1)ε(F )(ε(G)+ε(H)){{G,H}GPB , F}GPB

+ (−1)ε(H)(ε(F )+ε(G)){{H,F}GPB , G}GPB = 0. (2.13)

In grassmannian mechanics even the simplest systems like the free particle or the oscillator are systems
with constraints. The two constraints for the oscillator are

χα = ρα +
i
2
δαβη

β = 0 (2.14)
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with α = 1, 2. Calculating the fermionic Poisson brackets for the constraints gives:

{χ1, χ1}FPB = {χ2, χ2}FPB = −i and {χ1, χ2}FPB = {χ2, χ1}FPB = 0. (2.15)

Since not all of the Poisson brackets are zero the χα are second class constraints. Summarizing the brackets
(2.15) in a matrix Cαβ = {χα, χβ}FPB one gets

Cαβ = −i
(

1 0
0 1

)
and Cαβ = i

(
1 0
0 1

)
, (2.16)

where Cαβ is the inverse of Cαβ . With this matrix one defines the fermionic Dirac bracket as

{F,G}FDB = {F,G}FPB − {F, χα}FPB C
αβ {χβ , G}FPB . (2.17)

By substituting all Poisson brackets by Dirac brackets one takes into account the constraints and achieves a
description that is equivalent to mechanics in a reduced phase space. The Dirac brackets of the constraints
are now all zero and the Dirac brackets of the canonical coordinates are

{ηα, ηβ}FDB = −iδαβ , {ρα, ρβ}FDB = − i
4
δαβ and {ηα, ρβ}FDB = −1

2
δα
β . (2.18)

Just as the bosonic and fermionic Poisson bracket can be generalized to a super Poisson bracket (2.11) one
can also combine the bosonic and the fermionic Dirac bracket to a generalized Dirac bracket.

2.2 The Grassmannian Oscillator in the Star Product Formalism

Because of the two constraints (2.14) in the case of the grassmannian oscillator the basis for constructing
a star product is not the Poisson bracket but has to be the Dirac bracket (2.17). This bracket can also be
written as:

{F,G}FDB = F (−1)ε(F )

[( ~

∂
L

∂ηα

~∂L

∂ρα
+

~

∂
L

∂ρα

~∂L

∂ηα

)

+

( ~

∂
L

∂ηα

∂Lχγ

∂ρα
+

~

∂
L

∂ρα

∂Lχγ

∂ηα

)
iδγδ

(
∂Lχδ

∂ηα

~∂L

∂ρα

∂Lχδ

∂ρα

~∂L

∂ηα

)]
G. (2.19)

Working this out and using the relation between the left and right derivatives of functions of Grassmann
variables

∂RF

∂θα
= −(−1)ε(F ) ∂

LF

∂θα
, (2.20)

one obtains

{F,G}FDB = F

(
1
2

~

∂

∂ηα

~∂

∂ρα
+

1
2

~

∂

∂ρα

~∂

∂ηα
+ i

~

∂

∂ηα

~∂

∂ηα
− i

4

~

∂

∂ρα

~∂

∂ρα

)
G. (2.21)

Note that the notion of right and left derivatives is now included in the vector notation. Also the sum over
all α is understood. From now on the Dirac brackets are used instead of the Poisson brackets, and the
constraints are implemented as strong equations, according to Dirac’s method [29]. The only independent
variables are then the ηα, so that in (2.21) only the third term remains.

Then one can construct a fermionic Moyal product from (2.21) which gives

F ∗M G = F exp

(
~
2

~

∂

∂ηα

~∂

∂ηα

)
G. (2.22)
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This shows that the deformation quantization of grassmannian mechanics leads to a star product that was
postulated in [113]. For the star anticommutators one obtains

{ηα, ηβ}∗M
= ηα ∗M ηβ + ηβ ∗M ηα = ~δαβ . (2.23)

This means that the fermionic star product leads to a cliffordization of the Grassmann algebra of the fermionic
coordinates.

With the fermionic star product (2.22) one can now calculate the star exponential of the Hamilton
function H = −iωη1η2 of the fermionic oscillator. Using the fact that (−iωη1η2) ∗M (−iωη1η2) = ~2ω2

4 one
gets

ExpM (Ht) =
∞∑

n=0

1
n!

(
−it
~

)n

Hn∗M

=
∞∑

n=0

1
(2n)!

(
ωt

2i

)2n

+ (−iωη1η2)
∞∑

n=0

1
(2n+ 1)!

(
t

i~

)2n+1(~2ω2

4

)n

= cos
(
ωt

2

)
− 2

~
η1η2 sin

(
ωt

2

)
(2.24)

= π
(M)
1/2 e

−i ωt
2 + π

(M)
−1/2e

i ωt
2 , (2.25)

with the projectors

π
(M)
1/2 =

1
2
− i

~
η1η2 and π

(M)
−1/2 =

1
2

+
i
~
η1η2. (2.26)

Using expression (2.24) it is easy to see that the star exponential fulfills the defining differential equation

i~
d

dt
ExpM (Ht) = −i~

ω

2
sin
(
ωt

2

)
− iωη1η2 cos

(
ωt

2

)
= H ∗M ExpM (Ht). (2.27)

The projectors or fermionic Wigner functions π(M)
±1/2 are idempotent and complete, i.e. π(M)

α ∗M π
(M)
β =

δαβπ
(M)
α and π(M)

1/2 +π
(M)
−1/2 = 1, so that the time development of the projectors can be calculated easily with

(2.25) as
ExpM (−Ht) ∗M π

(M)
±1/2 ∗M ExpM (Ht) = π

(M)
±1/2e

±iωt. (2.28)

The ∗-eigenvalue equations are

H ∗M π
(M)
1/2 =

~ω
2

π
(M)
1/2 , H ∗M π

(M)
−1/2 = −~ω

2
π

(M)
−1/2, (2.29)

so the energy eigenvalues are

E± 1
2

= ±~ω
2

, (2.30)

and the spectral decomposition of H is

H =
∑

n=± 1
2

Enπ
(M)
n = −iωη1η2. (2.31)

Just as in the bosonic case it is also here possible to formulate the whole problem in holomorphic
coordinates

f =
1√
2

(
η2 + iη1

)
and f̄ =

1√
2

(
η2 − iη1

)
. (2.32)
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The fermionic Moyal star product (2.22) in these variables is

F ∗M G = F e
~
2 (

~

∂f
~∂f̄ +

~

∂f̄
~∂f) G, (2.33)

which delines a fermionic star product that was suggested for example in [13]. With this star product one
finds

f ∗M f̄ = ff̄ +
~
2
, f̄ ∗M f = f̄f +

~
2
, (2.34)

and
{f̄, f̄}∗M

= {f, f}∗M
= 0, {f̄, f}∗M

= ~. (2.35)

The Hamilton function in holomorphic coordinates is

H = ωf̄f, (2.36)

and the time-evolution function is

ExpM (Ht) = cos
(
ωt

2

)
− 2i

~
f̄f sin

(
ωt

2

)
= π

(M)
−1/2e

i ωt
2 + π

(M)
1/2 e

−i ωt
2 , (2.37)

with
π

(M)
−1/2 =

1
2
− 1

~
f̄f and π

(M)
1/2 =

1
2

+
1
~
f̄f. (2.38)

It is obvious that these projectors satisfy the required orthonormality and completeness conditions, as well as
the corresponding ∗-eigenvalue equations for the energy levels E±1/2 = ±~ω

2 , so that the time development
of (2.38) is also given by (2.28), while the time development of the holomorphic coordinates is given by:

ExpM (−Ht) ∗M f ∗M ExpM (Ht) = fe−iωt and ExpM (−Ht) ∗M f̄ ∗M ExpM (Ht) = f̄ eiωt. (2.39)

Furthermore one can show that f and f̄ act as annihilation and creation functions:

f ∗M π
(M)
−1/2 = f̄ ∗M π

(M)
1/2 = 0, (2.40)

and
f̄ ∗M π

(M)
−1/2 ∗M f = ~π(M)

1/2 , f ∗M π
(M)
1/2 ∗M f̄ = ~π(M)

−1/2. (2.41)

The expression τ = 2
~ f̄f is an involution, i.e. τ ∗M τ = 1. It thus has the two eigenvalues ±1, and

the projectors onto the even and odd eigenspaces are π(M)
± = 1

2 (1 ± τ) in agreement with (2.38). In the
conventional operator approach to supersymmetric quantum mechanics the above quantities are represented
as 2 × 2 matrices, and the star product corresponds to ordinary matrix multiplication. The matrices one
uses are

f̂ =
√

~
(

0 1
0 0

)
, f̂† =

√
~
(

0 0
1 0

)
, τ̂ =

(
−1 0
0 1

)
. (2.42)

The matrix representation f̂ and f̂† for f and f̄ reproduce the anticommutator relations (2.35) if one replaces
the star product by the matrix multiplication. Using (2.38) and the τ̂ -matrix, the matrix representation of
the projectors becomes:

π̂
(M)
−1/2 =

(
1 0
0 0

)
, π̂

(M)
1/2 =

(
0 0
0 1

)
. (2.43)

Relations such as (2.41) are then simple exercises in matrix multiplication. One sees here also that the
projectors are normalized according to

Tr
(
π̂

(M)
±1/2

)
= 1. (2.44)
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As in the bosonic case it is also possible to construct a normal star product for fermionic functions:

F ∗N G = Fe~

~

∂f
~∂f̄G. (2.45)

We then have
f ∗N f̄ = ff̄ + ~, f̄ ∗N f = ff̄, (2.46)

and
{f̄, f̄}∗N

= {f, f}∗N
= 0, {f̄, f}∗N

= ~, (2.47)

which is consistent with the previous results for the Moyal product, as it must be. One easily calculates the
time-evolution function

ExpN (Ht) = π
(N)
0 + π

(N)
1 e−iωt, (2.48)

with
π

(N)
0 = 1− 1

~
f̄f, π

(N)
1 =

1
~
f̄f. (2.49)

These projectors satisfy the required properties, including the ∗-eigenvalue equations:

H ∗N π
(N)
0 = 0, H ∗N π

(N)
1 = ~ω π(N)

1 , (2.50)

so that the energy levels are 0 and ~ω. As in the bosonic case there is a shift of 1
2~ω in the oscillator energy

levels between the Moyal and the normal product, but now the spectrum is shifted upwards whereas the
bosonic spectrum was shifted downwards.

Just as in the Moyal case f̄ and f act as creation and annihilation functions:

f ∗N π
(N)
0 = f̄ ∗N π

(N)
1 = 0, (2.51)

and
f̄ ∗N π

(N)
0 ∗N f = ~π(N)

1 , f ∗N π
(N)
1 ∗N f̄ = ~π(N)

0 . (2.52)

2.3 The Supersymmetric Star Product

It is now straightforward to combine the bosonic and the fermionic star product into a supersymmetric star
product. The supersymmetric star product of the Moyal type is

F ∗SU G = F exp
[

~
2

( ~

∂a
~∂ā −

~

∂ā
~∂a +

~

∂f
~∂f̄ +

~

∂f̄
~∂f

)]
G. (2.53)

The supersymmetric star product factorizes in a bosonic and a fermionic Moyal product, so that the su-
persymmetric star product of two purely bosonic functions reduces to the bosonic Moyal product of these
functions and analogously for purely fermionic functions. The Hamilton function of the supersymmetric
oscillator is just the sum of the Hamilton functions for the fermionic and the bosonic oscillators. So it can
be written (with the supersymmetric star product) as

HSU = ω
(
f̄ ∗SU f + ā ∗SU a

)
= ω

(
f̄f + āa

)
= HF +HB . (2.54)

Another possibility to write HSU that clarifies the relation of the bosonic and fermionic sectors and allows
an easy generalization to nonlinear supersymmetry is

HSU = ω
[
(ā ∗M a)π(M)

−1/2 + (a ∗M ā)π(M)
1/2

]
= ω

[
(ā ∗M a)π(M)

−1/2 + (ā ∗M a+ ~)π(M)
1/2

]
. (2.55)
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So one sees that there are two bosonic oscillators shifted by ~ω and that they live in sectors separated by
the projectors π(M)

±1/2.
One can then define functions that relate the energy levels of these two sectors:

Q+ =

√
1
~

(a ∗SU f̄) =

√
1
~
af̄ and Q− =

√
1
~

(ā ∗SU f) =

√
1
~
āf. (2.56)

These functions are nilpotent,
Q± ∗SU Q± = Q2

± = 0, (2.57)

and the Hamiltonian of the supersymmetric oscillator may be written as

HSU = ω{Q+, Q−}∗SU
. (2.58)

With (2.57) one sees immediately that HSU is supersymmetric:

[Q+,HSU ]∗SU
= [Q−,HSU ]∗SU

= 0. (2.59)

One may also use the hermitian functions

Q1 = Q+ +Q− and Q2 = −i(Q+ −Q−), (2.60)

so that the supersymmetric Hamiltonian becomes

HSU = ωQ2∗SU
1 = ωQ2∗SU

2 . (2.61)

Since the supersymmetric star product factorizes into a bosonic and a fermionic part one can also choose
a factor ansatz for the star exponential of the supersymmetric oscillator. The product of (1.120) and (2.25)
leads to:

ExpSU (HSU t) =
[
cos
(
ωt

2

)
− 2i

~
f̄f sin

(
ωt

2

)]
1

cos
(

ωt
2

) exp
[(

2HB

i~ω

)
tan

(
ωt

2

)]
=

[
1 +

(
2HF

i~ω

)
tan

(
ωt

2

)]
exp

[(
2HB

i~ω

)
tan

(
ωt

2

)]
= exp

[(
2HSU

i~ω

)
tan

(
ωt

2

)]
. (2.62)

This ansatz fulfills the differential equation for the time evolution with the supersymmetric star product:

i~
d

dt
ExpSU (HSU t) = (HF ∗M ExpM (HF t)) ExpM (HBt) + (HB ∗M ExpM (HBt)) ExpM (HF t)

= HSU ∗SU ExpSU (HSU t). (2.63)

The Fourier-Dirichlet expansion is

ExpSU (HSU t) =
1/2∑

nF =−1/2

∞∑
nB=0

π(M)
nF

π(M)
nB

e−i(EnF
+EnB )t/~. (2.64)

This means that the supersymmetric projectors π(SU)
nF nB are just the product of the fermionic and the bosonic

projectors. They also fulfill the ∗-eigenvalue equation

HSU ∗SU π
(SU)
nF nB

= (EnB
+ EnF

)π(SU)
nF nB

, (2.65)
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and are idempotent:
π(SU)

nF nB
∗SU π

(SU)
n′F n′B

= δnF n′F
δnBn′B

π(SU)
nF nB

. (2.66)

The spectral resolution of the Hamilton function is

HSU =
1/2∑

nF =−1/2

∞∑
nB=0

(EnB
+ EnF

)π(SU)
nF nB

. (2.67)

The functions Q± now act on the supersymmetric projectors as:

Q+ ∗SU π
(SU)
nF nB

∗SU Q− = ~π(SU)
nF +1,nB−1 and Q− ∗SU π

(SU)
nF nB

∗SU Q+ = ~π(SU)
nF−1,nB+1 (2.68)

and one sees that the Q± relate energy levels of the two sectors of the supersymmetric oscillator that lie on
the same footing.

The functions π(M)
±1/2, Q+ and Q− fulfill the relations:

π
(M)
±1/2 ∗SU π

(M)
±1/2 = π

(M)
±1/2, Q± ∗SU π

(M)
∓1/2 = Q± and π

(M)
±1/2 ∗SU Q± = Q±, (2.69)

so that these functions form a Fredholm quadruple Ξ. With this quadruple one can then define an index
[51]:

indΞ = tr
[
π

(M)
−1/2 −

1
~
Q+ ∗SU Q−

]
− tr

[
π

(M)
+1/2 −

1
~
Q− ∗SU Q+

]
= tr

[
π

(M)
−1/2

(
1
2
− aā

~

)]
− tr

[
π

(M)
+1/2

(
1
2
− aā

~

)]
. (2.70)

The trace tr is here the sum over all bosonic and fermionic states:

tr[F ] =
∞∑

nB=0

∑
nF =±1/2

∫
d2aTr(π(M)

nB
π(M)

nF
∗SU F ), (2.71)

where Tr is defined as in (2.44). The terms in the round brackets of (2.70) give the sum of the number of the
bosonic states. Since all states with E > 0 are paired as they appear in the bosonic and the fermionic sector,
these two terms cancel each other. The first term in the round brackets counts the number of states, so that
the index is the difference of the number of states in the bosonic and the fermionic sector. Because of the
pairing of states with E > 0 the index is zero if there is a state with E = 0 in the bosonic and the fermionic
sector and it is one if only one of the sectors has a E = 0 state. This index is called the Witten index and
describes if the supersymmetry is exact or broken [83]. Since the second terms in the round brackets of
(2.70) cancel anyway, the same result can be obtained just with the elliptic pair π(M)

±1/2:

indΞ = tr
[
π

(M)
−1/2 − π

(M)
+1/2

]
. (2.72)

Just as one can construct a supersymmetric star product of the Moyal type it is also possible to construct
a supersymmetric star product of the normal type:

F ∗SUN G = Fe~(

~

∂a
~∂ā+

~

∂f
~∂f̄)G. (2.73)

All calculations that were done for the Moyal type star product can be done analogously for the normal type
star product. For example the star exponential is now the product of (1.95) and (2.48) which leads to

ExpSUN (HSU t) = e−HSU /~ω exp
[

1
~

(
f̄f e−iEF t/~ + āa e−iEBt/~

)]
. (2.74)
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2.4 Supersymmetric Quantum Mechanics with Star Products

Crucial for the vanishing of the star commutator (2.59) is that the Q± are nilpotent (2.57). But this is
already assured by the fermionic part of the Q±, so that one can use a bosonic part that is more general
than a or ā, as in (2.56). In supersymmetric quantum mechanics one usually goes over to the new coordinates

B =
1√
2

(
W (q) + i

p√
m

)
and B̄ =

1√
2

(
W (q)− i

p√
m

)
, (2.75)

where W (q) is the superpotential and m an additional mass parameter. The Q± can then be generalized to
Q+ = Bf̄ and Q− = B̄f , which results in a system with interaction between the fermionic and the bosonic
sector [83].

In the star product formalism one can proceed in an analogous way. Therefore one first transforms the
Moyal product into the new coordinates (2.75), which gives

F ∗M G = Fe
~
2

∂W
∂q

1√
m (

~

∂B
~∂B̄−

~

∂B̄
~∂B)G. (2.76)

The star commutator and anticommutator are then

{B, B̄}∗M
= W 2(q) +

p2

m2
and [B, B̄]∗M

=
~√
m

∂W

∂q
. (2.77)

To implement the new coordinates one uses the fact that the supersymmetric Hamilton function of an
oscillator can be written as in (2.55). By analogy, the Hamilton function for the general supersymmetric
system is then:

HSU =
(
B̄ ∗M B

)
π

(M)
−1/2 +

(
B ∗M B̄

)
π

(M)
1/2 (2.78)

=
(

1
2
{B, B̄}∗M

− 1
2
[B, B̄]∗M

)
π

(M)
−1/2 +

(
1
2
{B, B̄}∗M

+
1
2
[B, B̄]∗M

)
π

(M)
1/2 (2.79)

=
1
2

(
p2

m
+W 2 − ~√

m

∂W

∂q

)
π

(M)
−1/2 +

1
2

(
p2

m
+W 2 +

~√
m

∂W

∂q

)
π

(M)
1/2 (2.80)

= H(1)π
(M)
−1/2 +H(2)π

(M)
1/2 . (2.81)

In the conventional operator approach to supersymmetric quantum mechanics the projectors are represented
as 2× 2 matrices, see Eq. (2.43), and the two systems H(1) and H(2) are represented as blocks of a matrix.

Using the orthogonality and idempotence of the projectors one can simplify the ∗-eigenvalue equation for
HSU :

HSU ∗SU π
(SU)

−1/2,n
(1)
B

= HSU ∗SU

(
π

(M)

n
(1)
B

π
(M)
−1/2

)
=
(
H(1) ∗M π

(M)

n
(1)
B

)
π

(M)
−1/2 = E(1)π

(M)

n
(1)
B

π
(M)
−1/2,

HSU ∗SU π
(SU)

−1/2,n
(2)
B

= HSU ∗SU

(
π

(M)

n
(2)
B

π
(M)
1/2

)
=
(
H(2) ∗M π

(M)

n
(2)
B

)
π

(M)
1/2 = E(2)π

(M)

n
(2)
B

π
(M)
1/2 . (2.82)

This means that the problem is reduced to two bosonic ∗-eigenvalue equations:

H(1) ∗M π
(M)

n
(1)
B

= B̄ ∗M B ∗M π
(M)

n
(1)
B

= E(1)π
(M)

n
(1)
B

(2.83)

and H(2) ∗M π
(M)

n
(2)
B

= B ∗M B̄ ∗M π
(M)

n
(2)
B

= E(2)π
(M)

n
(2)
B

. (2.84)
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The connection between the two systems can be found immediately with the help of the associativity of the
star product:

H(1) ∗M

(
B̄ ∗M π

(M)

n
(2)
B

∗M B

)
= B̄ ∗M

(
B ∗M B̄ ∗M π

(M)

n
(2)
B

∗M B

)
= E(2)

(
B̄ ∗M π

(M)

n
(2)
B

∗M B

)
,

H(2) ∗M

(
B ∗M π

(M)

n
(1)
B

∗M B̄

)
= B ∗M

(
B̄ ∗M B ∗M π

(M)

n
(1)
B

∗M B̄

)
= E(1)

(
B ∗M π

(M)

n
(1)
B

∗M B̄

)
. (2.85)

E(2) is then also an eigenvalue of H(1) and E(1) is an eigenvalue of H(2), just as B̄ ∗M π
(M)

n
(2)
B

∗M B is an

eigenfunction of H(1) and B ∗M π
(M)

n
(1)
B

∗M B̄ is an eigenfunction of H(2). One sees then that B and B̄ relate two

systems with supersymmetric partner potentials V(1) = 1
2

(
W 2 − ~√

m
∂W
∂q

)
and V(2) = 1

2

(
W 2 + ~√

m
∂W
∂q

)
.

To show how the star product formalism works one considers the superpotential W (q) = A tanh(αq).
The two partner potentials are in this case

V(1) =
1
2

(
A2 −A

(
A+

~α√
m

)
1

cosh2(αq)

)
and V(2) =

1
2

(
A2 −A

(
A− ~α√

m

)
1

cosh2(αq)

)
. (2.86)

For A = ~α/
√
m these expressions become

V(1) =
~2α2

2m

(
1− 2

cosh2(αq)

)
and V(2) =

~2α2

2m
, (2.87)

so the first system is the Pöschel-Teller potential and the second system is the free particle.
One can then first consider the free particle with the Hamiltonian H(2) = p2

2m + ~2α2

2m . Using
(
H(2)

)n∗M =(
H(2)

)n one gets for the star exponential

ExpM

(
H(2)t

)
= exp

(
H(2)t

i~

)
. (2.88)

The projectors can be obtained from the ∗-eigenvalue equation

H(2)(p) ∗M π
(M)

k(2) = Ek π
(M)

k(2) (2.89)

as
π

(M)

k(2) = δ(p− k), (2.90)

where the energy eigenvalues are Ek = k2

2m + ~2α2

2m . The Fourier-Dirichlet expansion is given by

ExpM

(
H(2)t

)
=
∫
dk π

(M)

k(2) exp
(
Ekt

i~

)
= exp

(
H(2)t

i~

)
. (2.91)

The Pöschel-Teller potential as the supersymmetric partner potential has one bound state with energy
zero and a continuum of reflectionless states. The projector π(M)

0(1) for the bound state can be calculated
in terms of the eigenfunctions ψn of the Hamilton operator according to (1.55). With the ground state
wavefunction ψ0(1) =

√
α
2

1
cosh(αq) of the Pöschel-Teller potential this gives the projector [23]:

π
(M)

0(1) =
sin(2pq/~)

sinh(2αq) sinh(pπ/α~)
. (2.92)
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The projectors π(M)

k(1) for the reflectionless states can now be obtained with the help of the functions B and

B̄ from the projectors π(M)

k(2) = δ(p− k):

π
(M)

k(1) =
1
~

[
B̄ ∗M π

(M)
(2)k ∗M B

]
=

1
4π

∫
dy

(
p2

~m
+ i

pα

m
tanh

(
αq + α

y

2

)
− i

pα

m
tanh

(
αq − α

y

2

)
+

~α2

m
tanh

(
αq + α

y

2

)
tanh

(
αq − α

y

2

))
ei(p−k)y (2.93)

=
p2

~m
δ(p− k) + i

4πp
α~

sin (2(p− k)q/~)
sinh ((p− k)π/α~)

. (2.94)

Equation (2.93) is the same result that one gets by calculating the projector with Eq. (1.55), using the
wavefunction ψk = B̂eikq. B̂ is the operator form of Eq. (2.75). For the case W (q) = n ~α√

m
tanh(αq) with n

bound states one can proceed in a similar way [23].

2.5 Spin and Star Products

In conventional quantum mechanics spin 1/2 fermions are described by using 2× 2 Pauli matrices. As seen
above, such matrices can be described in the star product formalism with products of Grassmann variables.
This suggests the use of appropriate Grassmann variables in order to describe spin 1/2 particles in the
framework of deformation quantization. With this motivation one introduces the Grassmann variables θi,
(i = 1, 2, 3), and in analogy to (2.22) the Clifford star product

F ∗C G = F exp

(
~
2

d∑
n=1

~

∂θn
~∂θn

)
G. (2.95)

The variables θi form a Clifford algebra with respect to this product: {θi, θj}∗C
= ~δij . With the θi variables

one can construct the quantities

σi = εijk 1
2i~

[θj , θk]∗C
=

1
i~
εijkθjθk, (2.96)

which fulfill the relations

[σi, σj ]∗C
= 2iεijkσk and {σi, σj}∗C

= 2δij . (2.97)

The σi obviously correspond to the Pauli matrices σ̂i in the operator formalism and will therefore be called
Pauli functions. The Pauli functions are real, i.e. σi = σi, where the complex conjugation F 7→ F for a
superfunction F is defined as in [11] and fulfills:

F = F, F1F2 = F2F1 and cF = cF , (2.98)

where c is a complex number. The realness of the Pauli functions corresponds to the fact that the Pauli
matrices are hermitian: (σ̂i)† = σ̂i.

In order to construct the analogy of the trace for the σi one must define the Hodge dual for Grassmann
monomials, which maps a Grassmann monomial with grade r into a Grassmann monomial with grade d− r;
d is the number of Grassmann basis elements, which is here three:

? (θi1θi2 · · · θir
) =

1
(d− r)!

ε
ir+1...id

i1i2...ir
θir+1 · · · θid

. (2.99)
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The trace of a function F (θ1, θ2, θ3) is then defined as:

Tr(F ) =
2
~3

∫
dθ3dθ2dθ1 ? F, (2.100)

where the integral is given by the Berezin integral. The Berezin integral has the property that
∫
dθi θj = δij~.

A ~ appears here, because the variables θi have in our case the unit
√

~. This definition of the trace leads
immediately to

Tr(σi) = 0 and Tr(σi ∗C σ
j) = 2δij . (2.101)

Moreover one can see the correspondence between spin and the fermionic quantum oscillator. If one
considers the two dimensional fermionic oscillator as described above embedded in a three dimensional space
with coordinates θi, (i = 1, 2, 3), then the Clifford product corresponds to the fermionic Moyal product
(2.23). The two canonical momenta are given according to (2.14) by − i

2θ1 and − i
2θ2, so that the angular

momentum of the two dimensional fermionic oscillator is ~S = (0, 0, S3) with

S3 = − i
2

(θ1θ2 − θ2θ1) = −iθ1θ2 =
~
2
σ3. (2.102)

The Hamilton function of the fermionic oscillator (2.6) can then be written asH = ωS3 and the corresponding
Wigner functions are in analogy to (2.26) given by

π
(C)
±1/2 =

1
2
∓ i

~
θ1θ2 =

1
2
(1± σ3), (2.103)

which shows that the π(C)
±1/2 are just nonrelativistic spin projectors. With the trace (2.100) the projectors

(2.103) are normalized according to:

Tr
(
π

(C)
±1/2

)
= Tr

(
1
2
± 1

2
σ3

)
= 1. (2.104)

One sees that (2.100) is the Grassmann analogue of the matrix trace used in (2.44) and (2.71). Moreover
(2.100) allows now also the calculation of expectation values, which makes clear that the projectors (2.103)
correspond to spin up and spin down states, because the expectation values of the Si are given by:

〈S1〉 = Tr
(
π

(C)
±1/2 ∗C

~
2
σ1

)
= 0 , 〈S2〉 = Tr

(
π

(C)
±1/2 ∗C

~
2
σ2

)
= 0

〈S3〉 = Tr
(
π

(C)
±1/2 ∗C

~
2
σ3

)
= ±~

2
, 〈~S 2∗C 〉 = Tr

(
π

(C)
±1/2 ∗C

~2

4
~σ 2∗C

)
=

3
4

~2. (2.105)

The star exponential (2.25) allows the calculation of the time development of the σi:

σ1(t) = ExpC(−Ht) ∗C σ
1 ∗C ExpC(Ht) = σ1 cos(ωt)− σ2 sin(ωt)

σ2(t) = ExpC(−Ht) ∗C σ
2 ∗C ExpC(Ht) = σ1 sin(ωt) + σ2 cos(ωt)

σ3(t) = ExpC(−Ht) ∗C σ
3 ∗C ExpC(Ht) = σ3. (2.106)

With these expressions it is easy to see that the ∗-Heisenberg equation i~dF (t)
dt = [F (t),H(t)]∗ for the spin

is given by:

dS1(t)
dt

=
1
i~

[S1(t),H]∗C
= −ωS2(t),

dS2(t)
dt

=
1
i~

[S2(t),H]∗C
= ωS1(t)

and
dS3(t)
dt

=
1
i~

[S3(t),H]∗C
= 0. (2.107)
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For ω = e
mB3, where B3 is the third component of the magnetic field ~B = (0, 0, B3), this leads to the

equation of motion for the spin:
d~S

dt
=

e

m
~B × ~S. (2.108)

So here one has the case that the classical equations of motion follow from the star product time evolution.
Furthermore the spin ~S is in the fermionic θ-space the generator of rotations. A rotation ~ϕ = ϕ~n with

angle ϕ and rotation axis ~n is described by the star exponential

ExpC(~ϕ · ~S) = e
− 1

2 i~ϕ·~σ
∗C = cos

ϕ

2
− i(~σ · ~n) sin

ϕ

2
. (2.109)

The vector ~θ = (θ1, θ2, θ3)T transforms then passively (in opposite to the active transformation of time
development as in (2.106) which has the opposite sign structure) according to:

ExpC(~ϕ · ~S) ∗C
~θ ∗C ExpC(−~ϕ · ~S) = R(~ϕ)~θ, (2.110)

where R(~ϕ) is the well known SO(3)-rotation matrix. The axial vector ~σ transforms in the same way.
Note that the passive transformation (2.110) of the θi amounts to an active transformation of vectors
x =

∑3
i=1 xiθi.

The spin Wigner function π
(C)
+1/2 = π

(C)
++ corresponds to the density matrix |+〉〈+| and the spin Wigner

function π
(C)
−1/2 = π

(C)
−− corresponds to the density matrix |−〉〈−|, so there should also exist off diagonal

Wigner functions π(C)
+− and π(C)

−+ . With the ansatz π(C)
+− = a0 + aiσ

i and π(C)
−+ = b0 + biσ

i for these functions
one can determine the coefficients by the functional analogues of the fundamental relations. The density
matrices |−〉〈+| and |+〉〈−| fulfill:

Tr
(
π

(C)
+−

)
= Tr

(
π

(C)
−+

)
= 0, (2.111)

π
(C)
+− ∗C π

(C)
+− = π

(C)
−+ ∗C π

(C)
−+ = 0, (2.112)

and π
(C)
+− ∗C π

(C)
−+ = π

(C)
++ , π

(C)
−+ ∗C π

(C)
+− = π

(C)
−−. (2.113)

The results for π(C)
+− and π(C)

−+ are

π
(C)
+− =

1
2
(σ1 − iσ2) and π

(C)
−+ =

1
2
(σ1 + iσ2). (2.114)

With these projectors the Pauli matrix σ̂i can be written as

σ̂i =

 Tr
(
σi ∗C π

(C)
++

)
Tr
(
σi ∗C π

(C)
+−

)
Tr
(
σi ∗C π

(C)
−+

)
Tr
(
σi ∗C π

(C)
−−

)  (2.115)

and the angular momentum functions in the Schwinger representation (1.140) become

Ji =
∑

s,s′=±
āsTr

(
1
2
σi ∗C π

(C)
s,s′

)
as′ . (2.116)

The su(2)-algebra structure (1.137) the angular momentum functions (1.140) fulfill with the star product
(1.133) is then a reflection of the algebra (2.97) the sigma functions satisfy:

[Ji, Jj ]∗M
=

∑
s,s′=±

āsTr

([
1
2
σi,

1
2
σj

]
∗C

∗C π
(C)
s,s′

)
as′

=
∑

s,s′=±
āsTr

(
iεijk 1

2
σk ∗C π

(C)
s,s′

)
as′

= iεijkJk (2.117)
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This makes clear how the angular momentum in the Schwinger representation is decomposed into spins and
how the fermionic star product algebra translates into a bosonic one. What the Schwinger representation
actually does is that it replaces the 〈s|-part of the Wigner function that annihilates a spin s = ± on the
right by the bosonic annihilation function as. But with the annihilation and creation functions ās and as

one can construct arbitrary bosonic angular momentum Wigner functions. For example the simplest spin
states (j = 1

2 ,m = ± 1
2 ) are given by

π
(M)
j=1/2,m=1/2 = ā+ ∗M π

(M)
n+=0,n−=0 ∗M a+ and π

(M)
j=1/2,m=−1/2 = ā− ∗M π

(M)
n+=0,n−=0 ∗M a−, (2.118)

where π(M)
n+,n− is the two dimensional harmonic oscillator Wigner function as discussed in the last chapter.

The Wigner function for an arbitrary angular momentum is then

π
(M)
j,m =

1
(j +m)!(j −m)!

āj+m
+ āj−m

− ∗C π
(M)
n+=0,n−=0 ∗C a

j−m
− aj+m

+ (2.119)

and fulfills (1.142).
As a further physical application one can show that the Pauli Hamilton function, which describes the

2-dimensional motion of a charged spin 1/2 particle in a constant magnetic field along the z-axis, may be
described in the star product formalism in a supersymmetric framework. To this purpose introduce the
Moyal-Clifford star product

F ∗MC G = F exp

[
i~
2

3∑
n=1

( ~

∂qn
~∂pn

−

~

∂pn
~∂qn

− i

~

∂θn
~∂θn

)]
G, (2.120)

and the quantities

Q1 =
1√
2m

[
− (p2 − eA2)σ1 + (p1 − eA1)σ2

]
, (2.121)

Q2 =
1√
2m

[
(p1 − eA1)σ1 + (p2 − eA2)σ2

]
, (2.122)

where ~A(q1, q2) is the vector potential of the magnetic field. One finds

{Q1, Q2}∗MC
=

1
2m

[
(p1 − eA1)

2∗M − (p2 − eA2)
2∗M

]
{σ1, σ2}∗C

= 0, (2.123)

and

Q1 ∗MC Q1 = Q2 ∗MC Q2 =
1

2m

[
(p1 − eA1)

2∗M + (p2 − eA2)
2∗M

]
+

1
2m

[(p1 − eA1) , (p2 − eA2)]∗M
(σ1 ∗C σ

2). (2.124)

Calculating the star commutator

[(p1 − eA1) , (p2 − eA2)]∗M
= −e [p1, A2]∗M

− e [A1, p2]∗M
= ie~B3 (2.125)

with ~B = ~∇× ~A the Hamilton function is now

HP = Q1 ∗MC Q1 = Q2 ∗MC Q2 =
1

2m

(
~p− e ~A

)2∗M

− e~
2m

~σ · ~B. (2.126)

This is the Pauli Hamilton function, with a gyromagnetic factor g = 2. Q1, Q2 andHP form a supersymmetric
algebra, as in Eq. (2.59).
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One should note that (2.122) together with (2.126) is the Feynman trick (see page 79 of [98]) in the star

product formalism, i.e. for commuting quantities ~p and ~A one has
[(
~p− e ~A

)
· ~̂σ
]2

=
(
~p− e ~A

)2

Î, whereas

in the non-commuting case an interaction term is induced:
[(
~p− e ~A

)
· ~σ
]2∗MC

=
(
~p− e ~A

)2∗M

− ~e~σ · ~B.
Or more generally there exists a star product Gordon decomposition for two vector valued functions fi and
gi of the variables qi and pi with i = 1, 2, 3:

(σifi) ∗MC (σjgj) =
(
εimn 1

i~
θmθnfi

)
∗MC

(
εjrs 1

i~
θrθsgj

)
= fi ∗M gi + iεijm(fi ∗M gj)σm. (2.127)

The next task is to find the Wigner function for (2.126). Since this problem separates in conventional
quantum mechanics into a space and a spin part, one can here also consider the two terms of the Pauli
Hamiltonian separately. First consider the bosonic part of this problem describing a charged particle in a
magnetic field, which corresponds to the Landau problem. The magnetic field points in the direction of
q3 and can be described with the gauge potential ~A = B3

2 (−q2, q1, 0). For this gauge potential the Moyal
product in (2.126) reduces to a conventional product and the bosonic part is the Landau Hamiltonian

HL =
1

2m
(
p̃2
1 + p̃2

2

)
, (2.128)

where one defines

p̃1 = p1 − eA1 = p1 +
mω

2
q2 and p̃2 = p2 − eA2 = p2 −

mω

2
q1 (2.129)

with ω = eB
m . In order to quantize this two dimensional system one transforms the Moyal product from

canonical coordinates into (qi, p̃i)-coordinates, which leads to

f ∗̃M g = f exp
[
i~
2

( ~

∂q1
~∂p̃1 −

~

∂p̃1
~∂q1 +

~

∂q2
~∂p̃2 −
~

∂p̃2
~∂q2

)
+

i~mω
2

( ~

∂p̃1
~∂p̃2 −

~

∂p̃2
~∂p̃1

)]
g. (2.130)

The ∗-eigenvalue equation 1
2m

(
p̃2
1 + p̃2

2

)
∗̃M π

(M̃)
n = Enπ

(M̃)
n can easily be calculated by comparison with

the bosonic oscillator. As seen above the ∗-eigenfunctions of the bosonic oscillator depend only on the
Hamiltonian. Therefore also the π(M̃)

n should depend on p̃1 and p̃2 only. Taking this as an ansatz, only the
second part of the star product (2.130), which can be written as

exp
[
i~
2

( ~

∂( p̃1
mω )

~∂p̃2 −

~

∂p̃2
~∂( p̃1

mω )

)]
, (2.131)

has to be taken into account for the ∗-eigenvalue equation.
Setting q = p̃1

mω and p = p̃2 the Landau Hamiltonian HL reduces to the Hamiltonian of the bosonic
harmonic oscillator and (2.131) becomes the Moyal product in canonical variables. Then it is clear that the
∗-eigenfunctions of the Landau Hamiltonian are in analogy to the one dimensional harmonic oscillator given
by

π(M̃)
n (p̃1, p̃2) = π(M̃)

n (HL) = 2(−1)n exp
(
−2HL

~ω

)
Ln

(
4HL

~ω

)
. (2.132)

The energy levels are the Landau levels En = ~ω
(
n+ 1

2

)
.

Since the system considered here is described in a four dimensional phase space one can expect that
another observable which commutes with the Hamiltonian is needed to characterize all the energy ∗-
eigenfunctions. To find such an observable it is useful to write the star product (2.130) in the two forms

f ∗̃M g = f exp
[
i~
2

( ~

∂q1
~∂p̃1 −

~

∂p̃1

(
~∂q1 −mω~∂p̃2

)
+

~

∂q2
~∂p̃2 −

~

∂p̃2

(
~∂q2 +mω~∂p̃1

))]
g (2.133a)

= f exp
[
i~
2

(( ~

∂q1 −mω

~

∂p̃2

)
~∂p̃1 −

~

∂p̃1
~∂q1 +

( ~

∂q2 +mω

~

∂p̃1

)
~∂p̃2 −

~

∂p̃2
~∂q2

)]
g (2.133b)
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by simply rearranging the terms in the argument of the exponential function. By observing that the functions
q̃1 = q1 + 1

mω p̃2 and q̃2 = q2 − 1
mω p̃1 fulfill the equations

(∂q1 −mω∂p̃2)q̃i = 0 and (∂q2 +mω∂p̃1)q̃i = 0 (2.134)

it is obvious from equations (2.133) that every (analytical) function of q̃i commutes with every (analytical)
function of p̃i, e. g.

HL ∗̃M f(q̃1, q̃2) = HLf(q̃1, q̃2) = f(q̃1, q̃2)HL = f(q̃1, q̃2) ∗̃M HL. (2.135)

On the one hand this means that q̃1 and q̃2 are two conserved phase space functions and on the other hand
it follows that all functions of the form f(q̃1, q̃2)π

(M̃)
n (p̃1, p̃2) are ∗-eigenfunctions of the Hamiltonian as well.

Obviously this function becomes a ∗-eigenfunction of the angular momentum

J3 = q1p2 − q2p1 = − 1
ω
HL +

mω

2
(q̃21 + q̃22) (2.136)

by choosing f(q̃1, q̃2) to be a ∗-eigenfunction of mω
2 (q̃21 + q̃22). Using (2.134) only two terms in the argument

of the exponential function contribute to the star product (2.133b) in this ∗-eigenvalue equation, so that

mω2

2
(q̃21 + q̃22) ∗̃M f(q̃1, q̃2) =

mω2

2
(q̃21 + q̃22) exp

[
i~
2

(
−

~

∂p̃1
~∂q1 −

~

∂p̃2
~∂q2

)]
=

mω2

2
(q̃21 + q̃22) exp

[
i~

2mω

( ~

∂ q̃2
~∂q̃1 −

~

∂ q̃1
~∂q̃2

)]
f(q̃1, q̃2), (2.137)

where in the last step the definition of q̃i was used. Setting q = p̃2 and p = mωq̃1, the whole problem again
reduces to the one dimensional harmonic oscillator, so that f(q̃1, q̃2) becomes

π
(M̃)
l (q̃1, q̃2) = 2(−1)l exp

(
−mω

~
(q̃21 + q̃22)

)
Ll

(
2mω

~
(q̃21 + q̃22)

)
(2.138)

and the ∗-eigenvalues of mω
2 (q̃21 + q̃22) are ~

(
l + 1

2

)
.

Thus, the Wigner functions of the Landau problem are π(M̃)
nl (q̃1, q̃2, p̃1, p̃2) = π

(M̃)
l (q̃1, q̃2)π

(M̃)
n (p̃1, p̃2) and

lead with the ∗-eigenvalue equation HL ∗̃M π
(M̃)
nl = Enπ

(M̃)
nl to the Landau levels En = ~ω

(
n+ 1

2

)
, whereas

the equation J3 ∗̃M π
(M̃)
nl = jnlπ

(M̃)
nl gives rise to the angular momentum eigenvalues jnl = ~(l−n). The same

results can be obtained with holomorphic coordinates, as it was done in [27].
It is now straightforward to include the spin, because the interaction term HI in the Pauli Hamiltonian

for ~B = (0, 0, B3) can be written with (2.96) as

HI = − e~
2m

~σ · ~B = −iωθ1θ2 (2.139)

which is nothing else than the Hamiltonian of the fermionic harmonic oscillator (2.6). Then one can combine
the Clifford star product (2.95), which corresponds to the fermionic Moyal product in canonical coordinates
for the harmonic oscillator, with the Moyal product (2.130) to a Moyal-Clifford product just like in (2.120).
The ∗-eigenvalue equation HP ∗MC π

(MC)
n,l,ns

= En,nsπ
(MC)
n,l,ns

then decomposes into a bosonic part that is equiv-

alent to the Landau problem with the Wigner functions π(M̃)
nl and energy levels En = ~ω

(
n+ 1

2

)
and a

fermionic part that is equivalent to the fermionic harmonic oscillator with Wigner functions (2.103) and
energy levels Ens=±1/2 = ±~ω

2 . The full Wigner function for the Pauli Hamiltonian is then the product of
these two, i.e. π(MC)

n,l,ns
= π

(M)
n,l π

(C)
ns and the energy levels are En,ns

= ~ω
(
n+ 1

2 ±
1
2

)
.

40



2.6 The Dirac Equation

After having established the star product formalism in supersymmetric quantum mechanics and quantum
mechanics with spin one can now extend the star product formalism to Dirac theory. In order to do that
one uses the fact that the Dirac Hamiltonian is a supercharge with respect to the β-matrix. In the operator
formalism a hermitian operator Q̂ = Q̂† is called supercharge with respect to the involution τ̂ if it consists
just of an fermionic part [83], where the bosonic and the fermionic part of an hermitian operator can be
projected out with the projection operator π̂± = 1

2 (1± τ̂).
This can now be directly translated into the star product formalism, where the involution is τ = 2

~ f̄f
and the projectors are π± = π±1/2 = 1

2 (1± τ), see (2.43). With the projectors π± a phase space function F
can then be decomposed into its even (bosonic) and odd (fermionic) part:

F = (π+ ∗M F ∗M π+ + π− ∗M F ∗M π−) + (π+ ∗M F ∗M π− + π− ∗M F ∗M π+) = FB + FF , (2.140)

because with τ ∗M π± = ±π± and [τ, π±]∗M
= 0 follows (∗M is here the fermionic Moyal product (2.33)):

[π± ∗M F ∗M π±, τ ]∗M
= 0 and {π± ∗M F ∗M π∓, τ}∗M

= 0. (2.141)

In analogy to the operator formalism a phase space function Q = Q̄ is then defined as a supercharge with
respect to the involution τ if Q = QF , or equivalently {Q, τ}∗M

= 0. An example for a supercharge are the

functions (2.60). For example one easily calculates for Q1 =
√

1
~ (af̄ + āf) the star anticommutator with τ

as {Q1, τ}∗M
= 0. The square of the supercharge then gives the supersymmetric Hamiltonian (see (2.61)).

The Dirac operator for a massless particle is the simplest example for a supercharge with respect to the
β-matrix [83]:

ĤD = Q̂ =

(
0 ~̂σ · ~̂p

~̂σ · ~̂p 0

)
= D̂f̂† + D̂†f̂, (2.142)

with D̂ = D̂† = 1√
~ ~̂σ · ~̂p and (2.42). The corresponding supersymmetric Hamilton operator is then defined

as the square of Q̂ divided by m in order to get the right units:

ĤSU =
1
m

(
~D̂†D̂ 0

0 ~D̂D̂†

)
, (2.143)

which corresponds to the supersymmetric Hamilton operator if one substitutes D̂ and D̂† by B̂ = Q(B) and
B̂† = Q(B̄). The difference is that (2.143) is a 4× 4 matrix whereas the supersymmetric Hamilton operator
is a 2× 2 matrix.

The analogy of (2.142) in the star product formalism is then immediately given by:

HD = Q = Df̄ + D̄f, (2.144)

with D = D̄ = 1√
~ ~̂σ · ~p. It follows then, that {HD, τ}∗SU

= 0 for τ = 2
~ f̄f , so that HD is a supercharge. The

supersymmetric Hamiltonian is:

HSU =
1
m
Q ∗SU Q =

1
m

[
(D ∗M D̄)(f̄ ∗M f) + (D̄ ∗M D)(f ∗M f̄)

]
=

1
m

[
(D ∗M D̄) ~π1/2 + (D̄ ∗M D) ~π−1/2

]
, (2.145)

where the star product between D and D̄ is a bosonic Moyal product and the star product between f and
f̄ is a fermionic Moyal product.
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D and D̄ are still 2 × 2 matrices, but one can now use the formalism of the last section to turn these
matrices with the Clifford star product into Pauli functions. The σi in D and D̄ are then no longer Pauli
matrices but the corresponding expressions (2.96) and furthermore to the supersymmetric star product with
its bosonic and fermionic Moyal part the Clifford part has to be added:

F ∗MC̃ G = F exp

[
i~
2

3∑
n=1

( ~

∂qn
~∂pn

−

~

∂pn
~∂qn

)
+

~
2

( ~

∂f
~∂f̄ +

~

∂f̄
~∂f

)
+

~
2

(
3∑

n=1

~

∂θn
~∂θn

)]
G. (2.146)

With this product one finds:
HD ∗MC̃ HD = (~σ · ~p ) ∗MC̃ (~σ · ~p ) = ~p 2, (2.147)

which corresponds to the relativistic relation between energy and momentum for massless particles: E = |~p |.
To describe the Hamilton function for massive particles and antiparticles one needs a generalized super-

charge HD = Q + M ∗MC̃ τ , where M is a bosonic function that commutes with Q and τ : [M,Q]∗MC̃
=

[M, τ ]∗MC̃
= 0. Take M to be of the form

M = M+π
(M)
1/2 +M−π

(M)
−1/2, (2.148)

where M± are purely bosonic functions. Then

M ∗MC̃ τ = M+π
(M)
1/2 −M−π

(M)
−1/2. (2.149)

One sees here explicitly that the M± correspond to the rest mass of the particle and the antiparticle,
respectively. One finds

HD ∗MC̃ HD = (Q+M ∗MC̃ τ) ∗MC̃ (Q+M ∗MC̃ τ)

= (D̄ ∗MC̃ D +M+ ∗MC̃ M+)π(M)
1/2 + (D ∗MC̃ D̄ +M− ∗MC̃ M−)π(M)

−1/2

=
[
pipj(σi ∗C σ

j) + (M+ ∗M M+)
]
π

(M)
1/2 +

[
pipj(σi ∗C σ

j) + (M− ∗M M−)
]
π

(M)
−1/2. (2.150)

For the choice M± = m just the relativistic relation between energy and momentum for massive particles is
obtained: E2 = |~p |2 +m2.

In order to calculate the nonrelativistic limit for this Hamilton function one can use the resolvent method
[106], with the resolvent (HD − m − z)−1∗MC̃ , where the notation ( )−1∗ denotes the formal inverse with
respect to the star product. First define the expressions

A± = HD ±m± z = Q± 2mπ(M)
±1/2 ± z. (2.151)

With π(M)
1/2 ∗MC̃ Q̃ = Q̃ ∗MC̃ π

(M)
−1/2 one has then

A+ ∗MC̃ A− = Q ∗MC̃ Q− 2mz − z2 = A− ∗MC̃ A+. (2.152)

This can be written as

A
−1∗MC̃
− = A+ ∗MC̃ (A− ∗MC̃ A+)−1∗MC̃

=
1

2m
A+ ∗MC̃

(
H∞ − z − z2

2m

)−1∗MC̃

, (2.153)

with H∞ = 1
2mQ ∗MC̃ Q. Using the associativity of the star product it is easy to establish the identity

(A+B)−1∗ = (1 +A−1∗ ∗B)−1∗ ∗A−1∗. (2.154)
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Using this relation with A = H∞ − z and B = − z2

2m equation (2.153) can be written as:

A
−1∗MC̃
− =

1
2m

A+ ∗MC̃

(
1− z2

2m
(H∞ − z)−1∗MC̃

)−1∗MC̃

∗MC̃ (H∞ − z)−1∗MC̃ (2.155)

Substituting A± according to (2.151), this reads

(HD−m−z)−1∗MC̃ =
(
π

(M)
1/2 +

Q+ z

2m

)
∗MC̃

(
1− z2

2m
(H∞ − z)−1∗MC̃

)−1∗MC̃

∗MC̃ (H∞−z)−1∗MC̃ . (2.156)

The limit m→∞ is then:

lim
m→∞

(HD −m− z)−1∗MC̃ = π
(M)
1/2 ∗MC̃ (H∞ − z)−1∗MC̃ . (2.157)

With the idempotency of π(M)
1/2 , [H∞, π

(M)
1/2 ]∗MC̃

= 0 and (1− x)−1∗ =
∑∞

i=0 x
i∗ one can then calculate:

π
(M)
1/2 ∗MC̃ (H∞ − z)−1∗MC̃ =

1
−z

π
(M)
1/2 ∗MC̃

[
1 +

H∞

z
+
(
H∞

z

)2∗MC̃

+ · · ·

]

=
1
−z

[
π

(M)
1/2 + π

(M)
1/2 ∗MC̃ π

(M)
1/2 ∗MC̃

H∞

z
+
(
π

(M)
1/2

)3∗MC̃ ∗MC̃

(
H∞

z

)2∗MC̃

+ · · ·

]

=
1
−z

π
(M)
1/2 ∗MC̃

[
1 + π

(M)
1/2 ∗MC̃

H∞

z
+
(
π

(M)
1/2 ∗MC̃

H∞

z

)2∗MC̃

+ · · ·

]

= π
(M)
1/2 ∗MC̃

(
π

(M)
1/2 ∗MC̃ H∞ − z

)−1∗MC̃

(2.158)

Putting this into equation (2.157) one can read off from the resolvent that the non-relativistic limit is the
Pauli Hamiltonian:

HP = π
(M)
1/2 ∗MC̃ H∞ =

1
2m

π
(M)
1/2 ∗MC̃ Q ∗MC̃ Q =

1
2m

(
D̄ ∗MC̃ D

)
π

(M)
1/2 . (2.159)

The interpretation of this equation is as follows. The projectors π(M)
±1/2 effectively project onto the subspaces

describing particles and antiparticles. The projector π(M)
1/2 indicates that the expression one is concerned with

is in the positive energy sector: in the non-relativistic limit the contribution of the antiparticles vanishes. The
coefficient of the projector determines the dynamics in the positive energy sector: it is just the non-relativistic
Pauli Hamilton function for spin 1/2 particles: HP = 1

2mD̄ ∗MC̃ D.

One can now also include by hand a magnetic field by setting: D = D̄ = ~σ ·
(
~p− e ~A

)
, so that with

(2.127) the Pauli Hamiltonian reads:

HP =
1

2m
(D̄ ∗MC̃ D) =

1
2m

(
~p− e ~A

)2∗M

− e~
2m

~σ · ~B, (2.160)

in agreement with equation (2.126).
With the grassmannian representation of the Pauli matrices (2.96) it is also possible to give a more

direct approach to Dirac theory. One uses therefore the fact that in the matrix representation the alpha
and beta matrices have a tensor structure: α̂k = σ̂1 ⊗ σ̂k and β̂ = σ̂3 ⊗ Î. This can now be imitated in
the grassmannian representation by starting with six grassmannian variables θ1, . . . , θ6 and constructing two
triples of σk = 2

i~ε
klmθlθm, one for k, l,m ∈ {1, 2, 3} and one for k, l,m ∈ {4, 5, 6}. The four functions

defined as
αk = σkσ4 for k = 1, 2, 3 and β = σ6, (2.161)
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fulfill then the equations

{αk, αl}∗C
= 2δkl, {αk, β}∗C

= 0 and β ∗C β = 1, (2.162)

where one used the Clifford star product (2.95) for d = 6. Conceptually Dirac’s ansatz was turned around.
While Dirac tried to find quantities α and β that fulfill the Dirac algebra, one can also look for a product
such that the relations of the Dirac algebra are fulfilled, which leads to the Clifford star product.

In this approach to the Dirac theory one combined two copies of the three dimensional fermionic spaces
which in the last section appeared to be suitable to describe spin. Thereby just the Grassmann subalgebra
of even grade was used. But from the algebraic point of view one can ask whether it is necessary to use a
Grassmann algebra with six generators to reproduce the Dirac algebra (2.162). Indeed, the functions

αk =

√
2
~
σkθ5 and β =

2i
~
θ4θ5, (2.163)

also fulfill the Dirac algebra (2.162) by using five Grassmann variables and the star product (2.95) for d = 5.
This representation corresponds to the one obtained by constructing the Dirac Hamiltonian as a supercharge
from supersymmetric quantum mechanics as done above.

Since the Clifford algebra of the Dirac matrices is four dimensional it should also be possible to start
with a four dimensional Grassmann algebra θ1, . . . , θ4, that is turned into a Clifford algebra with the four
dimensional Clifford star product. Indeed the dimensionless variables

αk =

√
2
~
θk and β =

√
2
~
θ4 (2.164)

obey the relations (2.162) and form another representation of the Dirac algebra. With respect to the Clifford
star product the generators of the Grassmann algebra become here generators of the Clifford algebra.

This four dimensional representation of the Dirac algebra can be motivated by consideration of symmetry
transformations [105]. With the definition of σk in equation (2.96) one could reproduce the commutation
relations of the corresponding Pauli matrices and in equation (2.110) it was shown that the Sk = ~

2σ
k

generate rotations of the Grassmann algebra. So far only the even part of the Grassmann algebra was
involved, so that the question arises what kind of transformation the θk are related to. The definition
Kk = i

√
~/2 θk = i~

2 α
k leads to the commutation relations

[Sk, Sl]∗C
= i~εklmSm, [Sk,Kl]∗C

= i~εklmKm and [Kk,Kl]∗C
= −i~εklmSm, (2.165)

so that ~K can be identified as the generator of the Lorentz boost. The star exponential ExpC(~ω · ~K)
transforms θµ = (1, ~θ) like a four vector:

ExpC

(
~ω · ~K

)
∗C θ

µ ∗C ExpC

(
~ω · ~K

)
= ExpC

(
~ω · ~K

)
∗C θ

µ ∗C ExpC

(
~ω · ~K

)
= Λµ

ν(~ω) θν . (2.166)

Note that ~K = − ~K in contrast to ~S = ~S, so that the sign structure is here different to that in (2.110).
Besides the continuous Lorentz transformations (2.110) and (2.166) there is also the discrete parity

transformation P in the fermionic space, which acts as P(~θ) = −~θ. This transformation cannot be represented
without extending the algebra. By introducing an additional generator θ4 to the Grassmann algebra and by
extending the star exponential (2.95) to d = 4 a representation of the parity transformation can be given by

P(F ) = β ∗C F ∗C β (2.167)

with the definition β =
√

2/~ θ4. As it should be the scalar 1 and the axial vector ~σ are unchanged under
this transformation.
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Since in the four dimensional representation (2.164) the alpha functions are just proportional to the θi,
also αµ = (1, ~α) transforms like a four vector, i.e. one has the transformation equations:

ExpC

(
~ω · ~K

)
∗C α

µ ∗C ExpC

(
~ω · ~K

)
= Λµ

ν(~ω)αν (2.168)

and ExpC

(
~ϕ · ~S

)
∗C ~α ∗C ExpC

(
−~ϕ · ~S

)
= R(~ϕ) ~α. (2.169)

Theses equations are independent of the representation of the alpha functions, because Kk = i~
2α

k and
Sk = 1

2iε
klmθlθm = ~

4iε
klmαl ∗C α

m can be represented just with alpha functions so that the transformation
equations (2.168) and (2.169) depend just on the algebraic behavior of the alpha functions, which is the
same for all representations (2.164), (2.163) and (2.161).

The boosts (2.168) and the rotations (2.169) can be cast into one equation by going over to the functional
analogue of the gamma matrices:

γ0 = β and γk = β ∗C α
k ⇒ {γµ, γν}∗C

= 2gµν . (2.170)

Star-multiplying (2.168) with β from the left and using that β anticommutes with Ki ∝ αi, leads to

ExpC

(
−~ω · ~K

)
∗C γ

µ ∗C ExpC

(
~ω · ~K

)
= Λµ

ν(~ω) γν . (2.171)

With the definition σµν = i
2 [γµ, γν ]∗C

the six generators of the Lorentz transformation can be written as

Kk = i
~
2
αk = i

~
2
γ0 ∗C γ

k =
~
2
σ0k (2.172a)

Sk = −i
~
4
εklmαl ∗C α

m = i
~
4
εklmγk ∗C γ

m =
~
2

∑
l<m

εklmσlm. (2.172b)

Therefore all Lorentz transformations are generated by ~
2σ

µν with µ < ν. Because β commutes with
Sk ∝ εklmαl ∗C α

m, one can replace ~α by ~γ in equation (2.169) and the resulting equation can finally be
unified with (2.171) to

ExpC

(
−~

4
σµνωµν

)
∗C γ

µ ∗C ExpC

(
+

~
4
σµνωµν

)
= Λµ

ν(ωµν) γν . (2.173)

This is the usual form of Lorentz transformation known from Dirac theory.
The Clifford algebra (2.170) of the γ-functions can be constructed with each representation of the α- and

β-functions (2.161), (2.163) and (2.164). For all these representations with d = 4, 5 or 6 generators θi a
trace can be defined in the same way as in equation (2.100):

Tr(F ) =
4
~d

∫
dθddθd−1 . . . dθ2dθ1 ? F. (2.174)

and with (2.170) all the well-known trace rules for the gamma matrices are reproduced. Also note that
the trace Tr(F ) projects out the scalar part of F , which is the fermionic equivalent of taking the vacuum
expectation value.

With αi and β the Dirac Hamiltonian is given by

HD = ~α · ~p+ βm (2.175)

and by using HD ∗MC HD = ~p 2 +m2 one can calculate the star exponential as

ExpMC(HDt) =
∞∑

n=0

1
n!

(
t

i~

)n

Hn∗MC

D = π
(MC)
−E (~p ) e+itE/~ + π

(MC)
+E (~p ) e−itE/~, (2.176)
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with the Wigner functions

π
(MC)
±E (~p ) =

1
2

(
1± HD

E

)
(2.177)

and E =
√
~p 2 +m2. The energy projectors π(MC)

±E (~p ) are idempotent, complete and fulfill the ∗-eigenvalue
equations

HD ∗MC π
(MC)
±E (~p ) = ±E π(MC)

±E (~p ). (2.178)

One can then find projectors that are also ∗-eigenfunctions of the spin, which is defined as S~s = ~
2γ

5 ∗C

(~γ ·~s ) with ~s being a unit vector orthogonal to ~p. One has then S~s ∗C S~s =
(~

2

)2
, so that the star exponential

for S~s is given by

ExpC(S~s ϕ) =
∞∑

n=0

1
n!

( ϕ
i~

)n

Sn∗C

~s = π
(C)

− 1
2
(~s ) e+iϕ/2 + π

(C)

+ 1
2
(~s ) e−iϕ/2 (2.179)

with the Wigner functions

π
(C)

± 1
2
(~s ) =

1
2
± 1

~
S~s. (2.180)

These are the star product analogues of the Dirac spin projectors and they obey the ∗-eigenvalue equation

S~s ∗C π
(C)

± 1
2
(~s ) = ±~

2
π

(C)

± 1
2
(~s ). (2.181)

Since one has for ~p · ~s = 0:[
β, γ5 ∗C (~γ · ~p )

]
∗C

= 0 and
[
~p · ~α, γ5 ∗C (~γ · ~s )

]
∗C

= 0, (2.182)

so that [HD, S~s]∗C
= 0, the Wigner functions π(MC)

±E (~p ) and π(C)

± 1
2
(~s ) and the observablesHD and S~s commute

under the star product. The Wigner function for the Dirac problem is therefore given by

π
(MC)

±E,± 1
2
(~p,~s ) = π

(MC)
±E (~p ) ∗MC π

(C)

± 1
2
(~s ) (2.183)

and the ∗-eigenvalue equations are

HD ∗MC π
(MC)

±E,± 1
2
(~p,~s ) = ±Eπ(MC)

±E,± 1
2
(~p,~s ) and S~s ∗MC π

(MC)

±E,± 1
2
(~p,~s ) = ±~

2
π

(MC)

±E,± 1
2
(~p,~s ). (2.184)

The Dirac Wigner functions are idempotent: π(MC)

±E,± 1
2
(~p,~s ) ∗MC π

(MC)

±E,± 1
2
(~p,~s ) = π

(MC)

±E,± 1
2
(~p,~s ) and with the

trace (2.174) the Dirac Wigner functions (2.183) are normalized to 1.
It is now also possible to calculate the time development of the position according to

qi(t) = ExpMC(−Ht) ∗MC qi ∗MC ExpMC(Ht). (2.185)

This expression can be calculated by shuffling all the powers of HD that appear in the starexponential on
the left side of qi to the right side by using the relations

[HD, qi]∗MC
= −i~αi and {HD, αi}∗MC

= 2pi. (2.186)

One obtains

Hn∗MC

D ∗MC qi = H
(n−k)∗MC

D ∗MC

[
qi ∗MC H

k∗MC

D − i~αi ∗MC H
(k−1)∗MC

D

−(k − 1)i~pi ∗MC H
(k−2)∗MC

D

]
for odd k, (2.187)

Hn∗MC

D ∗MC qi = H
(n−k)∗MC

D ∗MC

[
qi ∗MC H

k∗MC

D − ki~pi ∗MC H
(k−2)∗MC

D

]
for even k, (2.188)

46



so that it is possible to write

ExpMC(−Ht) ∗MC qi

= qi +
∑

k odd

1
k!

(
it
~

)k [
qi ∗MC H

k∗MC

D − i~αi ∗MC H
(k−1)∗MC

D − (k − 1)i~pi ∗MC H
(k−2)∗MC

D

]
+
∑

k even

1
k!

(
it
~

)k [
qi ∗MC H

k∗MC

D − ki~pi ∗MC H
(k−2)∗MC

D

]
. (2.189)

Adding then

0 =
∑

k odd

[
1
k!

(
it
~

)k

i~pi ∗MC H
(k−2)∗MC

D − 1
k!

(
it
~

)k

i~pi ∗MC H
(k−2)∗MC

D

]
(2.190)

Eq. (2.189) turns into

ExpMC(−Ht) ∗MC qi = qi ∗MC ExpMC(−Ht) + pit ∗MC H
−1∗MC

D ∗MC ExpMC(−Ht)

− i~
2
(
αi ∗MC H

−1∗MC

D − pi ∗MC H
−2∗MC

D

)
∗MC

(
ExpMC(−Ht)− ExpMC(Ht)

)
, (2.191)

where H−1∗MC

D = HD

~p 2+m2 is the inverse of HD with respect to the Moyal-Clifford star product. This gives
eventually for the time development

qi(t) = ExpMC(−Ht) ∗MC qi ∗MC ExpMC(Ht)
= qi + pit ∗MC H

−1∗MC

D

+
i~
2
(
αi − pi ∗MC H

−1∗MC

D

)
∗MC H

−1∗MC ∗MC

(
ExpMC(2HDt)− 1

)
. (2.192)

The first two terms correspond to the classical movement while the last term is the well-known term that
represents the Zitterbewegung.

In order to calculate the non-relativistic limit it is straightforward to translate the Foldy-Wouthuysen
transformation [53] into the star product formalism. The time development of the Wigner function is given
by [113]

i~
∂π(t)
∂t

= [H(t), π(t)]∗MC
. (2.193)

This can be translated into an equation for the unitary transformed Wigner function π′(t) = U(t) ∗MC

π(t) ∗MC U(t)−1, which leads to i~∂t π
′(t) = [H ′(t), π′(t)]∗MC

with

H ′(t) = U(t) ∗MC (H(t)− i~∂t) ∗MC U(t)−1. (2.194)

The Hamiltonian can be written as
HD = βm+ E +O (2.195)

with
βm+ E =

1
2

(HD + β ∗C HD ∗C β) and O =
1
2

(HD − β ∗C HD ∗C β) .

The function E has positive parity and O is a function with negative parity.
Following the conventional Foldy-Wouthuysen transformation choose

U(t) =
∞∑

n=0

1
n!

(
β

2m
∗MC O

)∗MC

, (2.196)
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so that (2.194) gives

H ′ = βm ∗MC

(
1 +

1
2m

O2∗MC − 1
8m3

O4∗MC

)
+ E − 1

8m2

[
O,
(
[O, E ]∗MC

+ i~Ȯ
)]

∗MC

+
1

2m
β ∗MC [O, E ]∗MC

− 1
3m2

O3∗MC +
i~
2m

β ∗MC Ȯ + . . . , (2.197)

where the first row just contains even functions only whereas the second row just consists of odd functions.
This shows that (2.197) can be written as H ′ = βm + E ′ + O′. Repeating this transformation leads to
H ′′ = β + E ′, where all odd terms of the order ( 1

m2 )2 or higher are neglected.

For the Hamiltonian H = ~α ·
(
~p− e ~A

)
+ βm+ eΦ one has

E = eΦ and O = ~α · (~p− e ~A). (2.198)

Up to terms of order ( 1
m )3 in H ′′ the transformed Hamiltonian H ′′ is therefore given by

H ′′ = mβ ∗MC

(
1 +

1
2
O2∗MC − 1

8
O4∗MC

)
+mE − m

8

[
O,
(

[O, E ]∗MC
+

i~
m
Ȯ
)]

∗MC

= β

m+

(
~p− e ~A

)2∗MC

2m
− ~p4

8m3

− e~
2m

β ∗MC ~σ · ~B + eΦ

− e~
4m2

~σ ·
(
~E × ~p

)
− e~2

8m2
div ~E. (2.199)

In order to compare this result with the conventional operator expression one has to apply a Weyl transfor-
mation ΘW , which transforms a product of phase space variables into the totally symmetrized product of
the corresponding operators and the σi, αi and β into the corresponding matrices. The Hamilton operator
corresponding to (2.199) is then

Ĥ ′′ = β

(
m+

1
2m

(
~̂p− e ~̂A

)2

− ~̂p 4

8m3

)
− e~

2m
β~̂σ · ~̂B + eΦ̂

− e~
4m2

~̂σ ·
(
~̂E × ~̂p

)
− ie~2

8m2
~̂σ · rot ~̂E − e~2

8m2
div ~̂E, (2.200)

which is the conventional result. It was used that

QW

(
~E × ~p

)
=

1
2

(
~̂E × ~̂p− ~̂p× ~̂E

)
= ~̂E × ~̂p+

i~
2

rot ~̂E. (2.201)

It is also possible to derive the Dirac equation in the star product formalism by using the fact that in the
rest frame it should coincide with the ∗-eigenvalue equation (2.178). By setting ~p = 0 this equation becomes(

γ0m∓m
)
∗C π

(MC)
±E (0) = 0 with π

(MC)
±E (0) =

1
2
(
1± γ0

)
. (2.202)

The solution π
(MC)
±E (0) can also be directly obtained from (2.177). According to (2.171) the equations in

(2.202) can be boosted into a moving frame by S = ExpC(~ω · ~K), where the parameter ~ω depends on the
momentum ~p of the particle in the moving frame.

S−1 ∗C

(
γ0m∓m

)
∗C π

(MC)
±E (0) ∗C S =

(
S−1 ∗C γ

0 ∗C S m∓m
)
∗C S

−1 ∗C π
(MC)
±E (0) ∗C S = 0
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Equation (2.171) leads to S−1 ∗C γ
0 ∗C S = p/

m so that with the definition π(MC)
±m (p) = S−1 ∗C π

(MC)
±E (0) ∗C S

the equation above turns into

(p/∓m) ∗MC π
(MC)
±m (p) = 0 with π

(MC)
±m (p) =

±p/+m

2m
, (2.203)

which corresponds to the Dirac equation and the well-known energy projector.
The same discussion as for the Lorentz boost of the energy ∗-eigenvalue equation (2.178) can be repeated

for the spin ∗-eigenvalue equation (2.181) with its solution (2.180). By assuming that S~s = ~
2γ5 ∗C (~γ · ~s ) is

a valid spin observable in the rest frame it takes on the form Ss = S−1 ∗C S~s ∗C S = −~
2γ5 ∗C s/ in the moving

frame by applying a formal boost with S = ExpC(~ω · ~K). The condition ~s 2 = 1 and ~p · ~s = 0 have to be
translated into sµsµ = −1 and pµsµ = 0 respectively to ensure that Ss ∗C Ss =

(~
2

)2
and [Ss,HD]∗C

= 0
hold true in every frame. Finally the relativistic version of the spin ∗-eigenvalue equation and its solution
become

Ss ∗C π
(C)

± 1
2
(s) = −~

2
γ5 ∗C s/ ∗C π

(C)

± 1
2
(s) = ±~

2
π

(C)

± 1
2
(s) with π

(C)

± 1
2
(s) =

1
2
± 1

~
Ss =

1∓ γ5 ∗C s/

2
(2.204)

by replacing S~s with Ss in both (2.181) and (2.180). One can see that the spin projector π(C)

± 1
2

takes on the
form which is know from Dirac theory. As in equation (2.183) the two projectors in equations (2.203) and
(2.204) can be combined to the functional analogue of the Dirac projectors:

π
(MC)

±m,± 1
2
(p, s) = π

(MC)
±m (p) ∗MC π

(C)

± 1
2
(s) = π

(C)

± 1
2
(s) ∗MC π

(MC)
±m (p). (2.205)

They fulfill both ∗-eigenvalue equations in (2.203) and (2.204) and they are idempotent and normalized with
respect to the trace (2.174).

2.7 Fermionic Star Products and Chevalley Cliffordization

One important feature of the fermionic star product is that the Grassmann algebra of the fermionic phase
space variables is transformed into a Clifford algebra. In mathematics this concept is known as Chevalley
Cliffordization [20]. In this section it will be shown, that the physically motivated deformation with fermionic
star products is equivalent to Chevalley Cliffordization. Starting point is a Grassmann algebra∧

V = R⊕ V ⊕ (V ∧ V )⊕ . . .⊕ (∧nV )⊕ . . . , (2.206)

where V is a vector space with Grassmann basis {θ1, . . . , θn}. In Chevalleys approach a Clifford algebra is
constructed as the endomorphism algebra on the linear space of the Grassmann algebra. In order to achieve
this one defines an element ι̇θi

∈ V ∗ by

ι̇θi
(θj) = θiy

B
θj = B(θi, θj) = g(θi, θj) +A(θi, θj), (2.207)

where B(θi, θj) is a bilinear form that consists of a symmetric part g(θi, θj) and an antisymmetric part
A(θi, θj). If ι̇θi(θj) = δij then ι̇θi is called the euclidian dual isomorphism. The so defined action of V ∗ on
V can be extended to monomials of the θi if one requires for homogenous u, v, w ∈

∧
V the following rules:

θiy
B
θj = B(θi, θj) (2.208a)

θiy
B

(uv) = (θiy
B
u)v + (−1)ε(u)u(θiy

B
v) (2.208b)

(uv) y
B
w = uy

B
(vy

B
w), (2.208c)
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where ε(u) is the Grassmann grade of u. The extension to arbitrary u, v, w ∈
∧
V is then straightforward.

From (2.208b) with u = v = 1 it is clear that θiy
B
1 = 0 and from (2.208c) with u = v = 1 it follows that

1y
B
u = u. For any two homogeneous u and v the equation

ε(uy
B
v) = ε(v)− ε(u). (2.209)

holds true as follows from equations (2.208a) and (2.208b).
For u ∈

∧
V one can define the operator

γB
θi

:=


∧
V →

∧
V

u 7→ γB
θi
u := θiu+ θiy

B
u

. (2.210)

The map

γB :=

{
V → C`(B, V )
θi 7→ γB

θi
:= θi ·+θiy

B

, (2.211)

where C`(B, V ) is a Clifford algebra on V , is called Clifford map and it follows C`(B, V ) ⊂ End (
∧
V ). With

(2.208) it is easy to calculate how two γB
θi

act on an arbitrary u ∈
∧
V :

γB
θi
γB

θj
u = B(θi, θj)u+ (θiθj)y

B
u+ θiθju+

[
θi(θj y

B
u)− θj(θiy

B
u)
]
. (2.212)

The Clifford structure as endomorphisms on
∧
V becomes obvious by taking the part that is symmetric in

θi and θj : {
γB

θi
, γB

θj

}
u = (γB

θi
γB

θj
+ γB

θj
γB

θi
)u = 2g(θi, θj)u. (2.213)

Note that the Clifford algebra is constructed with the bilinear form B, but that for the Clifford structure
only the symmetric part g is important. This situation is similar to the one encountered in the star product
formalism, where different star products have the same antisymmetric part so that the anticommutator leads
to the Poisson bracket.

The last point suggests that there is a connection between the Chevalley Cliffordization described so far
and the fermionic version of the twisted product:

u ◦B v = u exp

∑
i,j

B(θi, θj)

~

∂θi
~∂θj

 v. (2.214)

Considering without loss of generality two monomials u and v the n-th term in the expansion of u ◦B v is of
grade ε(u) + ε(v) − 2n one can compare the ε(u)-th term with uy

B
v, which is of the same grade ε(v) − ε(u)

as was stated in equation (2.209). In fact, both turn out to be identical, i.e.

uy
B
v =

1
ε(u)!

u

∑
i,j

B(θi, θj)

~

∂θi
~∂θj

ε(u)

v

= u

 ∑
nP

i,j=1
kij=ε(u)

n∏
i,j=1

(
B(θi, θj)

~

∂θi
~∂θj

)kij

 v, (2.215)
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where one uses the fact that the kij are either 1 or 0. To prove this equality one has to show that the three
axioms of (2.208) are fulfilled. Using (2.215) the first axiom is trivial, the second one reduces to the Leibniz
rule

θiy
B
(uv) =

∑
j

B(θi, θj)~∂θj
(uv)

=
∑

j

B(θi, θj)
[
(∂θj

u)v + (−1)ε(u)u(∂θj
v)
]

= (θiy
B
u)v + (−1)ε(u)u(θiy

B
v) (2.216)

and a proof of (2.208c) can be found in appendix A. Therefore uy
B
v is equal to the term of the expansion of

u ◦B v in which all basis elements of θi in u are cancelled by corresponding derivatives

~

∂θi
. Such a term will

only exist if ε(u) ≤ ε(v) and if the necessary derivatives appear, i.e. the corresponding B(θi, θj) have to be
non-zero.

One can now formulate the Clifford map with the help of a circle product as

γB
θi
u =

(
θi + θiy

B

)
u = θi ◦B u. (2.217)

With this notation (2.212) reads

γB
θi
γB

θj
u = θi ◦B θj ◦B u

= θiθju+
∑
k,l

B(θj , θk)B(θi, θl)~∂θl
~∂θk

u+B(θi, θj)u

+θi

∑
k

B(θj , θk)~∂θk
u− θj

∑
l

B(θi, θl)~∂θl
u. (2.218)

Therefore the anticommutator (2.213) can be written as

{γB
θi
, γB

θj
} = {θi, θj}◦B

= 2g(θi, θj). (2.219)

The same constructions that were described here can also be applied to the bosonic case in a similar manner.
The important point is now that having established γB

θi
= θi◦B one can use this as a definition for the

Chevalley cliffordization map instead of definition (2.211). Defining the Chevalley cliffordization with the
circle product allows us to generalize the definition (2.211) to monomials u of arbitrary Grassmann grade:

γ̃B
u v = u ◦B v. (2.220)

With this generalized definition of the cliffordization map one immediately sees that the cliffordization is a
homomorphism, because one trivially has:

γ̃B
u γ̃

B
v = γ̃B

u◦Bv, (2.221)

which is not true for the Clifford map (2.211).
The choice of the bilinear form B(θi, θj) specifies the Clifford map γB defined in equation (2.211). Starting

from a Clifford map specified by a symmetric bilinear form, i.e. B(θi, θj) = g(θi, θj) Fauser used in [47] the
concept of the so-called Wick isomorphism e−FC`(g, V )e+F to induce an additional antisymmetric scalar
part determined by F = F ijθiθj . It is here important to note that e−FC`(g, V )e+F 6= C`(B, V ). In order to
see what the Wick isomorphism does and what it does not do, first consider the connection of y

B
and y

g
, for

which one has
θiy

B
u =

∑
k

(g(θi, θk) +A(θi, θk)) ~∂θk
u = θiy

g
u+ θiy

A
v, (2.222)
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but this does not generalize to γB
θi

, i.e. γB
θi
u 6=

(
γg

θi
+ γA

θi

)
u. So the connection of the two Clifford maps γB

θi

and γg
θi

cannot to be established by a simple linear combination. But also the Wick isomorphism cannot
transform γg

θi
into γB

θi
. To see this and to see how the Wick isomorphism transforms γg

θi
one has to calculate

e−F γg
θi
eFu. Therefore one first calculates

θiy
B
F =

∑
j

B(θi, θj)~∂θj
F klθkθl =

∑
j

2B(θi, θj)F jkθk, (2.223)

where (2.215) was used. With equation (2.216) this leads to

θiy
B
Fn = n(θiy

B
F )Fn−1 ⇒ θiy

B
eF = (θiy

B
F )eF , (2.224)

so that one gets
e−F

[
θiy

B
(eFu)

]
= θiy

B
u+ (θiy

B
F )u. (2.225)

With these equations one can eventually calculate

e−F γg
θi
eFu = θiu+ θiy

g
u+ (θiy

g
F )u, (2.226)

which is different from γB
θi
u! So the Wick isomorphism does not transform the γg

θi
into γB

θi
, but it changes

the term that amounts to a multiplication of u with a scalar. Such a term does not exist in the case of just
one Clifford map as considered in (2.226). Terms where just a scalar is multiplied appear first in the case of
two Clifford maps:

e−F
(
γg

θi
γg

θj
eFu

)
= θiθju+ g(θi, θj)u+ θi(θjy

g
F )u− θj(θiy

g
F )u

+θi(θjy
g
u)− θj(θiy

g
u) + (θiy

g
F )(θjy

g
u)− (θjy

g
F )(θiy

g
v) + θiy

g
(θjy

g
u)− (θjy

g
F )(θiy

g
F )u

+(θiy
g
(θjy

g
F ))u (2.227)

namely the terms g(θi, θj)u and (θiy
g
(θjy

g
F ))u. It is always possible to choose F , such that

θiy
g
(θjy

g
F ) = (θiθj)y

g
F = A(θi, θj), (2.228)

which is shown explicitly in the following calculation, where (2.215) is used:

θiy
g
(θjy

g
F ) = θiy

g

(∑
k

g(θj , θk)~∂θk
F rsθrθs

)

= θiy
g

(
2
∑

r

g(θj , θr)F rsθs

)
= 2

∑
r,s

F rsg(θi, θs)g(θj , θr) = A(θi, θj). (2.229)

So the Wick isomorphism has induced an antisymmetric scalar term A(θi, θj) that combines with the sym-
metric term g(θi, θj) to B(θi, θj). If one then forms the anticommutator

{e−F γg
θi
eF , e−F γg

θj
eF } = 2g(θi, θj) (2.230)

one sees that the anticommutator is not changed, because the antisymmetric part induced by the Wick
isomorphism is cancelled out.
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Just as here two different Clifford maps were compared one can also compare two different circle prod-
ucts. In the circle product formalism different circle-products are c-equivalent if they are related by the
T -transformation

u ◦′ v = T−1(Tu ◦ Tv), (2.231)

with T = exp
(
T ij~∂θi

~∂θj

)
. Transforming now the Clifford maps into the circle product notation as in

(2.217) one notices that the Wick isomorphism is not a transformation that transforms ◦g into ◦B , like a
T -transformation would do. This can be seen from the simple fact that for u = 1 equation (2.227) leads to

e−F
(
γg

θi
γg

θj
eF
)

= e−F
(
θi ◦g θj ◦g e

F
)

= θiθj + g(θi, θj) + (θiy
g
F )θj + θi(θjy

g
F ) + (θiy

g
F )(θjy

g
F ) + θiy

g
(θjy

g
F ), (2.232)

where more than one term of order two appears, while in θi◦B θj there is just the term θiθj of order two. The
Wick isomorphism does not lead to a T -transformation of the corresponding circle product but it induces
an antisymmetric scalar part and this scalar part is just the scalar part of the T -transformed circle product.
So if 〈F 〉0 projects on the scalar part of F there is the following

Theorem 1
〈θi1 ◦B · · · ◦B θin〉0 = 〈e−F

(
θi1 ◦g · · · ◦g θin ◦g e

F
)
〉0. (2.233)

First consider the case of n being odd. Since the circle product always contracts an even number of basis
elements, it is clear that 〈θi1 ◦B · · · ◦B θi2m+1〉0 = 0. The same argument shows that on the right hand side
e−F (θi1 ◦g · · · θi2m+1 ◦g e

F ) reduces to terms of the form e−F ((θi1 · · · θi2m′+1
) ◦g e

F ) with m′ = 0, . . . ,m. But
expanding the circle product leads to terms which all have grade higher than zero. This is because in order
to reduce θi1 · · · θi2m′+1

to a constant one needs 2m′ + 1 derivatives from ◦g, but then there are also 2m′ + 1
derivatives acting on eF . An odd number of derivatives of eF cannot create an constant term in the inner
derivatives, since F has an even grade. So for odd n both sides of the theorem are zero.
For an even n the left hand side gives

〈θi1 ◦B · · · ◦B θi2m
〉0 =

∑
σ∈S2m

(−1)σB(θσ(i1), θσ(i2)) · · ·B(θσ(i2m−1), θσ(i2m))

=
∑

σ∈S2m

(−1)σ(g(θσ(i1), θσ(i2)) +A(θσ(i1), θσ(i2)))

· · · (g(θσ(i2m−1), θσ(i2m)) +A(θσ(i2m−1), θσ(i2m)))

=
∑

σ∈S2m

(−1)σ
∑

X=g,A

X(θσ(i1), θσ(i2)) · · ·X(θσ(i2m−1), θσ(i2m)).

In order to calculate the right hand side one first notices that

θi1 ◦g · · · ◦g θi2m
= θi1 · · · θi2m

+
∑

σ∈S2m

(−1)σ
[
g(θσ(i1), θσ(i2))θσ(i3) · · · θσ(i2m)

+g(θσ(i1), θσ(i2))g(θσ(i3), θσ(i4))θσ(i5) · · · θσ(i2m)

+ · · ·+ g(θσ(i1), θσ(i2)) · · · g(θσ(i2m−1), θσ(i2m))
]
, (2.234)

which corresponds to the Wick theorem. In each term of (2.234) one has the product of an even number of
θi, which has to be circle multiplied with eF . Using (2.229) it is easy to see that

〈(θi1 · · · θi2r ) ◦g e
F 〉0 =

∑
σ∈S2r

(−1)σA(θσ(i1), θσ(i2)) · · ·A(θσ(i2r−1), θσ(i2r)). (2.235)
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Combining the results (2.234) and (2.235) one gets:

〈e−F (θi1 ◦g · · · ◦g θi2m ◦g e
F )〉0 =

∑
σ∈S2m

(−1)σ
∑

X=g,A

X(θσ(i1), θσ(i2)) · · ·X(θσ(i2m−1), θσ(i2m)), (2.236)

which finishes the proof.2
This theorem tells us that the application of the Wick isomorphism leads to the same change in the

scalar component as a c-equivalence transformation. The projection onto the scalar component corresponds
physically to taking the vacuum expectation value. As shown above a T -transformation results just in a shift
of the spectrum, i.e. it changes the vacuum, which is also the result of a Wick isomorphism [45]. Moreover,
the situation is analogous to the bosonic case. In the bosonic case all star products in R2n are c-equivalent
and have the same antisymmetric scalar part that constitutes the Poisson bracket. In the fermionic case one
uses antisymmetric variables, so all Clifford maps equivalent under the Wick isomorphism lead to the same
symmetric scalar part. So while in the bosonic case the antisymmetric part is important, in the fermionic
case the symmetric part is important, both physically and mathematically. Physically because it constitutes
the fermionic Moyal bracket and mathematically because in mathematics one uses a symmetric bilinear form
in order to construct a Clifford algebra.

Having shown that the star product formalism leads to a cliffordization clarifies on the one hand the
mathematical nature of a fermionic deformation, but on the other hand it also allows to subsume various
attempts to describe physics with the help of Chevalley cliffordization under the realm of the star product
formalism which makes the underlying structures much clearer. Chevalley cliffordization was for example
used to describe the Dirac equation in [44] and to describe the Wick theorem in [48]. This approach was the
starting point for many investigations of the algebraic structures appearing [50]. In one of the next sections
it will be shown how these structures appear in the star product formalism in the most natural way.

54



Chapter 3

Star Products in Quantum Field
Theory

After having established the star product formalism in nonrelativistic quantum mechanics and Dirac theory
one can now proceed to apply the star products in quantum field theory. For this purpose the approach
of Curtright and Zachos can be used, who generalized the derivatives of the Moyal product to functional
derivatives. In contrast to their work here the normal product will be used, which allows one to connect
the star product formalism with the work of Brouder and Oeckl, who investigated the algebraic structure of
quantum field theory.

3.1 The Forced Harmonic Oscillator

Before coming to quantum field theory one can first consider the harmonic oscillator in interaction with a
time-dependent external source J(t). The classical Hamilton function is

H = ωaā− J(t)ā− J̄(t)a. (3.1)

In the case of the normal star product the star exponential or time evolution function UJ is then characterized
by the differential equation

i~
d

dt
UJ(t, ti) = [H + ~(ωā− J̄(t))∂ā] UJ(t, ti), (3.2)

which has the solution

UJ(tf , ti) = e−aā/~ exp
[

1
~
aāeiω(tf−ti) +

i
~
aeiωtf

∫ tf

ti

ds e−iωsJ̄(s)

+
i
~
āe−iωtf

∫ tf

ti

ds eiωsJ(s)− 1
~

∫ tf

ti

ds

∫ tf

s

du eiω(u−s)J(s)J̄(u)
]
. (3.3)

In the scattering situation one requires that the source term becomes negligible as |t| → ∞. The
asymptotic dynamics is then governed by the classical Hamilton function for the free system: H0 = H|J=0.
The scattering function relates the asymptotic in-states to the asymptotic out-states, where the source term
is effective only in an at first limited time interval −T < t < T :

S[J ] = lim
T→∞

U(0, T ) ∗N UJ(T,−T ) ∗N U(−T, 0). (3.4)
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The phase space variables a and ā develop in time under the influence of the free time evolution function
U(t, 0) = ExpN (Ht) as solutions of the free equations of motion. One finds then with (1.95) for a general
function f(a, ā)

ExpN (−Ht2) ∗N f(a, ā) ∗N ExpN (Ht1)

= ExpN (−Ht2) ∗N

[ ∞∑
n=0

1
n!

(∂n
a f(a, ā))

(
−a+ ae−iωt1

)n
ExpN (Ht1)

]
= ExpN (−Ht2) ∗N

[
f(ae−iωt1 , ā)ExpN (Ht1)

]
=

∞∑
n=0

1
n!
(
−ā+ āeiωt2

)n
ExpN (−Ht2)

∞∑
m=0

1
~m

(
n

m

)(
∂n−m

ā f(ae−iωt1 , ā)
) (
−a+ ae−iωt1

)m
ExpN (Ht1)

= ExpN (Ht1)ExpN (−Ht2)
∞∑

n,m=0

1
~m

1
m!n!

(
−a+ ae−iωt1

)m (−ā+ āeiωt2
)m+n

∂n
ā f(ae−iωt1 , ā)

= f(ae−iωt1 , āiωt2), (3.5)

so that one has
U(0, T ) ∗N f(a, ā) ∗N U(−T, 0) = f

(
ae−iωT , āeiωT

)
. (3.6)

For the harmonic oscillator with a time-dependent source this yields, from (3.3):

S[J ] = exp
[

i
~
aj̄(ω) +

i
~
āj(ω)− 1

2~

∫∫
ds du e−iω|s−u|J(s)J̄(u)

]
, (3.7)

where j(ω) =
∫
dsJ(s)eiωs is the Fourier transform of J(s). Let φ(t) = ae−iωt + āeiωt, and let J(t) be real.

Then (3.7) may be written as

S[J ] = e
i
~

R
dtJ(t)φ(t) exp

[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
, (3.8)

with
DF (t) = ~

[
θ(t)e−iωt + θ(−t)eiωt

]
(3.9)

As shown below the scattering function S[J ] corresponds to the scattering operator of quantum field theory,
and DF (t) corresponds to the Feynman propagator (this correspondence is the reason for the factor ~ in the
above equation). The generating functional is the vacuum expectation value of the scattering operator. In
the phase space formalism this quantity can be calculated with π(N)

0 = e−aā/~ (see (1.97)) as

Z[J ] =
1

2π~

∫
d2aS[J ] ∗N π

(N)
0

=
1

2π~

∫
d2aS[J ]e−

~

∂aaπ
(N)
0

=
1

2π~

∫
d2a exp

[
i
~
āj(ω)− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
e−aā/~

= exp
[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
1

2π~

∫
d2a exp

[
−1

~
aā+

i
~
āj(ω)

]
= exp

[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
, (3.10)

where in the last step the normalization of the Wigner function was used. Decomposing DF (t− t′) into the
real and imaginary parts according to

DF (t) = ~ [cos(ωt)− iε(t) sin(ωt)] , (3.11)
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one can write (3.10) with ε(t) = 2θ(t)− 1 as

exp
[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
= exp

[
− 1

2~

∫∫
dtdt′

[
J(t)

(
1
2

(
eiω(t−t′) + e−iω(t−t′)

)
+
(
θ(t)− 1

2

)(
e−iω(t−t′) − eiω(t−t′)

))
J(t′)

]]
= e−|j(ω)|2/2~ exp

[
− 1

2~2

∫∫
dtdt′J(t)DR(t− t′)J(t′)

]
, (3.12)

where
DR(t) = ~θ(t)(e−iωt − eiωt) = −2i~θ(t) sin(ωt) (3.13)

is the retarded propagator. So up to a phase given by the retarded propagator the expression (3.10) is equal
to exp

[
−|j(ω)|2/2~

]
.

One can also calculate off-diagonal matrix elements of the scattering operator by making use of the
Wigner functions

π(N)
m,n =

1√
~m~nm!n!

π
(N)
0 āman, (3.14)

which are obviously straightforward generalizations of the projectors: π(N)
n = π

(N)
n,n . The transition amplitude

for the system to go from the ground state to the state with energy En under the influence of the source is
then given by

Amp(0 → n) =
1

2π~

∫
d2a π

(N)
0,n ∗N S[J ] ∗N π

(N)
0

=
1

2π~

∫
d2a π

(N)
0,n ∗N

(
exp

[
i
~
āj(ω)− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
e−aā/~

)
= exp

[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
1

2π~

∫
d2a

an

√
~nn!

e−aā/~e

~

∂a(−a+ij)e−aā/~+iāj/~

= exp
[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
1

2π~

∫
d2a

1√
~nn!

(ij(ω))n
e−aā/~

= exp
[
− 1

2~2

∫∫
dtdt′J(t)DF (t− t′)J(t′)

]
1√

~nn!
(ij(ω))n

. (3.15)

Using the factorization (3.12) for the exponential function, the probability for the above transition is

Pn = |Amp(0 → n)|2 =
|j(ω)|2n

~nn!
e−|j(ω)|2/~. (3.16)

This corresponds to the well-known Poisson distribution for the number of emitted quanta in the field
theoretical context:

Pn = e−n̄ n̄
n

n!
, (3.17)

where n̄ is the average number of emitted quanta:

n̄ =
∞∑

n=0

nPn = |j(ω)|2/~. (3.18)

The aim in this section was to demonstrate that one can calculate quantities of physical interest working
exclusively at the level of phase space, that is, within the framework of deformation quantization. These
quantum mechanical results may be taken over to the field theoretical context by a formal extension to the
case where the system considered has an infinite number of degrees of freedom.
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3.2 The Wick Theorem

In order to see how the structures of perturbative quantum field theory arise in the star product formalism,
one first notes that the Moyal product can be written as

(f ∗M g)(z) = eM12f(z1)g(z2)
∣∣∣
z1=z2=z

, (3.19)

where

M12 =
(

i~
2

) 2d∑
i,j=1

αij ∂

∂zi
1

∂

∂zj
2

, (3.20)

and zi
α, i = 1, . . . , 2d, is the i-th component of phase space point zα. In canonical coordinates, z =

(q1, . . . , qd, p1, . . . , pd), M12 is proportional to the Poisson bracket operator:

M12 =
(
i~
2

) d∑
i=1

(
∂

∂qi
1

∂

∂pi
2

− ∂

∂pi
1

∂

∂qi
2

)
. (3.21)

Analogously, for two holomorphic coordinates:

(f ∗M g)(a, ā) = eM12f(a1, ā1)g(a2, ā2)
∣∣∣

a1=a2=a
ā1=ā2=ā

(3.22)

with

M12 =
~
2
(∂a1∂ā2 − ∂ā1∂a2), (3.23)

and for the normal product one gets

(f ∗N g)(a, ā) = eN12f(a1, ā1)g(a2, ā2)
∣∣∣

a1=a2=a
ā1=ā2=ā

, (3.24)

with N12 = ~∂a1∂ā2 .
The Moyal product of r functions can then be written as

f1 ∗M f2 ∗M · · · ∗M fr = exp

∑
i<j

Mij

 r∏
m=1

fm(am, ām)
∣∣∣∣

am=a
ām=ā

. (3.25)

There is a similar formula for the normal product. For functions fm which are linear in a and ā,

fm(a, ā) = Ama+Bmā, (3.26)

the star product may be written in the form of a Wick theorem. For example, the star product of four linear
functions can be written by expanding the exponential:

f1 ∗M f2 ∗M f3 ∗M f4 = f1f2f3f4 +G12 (f3f4) +G13 (f2f4) +G14 (f3f3)
+G23 (f1f4) +G24 (f1f3) +G34 (f1f2)
+G12G34 +G13G24 +G14G23, (3.27)

where the contractions

Gij = Mijfifj =
~
2
(AiBj −AjBi) (3.28)
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are constants. One has then the relation

Mij = Gij
∂

∂fi

∂

∂fj
, (3.29)

and (3.25) may be written as

f1 ∗M f2 ∗M · · · ∗M fr = exp

∑
i<j

Gij
∂

∂fi

∂

∂fj

 r∏
m=1

fm(am, ām). (3.30)

It should be clear from the above that not only the original form, but also the various generalized Wick
theorems which have been discussed in the literature [1],[88], are direct consequences of the structure of the
relevant star products. The operator form of the Wick theorem can be obtained if one identifies the functions
fi with the fields and then applies the quantization operator Q. In the Weyl quantization scheme one has

f̂1 · · · f̂r = QW {(f1 ∗M · · · ∗M fn)(a, ā)} = QW

exp

∑
i<j

Mij

 r∏
m=1

fm(am, ām)
∣∣∣∣

am=a
ām=ā

 . (3.31)

For a quantization scheme which is c-equivalent to the Moyal scheme one uses the corresponding contractions
Xij instead of the Moyal contractions Mij . One may write Xij = X{ij} +Mij , where X{ij} = 1

2 (Xij +Xji)
is the symmetric part of Xij , since the antisymmetric part is fixed for all c-equivalent star products, by
property (iii) of the definition of the star product.

One additional important ingredient is the time ordering. The time-ordered product of r time-dependent
operators is given by the prescription

T
{
f̂1(t1) · · · f̂r(tr)

}
= QX

exp

∑
i<j

(X{ij} + ε(ti − tj)Mij)

 r∏
m=1

fm(am, ām, tm)

∣∣∣∣∣
am=a
ām=ā

 , (3.32)

since the transposition of two operators leaves X{ij} invariant, while the signs of ε(ti−tj) and of Mij reverse.
For the case of normal ordering the exponent in (3.32) may be written as

Tij = N{ij} + ε(ti − tj)Mij =
~
2
[
(∂ai∂āj + ∂āj∂ai) + ε(ti − tj)(∂ai∂āj − ∂āj∂ai)

]
=

~
2
[
(1 + ε(ti − tj))∂ai

∂āj
+ (1− ε(ti − tj))∂āj

∂ai

]
= ~

[
θ(t1 − t2)∂ai∂āj + θ(t2 − t1)∂āj∂ai

]
. (3.33)

Suppose now that the functions fm are linear in a and ā, and have a periodic time dependence:

fm(t) = Amae
−iωt +Bmāe

iωt. (3.34)

By (3.33) the relevant contractions are

Dij(ti − tj) = ~
[
AiBjθ(ti − tj)e−iωt +AjBiθ(tj − ti)eiωt

]
, (3.35)

which is a generalization of the expression in (3.9). In analogy to (3.29) one can write

Tij =
∫∫

dtdt′
δ

δfi(t)
Dij(t− t′)

δ

δfj(t′)
, (3.36)
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where the δ/δf(t) are functional derivatives. For the operators

f̂m(t) = Amâe
−iωt +Bmâ

†eiωt (3.37)

one gets the quantum mechanical form of Wick’s theorem by inserting these expressions into (3.32):

T {f̂1(t1) · · · f̂r(tr)} = QN

exp

∑
i<j

∫∫
dtdt′

δ

δfi(t)
Dij(t− t′)

δ

δfj(t′)

 f1(t1) · · · fr(tr)

∣∣∣∣∣
am=a
ām=ā

 . (3.38)

Since one has modified the star product contractions in (3.32) by the insertion of the ε(ti − tj) factor, the
time-ordered product is not the Weyl transform of a star product. This can be seen form the fact that the
time-ordered product is symmetric in its arguments, whereas the star products have an antisymmetric part.

The generalization of the foregoing results to the field theoretical context is formally straightforward:
the free real scalar field is equivalent to an infinite collection of harmonic oscillators. One at first considers
the system to be confined to a box of finite volume V . The Fourier representation of the free field is of the
variables a(~k), ā(~k) is

φ(x) =
1√
V

∑
~k

1√
2~ω~k

[
a(~k)e−ikx + ā(~k)eikx

]
, (3.39)

where ~k0 = ~ω~k =
√

~2|~k|2 +m2 is the energy of a single quantum of the field. The normalization of the
field is fixed by the equal-time commutator[

φ(x), φ̇(y)
]
∗

∣∣∣∣
x0=y0

= i~δ(3)(~x− ~y). (3.40)

The Hamilton function in the normal product scheme is the generalization of H = ωāa:

H =
∑
~k

ω~kā(~k)a(~k). (3.41)

The vacuum state in the normal product scheme is

π
(N)
0 =

∏
~k

(
ea(~k)ā(~k)/~

)
= e−

P
~k

a(~k)ā(~k)/~ (3.42)

and is normalized in the usual manner: ∫ ∏
~k

(
d2a~k

2π~

)
π

(N)
0 = 1. (3.43)

The vacuum expectation value of H vanishes:∫ ∏
~k

(
d2a~k

2π~

)
H ∗N π

(N)
0 = 0. (3.44)

In the case of the Moyal product quantization scheme one would have found an infinite vacuum energy,
arising from the zero-point energy in the spectrum. This fact has been used to argue that the normal
product is the only admissible star product in the context of free field theory. From now on one shall go
over to the continuum normalization of the fields:

φ(x) =
∫

d3k

(2π)
3
2

1√
2~ω~k

[
a(~k)e−ikx + ā(~k)eikx

]
. (3.45)
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To form the Moyal product of fields one first calculates the relevant contractions by generalizing (3.23)
to a system with an infinite number of degrees of freedom,

1
2
D(x1 − x2) =

∫∫∫
d3k

d3k1

(2π)
3
2

d3k2

(2π)
3
2

1√
2ω~k1

1√
2ω~k2

~
2

[
δ

δa1(~k)

δ

δā2(~k)
− δ

δā1(~k)

δ

δa2(~k)

]
×
(
a1(~k1)e−ik1x1 + ā1(~k1)eik1x1

)(
a2(~k2)e−ik2x2 + ā2(~k2)eik2x2

)
=

1
2
[
D+(x1 − x2) +D−(x1 − x2)

]
,

(3.46)

where

D±(x) = ±
∫

d3k

(2π)3
~

2ω~k

e∓ikx, (3.47)

are the propagators for the components of positive and negative frequencies, and D(x) is the Schwinger
function. The Moyal product of the fields is then, in analogy to (3.30),

φ(x1) ∗M · · · ∗M φ(xr) = exp

1
2

∑
i<j

∫∫
d4x d4y

δ

δφi(x)
D(x− y)

δ

δφj(y)

 r∏
m=1

φm(xm)

∣∣∣∣∣
φm=φ

. (3.48)

For the quantum field operators

φ̂(x) =
∫

d3k

(2π)
3
2

1√
2~ωk

[
â(~k)e−ikx + â†(~k)eikx

]
(3.49)

one obtains

φ̂(x1) · · · φ̂(xr) = QW

exp

1
2

∑
i<j

∫∫
d4x d4y

δ

δφi(x)
D(x− y)

δ

δφj(y)

 r∏
m=1

φm(xm)

∣∣∣∣∣
φm=φ

 . (3.50)

However, the Moyal product is not appropriate in the field theory context. To treat local interactions
in perturbation theory causality requires the use of the Feynman propagator, which propagates the positive
frequencies forward in time, and the negative frequencies backwards in time. For this one needs the analogy
of (3.38):

T {φ̂(x1) · · · φ̂(xr)} = QN

exp

∑
i<j

∫∫
d4x d4y

δ

δφi(x)
DF (x− y)

δ

δφj(y)

 r∏
m=1

φm(xm)

∣∣∣∣∣
φm=φ

 . (3.51)

Here DF , the Feynman propagator, is given by the infinite dimensional generalization of (3.35):

DF (x1 − x2) =
∫∫∫

d3k
d3k1

(2π)
3
2

d3k2

(2π)
3
2

1√
2ω~k1

1√
2ω~k2

×~

[
θ(t1 − t2)

δ

δa1(~k)

δ

δā2(~k)
+ θ(t2 − t1)

δ

δā1(~k)

δ

δa2(~k)

]
×
(
a1(~k1)e−ik1x1 + ā1(~k1)eik1x1

)(
a2(~k2)e−ik2x2 + ā2(~k2)eik2x2

)
= θ(t1 − t2)D+(x1 − x2)− θ(t2 − t1)D−(x1 − x2). (3.52)
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One may simplify (3.51) by using the symmetry of the Feynman propagator, DF (x1 − x2) = DF (x2 − x1);
it becomes:

T {φ̂(x1) · · · φ̂(xr)} = QN

{
exp

[
1
2

∫∫
d4x d4y

δ

δφ(x)
DF (x− y)

δ

δφ(y)

]
φ(x1) · · ·φ(x2)

}
. (3.53)

Note that in this case it is no longer necessary to use different fields which are set equal only after the
differentation; because of the symmetry the correct combinatorics are guaranteed by the Leibnitz rule for
differentiation. Eq. (3.53) is the field-theoretic version of Wick’s theorem.

The propagator for positive frequencies D+(x) is c-equivalent to 1
2D(x) by use of the transition operator

T = exp
[
−1

2

∫∫
d4x d4y

δ

δφ(x)
1
2
[
D+(x− y)−D−(x− y)

] δ

δφ(y)

]
. (3.54)

The time-ordered product for the field operators, Eq. (3.51), is the Weyl transform of the expression which
results from the Moyal star product, Eq. (3.48), by replacing 1

2D by D+, restricting the integration to
positive times x0 > y0, and symmetrizing.

For r = 2 Wick’s theorem is

T {φ̂(x1)φ̂(x2)} = QN{φ(x1)φ(x2)}+DF (x1 − x2). (3.55)

Since the vacuum expectation value of the normal product vanishes, this yields the familiar relation

DF (x1 − x2) = 〈0|T {φ̂(x1)φ̂(x2)}|0〉. (3.56)

Wick’s theorem may also be written in the form of a generating function:

T
{
e

i
~

R
d4xJ(x)φ̂(x)

}
= QN

{
e

i
~

R
d4xJ(x)φ(x)

}
exp

[
− 1

2~2

∫∫
d4x d4yJ(x)DF (x− y)J(y)

]
, (3.57)

where J(x) is an external source, and Eq. (3.51) results by expanding both sides of Eq. (3.57) in powers of
J and comparing coefficients. Note that

Ŝ[J ] = T
{
e−i

R
d4xJ(x)φ̂(x)

}
= T

{
e−

i
~

R
d4xĤint(x)

}
(3.58)

is the scattering operator of quantum field theory, so that Eq. (3.57) is the perturbation expansion of the
scattering operator for this interaction. This is just the operator form of our previous result, Eq. (3.10),
which was derived completely within the phase space formalism of deformation quantization theory. The
generating functional for the perturbation series is, by Eq. (3.57),

Z0[J ] = 〈0|Ŝ[J ]|0〉 = exp
[
− 1

2~2

∫∫
d4x d4y J(x)DF (x− y)J(y)

]
, (3.59)

in agreement with (3.10). When a self-interaction term is included in the interaction Hamiltonian, Ĥint =
−Jφ+ V (φ), the generating functional for the interacting theory becomes

Z[J ] =
1
N
e−

i
~

R
d4xV ( ~

i
δ

δJ(x) )Z0[J ], (3.60)

where the normalization constant is N = Z[J = 0].
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3.3 Quantum Groups and Twisted Products

As shown above the time ordering cannot be described with a star product, because the time ordered product
is symmetric. In the first chapter a symmetric product of the star product type was called circle product.
Circle products were originally introduced by Rota and Stein in the context of Hopf algebra theory. Here
it will be shown that the circle product of Rota and Stein has just the form of a symmetric star product.
It is then possible to unify the star product formalism with Hopf algebra theory and apply both aspects in
quantum field theory. In order to establish the connection between star product and Hopf algebra theory
first the necessary notation will be briefly reviewed.

K is the field of real or complex numbers. An algebra H is a vector space K with two linear maps
H ⊗H → H (the product) and η : K → H (the identity) such that the product is associative and the unit
mapping is η(1) = 1 ∈ H. A coalgebra H is a vector space over K with two linear maps ∆ : H → H⊗H (the
coproduct) and ε : H → K (the counit). In Sweedler notation for the coproduct: ∆(u) =

∑
u(1)⊗ u(2). The

coproduct must be coassociative:
∑

(∆u(1))⊗ u(2) =
∑
u(1) ⊗ (∆u(2)). The counit satisfies

∑
ε(u(1))u(2) =∑

u(1)ε(u(2)) = u. A bialgebra is a vector space over K which is an algebra and a bialgebra, with the
compatibility condition that ∆ and ε are algebra homomorphisms: ∆(uv) = ∆(u)∆(v) and ε(uv) = ε(u)ε(v).

A bialgebra H is a Hopf algebra if there is a linear mapping S : H → H (called the antipode) such
that

∑
S(u(1))u(2) =

∑
u(1)S(u(2)) = ε(u)1. A Hopf algebra is commutative if the algebra product is

commutative, and cocommutative if
∑
u(1) ⊗ u(2) =

∑
u(2) ⊗ u(1).

A quantum group is a Hopf algebra with a coquasitriangular structure: this is an invertible bilinear map
R : H ×H → K such that

R(uv,w) =
∑

R(u,w(1))R(v, w(2)), R(u, vw) =
∑

R(u(1), w)R(u(2), v). (3.61)

For a commutative and cocommutative Hopf algebra the coquasitriangular structure can be explicitly given
by the following rule. Let u = u1 · · ·un, v = v1 · · · vm with ui, vj ∈ H. For m 6= n R(u, v) = 0. For m = n

R(u, v) = perm R(ui, vj) =
∑
σ∈P

R(u1, vσ(1)) · · ·R(un, vσ(n)), (3.62)

where the sum is over all the permutations σ of the indices 1, . . . , n. This function is called the permanent
of the square matrix R(ui, vj).

One can use R to define a twisted product, denoted by ◦. When the Hopf algebra is cocommutative this
product may be written as

u ◦ v =
∑

R(u(1), v(1))u(2)v(2) =
∑

u(1)v(1)R(u(2), v(2)). (3.63)

It can be shown that the twisted product is associative.
Now let V be a vector space and T (V ) the tensor algebra over V . There is then a unique Hopf algebra

structure on T (V ) such that ∆(v) = v⊗ 1 + 1⊗ v, ε(v) = 0 and S(v) = −v for v ∈ V . For v1, v2, · · · vn ∈ V
the coproduct is

∆(v1 · · · vn) =
n∑

k=0

∑
σ∈Pnk

vσ(1) · · · vσ(k) ⊗ vσ(k+1) · · · vσ(n), (3.64)

where Pnk denotes the set of all permutations of (1, ..., n) such that

σ(1) < σ(2) < ... < σ(k) and σ(k + 1) < ... < σ(n). (3.65)

We see from this that the coproduct is cocommutative. The antipode is

S(v1v2 · · · vn) = (−1)nvn · · · v2v1. (3.66)
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For the special case of the symmetric algebra S(V ) over V the formula for the coproduct simplifies. To
begin with one considers V to be two-dimensional, with basis elements a, ā. The coproduct of the monomial
u = amān is then

∆u =
m∑

i=0

n∑
j=0

(
m

i

)(
n

j

)
aiāj ⊗ am−iān−j . (3.67)

In this case the twisted product can be written as an exponential:

u ◦ v = u e(R(a,a)

~

∂a
~∂a+R(ā,ā)

~

∂ā
~∂ā+R(a,ā)

~

∂a
~∂ā+R(ā,a)

~

∂ā
~∂a) v, (3.68)

which makes immediately obvious in which sense the circle product is a generalization of the star product.
That the circle product (3.63) can be written in an exponential form as in (3.68) has been demonstrated for
vector spaces of higher dimension in the literature [14]. In Appendix B a combinatoric proof is given that
is more direct than these proofs. It should also be emphasized that no other assumptions are necessary for
the result except the basic structures of the present section.

The connection of the above twisted product and the star products will now be discussed in more detail.
In order to make contact to physics one first identifies the variables a and ā with the holomorphic coordinates
of a flat two dimensional phase space (the generalization to higher dimensions is straightforward). Since a
and ā then have dimension ~−1/2 the coquasitriangular structure R must be proportional to ~, so that the
twisted product fulfills

lim
~→0

u ◦ v = uv. (3.69)

Since the circle product is an associative product it satisfies nearly all the requirements of a star product.
To get a star product one must impose the additional requirement

lim
~→0

1
~
(a ◦ ā− ā ◦ a) = {a, ā}PB = 1, (3.70)

If the circle product can be written in the exponential representation (3.68), condition (3.70) reduces to

R(a, ā)−R(ā, a) = ~, (3.71)

so that the basic coquasitriangular structures are no longer independent. Condition (3.70) can be fulfilled
in various ways, where a particularly convenient choice is R = RN , with

RN (a, ā) = ~ and RN (a, a) = RN (ā, ā) = RN (ā, a) = 0. (3.72)

One can then directly prove for this case that the twisted product reproduces the well-known formula for
the normal star product. For the choice (3.72) the only terms which survive in the sum (3.63) are those
for which u(2) contains only a-factors and v(2) only ā-factors. Taking u = arās and v = amān one finds
that the relevant terms in the coproduct formulae for u and v are

(
r
i

)
aiās ⊗ ar−i and

(
n
l

)
amāl ⊗ ān−l with

r − i = n− l. These terms yield a contribution to the sum in (3.63) which is(
r

i

)(
n

l

)
aiāsamālRN (ar−i, ān−l) =

r!
i!
n!
l!

~n−l

(n− l)!
ar+m−(n−l)ās+l (3.73)

where (3.62) was used, which for the present case is RN (an, ān) = n!R(a, ā)n. However, this is just the
(n− l)-term in the expansion of the exponential

u ◦ v = asāl eRN (a,ā)

~

∂a
~∂ā amān = u e~

~

∂a
~∂ā v, (3.74)

which is the expression for the normal star product u∗N v. In the 2d-dimensional case the only non-vanishing
basic coquasitriangular structure is

RN (ai, āj) = ~δij , (3.75)

64



which leads to the corresponding d-dimensional normal product. The other possible generalization is to
choose another scheme, for example R = RM , with

RM (a, ā) =
~
2

, RM (ā, a) = −~
2

and RM (a, a) = RM (ā, ā) = 0, (3.76)

this leads to the Moyal product.
The general case of an antisymmetric circle product can be discussed with the filter functions that describe

the different quantization schemes. The operator that corresponds to a function f(a, ā) can be written as:

Qφ(f)(â, â†) =
1

(2π)2

∫∫
d2αd2a e(µα2+νᾱ2+λαᾱ)e−(αā−ᾱa)e(αâ†−ᾱâ)f(a, ā)

=
1

(2π)2

∫∫
d2αd2a e(µ∂2

ā+ν∂2
a−λ∂a∂ā)e−(αā−ᾱa)e(αâ†−ᾱâ)f(a, ā) (3.77)

where φµ,ν,λ(α, ᾱ) = e(µα2+νᾱ2+λαᾱ) is the filter function that parametrises the ordering scheme. (Note
that this is the parametrization where the holomorphic coordinates are considered as primary, see footnote
on page 7.) For µ = ν = λ = 0 one gets Weyl ordering, for µ = ν = 0, λ = ~

2 normal ordering and
for µ = ν = 0, λ = −~

2 antinormal ordering. One can also easily see that the filter function, written as
e(µ∂2

ā+ν∂2
a−λ∂a∂ā), is the T -operator that relates the Moyal product to the star products that correspond to

the ordering schemes given by the parameters µ, ν and λ. For example, the T -operator that relates the
Moyal product to the most general twisted product satisfying the antisymmetry condition (3.71),

f ◦A g = f e(R(a,a)

~

∂a
~∂a+R(ā,ā)

~

∂ā
~∂ā+R(a,ā)

~

∂a
~∂ā+(R(a,ā)−~)

~

∂ā
~∂a) g (3.78)

according to f ◦A g = T−1(Tf ∗M Tg), is given by

T = e(−
1
2R(a,a)∂2

a− 1
2R(ā,ā)∂2

ā−(R(a,ā)− ~
2 )∂a∂ā). (3.79)

Comparing the filter function and the T -operator one sees that there is a direct correspondence between the
three independent basic coquasitriangular structures and the parameters µ, ν and λ.

The coquasitriangular structure can be recovered from the twisted product by the formula R(u, v) =
ε(u ◦ v) [15]. This just means that R(u, v) is given by the constant term in u ◦ v. For example, for the
normal star product of (3.74) one just gets the relations (3.72). Furthermore for u, v ∈ S(V ) monomials in
a and ā one finds that RN (u, v) = 0 unless u = an and v = ān, in which case RN (u, v) = n!~n. This is
consistent with the general rule (3.62) that the coquasitriangular structure of two monomials decomposes
into the permanent of the basic coquasitriangular structures (3.62).

3.4 The Fermionic Case

In the fermionic case the basis of the vector space V consists of Grassmann variables f1, . . . , fn and one
considers the antisymmetric algebra Λ(V ). A monomial in this algebra is at most linear in one of the fi

and has the form u = fi1 · · · fir
with r ≤ n. The use of fermionic variables leads in the definition of the

coproduct (3.64) to a factor (−1)σ under the sum and the coquasitriangular structure given by

R(u, v) = detR(ui, vi) =
∑
σ∈P

(−1)σR(u1, vσ(1)) · · ·R(un, vσ(n)). (3.80)

If one now tries to construct a circle product like in (3.63) the two possible definitions of the circle product
are no longer the same. For example the first term of p-th order in

∑
R(u(1), v(1))u(2)v(2) is formed by the

coproduct terms
u1 · · ·up ⊗ up+1 · · ·un and v1 · · · vp ⊗ vp+1 · · · vm (3.81)
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whereas the same term in the definition
∑
u(1)v(1)R(u(2), v(2)) is formed by the coproduct terms

up+1 · · ·un ⊗ u1 · · ·up and vp+1 · · · vm ⊗ v1 · · · vp. (3.82)

But these terms differ in the coproduct by a sign factor of (−1)p(n−p) and (−1)p(m−p) respectively.
This ambiguity corresponds to the fact that one has to distinguish between left and right derivatives for

fermionic variables. So the exponential representiation of the circle product can be written either with left
or with right derivatives. For the definition of the fermionic circle product one chooses:

u ◦ v =
∑

R(u(1), v(1))u(2)v(2) (3.83)

= u exp

 n∑
i,j=0

R(fi, fj)

~

∂
L
fi
~∂L

fj

 v = u exp

−(−1)π(u)
n∑

i,j=0

R(fi, fj)

~

∂fi
~∂fj

 v, (3.84)

where one uses the relation between left and right derivative

∂RF

∂fi
= −(−1)π(F ) ∂

LF

∂fi
(3.85)

and encoded the left and right derivatives in the vector arrows. The proof that (3.83) can be written in the
exponential form (3.84) can be found in Appendix B.

Just as in the bosonic case one can also define a normal product for fermionic variables:

u ∗N v = u exp

(
−(−1)π(u)~

n∑
i=0

~

∂fi
~∂f̄i

)
v (3.86)

so that the basic coquasitriangular structures are:

RN (fi, f̄j) = ~δij , and RN (fi, fj) = RN (f̄i, f̄j) = RN (f̄i, fj) = 0. (3.87)

In order to describe the field theoretic case for fermionic fields

ψ(x) =
∫

d3k

(2π)3
1√
2E~k

∑
s

(
fs,~kus(k)e−ikx + hs,~kvs(k)eikx

)
, (3.88)

ψ̄(x) =
∫

d3k

(2π)3
1√
2E~k

∑
s

(
f̄s,~kūs(k)eikx + h̄s,~kv̄s(k)e−ikx

)
(3.89)

we can take into account the time ordering in the normal star product (3.86). The time ordering destroys
the antisymmetry of the normal star product and one gets a circle product for linear functions

f(t1) ◦TN g(t2) = f(t1) exp

(∫
d3k

∑
s

[
~θ(t1 − t2)

( ~

δ

δfs,~k

~δ

δf̄s,~k

+

~

δ

δhs,~k

~δ

δh̄s,~k

)

− ~θ(t2 − t1)

( ~

δ

δf̄s,~k

~δ

δfs,~k

+

~

δ

δh̄s,~k

~δ

δhs,~k

)])
g(t2). (3.90)

The coquasitriangular structures for two fields are

RTN (ψ(x1), ψ̄(x2)) =
∫

d3k

(2π)32E~k

[
~θ(t1 − t2)

∑
s

us(k)ūs(k)e−ik(x1−x2)

−~θ(t2 − t1)
∑

s

vs(k)v̄s(k)eik(x1−x2)

]

= ~
∫

d4k

(2π)4
i(k/+m)

k2 −m2 + iε
e−ik(x1−x2) = SF (x1 − x2) (3.91)
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and
RT (ψ(x1), ψ(x2)) = RT (ψ̄(x1), ψ̄(x2)) = 0, RT (ψ̄(x1), ψ(x2)) = −SF (x2 − x1). (3.92)

Here the completeness relations for the spinors∑
s

us(k)ūs(k) = k/+m,
∑

s

vs(k)v̄s(k) = k/−m (3.93)

have been used. SF (x) is the Dirac propagator [97].
As in the bosonic case it is also possible to write multiple fermionic ◦T -products. In quantum electrody-

namics, for example, the vacuum expectation value of the scattering operator is

S0 = 〈0|T exp
[
−ie

∫
d4x ˆ̄ψ(x)γµψ̂(x)A(x)

]
|0〉. (3.94)

In the above notation this can be written as:

S0 =
∞∑

n=0

(−ie)n

n!

∫
dx1 · · · dxnε

[(
ψ̄(x1)A/(x1)ψ(x1)

)
◦T · · · ◦T

(
ψ̄(xn)A/(xn)ψ(xn)

)]
=

∞∑
n=0

(−ie)n

n!

∫
dx1 · · · dxn

ε

[
exp

[∑
i<j

∫∫
d4xd4y

(
Sαβ

F (x− y)
δ

δψα
i (x)

δ

δψ̄β
j (y)

− Sαβ
F (y − x)

δ

δψ̄β
j (y)

δ

δψβ
j (x)

)]

×ψα1
1 (x1)A/α1β1(x1)ψ

β1
1 (x1) · · · ψ̄αn

n (xn)A/αnβn(xn)ψβn
n (xn)

]

=
∞∑

n=0

(−1)n

n!

∫
dx1 · · · dxn∑

P

εP
∑

α1,...,αn

(−ie)
(
A/α1β1(x1)S

β1αP1
F (x1 − xP1)

)
· · · (−ie)

(
A/α1β1(x1)S

β1αP1
F (x1 − xP1)

)
= Det

[
I − eA/(x)

1
p/−m+ iε

]
. (3.95)

Here the Cayley-Hamilton formula for the expansion of the the determinant of a matrix Γ was used, i.e.

Det(I − Γ) = exp(Tr ln(I − Γ)) =
∑

n

(−1)n

n!

∑
α1···αn

∑
P

εP Γα1αP1
· · ·ΓαnαPn

, (3.96)

for the matrix
Γα1x,α2y = −ie

∑
α

A/α1α[SF (x− y)]αα2 . (3.97)

Here the notations Det and Tr indicate a sum over discrete variables and an integration over continuous
ones. The result (3.95) can be written as

S0(A) = Det
[
I − eA/

1
p/−m+ iε

]
= Det

[
(p/− eA/−m+ iε)

1
p/−m+ iε

]
=

Det [p/− eA/−m+ iε]
Det [p/−m+ iε]

, (3.98)

a well-known result usually derived using path integral methods [97].
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Chapter 4

Star Products and Geometric Algebra

The approach to spin in the last chapter was analogous to the procedure in the conventional formalism. One
starts with quantum mechanics without spin and then adds the spin structures that were described above
with a fermionic star product. In this and the next chapter it will be shown that it is actually the other
way round. The fermionic structures introduced in the last chapter appear already in classical mechanics in
the context of geometric algebra. With the fermionic Clifford star product it is then possible to reformulate
geometric algebra as deformed superanalysis. This allows to describe vector analysis, spin and differential
geometry in a superanalytic language.

4.1 Geometric Algebra and the Clifford Star Product

As described in the last chapter one has the situation that grassmannian mechanics itself is not a physical
theory, but can nevertheless be used to describe a physical phenomenon like spin. So one might wonder
what the physical status of grassmannian mechanics actually is. The problem is not the theory itself but
the interpretation, because in grassmannian mechanics one interprets the Grassmann numbers as dynamical
variables. Such fermionic variables do not physically exist as dynamical variables but they serve as the basis
vector structure of space and space-time. This can be seen if one compares the formalism of the last chapter
with geometric algebra.

Geometric algebra goes back to early ideas of Hamilton, Grassmann and Clifford. But it was first
developed into a full formalism by Hestenes in [73] and [74]. The formalism of geometric algebra is based
on the definition of the geometric or Clifford product that is the sum of the scalar and the wedge product
of vectors. This product equips the space with the algebraic structure of a Clifford algebra. The geometric
product then appeared to be a very powerful tool, that allows to describe and generalize the structures of
vector analysis, of complex analysis and of the theory of spin in a unified and clear formalism. The algebraic
power of this concept is due to the fact that the geometric product is in contrast to the scalar product
associative. This formalism can then be used to describe classical mechanics in the realm of geometric
algebra instead of linear algebra [74]. The formalism can also be generalized from the algebra of space to
the algebra of space-time in order to describe electrodynamics and special relativity [73, 34].

In [35] it was shown that geometric algebra can be expressed with the help of Grassmann variables.
Comparing this grassmannian formulation of geometric algebra with the formalism of the last chapter leads
immediately to the conclusion that the geometric product is actually the Clifford star-product and that
the Grassmann variables are actually the basis vectors of space. The Clifford algebra that appeared as the
deformation of the Grassmann algebra is then the Clifford algebra of the basis vectors. In order to make
this explicit the formalism of geometric algebra will be shortly sketched in the following and it will then be
shown how geometric algebra can be reformulated with the Clifford star product.
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Starting point for geometric algebra [73] is an d-dimensional vector space over the real numbers with
vectors a, b, c, . . .. A multiplication, called geometric product, of vectors can then be denoted by juxtaposi-
tion of an indeterminate number of vectors so that one gets monomials A,B,C, . . .. These monomials can
be added in a commutative and associative manner: A + B = B + A and (A + B) + C = A + (B + C),
so that they form polynomials also denoted by capital letters. The so obtained polynomials can be multi-
plied associatively, i.e. A(BC) = (AB)C and they fulfill the distributive laws (A + B)C = AC + BC and
C(A+B) = CA+ CB. Furthermore there exists a null vector a0 = 0 and the multiplication with a scalar
λa = aλ, with λ ∈ R. The connection between scalars and vectors can be given if one assumes that the
product ab is a scalar iff a and b are collinear, so that

√
a2 is the length of the vector a. These axioms

define now the Clifford algebra C`(V ) and the elements A,B,C, . . . of C`(V ) are called Clifford or c-numbers.
Since the geometric product of two collinear vectors is a scalar, the symmetric part of the geometric

product 1
2 (ab + ba) = 1

2 ((a + b)2 − a2 − b2) is a scalar denoted a · b = 1
2 (ab + ba). The product a · b

is the inner or scalar product. One can then decompose the geometric product into its symmetric and
antisymmetric part:

ab =
1
2
(ab + ba) +

1
2
(ab− ba) = a · b + a ∧ b, (4.1)

where the antisymmetric part a ∧ b = 1
2 (ab− ba) is formed with the outer product. For the outer product

one has obviously a ∧ b = −b ∧ a and a ∧ a = 0, so that a ∧ b can be interpreted geometrically as an
oriented area. The geometric product is constructed in such a way that it gives information about the
relative directions of a and b, i.e. ab = ba = a · b ⇒ a ∧ b = 0 means that a and b are collinear whereas
ab = −ba = a ∧ b ⇒ a · b = 0 means that a and b are perpendicular. The important point is that the
geometric product (4.1) is associative, in contrast to the scalar and the cross product of conventional vector
analysis. This allows the construction of a much more powerful multivector formalism that includes complex
analysis and the theory of spins. As will be shown below it is in so far much better suited for doing physics.

The first step in the construction of the multivector formalism is to define with the outer product simple
r-vectors or r-blades

A(r) = a1 ∧ a2 ∧ . . . ∧ ar, (4.2)

which can be interpreted as r-dimensional volume forms. The geometric product can then be generalized to
the case of a vector and a r-blade:

aA(r) = a ·A(r) + a ∧A(r), (4.3)

which is the sum of a (r − 1)-blade a · A(r) = 1
2 (aA(r) − (−1)rA(r)a) and a (r + 1)-blade a ∧ A(r) =

1
2 (aA(r)+(−1)rA(r)a). Applying this recursively one sees that each c-number can be written as a polynomial
of r-blades, and using a set of basis vectors e1, e2, . . . ,er a c-number reads:

A = A0 +Aiei +
1
2!
Ai1i2ei1 ∧ ei2 + . . .+

1
n!
Ai1...irei1 ∧ ei2 ∧ . . . eir

. (4.4)

A is called multivector or r-vector if the highest appearing grade is r. It decomposes into several blades:

A = 〈A〉0 + 〈A〉1 + . . .+ 〈A〉r =
r∑

n=0

〈A〉n, (4.5)

where 〈 〉n projects onto the term of grade n. A multivector A(r) is called homogeneous if all appearing
blades have the same grade, i.e. A(r) = 〈A(r)〉r. The geometric product of two homogeneous multivectors
A(r) and B(s) can be written as

A(r)B(s) = 〈A(r)B(s)〉r+s + 〈A(r)B(s)〉r+s−2 + · · ·+ 〈A(r)B(s)〉|r−s|. (4.6)

The inner and the outer product stand now for the terms with the lowest and the highest grade:

A(r) ·B(s) = 〈A(r)B(s)〉|r−s| and A(r) ∧B(s) = 〈A(r)B(s)〉r+s. (4.7)
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In the case r = 0, i.e. one of the multivectors is a scalar function f , one defines f ·B(s) = 0 and f∧B(s) = fB(s).
One should note that the inner and outer product here in the general case do not correspond anymore to the
symmetric and the antisymmetric part of the geometric product. For example in the case of two bivectors one
has A(2) ∧B(2) = B(2) ∧A(2), so that the outer product is symmetric. Actually one finds for the symmetric
and the antisymmetric parts of A(2)B(2):

1
2
(A(2)B(2) +B(2)A(2)) = A(2) ·B(2) +A(2) ∧B(2) and

1
2
(A(2)B(2) −B(2)A(2)) = 〈A(2)B(2)〉2. (4.8)

In general the commutativity of the outer and the inner product is given by:

A(r) ∧B(s) = (−1)rsB(s) ∧A(r) and A(r) ·B(s) = (−1)r(s+1)B(s) ·A(r) (4.9)

and both products are always distributive:

A ∧ (B + C) = A ∧B +A ∧ C and A · (B + C) = A ·B +A · C. (4.10)

Just as the outer product of r-vectors is in general associative, i.e. A∧ (B ∧C) = (A∧B)∧C, for the inner
product one gets:

A(r) · (B(s) · C(t)) = (A(r) ·B(s)) · C(t) for r + t ≤ s. (4.11)

If one has to calculate several products of different type, one uses the convention that the inner and the
outer product always have to be calculated first, i.e.

A ∧BC = (A ∧B)C 6= A ∧ (BC) and A ·BC = (A ·B)C 6= A · (BC). (4.12)

The formalism of geometric algebra briefly sketched so far can now be described with Grassmann variables
and the Clifford star product that turns the Grassmann algebra into a Clifford algebra. In order to make
the equivalence even more obvious one goes over to the dimensionless Grassmann variables

σi =

√
2
~
θi. (4.13)

These variables play here the role of dimensionless basis vectors and will therefore be written in bold face,
whereas the θi played in the discussion of the last chapter the role of dynamical variables with dimension√

~. In the σi-variables the Clifford star product (2.95) has the form

F ∗C G = F exp

[
d∑

i=1

~

∂

∂σi

~∂

∂σi

]
G. (4.14)

As a star product the Clifford star product is associative and distributive.
In order to show what the geometric algebra in terms of Grassmann variables and with the Clifford star

product looks like one first considers the two dimensional euclidian case. There are two Grassmann basis
elements σ1 and σ2, so that a general element of the Clifford algebra is a supernumber A = A0 + A1σ1 +
A2σ2 + A12σ1σ2 = 〈A〉0 + 〈A〉1 + 〈A〉2 and a vector corresponds to a supernumber with Grassmann grade
one: a = a1σ1 + a2σ2. The Clifford star product of two of these supernumbers is

a ∗C b = ab + a

[
2∑

i=1

~

∂

∂σi

~∂

∂σi

]
b = (a1b2 − a2b1)σ1σ2 + a1b1 + a2b2 ≡ a ∧ b + a · b, (4.15)

where the symmetric and the antisymmetric part of the Clifford star product is given by:

1
2
(a ∗C b + b ∗C a) = a1b1 + a2b2 ≡ a · b (4.16)

and
1
2
(a ∗C b− b ∗C a) = (a1b2 − a2b1)σ1σ2 = ab ≡ a ∧ b, (4.17)
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which are terms with Grassmann grade 0 and 2 respectively. Note that now a juxtaposition like ab is just
as in the notation of superanalysis the product of supernumbers and not the Clifford product, which should
be described explicitly with the star product (4.14). Note further that the σi form an orthonormal basis
under the scalar product: σi · σj = 1

2 (σi ∗C σj + σj ∗C σi) = δij .
The unit 2-blade i = σ1σ2 can be interpreted as the generator of π

2 -rotations because by multiplying
from the right one gets

σ1 ∗C i = σ1 · i = σ2 , σ2 ∗C i = σ2 · i = −σ1 and σ1 ∗C i ∗C i = −σ1, (4.18)

so that a vector x = x1σ1 + x2σ2 is transformed into x′ = x ∗C i = x · i = x1σ2 − x2σ1. The relation
i2∗C = −1 describes then a reflection and furthermore one has with (2.98): i = σ2σ1 = −i, so that i
corresponds to the imaginary unit. The connection between the two dimensional vector space with vectors
x and the Gauss plane with complex numbers z is established just by star multiplying x with σ1:

z = σ1 ∗C x = x1 + ix2. (4.19)

Such a bivector that results from star multiplying two vectors is also called spinor. While the bivector i
generates a rotation of π

2 when acting from the right, the spinor z generates a general combination of a
rotation and dilation when acting from the right. One can see this by writing z = x1 + ix2 = |z|eiϕ∗C with
|z|2 = z ∗C z = (x1) 2 + (x2) 2. Acting from the right with z causes then a dilation by |z| and a rotation by
ϕ, one has for example: σ1 ∗C z = x, which is the inversion of (4.19). Here one can see that the formalism
of geometric algebra reproduces complex analysis and gives it a geometric meaning.

After having described the geometric algebra of the euclidian 2-space one can now turn to the euclidian
3-space with basis vectors σ1, σ2 and σ3 and with the Clifford star product (4.14) for d = 3. The basis
vectors are orthogonal: σi · σj = δij and a general c-number written as a supernumber has the form

A = A0 +A1σ1 +A2σ2 +A3σ3 +A12σ1σ2 +A31σ3σ1 +A23σ2σ3 +A123σ1σ2σ3. (4.20)

This multivector has now four different simple multivector parts. Besides the scalar part A0 there is the
pseudoscalar part corresponding to I(3) = σ1σ2σ3, which can be interpreted as a right handed volume form,
because a parity operation gives (−σ1)(−σ2)(−σ3) = −I(3). Moreover I(3) has also the properties of an
imaginary unit: I(3) = −I(3) and I(3) ∗C I(3) = I(3) · I(3) = −1. While the pseudoscalar I(3) is an oriented
volume element the bivector part with the basic 2-blades

B1 = σ2σ3 = I3 ∗C σ1 , B2 = σ3σ1 = I3 ∗C σ2 and B3 = σ1σ2 = I3 ∗C σ3 (4.21)

describes oriented area elements. Each of the Bi plays in the plane it defines the same role as the i of the
two dimensional euclidian plane defined above. Star-multiplying with the pseudoscalar I(3) is equivalent
to taking the Hodge dual, for example to each bivector B = b1B1 + b2B2 + b3B3 corresponds a vector b =
b1σ1 + b2σ2 + b3σ3, which can be expressed by the equation B = I(3) ∗C b. This duality can for example be
used to write the geometric product of two vectors a = a1σ1 + a2σ2 + a3σ3 and b = b1σ1 + b2σ2 + b3σ3 as:

a ∗C b = a · b + I(3) ∗C (a× b), (4.22)

where a · b =
∑3

i=1 a
ibi and a× b = ε k

ij a
ibjσk. Furthermore one finds:

σ1 × σ2 = −I(3) ∗C σ1 ∗C σ2 = −I(3) ∗C σ1σ2 = σ3 (4.23)

and cyclic permutations.
The multivector part of (4.20) with even Grassmann grade can be described in the basis 1, Q1 = σ1σ2,

Q2 = σ1σ3, Q3 = σ2σ3, note that Q1 = B1, Q3 = B3, but Q2 = −B2. The bivectors Qi fulfill

Q2∗C
1 = Q2∗C

2 = Q2∗C
3 = Q1 ∗C Q2 ∗C Q3 = −1, (4.24)
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so that the even multivectors Q = q0 +qiQi form a closed subalgebra under the Clifford star product, namely
the quaternion algebra. The multivector part of (4.20) with odd grade does not close under the Clifford star
product, but nevertheless one can reinvestigate the definition of the Pauli functions in (2.96). Replacing in
(2.96) the scalar i by the pseudoscalar I(3) one sees that the basis vectors σi fulfill

[σi,σj ]∗C
= 2εijkI(3) ∗C σk and {σi,σj}∗C

= 2δij , (4.25)

which justifies denoting them σi. With the pseudoscalar I(3) the trace (2.100) can be written as

Tr(F ) = 2
∫
dσ3dσ2dσ1 ? F = 2

∫
dσ3dσ2dσ1 I(3) ∗C F. (4.26)

So one has here achieved with the Clifford star product a cliffordization of the three dimensional Grassmann
algebra of the σi.

Just as in the two dimensional case one can also investigate in three dimensions the role of spinors and
rotations. To this purpose one first considers a vector transformation of the form

x → x′ = −u ∗C x ∗C u, (4.27)

where u is a three dimensional unit vector: u = u1σ1 +u2σ2 +u3σ3 with |u| =
√

(u1)2 + (u2)2 + (u3)2 = 1.
This transformation can be identified as a reflection if one decomposes x into a part collinear to u and a
part orthogonal to u:

x = x‖ + x⊥ = (x · u + xu) ∗C u, (4.28)

with x‖ = (x · u)u and x⊥ = (xu) ∗C u = (xu) · u. One can check that

x‖ ∗C u = u ∗C x‖ ⇒ x‖‖u and x⊥ ∗C u = −u ∗C x⊥ ⇒ x⊥⊥u. (4.29)

This decomposition of x can most easily be obtained if one just star-divides x ∗C u = x · u + x ∧ u by u,
which gives with u−1∗C = u:

x = (x · u) ∗C u−1∗C + (xu) ∗C u−1∗C = (x · u)u + (xu) ∗C u = x‖ + x⊥. (4.30)

Using (4.29) one sees that the transformation (4.27) turns x into x′ = −u ∗C x ∗C u = −x‖ + x⊥, so that
only the component collinear to u is inverted, which amounts to a reflection in the plane where u is the
normal vector. Two successive transformations (4.27) lead to:

x → x′′ = −v ∗C x′ ∗C v = v ∗C u ∗C x ∗C u ∗C v = U ∗C x ∗C U, (4.31)

where U can be written as:

U = v ∗C u = v · u + v ∧ u = cos
(

1
2
|A|
)

+ A0 sin
(

1
2
|A|
)

= e
1
2 A
∗C . (4.32)

The angle between the unit vectors u and v is described by an bivector A = v ∧ u = vu = |vu|A0. Hereby
the unit bivector A0 = vu/|vu| defines the plane in which the angle lies, while the magnitude |vu| gives the
angle in radians, furthermore it fulfills A0 ∗C A0 = −1. If one chooses for example the basis vectors σk for u
and v, A0 is given by one of the bivectors in (4.21). The additional factor 1/2 in (4.32) becomes clear if one
investigates the action of the transformation (4.31). Therefore one proceeds analogously to the discussion of
the reflection (4.27). One first decomposes the vector x into a part x‖ in the plane defined by A and a part
x⊥ perpendicular to that plane. This is done analogously to (4.30) by star-dividing x ∗C A = x · A + x ∧ A
by A which leads to

x = (x · A) ∗C A−1∗C + (xA) ∗C A−1∗C = x‖ + x⊥, (4.33)
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with x‖ ∗C A = −A ∗C x‖ and x⊥ ∗C A = A ∗C x⊥. One then has for the transformation (4.31):

U ∗C x ∗C U = e
−A/2
∗C ∗C x ∗C e

A/2
∗C = x⊥ + x‖ ∗C e

A
∗C
. (4.34)

So the component perpendicular to the plane defined by A is not changed while the component inside this
plane is rotated in that plane with the help of the spinor eA∗C

by an angle of magnitude |A|, just as described
in the two dimensional case above. One sees here why the rotation in the two dimensional case could be
written just by acting with a spinor from the right. This is due to the fact that when the vector lies in the
plane of rotation one has

e
−A/2
∗C ∗C x‖ ∗C e

A/2
∗C = x‖ ∗C e

A
∗C
. (4.35)

A rotation can be described with the bivector A, but also with the dual vector a defined by A = I(3) ∗C a,
where the direction of a defines the axis of rotation, while the magnitude gives the angle in radians |a| = |A|.
So U can also be written as:

U = e
− 1

2 I(3)∗Ca
∗C , (4.36)

which corresponds to the star exponential (2.109).
It is now straightforward to generalize the formalism to the case of d dimensions and an arbitrary metric

ηij = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

), with p + q = d. One has then d basis vectors σi which together with the

star product

F ∗C G = F exp

 d∑
i,j=1

ηij

~

∂

∂σi

~∂

∂σj

 G (4.37)

form the Clifford algebra C`(η) = C`p,q. In the d-dimensional case an additional operation becomes impor-
tant, namely the commutator product that is defined for two multivectors A and B as

A×B =
1
2

(A ∗C B −B ∗C A) =
1
2

[A,B]∗C
, (4.38)

which should not be confused with the vector cross product as used in (4.22). The cross product of two
three-dimensional vectors a and b and the commutator product of the corresponding bivectors A = I(3) ∗C a
and B = I(3) ∗C b are connected according to

−I(3) ∗C (a× b) =
1
2
[
I(3) ∗C a, I(3) ∗C b

]
∗C

= A× B. (4.39)

The special feature of the commutator product is, that the commutator product A(r) × B(2) of an r-blade
A(r) = Ai1...irσi1 . . .σir

and a two blade B(2) = Bjkσjσk gives again an r-blade:

A(r) ×B(2) =
1
2
Ai1...irBjk

[
σi1 . . .σir

σjσk − σjσkσi1 . . .σir

+
∑

s

(
(−1)r−sηjis

σi1 . . . σ̌is
. . .σir

σk − (−1)r−sηkis
σi1 . . . σ̌is

. . .σir
σj

)
−
∑

s

(
(−1)s−1ηkisσjσi1 . . . σ̌is . . .σir − (−1)s−1ηjisσkσi1 . . . σ̌is . . .σir

)
+

1
2!

∑
s<t

(−1)s+t (ηjis
ηkit

− ηkit
ηjis

− ηkis
ηjit

+ ηjit
ηkis

)σi1 . . . σ̌is
. . . σ̌it

. . .σir

]
= Air...irBjk

∑
s

(−1)s−1 (ηkis
σjσi1 . . . σ̌is

. . .σir
− ηjis

σkσi1 . . . σ̌is
. . .σir

) . (4.40)
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It is also easy to see, that A× acts as a derivative, i.e.

A× (B ∗C C) = (A×B) ∗C C +B ∗C (A×B) (4.41)

and that the commutator product fulfills a Jacobi-identity

A× (B × C) = (A×B)× C +B × (A× C). (4.42)

In general one can not only work in the basis of the σi but also in an arbitrary basis of basis vectors
b1, b2, . . . , bd, which do not have to be orthonormal. Then one can calculate the reciprocal base with vectors
b1, b2, . . . , bd, which is defined by the relation bi · bj = δj

i . The bj-vectors can be constructed with the help
of the pseudoscalar B(d) = b1b2 . . . bd = λI(d), where λ is a real number. The space on which the basis vector
bj is normal is given for a d-dimensional euclidian space by the (d− 1)-blade (−1)j−1b1b2 . . . b̌j . . . bd, where
b̌j means that this basis vector is missing. The corresponding reciprocal basis vector is then given by

bj = (−1)j−1b1b2 . . . b̌j . . . bd ∗C B
−1∗C

(d) /|B(d)|2, (4.43)

where B−1∗C

(d) = 1
λI

−1∗C

(d) = 1
λσdσd−1 . . .σ1 is the inverse of B(d) with respect to the Clifford star product.

The absolute value of the d-blade B(d) is given by |B(d)| =
√
B(d) ∗C B(d). With the above definitions one

has then bi · bj = δj
i , which in the case of a orthonormal euclidian basis reduces to σi = σi.

The reciprocal basis allows the definition of the nabla operator

∇ = σi∂i. (4.44)

The nabla operator can act on multivector fields in the following ways. First the generalized gradient is
given by

gradA = ∇ ∗C A, (4.45)

which reduces to the conventional gradient ifA is a scalar field, and acting on a vector field a = ai(x1, x2, x3)σi

one obtains
∇ ∗C a = ∇ · a + ∇ ∧ a = div a + I(3) ∗C rota. (4.46)

Furthermore there is a generalized divergence

divA = ∇ ·A (4.47)

and a generalized rotation
rotA = ∇A. (4.48)

Note that the product rule for the nabla operator acting on a product of multivectors is given by

∇ ∗C (F ∗C G) = (∇ ∗C F ) ∗C G+ σi ∗C F ∗C ∂iG, (4.49)

because in general the σi do not commute with the multivector F . This can also be written in a coordinate-
free manner with accents that indicate which functions is being differentiated:

∇ ∗C (F ∗C G) = ∇́ ∗C F́ ∗C G+ ∇́ ∗C F ∗C Ǵ. (4.50)

The star product formalism in the context of geometric calculus as described so far has the advantage
that it gives an explicit expression for the geometric product. In contrast to the star product formalism
geometric algebra as Hestenes constructed it, it is formulated with respect to the scalar and the wedge
product, which represent the lowest and the highest order terms of the geometric product. All other terms
of the geometric product are then formulated with the help of these two products. This approach is very
practical, especially if one has only terms that are at most bivectors. But in the general case the highest
and the lowest terms of an expansion have on a formal level the same status as all other terms. The star
product gives now all these terms of different grade as terms of an expansion, that can be calculated in a
straightforward fashion.
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4.2 Vector Manifolds

In geometric algebra the points of a manifold are treated as vectors, so that a manifold can be seen as a
surface in a flat background space. The at least (d+1)-dimensional flat background space is spanned by the
rectangular basis vectors σa and it is equipped with the constant metric ηab. The corresponding Clifford
star product is then given by

F ∗C G = F exp

 d+1∑
a,b=1

ηab

~

∂

∂σa

~∂

∂σb

 G, (4.51)

from which it follows that
σa · σb = ηab. (4.52)

With (4.43) it is possible to calculate the reciprocal basis vectors σa. The denominator in (4.43) is the
determinant and the nominator leads to the cofactor of ηab, so that the reciprocal basis vectors are

σa = ηabσb, (4.53)

where ηab is the inverse of ηab, i.e. ηabη
bc = δc

a. One has then

σa · σb = δb
a and σa · σb = ηab, (4.54)

or more generally

σa ∗C σb = ηab + σaσb, σa ∗C σb = δb
a + σaσb, and σa ∗C σb = ηab + σaσb. (4.55)

It is then straightforward to calculate coordinate transformations. In a three dimensional euclidian space,
i.e. ηab = δab, a vector in spherical coordinates is given by

x = xa(r, θ, ϕ)σa = r sin θ cosϕσ1 + r sin θ sinϕσ2 + r cos θσ3, (4.56)

so that the corresponding spherical basis vectors are τ r = ∂rx, τ θ = ∂θx and τϕ = ∂ϕx. The spherical
metric can then be calculated as gab = τ a · τ b = diag(1, r2, r2 sin2 θ) and the three dimensional Clifford star
product in spherical coordinates is

F ∗C G = F exp

 3∑
a,b=1

gab

~

∂

∂τ a

~∂

∂τ b

 G. (4.57)

Embedded in a (d + 1)-dimensional background space with basis vectors σa one can then imagine a
d-dimensional vector manifold M . The vector manifold is parametrized by smooth functions fa(x1, . . . , xd)
as x(x1, . . . , xd) = fa(x1, . . . , xd)σa, more common is the following notation, where the coordinates and the
functions have the same name: x(x1, . . . , xd) = xa(x1, . . . , xd)σa = xa(xi)σa. The vectors

ξi(x) =
∂x

∂xi
(4.58)

are the frame vectors of the manifold, which in the ambient space can be expanded as

ξi(x) = ξa
i (x)σa. (4.59)

The ξi(x) span the tangent space TxM , on which the Clifford star product acts as

F ∗C G = F exp

 d∑
i,j=1

gij(x)

~

∂

∂ξi

~∂

∂ξj

 G, (4.60)
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so that the scalar product of two basis vectors is given in the tangent space by

ξi · ξj = gij . (4.61)

In the ambient space the scalar product ξi · ξj = (ξa
i σa) · (ξb

jσb) also has to be gij , so that the metric of the
vector manifold and of the ambient space are connected according to

ξa
i ξ

b
jηab = gij . (4.62)

The ξa
i (x) are here tetrad fields and the condition (4.62) assures that (4.61) is valid intrinsically, i.e. calculated

with the Clifford star product (4.60) and externally, i.e. calculated with the Clifford star product (4.51) and
the expansion (4.59).

For an orientable manifold there exists a global unit-pseudoscalar Id(x) = ξ1ξ2 . . . ξd/|ξ1ξ2 . . . ξd|, which
allows with (4.43) the calculation of the reciprocal frame vectors ξi of TxM . In the tangent space (4.43)
gives for the reciprocal base vectors ξi = gijξj , where gij is the inverse of gij , i.e. gijg

jk = δk
i , so that

ξi · ξ
j = δj

i , (4.63)

where the scalar product is calculated intrinsically with (4.60). In the ambient space the reciprocal frame
vectors can be expanded as ξi = ξi

aσa, and to make sure that (4.63) is also valid in the ambient space with
the Clifford star product (4.51) the expansion coefficients have to fulfill

ξa
i ξ

j
a = δj

i . (4.64)

Finally it is easy to show that one has as well intrinsically in the tangent space as extrinsically in the ambient
space the relation

ξi · ξj = gij . (4.65)

In general one has for both, the extrinsic Clifford star product (4.51) and the intrinsic Clifford star product
(4.60):

ξi ∗C ξj = gij + ξiξj , ξi ∗C ξj = δj
i + ξiξ

j , and ξi ∗C ξj = gij + ξiξj . (4.66)

With the unit pseudoscalar one can furthermore define a projector P on the vector manifold, which
projects an arbitrary multivector A(x) in the ambient space onto the vector manifold:

P (A(x),x) = (A(x) · I(d)(x)) ∗C I
−1∗C

(d) (x). (4.67)

A vector v = vaσa in the ambient space can then be decomposed into an intrinsic part

P (v) = (ξi · v)ξi = (vaξ
a
i )ξi (4.68)

which is tangent to the manifold and an extrinsic part P⊥(v) = v−P (v). Especially for a tangent vector one
has P (ξi) = ξi. Applying the projector to the nabla operator of the ambient space gives a vector derivative
intrinsic to the manifold:

∂ = P (∇) = ξi(ξi ·∇) = ξi(ξa
i ∂a) = ξi∂i (4.69)

and for a tangent vector a the directional derivative in the a-direction is a · ∂ = ai∂i = aiξa
i ∂a = a · ∇.

With the intrinsic vector derivative (4.69) the cotangent frame vectors ξi can also be obtained as the
gradient of the coordinate functions xi(x) that arise from the inversion of the vector manifold parametrization
x = x(x1, . . . , xd):

ξi = ∂xi. (4.70)

If one now applies the directional derivative a · ∂ on a tangent multi-vector field A(x) the result does
not in general lie completely inside the manifold. So if one wants to have a purely intrinsic result one has
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to use the projection operator P again. This leads to the definition of a new type of derivative that acts
on tangent multi-vector fields and returns tangent multi-vector fields. This new derivative is the covariant
derivative and is defined by:

(a ·D)A(x) = P
(
(a · ∂)A(x)

)
. (4.71)

In the case of a scalar field f(x) on the manifold the covariant and the intrinsic derivative are the same:

(a · ∂)f = (a ·D)f, (4.72)

while for tangent vector fields a and b one has

(a · ∂)b = P
(
(a · ∂)b

)
+ P⊥

(
(a · ∂)b

)
= (a ·D)b + b · S(a), (4.73)

where S(a) is the so called shape tensor, which is a bivector that describes both intrinsic and extrinsic
properties of the vector manifold. The covariant derivative can be seen as a map that maps two tangent
vectors into a third tangent vector, fulfilling the defining relations of an affine connection:

(a ·D)(b + c) = (a ·D)b + (a ·D)c, (4.74a)(
(a + b) ·D

)
c =

(
(a ·D) + (b ·D)

)
c, (4.74b)

(fa ·D)b = f(a ·D)b, (4.74c)
(a ·D)fb =

(
(a ·D)f

)
b + f(a ·D)b. (4.74d)

As a tangent vector (a ·D)b can be expanded in the ξi base:

(a ·D)b = aj
(
(Djb

i)ξi + bi(Djξi)
kξk

)
= aj

(
∂jb

i + bkΓi
jk

)
ξi, (4.75)

where
Γi

jk = (Djξk) · ξi =
(
Djξk

)i (4.76)

is the i-th component of Djξk, which extrinsically can be written as

Γi
jk =

(
Djξ

a
kσa

)
· ξi

bσ
b = (∂jξ

a
k)ξi

a. (4.77)

One of the properties the Γk
ij fulfill is the metric compatibility which can be found if one applies Dk on

both sides of (4.61):
∂kgij − Γl

kiglj − Γl
kjgli = 0, (4.78)

which means that the Γi
jk are the Christoffel symbols and (a · D)b is the Levi-Civita connection. The

symmetry in the lower indices of Γi
jk can be seen from the holonomy condition that is fulfilled because the

frame vectors (4.58) form a coordinate basis:

∂iξj − ∂jξi = (∂i∂j − ∂j∂i)x = 0. (4.79)

Projecting into the manifold gives
Diξj −Djξi = 0, (4.80)

so that the symmetry of the Γi
jk in the lower indices follows. From (4.79) follows further, that

(a · ∂)b− (b · ∂)a =
(
aj(∂jb

i)− bj(∂ja
i)
)
ξi (4.81)

is an intrinsic quantity that corresponds to the Lie-derivative or the Jacobi-Lie-bracket

Lab = [a, b]JLB ≡ (a · ∂)b− (b · ∂)a = (a ·D)b− (b ·D)a. (4.82)
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The holonomy condition (4.79) can then be written with ξi · ∂ = ∂i as Lξi
ξj =

[
ξi, ξj

]
JLB

= 0. It is easy
to see that the Lie-derivative fulfills the relations

[La,Lb] c = (LaLb −LbLa)c = L[a,b]JLB
c (4.83)

La(fb) =
(
(a ·D)f

)
b + f(Lab). (4.84)

One can also conclude with (4.73) that since [a, b]JLB is an intrinsic quantity, the extrinsic parts in the
Jacobi-Lie-bracket have to cancel, i.e.

a · S(b) = b · S(b). (4.85)

Equation (4.75) shows that the intrinsic change of a vector field b in direction a consists of two parts,
on the one hand the active change of the coefficients of the vector field and on the other hand a correction
which corresponds to an passive change of the basis vectors due to the curvature of the manifold. If these
two contributions cancel each other as one moves along a curve c(t) in the manifold the vector b(c(t)) does
not move in the local frame of the ξi(c(t)). One says then that the vector b is parallel transported along
c(t) and the condition for the parallel transport is

(ċ(t) ·D)b = 0. (4.86)

If the tangent vector ċ(t) is parallel transported in its own direction the resulting curve is a geodesic and
fulfills

(ċ(t) ·D)ċ(t) =
(
c̈i + Γi

jk ċ
k ċj
)
ξi = 0, (4.87)

where the ċi are the components of ċ in the ξi frame.
The covariant derivative of tangent vector fields can then be generalized to the covariant derivative of

multivector fields by applying (4.73) to the Clifford star product b ∗C c of two tangent vector fields b and c:

(a ·D)(b ∗C c) =
(
(a · ∂)b

)
∗C c + (S(a) · b) ∗C c + b ∗C

(
(a · ∂)c

)
+ b ∗C (S(a) · c)

= (a · ∂)(b ∗C c) + S(a)× (b ∗C c), (4.88)

where one uses the associativity of the Clifford star product and S(a) · b = 1
2 (S(a) ∗C b − b ∗C S(a)). In

general one has then
(a · ∂)A = (a ·D)A+A× S(a), (4.89)

where A × B = 1
2 (A ∗C B − B ∗C A) = 1

2 [A,B]∗C
is the commutator product (not to be confused with the

vector cross product used in (4.22); the cross product of two three-dimensional vectors a and b and the
commutator product of the corresponding bivectors A = I(3) ∗C a and B = I(3) ∗C b are connected according
to −I(3) ∗C (a × b) = 1

2

[
I(3) ∗C a, I(3) ∗C b

]
∗C

= A × B ). The commutator product of an r-vector and a
bivector gives again an r-vector so that all terms in (4.89) are r-vectors. Furthermore it is clear that (4.89)
reduces to (4.73) if A is a vector field and to (4.72) if A is a scalar field.

A natural generalization of the Lie-derivative to multivectors is given by the Schouten-Nijenhuis bracket

LA(r)B(s) =
[
A(r), B(s)

]
SNB

= (−1)r−1(A(r) ·D)B(s) + (−1)rs(−1)s−1(B(s) ·D)A(r)

= (D́ ·A(r))B́(s) + (−1)rs(D́ ·B(s))Á(r). (4.90)

That the Schouten-Nijenhuis bracket can be written in this way can be seen from fact that (4.90) has the
grade r + s− 1, fulfills[

A(r), B(s)

]
SNB

= (−1)rs
[
B(s), A(r)

]
SNB

(4.91)

and
[
A(r), B(s)C(t)

]
SNB

=
[
A(r), B(s)

]
SNB

C(t) + (−1)rs+sB(s)

[
A(r), C(t)

]
SNB

(4.92)
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and reduces for scalar functions f , g and vector fields a and b to

[f, g]SNB = 0, [a, f ]SNB = (a ·D)f and [a, b]SNB = Lab. (4.93)

Furthermore one has the Jacobi-identity

(−1)rt
[[
A(r), B(s)

]
SNB

, C(t)

]
SNB

+ (−1)rs
[[
B(s), C(t)

]
SNB

, A(r)

]
SNB

+ (−1)st
[[
C(t), A(r)

]
SNB

, B(s)

]
SNB

= 0. (4.94)

4.3 Exterior Calculus

The exterior calculus can be constructed by noting that the cotangent frame vector or 1-form (4.70) can be
written with (4.72) as [56]

ξk = Dxk = ∂xk ≡ dxk. (4.95)

In order to see how the directional covariant derivative acts on a general 1-form ω = ωiξ
i one first applies

Dj on both sides of ξi · ξ
j = δj

i which gives with (4.76)

(Djξ
i) · ξk = (Djξ

i)k = −Γi
jk, (4.96)

so that the covariant derivative of ω reads

(a ·D)ω = aj
(
(Djωi)ξi + ωi(Djξ

i)kξk
)

= aj
(
∂jωi − ωkΓk

ji

)
ξi. (4.97)

That the exterior product with the covariant derivative D corresponds to the exterior derivative can be
seen if one applies the exterior derivative on ξi:

ddxi = Dξi = ξjDj(ξkDkx
i)

= ξj
[
(Djξ

k)(Dkx
i) + ξkDjDkx

i
]

= −ξjξlΓk
jl∂kx

i + ξjξk∂j∂kx
i = 0, (4.98)

due to the antisymmetry in the upper indices and the symmetry in the lower indices. The closedness of ξi

can for example be used to calculate the relation of the Γi
jk and the metric:

Γi
jk = (Djξk) · ξi =

1
2
[
(Djξk) + (Dkξj)

]
· ξi (4.99)

=
1
2
[
ξj · (Dξk) + Γl

mkgjlξ
m + ξk · (Dξj) + Γl

mjgklξ
m
]
· ξi (4.100)

=
1
2
[
ξj · (Dgkmξm) + ξk · (Dgjmξm) + (∂mgjk)ξm

]
· ξi (4.101)

=
1
2
[
(∂ngkm)ξj · ξ

nξm + (∂ngjm)ξk · ξ
nξm + (∂mgjk)ξm

]
· ξi (4.102)

=
1
2
[
(∂ngkm)(δn

j ξm − δm
j ξn) + (∂ngjm)(δn

k ξm − δm
k ξn) + (∂mgjk)ξm

]
· ξi (4.103)

=
1
2
gil [∂jgkl + ∂kgjl − ∂lgjk] , (4.104)

where one uses in (4.99)

ξj · (Dξk) = ξj · (ξ
iDiξk) = ξj · (ξ

iΓl
ikξl) = Γl

ik(δi
jξl − gjlξ

i) = Djξk − Γl
ikgjlξ

i, (4.105)
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in (4.100) the metric compatibility (4.78) and in (4.101) Dξi = 0.
The expression (4.104) can be used to show that the shape bivector can be written as

S(a) =
1
2
(
ξi∂ai − ξi∂a

i + ξi(a · ∂)ξi

)
, (4.106)

or
Si = S(ξi) =

1
2
ξjξk∂kgij +

1
2
ξj∂iξj . (4.107)

This can be proved by calculating

b · S(a) =
1
2
(
bi(∂jai)ξj − bj(∂jai)ξi − bi(∂ja

i)ξj + bj(∂ja
i)ξi + ajbi(∂jξi)− ajbkξi(ξk · ∂jξi)

)
(4.108)

=
1
2
(
akbi(∂jgik)ξj − akbi(∂igjk)ξj + aibj(∂iξj)− ajbkξi(ξk · ∂jξi)

)
(4.109)

= −akbiΓl
kiξl +

1
2
ajbkξi(∂gki) +

1
2
aibj(∂iξj)−

1
2
ajbkξi(ξk · ∂jξi) (4.110)

= −akbiΓl
kiξl +

1
2
aibjξk

[
(∂iξj) · ξk

]
+

1
2
aibj(∂iξj) (4.111)

= aibj(∂iξj)− aibjΓk
ijξk (4.112)

= (a · ∂)b− (a ·D)b (4.113)
= P⊥

(
(a · ∂)b

)
, (4.114)

which corresponds to the definition (4.73). In (4.109) relation (4.104) was used, in (4.110) relation (4.61)
and in (4.111) one uses

ξk
[
(∂iξj) · ξk

]
= ξk

c σc
[
(∂iξ

a
j σa) · ξb

kσb

]
= (∂iξ

a
j )σa = ∂iξj . (4.115)

While the exterior derivative of the reciprocal basis vectors is zero, the exterior derivative of a general
1-form ω = ωiξ

i is a two-form

dω = (Dωj)ξj + ωjDξj = (∂iωj)ξiξj . (4.116)

A general r-form is then a covariant r-blade A(r) and can be written as [56]

A(r) =
1
r!
Ai1i2...ir

dxi1dxi2 . . .dxir =
1
r!
Ai1i2...ir

ξi1ξi2 . . . ξir . (4.117)

Applying the exterior differential, to A(r) gives with (4.98)

dA(r) =
1
r!

(
∂Ai1i2...ir

∂xj

)
dxjdxi1dxi2 . . .dxir =

1
r!

(
∂Ai1i2...ir

∂xj

)
ξjξi1ξi2 . . . ξir , (4.118)

which is a (r + 1)-form or a covariant (r + 1)-blade. Furthermore it is easy to see that (4.98) generalizes to

ddA(r) = 0. (4.119)

In a three dimensional manifold the vector operations like grad, div and rot can be represented with the
exterior derivative as

df = (∂1f) dx1 + (∂2f) dx2 + (∂3f)dx3, (4.120)
dA(1) = (∂2A3 − ∂3A2)dx2dx3 + (∂3A1 − ∂1A3)dx3dx1 + (∂1A2 − ∂2A1)dx1dx2, (4.121)
dA(2) = (∂1A1 + ∂2A2 + ∂3A3)dx1dx2dx3, (4.122)
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which gives the foundations for the integral theorems. Consider for example the integral of a scalar function
f over a curve c(t) = c1(t)σ1 + c2(t)σ2. The curve is a vector manifold with one coordinate x1 = t and
tangent vector field ξt which is equal to the reciprocal frame field ξt = dt. The integral from t = 0 to t = T
of f over the curve is then∫

c

df =
∫

c

ξt∂tf

=
∫

c

dt

(
∂f

∂c1
dc1

dt
+
∂f

∂c2
dc2

dt

)
= lim

n→∞
∆c→0

n∑
r=1

˛̨∆c(c(tr)) · dt(c(tr))
∣∣ ( ∂f

∂c1
dc1

dt
+
∂f

∂c2
dc2

dt

)

= lim
n→∞

n∑
r=1

∣∣dt ξt(c(tr)) · ξt(c(tr))
∣∣ ( ∂f

∂c1
dc1

dt
+
∂f

∂c2
dc2

dt

)

=
∫ T

0

dt

(
∂f

∂c1
dc1

dt
+
∂f

∂c2
dc2

dt

)
= f

∣∣∣T
0
, (4.123)

which is the easiest version of the Stokes theorem∫
S

dA(r) =
∫

∂S

A(r). (4.124)

The important point is here that in the geometric algebra formalism the duality of the infinitesimal volume
element dx1dx2 . . . dxdξ1ξ2 . . . ξd and the differential forms ξ1ξ2 . . . ξd can be expressed with the scalar
product, so that the ordinary scalar integral remains.

It is then also straightforward to translate other structures of exterior calculus into the language of
superanalytic geometric algebra, for example the Hodge dual is given by

?
(
ξi1ξi2 . . . ξir

)
=

√
|g|

(d− r)!
εi1...ir

ir+1...id
ξir+1 . . . ξid , (4.125)

with εi1...ir
ir+1...id

= gi1j1 . . . girjrεj1...jrir+1...id
and εi1...id

= 1 for even permutations. In the euclidian or
Minkowski case the Hodge dual can be written as

?A(r) = (−1)(d−r)r+r(r−1)/2I(d) ∗C A
(r). (4.126)

For example in a d-dimensional Minkowski space with reciprocal basis vectors γµ one has

I(d) ∗C γµ1 . . .γµr =
1

(d− r)!
εµr+1...µdµr...µ1γ

µr+1 . . .γµdγµr . . .γµ1 ∗C γµ1 . . .γµr (4.127)

= (−1)(d−r)r+r(r−1)/2 1
(d− r)!

εµ1...µd
γµr+1 . . .γµdγµr . . .γµ1 ∗C γµ1 . . .γµr (4.128)

= (−1)(d−r)r+r(r−1)/2gµ1ν1g
µ1µ1 . . . gµrνrg

µrµr
1

(d− r)!
εν1...νr

µr+1...µd
γµr+1 . . .γµd(4.129)

= (−1)(d−r)r+r(r−1)/2 ? γµ1 . . .γµr , (4.130)
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where there is no summation over µ1, . . . , µr. Applying the Hodge star operator twice gives

? ? γµ1 . . .γµr = ?(−1)(d−r)r+(r−1)r/2I(d) ∗C γµ1 . . .γµr (4.131)
= (−1)(d−r)r+(r−1)r/2(−1)r(d−r)+((d−r)−1)(d−r)/2I(d) ∗C I

(d) ∗C γµ1 . . .γµr (4.132)

= (−1)(r−1)r/2(−1)(d
2−2rd+r2−d+r)/2(−1)−d(d−1)/2I(d) ∗C I

(d) ∗C γµ1 . . .γµr (4.133)
= (−1)r(d−r)g11 . . . gddγµ1 . . .γµr , (4.134)

so that in the euclidian case one has for the inverse Hodge star operator

?−1 = (−1)r(d−r)? = (−1)(r−1)r/2I(d)∗C , (4.135)

while in the four dimensional Minkowski case one has an additional minus sign, i.e. ?−1 = (−1)r(d−r)+1?.
With the Hodge star operator as defined in (4.125) the coderivative d† is given in the Riemannian case

as
d†A(r) = (−1)dr+d+1 ? d ? A(r) (4.136)

and in the Minkowski case as
d†A(r) = (−1)dr+d ? d ? A(r). (4.137)

Writing this down in components one directly sees that the coderivative as an operator that maps an r-form
into an (r − 1)-form can be written as

d†A(r) = −d ·A(r). (4.138)

The interior product that maps an r-blade A(r) into an (r − 1)-blade is just the scalar product with a
vector a = aiξi:

ι̇aA
(r) = a ·A(r) =

1
(r − 1)!

ajAji2...ir
ξi2 . . . ξir , (4.139)

so that one has for example

ι̇ξ1
ξ1ξ2 = ξ1 · ξ

1ξ2 = ξ2, ι̇ξ1
ξ2ξ3 = ξ1 · ξ

2ξ3 = 0 and ι̇ξ1
ξ3ξ1 = ξ1 · ξ

3ξ1 = −ξ3. (4.140)

The interior product can be generalized to the case of two multivectors A(r) and B(s):

ι̇A(r)B
(s) = A(r) ·B(s). (4.141)

With this generalized interior product one can for example write the contracted exterior derivative of a
1-form as

ι̇abdω = (a · ∂)(b · ω)− (b · ∂)(a · ω)− ω · [a, b]JLB = (∂iωj)(aibj − ajbi) (4.142)

or in general

ι̇a1a2...ar+1dA
(r) =

r+1∑
n=1

(−1)n+1(an · ∂)
(
a1 . . . ǎn . . .ar+1

)
·A(r)

+
∑
m<n

(−1)m+n
(
[am,an]JLB a1 . . . ǎm . . . ǎn . . .ar+1

)
·A(r). (4.143)

The Lie derivative of a 1-form is defined with the interior product as

ι̇bLaω = La(ι̇bω)− ι̇Labω, (4.144)

so that Cartan’s magic formula follows

Laω = (dι̇a + ι̇ad)ω =
(
ai(∂iωj) + (∂ja

i)ωi

)
ξj . (4.145)
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The exterior derivative can then be written with the Lie derivative as

dω = ξiLξi
ω, (4.146)

which is the generalization of df = ξi∂if , and for the coderivative one has similarly

δω = −ξi ·Lξi
ω. (4.147)

It is easy to see that the Lie derivative of a 1-form fulfills the following relations

[La,Lb]ω = (LaLb −LbLa)ω = L[a,b]JLB
ω, (4.148)

[La, ι̇b]ω = (Laι̇b − ι̇bLa)ω = ι̇[a,b]JLB
ω, (4.149)

dLaω = Ladω. (4.150)

The Lie derivative of an r-form is

LaA
(r) = (dι̇a + ι̇ad)A(r) = D(a ·A(r)) + a · (DA(r)). (4.151)

Up to now only the coordinate basis of the ξi was used, in general it is also possible to use a non-coordinate
basis given by

ϑr = ϑi
rξi and ξi = ϑr

i ϑr, (4.152)

where ϑi
r are functions of the xk, with ϑr

iϑ
j
r = δj

i and gij = ϑr
iϑ

s
jgrs. Analogously the reciprocal non-

coordinate basis ϑr can be expanded with the ϑr
i in the reciprocal coordinate basis of the ξi. A special

choice for the non-coordinate frame fields is obtained by the conditions ϑr · ϑs = ηrs and ∂iϑr = 0. This
means the ϑr span a (pseudo)-euclidian base and they move on the vector-manifold so that

Diϑr = −ϑr · Si. (4.153)

This shows that the shape tensor that in the ϑr-frame has the form Sr = S(ϑr) = ϑi
rSi is proportional to

the Fock-Ivanenko bivector Γi [102], i.e. Si = −2Γi.
For non-coordinate basis vectors the Jacobi-Lie bracket is no longer zero, one rather has

[ϑr,ϑs]JLB = ϑi
r(ξi ·D)(ϑj

sξj)− ϑi
s(ξi ·D)(ϑj

rξj) (4.154)

= ϑi
r

[
(Diϑ

j
s)ξj + ϑj

s(Diξj)
]
− ϑi

s

[
(Diϑ

j
r)ξj + ϑj

r(Diξj)
]

(4.155)

=
[
ϑi

rDiϑ
j
s − ϑi

sDiϑ
j
r

]
ξj (4.156)

=
[
∂rϑ

j
s − ∂sϑ

j
r

]
ϑt

jϑt (4.157)

= Ct
rsϑt, (4.158)

with

Ct
rs = [ϑr,ϑs]JLB · ϑ

t =
[
∂rϑ

j
s − ∂sϑ

j
r

]
ϑt

j . (4.159)

For tangent vector fields a = arϑr and b = bsϑs it follows then that

Lab = [a, b]JLB =
(
ar(∂rb

s)− br(∂ra
s)
)
ϑs + arbs [ϑr,ϑs]JLB , (4.160)

which reduces in a coordinate basis to (4.81).
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In the non-coordinate basis the Γt
rs are given by

Γt
rs = −

[
(ϑr ·D)ϑt

]
· ϑs = −

[
(ϑi

r(ξi ·D)ϑt
kξk
]
· ϑj

sξj (4.161)

= ϑt
jϑ

i
r∂iϑ

j
s + Γk

ijϑ
i
rϑ

t
kϑ

j
s (4.162)

= ϑt
jϑ

i
r∂iϑ

j
s +

1
2
gkl [∂igjl + ∂jgil − ∂lgij ]ϑi

rϑ
t
kϑ

j
s (4.163)

= ϑt
jϑ

i
r∂iϑ

j
s +

1
2
gtu [∂igjl + ∂jgil − ∂lgij ]ϑi

rϑ
l
uϑ

j
s (4.164)

= ϑt
j∂rϑ

j
s +

1
2
gtu
[
∂i(ϑv

jϑ
w
l gvw) + ∂j(ϑv

i ϑ
w
l gvw)− ∂l(ϑv

i ϑ
w
j gvw)

]
ϑi

rϑ
l
uϑ

j
s(4.165)

=
1
2
gtu [∂rgsu + ∂sgru − ∂ugrs] +

1
2
gtu(Curs + Cusr − Csru). (4.166)

In (4.162) one uses
ϑr

i ∂tϑ
i
s = −ϑi

s∂tϑ
r
i , (4.167)

which results from acting with ∂t on ϑr
iϑ

i
s = δr

s , in (4.164) one uses

ϑt
ig

il = ϑt
i(ϑ

i
rϑ

l
sg

rs) = δt
rϑ

l
sg

rs = ϑl
sg

ts (4.168)

and in (4.165) one uses the definition
Crsu = gtuC

t
rs. (4.169)

While in the coordinate base
[
ξi, ξj

]
JLB

= 0 insured that the Γk
ij are symmetric in the lower indices,

one has with (4.162) and (4.159) in the non-coordinate basis the relation

Γt
rs − Γt

sr = Ct
rs, (4.170)

which implies that the non-coordinate 1-forms ϑr are not closed:

dϑr = ξjDj(ϑr
i ξ

i) =
1
2
(∂iϑ

r
j − ∂jϑ

r
i )ξ

iξj (4.171)

=
1
2
(
ϑs

i (ϑs · ∂)ϑr
j − ϑs

j(ϑs · ∂)ϑr
i

)
ϑi

tϑ
j
uϑtϑu (4.172)

=
1
2

(
ϑi

u(ϑt · ∂)ϑr
i − ϑj

t (ϑu · ∂)ϑr
j

)
ϑtϑu (4.173)

= −1
2

(
ϑr

i (ϑt · ∂)ϑi
u − ϑr

j(ϑu · ∂)ϑj
t

)
ϑtϑu (4.174)

= −1
2
Cr

tuϑtϑu, (4.175)

which is the Maurer-Cartan equation, that with (4.170) can also be written as dϑr = −Γr
stϑ

sϑt. The
exterior derivative of a general non-coordinate 1-form α = αrϑ

r is

dα = (Dαr)ϑr + αrDϑr = (∂rαs − αtΓt
rs)ϑ

rϑs, (4.176)

which should be compared with (4.116), and for the exterior derivative of a general r-form in the non-
coordinate basis A(r) = 1

r!As1...sr
ϑs1 . . .ϑsr one obtains

dA(r) =
(−1)r

(r + 1)!

(
∂[sr+1A s1...sr] − Γt

[sr+1sk
A s1...sk−1tsk+1...sr]

)
ϑs1ϑs2 . . .ϑsr+1 , (4.177)

where the square brackets antisymmetrize the lower indices.
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4.4 Tensor Calculus

The formalism developed so far can then in a straightforward fashion be extended to tensor calculus. A
tensor is a multilinear map of r vectors and s one-forms into the real numbers, and can be written as

T = T i1...is
j1...jr

ξi1 ⊗ · · · ⊗ ξis
⊗ ξj1 ⊗ · · · ⊗ ξjr . (4.178)

The components of the tensor can be obtained as

T i1...is
j1...jr

= T(ξi1 , . . . , ξis , ξj1 , . . . , ξjr
) = ι̇ξi1⊗···⊗ξjr

T = (ξi1 ⊗ · · · ⊗ ξjr
) · T. (4.179)

A change of the base according to

ξi′ = ξi
i′ξi and ξj′ = ξj′

j ξj , (4.180)

where ξi
i′ and ξj′

j are functions with ξi
i′ξ

j′

i = δj′

i′ and

ξi
i′ =

∂ξi′

∂ξi

=
∂ξi

∂ξi′
and ξj′

j =
∂ξj′

∂ξj
=

∂ξj

∂ξj′
(4.181)

leads to a change of the tensor components according to

T = T
i′1...i′s
j′1...j′r

ξi′1
⊗ · · · ⊗ ξi′s

⊗ ξj′1 ⊗ · · · ⊗ ξj′r

= T
i′1...i′s
j′1...j′r

∂ξi1

∂ξi′1
· · · ∂ξis

∂ξi′s

∂ξj′1

∂ξj1
· · · ∂ξj′r

∂ξjr
ξi1 ⊗ · · · ⊗ ξis

⊗ ξj1 ⊗ · · · ⊗ ξjr . (4.182)

It is clear that the special case of a totally anti-symmetric tensor that maps r vectors into a scalar is a
r-form, i.e. it has the form

A = Ai1,...,ir
ξi1 ∧ . . . ∧ ξir = Ai1,...,ir

ξi1 . . . ξir . (4.183)

The covariant derivative and the Lie derivative of a tensor can be obtained by acting on the components
and the basis vectors of the tensor. As an example one can consider the metric tensor

g = gijξ
i ⊗ ξj = gijdx

i ⊗ dxj , (4.184)

that maps two vectors a = aiξi and b = biξi into a scalar according to

g(a, b) = ι̇a⊗bg = (akξk ⊗ blξl) · (gijξ
i ⊗ ξj) = gija

ibj . (4.185)

The covariant derivative of g is then

Dkg = (Dkgij)ξi ⊗ ξj + gij(Dkξi)⊗ ξj + gijξ
i ⊗ (Dkξj) (4.186)

= (∂kgij − Γl
kiglj − Γl

kjgil)ξi ⊗ ξj , (4.187)

so that the condition (4.78) can be written as (Dkg)ij = 0. The Lie derivative of the metric tensor is

Lag = (Lagij)ξi ⊗ ξj + gij(Laξi)⊗ ξj + gijξ
i ⊗ (Laξj) (4.188)

=
(
ak∂kgij + gkj(∂ia

k) + gik(∂ja
k)
)
ξi ⊗ ξj (4.189)

=
(
ak(∂kgij − ∂igjk − ∂jgik) + ∂iaj + ∂jai

)
ξi ⊗ ξj (4.190)

= (∂iaj − Γk
ijak + ∂jai − Γk

jiak)ξi ⊗ ξj . (4.191)
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If the metric tensor does not change in the direction of the vector field a, i.e.

(Lag)ij = ai;j − aj;i = 0, (4.192)

with ai;j = ∂jai − Γk
jiak, then a generates an isometry and is a killing vector.

The above tensor concept can be generalized in several ways. For example one can consider a function
that maps r contravariant and s covariant blades of arbitrary grade into a scalar, i.e. tensors of the form

T = T i1...ir
j1...js

A
(r1)
i1

⊗ · · · ⊗A
(rr)
ir

⊗Bj1
(s1)

⊗ · · · ⊗Bjs

(ss). (4.193)

The other possibility is to consider multivector valued tensors. In this case a tensor maps a number of
(multi)vectors into a multivector. The above notation runs into difficulties if one generalizes tensors in this
way. So the tensor concept is founded in geometric algebra on a linear map F(a) that maps a vector a
into another vector, that in general does not have to lie in the same space as a. The linear map F is then
generalized to multivectors by the rule

F(ab) = F(a)F(b), (4.194)
so that it is grade preserving, i.e. F(A(r)) = 〈F(A(r))〉r. The adjoint map F† is defined by

a · F†(b) = F(a) · b, (4.195)

with (F†)†(a) = F(a) and (FG)†(a) = G†F†(a). It is easy to see that the definition (4.195) of the adjoint
map generalizes to bivectors as B1 · F(B2) = F†(B1) · B2 and to multivectors as

〈A ∗C F†(B)〉0 = 〈F(A) ∗C B〉0. (4.196)

The determinant of F is defined as
F(I(d)) = det(F)I(d), (4.197)

where a short calculation shows that det(FG)I(d) = det(G) det(F)I(d) and det(F†) = det(F). Having defined
the determinant it is then possible to calculate the inverse F−1 of F. To this purpose one notices that from
(4.197) it follows that

det(F)I(d) ∗C B = F(I(d)) ∗C B = F(I(d) ∗C F†(B)), (4.198)
where one uses in the last step

F(A(r) · F†(B(s))) = F(A(r)) ·B(s) for r ≥ s. (4.199)

Setting now A = I(d) ∗C B one obtains

det(F)A = F
(
I(d) ∗C F†(I−1∗C

(d) ∗C A)
)

(4.200)

⇒ F−1(A) =
1

det(F)
I(d) ∗C F†(I−1∗C

(d) ∗C A). (4.201)

The components of the tensor F in a ξi-base are obtained as

Fij = ξi · F(ξj) and Fij = ξi · F(ξj) (4.202)

and the components of the adjoint tensor are found by transposition:

F†ij = F†(ξj) · ξi = ξj · F(ξi) = Fji. (4.203)

The coefficients of F(a) are ξi · F(a) = Fija
j , which is the product of a matrix and a vector. Similarly one

obtains the product of two matrices with (4.195) as

(FG)ij = FG(ξj) · ξi = G(ξj) · F†(ξi) = G(ξj) ·
(
ξk(ξk · F†(ξi))

)
= G(ξj) · ξkF† k

i = F k
i Gkj . (4.204)

Furthermore if one changes the basis according to ϑr = ϑi
rξi the coefficients transform according to

Frs = ϑr · F(ϑs) = ϑi
rξi · F(ϑj

sξj) = ϑi
rϑ

j
sFij , (4.205)

which is just the transformation property in (4.182).
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4.5 Curvature and Torsion

Curvature can be described if one transports a vector around a closed path and measures the difference of
the initial and the transported vector. The path can be thought of as spanned by two tangent vectors a and
b and closes by [a, b]JLB . One can then act with a curvature operator on a tangent vector c = crϑr:

[(a ·D)(b ·D)− (b ·D)(a ·D)− [a, b]JLB ·D] c

= arbsct (DrDs −DsDr − Cu
rsDu)ϑt = arbsctRu

rstϑu, (4.206)

with

Ru
rst =

[(
DrDs −DsDr − [ϑr,ϑs]JLB ·D

)
ϑt

]
· ϑu (4.207)

= [Dr(Γw
stϑw)−Ds(Γw

rtϑw)− Cw
rs(Dwϑt)] · ϑu (4.208)

= ∂rΓu
st − ∂sΓu

rt + Γu
rwΓw

st − Γu
swΓw

rt + Γw
rsΓ

u
wt − Γw

srΓ
u
wt, (4.209)

which in the case of a coordinate basis reduces to

Rl
ijk =

[(
DiDj −DjDi

)
ξk

]
· ξl = ∂iΓl

jk − ∂jΓl
ik + Γl

imΓm
jk − Γl

jmΓm
ik. (4.210)

Since the curvature operator maps three vectors into a fourth one it can also be written as a tensor

R = Ru
rstϑu ⊗ ϑr ⊗ ϑs ⊗ ϑt. (4.211)

In general the curvature operator can act on a multivector A which with (4.89) can be written as[
(a ·D)(b ·D)− (b ·D)(a ·D)−

[
a, b

]
JLB

·D
]
A

=
[
(a · ∂)S(b)− (b · ∂)S(a) + S(a)× S(b)− S([a, b]JLB)

]
×A = R(ab)×A, (4.212)

which reduces to
[(a ·D)(b ·D)− (b ·D)(a ·D)− [a, b]JLB ·D] c = R(ab) · c (4.213)

acting on a vector. The bivector-valued function of a bivector

R(ab) = (a · ∂)S(b)− (b · ∂)S(a) + S(a)× S(b)− S([a, b]JLB) (4.214)

fulfills the Ricci and Bianchi identities

a · R(bc) + b · R(ca) + c · R(ab) = 0 (4.215)
and (a ·D)R(bc) + (b ·D)R(ca) + (c ·D)R(ab) = 0. (4.216)

Comparing (4.206) with (4.213) shows that the curvature may be described by a bivector-valued function
of a bivector according to

arbsctRu
rstϑu = R(ab) · c. (4.217)

But it is also possible to describe it by a scalar-valued function of a bivector, i.e. a 2-form Ru
t (ab) = ι̇abR

u
t

according to
arbsctRu

rstϑu = ctRu
t (ab)ϑu. (4.218)

It is now easy to see from this definition and (4.209) that the curvature 2-form Ru
t is

Ru
t =

(
∂vΓu

wt + Γu
rtΓ

r
wv + Γu

vrΓ
r
wt

)
ϑvϑw, (4.219)
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which also can be expressed in another way. To this purpose one notices that the exterior derivative of ϑr

is a vector-valued 1-form:
dϑr = ϑsDsϑr = Γt

srϑ
sϑt = ωt

rϑt, (4.220)

where ωt
r = Γt

srϑ
s. With ωt

r the curvature 2-form (4.219) can also be written as

Ru
t = dωu

t + ωu
r ωr

t , (4.221)

which is the first Cartan structure equation. Exterior differentiation of (4.221) gives the Bianchi identity for
the curvature 2-form:

dRr
s + ωr

tR
t
s −Rr

t ω
t
s = 0. (4.222)

It is possible that the path spanned by two tangent vectors a and b is not closed by [a, b]JLB . This is
measured by the torsion

(a ·D)b− (b ·D)a− [a, b]JLB = arbsT t
rsϑt (4.223)

with
T t

rs =
[
Drϑs −Dsϑr − [ϑr,ϑs]JLB

]
· ϑt = Γt

rs − Γt
sr − Ct

rs, (4.224)

which reduces in a coordinate basis to T k
ij = Γk

ij − Γk
ji. This means that for non-vanishing torsion the Γk

ij

are no longer symmetric in the lower indices so that ddxi is no longer zero and the exterior differential of
an r-form is given by

dA(r) = DA(r) =
1
r!

(
∂Ai1i2...ir

∂xj

)
DxjDxi1Dxi2 . . .Dxir

+
1
r!
Ai1i2...ir

[
DDxi1Dxi2 . . .Dxir −Dxi1DDxi2Dxi3 . . .Dxir

+ . . .+ (−1)r−1Dxi1Dxi2 . . .DDxir
]
. (4.225)

The torsion maps two vectors into a third one and so can also be written as a tensor

T = T t
rsϑt ⊗ ϑr ⊗ ϑs. (4.226)

The other possibility is to describe the torsion with a scalar-valued function of a bivector, i.e. a 2-form
T t(ab) = ι̇abT

t according to
arbsT t

rsϑt = T t(ab)ϑt. (4.227)

It is then easy to see with (4.224) that the torsion 2-form can be written as

T t =
(

Γt
rs −

1
2
Ct

sr

)
ϑrϑs. (4.228)

With the Cartan 1-form ωt
r this can also be written as

T t = dϑt + ωt
rϑ

r, (4.229)

which is the second Cartan structure equation, and applying the exterior differentiation on both sides of
(4.229) gives the second Bianchi-identity

dT t + ωt
rT

r = Rt
rϑ

r. (4.230)
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4.6 Rotor Groups and Bivector Algebras

Following [34] it is now straightforward to translate the theory of Lie groups and Lie algebras into a superan-
alytic language. Starting point is the fact that an orthogonal transformation can be decomposed into several
reflections. A reflection of a vector x at a plane with normal unit-vector u can be written as −u∗C x∗C u−1∗C .
The u form under the Clifford star product the group Pin(p, q) if one has a metric with (p, q)-signature.
An element U ∈ Pin(p, q) is a multivector with U ∗C U = ±1. The multivectors of even Grassmann grade
are closed under the Clifford star product and form the subgroup Spin(p, q), which is a double covering of
SO(p, q). An element S ∈ Spin(p, q) fulfills S ∗C S = ±1 and a transformation S ∗C x ∗C S

−1∗C gives again
a vector-valued result. The elements R ∈ Spin(p, q) with R ∗C R = +1 are called rotors and form the rotor
group Spin+(p, q), which in the euclidian case is equal to the spin-group. For a rotor one has R−1∗C = R,
so that a multivector A transforms as R ∗C A ∗C R.

A rotor can be written as a starexponential of a bivector. This can be seen if one considers a path R(t)
in the rotor group manifold. Differentiating x(t) = R(t) ∗C x0 ∗C R(t) one obtains

d

dt
x(t) = Ṙ(t) ∗C x0 ∗C R(t) +R(t) ∗C x0 ∗C Ṙ(t) (4.231)

= Ṙ(t) ∗C R(t) ∗C x(t)− x(t) ∗C Ṙ(t) ∗C R(t), (4.232)

where one uses
Ṙ(t) ∗C R(t) +R(t) ∗C Ṙ(t) = 0, (4.233)

which follows from differentiating R(t) ∗C R(t) = 1. Since the left hand side of (4.231) is vector-valued the
right hand side Ṙ(t) ∗C R(t) ∗C x(t)− x(t) ∗C Ṙ(t) ∗C R(t) has to be vector-valued too, so that Ṙ(t) ∗C R(t)
has to be a bivector 1

2B(t). With this bivector (4.233) can be written as a defining equation for the rotor,
i.e.

Ṙ(t) = −R(t) ∗C Ṙ(t) ∗C R(t) =
1
2
B(t) ∗C R(t). (4.234)

It is now easy to see that the bivector B is independent of t. This is because one has on the one hand

d

dt
R(t+ u) =

1
2
B(t+ u) ∗C R(t+ u) (4.235)

and on the other hand

d

dt

(
R(t) ∗C R(u)

)
=

1
2
B(t) ∗C R(t) ∗C R(u) =

1
2
B(t) ∗C R(t+ u), (4.236)

so that B(t+ u) = B(t) is actually independent of t and (4.234) can be integrated to

R(t) = e
t
2 B
∗C . (4.237)

This result is only true in the euclidian case where the rotor group manifold is connected. In general a rotor
can be written as

R(t) = ±e
t
2 B
∗C . (4.238)

On the other hand it is also easy to show that the transformation with the above constructed rotor
conserves the vector-grade, i.e.

x(t) = e
t
2 B
∗C ∗C x0 ∗C e

− t
2 B

∗C (4.239)

is vector-valued. If one considers the derivatives of x(t):

d

dt
x(t) = e

t
2 B
∗C ∗C (B · x0) ∗C e

− t
2 B

∗C , (4.240)

d2

dt2
x(t) = e

t
2 B
∗C ∗C

(
B · (B · x0)

)
∗C e

− t
2 B

∗C (4.241)
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and so on, x(t) can be written as

x(t) = x0 + t(B · x0) +
1
2!
t2
(
B · (B · x0)

)
+ · · · , (4.242)

which is vector-valued.
As a simple example one can consider the rotation in a two dimensional vector space with vectors

x = x1σ1 + x2σ2. The bivector B = σ1σ2 generates the rotation given by

x′ = R(t) ∗C x ∗C R(t) = e
t
2 B
∗C ∗C x ∗C e

− t
2 B

∗C = (x1 cos t+ x2 sin t)σ1 + (x2 cos t− x1 sin t)σ2. (4.243)

This means that the bivector σ1σ2 generates a right rotation, i.e. a rotation in the mathematically negative
direction, whereas the bivector σ2σ1 = −σ1σ2 generates a left rotation, i.e. a rotation in the mathematically
positive direction.

The bivector basis Bi of a rotor constitutes an algebra under the commutator product

Bi × Bj = Ck
ijBk, (4.244)

where the Ck
ij are the structure constants (note that one has here an additional factor 1

2 due to the definition
of the commutator product). Furthermore one can directly calculate

κij = Bi · Bj , (4.245)

which is (proportional to) the Killing metric. Note that here no detour over the adjoint matrix representation
of the algebra elements has to be made to define the Killing metric. As an example one can consider the
group SO(3). Given a three dimensional euclidian space with basis vectors σi the rotor is given by

R = R0 +R1σ2σ3 +R2σ3σ1 +R3σ1σ2, (4.246)

with R ∗C R = R2
0 +R2

1 +R2
2 +R2

3 = 1, so that the rotor can also be parametrized with three parameters α,
θ and ϕ as1:

R(α, θ, ϕ) = cosα cos θ + sinα cosϕσ2σ3 + sinα sinϕσ3σ1 + cosα sin θσ1σ2. (4.247)

The three basis bivectors B1 = σ2σ3, B2 = σ3σ1 and B3 = σ1σ2 fulfill

Bi × Bj = −εijkBk and κij = Bi · Bj = −δij . (4.248)

It is easy to see that the group vector manifold, which for SO(3) is an S3 embedded in a four dimensional
euclidian space with basis vectors τ a, can be read off from (4.247) as

rR(α, θ, ϕ) = cosα cos θ τ 1 + sinα cosϕ τ 2 + sinα sinϕ τ 3 + cosα sin θ τ 4. (4.249)

On this group vector manifold one can apply the formalism described in the last section and calculate the
coordinate basis ξ1 = ∂αrR, ξ2 = ∂θrR, ξ3 = ∂ϕrR and the coordinate metric gij = ξi · ξj .

The rotors act on themselves by left- and right-translation. A left-translation with a rotor R′ is given by
`R′R = R′ ∗C R and on the group vector manifold by `R′rR = rR′∗CR. The left-translation induces a map
TR`R′ between the tangent spaces at rR and rR′∗CR. A vector field a(rR) on the group vector manifold is

1In general R ∗C R is not as in the above case a scalar but a multivector, so that R ∗C R = 1 gives not one but several
conditions on the Ri. This insures that the degrees of freedom in the even multivector R correspond to the number of linear
independent bivectors, which constitute the group algebra.
Note further that the parametrization in α, θ and ϕ is much easier than the parametrization in ti that follows if one rewrites

with the Baker-Campbell-Hausdorff formula the rotor R = e
1
2 (t1σ1σ2+t2σ3σ1+t3σ2σ3)
∗C

in the from of (4.246).
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left-invariant if TR`R′a(rR) = a(rR′∗CR). Left-invariant vector fields on the group vector manifold can be
obtained if one considers the multivector fields on the rotors given by Bleft

i (R) = R ∗C Bi. For two rotors R
and R′ one has

Bleft
i (R′ ∗C R) = R′ ∗C B

left
i (R). (4.250)

Just as to each rotor R in the σa-space corresponds a vector rR in the τ a-space there is also for each
multivector field Bleft

i (R) in the σa-space a left invariant vector field ϑBleft
i (R)(rR) ≡ ϑi in the τ a-space.

These vector fields are closed under the Jacobi-Lie-bracket, i.e. they form a Lie subalgebra of all vector fields
on rR and they form a non-coordinate basis on rR. For the SO(3)-case one has for example

ϑBleft
i (R) · ϑBleft

j (R) = δij and
[
ϑBleft

i (R),ϑBleft
j (R)

]
JLB

= εijkϑBleft
k (R). (4.251)

The multivector fields Bleft
i (R) are uniquely defined by the bivectors at R = 1 and the corresponding left-

invariant vector fields are uniquely defined by their value in rR=1. In the SO(3)-example the tangent space
at rR=1(0, 0, 0) = τ 1 is spanned by the vectors ϑBi

= τ i+1 and constitutes the so(3) algebra in the τ a-space,
where the commutator product in the bivector algebra corresponds here in the so(3)-case to the vector cross
product on the ϑBi-space, i.e. one has an algebra anti-homomorphism between the algebra of left-invariant
vector fields and the bivector algebra2

ϑBi×Bj
= −ϑBi

× ϑBj
. (4.252)

To each basis-bivector Bi of the bivector algebra a two form Θi can be found so that ι̇BiΘ
j = Bi ·Θj = δj

i

and to the two-forms Θi correspond then in the τ a-space one forms ϑΘi

≡ ϑi that generalize to reciprocal
non-coordinate basis vector fields on rR, which clearly obey the Maurer-Cartan equation (4.175). For a
r-form A(r) on the group vector manifold that is vector-valued in the σa-space one can then in analogy to
(4.143) define the BRST-operator s as

(
ϑ1ϑ2 . . .ϑr+1

)
· sA(r) =

r+1∑
n=1

(−1)n+1Bn ·
((

ϑ1 . . . ϑ̌n . . .ϑr+1

)
·A(r)

)
+
∑
m<n

(−1)m+n
(
[ϑm,ϑn]JLB ϑ1 . . . ϑ̌m . . . ϑ̌n . . .ϑr+1

)
·A(r). (4.253)

Note that the first scalar product on the right hand side is the scalar product in the σa-space and the second
scalar product is the scalar product in the τ a-space. The s-operator has then the form (see for example [5]
and the references therein):

s = ϑiBi +
1
2
Ck

ijϑ
jϑi ∂

∂ϑk
. (4.254)

Combining a left-translation with R′ and a right-translation with R′ gives R′ ∗CR∗CR′, which is an inner
automorphism on the rotors. The derivative at the identity is the adjoint representation, i.e. the adjoint
action of the rotor group on the bivector algebra is given by [34]

AdRB = R ∗C B ∗C R, (4.255)

where B = biBi is a general element of the bivector algebra, to which corresponds a vector b = biϑBi in the
ϑBi

-space. AdR is a bivector algebra homomorphism, i.e.

AdR(A× B) = AdRA×AdRB (4.256)

2For an arbitrary algebra one can analogously define a generalized vector cross product with the structure constants Ck
ij

instead of εk
ij .
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and a left action, i.e.
AdR∗CR′ = AdRAdR′ . (4.257)

For all elements R of the rotor group the adjoint action (4.255) constitutes the adjoint bivector orbit of B,
to which in the ϑBi-space corresponds an orbit vector manifold. In the SO(3)-case the adjoint action (4.255)
leaves |B|2 =

∑3
i=1(b

i)2 = |b|2 invariant, so that the adjoint orbit vector manifold is an S2.

Let now A be an element of the bivector algebra and consider the rotor R(t) = e
t
2 A
∗C . The adjoint action

of this one-parameter rotor subgroup gives a curve in the bivector orbit and the derivative at t = 0 is

adAB =
d

dt

∣∣∣∣
t=0

R(t) ∗C B ∗C R(t) = A× B. (4.258)

In the ϑBi
-space the vector ϑA×B is the tangent vector in direction ϑA to the orbit vector manifold in the

point ϑB, i.e. ϑA×B generates the adjoint action corresponding to A. It is also possible to define the coadjoint
action Ad∗R of the rotor group on a two form Θ by

B ·Ad∗RΘ = AdRB ·Θ, (4.259)

which is the right action Ad∗RΘ = R ∗C Θ ∗C R. The coadjoint left action is given by Ad∗
R
Θ. Infinitesimally

one has B · ad∗AΘ = adAB ·Θ, or ad∗AΘ = Θ× A. In the SO(3)-case the rotor acts on an euclidian space where
the basis vectors and the reciprocal basis vectors are actually the same, so that Bi = Θi and there is no
difference between the adjoint and the coadjoint action.

In the above discussion the rotor R acts intrinsically from the left on a vector space. But more generally
a rotor in an ambient space can also act from the left on a vector manifold x(xi) by x′ = R ∗C x ∗C R if x′ is
again a point in the vector manifold. The left-action of the rotor R(t) = e

t
2 B
∗C induces on the vector manifold

x(xi) the vector field3

d

dt

∣∣∣∣
t=0

R(t) ∗C x ∗C R(t) = B · x. (4.260)

If on the other hand a tangent vector field a(x) on the vector manifold is given that can be expressed as
a(x) = B · x, for a constant bivector B in the ambient space, then the flow x(t) generated by a(x) is due
to a rotor action. Furthermore one has an algebra anti-homomorphism between the bivector algebra in the
ambient space and the induced vector fields on the vector manifold, given by

[A · x, B · x]JLB = −(A× B) · x. (4.261)

This relation can be proved by direct calculation. For bivectors A = Abcσbσc and B = Befσeσf in the
ambient space spanned by the basis vectors σa the right hand side of (4.261) gives:

(A× B) · x = xaAbcBef (ηceσbσf + ηbfσcσe − ηcfσbσe − ηbeσcσf ) · σa

= 4xaAbcBefηaeηbfσc − 4xaAbcBefηabηecσf . (4.262)

The vector field induced by the bivector A can be expanded in the coordinate basis on the vector manifold,
i.e.:

A · x = 2xbA
cbσc = aiξi = aiξc

i σc, (4.263)

so that the corresponding coefficients are ai = 2xbA
cbξi

c and similarly for the vector field induced by the

3The corresponding right-action x′ = R(t) ∗C x ∗C R(t) induces the vector field −B · x = x · B.
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bivector B one has the coefficients bi = 2xeB
feξi

f . The left hand side of (4.261) gives then

[A · x, B · x]JLB =
(
2xbA

cbξi
c∂i(2xeB

feξj
f )− 2xeB

feξi
f∂i(2xbA

cbξj
c)
)
ξa
j σa (4.264)

= 4AbcBef
(
xbηehξ

i
c∂i(xhξj

f )− xeηbhξ
i
f∂i(xhξj

c)
)
ξa
j σa (4.265)

= 4AbcBef
(
xbηecδ

a
f + xbxeΓa

cf − xeηbfδ
a
c − xbxeΓa

fc

)
σa (4.266)

= 4xaAbcBefηabηefσf − 4xaAbcBefηaeηbfσc (4.267)

which is up to a sign the same result as the right hand side (4.262).
The rotor in the ambient space acts not only on the vectors x of the vector manifold, but in the same way

also on tangent vectors a at the manifold which are vectors in the ambient space too. The transformation
of x and a in the ambient space of the vector manifold induce a transformation in the tangent bundle. The
tangent bundle manifold can be seen as a 2d-dimensional vector manifold in a (2d+ 2)-dimensional ambient
space with basis vectors σa and τ a, i.e. as

(x + a)(xi, ai) = xa(xi)σa + ajξa
j (xi)τ a. (4.268)

Analogously one can define multivector bundles, for example a bivector bundle manifold has the form

(x + B)(xi, Bjk) = xa(xi)σa +Bjkξa
j (xi)ξb

k(xi)τ aτ b. (4.269)

The tangential lift of the rotor action is given by R ∗C x ∗C R + R ∗C a ∗C R, where the rotor acts on the
τ a-space in the same way as on the σa-space. In the case of a flat vector manifold the tangent bundle is just
a 2d-dimensional vector space and the rotor acts separately and intrinsically on both subspaces. Instead of
two rotors that act separately on the σa and τ a spaces one can consider also a lifted rotor with a bivector
Blifted that is the sum of the two single bivectors, so that one can write Rlifted ∗C (x + a) ∗C Rlifted. If one
describes the tangent vector in a reciprocal ambient space, i.e. as a one-form α the cotangent bundle has
the form

(x + α)(xi, αi) = xa(xi)σa + αiξ
i
a(xi)τ a (4.270)

and the corresponding cotangent lift is given by R ∗C x ∗C R+R ∗C α ∗C R or Rlifted ∗C (x + α) ∗C Rlifted.
In order to construct unitary transformations [36] one can consider a 2d-dimensional space with basis

vectors αi and βi for i = 1, . . . , d. The two subspaces spanned by αi and βi should have the same metric,
i.e. αi ·αj = βi · βj and αi · βj = 0. On this space one can define the bivector

J =
d∑

i=1

αiβi =
d∑

i=1

Ji, (4.271)

which connects the two subspaces according to

αi · J = βi and βi · J = −αi, (4.272)

so that one has
(αi · J) · J = −αi and (βi · J) · J = −βi (4.273)

or in general for a vector x = aiαi + biβi one has (x · J) · J = −x. The 2n-dimensional vector x corresponds
to an n-dimensional complex vector with components

xk = x ·αk + ix · βk = ak + i bk. (4.274)

The complex internal product can then be written as

〈x|y〉 = xkyk = (x ·αk + ix · βk)(y ·αk − iy · βk) = x · y + i(xy) · J. (4.275)
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A unitary transformation generated by the rotor R leaves the above complex product invariant, i.e. 〈x|y〉 =
〈R ∗C x ∗C R|R ∗C y ∗C R〉. This means that on the one hand the scalar product x · y has to be invariant
and on the other hand the more restrictive condition that

(xy) · J =
(
(R ∗C x ∗C R)(R ∗C y ∗C R)

)
· J = (xy) · (R ∗C J ∗C R), (4.276)

which means that J = R ∗C J ∗C R is the defining relation for the unitary rotor and with the ansatz R = e
B/2
∗C

one obtains the defining relation for the bivector B

B× J = 0. (4.277)

A bivector that fulfills this equation can easily be found if one considers that(
(x · J)(y · J)

)
× J = −(xy)× J, (4.278)

so that B has the form
B = xy + (x · J)(y · J). (4.279)

Putting in this formula the basis vectors for x and y one obtains the d2 basis bivectors of the u(d)-algebra:

Eij = αiαj + βiβj , Fij = αiβj − βiαj and Ji = αiβi (4.280)

for i < j = 1, . . . , d. It is easy to show that these basis bivectors form a closed algebra under the commutator
product. The bivector J is part of the u(d)-algebra, if one excludes this generator of a global phase one obtains
the su(d)-algebra. For example the bivector basis of su(2) is given by

B1 = α1α2 + β1β2, B2 = α1β2 − β1α2 and B3 = α1β1 −α2β2 (4.281)

and it is easy to see that these bivectors fulfill the same commutator-product algebra as the so(3) basis
bivectors.

In order to describe Gl(n) one proceeds similarly to the unitary case. One considers a 2n-dimensional
space spanned by the basis vectors αi and βi for i = 1, . . . , n, but now the sign of the metric in the spaces
spanned by αi and βi is opposite, i.e. the Clifford star product is given by

∗C = exp

[
ηij

~

∂

∂αi

~∂

∂αj
− ηij

~

∂

∂βi

~∂

∂βj

]
, (4.282)

so that αi ·αj = ηij , βi · βj = −ηij and αi · βj = 0. On this space one defines

K = αiβ
i, (4.283)

which relates the two subspaces according to

αi · K = −βi and βi · K = −αi, (4.284)

or in general for a vector x = aiαi + biβi one has (x · K) · K = x. While J generates a complex structure, K
generates a 0-structure, i.e. one can decompose a vector x according to

x =
1
2
(
x + x · K

)
+

1
2
(
x− x · K

)
= x+ + x−, (4.285)

so that x+ · x+ = x− · x− = 0. One has then two subspaces V+ and V− that are defined by

x+ · K = x+ and x− · K = x−. (4.286)
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A Gl(n)-transformation now transforms a vector in V+ into another vector in V+, i.e.

(R ∗C x+ ∗C R) · K = R ∗C x+ ∗C R, (4.287)

which can be written as
x+ = x+ · (R ∗C K ∗C R) (4.288)

or K = R ∗C K ∗C R. With the same argumentation as above one can see that a bivector generator must have
the form

B = xy − (x · K)(y · K), (4.289)

note the different sign compared with (4.279). The n2 basis bivectors of gl(n) are then

Eij = αiαj − βiβj , Fij = αiβj − βiαj and Ki = αiβi (4.290)

for i < j = 1, . . . , n. It is here also easy to show that these bivectors form a closed algebra under the
commutator product. Note that the doubling of the dimension is here necessary to have sufficient degrees
of freedoms for the bivector algebra. In the case of an orthogonal group this is not necessary, so that the
generating bivectors live directly in the space on which the transformation acts.

What is actually happening in the Gl(n)-case is that one performs a transformation of the variables of
the vector x = aiαi + biβi into variables qi, pi, ηi and ρi according to

x+ =
1
2
(
x + x · K

)
=

1
2
(ai − bi)(αi − βi) ≡ qiηi (4.291)

x− =
1
2
(
x− x · K

)
=

1
2
(ai + bi)(αi + βi) ≡ piρi. (4.292)

It is then straightforward to transform the star product (4.282) and the generators (4.290) into these new
variables. For the star product one obtains

∗C = exp

[
ηij

2

( ~

∂

∂ηi

~∂

∂ρj

+

~

∂

∂ρi

~∂

∂ηj

)]
, (4.293)

which is a fermionic version of the Moyal product

∗M = exp

[
i~
2
ηij

( ~

∂

∂qi

~∂

∂pj
−

~

∂

∂pi

~∂

∂qj

)]
. (4.294)

This suggests that the vector x = qiηi + piρi can not only be transformed with a fermionic star exponential
as described above, but can also be transformed in the bosonic coefficients with a bosonic star exponential
according to [3]

e
αijMij

∗M ∗M qk ∗M e
−αijMij

∗M = qk + αij

[
M ij , qk

]
∗M

+
1
2!
αijαlm

[
M lm,

[
M ij , qk

]
∗M

]
∗M

+ . . . , (4.295)

where [f, g]∗M
= f ∗M g − g ∗M f is the star-commutator. In analogy to the fermionic case one can now

demand that for a Gl(n) transformation the qk have to be a linear combination of the qi alone and no terms
in pi should appear. This means that

[
M ij , qk

]
∗M

must be a function of the qi alone. This is achieved if one
chooses the bosonic generators

Eij = qipj + qjpi, F ij = qipj − qjpi, and Ki = qipi, (4.296)

which form a closed algebra under the Moyal star-commutator.
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4.7 Spinors

It is now also possible to describe spinors in the language of geometric algebra [55]. To this purpose one
notices that multivectors of even grade play a special role in the Clifford algebra C`p,q because they form
the subalgebra C`+p,q, which is isomorphic to a geometric algebra of smaller dimension:

C`+p,q ' C`q,p−1 ' C`p,q−1. (4.297)

As shown in the discussion of the complex numbers to each d = (p + q)-dimensional vector x corresponds
an element of the even subalgebra, which is called a paravector and can be obtained according to

x = x ∗C u, (4.298)

where u is a unit vector. While x as a grade-one quantity is invariant under the involution x = x, the
paravector is invariant under the hermitian conjugate

x† ≡ u ∗C x ∗C u = u ∗C u ∗C x ∗C u = x ∗C u = x. (4.299)

The transformation under a passive rotation is given for a vector by

x′ = R ∗C x ∗C R, (4.300)

where R = e
Bϕ/2
∗C is an element of the group Spin+(p, q). The paravector transforms oppsitely to (4.300) as

x′ = R ∗C x ∗C R
† = R ∗C x ∗C R ∗C u = x′ ∗C u. (4.301)

Besides the vectors and paravectors that transform as in (4.300) and (4.301) there are also multivectors
ψ called spinors that transform according to

ψ′ = R ∗C ψ. (4.302)

In the vector case the product x ∗C x = |x|2 is invariant under rotation, in the paravector case the product
x ∗C x = |x|2 and in the spinor case the product

ψ′ ∗C ψ
′ = ψ ∗C R ∗C R ∗C ψ = ψ ∗C ψ. (4.303)

The spinor ψ can obviously be represented by the even multivectors of C`+p,q.
In two euclidian dimensions the relation of vectors, paravectors and spinors simplify due to the fact that

in two dimensions a vector transforms as

x′ = Rϕ/2 ∗C x ∗C Rϕ/2 = Rϕ ∗C x. (4.304)

A paravector transforms then according to

x′ = Rϕ/2 ∗C x ∗C R
†
ϕ/2 = Rϕ/2 ∗C x ∗C Rϕ/2 ∗C u = Rϕ ∗C x ∗C u = Rϕ ∗C x , (4.305)

i.e. in two dimensions the paravectors as even multivectors of maximal grade two and spinors as general even
multivectors are the same and they both correspond to complex numbers as discussed above. Furthermore
the hermitian conjugate and the involution are the same in two dimensions, for example if u = σ2 one has
for an even multivector U in two dimensions

U† = σ2 ∗C U ∗C σ2 = σ2 ∗C (U1 + U2σ1σ2) ∗C σ2 = U1 + U2σ2σ1 = U. (4.306)

In three euclidian dimensions the relation (4.304) is no longer valid, so that here paravectors and spinors
have a different transformation behavior and so cannot be identified. But in three dimensions the maximal

96



even grade is two, so that here paravectors and spinors are both multivectors with maximal grade two and
are related according to

x = ψ ∗C ψ
†. (4.307)

This becomes obvious if one considers the transformation of the paravector:

x′ = R ∗C ψ ∗C ψ
† ∗C R

† = R ∗C ψ ∗C u ∗C ψ ∗C R ∗C u = ψ′ ∗C ψ
′†, (4.308)

with ψ′† = (R ∗C ψ)† = u ∗C ψ ∗C R ∗C u. The Pauli spinor can therefore be represented in three dimensions
as

ψ = ψ0 + ψkBk = (ψ0 + ψ3B3) + (ψ2 + ψ1B3) ∗C B2, (4.309)

which is isomorphic to a quaternion. The representation (4.309) shows that B3 = σ1σ2 plays the role of the
unitary unit i and the even multivector ψ corresponds in the conventional formalism to the spinor

ψ̂ =
(

ψ0 + iψ3

−ψ2 + iψ1

)
. (4.310)

From (4.310) and (4.309) one has the following correspondences

ψ̂+ =
(

1
0

)
↔ ψ+ = 1 and ψ̂− =

(
0
1

)
↔ ψ− = σ1σ3 (4.311)

and the ∗-eigenvalue equation can be written as:

σ̂3ψ̂± = ±ψ̂± ↔ σ3 ∗C ψ± ∗C σ3 = ±ψ±. (4.312)

It is clear that a spinor in geometric algebra is a rotor that is not normalized, i.e. ψ = |ψ|R with |ψ|2 =
(ψ0)2+(ψ1)2+(ψ2)2+(ψ3)2. Furthermore in the star product formalism the hermitian product 〈ψ̂, φ̂〉H = ψ̂†φ̂
can be written as

〈ψ, φ〉H =
1
2
(
ψ ∗C φ− B3 ∗C ψ ∗C φ ∗C B3

)
= ψ ∗C φ+

[(
ψ ∗C φ

)
× B3

]
∗C B3 (4.313)

and ψ̂†σ̂kψ̂ can be written as 〈ψ ∗C σ3 ∗C ψ ∗C σk〉0.
In order to describe Dirac spinors in geometric algebra one has to go over to the four dimensional space-

time. Geometric algebra in the Minkowski space is called space-time algebra C`1,3. The space-time basis
vectors are γ0, γ1, γ2 and γ3 and the Clifford star product is

F ∗C G = F exp

[
ηµν

~

∂

∂γµ

~∂

∂γν

]
G, (4.314)

so that
γµ · γν =

1
2
(
γµ ∗C γν + γν ∗C γµ

)
= ηµν , (4.315)

or {γµ,γν}∗C
= 2ηµν . A space-time vector is then given by x = xµγµ and a general space-time multivector

has the form
A = A(0) +Aµ

(1)γµ +Aµν
(2)γµγν +Aµνρ

(3) γµγνγρ +A(4)γ0γ1γ2γ3. (4.316)

Just as in the three dimensional case it is now possible to define with a timelike vector u, i.e. u2∗C = 1, a
paravector x = x ∗C u and a hermitian conjugation A† = u ∗C A ∗C u. The choice of u defines a space-time
split and the easiest choice is u = γ0, so that the paravector is given by

x = x ∗C γ0 = x · γ0 + xγ0 = x0 + x = t+ xiγiγ0. (4.317)
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One should note that x = xγ0 = xiγiγ0 is a space-time bivector, but corresponds to a space vector. This is
due to the fact that the two-blades γiγ0 behave in space-time like the σi in space:

σi ∗C σj = I(3) ∗C σk =̂ γjγi = I(4) ∗C γkγ0 for cyclic i, j, k, (4.318)

σi · σj =
1
2

(σi ∗C σj + σj ∗C σi) =̂
1
2
(
γiγ0 ∗C γjγ0 + γjγ0 ∗C γiγ0

)
= δij , (4.319)

I(3) = σ1 ∗C σ2 ∗C σ3 =̂ γ1γ0 ∗C γ2γ0 ∗C γ3γ0 = γ0γ1γ2γ3 = I(4), (4.320)

where on the left hand side the three dimensional euclidian Clifford star product and on the right hand side
the four dimensional Clifford star product (4.314) is used.

The Dirac spinor Ψ is now a general element of C`+1,3, which can be written with two Pauli spinors ψI ,
ψII and using σi=̂γiγ0 as

Ψ = ψI + ψII ∗C γ3γ0 (4.321)
= (ψ0

I + ψ1
Iσ2 ∗C σ3 + ψ2

Iσ3 ∗C σ1 + ψ3
Iσ1 ∗C σ3)

+(ψ0
II + ψ1

IIσ2 ∗C σ3 + ψ2
IIσ3 ∗C σ1 + ψ3

IIσ1 ∗C σ3) ∗C γ3γ0 (4.322)
=̂ ψ0

I − ψ1
Iγ2γ3 − ψ2

Iγ3γ1 − ψ3
Iγ1γ2 + ψ0

IIγ3γ0 + ψ1
IIγ2γ0 − ψ2

IIγ1γ0 + ψ3
IIγ0γ1γ2γ3 (4.323)

= Ψ1 + Ψ†
2 ∗C γ1γ3 − (Ψ3 + Ψ4 ∗C γ1γ3) ∗C γ0γ3. (4.324)

The Ψµ are the “complex” components of the four-spinor, where the role of the unitary unit i is played here
by the two-blade γ2γ1, so that Ψµ = Ψµ,Re + Ψµ,Imγ2γ1. The even multivector Ψ corresponds then to the
four spinor

Ψ̂ =


Ψ1,Re + iΨ1,Im

Ψ2,Re + iΨ2,Im

Ψ3,Re + iΨ3,Im

Ψ4,Re + iΨ4,Im

 . (4.325)

The hermitian product 〈Ψ̂, Φ̂〉H = Ψ̂†γ̂0Φ̂ can in the formalism of geometric algebra be written as

〈Ψ,Φ〉H = Ψ†
1 ∗C Φ1 + Ψ†

2 ∗C Φ2 −Ψ†
3 ∗C Φ−Ψ†

3 ∗C Φ3 −Ψ†
4 ∗C Φ4. (4.326)

Furthermore all bilinear covariants can be translated in this language, as examples only the scalar 〈Ψ ∗C Ψ〉0
and the vector observable J = Ψ ∗C γ0 ∗C Ψ should be mentioned.

4.8 Symplectic Vector Manifolds

A symplectic vector space can be considered as a 2d-dimensional euclidian space with vectors

z = zaζa = qmηm + pmρm, (4.327)

where a = 1, . . . , 2d and m = 1, . . . , d, and a closed two form

Ω =
1
2
Ωabζ

aζb =
d∑

m=1

ηmρm =
d∑

m=1

dqmdpm, (4.328)

where Ωab is a non-degenerate, antisymmetric matrix [91]. The euclidian metric on the vector space defines
a scalar product and a relation between vectors and one forms. The two form Ω gives now an additional
possibility to establish such structures, i.e. one can define the symplectic scalar product as

z ·Sy w ≡ ι̇zwΩ = (wz) · Ω = z · (Ω ·w) = zaΩabw
b (4.329)
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and furthermore one can map with Ω a vector in a one form according to z[ = ι̇zΩ = z · Ω, so that
z ·Sy w = −z ·w[ (the other possibility to define [ used for example in [73] is Ω · x = −x · Ω). The inverse
map of a one form into a vector can be described with the bivector

J =
1
2
Jabζaζb =

1
2

2d∑
a,b=1

Ωabζaζb =
d∑

m=1

ηmρm, (4.330)

so that the vector corresponding to a one form ω is given by ω\ = J · ω. The map \ should be inverse to [,
from which follows that Jab = (Ω−1

ab )T = Ωba. Especially for the nabla operator ∇ = d = ζa ∂
∂za

one has

d\ =
d∑

m=1

(
ηm

∂

∂pm
− ρm

∂

∂qm

)
, (4.331)

so that for example the Hamilton equations can be written as

ż = d\H, (4.332)

or explicitly

(q̇mηm + ṗmρm) = J ·
(

ηm ∂H

∂qm
+ ρm ∂H

∂pm

)
=

d∑
m=1

(
−ρm

∂H

∂qm
+ ηm

∂H

∂pm

)
. (4.333)

Furthermore the Poisson bracket can be written as

{F,G}PB = F
~

d ·Sy
~dG = Jab ∂F

∂xa

∂G

∂xb
. (4.334)

The bivector J plays the role of the compatible complex structure to Ω [91], because one has

(z · J) ·Sy (w · J) = z ·Sy w and z ·Sy (w · J) > 0 ∀z 6= 0. (4.335)

Furthermore one has J · J = −1, (z · J) · J = −z and the symplectic scalar product can be written as
z ·Sy w = (z · J) · w. A metric space with a two form Ω and a compatible complex structure is a Kähler
space.

A symplectic vector manifold is an even-dimensional vector manifold x(xi) with a closed two form
Ω(x) = 1

2Ωijξ
iξj , i.e.

∂iΩjk + ∂jΩki + ∂kΩij = 0. (4.336)

The tangent spaces at the symplectic vector manifold are symplectic vector spaces. A vector field z(x) on a
symplectic vector manifold is symplectic if z[ is closed, i.e. if d(z ·Ω) = 0. Symplectic vector fields conserve
the symplectic structure, i.e. LzΩ = dι̇zΩ = 0 and they form an algebra under the Jacobi-Lie bracket, i.e.
for two symplectic vector fields z(x) and w(x) one has d

(
[z,w]JLB ·Ω

)
= 0. If z[ is not only closed but also

exact, the vector field is called hamiltonian. According to the Poincaré lemma every closed form is locally
exact, so that a symplectic vector field is locally hamiltonian. This means for a local (global) hamiltonian
vector field hH exists locally (globally) a function H so that

hH · Ω = dH, (4.337)

which in the coordinate basis reads
hH = d\H = J ij(∂jH)ξi. (4.338)
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The Lie-bracket of two symplectic vector fields z(x) and w(x) is always a hamiltonian vector field with
hamiltonian (zw) · Ω, i.e. h(zw)·Ω = [z,w]JLB or

[z,w]JLB · Ω = d((zw) · Ω). (4.339)

This follows easily using LzΩ = LwΩ = 0 and dΩ = 0:

[z,w]JLB · Ω = Lz ι̇wΩ− ι̇wLzΩ (4.340)
= (dι̇z + ι̇zd)ι̇wΩ (4.341)
= d

(
(zw) · Ω

)
+ ι̇z(dι̇w + ι̇wd)Ω (4.342)

= d
(
(zw) · Ω

)
+ ι̇zLwΩ (4.343)

= d
(
(zw) · Ω

)
. (4.344)

With a hamiltonian vector field the Poisson bracket can then be written as

LhH
F = hH · dF = {F,H}PB , (4.345)

or, using (4.337) in this equation, as

{F,G}PB = ι̇hF hG
Ω = (hGhF ) · Ω. (4.346)

It is easy to see that the hamiltonian vector fields form a Lie subalgebra of the symplectic vector fields with

[hF ,hG]JLB = −h{F,G}P B
. (4.347)

Given a symplectic vector field z that preserves the Hamilton function H, i.e. LzΩ = Ω and LzH = 0,
then this symplectic vector field z can be written locally as a hamiltonian vector field hF with

LhF
H = hF · dH = {F,H}PB = 0, (4.348)

which shows that F is a conserved quantity. This is Noethers theorem for the symplectic case.
The metric gij(x) on the vector manifold is induced by the ambient space and so exists naturally on the

vector manifold. It was used in the above discussion just to contract vector fields and forms with the scalar
product. The metric can also be used to define a compatible almost complex structure. This is a bivector
field J(x), that maps via the scalar product a tangent vector into another tangent vector. If the structures
gij(x), J(x) and Ω(x) are compatible the metric scalar product of two tangent vectors z and w in a point
x can be written as

z ·w = z ·Sy (w · J) (4.349)

and the symplectic product can be written as

z ·Sy w = (z · J) ·w. (4.350)

A vector manifold with these three compatible structures is a Kähler vector manifold.
Symplectic manifolds of special physical interest are cotangent bundles, for which the symplectic two-

form is globally exact. The cotangent bundle of a d-dimensional euclidian vector space is a 2d-dimensional
euclidian vector space with elements q + π = qmηm + pmρm. On this vector space one can define with a
vector a + ω = amηm + ωmρm a canonical one form θ(q + π) by

(a + ω) · θ(q + π) = ampm, (4.351)

so that θ = pmηm = pmdqm, where the nabla operator is given by ∇ = d = ηm ∂
∂qm + ρm

∂
∂pm

. The
symplectic two form on the cotangent bundle can then be obtained as

Ω = −dθ = ηmρm = dqmdpm. (4.352)
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The above definitions generalize readily to the case of a cotangent bundle of a d-dimensional vector manifold.
In a (2d + 2)-dimensional ambient vector space with basis vectors σa and τ a the cotangent bundle can be
described as the 2d-dimensional vector manifold (q+π)(qi, pj) = qa(qi)σa+pjξ

j
a(qi)τ a, with tangent vectors

a + ω = aiξa
i σa + ωiξ

i
aτ a at this bundle vector manifold. With a projection operator Tπq defined as

Tπq(a + ω) = Tπq(a) = aiξa
i τ a, (4.353)

which is the tangent function of the projection πq(q + π) = q, one can write (4.351) as

(a + ω) · θ(q + π) = Tπq(a + ω) · π, (4.354)

so that θ = piξ
i = pidq

i.
The special feature of a cotangent bundle manifold, namely that the symplectic two form Ω is globally

exact, i.e. Ω = −dθ, allows to define globally the Liouville vector field l by

l · Ω = −θ, (4.355)

which in local coordinates is given by l = piξ
i
aτ a, while the directional derivative is l · d = pi

∂
∂pi

. The
Liouville vector field fulfills

Llθ = θ and LlΩ = Ω. (4.356)

This follows easily with the Cartan formula:

Llθ = ι̇ldθ + dι̇lθ = −ι̇lΩ = θ (4.357)

and applying d on both sides one obtains d(Llθ) = dθ, which is equivalent to LlΩ = Ω. The Liouville
vector field can then be used to measure the order of a scalar function on the cotangent bundle that is
polynomial in the fibres. Such a scalar function of order k has the form

f(qi, pi) =
1
k!
f i1...ik(qi)pi1 . . . pik

(4.358)

so that acting with the directional derivative in direction of the Liouville vector field on f(qi, pi) gives
l · df = Llf = kf. Scalar valued functions that are polynomial in the fibres can be obtained with an
isomorphism P from tensors T = T i1,...,ik(qi)ξi1 ⊗ . . .⊗ ξik

on the base space according to

P(T) =
1
k!
T i1,...,ik(qi)pi1 . . . pik

. (4.359)

A tangent vector field a = aj(qi)ξj on the configuration space q(qi) is then mapped into a scalar function
on the cotangent bundle that is linear in the fibres:

P(a) = P(aj(qi)ξj) = aj(qi)pj . (4.360)

The scalar function P(a) is the so-called momentum of a and P is the universal momentum map of the
cotangent bundle T ∗Q. Furthermore one has

P([a, b]JLB) = P
((

ai ∂

∂qi
bj − bi

∂

∂qi
aj

)
ξj

)
(4.361)

=
(
ai ∂

∂qi
bj − bi

∂

∂qi
aj

)
pj (4.362)

= −{ajpj , b
ipi}PB (4.363)

= −{P(a),P(b)}PB . (4.364)

101



In the discussion so far the symplectic structure was defined via a two form. The metric on the vector
manifold that is induced from the ambient space was then used to contract vectors and forms. But this
contraction is actually independent of the metric. So a metric structure is actually not necessary to define
a symplectic structure. In the case of a cotangent bundle it suffices to use the natural duality on this space.
This duality can also be described with a star product, for example on the cotangent bundle of a vector
space one can define

F ∗D G = F exp

[ ~

∂

∂ηa

~∂

∂ρa

]
G, (4.365)

so that (4.351) reads ι̇a+ωθ(q + π) = ι̇aπ = 〈a ∗D π〉0 = a ·D π and further ι̇(a+ω)(b+χ)Ω = a ·D χ− b ·D ω,
which can easily be generalized to manifolds [90]. The other possibility is to define a symplectic star product,
by using Ωij instead of the metric ηij in the fermionic star product. On a 2d-dimensional vector space the
symplectic star product in Darboux coordinates is given by

F ∗Sy G = F exp

[
Ωab

~

∂

∂ζa

~∂

∂ζb

]
G = F exp

[
d∑

m=1

( ~

∂

∂ηm

~∂

∂ρm

−

~

∂

∂ρm

~∂

∂ηm

)]
G. (4.366)

On a 2d-dimensional vector manifold the tangent space can also be spanned by Darboux basis vectors
ηm = ηi

mξi and ρm = ρi
mξi so that one has analogously

F ∗Sy G = F exp

[
Ωij

~

∂

∂ξi

~∂

∂ξj

]
G = F exp

[
d∑

m=1

( ~

∂

∂ηm

~∂

∂ρm

−

~

∂

∂ρm

~∂

∂ηm

)]
G. (4.367)

The indices are now lowered and raised with Ωij , i.e. for a tangent vector a = aiξi one has ai = Ωija
j and

ξi = Ωijξj , where ΩijΩjk = δk
i . The relations [ and \ between vectors and one forms can then be written as

a[ = aiΩijξ
j = (ΩT

jia
i)ξj , (4.368)

ω\ = ωiΩijξj = (Ωji Tωi)ξj = Jjiωiξj . (4.369)

Furthermore it follows for the scalar products that

ξi ·Sy ξj = Ωij , ξi ·Sy ξj = −ξj ·Sy ξi = δi
j and ξi ·Sy ξj = −Ωij = J ij . (4.370)

If one establishes the symplectic structure with the symplectic star product and not with a metric star
product and a two form, the contraction of vectors and one forms has to be defined with the symplectic
scalar product ξi ·Sy ξj = −δj

i . This leads to a different sign structure compared with the case of a metric
star product, for example instead of (4.337) one has for a hamiltonian vector field on a vector space with a
symplectic star product

hH ·Sy Ω = −dH (4.371)

and since a ·Sy ∂ = −a · ∂ there is no minus sign on the right side of (4.347). So these two sign conventions
correspond to the usage of an metric or a symplectic star product on the vector space.

4.9 Poisson Vector Manifolds

A vector manifold M with a bivector J(x) = 1
2J

ijξiξj and

J ij∂iJ
kl + J ik∂iJ

lj + J il∂iJ
jk = 0 (4.372)

is a Poisson vector manifold, where (4.372) can also be expressed with (4.90) as

[J, J]SNB = 0. (4.373)
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The bivector J defines as discussed above a map from T ∗xM to TxM by α\ = J ·α = J ijαjξi, where α = αiξ
i

is an element of T ∗xM . Especially the hamiltonian vector field (4.338) can be written as

hH = ι̇dHJ = J · dH. (4.374)

The Poisson bracket is then given by

{F,G}PB = ι̇dFdGJ = (dGdF ) · J, (4.375)

where (4.372) insures the Jacobi-identity of the Poisson bracket. With the Poisson bracket the hamiltonian
vector field hH can be defined for all scalar functions F as

hH · dF = {F,H}PB . (4.376)

Equating (4.346) and (4.375) shows how Ω and J determine each other:

(hGhF ) · Ω = (dGdF ) · J. (4.377)

Since a Poisson manifold can be odd-dimensional the hamiltonian vector fields in general do not span the
tangent space of the Poisson manifold. This suggests to define the range ran(J(x)) of J(x) as the span of all
tangent vectors that can be expressed as α\ = J ·α for a one form α ∈ T ∗xM . The range of J(x) is also the
span of all hamiltonian vector fields at x. The dimension of ran(J(x)) is the rank of the Poisson manifold
in x and equal to the rank of the matrix J ij , which is an even number because of the anti-symmetry of J ij .
The even-dimensional vector space ran(J(x)) is then the tangent space of a symplectic leaf in the point x.
The symplectic leaf is a submanifold of the Poisson manifold, which follows from the Frobenius theorem,
that states that a system of vector fields on a manifold is integrable iff it is in involution and rank-invariant.
Equation (4.347) shows that the hamiltonian vector fields are in involution and they are rank-invariant
because they conserve the Poisson bivector and so especially also the rank, i.e. for all functions H one has

LhH
J = 0 . (4.378)

The Poisson manifold is then foliated by symplectic leafs. Only when the rank of a Poisson manifold M is
everywhere equal to dim(M) the Poisson manifold itself is a symplectic manifold.

The formalism developed so far can now directly be generalized to multivectors, which leads to Poisson
calculus (see [107] and the references therein). The r-vector that corresponds to an r-form is given by(

A(r)
)\ =

1
r!
Jk1i1 . . . JkriiAi1...ir

ξk1
. . . ξkr

(4.379)

and in analogy to (4.141) one has ι̇A(r)B(s) = A(r) ·B(s), so that

α1 . . .αr ·
(
A(r)

)\ = (−1)rα\
1 . . .α

\
r ·A(r). (4.380)

It is then also possible to define a Poisson bracket for one forms by

{α,β}PB = Lα\β −Lβ\α + d
(
(βα) · J

)
, (4.381)

so that {α,β}\
PB =

[
α\,β\

]
JLB

. With this Poisson bracket one can further define an exterior differential d̃
in analogy to (4.143) as

(α1α2 . . .αr+1) · d̃A(r) =
r+1∑
n=1

(−1)n+1(α\
n · ∂)

(
α1 . . . α̌n . . .αr+1

)
·A(r)

+
∑
m<n

(−1)m+n
(
{αm,αn}PBα1 . . . α̌m . . . α̌n . . .αr+1

)
·A(r), (4.382)
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which can also be written as d̃A(r) =
[
J, A(r)

]
SNB

.
The easiest nonconstant Poisson tensor fulfilling (4.372) is a linear tensor

J ij(x) = Cij
k x

k, (4.383)

where the antisymmetry of J ij and (4.372) ensure that the Cij
k are structure constants of a Lie algebra. The

corresponding Poisson bracket is the so called Lie-Poisson bracket

{F,G}LPB = Cij
k x

k∂iF∂jG. (4.384)

The fundamental example is the Lie-Poisson structure on g∗. To this purpose one considers the bivector
space spanned by the basis bivectors Bi with bivector algebra (4.244) and its reciprocal basis with two forms
Θi, i.e. Bi · Θj = δj

i . For scalar-valued functions F and G of general two forms Θ = θiΘi a Lie-Poisson
bracket is given by

{F,G}LPB(Θ) = Ck
ijθk

∂F

∂θi

∂G

∂θj
= (dF × dG) ·Θ, (4.385)

where d is the exterior differential in the bivector basis: d = Bi
∂

∂θi
. In the SO(3)-case, where Θi = Bi the

Lie-Poisson bracket can be written as

{F,G}LPB(B) = B ·
(
(I(3) ∗C d)F × (I(3) ∗C d)G

)
= B · (dF × dG) . (4.386)

The symplectic leaves induced by the symplectic foliation with the Lie-Poisson bracket on g∗ are the
orbits of the coadjoint action of the corresponding group G on g∗. This can be seen if one considers a scalar
linear function H(Θ) = B · Θ = biθi on g∗ with dH = B. For the Lie-Poisson bracket one has then for any
scalar function F on g∗:

{F,H}LPB(Θ) = (dF × dH) ·Θ = −(B× dF ) ·Θ = −(adBdF ) ·Θ = −dF · ad∗BΘ. (4.387)

On the other hand one can define in analogy to (4.376) the hamiltonian bivector field hH of the Hamilton
function H(Θ) as

hH(Θ) · dF = {F,H}LPB(Θ) = (dF × dH) ·Θ = −ad∗BΘ · dF, (4.388)

so that hH(Θ) = −ad∗BΘ = −ad∗dHΘ. This means that the hamiltonian bivector fields hH that span the
tangent space of the symplectic leaf are, up to a sign, the generators of the coadjoint action determined by
B. If Θ varies now over the coadjoint orbit one can define a skew-symmetric bilinear form on the orbit by

ΩΘ(ad∗AΘ, ad∗BΘ) = A× B ·Θ, (4.389)

which defines on the coadjoint orbit a symplectic structure, that is the restriction of the Lie-Poisson bracket
to the orbit [90]. ΩΘ can be seen as a generalized antisymmetric tensor of the form (4.193) that maps two
bivectors into a scalar.

The next step is to investigate the hamiltonian action of a rotor group on a Poisson vector manifold.
The scalar functions P1, . . . , Pr on the Poisson manifold M generate a hamiltonian action of a Lie group G
on M if their Poisson brackets satisfy

{Pi, Pj}PB = −Ck
ijPk, (4.390)

where the Ck
ij are the structure constants of the Lie algebra g of G. The corresponding hamiltonian vector

field hPi satisfy then with (4.347) [
hPi ,hPj

]
JLB

= Ck
ijhPk

(4.391)

and therefore generate a local action of G on M . The quotient manifold M/G inherits a Poisson structure
from M . Functions F̃, H̃ on M/G correspond to G-invariant functions F,H on M , i.e. functions with
hPi

· dF = {F, Pi}PB = 0 for i = 1, . . . , r. The Poisson bracket {F̃, H̃}M/G
PB on M/G corresponds then
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to the G-invariant function {F,H}PB on M . The so defined Poisson bracket on M/G fulfills clearly the
defining relations for a Poisson bracket, so that it remains to show that the Poisson bracket {F,H}PB

of two G-invariant functions on M is again a G-invariant function. But this is just a consequence of the
Jacobi-identity:

{{F,H}PB , Pi}PB = {{F, Pi}PB ,H}PB + {F, {H,Pi}PB}PB = 0. (4.392)

If there is a hamiltonian system on M where each of the Pi is a first integral, i.e. {Pi,H}PB = 0 for
i = 1, . . . , r, one says that G is a hamiltonian symmetry group. The Hamiltonian H is then a G-invariant
function and there exists a reduced hamiltonian system on M/G with Hamiltonian H̃ whose solutions are
the projections of the solutions of the system on M .

If the hamiltonian action is given by a rotor group the aim is to find the Hamilton function PB of the
vector field B · x, that is induced according to (4.260) by the rotor left-action with bivector B, i.e.

hPB
= B · x. (4.393)

Since hPB
· dH = {H,PB}PB , it is possible to write the defining relation for PB as

{H,PB}PB = (B · x) · dH, (4.394)

for all scalar functions H. PB is defined by (4.393) only up to a function G with hG = 0, so that hPB+G = hPB
.

Furthermore one has for two bivectors A and B with (4.347) and (4.261)

h{PA,PB}P B
= hPA×B

. (4.395)

While in the symplectic case a symplectic vector field is always locally hamiltonian, in the Poisson case
an infinitesimal Poisson automorphism is in general not locally hamiltonian. This means that if the rotor
left-action is canonical, i.e. LB·xJ = 0, there does not exist in general a function PB, so that (4.393) is
fulfilled. The additional condition that B ·x is also hamiltonian can be expressed with the momentum map.
A momentum map is here a two form Π(x) with

ι̇BΠ = B ·Π = PB. (4.396)

So if the hamiltonian vector field hPB
corresponding to the function PB = B ·Π is the same as the vector field

B ·x induced by the rotor left-action, i.e. if one has hB·Π = (J ·d) · (B ·Π) = B ·x, then Π is a momentum map.
If a momentum map of a rotor action exists and H is a Hamilton function that is invariant under the rotor
action, then equation (4.394) reduces to {H,PB}PB = 0 and the momentum map is a constant of the motion
described by H. This follows because {H,PB}PB = 0 means that PB is constant along the hamiltonian flow
of H, which must then also be true for the left hand side of (4.396), i.e. for Π, because B is constant. This
is the Noether theorem in the Poisson case.

If on the other hand a hamiltonian action of a rotor group with r bivector generators on a Poisson
vector manifold is given, there are scalar functions PB1 , . . . , PBr

on the Poisson manifold that generate the
hamiltonian action. The momentum map is then

Π(x) = PBi
(x)Θi. (4.397)

A momentum map Π(x) that is determined by a hamiltonian group action is equivariant, i.e. it respects the
rotor left-action on the vector manifold:

Π(R ∗C x ∗C R) = R ∗C Π(x) ∗C R, (4.398)

which can also be written more precisely as

AdRB ·Π(R ∗C x ∗C R) ≡ PAdRB(R ∗C x ∗C R) = PB(x) ≡ B ·Π(x) (4.399)
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To see that the momentum map (4.397) is equivariant, it suffices to show the infinitesimal version of (4.398)(
hPBj

· d
)
PBiΘ

i = Bj ×Π (4.400)

{PBi
, PBj

}PBΘi = PBi
Bj ×Θi (4.401)

−Ck
ijPBk

Θi = PBi
Ci

jkΘk. (4.402)

Infinitesimal equivariance [90] implies that

PA×B = {PA, PB}PB . (4.403)

In this case momentum maps are Poisson maps, i.e. for scalar-valued functions F and G on g∗ one has

{F,G}LPB(Π(x)) = {F (Π(x)), G(Π(x))}PB . (4.404)

To prove this one shows that the left hand side of (4.404) can be written as

{F,G}LPB(Π(x)) = dF × dG ·Π(x) = PdF×dG = {PdF , PdG}PB , (4.405)

where one uses in the last step infinitesimal equivariance. The right hand side of (4.404) gives the same
result:

{F (Π(x)), G(Π(x))}PB = J ij∂iF (Π(x))∂jG(Π(x)) = J ij∂iPdF∂jPdG = {PdF , PdG}PB , (4.406)

using
∂iF (Π(x)) = dF · ∂iΠ(x) = ∂i

(
dF ·Π(x)

)
= ∂iPdF . (4.407)

A special case for a momentum map is the momentum map of the cotangent lift of a rotor action on a
vector manifold q = qa(qi)σa. In order to find this momentum map one first states that it is possible to find
for a tangent vector field a(q) = aiξa

i σa a function Pa(qi, pi) = Pa(q + π) on the cotangent bundle, which
is given with the projection operator (4.353) as:

Pa(qi, pi) = Tπq(a) · (q + π) = ajξa
j τ a · (qbσb + pkξ

k
b τ b) = aj(qi)pj . (4.408)

The other possibility to obtain Pa(qi, pi) is to use the universal momentum map (4.359):

P(a) = aj(qi)pj = Pa(qi, pi). (4.409)

These functions form an algebra on the cotangent bundle, i.e.

{Pa, Pb}PB =
∂Pa

∂qi

∂Pb

∂pi
− ∂Pb

∂qi

∂Pa

∂pi
=
(
∂ai

∂qj
bj − ∂bi

∂qj
aj

)
pi = −P[a,b]JLB

. (4.410)

The rotor action of a rotor R(t) = e
t
2 B
∗C on the vector manifold q induces a flow q(t) = R(t) ∗C q ∗C R(t) and

a tangential vector field b = B · q. The inverse cotangent lift of this rotor action is

(q + π)(t) = Rlifted(−t) ∗C (q + π) ∗C Rlifted(−t) = Rlifted(t) ∗C (q + π) ∗C Rlifted(t), (4.411)

which induces on the cotangent bundle a tangent vector field blifted = Blifted · (q + π), where Blifted can
be written as Blifted = B + Tπq(B). The vector field blifted is then the hamiltonian vector field of Pb , i.e.
blifted = hPb

. This can be proved very easily if one considers that the cotangent lift of a rotor action leaves
the canonical one-form invariant, i.e.

Lbliftedθ = 0. (4.412)
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Cartan’s magic formula (4.145) gives then

blifted · Ω = −ι̇blifteddθ = dι̇bliftedθ = d(blifted · θ). (4.413)

On the other hand one has with (4.351) and (4.353)

blifted · θ(q + π) = Tπq(blifted) · π = Tπq(b) · π = Pb(q + π). (4.414)

Putting this into (4.413) gives
blifted · Ω = dPb , (4.415)

which shows that blifted is the hamiltonian vector field of Pb, so that for a scalar function F (q+π) = F (qi, pi)

blifted · dF (q + π) =
∂

∂t

∣∣∣∣
t=0

F (Rlifted ∗C (q + π) ∗C Rlifted) (4.416)

=
∂F

∂qi
(B · q)i +

∂F

∂pi
(Tπq(B) · π)i = {F, Pb}PB , (4.417)

with ∂Pb
∂pi

= bi = (B · q)i and

∂Pb

∂qi
=

∂

∂qi
Tπq(B · q) · π =

∂

∂qi
Tπq

(
∂

∂t

∣∣∣∣
t=0

Rlifted ∗C q ∗C Rlifted

)
· π (4.418)

= Tπq

(
∂q

∂qi

)
· ∂
∂t

∣∣∣∣
t=0

Rlifted ∗C π ∗C Rlifted = −(Tπq(B) · π)i. (4.419)

The momentum map of the cotangent lift of a rotor action on the vector manifold q is then given for
b = B · q by

B ·Π(q + π) = Tπq(B · q) · (q + π) = P(B · q) = Pb(q + π). (4.420)

Moreover this momentum map is also equivariant:

B ·Π(Rlifted ∗C (q + π) ∗C Rlifted) = Tπq

(
B · (R ∗C q ∗C R)

)
· (Rlifted ∗C (q + π) ∗C Rlifted) (4.421)

= Tπq(AdRB · q) · (q + π) (4.422)
= AdRB ·Π(q + π) (4.423)
= B ·Ad∗

R
Π(q + π), (4.424)

using in the second step that

R ∗C

(
B · (R ∗C q ∗C R)

)
∗C R = R ∗C

1
2
(
B ∗C R ∗C q ∗C R−R ∗C q ∗C R ∗C B

)
∗C R (4.425)

= (R ∗C B ∗C R) · q = AdRB · q. (4.426)

A simple example is the action of the rotation group on a three dimensional euclidian vector space with
vectors q = qiηi for i = 1, 2, 3. The tangent bundle is then a six dimensional euclidian vector space with
vectors q + π = qiηi + piρ

i and a canonical symplectic structure Ω = ηiρi. A rotation on the q-space is
generated by the bivectors

Bi =
1
2
εijkηjηk. (4.427)

For example a rotation around the η3-axis is generated by B3 = η1η2 and the corresponding vector field is
b3 = B3 · q = q2η1 − q1η2. The lifted rotation is a rotation that acts in the ρi-space just the same way as
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in the ηi-space, the lifted generator is then Blifted
3 = η1η2 + ρ1ρ2 and the corresponding lifted vector field is

given by
blifted
3 = Blifted

3 · (q + π) = q2η1 − q1η2 + p2ρ
1 − p1ρ

2. (4.428)

The Hamilton function PB3 that generates this vector field fulfills blifted
3 · Ω = dPB3 or

p2η1 − p1η2 − q2ρ1 + q1ρ2 = η1 ∂PB3

∂q1
+ η2 ∂PB3

∂q2
+ ρ1

∂PB3

∂p1
+ ρ2

∂PB3

∂p2
, (4.429)

which is solved by the angular momentum function. The angular momentum functions PBi
= εk

ijq
jpk are

the generators of the active rotations, that rotate the qi as well as the pi coefficients. They form the
algebra {PBi , PBj}PB = εijkPBk

, so that there is a hamiltonian action of the rotations on the six dimensional
symplectic space. The momentum map Π(qi, pi) = PBj (q

i, pi)Θj is just the angular momentum bivector
L = qp and connects the generators of the active and passive rotations.

Another simple example is the circle action of S1 on S2 [91]. The two-dimensional sphere x(θ, ϕ) =
sin θ cosϕσ1 + sin θ sinϕσ2 + cos θσ3 is a symplectic vector manifold with the symplectic two form

Ω = x1σ2σ3 + x2σ3σ1 + x3σ1σ2
∣∣
S2 = sin θξθξϕ, (4.430)

which is the volume form on the S2. A left rotation around the σ3-axis is generated by B = −σ1σ2 and
induces on S2 the vector field

B · x = sin θ cosϕσ2 − sin θ sinϕσ1 = ∂ϕx = ξϕ. (4.431)

The Hamilton function PB that generates this vector field fulfills according to (4.337) the equation ξϕ · Ω =
dPB, or

− sin θξθ = ξϕ∂ϕPB + ξθ∂θPB, (4.432)

which is solved by PB = cos θ = x3.
As a third example one can consider a four dimensional symplectic vector space with vectors x =

a1α1+a2α2+b1β1+b2β2 and symplectic two form Ω = α1β1+α2β2. The Lie group that acts symplectically
on the four dimensional vector space is the SU(2) with bivector generators Bi given in (4.281). The action
of this group has an equivariant momentum map defined by

PB = B ·Π(x) =
1
2
(
x(B · x)

)
· Ω. (4.433)

That this is an momentum map follows with
(
x(B · y)

)
· Ω =

(
y(B · x)

)
· Ω from

y · dPB(x) =
1
2
(
y(B · x)

)
· Ω +

1
2
(
x(B · y)

)
· Ω =

(
y(B · x)

)
· Ω, (4.434)

so that dPB = hPB
· Ω. The momentum map Π(x) = PBi

(x)Θi can be calculated with

B ·Π(x) = BiPBi =
1
2
(
x(B · x)

)
· Ω. (4.435)

One obtains

PB1(x) = a2b1 − a1b2, (4.436)
PB2(x) = a1a2 + b1b2, (4.437)
PB3(x) = (a1)2 − (a2)2 + (b1)2 − (b2)2. (4.438)

Restricting x now on an S3, i.e. (a1)2 + (a2)2 + (b1)2 + (b2)2 = 1, one has |Π(x)|S3 | = 1/2. This means
that the momentum map maps an S3 in the x-space onto a two dimensional sphere with radius 1/2 in the
Bi-space. Π(x)|S3 is the Hopf fibration.
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Applying now the concepts discussed so far to the cotangent space of a group manifold T ∗G, which is a
vector manifold with vectors r + ϑ, one arrives at the Lie-Poisson reduction [90]. As seen above the rotors
act on the group vector manifold with a left translation `R which induces the tangential maps T`R and T ∗`R.
A scalar function F (r +ϑ) = F (R, Ṙ) on T ∗G is left invariant if F ◦T ∗`R = F . Such left invariant functions
can be identified with reduced functions on g, i.e. F (r +ϑ) = F (R, Ṙ) = F (1, R ∗C Ṙ) = f(Θ), where R ∗C Ṙ
is an element of the bivector algebra that can also be expressed in the dual basis. This reduction can now
be described with the momentum map Π : T ∗G→ g∗, i.e. F (r + ϑ) = f(Π(r + ϑ)). One has then a Poisson
map between the Poisson bracket of left invariant functions on T ∗G and the Lie-Poisson bracket of reduced
functions on g∗. In this way a left invariant Hamilton function on T ∗G induces a Lie-Poisson dynamic on
g∗. This will be explained for the example of the rigid body in the next section.
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Chapter 5

Physical Applications for
Superanalytic Geometric Algebra

One can now apply the formalism described in the last chapter to physics. It is clear that all the applications
in the literature of geometric algebra can immediately be translated into the superanalytic formalism. In
addition here the Lie-Poisson and the Euler-Poincaré reduction may be discussed for the rigid rotor. More-
over while the fermionic Clifford star product gives in classical mechanics the geometric structure, it appears
then natural to combine the Clifford star product with the bosonic Moyal product in order to obtain a non-
commutative version of geometric algebra that describes the quantum case. The consequences of deforming
geometric algebra on space, space-time and phase space will be described in the following.

5.1 The Rigid Body

The rigid body is an example where the formalism described above can be shown to work very effectively.
If one considers a free rigid body B in a three-dimensional ambient space spanned by the basis vectors σa

and a body-fixed coordinate system ξi(t), a point of the body in the ambient space is given by

x(t) = R(t) ∗C xB ∗C R(t), (5.1)

where xB is the vector in the body-fixed system. The velocity is then given by

ẋ = Ṙ ∗C xB ∗C R+R ∗C xB ∗C Ṙ (5.2)
= R ∗C (R ∗C Ṙ ∗C xB − xB ∗C R ∗C Ṙ) ∗C R (5.3)
= Ṙ ∗C R ∗C x− x ∗C Ṙ ∗C R (5.4)
= 2(Ṙ ∗C R) · x, (5.5)

where one uses R ∗C R = 1 ⇒ Ṙ ∗C R+R ∗C Ṙ = 0. And for the body-fixed velocity one obtains

ẋB = R ∗C ẋ ∗C R = 2(R ∗C Ṙ) · xB. (5.6)

On the other hand one has ẋ = ω×x, where ω is the axial vector of angular velocity. Using that the vector
cross product can be written as a× b = −(I(3) ∗C a) · b this leads to

ẋ = −(I(3) ∗C ω) · x = −W · x, (5.7)

where
W = −2Ṙ ∗C R = I(3) ∗C ω (5.8)
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is the angular velocity bivector that generates the rotation. Equation (5.8) can be rewritten to obtain the
rotor equation

Ṙ = −1
2
W ∗C R, (5.9)

which integrates for constant angular velocity to R = e
− t

2 W
∗C . With the angular velocity bivector (5.8) one

can also write (5.7) as
ẋ = (R ∗C xB ∗C R) · W = R ∗C (xB · WB) ∗C R, (5.10)

where WB = R ∗C W ∗C R = −2R ∗C Ṙ, so that the rotor equation becomes Ṙ = − 1
2R ∗C WB.

The angular momentum bivector is given by

L =
∫
d3x ρ(x) xẋ =

∫
d3xB ρ(xB) (R ∗C xB ∗C R)(R ∗C (xB · WB) ∗C R) (5.11)

= R ∗C

(∫
d3xB ρ(xB)xB(xB · WB)

)
∗C R = R ∗C I(WB) ∗C R, (5.12)

where the bivector-valued function of a bivector

I(B) =
∫
d3xB ρ(xB) xB(xB · B), (5.13)

corresponds to the inertial tensor. The equation of motion of the free rigid body can be obtained from

0 = L̇ = Ṙ ∗C I(WB) ∗C R+R ∗C I(WB) ∗C Ṙ+R ∗C I(ẆB) ∗C R (5.14)
= R ∗C

(
I(ẆB)− WB × I(WB)

)
∗C R (5.15)

as I(ẆB)−WB×I(WB) = 0, which are for WB = I(3)∗C ωB =
∑3

j=1 ωBjI(3)∗C ξj and I(B) =
∑3

j=1 IjBjI(3)∗C ξj

the Euler equations

I1ω̇B1 − ωB2ωB3(I2 − I3) = 0, (5.16)
I2ω̇B2 − ωB3ωB1(I3 − I1) = 0, (5.17)
I3ω̇B3 − ωB1ωB2(I1 − I2) = 0, (5.18)

where the Ij are the principal moments of inertia. Alternatively one can also calculate

0 = L̇ = R ∗C L̇B ∗C R+ L× W (5.19)
= R ∗C

(
L̇B + LB × WB

)
∗C R (5.20)

= R ∗C

(
I(ẆB)− WB × I(WB)

)
∗C R, (5.21)

where (5.19) should be compared with the corresponding vector equation L̇ = R ∗C L̇B ∗C R+ ω×L, where
L = I(3) ∗C L.

The aim is now to derive the equations of motion in the Lagrange or Hamilton formalism. The kinetic
energy of the free rigid body can be written with (5.6) as

T =
1
2

∫
d3xB ρ(xB) |2(R ∗C Ṙ) · xB|2 (5.22)

=
1
2

∫
d3xB ρ(xB) |WB · xB|2 (5.23)

=
1
2
WB · I(WB) (5.24)

=
1
2
W · L. (5.25)
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Equation (5.22) is the left invariant Lagrangian L(R, Ṙ) and (5.24) the reduced Lagrangian l(WB) of the free
rigid body. This means that the dynamics is transferred by (5.1) from the vectors x(t) to the rotors or the
generating bivectors, i.e. one considers the dynamics on the rotor group or the bivector algebra respectively.

The question is now how to vary the corresponding Lagrangians. In analogy to the matrix representation
[90] one has

δWB = δ(−2R ∗C Ṙ) = 2R ∗C δR ∗C R ∗C Ṙ− 2R ∗C δṘ (5.26)
= −R ∗C δR ∗C WB − 2R ∗C δṘ (5.27)

and defining the bivector B = 2R ∗C δR so that

Ḃ = WB ∗C

1
2
B + 2R ∗C δṘ, (5.28)

one obtains
δWB = −Ḃ + WB × B. (5.29)

The variation

0 = δl(WB) = δ

∫
dt

1
2
WB · I(WB) =

∫
dt

∫
d3xB ρ(xB) δWB · [xB(xB · WB)] (5.30)

=
∫
dt I(WB) ·

(
−Ḃ + WB × B

)
(5.31)

=
∫
dt
[
I(ẆB) + I(WB)× WB

]
· B, (5.32)

leads then again to the Euler equations, where one uses in (5.30)

WB · [xB(xB · δWB)] = δWB · [xB(xB · WB)] (5.33)

and in (5.31) equation (5.29).
The procedure described above is the Euler-Poincaré reduction in the rotor-case. Given is a left invariant

rotor Lagrangian L(R, Ṙ) and its reduction to the bivector algebra l(WB). The variation of L(R, Ṙ) corre-
sponds to the variation of l(WB) for variations δWB = −Ḃ+ WB × B, where B is a bivector that vanishes at the
endpoints. The Euler-Lagrange equation for the rotor corresponds to the bivector equation

d

dt

δl

δWB
= WB ×

δl

δWB
. (5.34)

The Euler-Poincaré reconstruction of the rotor from the bivector WB can then be done with the rotor equation
and in a last step the dynamics x(t) is reobtained by (5.1). The Clifford calculus can also be used to treat
the case of a spinning top very elegantly without Euler angles, this is described in [102].

In the Hamilton formalism the analogous construction is called Lie-Poisson reduction and can also be
done in the rotor case. The Hamiltonian (5.24) of the free rigid body can be written as

H =
1
2

(
L2
B1

I1
+
L2
B2

I2
+
L2
B3

I3

)
. (5.35)

With the Lie-Poisson bracket (4.386)

{F,G}LPB(LB) = LB ·
(
(I(3) ∗C ∇F )× (I(3) ∗C ∇G)

)
= LB · (dF × dG) (5.36)

the Euler equations are obtained by L̇Bi = {LBi,H}LPB . They preserve the coadjoint orbit, i.e. the Casimir
function |LB|2 is a constant of motion: {(L2

B1 +L2
B2 +L2

B3),H}LPB = 0. The conserved quantity that results
from the left-invariance is the angular momentum, which follows from the calculation in (5.14) and (5.15).
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The procedure described above is the bivector version of the Poincaré equation [72]. In order to derive
the Poincaré equation one considers a vector manifold x(qi) with coordinate basis vectors ξi = ∂ix and
non-coordinate basis vectors ϑr = ϑi

rξi. For a scalar-valued function f(qi(t)) on a trajectory q(t) = x(qi(t))
one has

d

dt
f =

∂f

∂qi

dqi

dt
= q̇i∂if, (5.37)

or d
dt = q̇i∂i. In the non-coordinate basis the coefficients are sr = ϑr

i q̇
i, so that d

dt = sr∂r. The variation of
the trajectory q(t) = q(t, u = 0) is given by

δqi =
d

du

∣∣∣∣
u=0

qi(t, u) = wi, (5.38)

where the coefficients in the non-coordinate basis are wr = ϑr
iw

i. So there is a vector s = q̇ that describes
the variation along the trajectory and a vector w that describes the orthogonal variation of the trajectory.
It is now important that these variations commute, i.e. the operators

d

dt
= s · ∂ = sr∂r and

d

du
= w · ∂ = wr∂r (5.39)

must commute:

sr∂r(ws∂s) = ws∂s(sr∂r) (5.40)

srws(∂r∂s − ∂s∂r) =
(
d

du
st − d

dt
wt

)
∂t (5.41)

srwsCt
rs∂t =

(
d

du
st − d

dt
wt

)
∂t (5.42)

d

du
st =

d

dt
wt + Ct

rss
rws, (5.43)

where one uses (4.159) in (5.42). For the vectors s and w one has then

d

du
s =

d

dt
w + [s,w]JLB . (5.44)

This equation can now be used for varying the Lagrange function L(qi(t, u), sr(t, u)):

0 = δS =
∫ b

a

dt δL (5.45)

=
∫ b

a

dt

[
∂L

∂qi

∂qi

∂u
+
∂L

∂sr

(
d

dt
wr + Cr

sts
swt

)]
u=0

(5.46)

=
∫ b

a

dt

[(
∂rL+

∂L

∂ss
stCs

tr −
d

dt

∂L

∂sr

)
wr +

d

dt

(
∂L

∂sr
wr

)]
u=0

, (5.47)

from which the Poincaré equation follows

d

dt

∂L

∂sr
− ∂L

∂ss
stCs

tr = ∂rL. (5.48)

If the configuration space is a rotor group the Lagrange function is L = L(R, Ṙ) and one has to vary
R(t, u). Instead of vectors s and w the variations are described by bivectors

s = 2R ∗C Ṙ and w = 2R ∗C δR, (5.49)

113



so that the operators (5.39) are now expressed as d
dt = s · d and d

du = w · d. It follows further that

ds

du
= −2R ∗C δR ∗C R ∗C Ṙ+ 2R ∗C δṘ = −1

2
w ∗C s + 2R ∗C δṘ, (5.50)

dw

dt
= −2R ∗C Ṙ ∗C R ∗C δR+ 2R ∗C δṘ = −1

2
s ∗C w + 2R ∗C δṘ. (5.51)

Equating the expressions for 2R ∗C δṘ gives the bivector analog of (5.44):

d

du
s =

d

dt
w + s× w. (5.52)

The variation of the action is now given by

0 = δS =
∫ b

a

dt δL (5.53)

=
∫ b

a

dt

[
w · dL+

δL

δs
·
(
d

dt
w + s× w

)]
u=0

(5.54)

=
∫ b

a

dt

[
w ·
(
dL− d

dt

δL

δs
+
δL

δs
× s

)
+
d

dt

(
w · δL

δs

)]
u=0

, (5.55)

so that the bivector version of the Poincaré equation follows

d

dt

δL

δs
− δL

δs
× s = dL. (5.56)

In the Hamilton formalism the hamiltonian is given by H(qi, pi) = pj q̇
j(qi, pi) − L(qi, sr(qi, q̇i(qi, pi)))

and the canonical momentum is pi = ∂L
∂q̇i = ϑr

i
∂L
∂sr . The Poincaré equation follows then as

d

dt

∂L

∂sr
=
{ ∂L
∂sr

,H
}

PB
= {ϑi

rpi,H}PB (5.57)

=
∂ϑi

r

∂qj
pi

(
q̇j + pk

∂q̇k

∂pj
− ∂L

∂st

∂st

∂q̇l

∂q̇l

∂pj

)
−ϑi

r

(
pj
∂q̇j

∂qi
− ∂L

∂qi
− ∂L

∂st

∂st

∂qi
− ∂L

∂st

∂st

∂q̇j

∂q̇j

∂qi

)
(5.58)

=
∂ϑi

r

∂qj
ϑt

iϑ
j
s

∂L

∂st
ss + ϑi

r

∂L

∂st
q̇j
∂ϑt

j

∂qi
+ ϑi

r

∂L

∂qi
(5.59)

= ϑt
i

(
∂ϑi

r

∂qj
ϑj

s −
∂ϑi

s

∂qj
ϑj

r

)
ss ∂L

∂st
+ ϑi

r

∂L

∂qi
(5.60)

= Ct
rss

s ∂L

∂st
+ ∂rL. (5.61)

The Hamilton equations żi = {zi,H}PB in the bivector case, i.e. for a Hamilton function H(z) with a
bivector z = ziBi are obtained by using the Lie-Poisson bracket instead of the Poisson bracket. In the
so(3)-case the Hamilton equations read then

ż = z× dH = −ad∗dHz. (5.62)
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5.2 Geometric Algebra and the Kepler Problem

As the second example consider the solution of the Kepler problem by spinors [76, 7]. One uses here the fact
that the radial position vector r = r1σ1 + r2σ2 + r3σ3 can be written as a rotated and dilated basis vector:

r = U ∗C σ1 ∗C U. (5.63)

The components ri of r can then be expressed in terms of the components ui of U = u1+u2σ2σ3+u3σ3σ1+
u4σ1σ2: 

r1
r2
r3
0

 =


u1 u2 −u3 −u4

−u4 u3 u2 −u1

u3 u4 u1 u2

−u2 u1 −u4 u3




u1

u2

u3

u4

 , (5.64)

which is the well known Kustaanheimo-Stiefel transformation [86]. Comparing (5.63) and (5.64) leads to the
notational correspondence

r = U ∗C σ1 ∗C U ↔ ~r = L~u ~u, (5.65)

where ~r and ~u are four dimensional space vectors considered as tupels of numbers as in the conventional
formalism. One should note here that the KS-transformation increases the degrees of freedom by one, which
means that the bivector U in (5.63) is not unique [76]. This gauge freedom can be reduced by imposing an
additional constraint on U as will be shown below. Squaring (5.65) leads to the relations

U ∗C U = |U |2 = r ↔ L~uL
T
~u = ~u 2 = r, (5.66)

with r = |r| = |~r | = r21 + r22 + r23. Differentiating (5.65) with respect to t one obtains the KS-transformation
for the velocities as

ṙ = U̇ ∗C σ1 ∗C U + U ∗C σ1 ∗C U̇ ↔ ~̇r = 2L~u ~̇u. (5.67)

One can then choose for the constraint

U̇ ∗C σ1 ∗C U = U ∗C σ1 ∗C U̇ ↔ ṙ4 = 0, (5.68)

which means that the surplus fourth component r4 stays zero for all times. With this constraint it is possible
to invert the geometric algebra relation (5.67) for U . Implementing (5.68) in (5.67) gives ṙ = 2U̇ ∗C σ1 ∗C U ,
which can be solved for U̇ , so that the inverse relation to (5.67) is

U̇ =
1
2r

ṙ ∗C U ∗C σ1 ↔ ~̇u =
1
2r
LT

~u ~̇r. (5.69)

By introducing a fictitious time s which is defined as

d

ds
= r

d

dt
,

dt

ds
= r (5.70)

it is then possible to regularize the divergent 1/r-potential so that (5.69) reads dU
ds = 1

2 ṙ ∗C U ∗C σ1 or

d2U

ds2
=

1
2

(
r r̈ ∗C U ∗C σ1 + ṙ ∗C

dU

ds
∗C σ1

)
=

1
2

(
r̈ ∗C r +

1
2
ṙ2∗C

)
∗C U. (5.71)

Substituting now the inverse square force
mr̈ = −k r

r3
(5.72)

one obtains:
d2U

ds2
=

1
2m

(
1
2
mṙ2∗C − k

r

)
∗C U =

E

2m
U, (5.73)
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which is the equation of motion for a harmonic oscillator. This equation can be solved straightforwardly and
much easier than the equation for r. The orbit can then be calculated by (5.63).

The Kepler problem can also be treated in the canonical formalism. For this purpose one first needs the
KS-transformation for the momentum. If w =

∑4
n=1 wnσn is the canonical momentum corresponding to

u =
∑4

n=1 unσn the KS-transformation is given by

p =
1
4r
(
W ∗C σ1 ∗C U + U ∗C σ1 ∗C W

)
↔ ~p =

1
2r
L~u ~w, (5.74)

with W = w1 + w2σ2σ3 + w3σ3σ1 + w4σ1σ2. For p2∗C = p2
1 + p2

2 + p2
3 one gets with (5.74)

p2∗C =
1
4r
|W |2 − p2

4, (5.75)

where |W |2 = W ∗C W = w2
1 + w2

2 + w2
3 + w2

4 and

p4 =
1
2r

(u1w2 − u2w1 + u3w4 − u4w3) . (5.76)

Equation (5.75) allows to transform the Hamiltonian into ui- and wi-coordinates. This is done in several
steps [103]. Starting from the Hamiltonian H = 1

2m (p2
1 + p2

2 + p2
3)− k

r one first extends the phase space by
a q0- and a p0-coordinate and forms the homogeneous Hamiltonian as H1 = H + p0. This leads for the zero
component to two additional Hamilton equations

dq0
dt

=
∂H1

∂p0
= 1 and

dp0

dt
= −∂H1

∂q0
= −∂H1

∂t
= −∂p0

∂t
, (5.77)

which shows that q0 corresponds to the time t and p0 is a constant and corresponds to the negative energy
of the system, so that H1 = H + p0 = 0 for a conservative force. Since the time is now a coordinate the
development of the system has to be described with a different parameter. This development parameter
is the fictitious time s that is connected to the time by (5.70). The relation (5.70) can be implemented if
one chooses H2 = rH1. The Hamilton equations that describe then the development according to s are
differential equations with respect to s:

dqi
ds

=
∂H2

∂pi
and

dpi

ds
= −∂H2

∂qi
for i = 0, 1, 2, 3. (5.78)

Especially for the zero component one gets dq0
ds = dt

ds = ∂H2
∂p0

= r which corresponds to (5.70). After having
so far regularized the Hamiltonian one can then go over to KS-coordinates and obtains with (5.75)

H3 =
1

8m
(
w2

1 + w2
2 + w2

3 + w2
4

)
− 1

2m
rp2

4 − k − Er. (5.79)

Imposing now the constraint p4 = 0, which for wi = mu̇i is just (5.68), and considering bound states with
E < 0 the Hamiltonian is given by

H4 =
1

8m
(
w2

1 + w2
2 + w2

3 + w2
4

)
+ |E|

(
u2

1 + u2
2 + u2

3 + u2
4

)
− k, (5.80)

which describes a four dimensional harmonic oscillator with fixed energy and frequency ω = (|E|/2m)1/2.
The above discussed transformation of the Kepler problem can now be used to calculate the energy levels

of the hydrogen atom. To this purpose one introduces holomorphic coordinates

an =
1√
2

(√
4mω un + i

1√
4mω

wn

)
(5.81)
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so that the Hamiltonian H4 in (5.80) can be written as:

H4 = ω

(
4∑

n=1

anān

)
− e2, (5.82)

where k = e2. Introducing then holomorphic coordinates for left and right moving quanta

aR12 =
1√
2

(a1 − ia2) , aL12 =
1√
2

(a1 + ia2) and aR34 =
1√
2

(a3 − ia4) , aL34 =
1√
2

(a3 + ia4)

(5.83)
the Hamiltonian (5.82) turns into

H4 = ω (aR12 āR12 + aL12 āL12 + aR34 āR34 + aL34 āL34)− e2. (5.84)

One can now quantize this system with the Moyal product. The Moyal star product transforms under the
KS-transformation and the above transformations into

∗M = exp

 4∑
n=1

i~
2

( ~

∂un
~∂wn

−

~

∂wn
~∂un

) = exp

~
2

∑
X=R12,L12,R34,L34

( ~

∂aX
~∂āX

−

~

∂āX
~∂aX

) . (5.85)

The energy levels can then be obtained by the ∗-eigenvalue equation

H4 ∗M π(M)
n1n2n3n4

= 0, (5.86)

where π(M)
n1n2n3n4 is the product of four Wigner functions of the one dimensional harmonic oscillator given in

(1.118). Eq. (5.86) gives then

e2 = ~ω (nR12 + nL12 + nR34 + nL34 + 2) . (5.87)

To get the energy levels of the hydrogen atom one has to impose the constraint

p4 = aR12 āR12 − aL12 āL12 + aR34 āR34 − aL34 āL34 = 0, (5.88)

which for the energy levels corresponds to nR12−nL12 +nR34−nL34 = 0 or nR12 +nR34 = nL12 +nL34 ≡ n−1.
Putting this and ω =

√
|E|/2m into (5.87) one gets the well known energy levels of the hydrogen atom

En = −e
4m

2~
1
n2
. (5.89)

5.3 Active and Passive Rotations on Space and the Theoretical
Prediction of Spin

In the classical case the fermionic Clifford star product gives the geometric structure, while the coefficients
are bosonic, commuting scalars. It is then possible to go over to the noncommuting case by demanding that
the coefficients have to be multiplied by a bosonic star product. The Moyal and the Clifford star product
are then combined to the Moyal-Clifford star product that acts on functions on the phase space that are
vector valued on the physical space, it has the form

F ∗MC G = F exp

[
3∑

n=1

(
i~
2

( ~

∂qn
~∂pn

−

~

∂pn
~∂qn

)
+

~

∂σn
~∂σn

)]
G. (5.90)
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In section 4.6 it was demonstrated that an arbitrary transformation on a vector space can be represented in
a star product formalism by doubling the dimensions, while passive rotations could be described intrinsically
without such a doubling. Since here only rotations will be considered the doubled fermionic coodinates do
not for reasons of simplicity appear in the above star product. The combination of bosonic and fermionic
star products as above was also considered in a different context in [40, 54].

To see the consequences of a Moyal deformation in geometric algebra one can consider as a simple example
the Moyal-Clifford product of two vectors in d = 2 dimensions. The deformed generalization of (4.15) can
be written as

a ∗MC b = (a1 ∗M b2 − a2 ∗M b1)σ1σ2 + a1 ∗M b1 + a2 ∗M b2. (5.91)
Under the Moyal product the coefficients in general do not commute if they are functions of qn and pn. This
means that the Moyal-Clifford product of the same vectors a ∗MC a is in general not a scalar, but has also
a bivector part. It is this additional bivector part, which appears only for ~ 6= 0, that constitutes the spin
as a physical observable. This can be seen if one considers the minimal substituted Hamiltonian which is in
the formalism of deformed geometric algebra given by:

H =
1

2m

[
(p1 + eA1)σ1 + (p2 + eA2) σ2 + (p3 + eA3) σ3

]2∗MC

(5.92)

=
1

2m

[
(p1 + eA1)

2∗M + (p2 + eA2)
2∗M + (p3 + eA3)

2∗M

]
+

1
2m

[
(p1 + eA1) , (p2 + eA2)

]
∗M

σ1σ2 +
1

2m

[
(p1 + eA1) , (p3 + eA3)

]
∗M

σ1σ3

+
1

2m

[
(p2 + eA2) , (p3 + eA3)

]
∗M

σ2σ3. (5.93)

The first three terms H0 = 1
2m

∑3
n=1 (pn + eAn)2∗M describe the Landau problem of a charged particle

in a magnetic field which can be solved in the star product formalism as described in section 2.5 or [27].
The other three terms that describe the interaction of the spin and the magnetic field only appear because
by introducing the bosonic Moyal product the phase space variables no longer commute. If the magnetic
field points in σ3-direction the vector potential is given by A = −B3

2 q2σ1 + B3
2 q1σ2 and only the first

Moyal-commutator in (5.93) contributes:

HSpin =
1

2m

[
(p1 + eA1) , (p2 + eA2)

]
∗M

σ1σ2 =
~ω
2
σ3 (5.94)

where ω = eB3
m and σ3 = −iσ1σ2 is a real quaternion, which is constructed according to (4.13) and (2.96).

The difference between this calculation and the conventional approach is, that in the conventional formalism
the Clifford structure is introduced in an ad hoc manner by inserting Pauli matrices by hand in (5.92).
The Pauli matrices describe then the spin and lead analogously to the additional term in the Hamiltonian.
This approach, which is also known as the Feynman trick, is actually wrong, because the Pauli matrices are
tuple representations of the basis bivectors. But (p + eA) is neither a bivector nor an axial vector, it is a
vector and so one has to insert the basis vectors and not the basis bivectors. That the Feynman trick leads
nevertheless to a sensible result is due to the fact that there are in three dimensions as many basis vectors
as basis bivectors and that they fulfill a similar algebra. In contrast to the tuple formalism in geometric
algebra the Clifford structures do not have to be added by hand, they are just the basis vectors that already
exist in classical mechanics, but become apparent as physical objects in the quantum case.

The ∗-eigenfunctions of HSpin are π(C)
±1/2 = 1

2 (1∓ iσ1σ2), i.e.

HSpin ∗C π
(C)
±1/2 = ±~ω

2
π

(C)
±1/2 (5.95)

so that HSpin can be decomposed as

HSpin =
~ω
2

(
π

(C)
+1/2 − π

(C)
−1/2

)
. (5.96)
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The π(C)
±1/2 are the spin Wigner functions and as such they are projectors:

π
(C)
±1/2 ∗C π

(C)
±1/2 = π

(C)
±1/2 and π

(C)
+1/2 ∗C π

(C)
−1/2 = π

(C)
−1/2 ∗C π

(C)
+1/2 = 0. (5.97)

It is then clear that the ∗-eigenfunctions of the whole Hamiltonian (5.93) are products of the Moyal eigen-
functions of H0 and the spin Wigner functions π(C)

±

H ∗MC π
(M)
n π

(C)
±1/2 =

(
H0 +

~ω
2
(
π

(C)
+1/2 − π

(C)
−1/2

))
∗MC π

(M)
n π

(C)
±1/2 =

(
En ±

~ω
2

)
π(M)

n π
(C)
±1/2. (5.98)

It is evident that the time development and the expectation values of the spin are calculated just as in
section 2.5. While there the construction of the spin term was based on pseudoclassical mechanics, one can
see here that the spin does not need to be constructed and added a posteriori, but rather appears naturally
by deforming geometric algebra.

The Moyal deformation of geometric algebra gives rise to multivector valued extra terms. Such a multivec-
tor is invariant under a combined transformation of the bosonic coefficients and a compensating transforma-
tion of the fermionic basis vectors. The bosonic transformation of the coefficients is an active transformations
and the fermionic transformation of the basis vectors is a passive transformation. In a tuple formalism this
difference can not be made and so active and passive transformations are mixed up with left and right trans-
formation, whereas in a multivector formalism one rather has that an active right transformation corresponds
to a passive left transformation and the other way round. To illustrate the concept of active and passive
transformations in the star product formalism one can consider rotations in space. In the three dimensional
euclidian space with vectors x = xiσi the active rotations [3] are generated by the angular momentum
functions

Li = εijkxjpk, (5.99)

which fulfill with the three dimensional Moyal product the active algebra[
Li, Lj

]
∗M

= i~εijkLk. (5.100)

An active left-rotation has then the form

x′ = U ∗M x ∗M U = e
− i

~ αkLk

∗M ∗M x ∗M e
i
~ αkLk

∗M =
(
Ri

jx
j
)
σi, (5.101)

where the Ri
j is the well known rotation matrix. The corresponding passive rotation [4, 36] is generated by

the bivectors
Bi =

1
2
εijkσjσk (5.102)

that fulfill as seen above the passive algebra

Bi × Bj = −εijkBk, (5.103)

so that the passive left-rotation is given by

x′ = R ∗C x ∗C R = e
− 1

2 αkBk
∗C ∗C x ∗C e

1
2 αkBk
∗C = xi

(
Rj

i σj

)
. (5.104)

It is clear that the above transformations generalize to arbitrary multivectors A(xi) and that such a multi-
vector is invariant under a composed active and a compensating passive transformation [82]. The generator
of such a composed transformation is then the sum of the active and passive generators, so that one has
infinitesimally[

Li +
1
2
Bi, A(xn)

]
∗MC

=
[
Li, A(xn)

]
∗M

+ Bi ×A(xn) =
[
εijkxj ~

i
∂

∂xk
+ Bi×

]
A(xn). (5.105)
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In the conventional formalism one states that in quantum mechanics one has to go over from the angular
momentum operator L̂i to the operator Ĵi that includes also a Pauli matrix. In geometric algebra this follows
from the invariance behavior of multivectors.

In order to establish the relation of the Wigner functions obtained above and the spinors described in
section 4.7 one has to notice that the deformation of the three dimensional geometric algebra with the Moyal
star product means that one works on the complex even subalgebra C`+0,3(C). But this subalgebra is isomorph
to the full real Clifford algebra C`0,3(R), i.e. C`+0,3(C) ' C`0,3(R), with the substitutions

1 ↔ 1, i ↔ I(3), σiσj ↔ σiσj and − iεijkσjσk ↔ σi. (5.106)

For the spin hamiltonian and the Wigner functions this means:

~ω
2i

σ1σ2 ↔
~ω
2

σ3 and
1
2
(1∓ iσ1σ2) ↔

1
2
(1± σ3) (5.107)

So for π(C)
±1/2 = 1

2 (1± σ3) and ψ+ = 1, ψ− = σ1σ3 one has

π
(C)
±1/2 = ψ± ∗C π

(C)
+1/2 ∗C ψ±, (5.108)

i.e. the spinors relate the two Wigner functions. Furthermore it is possible to relate the ∗-eigenvalue equa-
tions:

σ3 ∗C ψ± ∗C σ3 = ±ψ± (5.109)

⇔ σ3 ∗C ψ± ∗C σ3 ∗C

1
2
(1 + σ3) ∗C ψ± = ±ψ± ∗C

1
2
(1 + σ3) ∗C ψ± (5.110)

⇔ σ3 ∗C π
(C)
±1/2 = ±π(C)

± (5.111)

and

σ3 ∗C π
(C)
±1/2 = ±π(C)

±1/2 (5.112)

⇔ σ3 ∗C ψ± ∗C π
(C)
+1/2 ∗C ψ± = ±ψ± ∗C π

(C)
+1/2 ∗C ψ± (5.113)

⇒ (±ψ± − σ3 ∗C ψ± ∗C σ3) ∗C (1 + σ3) = 0 (5.114)
⇒ σ3 ∗C ψ± ∗C σ3 = ±ψ±. (5.115)

5.4 Space-Time Algebra and Relativistic Quantum Mechanics

The formalism of space-time algebra can also be used to describe relativistic kinematics. If a particle is
moving in the γ0-system along x(τ), where τ is the proper time, the proper velocity is given by u(τ) =
d
dτ x(τ), with u2∗C = 1. For the space-time split of the proper velocity one obtains:

u = u ∗C γ0 = u · γ0 + uγ0 = u0 + u =
d

dτ
(x(τ) ∗C γ0) =

d

dτ
(t+ x) =

dt

dτ
+
dx

dt

dt

dτ
. (5.116)

Comparing the scalar and the bivector part leads to

u0 = u · γ0 =
dt

dτ
and u =

dx

dt
=
dx

dτ

dτ

dt
=

uγ0

u · γ0
(5.117)

and with 1 = u2∗C = u2
0(1− u2∗C ) one has

u0 = u · γ0 =
1√

1− u2∗C
= γ. (5.118)
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It is now also possible to specify a Lorentz transformation from a coordinate system γµ to an in γ1-
direction moving coordinate system γ′µ. For the coefficients this transformation is given by t = γ(t′ + βx′

1),
x1 = γ(x′1 + βt′), x2 = x′

2, and x3 = x′
3. The condition x = xµγµ = x′

µ
γ′µ leads then to

γ′0 = γ(γ0 + βγ1) and γ′1 = γ(γ1 + βγ0). (5.119)

Introducing the angle α so that β = tanh(α) this can be written as

γ′0 = cosh(α)γ0 + sinh(α)γ1 = e
αγ1γ0
∗C ∗C γ0, (5.120)

γ′1 = cosh(α)γ1 + sinh(α)γ0 = e
αγ1γ0
∗C ∗C γ1, (5.121)

or with L1 = e
αγ1γ0/2
∗C as γ′µ = L1 ∗C γµ ∗C L1.

General passive Lorentz transformations as rotations in Minkowski space are generated by the space-time
bivectors. In four dimensions one has six bivectors:

B1 = γ1γ0, B2 = γ2γ0, B3 = γ3γ0 (5.122)
and B4 = I(4) ∗C B1 = γ3γ2, B5 = I(4) ∗C B2 = γ1γ3, B6 = I(4) ∗C B3 = γ2γ1, (5.123)

with the pseudoscalar I(4) = γ0γ1γ2γ3, For these bivectors one has B2∗C
1,2,3 = 1, B2∗C

4,5,6 = −1 and

Bi × Bj = −εijk(I(4) ∗C Bk), Bi × (I(4) ∗C Bj) = εijkBk, (5.124)
(I(4) ∗C Bi)× Bj = εijkBk, (I(4) ∗C Bi)× (I(4) ∗C Bj) = εijkBk. (5.125)

In analogy to the tuple formalism one can also write the bivectors as

σµν =
I(4)

2
∗C

[
γµ,γν

]
∗C
. (5.126)

The generators for the passive boosts and rotations are

Ki =
1
2
σ0i and Li =

1
2

∑
j<k

εijkσjk (5.127)

and they satisfy in the case of the nonstandard metric (for the standard metric one has to replace I(4) by
−I(4)):

[Li, Lj ]∗C
= −I(4) ∗C εijkLk, [Li, Kj ]∗C

= −I(4) ∗C εijkKk, and [Ki, Kj ]∗C
= I(4) ∗C εijkLk. (5.128)

The passive Lorentz transformation is then given by

x′ = e
1
4 I(4)∗Cαµνσµν

∗C ∗C x ∗C e
− 1

4 I(4)∗Cαµνσµν

∗C = xµ
(
Λν

µγν

)
(5.129)

where Λµ
ν is the well known Lorentz transformation matrix.

In the light of geometric algebra it now becomes clear that Dirac by factorizing the Klein-Gordon equation,
found nothing else than the basis vectors of space-time. Taking these into account the Lorentz transformation
in the coefficients of a four vector p = pµγµ have to be compensated by a passive Lorentz transformation in
the basis vectors if one demands invariance. This passive Lorentz transformation which in geometric algebra
is naturally given had to be constructed by Dirac a posteriori to insure Lorentz invariance of his equation
[73, 37]. It would now be straightforward to formulate Dirac theory in the star product formalism, which
would reproduce the results of section 2.6. But the important point is here that by doing this one ignores
two severe conceptual problems that lie in Dirac theory itself [41] and are again made obvious by the star
product formalism.
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The first problem is that one uses in the star product formalism for Dirac theory a four dimensional
fermionic Clifford star product in order to generate the Clifford algebra of the γµ, but on the other hand
a three dimensional bosonic Moyal product. Using the three dimensional Moyal product just reflects the
special role the time plays in Dirac theory. But for the star product formalism this means that the algebraic
structure is not supersymmetric and that one can not represent active Lorentz transformations. With a
three dimensional Moyal product one can only represent active rotations, to include the boosts one would
need a four dimensional star product, i.e.

f ∗M g = f exp

[
i~
2
ηµν

( ~

∂

∂qµ

~∂

∂pν
−

~

∂

∂pµ

~∂

∂qν

)]
g. (5.130)

Here again the nonstandard metric should be chosen, so that the three dimensional part reduces to the
conventional Moyal product. The generators of an active Lorentz transformation are then

Mµν = qµpν − pµqν , (5.131)

with
[Mµν ,Mρσ]∗M

= i~ (ηµρMνσ − ηνρMµσ + ηµσMρν − ηνσMρµ) . (5.132)

The generators of boosts and rotations are

Ki = M01 and Li =
∑
j<k

εijkM jk. (5.133)

They form the following active Moyal star-commutator algebra[
Li, Lj

]
∗M

= i~εijkLk,
[
Li,Kj

]
∗M

= i~εijkKk and
[
Ki,Kj

]
∗M

= −i~εijkLk, (5.134)

so that an active Lorentz transformation of the four-vector q = qµγµ is given by

q′ = e
− i

~ αµνMµν

∗M ∗M q ∗M e
i
~ αµνMµν

∗M =
(
Λµ

ν q
ν
)
γµ. (5.135)

Taking the translations with the generators pµ into account the Lorentz algebra is with [pµ, pν ]∗M
= 0 and

[Mµν , pρ]∗M
= i~ (ηµρpν − ηνρpµ) (5.136)

extended to the Poincaré algebra.
The second severe conceptual problem that is related closely to the first one is that the Dirac equation has

no classical limit. This contradicts the philosophy of deformation quantization, where quantum mechanics
is a deformation of classical mechanics and where the limit ~ → 0 leads again to classical mechanics. So
following the philosophy of deformation quantization means to deform a manifest covariant version of the
canonical formalism to obtain relativistic quantum mechanics. Covariance of the canonical formalism means
that the physical laws, expressed by Poisson bracket relations, have to be invariant under a transformation
from one inertial system into another inertial system. Such transformations preserving the Poisson brackets
are canonical transformations, so that a canonical system is relativistically invariant if one has a canonical
realization of the relativity group. Manifest covariance means that in addition to the requirement of rela-
tivistic invariance of the physical laws the labeled trajectory of a particle in configuration space ~q(t) has to
behave like a world line. This means that the relativity postulate leads only to the requirement of a Poisson
bracket realization of the Poincare group, while manifest covariance requires that the dynamical quantities
(t, ~q(t)) constitute an space-time event [104]. There are now two approaches to a manifest covariant extension
of the canonical formalism in classical mechanics. The first approach is that one describes the particles by
their canonical coordinates and the time coordinate and then derives conditions that describe the fact that
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(t, ~q(t)) transforms like an event in space-time. These additional conditions lead then to the consequence
that no interactions are allowed [104].

The alternative method is to use a parameter formalism. In this approach the events that constitute the
world lines are labeled by an observer independent parameter s that increases monotonically as the world
line is traversed. The four space-time coordinates of an event on the world line are then functions of this
parameter and going from one inertial system to another one does not change the parameter. The four
space-time coordinates are then regarded as the dynamical quantities, while the parameter s describes the
evolution of the system. So the time has no longer the two roles of a dynamical variable and an evolution
parameter. But this just fits perfectly to the solution of the first conceptual problem, because using the four
dimensional Moyal product (5.130) for deformation quantization means that the one particle phase space is
extended by the two variables q0 and p0, which means that the time development is not described by the
time, that is now a phase space coordinate, but by an additional parameter. So what is actually deformed
by the four dimensional Moyal product (5.130) is parametrized Hamiltonian dynamics. And in the limit
~ → 0 the star product reduces to the conventional product so that one reobtains the classical undeformed
parametrized Hamiltonian dynamics, so that the conceptual problem of the missing classical limit is also
solved. In the operator formalism of canonical quantization this would mean that time is no longer a scalar
but an operator, for a discussion concerning the existence of such a time operator see [59].

It is now straightforward to develop a parametrized relativistic mechanics [43, 81]. One defines to this
purpose a parameter-dependent action

S =
∫ s2

s1

dsLs(qµ, q̊µ, s), (5.137)

where q̊µ is the derivation with respect to the parameter s:

q̊µ =
dqµ

ds
. (5.138)

Requiring that the variation of the action vanishes: δS = 0 leads to the parametrized version of the Euler-
Lagrange equation:

d

ds

∂Ls

∂̊qµ −
∂Ls

∂qµ
= 0. (5.139)

With the Legendre transformation

K(qµ, pµ, s) = q̊µpµ − Ls(qµ, q̊µ, s) (5.140)

one then obtains the parametrized Hamilton equations:

q̊µ =
∂K

∂pµ
and p̊µ = − ∂K

∂qµ
. (5.141)

Using the Hamilton equations to calculate

d

ds
f(qµ, pµ, s) = {f,K}PB +

∂f

∂s
(5.142)

one arrives at the four-space Poisson bracket

{f, g}PB =
∂f

∂qµ

∂g

∂pµ
− ∂g

∂qµ

∂f

∂pµ
, (5.143)

for which follows
{qµ, pν}PB = δµ

ν and {qµ, qν}PB = {pµ, pν}PB = 0. (5.144)
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For example the covariant Hamiltonian of the free particle is

K =
ηµν

2m
pµpν (5.145)

so that the Hamilton equations (5.141) lead to

p̊µ = 0 ⇒ pµ = p0µ = const

and q̊µ =
pµ

m
⇒ qµ = qµ

0 +
pµ
0

m
s. (5.146)

Variation of qµ gives then δqµδqµ = pµ
0 p0µ

m2 (δs)2 = (δs)2 with the initial condition m2 = pµ
0p0µ, which shows

that the parameter s is just the proper time.
In the case of a charged particle in an electromagnetic field the Hamiltonian (5.145) generalizes to

K =
ηµν

2m
[pµ − eAµ] [pν − eAν ] =

1
2m

πµπµ, (5.147)

with the kinetic momentum πµ = pµ − eAµ. The Hamilton equations (5.141) lead to

q̊µ =
πµ

m
and p̊µ =

e

m
πν∂µAν . (5.148)

Combining these two equations gives p̊µ = e̊q ν∂µAν and for the derivation of the kinetic momentum with
respect to s one obtains π̊µ = p̊µ − e∂νAµ̊q ν . Equating then the expressions for p̊µ gives the Lorentz force
law

π̊µ = eFµν̊q ν . (5.149)

The classical mass is then a constant associated to the kinetic momentum which can be obtained as follows.
With (5.149) and (5.148) one can calculate

π̊µπ
µ =

1
2
d

ds
(πµπ

µ) = emFµν̊q ν q̊µ = 0. (5.150)

From d
ds (πµπ

µ) = 0 follows then that πµπ
µ = π0µπ

µ
0 is an integration constant with respect to s. In order

to be consistent with the case Aµ = 0, where pµp
µ = p0µp

µ
0 = m2 one chooses the integration constant as

π0µπ
µ
0 = m2. This shows that the classical mass is a secondary concept in the proper time formalism, while

energy and momentum are primary concepts.
Just as in the nonrelativistic case the connection of the four dimensional Poisson bracket (5.143) and the

four dimensional star product (5.130) is given by

lim
~→0

1
i~

[f, g]∗M
= {f, g}PB , (5.151)

so that the star commutators of the canonical coordinates are

[qµ, pν ]∗M
= i~δµ

ν and [qµ, qν ]∗M
= [pµ, pν ]∗M

= 0. (5.152)

The structures of deformation quantization in the nonrelativistic case can then be generalized to the four
dimensional case in a straightforward manner. The development of the system in s is generated by the four
dimensional Hamiltonian. In the star product formalism this is described by the star exponential, which is
in the four dimensional case given by

ExpM (Ks) = e
−isK/~
∗M =

∞∑
n=0

1
n!

(
−is
~

)n

Kn∗M , (5.153)

124



where Kn∗M is the n-fold star product. The star exponential fulfills the proper time generalization of the
time dependent Schrödinger equation:

i~
d

ds
ExpM (Ks) = K ∗M ExpM (Ks). (5.154)

The calculations to determine the spectrum and the Wigner eigenfunctions then parallels the calculations in
the non-relativistic case.

But there is now also the additional effect due to noncommutativity known from the nonrelativistic case.
Combining the Moyal product (5.130) and the Clifford product (4.314) into one supersymmetric formalism
one obtains a noncommutative version of space-time algebra. In the commutative or classical case the
generalized Hamiltonian (5.147) can be written as

K =
1

2m
π ∗C π =

1
2m

π · π (5.155)

with π = πµγµ. But if one introduces noncommutativity via the Moyal product, the Moyal product of πµ

and πν is in general not symmetric in the indices, one rather has

[πµ, πν ]∗M
= i~eFµν . (5.156)

This leads then to the appearance of an additional term that describes the spin:

K =
1

2m
π ∗MC π =

1
2m

(πµ ∗M πν)
(
γµ ∗C γν

)
=

1
2m

πµπµ +
1

2m
(πµ ∗M πν) γµγν . (5.157)

In the case of a stationary particle in a homogenous magnetic field (5.157) reduces to

K = −m
2

+ i
e~
2m

B3γ1γ2, (5.158)

so that one has the spin eigenfunctions 1
2 ±

i
2γ1γ2, that fulfil

iγ1γ2 ∗C

(
1
2
± i

2
γ1γ2

)
= ±

(
1
2
± i

2
γ1γ2

)
. (5.159)

5.5 Deformed Geometric Algebra on the Phase Space and Super-
symmetric Quantum Mechanics

The concept of deforming geometric algebra that on space and space-time produced extra spin terms can
now also be used to deform geometric algebra on the phase space as described in section 4.7. It will be
shown here that this deformation leads naturally to the appearance of supersymmetric quantum mechanics.
While in section 2.4 supersymmetric quantum mechanics was constructed via pseudoclassical mechanics one
will see here that it appears naturally and geometrically. One can restrict oneself to the simplest case of a
flat two dimensional phase space, i.e. a point in the phase space is given by z = ziζi = qη + pρ and the
Clifford star product is given by

A ∗C B = A exp

[
ηij

~

∂

∂ζi

~∂

∂ζj

]
B, (5.160)

where ηij = diag(1, 1) is here the euclidian metric on the vector space. Furthermore one has a closed two-form

Ω =
1
2
Ωijζ

iζj = ηρ = dqdp. (5.161)
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A Hamilton function can now be written as the square of the vector

w = W (q)η + pρ, (5.162)

where W (q) is the superpotential, one has then

H =
1
2
w ∗C w =

1
2
w ·w =

1
2
[
p2 +W 2(q)

]
(5.163)

and in holomorphic coordinates B = 1√
2
(W (q)+ip), B̄ = 1√

2
(W (q)− ip) and f = 1√

2
(η+iρ), f̄ = 1√

2
(η− iρ)

one obtains
w = Bf̄ + B̄f = Q+ + Q− (5.164)

and H = BB̄.
Up to now the coefficients were commuting quantities, but one can go over to the noncommutative or

quantum case by demanding that the coefficients have to be multiplied by the Moyal product. In this case
the square of w is no longer a scalar, but one has an bivector valued extra term

HSusy =
1
2
w ∗MC w =

1
2
[
(W (q) ∗M W (q))(η ∗C η) + (W (q) ∗M p)(η ∗C ρ)

+(p ∗M W (q))(ρ ∗C η) + (p ∗M p)(ρ ∗C ρ)
]

(5.165)

=
1
2
[
p2 +W 2(q)

]
+

~
2
∂W (q)
∂q

1
i
ηρ. (5.166)

The next thing one has to notice is that η, ρ and −iηρ fulfill under the Clifford star product the Pauli
algebra, i.e. one has for the star commutators and anticommutators of these real basis elements of the two
dimensional Clifford algebra:

[η,ρ]∗C
= 2ηρ, [η,−iηρ]∗C

= −2iρ, [ρ,−iηρ]∗C
= 2iη (5.167)

and {η,η}∗C
= {ρ,ρ}∗C

= {−iηρ,−iηρ}∗C
= 2, (5.168)

while the other star commutators and star anticommutators vanish. This means that η, ρ and −iηρ would be
represented in a tuple representation by the Pauli matrices, so that HS is the supersymmetric Hamiltonian.
Furthermore for the holomorphic basis vectors f = 1√

2
(η + iρ) and f̄ = 1√

2
(η − iρ) one has the tuple

representation
1√
2
f ↔

(
0 1
0 0

)
and

1√
2
f̄ ↔

(
0 0
1 0

)
. (5.169)

The two eigen-multivectors of −iηρ are π(C)
± = 1

2 (1∓ iηρ), i.e. for these multivectors one has

−iηρ ∗C π
(C)
± = ±π(C)

± . (5.170)

In the star product formalism these multivectors are fermionic Wigner functions and as such they are
projectors:

π
(C)
± ∗C π

(C)
± = π

(C)
± and π

(C)
+ ∗C π

(C)
− = π

(C)
− ∗C π

(C)
+ = 0. (5.171)

The holomorphic basis vectors 1√
2
f and 1√

2
f̄ serve here as lowering and raising operators, i.e. one has

f̄ ∗C π
(C)
+ ∗C f = 2π(C)

− and f ∗C π
(C)
− ∗C f̄ = 2π(C)

+ , (5.172)

while the other combinations give zero.
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With the multivectors π(C)
± the supersymmetric Hamilton function (5.166) can then be written as

HSusy =
1
2

[
p2 +W 2(q)− ~

∂W (q)
∂q

](
1
2
− i

2
ηρ

)
+

1
2

[
p2 +W 2(q) + ~

∂W (q)
∂q

](
1
2

+
i
2
ηρ

)
(5.173)

= H1π
(C)
+ +H2π

(C)
− . (5.174)

From (5.171) it is then clear that the Moyal-Clifford star eigenfunctions of HSusy are a product of π(C)
+ and

Moyal star eigenfunctions of H1 or products of π(C)
− and Moyal star eigenfunctions of H2. The Moyal star

eigenfunctions for supersymmetric partner potentials were for example discussed in [24].
The vectors Q± defined in (5.164) fulfill

Q± ∗MC Q± = 0, Q− ∗MC Q+ = H1π
(C)
+ , Q+ ∗MC Q− = H2π

(C)
− (5.175)

so that HSusy can be written as

HSusy =
1
2
{Q+,Q−}∗MC

, (5.176)

and with (5.175) one has
[
Q+,HSusy

]
∗MC

=
[
Q−,HSusy

]
∗MC

= 0. Defining finally

Q1 = Q+ + Q− and Q2 = −i(Q+ −Q−) (5.177)

the supersymmetric Hamilton function factorizes as

HSusy =
1
2
Q1 ∗MC Q1 =

1
2
Q2 ∗MC Q2. (5.178)

In conclusion one sees here that supersymmetric quantum mechanics appears naturally if one deforms
geometric algebra on the phase space. The deformation of geometric algebra on the three space induced an
extra bivector valued term that splits the system in a version with spin up and one with spin down, i.e. the
noncommutativity transforms the Schrödinger Hamilton into the Pauli Hamiltonian. The analogue procedure
on the phase space leads similarly to a split into two supersymmetric partner systems. The appearance of
these structures can also be stated in a different way: Just as the factorization of the Klein-Gordon equation
exhibits in Dirac theory the Clifford structure of space-time, the factorization of a Hamilton function into
supercharges exhibits the Clifford structure of the phase space.

5.6 Active and Passive Transformations on the Phase Space

A flat phase space can be considered as an 2d-dimensional euclidian vector space with vectors (4.327) and a
two-form (4.328). The time development is described by the hamiltonian vector field hH = q̇nηn + ṗnρn =
J ij∂jHζi, so that one has for a scalar phase space function f

ḟ = ż · (df) = (hH · d)f = LhH
f = {f,H}PB . (5.179)

where hH · d is the Liouville operator. The above equation for the time development can immediately
be generalized from 0-forms f to arbitrary r-forms. For example the time development of the symplectic
two-form is given by Ω̇ = LhH

Ω = 0, which means that the symplectic form is preserved by the time
evolution.
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The temporal development of a system can be described by an active time transformation of the coeffi-
cients, which corresponds to the Hamilton equations

żi = LhH
zi = J ij∂jH. (5.180)

In the formalism of geometric algebra it is also possible to write down a time transformation of the basis
vectors

ζ̇i = LhH
ζi = −Jjk∂k∂iHζj , (5.181)

which corresponds to the Jacobi equation that appeared in the path integral formulation of classical me-
chanics [65].

Active and passive time development can directly be discussed for the example of the harmonic oscillator.
The Hamiltonian H = 1

2 (p2 + q2) generates via the star exponential U(t) = e
− i

~ Ht
∗M an active rotation of the

state vector z0 = qη + pρ according to [114]

z(t) = U(t) ∗M z0 ∗M U(t) = (q cos t+ p sin t)η + (−q sin t+ p cos t)ρ = q(t)η + p(t)ρ. (5.182)

The same transformation passively can be achieved with the rotor R(t) = e
1
2 Ht
∗C and the bivector H = ηρ as

z(t) = R(t) ∗C z0 ∗C R(t) = q(cos tη − sin tρ) + p(sin tη + cos tρ) = qη(t) + pρ(t). (5.183)

With the hamiltonian vector-field hH = pη − qρ and the relation {f, g}PB = lim~→0
1
i~ [f, g]∗M

the active
Hamilton equations żi = LhH

zi can be written as

q̇ = lim
~→0

1
i~

[q,H]∗M
= p and ṗ = lim

~→0

1
i~

[p,H]∗M
= −q. (5.184)

With (5.181) one can then calculate the corresponding time inverted passive Hamilton equations. Using the
Clifford star commutator defined by[

A(r), B(s)

]
∗C

= A(r) ∗C B(s) − (−1)rsB(s) ∗C A(r) (5.185)

these equations can be written as

η̇ =
1
i

[η, H]∗C
= ρ and ρ̇ =

1
i

[ρ, H]∗C
= −η, (5.186)

where H = i
2ηρ is the passive Hamiltonian. The passive Hamiltonian is connected with the active one

through (5.185) and (5.181) by
1
i

[ζi, H]∗C
= −Jjk∂k∂iHζj . (5.187)

The passive Hamiltonian H is here just the free Hamiltonian of pseudoclassical mechanics [11] (the additional
factor 1

2 is due to the definition of the Clifford product which is defined without a factor 1
2 ).

A Lagrangian that takes into account both the time development according to (5.180) and the time
development according to (5.181) should be called the extended Lagrangian and has the form

L̃E = yi

(
żi − J ij∂jH

)
+ iζj

(
∂tδ

j
l − Jjk∂l∂kH

)
λl

= yiż
i + iζjλ̇

j − H̃E , (5.188)

where the extended Hamiltonian H̃E is given by

H̃E = yiJ
ij∂jH + iζjJ

jk∂l∂kHλl. (5.189)
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The extended Lagrangian first appeared in the path integral approach to classical mechanics [65, 66],
where the classical analogue of the quantum generating functional was considered:

ZCM [J ] = N

∫
Dz δ [z(t)− zcl(t)] exp

[∫
dt Jφ

]
. (5.190)

The delta function here constrains all possible trajectories to the classical trajectory obeying (5.180). It can
be written as

δ [z(t)− zcl(t)] = δ
[
żi − Ωij∂jH

]
det
[
δi
j∂t − Ωik∂k∂jH

]
. (5.191)

The delta function on the right side can be expressed by a Fourier transform

δ
[
żi − Ωij∂jH

]
=
∫
Dyi exp

[
i
∫
dt yi

(
żi − Ωij∂jH

)]
(5.192)

and the determinant can be written in terms of Grassmann variables as

det
[
δi
j∂t − Ωik∂k∂jH

]
=
∫
DλiDζi exp

[
−
∫
dt ζi

[
δi
j∂t − Ωik∂k∂jH

]
λj

]
, (5.193)

so that ZCM [0] becomes

ZCM [0] =
∫
DziDyiDλjDζj exp

[
i
∫
dt L̃E

]
. (5.194)

The important point is here that the path integral formalism of classical mechanics gives the fermionic basis
vectors of geometric algebra the physical interpretation of ghosts. On the other hand the superanalytic
formulation of geometric algebra has naturally the fermionic structures that in the conventional formalism
have to be added ad hoc and per hand.

The zi and ζi form together with the newly introduced variables yi and λi the extended phase space. On
this extended phase space one can then introduce an extended canonical structure. This can easily be done
in analogy to the Moyal and the Clifford star product structures of the phase space. Defining the extended
Moyal-Clifford star product as

F ∗EMC G = F exp

[
i
2

( ~

∂

∂zk

~∂

∂yk
−

~

∂

∂yk

~∂

∂zk

)
+

1
2

( ~

∂

∂λk

~∂

∂ζk

+

~

∂

∂ζk

~∂

∂λk

)]
G (5.195)

the extended Poisson bracket has the form

{F,G}EPB =
1
i

[
F ∗EMC G− (−1)ε(F )ε(G)G ∗EMC F

]
, (5.196)

where ε(F ) gives the Grassmann grade of F . In the bosonic part of the extended Clifford star product a
factor ~ can be included like in the Moyal product, so that in the definition of the extended Poisson bracket
(5.196) the limit ~ → 0 has to be taken. The extended canonical relations are then given by

{zi, yj}EPB = δi
j and {ζi,λ

j}EPB = −iδj
i , (5.197)

while all other extended Poisson brackets vanish. Furthermore one can calculate the equations of motion as

żi = {zi, H̃E}EPB = Ωij∂jH, (5.198)

ζ̇i = {ζi, H̃E}EPB = −Ωjk∂k∂iHζj , (5.199)

ẏi = {yi, H̃E}EPB = −zjΩjk∂k∂iH − iζjΩ
jk∂k∂l∂iHλl, (5.200)

λ̇i = {λi, H̃E}EPB = Ωij∂j∂kHλk. (5.201)
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The extended Hamiltonian also generates the time development of r-vectors and r-forms according to [69]

Ẋ = LhX = {X, H̃E}EPB . (5.202)

Having now a superanalytic formalism for classical mechanics that takes into account active and passive
time development, one can ask if there is a supersymmetry in this formalism, i.e. a symmetry that relates
the bosonic coefficients with the fermionic basis vectors. This supersymmetry was found by Gozzi et al. in
[65]. There it was shown that H̃E is invariant under the following BRST-transformation

δzk = ελk, δζk = iεyk, δλk = δyk = 0 (5.203)

and the following anti-BRST-transformation

δzk = −εΩklζl, δλk = iεΩklyl, δζk = δyk = 0, (5.204)

where ε and ε are Grassmann variables. These symmetries are generated by

QBRST = yjλ
j and QBRST = ζjΩ

jkyk (5.205)

according to δX = {X, εQBRST + εQBRST }EPB . The two charges QBRST and QBRST are conserved, i.e.

{QBRST , H̃E}EPB = {QBRST , H̃E}EPB = 0 (5.206)

and fulfill
{QBRST ,QBRST }EPB = {QBRST ,QBRST }EPB = {QBRST ,QBRST }EPB = 0. (5.207)
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Conclusions

After the discussion so far, one can now come back to the original question if a formally unified way
to describe physics is possible. The most obvious formal break between classical and quantum physics is
that classical physics is described on the phase space while quantum mechanics is described on a Hilbert
space. The bosonic star product formalism gives here an alternative approach that allows to formulate also
quantum mechanics on the phase space. Although the star product formalism is not always optimal for
practical calculations and there are still many open questions, it nevertheless shows a way to overcome this
first formal break between classical and quantum physics.

The second formal break between classical and quantum physics is that one uses in classical mechanics
a vector formalism, while in quantum physics one actually is using a multivector formalism. This formal
break is not so well noticed, because the multivectors in quantum mechanics are described as tuples in
additional representation spaces. Closely related to this is the question which status fermionic degrees
of freedom have. Conventionally fermionic degrees of freedom are connected with quantum mechanics,
but they nevertheless appear also in classical physics for example in the classical BRST-formalism and in
pseudoclassical mechanics, where they can be used to describe spin. Geometric algebra gives here a natural
and confined picture that is interesting in several ways. Firstly the Clifford calculus of geometric algebra
can be formulated as a Grassmann calculus that is deformed with a fermionic star product. So Grassmann
variables that play in geometric algebra the role of basis vectors are no longer introduced a posteriori and ad
hoc, but in a natural and geometric manner. Furthermore geometric algebra is a multivector formalism that
can be used in classical and quantum mechanics. Secondly by using a fermionic star product to describe
geometric algebra one obtains a fermionic counterpart of the bosonic star product formalism, which means
that geometry and quantum mechanics are formulated in the same formalism. Thirdly one can combine the
bosonic and the fermionic star product formalism into a noncommutative version of geometric algebra. By
doing so one realizes that spin terms are naturally generated by the noncommutativity. The bosonic star
product gives in this way a natural transition from a classical to a quantum geometry.

So the central question is which role Grassmann variables actually play. Conventionally Grassmann
variables are introduced ad hoc and a posteriori, because they are needed or just because it is possible to
introduce them. In this way they represent a sort of mathematical epicycle. But this is exactly the opposite
of what Grassmann originally intended with his theory of extension. Grassmanns program, that is beautifully
described in [78], was to constitute a unified geometric calculus. With the work of Clifford this program
was completed for the flat space. (To be historically correct one has to state, that Grassmann himself found
the Clifford product even before Clifford, but did not realize its fundamental importance.) But due to
unfortunate historical circumstances the early form of geometric algebra was not applied in physics, instead
the tuple formalism was established by Gibbs and Heavyside in the beginning of the 20th century. The tuple
formalism does not include the algebraic structures Grassmann and Clifford already found. Unfortunately
theses structures play a central role if one wants to describe curvature or noncommutativity and so they
had to be reintroduced supplementary. In the historical process this did not happen systematically so that
several lines of development emerged. The Grassmann algebra was for example reintroduced in geometry
by Cartan through his calculus of differential forms, which is a homogenous multivector formalism. Later
on Kähler generalized the calculus of differential forms into an inhomogenous multivector formalism by
introducing a Clifford structure, which led to a formalism that is equivalent to geometric algebra [82]. The
opposite direction of development was initiated by Dirac who discovered the Clifford structure in physics.
Shortly afterwards Fock and Ivanenko generalized the Dirac calculus to curved spaces and constructed the
Grassmann product as the antisymmetrized matrix product of Dirac matrices [52]. This formalism, that is
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also equivalent to geometric algebra, was later on very effectively used in general relativity [102]. Moreover
the spinor calculus, that was introduced into physics by Pauli and later on generalized by Penrose to spinor
and twistor geometry, can also be subsumed under geometric algebra [55].

The description of geometric algebra as a deformed Grassmann algebra gives now also the possibility to
interpret the program of supersymmetry and BRST-symmetry from a Clifford calculus point of view. The
fermionic basis vectors and their algebraic structure become here apparent if one factorizes functions that are
defined on the space spanned by these basis vectors. For example the factorization of a Hamilton function
into supercharges exhibits the basis vector structure of the phase space and the Clifford star-anticommutator
is then nothing else than the scalar product on this space. Furthermore one can transform on the one hand
actively the bosonic coefficients and on the other hand the passive basis vectors. Since these transformations
are related one can also find transformations that relate bosonic and fermionic degrees of freedom. If the
parallelism of bosonic and fermionic star product structures is founded in geometry one can turn the logic
around and demand such supersymmetric star product structures for a physical theory. This implies in the
case of relativistic quantum mechanics the postulate of a four dimensional Moyal product, which leads to the
quantum proper time formalism. So the star product formalism overcomes here naturally a further formal
break between classical and quantum mechanics, namely that the classical relativistic Hamilton formalism
is manifest covariant, while in Dirac theory time plays a special role. So far the results can be summarized
in the following table:

Classical Physics Quantum Physics Formal Synthesis
Phase Space Hilbert Space Bosonic Star Products

Vector Formalism Multivector Formalism Fermionic Star Products
Manifest Covariance Covariance Supersymmetric Star Products

In the prefrace of his book [70] Grassmann stated “I am aware that the form which I have given the
science is imperfect.” and he went on to say “there will come a time when these ideas, perhaps in a new
form, will arise anew and will enter into a living communication with contemporary developments.” This
prediction indeed proofed to be true when more than hundred years later Hestenes and Kaehler resumed
Grassmanns program in the context of Dirac theory. Today geometric algebra is applied in a great variety of
areas [34] and this work was a further step in this program. Future research will show in how far geometric
algebra can be seen as the basis of supersymmetric structures.

132



Appendix A

In this appendix it will be shown that the representation (2.215) fulfills axiom (2.208c), i.e. (uv)y
B
w =

uy
B
(vy

B
w). Without restriction of generality one chooses u = θ1 . . . θr, v = θr+1 . . . θs and w = θi1 . . . θit

with

t ≥ s. Using the abbreviations B(θi, θj) = Bi,j and ∂θi
= ∂i it follows for the left hand side:

(uv)y
B
w = uv

1
s!

∑
i,j

Bi,j

~

∂i
~∂j

s

w

= θi . . . θs

 ∑
σ∈Ss,t

B1,iσ(1) · · ·Bs,iσ(s)(

~

∂1
~∂iσ(1)) · · · (

~

∂s
~∂iσ(s))

 θi1 . . . θit

= θi · · · θs

 ∑
σ∈Ss,t

B1,iσ(1) · · ·Bs,iσ(s)

~

∂1 · · ·

~

∂s
~∂iσ(s) · · · ~∂iσ(1)

 θi1 . . . θit

= (−1)s(s−1)/2
∑

σ∈Ss,t

B1,iσ(1) · · ·Bs,iσ(s)
~∂iσ(s) · · · ~∂iσ(1)θi1 . . . θit

, (A.1)

where Ss,t is the set of all permutations of s elements out of t.
The right hand side of (2.208c) leads to:

uy
B
(vy

B
w) = uy

B

θr+1 · · · θs

 ∑
σ∈Ss−r,t

Br+1,iσ(r+1) · · ·Bs,iσ(s)

~

∂r+1 · · ·

~

∂s
~∂iσ(s) · · · ~∂iσ(r+1)

 θi1 · · · θit


= uy

B

(−1)(s−r)(s−r−1)/2
∑

σ∈Ss−r,t

Br+1,iσ(r+1) · · ·Bs,iσ(s)
~∂iσ(s) · · · ~∂iσ(r+1)θi1 . . . θit


= (−1)(s−r)(s−r−1)/2

∑
σ∈Ss−r,t

Br+1,iσ(r+1) · · ·Bs,iσ(s)θ1 · · · θr

×

 ∑
σ′∈Sr,t

B1,iσ′(1) · · ·Br,iσ′(r)

~

∂1 · · ·

~

∂r
~∂iσ′(r)

· · · ~∂iσ′(1)

 ~∂iσ(s) · · · ~∂iσ(r+1)θi1 · · · θit

= (−1)[(s−r)(s−r−1)+r(r−1)]/2
∑

σ∈Ss−r,t
σ′∈Sr,t

B1,iσ′(1) · · ·Br,iσ′(r)
Br+1,iσ(r+1) · · ·Bs,iσ(s)

×~∂iσ′(r)
· · · ~∂iσ′(1)

~∂iσ(s) · · · ~∂iσ(r+1)θi1 · · · θit

= (−1)s(s−1)/2
∑

σ∈Ss−r,t
σ′∈Sr,t

B1,iσ′(1) · · ·Br,iσ′(r)
Br+1,iσ(r+1) · · ·Bs,iσ(s)

×~∂iσ(s) · · · ~∂iσ(r+1)
~∂iσ′(r)

· · · ~∂iσ′(1)θi1 · · · θit

= (−1)s(s−1)/2
∑

σ∈Ss,t

B1,iσ(1) · · ·Bs,iσ(s)
~∂iσ(s) · · · ~∂iσ(1)θi1 · · · θit , (A.2)

which is the same result as the left hand side. In the last step one uses that a term in the sum is zero if
σ(i) = σ′(j) because of the fermionic character of the derivatives.
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Appendix B

To prove that u ◦ v can be written as an exponential function one decomposes the monomials u = amān

and v = arās with the coproduct (3.67). Then the definition of the twisted product (3.63) leads to

u ◦ v =
m,n,r,s∑
i,j,k,l=0

(
m

i

)(
n

j

)(
r

k

)(
s

l

)
R(aiāj , akāl)am+r−i−kān+s−j−l. (B.1)

In this sum the R(aiāj , akāl) are non-vanishing only if i+ j = k + l. One includes this condition by setting

i = p1 + p3, j = p2 + p4, k = p1 + p4 and l = p2 + p3, (B.2)

so that i+ j = k + l = p1 + p2 + p3 + p4. Hence the sum over i, j, k, l is replaced by:

m,n,r,s∑
i,j,k,l=0

→
m+n=r+s∑

q=0

∑
p1+p2+p3+p4=q

. (B.3)

This substitution alone would lead to multiple counting, for example the term i = j = k = l = 1 in (B.1)
can be written with p1 = p2 = 1, p3 = p4 = 0 and with p1 = p2 = 0, p3 = p4 = 1. But the multiple counting
is taken into account in the calculation of R(aiāj , akāl). To see this one separates p1 factors from ai and ak

and p2 factors from āj and āl:

aiāj =
p1︷ ︸︸ ︷

a · · · a
p3︷ ︸︸ ︷

a · · · · a
p2︷ ︸︸ ︷

ā · · · ā
p4︷ ︸︸ ︷

ā · · · · ·ā (B.4)
akāl = a · · · a︸ ︷︷ ︸

p1

ā · · · · ā︸ ︷︷ ︸
p3

ā · · · ā︸ ︷︷ ︸
p2

a · · · · ·a︸ ︷︷ ︸
p4

. (B.5)

Different values for p1 and p2, that fulfill the condition (B.2) lead to different separations of R(aiāj , akāl)
into the four basic coquasitriangular structures, but how often does such a separation appear? There are(
p1+p3

p1

)(
p2+p4

p4

)
ways to separate p1 factors from ai and p2 factors from āj ; secondly the permutation of the

a’s and ā’s leads to a factor (p1 + p4)!(p2 + p3)!. Then the coquasitriangular structure can be written as:

R(aiāj , akāl) =
i,j∑

p1,p2=0
(B.2)

(
p1 + p3

p1

)(
p2 + p4

p2

)
(p1 + p4)!(p2 + p3)!R(a, a)p1R(ā, ā)p2R(a, ā)p3R(ā, a)p4 . (B.6)

The sum in (B.6) corresponds exactly to the multiple counting, so that (B.1) can be written as:

u ◦ v =
m+n=r+s∑

q=0

∑
p1+p2+p3+p4=q

R(a, a)p1R(ā, ā)p2R(a, ā)p3R(ā, a)p4

p1!p2!p3!p4!

m! am−p1−p3

(m− p1 − p3)!
n! ān−p2−p4

(n− p2 − p4)!
r! ar−p1−p4

(r − p1 − p4)!
s! ās−p2−p3

(s− p2 − p3)!

= amān

[ ∞∑
q=0

1
q!

∑
p1+p2+p3+p4=q

(
q

p1, p2, p3, p4

)
(R(a, a)

~

∂a
~∂a)p1(R(ā, ā)

~

∂ā
~∂ā)p2(R(a, ā)

~

∂a
~∂ā)p3(R(ā, a)

~

∂ā
~∂a)p4

]
arās

= u e(R(a,a)

~

∂a
~∂a+R(ā,ā)

~

∂ā
~∂ā+R(a,ā)

~

∂a
~∂ā+R(ā,a)

~

∂ā
~∂a) v.
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Here the symbols (
q

p1, p2, p3, p4

)
=

q!
p1!p2!p3!p4!

(B.7)

are the multinomial coefficients which occur in the multinomial formula

(a1 + · · ·+ an)q =
∑

p1+···+pn=q

(
q

p1, · · · , pn

)
ap1
1 · · · apn

n . (B.8)

In the fermionic case one has to prove, analogously, that

u ◦ v =
∑

R(u(1), v(1))u(2)v(2) = u exp

∑
i,j

R(fi, fj)

~

∂
L
fi
~∂L

fj

 v (B.9)

for u = fi1 · · · fir and v = fj1 · · · fjs . In the p-th order one combines the coproduct terms of the permutations
σ for u and σ̃ for v that lead to∑

σ∈Pp,r
σ̃∈Pp,s

(−1)σ(−1)σ̃R(fσ(i1) · · · fσ(ip), fσ̃(j1) · · · fσ̃(jp))fσ(ip+1) · · · fσ(ir)fσ̃(jp+1) · · · fσ̃(js)

=
∑

σ∈Pp,r,σ̃∈Pp,s
σ′∈P

(−1)σ+σ̃+σ′R(fσ(i1), fσ′(σ̃(j1))) · · ·R(fσ(ip), fσ′(σ̃(jp)))

fσ(ip+1) · · · fσ(ir)fσ̃(jp+1) · · · fσ̃(js)

=
∑

σ,σ̃,σ′

(−1)σ+σ̃+σ′R(fσ(i1), fσ′(σ̃(j1))) · · ·R(fσ(ip), fσ′(σ̃(jp)))

fσ(i1) · · · fσ(ir)

~

∂
L
fσ(i1)

· · ·

~

∂
L
fσ(ip)

~∂L
fσ̃(jp)

· · · ~∂L
fσ̃(j1)

fσ̃(j1) · · · fσ̃(js)

=
∑

σ,σ̃,σ′

R(fσ(i1), fσ′(σ̃(j1))) · · ·R(fσ(ip), fσ′(σ̃(jp)))

fi1 · · · fin

~

∂
L
fσ(i1)

~∂L
fσ′(σ̃(j1))

· · ·

~

∂
L
fσ(ip)

~∂L
fσ′(σ̃(jp))

fj1 · · · fjs

=
1
p!
fi1 · · · fir

∑
i,j

R(fi, fj)

~

∂
L
fi
~∂L

fj

p

fj1 · · · fjs
, (B.10)

where one uses the relation (3.80) for the fermionic coquasitriangular structure. The expression (B.10) is
just the p-th order term in the exponential form.
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et les transformations canoniques de la mécanique classique, Acad. Roy. Belg. Bull. 37 (1951) 610-620.

[109] J. C.Varilly and J. M. Gracia-Bondia, The Moyal representation for spin, Ann. Phys. 190 (1989) 107-
148.

[110] H. Weyl, Quantenmechanik und Gruppentheorie, Z. Phys. 46 (1928) 1-46.

[111] P.Wigner, Quantum corrections for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749-759.

[112] C.K. Zachos and T.Curtright, Phase space Quantization of Field Theory, e-Print Archive:
hep-th/9903254 (1999).

[113] C.K. Zachos, Geometrical Evaluation of Star Products, J. Math. Phys. 41 (2000) 5129-5134.

[114] C. Zachos, Deformation Quantization: Quantum Mechanics Lives and Works in Phase-Space, Int. J.
Mod. Phys. A17 (2002) 297-316.

141



Acknowledgment

First of all I want to thank Dr. A. C. Hirshfeld for giving me the freedom to realize my ideas and for proof-
reading this thesis. For a helpfull discussion I also want to thank Prof. L. Schwachhöfer of the mathematics
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