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Thought and science are raising problems which
their terms of study can never answer, many of
which are doubtless problems only for thought. The
trisection of an angle is similarly an insoluble prob-
lem only for compass and straight-edge construction,
and Achilles cannot overtake the tortoise so long
as their progress is considered piecemeal, endlessly
halving the distance between them. However, as
it is not Achilles but the method of measurement
which fails to catch up with the tortoise, so it is not
man but his method of thought which fails to find
fulfillment in experience. This is by no means to say
that science and analytic thought are useless and
destructive tools, but rather that the people who
use them must be greater than their tools. To be an
effective scientist one must be more than a scientist,
and a philosopher must be more than a thinker. For
the analytic measurement of nature tells us nothing
if we cannot see nature in any other way.

Alan W. Watts
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Introduction

Considering physics as it is done today one notices that physics separates into two formally and conceptually
different parts. There is on the one hand classical physics that deals with macroscopic phenomena and there
is on the other hand quantum physics that deals with microscopic phenomena. Penrose [96] described this
situation as a disturbing analogy to ancient Greece, where two different sets of laws for earth and heaven
were applied. So immediately the question arises if one really has to use different formalisms on different
scales or if it is possible to describe physics in a unified way. In order to investigate this question one first
has to consider how classical and quantum physics are related. Quantum mechanics results from classical
physics by a procedure called quantization and classical physics is reobtained by taking the classical limit.
Both procedures are heavily plagued by problems [61, 100]. In the first chapter the mathematical problems
of quantization will be addressed and it will be described how the star product formalism circumvents these
problems. The star product formalism has the advantage that there is no formal break if one goes from
classical physics to quantum physics. This formal advantage and the resulting beauty is then used as a
guiding principle for the further development.

The first question that arises is if the spin can be described in the star product formalism. That this is
indeed possible is shown in the second chapter. As a starting point the spin description with pseudoclassical
mechanics as it was developed by Berezin is used. One can then construct a fermionic star product and
apply it for deformation quantization of pseudoclassical mechanics. In analogy to the bosonic star product
formalism one obtains spin Wigner functions that act as spin projectors. Besides the nonrelativistic case it
is also possible to formulate Dirac theory with star products. The Clifford algebra of the gamma matrices
is hereby described as a deformed version of a four dimensional Grassmann algebra. The fermionic star
product in combination with the bosonic Moyal product leads to a supersymmetric star product formalism
that can be used to describe supersymmetric quantum mechanics and in the relativistic case to describe
the supersymmetric structure of Dirac theory. The other direction of generalization of the star product
formalism is the application of star products in quantum field theory that is described in chapter three. After
constructing a suitable normal product it is shown that the algebraic structures of perturbative quantum
field theory appear also in the star product formalism, which is an expression of the algebra morphism of
the operator and the star product formalism. But moreover the quantum group structure that was recently
found in perturbative quantum field theory is shown to be a natural algebraic structure of the star product.

The essential advantage of deformation quantization is that the classical limit has a well defined meaning.
In the context of the spin description with star products this leads to the question of the classical limit of spin,
or equivalently to the question of the physical status of pseudoclassical mechanics. In chapter four it is shown
that this question is solved if one realizes that the fermionic sector together with the fermionic star product
describe the underlying geometric structure. The deformation of a Grassmann algebra leads to a Clifford
calculus that is equivalent to geometric algebra. The formulation of geometric algebra in the star product
formalism is given in chapter four. One sees there that geometric algebra as the most fundamental geometric
formalism that unifies all geometric structures that appear in physics can be described in a supersymmetric
manner that parallels the bosonic star product structures.

Having obtained a formulation of geometry with fermionic star products this formalism is then applied
in the fifth chapter to physical problems. As examples for the application of geometric algebra in classical
physics the rigid body and the Kepler problem are considered. In both cases the formalism of geometric
algebra gives the most elegant formulation of the problem. In the quantum case one can then combine the
fermionic star product formalism that describes the underlying geometric structure with the bosonic star



product that describes the noncommuative structure of quantum mechanics. The result is a noncommutative
version of geometric algebra that leads to a natural appearance of spin terms. The same idea applied on
the phase space leads to the split in supersymmetric partner systems. Geometric algebra gives in this way a
natural geometric foundation of supersymmetric quantum mechanics. Similarly one can interpret the hidden
BRST-structure of classical mechanics that was found by E. Gozzi and M. Reuter in the path integral
formalism from a star product point of view.



Chapter 1

The Star Product Formalism

The first chapter should give a short introduction to the star product formalism which allows a formulation of
quantum mechanics on the phase space. After giving the motivation for doing quantum theory on the phase
space the star product will be constructed with the help of the operator formalism. With the star product
it is then possible to formulate an autonomous approach to quantum theory. As examples the harmonic
oscillator and angular momentum are then discussed.

1.1 Quantization and its Problems

The standard approach to quantum theory relies on a procedure called canonical quantization, which was
first formulated by Dirac in [28]. Starting point is a classical Hamiltonian system with d degrees of freedom,
which can be described on a 2d-dimensional phase space. Scalar functions on the phase space can be
multiplied pointwise, i.e. (fg)(x) = f(z)g(x), where the multiplication fulfills for f,g,h € C*°(P) and A € R
the following conditions:

fg=g9f commutativity,
flg+Ah) = fg+ Afh linearity,
f(gh) = (fg)h associativity,

so that the functions together with the addition and the pointwise multiplication form a commutative and
associative algebra. Moreover there exists a differential-geometric structure on the phase space, called the
Poisson bracket, which fulfills for f,g,h € C*°(P) and A € R the following conditions:

{f,9yp=—{9,f}PB antisymmetry,
{frg+Ahtpe ={f.9tps + M [ h}rB linearity,
{f {9, h}pe}trB+{9.{h. f}rB}PB+{h,{f,9}PB}PB =0 Jacobi identity,

so that the functions together with the addition and the Poisson bracket form a Lie algebra. For the special
coordinates (g;, p;) the Poisson bracket can be written explicitly as

y <8f 9 _ 9f 39). (1.1)

n=1

The pointwise multiplication and the Poisson bracket are intertwined by the following relation

{fighyp ={f.9}pBh +g{f,h}PB, (1.2)

so that both structures together with the addition constitute a Poisson algebra.



The new mathematical feature that enters physics in quantum theory is non-commutativity. The non-
commutativity can be described if one notices that the above mentioned classical structures have analogs
in the space Op(H, D) of formally self adjoint operators on a Hilbert space H, and common invariant dense
domain D C H. It is then possible to multiply the operators of Op(H, D), so that a associative, but not
commutative algebra of operators is created, and taking the Lie product as # [-, -] one obtains a Lie-algebra.

These two structures are intertwined for A, B, C € Op(H, D) by
(4.B¢] - [A.B]¢+B[Ac]. (1.3)
In order to go over from classical theory to quantum theory one needs then a map Q that maps the set
Pol(P) of phase space polynomials in (g;,p;) to Op(H, D):
Q: Pol(P) — Op(H,D), [~ Q(f) =/ (14)
This map should fulfill the following conditions:

1) The constant function 1 should be mapped on the unit operator:

Q(1) =1. (1.5)
2) Q should be linear:
Q(f +A9) = Q(f) +AQ(9)- (1.6)
3) The Lie structures on Pol(P) and on Op(H, D) should be compatible:
O({f, 9} rs) = = [(1), Qo). (17)

4) Q should be consistent with Schrédinger quantization (which means that Q(¢;) and Q(p;) act irre-
ducibly up to at most finite multiplicity of internal quantum numbers):

(Qa:)¥)(q) = aiv(q)  and  (p:)¥)(@) = —ihdy,P(q)- (1.8)

Groenewold and van Hove showed in [71] and [108] that such a map Q does not exist. The proof of this
no-go-theorem will be sketched for a two dimensional phase space in the following steps (for more detailed
proofs that include internal quantum numbers or curved phase spaces see [61], [62], [63], [64]):

In the first step one proves the following identities:

— — PO PN

¢"=q",  pr=p" and  qp=5(d@)+p). (1.9)
The first equation can be proved if one considers (1.7) for f = ¢ and g = ¢. (1.7) gives then 0 = % [557 (j],
so that 577 has to be a polynomial h, in § = ¢. Setting then in (1.7) f = ¢™ and g = p gives with
{¢",p}pB = ng" ! and (1.8):

— ]_ —
ngn—1 = 7 [q”,p} = nhy_1(q) = 04hn(q), (1.10)
so that ¢" = ¢" follows (an integration constant can be calculated as zero [61]). The second equation of
(1.9) follows analogously. The third equation of (1.9) can be proved by setting in (1.7) f = ¢ and g = p*.
With {¢?,p*}pp = 4qp this gives

1 [~ ~ 1 1
=~ 2 2| — 2 52 = — [62.92%] = =(Gp + pd 1.11
= 77 [q P } — [¢°,p%] o [¢%p°] = 5(@p + p9), (1.11)



where in the last step (1.3) was used.
In the second step one proves the following identities:

— 1/~ A — 1/~ o~

P =3 (q2p +pq2) and  pPq=g (pgq +ap ) : (1.12)
The proof is analogous to the ones in the last step. The first equation of (1.12) is for example obtained by
setting f = ¢® and g = p? and using then (1.3).
The third step is now to take the classical identity

1 1
gl p’ = 3. r’a} (1.13)

and to quantize with (1.7) both sides of this equality. Using (1.9) and applying (1.3) leads for the left hand
side of (1.13) to

1 3 A3 A2 A2 c3oAA 2 2%
— = -2 — -h71 1.14
o7 (¢°,p°] = ¢*p* — 2ihgp 3L (1.14)
while quantizing the right hand side of (1.13) gives with (1.12)
o |#0.0%] = % 2ihap — S (115)
3ih ’ 37 '

which differs from the left hand side by —%hzi. This contradiction finishes the proof. O

The Groenewold-van Hove theorem showed that a map Q fulfilling the requirements 1) to 4) does in
general not exist, it only exists if one restricts to polynomials of second order

Woapd o) —— {1,458 % 5 @+5i) (1.16)

or the classes
U@ptgla} —— {5 @+ pr@) +9(d)} (117)
and  (f@)a+o@) —— {5 @)+ 0) +90), (118)

where f and g are arbitrary functions.

In order to quantize more general expressions one could then try to relax one of the conditions 1)
to 4). For example quantization without the irreducibility postulate 4) is the so called prequantization.
A prequantization exists for all C°°-functions on R?", but it leads to physical problems if one wants to
calculate spectra (see for example [61]). If one on the other hand abandons condition 3), there is no
mathematical constraint that specifies the operator ordering anymore. Which operator ordering one chooses
is then a physical question. The rule of operator ordering is called a quantization scheme. The most
common quantization schemes are the standard ordering Qg(¢™p™) = ¢™p", the antistandard ordering
Qas(g™p™) = p"¢™ and the Weyl ordering Qw (¢™p") = (¢™p")w, where (¢™p"™)w means that one has to
sum over all possible products of m operators ¢ and n operators p and then divide by the number of these
products, for example one has (Gp%)w = 3(p*q + pap + 4p°).

In [110] Weyl showed that Qw (f(g,p)) can be represented by taking the Fourier transform f(u,v) =
ﬁ J dqdp f(q,p) exp(—i(ug+wvp)) of f(g,p) and forming an operator valued back-transformation according
to

QMﬂwm:/mwﬂw%me+m» (1.19)



In order to see that (1.19) leads to Weyl-ordering of operators one counsiders the case f(q,p) = ¢™p™. The
Fourier transform is then given by

r 1 m,n, —i(ug+v gmmjmin —i(ug+v sm4n s(m n
flu,v) = W/dqdpq ple iluator) — mw/dqdpe (uatvp) — jman5(m) ()5 (v),  (1.20)
so that (1.19) gives

RPN . X am4n+r
Qw(¢™p") =i"t" / dudv 5™ (u)§™ (v)e!(“d+op) — Z !

r=0

r_ / dudv 6™ ()™ (v) (ug + vp)". (1.21)

With [ du f(u)60 (u) = (=1)™f™)(0) one sees that in the sum only terms with r = m + n contribute
and that the result is the sum over all possible products of m operators § and n operators p divided by the
number (Tnfﬁ)! of such products.

Cohen generalized in [21] the integral representation of the Weyl scheme by introducing a filter function

h
Guwa(u,v) = exp [4 (pu® + vo® 4 2i ) | . (1.22)
Different quantization schemes can then be parametrized by the parameters p, v and A and represented as

Qs(flg,p)) = /dudv f(u,v)qbw,)\(u,v)exp(i(wj+vﬁ)). (1.23)

The standard ordering is for example given if one chooses p = v = 0 and A = —1. The effect of the filter
function is that it generates under the integral additional terms in u and v. Proceeding then as described in
(1.21) the filter function terms left over after integration turn out to be just the correction terms needed to
go over from the Weyl ordering to another scheme. Just as it is possible to order with (1.23) the canonical
operators ¢ and p, it is also possible to order creation and annihilation operators ' and @ [1]. Which values
of parameters one has to choose therefore in (1.22) is summarized in the following table. !

’ Canonical coordinates ‘

Standard ordering Qs(g™p™) = §g™p" =0, v=0 A=-1
Antistandard ordering | Qas(¢™p™) = p"g™ nw=0, v=0 A=
Weyl ordering Ow (¢™p") = (@"p")w | p=0, v=0, A=0

| Holomorphic coordinates \
Normal ordering On(a™a") =a'a p=1 v=-1,A=0
Antinormal ordering Qan(a™a") = aal nw=—-1v=1 A=0
Weyl ordering Qw (ama™) = (aa’)w nw=0 v=0, A=0

The integral representation of operator ordering described above works in the following way: One first
notices that (§ 4+ p)” is the sum of all possible operator products of order 7, i.e. Qw ((¢ +p)") = (G + p)".
More generally one has for all orders Qw (exp(q + p)) = exp(¢ + p). The problem is then to pick out the
right terms of the desired order and ordering. This is done by introducing additional variables u and v, so
that one has exp(ug + vp). These variables carry the information of the order of § and p. Picking out the
terms of the desired order is then done in the integral representation with d-functions as described in (1.21).

1Note that this parametrization is not unique. The parametrization above is a parametrization with respect to the canonical
coordinates, i.e. one acts with the Fourier transformations on the canonical coordinates and the ordering schemes for the
holomorphic coordinates follow in a second step. But it is also possible to consider the holomorphic coordinates as primary
and do the Fourier transformation in holomorphic coordinates, so that the canonical ordering schemes follow in a second step.
Then the normal ordering would be parametrized for example with and p = v = 0, A = 1 and the standard ordering would be
parametrized with =1, v = —1 and A = 0. Such a parametrization will be used in section 3.3.



This leads to the Weyl ordering and the other schemes can be obtained by introducing an filter function.
Picking out the terms of a given order can not only be done with d-functions but in a much easier way also
with differential operators. One uses therefore that the Taylor expansion of f(g,p) around (¢, p) = (0,0) can
be written as

F(a,p) = F(Ou, 00)e" P yum0 = €177 f(u,0)[u00. (1.24)
With Qw (exp(ug + vp)) = exp(ug + vp) one can then write the Weyl quantization as
Qw(f((bp)) = f(auv av)euq+vﬁ|u,v:0 = eﬁau-l-ﬁauf(u’ U)'u,v:O~ (125)

Other quantization schemes can here be obtained analogously to the integral representation with the help
of a filter function.

So one sees that the quantization map Q is in several ways problematic. If one requires that Q should
fulfill the conditions 1) to 4) one sees that only polynomials up to second order can be quantized and
relaxing the conditions leads to operator ordering problems. Moreover quantizing with a map Q induces an
conceptual and formal break in physics when one goes over to quantum mechanics. So one could wonder if it
is possible to quantize without the problematic quantization map Q. This is indeed possible if one describes
the non-commutativity that enters quantum theory not by non-commuting objects like operators, but by a
non-commutative product. How such a product can be constructed will be discussed in the next section.

1.2 Star Products

If one wants to circumvent the quantization map Q by introducing a non-commuting product, called star
product, this product should emulate the non-commutativity of the operators. So the star product, denoted
by “«”, should fulfill

Q(f)Q(g) = Q(f * 9), (1.26)

where different quantization schemes would lead to different star products. Equation (1.26) states that the
quantum mechanical algebra of observables is a representation of the star product algebra.

Since as shown above the Weyl scheme seems to be the most fundamental quantization scheme in the
sense that all other schemes can be constructed out of this scheme with a filter function, one first calculates
with (1.26) an explicit expression for the star product in the Weyl scheme. This case was first considered
by Moyal [92], so that the star product that corresponds to the Weyl scheme is called Moyal product. With
the integral representation (1.19) equation (1.26) can be written as:

QW(f)QW (g) _ /duldvldUdeg f(uh vy )g(u27 v2)e—i(u1t§+v1[))e—i(uzf}-‘rvz;ﬁ)
- /duldvlduzdw Flur, v1)3(us, vy)e ()it (iv)p) =% (wava—viuz) - (1 97)

where the truncated Campbell-Baker-Hausdorff formula was used:
eAeB = (A+B)e3[AB], (1.28)

Expanding now the last exponential in (1.27) and making the substitution u = u; +ug and v = vy +v9 gives:

Qw (f)Qw(g) = /dudv e~ 1(ud+vp)

(D™ i\ . i
< Jawan 3 EPE(B) ot flun o= )"0 - o) 5 w0 - o). (129
m,n=0 o



The expression in the second line of (1.29) is by the Fourier convolution theorem just the Fourier transform
of the expression for the Moyal product:

Qw (£)Qwlg) = [ dudve TP FLy = O (F 11 ). (1.30)
The Moyal star product can then be read off as:
= (—D™ i\
Crwoan = > CUE(F) @@y
ih (s~ = =
= e |5 (08, -0,3,)] sta.) (1.31)

where the vector arrows indicate in which direction the differentiation acts.
This expression for the Moyal product can be derived even more simply in the differential representation
(1.25) for the Weyl scheme:

Qw()Quw(g) = flur,v)exp |G+ Io,p] exp [, + 5O | 9(uz, v2)

ui,viZO

— —

. . in, s Y
= 10+ 00a) + 9000+ 0)] 1) x| (01, — )] o)

ui,’UiZO

— —

= exp [qau + pav} f(u,v) exp th(a*uav - fi,au)] g(u,v) , (1.32)

u,v=0

where again (1.28) was used. With (1.24) for the Taylor expansion it is then easy to see that the Moyal
product can also be written by a shift formula:
ih

5q> 9(q:p). (1.33)

-
(f *a 9)(a;p) = f (q + %ap,p -3

Besides the differential representation (1.31) there is also a integral representation for the Moyal product;
this can be derived by applying the Fourier convolution theorem backwards, which gives

[e%¢) _1\m . m—+n
frag = 3 CU (5) Oron (R g)

m!n!

m,n=0

ih

1 . .
- @ / duy dvydusdvadgy dprdgadpy €216 e S (1 (=) —ua (v2=o)
T

xe i £ (g, )2 mw)az =il mvp2 g (g, o)
1

— W/duldv1duzdvde1dp1dq2dp2 fla1,p1)9(q2,p2)

. h . h .
X exp [luz (q + 5711 - QZ> + 102 <P - §u1 - pz) —i(uwqr +vip1 —uige — v1p2)} .

Rescaling the d-functions according to 6(—q — (h/2)v1 + q2) = (2/h)6(v1 + (2/h)q — (2/h)q2) gives:

1 2
frug = 53 /dQ1dq2dp1dp2f(Q1,p1)g(q2,p2)eXp [h(p(ql —q2) +q(p2 — 1) + (g2p1 — QIP2))] ,

i

The exponent in the above expression has an interesting geometric interpretation. Denote points in the two
dimensional phase space by vectors: Z = (¢,p)T, 1 = (q1,p1)T and & = (g2, p2)7, the area of the triangle

10



in phase space spanned by ¥ — ¥; and ¥ — Z5 is then given by

[P

An(E, 2, 32) = (T - DY N (T~ T2) = % (g2 — q1) + q(p1 — p2) + (@1p2 — @2p1)], (1.34)

so that the integral representation of the Moyal product is eventually given by
. 1 o . 4i R,
(f *x 9)(T) = 72 dZdZs f(Z1)g(Z2) exp EAA(x,xl,xg) . (1.35)

The integral representation can now be used to prove some basic properties of the Moyal product, for
example that the Moyal product is associative:

(f * g) *ar b= foxy (g *nr h)' (1.36)
Therefore one writes the left hand side with (1.35) as

4i

((f * s g) * s h) (:f) = # /dfodf;; (f * s g)(fo)h(fg,) exp [hAA(f, fo,f3):|

— i [ diaddzad f(E)g(2)h(E)
X exp {Z;;(AA(anflyfz) + An(Z, o, *3))} . (1.37)
With (1.34) one obtains for the exponent
2(An(Zo, T1, o) + An (T, To, T3))

=qo(—p+p1 —p2+p3) +po(qd — q1 + 92 — q3) + P1g2 + P2qi + pg3 — p3q.  (1.38)

The first two terms give together with the go- and po-integration the d-functions d(p — p1 + p2 — ps) and
0(¢ — q1 + g2 — g3). The conditions p = p; — p2 + ps and ¢ = ¢1 — g2 + g3, that the d-functions impose, allow

to write the other terms of (1.38) as: pi1g2 + paq1 + pgz — p3q = p1(g2 — @3) + p2(q1 — q3) + p3(q2 — q1) =
2AA (T, %2, %3). (1.37) can then be written as

((F 520 9) 200 W)@ = 535 [ ATz F(31) (G T

4i I,
X 6(p—p1+p2—p3)é(q— a1+ q2 — g3) exp {hAA(%,SEm r3)| . (1.39)
Since the expression on the right hand side contains no information about the brackets on the left hand side

the Moyal product is associative.
Another important property of the Moyal product that can be seen in the integral representation is

/dqdpf *a g = /dqdp fg= /dqdpg *ar f- (1.40)

For the proof one considers the phase space integral of (1.35), which gives

2
/dqdpf *a g = /dqldmdqupz f(q1,p1)9(q2, p2) exp (ih(mqa —pqu))

1 2
X 1z / dgdp exp (ih(q(pz —p1) +pla — q2>)> ,

11



where the second line is the product of the d-functions d(pa — p1) and d(q1 — g2), so that (1.40) follows.

The discussion carried out so far for the star product that corresponds to Weyl ordering can in the same
way be repeated for another ordering. For example the star product that corresponds to standard ordering
is called the standard product and has the form

(f *5 9)(a,p) = F(a,p) exp [i1,3,) g(a,p). (141)

Similarly one can discuss the different orderings in the case of holomorphic coordinates. The star product
that describes Weyl ordering in holomorphic coordinates is also called Moyal product and results from (1.31)
by transformation of variables:

— — =

(7 4 9)(000) = fla.0) exp | 50,55 ~ 3,)| . (142)

and for the normal ordering one gets the normal star product as:

—

(f *~ 9)(a.a) = f(a,a) exp [, da] g(a a). (1.43)

Just as it was possible to relate different orderings in the integral representation by a filter function (1.22),
it is also possible to relate different star products. This is done by the concept of c-equivalence. Two star
products * and *” are said to be c-equivalent, if there exists an invertible transition operator T' = ">/ h"T),,
where the T;, are differential operators, so that

f+g=T71((Tf)*(Tg)). (1.44)

It is known that for flat phase spaces all admissible star products are c-equivalent to the Moyal product. For
example the standard product is related to the Moyal product by

T(f*sg) = (Tf) %y (Tg)  with T =exp <_i;i5q5p) : (1.45)

One should note that the T-operators are just the filter functions, where one substitutes u by d; and v by

0.

1.3 Quantum Mechanics in the Star Product Formalism

So far one has succeded in describing the operator algebra of observables as a star product algebra of the
corresponding phase space functions. But in order to do quantum mechanics with star products on the phase
space one also needs phase space functions that correspond to quantum mechanical states. States on the
phase space can be constructed with the inverse of the quantization map. The inverse of (1.23) is given by

[1]:

1
4,p) @n)?

Q;l(f(é,ﬁ)) = 2nhTr [f( /dudv ¢;i’>\(—u, —v) eilu(@—a)+v@-p)] | (1.46)
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In the case of Weyl ordering this can easily be calculated as:

1/ Pra A h —i(ug+v £ra A i(ug+vp
Q' (F(@.p) = 5= [ dudve DTy | f(g,p)elien)] (1.47)

h . h N S

— ﬂ/dudv e*l(uq+vp)€71%uvTr |:/ dq’\q’)(q’|f((j,ﬁ) eIV pitd (148)
7 . . N o,

_ % dudv efl(uq+vp)€71%u'u /dq/<q/|f(q’ﬁ)ewp|ql>€1uq (149)
h : ! A .

= 5 / dudvdg' e™ ™5V (q/| f(q,p)lg — hv)e (1.50)

h Fra o h —ivp
= h [ dvlg+ 50lf(@p)lg — Fv)e™". (1.51)

The same calculation can be redone for other operator orderings, for example standard ordering leads to:
Q3 (f(@.5) =1 [ v talF@.)la  hoje . (1.5

If one then applies @' to the product of two operators one gets with (1.26) in the case of Weyl ordering:

O (f9) = f*uyg (1.53)

and the integrated version of this equation is with (1.40) and (1.51)

/ dadp Q5 (4) = / dgdp f 40 g = / dadp fg = 2eTx [ f3]. (1.54)

With the map Q! one can construct the phase space analogue of a pure state [t)), simply by calculating
the phase space function corresponding to the density matrix p = [¢)(¢)|. This calculation leads to the well
known phase space distribution functions (see for example [111] and [87]). For example in the case of Weyl

ordering equation (1.51) gives for f = |¢)(4| the Wigner function

hv @

r(g.p) = h / Qg+ Pyp(g - Byemivv, (1.55)

2 2

In contrast to the wave functions the Wigner functions describe a quantum mechanical state on the whole
phase space, but the wave functions can be reobtained by integration over one of the phase space coordinates:

/ dpn(q,p) = 2nhlp(q)®  and / dg (g, p) = 2mhlD(p) . (1.56)

The phase space integral gives then the normalization condition for the Wigner functions

/dqdpﬂ(q,p) = 27h. (1.57)

The phase space integral of two Wigner functions 71 (q, p) and ma(q, p) is given with (1.54) by

2
(1.58)

/ dg i (q)2(a)

[ dad 0. p)mali,p) = 2ATx ) 1) (]| = 2

For 11 (g) = ¥2(q) this leads to
/dqdp [m(q,p))* = /dqdpﬂ(q,p), (1.59)
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while for orthogonal ¢ (¢q) and 12(g) one has [ dgdpmi(q,p)m2(q,p) = 0. Then at least one of the Wigner
functions must be negative somewhere. This means that although the Wigner functions have the right
marginal probabilities (1.56) they can not be interpreted as probability distributions.

Nevertheless it is possible to do quantum mechanics with the Wigner functions. For example the expec-
tation value of an operator can be obtained with (1.54) as

[ dado fta.p)wta.p) = 2T [ 5] = 2000 ), (1.60)

Similarly the eigenvalue equation of quantum mechanics can be reproduced on the phase space. For example
for the Hamilton operator H one can calculate Q;;(Hﬁ) = H *, m(q,p), which gives for H = ﬁpQ +V(g)
with the shift formula (1.33):

1 h -\2 . Ny h h
_ _.h —io(p+itdy) i, 1 h
Hs*ymp = (2m (p 123q) + V(Q)) ﬁ/dve V™ (q 2v)w(q+ 211) (1.61)

h=\2 o\ h h

: I P o\’ h h

. h R
= h/dve‘1”p¢*(q— §U)Ew(q—|— iv) (1.64)
— Esxymg. (1.65)

This equation is the phase space analogue of H p = Ep. In the same way one can calculate the time
development of the Wigner function by applying Q;Vl to the von Neumann equation ih% p= [ﬁ , pA} , which
gives

0
171&77((],]); t) = [H(g,p;t),7(q,p51)],,, - (1.66)

The time development of the density matrix can also be calculated with the time development op-
erator, which acts as [, 1) = U(t)|,0) = U(t)|¢))n, where the index H indicates that |¢)y is the
time independent state in the Heisenberg picture. The time development of the density matrix is then
p(t) = U)|) g (1| gUT (t), which translates into the phase space language as

m(q,p;t) = U(t) %0 wr(q, p) 0 U(2), (1.67)

where m(q,p;t) is the Wigner function in the Schrédinger picture, mg(q,p) = 7(g,p;t = 0) the Wigner
function in the Heisenberg picture and U(t) the complex conjugate of U(t). The next task is then to find
the phase space analogue U (t) of the time development operator U(t). The equation that U(t) fulfills can
be translated directly to the phase space:

d - .

S0 = AO0() = ih%U(t) — H(t) %0 U(). (1.68)

U(t) has then the form U(t) = T exp (—i fot dt’ fI(t’)), where 7 is the time ordering operator. In the case
of a time independent Hamilton operator one has U(t) = e~ 1Ht/h
the star exponential

, what is expressed on the phase space by

. 1 —it\" L
Ut) = e, 7" = > ~ <h) H™ ™ = Exp,,(Ht), (1.69)
n=0

14



where
H™YM = H s, H %, %, H. (1.70)

n times

The time development of the observables in the Heisenberg picture can then also be given as
@) =Tt fU#) = fa®) =T{)*u f*u U) (1.71)
and time-differentiation of these equations gives with (1.68) the von Neumann equation:

fu
ot

ofu

o (1.72)

d s » d 1

Rl H} Lty == fu, H
't [ ]+ gl = g el +
Since in the following only the Heisenberg picture is used the index H will be dropped. One should note
that for the observables ¢ and p the von Neumann equation leads to the classical equations of motion

dg 1

1 dp _ 1
dt ik

(qg*m H—H *, q) = 0pH and il

(p*am H— H %, p) = —04H. (1.73)

All the translation done above for the case of Weyl ordering can also be done for other orderings. So the
star product formalism circumvents the use of the problematic quantization map Q, but one is still plagued
by the ordering problem. Choosing different orderings leads to different star products and different phase
space distribution functions [87]. The question is then which ordering has to be chosen. This question can
be investigated by imposing reasonable requirements a phase space functions has to fulfill, for example it
should transform as a scalar function under the transformations of the Galilei group. Such requirements were
considered in [85] and it was shown that the Wigner function is the only phase space distribution function
that could meet theses requirements. So it seems that at least for nonrelativistic quantum mechanics the
Wigner function and the corresponding Moyal product are the canonical structures for doing quantum physics
on the phase space.

Having translated quantum mechanics from a version that works on a Hilbert space into a version
that works on the phase space suggests to forget about the operator formalism and to describe quantum
mechanics directly on the phase space. Starting point is then a classical system that is described in the
Hamilton formalism. A state of the system is described as a point of the phase space and the observables of
the systems are functions on the phase space. Physical quantities of the system at some time are calculated
by evaluating the observables at the corresponding phase space point & = (go, po) that characterizes the state
of the system at this time. The evaluation of the energy can for example be mathematically expressed as

E = /dqdp5(q—qo,p—po)H(q,p)~ (1.74)

So the observables of the dynamical system are functions on the phase space and the states of the system are
positive functionals on the observables (here the Dirac d-function) and one obtains the value of the observable
in a definite state by the above mentioned operation. As described in the beginning of the chapter there are
two additional structures. First there is the pointwise product of functions on the phases space, so that a
commutative classical algebra of observables is constituted and second there is the Poisson bracket that is
used to describe the time development of the system.

Going over to quantum theory means now to implement Heisenberg’s uncertainty relation, which implies
that the states can no longer be represented as points on the phase space. Moreover the uncertainty is
intimately connected to the non-commutativity of the algebra of observables. So uncertainty is realized by
describing physical states by phase space distribution functions that are not sharply localized, in contrast to
the d-function that appears in the classical case. If one then evaluates an observable in some definite state
according to the quantum analogue of Eq. (1.74), values of the observabels in a whole region contribute to
the number that one obtains, which is thus an average value of the observable in the given state. On the
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other hand non-commutativity is incorporated by introducing a non-commutative product for functions on
phase space, so that one gets a non-commutative quantum algebra of observables. One can now make an
ansatz for this non-commutative product one is looking for:

oo

frg=rfg+(nCi(f,9)+ 00> = (h)"Cun(f.9). (1.75)

n=0

In mathematics such a modified product was first considered by Gerstenhaber in [60], where the modification
was called deformation. The deformation of the pointwise product is here done in a continuous way, which
is described by the deformation parameter (ih). If & is identified with Planck’s constant, then what varies is
really the magnitude of the action of the dynamical system considered in units of A: the classical limit holds
for systems with large action. In this limit, which is expressed by & — 0, the star product reduces to the usual
pointwise product. The expressions C),(f, g) denote functions made up of the derivatives of the functions f
and g and they should be chosen in a way that the new product in non-commutative. But without further
restriction of these coefficients, the star product is too arbitrary to be of any use. Gerstenhaber’s discovery
was that the simple requirement that the new product be associative imposes such strong requirements on the
coefficients C,, that they are essentially unique (up to an equivalence relation that is just the c-equivalence).
Formally Gerstenhaber required that the coefficients satisfy the following properties:

Jtk=n J+k=n
(ii) Co(f.9) = [y,
(111) Cl(fag) - Cl(ga f) = {fag}PB~

Property (i) guarantees that the star product is associative. Property (ii) means that in the limit i — 0 the
star product agrees with the pointwise product. Property (iii) has at least two aspects. Mathematically, it
anchors the new product to the given structure of the Poisson manifold. Physically, it provides the connection
between the classical and quantum behavior of the dynamical system. Property (iii) can be written with the
star commutator as

1

lim — = 1.76
lim = [f. 9. = {f.g}rs, (1.76)
which is the correct form of the correspondence principle. In general, the quantity on the left hand side
reduces to the Poisson bracket only in the classical limit. The source of the mathematical difficulties for-
mulating the correspondence principle that the operator formalism encounters is related to trying to enforce
equality between the Poisson bracket and the corresponding expressions involving the quantum mechanical
commutator. Eq. (1.76) shows that such a relation in general only holds up to corrections of higher order in
h.

For physical applications one usually also requires the star product to be hermitian:

frg=gx1], (1.77)

where f denotes the complex conjugate of f. The star products that were constructed from the operator
formalism above have this property.

For a given Poisson manifold it is not clear a priori if a star product for the smooth functions on the
manifold actually exist, that is, whether it is at all possible to find coefficients C), that satisfy the above list
of properties. Even if one finds such coefficients, it is still not clear that the series they define through (1.75)
yields a smooth function. For flat euclidian space such a star product exists. In this case the components of
the Poisson tensor Q% can be taken to be constants. The coefficients C; can then be chosen antisymmetric,
so that

Cr(f.9) = 599 01)(059) = 3 (.9} es. (1.78)
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by property (iii) above. The higher order coefficients may be obtained by exponentiation of C;. This
procedure yields then the Moyal star product

Focg=1ow|(5) 293 o (1.79)

which is in canonical coordinates given by (1.31). If one does not demand according to property (iii) that
the coefficients C; are antisymmetric one obtains more general products that will be called circle products,
denoted by “o”.

Having established the star product on the phase space it is then possible to do quantum physics on
the phase space. Starting with the classical system that is described by the Hamiltonian H one proceeds
as follows. First one can for example calculate the star exponential Exp(Ht). For a time independent
Hamiltonian this can be done either by direct calculation according to

1 /—it\"
Exp(Ht) = ——) H™ 1.80
=34 () (1.50)
or by solving the defining time dependent Schrédinger equation
d
ifL%Exp(Ht) = H *x Exp(Ht). (1.81)

Since each state of definite energy F has a time-evolution e 'F*/" the star exponential as the complete
time-evolution function can be written as:

Exp(Ht) = Y mwge P10, (1.82)
E

This expansion is called the Fourier-Dirichlet expansion for the time-evolution function. Putting now (1.82)
into (1.81) leads to the %-eigenvalue equation

(H *7E)(q,p) = ETp(q,p), (1.83)

which corresponds to the time independent Schréodinger equation. Eq. (1.82) and (1.81) give for ¢ = 0 the
spectral decomposition of the Hamiltonian:

H=> Eng. (1.84)
E
Substituting this expression for H in (1.83) gives
H*WE:ZEI’/TE/*’/TE:ETFE, (185)
E/

so that the phase space distribution functions fulfill
TE *x TE :5E,E’7TE~ (186)
Together with the completeness relation

> mp=1, (1.87)

which follows from (1.82) for ¢t = 0, one sees that the phase space distribution functions are projectors. This
reflects the fact that the 7 are the phase space analogues of the density matrices |¢g) (¥ g|. With the phase
space distribution functions one can calculate the energy expectation value as

(H) = %/dqdp(H*wE)(q,p) = %/dqde(q,p)ﬂE(q,p) =E, (1.88)

which is the quantum mechanical generalization of (1.74).
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1.4 The Harmonic Oscillator in the Star Product Formalism

The formalism discussed in the last section will now be used to consider the example of the one dimensional
harmonic oscillator. The Hamiltonian is given by

2 2
p mw
H(q,p) = -—+

2, 1.89
5 54 (1.89)

While the oscillator was treated in [10] with canonical coordinates, one can alternatively also use holomorphic

coordinates
. \/W (g+i2)  and o=/ (g-iL). (1.90)
2 mw 2 mw

In holomorphic coordinates the Hamiltonian can be written as
H = waa. (1.91)
In order to consider the physical consequence of different orderings first the quantization scheme charac-

terized by the normal star product will be used. For the normal star product (1.43) one has

axya=a’, G%ya=a, a*y a=aa and a*y a=aada-+ h, (1.92)
so that
and [a,a], = h. (1.93)

la,al,, = [a,a] *N

*N *N

=0
The defining equation for the starexponential (1.81) is given in the case of normal ordering by
d
ihﬁExpN (Ht) = (H 4 hwadg) Expy (Ht) (1.94)

with the solution ) .
Expy (Ht) = e /" exp (e7“*aa/h) . (1.95)

Expanding the last exponential one directly obtains the Fourier-Dirichlet expansion:
o 1
Expy(Ht) = e—aa/h Z Wa"a"e_m“t. (1.96)
n=0

Comparing coeflicients in (1.95) and (1.82) gives for the phase space distribution functions

77( = —a a e

1 _ 1 H™
N) _ nzn,—aa/h _ — —H/hw 1.97
n A n! (Aw)” c ( )

and for the spectrum F, = hwn. Note that the spectrum does not include the zero-point energy. With
(1.97) and the energy levels one directly verifies the x-eigenvalue equation

H sy 1M = B, x(N) (1.98)

and the spectral decomposition (1.84) of the Hamilton function

[e's) 1 B
H= E hwn (hnn!a"a”e_‘w/h> = wad. (1.99)
n=0

Moreover one sees in (1.97) that the holomorphic coordinates work as creation and annihilation functions,
ie.
o _ L (V)

W”Hih(n—kl)d*NW" *n @ and

1
7r7(ﬁ)1 = G-aky N s a (1.100)
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and especially for the ground state one has a %, w(()N) ¥y 4 = Q% 7r0 N) — 0. This allows one to write 7T7(LN) as
1 _
(V) = " ja" iy ﬂ'(()N) *y a’ with 7T(()N) = emaa/h, (1.101)
'n!

In contrast to the operator formalism one must act in the star product formalism from both sides with the
creation and annihilation function @ and a in order to raise or lower phase space distribution functions,
because they contain the wave function and its complex conjugate and both wave functions have to be
lowered or raised.

It is easy to show that the 7T7(1N) are projectors. They are normalized according to

7 dadan( =1 (1.102)

and with expression (1.97) one can immediately see the completeness relation ) 7T(N) = 1. The idempotency
(1.86) of the phase space distribution functions can be proved as follows. First show with (1.97) that

T T =1y . en my, ~ *y 7y  can be calculated with |a,a = hna"™* and the idempotency o
Ny 1™ = 7N Then w7l can be caleulated with [a,a"], = hna"~" and the id f
(N)

Ty, which gives
7T,SnN) * 7'(7(1N) = 5mn7r7(LN). (1.103)

The projectors 7T7(LN) can also be obtained from the density matrix. In holomorphic coordinates it is convenient

to work with the coherent states a|a) = a|a) and (a|a’ = (a|a, which are related to the energy eigenstates of
the harmonic oscillator |n) = \/%(ﬂ”m) by

oo —

—(1/2)aa/h =| — »—(1/2)aa/h at
e n and a e nl. 1.104
la) = Z ﬁ| (@l 7;) ﬁn!< | ( )

In normal ordering one obtains the phase space function f(a,a) corresponding to the operator f by just
taking the matrix element between coherent states:

fla,a) = (alf(a,a")la), (1.105)
so that the phase space function corresponding to |n)(n| is
(M) = ! —(a|n){n|a) = 1 a"a"e /", (1.106)
hn hnn!
(V)

For the off diagonal Wigner functions 7, that correspond to the density matrices |m)(n| one gets

1
(N) — ara™ —aa/h
M) — e 1.107
1/hrn ,/hn ( )

The Moyal quantization scheme can also be considered in holomorphic coordinates. The Moyal product
can be transformed straightforwardly into holomorphic coordinates (1.90), which leads to

Fawg=1f exp[ (a 8, — 048, )} (1.108)

Here one has

a*Ma:a2, a*, a=a", a*,a=aa-+ — and a*,, a4 =aa —

(1.109)



and again as in the case of the normal star product

a,al, =0 and [a,a], = h. (1.110)

[a’ a} *M *M

_—
The value of the commutator of two phase space variables is fixed by the third property of the star product,
and cannot change when one goes to a c-equivalent star product. The Moyal star product is c-equivalent to
the normal star product with the transition operator

T = exp (—Zéaéa) . (1.111)

One can now proceed the same way as in the case of the normal star product, or one can use (1.111) to
transform the results already calculated in the case of normal star product into the Moyal star product
version. This approach can be advantageous because the calculations in the normal product scheme are
easier than the calculations in the Moyal product scheme.

The Moyal Wigner functions can be obtained according to

1 1
M) = Tr(N) = " Tal™) s, Ta™ = o wM sy a”, (1.112)
which shows that the holomorphic coordinates act here also as creation and annihilation functions. Using

(1.112), [a,a@"], = hna™~1 and a *,, W(()M) = 0 one can then write the *-eigenvalue equation for the Moyal
product as

h 1
H s 7M) = w (a s @+ 2) serr M) = R (n + 2) (M), (1.113)

So in the Moyal-case one obtains the spectrum FE, = hw (n + %), which differs from the spectrum in the
normal-case by the zero point energy. The physical difference between different orderings or c-equivalent
star products is a shift in the spectrum. One may then ask which explicit form the Wigner functions W»SLM)

have. This can be answered for the ground state by first calculating

[eS) k
1 . i
ﬂ'(()M):TTF(SN) _ Zk'<_2’) atllsaé:e—aa/h
k=0 "
=1 A\ " a
—_ i k(_2 —aa/h
Zk'( 2) aa( h) ¢
k=0
S 1 1 o k I k k—1 a
_ i -1l _—aa/h
- Yals) X)) @
k=0 =0
oo k k—1
_ k! 1
— —aa/h -
c Zzll(k—l)!(k—l)!< h‘w)
k=0 1=0
e (1)F 1
_ aa/hZ() I < _>
e k aa
£ \2 h
= Q¢ 2aa/h (1.114)

where one uses in the last step the generating function for the Laguerre polynomials

exp[ =3 } :is”(fl)”ljn(z). (1.115)

1+s 1+s o
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The 7 can then be obtained via (1.112) or they can be calculated directly as

m(lM) =T7r7(1N) = e 500a —hnl |a”d"e*a@/h
n
! nam hisgg 5 3 5 5 3 3 —aa/h
= hrn! a”exp _5 (6aaé+aa6’+ a3a+8a @) e
2 h i~ ~ = - = _
= a0 0 exp [—2 (5a8a+8a67+ aaa) e~ 2aa/h, (1.116)

where one uses in first step

exp [0,0a) f (a,@)g(a,0) = f(a,a) exp |(Fa + Ta)(Bi + o) 9(a, ) (1.117)

7O — (V) 2 ngn exp _h (5a§a L a, *a) oDty —2aa/h
hrn! 2
2 5 - h/e s ==
= na"eda® exp [—2 (&I&—l + 04 a)] e~ 2aa/h
2 h — = o —
= 7 '2"a"é" exp 261184 edate—2aa/h

= (-1)"2L, (g) e~ H/hw (1.118)

where f(z 4 b) = €% f(z) and [—% (5(15@ + 5(15&) ,6}&} = 0 was applied. Since the result (1.118) depends
only on H one can directly see that it corresponds to the result obtained in canonical coordinates [10].
Furthermore one can also calculate 75" in canonical coordinates according to (1.55). The wave functions
of the harmonic oscillator contain Hermite polynomials H,(¢) and with

/dm {Hn(x —a)H,(z+ a)e_wz} e~ b — on /) e_bZLn(2(a2 +b?)) (1.119)

the expression (1.118) follows from (1.55). It is also easy to see that the M satisfy just like the ) the
projector conditions [105].

Just as for the Wigner functions there are also several ways to calculate the star exponential in the Moyal
case. With the Wigner functions M in (1.118), the energy levels E,, = hw (n+ 3) and (1.115) one can

calculate the star exponential according to the Fourier-Dirichlet expansions (1.82), which gives

Expy (Ht) = m exp (127_5 tan (“;t)) . (1.120)

The other possibility is to solve the defining differential equation for the star exponential, which with

[e'e] m—+n _1\n
o) = Y (3) G eronemor s

— HH) - (’;)w )+ )] (1.121)
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reads in t]le M()yal case for 1]()1()]]1()I'p]liC C()()rdinates
il—Exp,,(Ht) = HExp,,;(Ht) — ” 2 —_Exp,,(Ht) — ” QH—2 Exp,, (Ht) (1.122)
1 X = X w X w X . .

This differential equation is solved by (1.120).
The third possibility that demonstrates the connection of the star product formalism to the path integral
approach is to calculate the Feynman kernel [101], [22]

K(q2.t:q1,0) = (gale” /" |qy). (1.123)

The Feynman kernel describes in the conventional approach the time development of a system. Substituting
a complete set of energy eigenstates one gets an expression resembling the Fourier-Dirichlet expansion

o0

K(g2,t;01,0) = > {ga|n) (n|qr)e #n1/". (1.124)

n=0

Inserting the harmonic oscillator states gives

! mw mw. o 2 . . 1 mw mw
onpl \/;eXp [—7(91 + Q2):| ;exp —i(n+ 5 wt| Hy, - H, 5@
o mw imw 9 9 B
B mexp [2hsinwt ((ql +az) coswt 2(]1(12)] » (1.125)

1 exp 2zys — s2(x? + y?)
V1 — 52 1—s2

Fourier transformation on both sides of (1.125) and applying (1.119) leads then to

- 4H 2H 1 1 2H  wt
2(-1)"Ly, | — - —i = = — — —1. 1.12
Z (=1) n(hw)eXp( m})exp[ 1(n+2) wt} coswt/2 P [ihw tan 2} ( 7

n=0

where one uses
n

=2 ﬁﬂn(ﬂf)ﬂn(y) (1.126)

n=0

The left hand side is just the Fourier-Dirichlet expansion with the Wigner functions found in (1.118) and
the right hand side is the expression (1.120) for the star exponential.

1.5 Systems in Higher Dimensions and Angular Momentum

In order to show how the generalization to higher dimensional systems works one first considers the two

2 2
dimensional harmonic oscillator [10]. The Hamiltonian is given by H = 2+ + mT"qu% + 22 4 mT"qug =
w(aray + agdz) = Hy + Ha with a, = /"2 (qn + —5pn) and @, = /72 (¢n — 725Ps). The Moyal product

generalizes in d dimensions to
ih & h &
*u = €Xp [2 nz::l (6Q716pn - 8pn6Q1z)] = eXp lZ ; (aan an anaan>‘| . (1'128)

The Wigner functions of the two dimensional system are the product of the corresponding one dimensional
systems:
H xy 78 (a1,a1) 7 (a9, @2) = Tw(n + )7 (a1, @) 7 (a2, a2), (1.129)
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with n = ny + ng, which shows the (n + 1)-fold degeneracy of the system. The two one dimensional Wigner
functions can be combined into a two dimensional Wigner function corresponding to the energy level n:

4H
M (ay,a1,02,82) = Y 7wl (a1, )70 (ag,a9) = 4(=1)"e /ML) <hw) . (1.130)
ni+n2=n
The star exponential is given by
Expy (Ht) = Zﬁq(zM)(al, 1, ag, Gz)e” I
n=0
-2

t 2H t

= (COS u;) exp [(hw) tan u;} = Exp,; (H1t)Exp,, (Hat). (1.131)
i

This shows that the generalization to higher dimensional systems is just as in conventional quantum me-
chanics straightforward.

In the two dimensional system described above there exists also an angular momentum. The angular
momentum can most easily be described if one defines creation and annihilation operators for positively and
negatively rotating quanta:

1 1 1 1
ay = §(a1 —iag) , G4 = 5(&1 +iaz) and a_ =1/=(a1 +iag), a_ = 5([11 —iag). (1.132)

In these coordinates the Moyal product can be written as:

(5 5 5 =
%3 = €Xp lQ Z (3%5&" - aanaan)

n=1

~ exp [Z (80,80, — 00,81, + 0, 80— B 5a_)] (1.133)

+ ay

The Hamiltonian turns into H = wayay+wa_a_ = w(Ny+N_+h) = Hy +H_ with Ny )y = @y y*paq (o)
and Hi () =w (N+(_) + %) and for the angular momentum one obtains:

J3 = q1p2 — P1q2 = i(aldg - ag(_ll) = d+a+ —a_a_ = N+ — N_. (1134)

The Wigner functions (1.130) should now be turned into a form where they are also *-eigenfunctions of Js.
The decomposition of the Hamiltonian is analogous to the decomposition in conventional holomorphic coor-
dinates a,, and a,,, moreover the Moyal product has the same structure in both types of coordinates as can be
seen in (1.133). So the calculations can be done analogously by substituting the indices (1,2) by (+,—). The

one dimensional Wigner functions are then ﬂ%¥()7)(a+(_),&+(_)) = 2(*1)”‘*(_)672H+(_)/FML"+(7) (4ng(’))

and the energy levels are F,, = iw(n + 1) = lw(ny + n— 4+ 1). The two dimensional Wigner functions are

4H 4H_
M (ay,a a_) = A(-n)re=2mer, ()L, (). 1.1
T, (a+7a+aa*7a*) Z ( ) e n4 hw n— hw ( 35)
ny+n_=n
Each term 7T7(1]\+/[’)n7 of (1.135) is hereby a *-eigenfunction of J3: J3 *,, ﬁ,(ljf)m = Rh(ny — n_)m(%,)nf. Instead

of parametrizing with n, and n_ it is also possible to parametrize with n =ny +n_ and m =n, —n_ so
that

_ _ o w 4H 4H_
RO 0m,a) = A1 Ly (5 Lo () (1.136)
and J3 *,, W%Mng = mw,(LAQ with m=n,n—-2,n—4,...,—n.
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The two dimensional harmonic oscillator can now be used as the basis for discussing angular momentum
in the star product formalism. One first notices that the angular momentum functions J; = 5gkquk form
with the Moyal product an su(2) algebra

i, 5], =iheijidy. (1.137)

*M
So they can be used to generate rotations. This is done in the star product formalism with the star
exponential:

Expy (Jip) *ar G a0 Exppy (= Jip) = R(9)7, (1.138)

where R(yp) is the rotation matrix. In order to calculate the star exponential one has to represent .J; with
holomorphic coordinates as in (1.134), so that the star exponential corresponds to the one of the harmonic
oscillator.

The next question is to find the Wigner functions and the eigenvalues 7 and m for J?*M and Js. From
the operator formalism it is known that j can have the values j = 0, %, 1, %, ... and m can have the values
m=—j,—j+1,...,5 —1,j. The half integer steps for j cannot be described with the purely bosonic two
dimensional harmonic oscillator, because the main quantum number is the energy expressed by the total

number of quanta in the system, which is an integer n = n4 +n_ =0,1,2,...; correspondingly the m vary
1

in steps of two. So in order to describe angular momentum one has to introduce a factor 3, i.e.
.1 1
j= §(n++n_) and m = §(n+—n_). (1.139)
Using these definitions one just obtains the Schwinger representation of angular momentum [99]. With the
ladder functions Jy = ajra_ and J_ = Ga_a4 the angular momentum functions are then instead of (1.134)
defined by:
1 1, _ 1 1. .
Ji==(Jp+J-)==(ara- +a_ay), Jo==(Jy —J_) = -(ia_ay —iatra_)
2 2 2i 2
1 1
and Jg = §<N+ — N,) = §(é+a+ — dfalf). (1140)

For the square of the angular momentum one obtains:

o 1 1
JQ*M _ J12*M + J22*M + Jg*M — §(N+ —|—N_) * s (2(N+ —|—N_) + h) R (1141)
so that with the Wigner functions 7r7(,1\f7)nf = W,(lﬂf)m(%) of the two dimensional harmonic oscillator follows
RS Wgﬁl,)n, =h%(j + 1)71',2]&)”7 and Js %y 7Tfff%7 = hmw,(lj\f,)ni. (1.142)

The factor % that was introduced in (1.139) stems from the decomposition of the angular momentum into
spins that is achieved by the Schwinger representation. How this can be described in the star product
formalism will be discussed in the next chapter.
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Chapter 2

Fermionic Star Products

After having established the star product formalism for quantum mechanics the next task is to incorporate
spin in the formalism. This was done first using the bosonic Moyal product in [109]. But as shown in [11]
and [18] spin can be described most elegantly in the context of grassmannian mechanics. This approach will
be used here to obtain by deformation quantization of grassmannian mechanics a fermionic star product and
a description of spin. The fermionic star products can then in combination with the bosonic ones be used
to describe supersymmetric quantum mechanics, spin and Dirac theory.

2.1 Grassmannian Mechanics

Grassmannian mechanics differs from classical mechanics in a fundamental way, because space and velocity
are described by Grassmann variables n and 7, so that a kinetic term %7‘]2 would be zero. A nontrivial ansatz
for a free Lagrangian is L = %777'7, where the product of two Grassmann variables makes L a bosonic function
and the additional i assures that L is real. The equation of motion following from this Lagrangian is 7 = 0,
which means that the dynamical variable 7 itself is a conserved quantity.

Analogously a quadratic potential term would be zero, so that there is no one dimensional oscillator
in grassmannian mechanics. But it is possible to construct a two dimensional oscillator where the two
Grassmann variables n' and n? can be combined to complex Grassmann variables

=) and = s (- ). (21)

The Lagrangian for the (twodimensional) grassmannian oscillator is given by

L = i + wim. (2.2)
The Euler-Lagrange equations
d oL  orL d oL  orL
— — — — = 0 and —_—— = 0 (23)
dt on on dt i) on
lead then to equations of motions 9 = —iw# and 7 = iwn or in real coordinates ' = —wn? and 7% = wn',
which can be combined to 7% = —w?n® for a = 1, 2. Using the equations of motion the Lagrangian (2.2)
can be written in real coordinates as
i . . .
L = 3 (771771 + 772772) + iwn'n?. (2.4)
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With the complex canonical momentum p = aaL—n.L = —in the Hamiltonian is

H =np— L= —win = iwnp, (2.5)

which can be interpreted as a rotation in Grassmann space. In real canonical coordinates n® and p, =
fééagnﬂ one gets:
H = —iwn'n?. (2.6)

The Hamilton equations can be calculated by variation of the action S = [ dt (“po — H) which gives
o OMH . oLH

= d Y= — _
! opa ’ o>

(2.7)

One sees here that the structure of minus sign differs from the one in classical mechanics. This leads then
also to a different sign structure in the grassmannian Poisson bracket, because with the Hamilton equations
(2.7) it is possible to write the time derivative of a function F'(n, p,t) as

dF  O*F ~ 9YF OF — (—1)®) (aLFaLH aLFaLH> OF

ar _ X OF _ or 2.
at " o TPege T o o Opa | ope o ) T ot (2:8)

where €(F') is the Grassmann grade of F'. The grassmannian or fermionic Poisson bracket can then be defined
as

(2.9)

L L L L
{F.G}rpp = (-1)" <8 ForG  9'F 0 G)'

on* Opa * Opa ON>

Under the assumption that the canonical coordinates are independent (which is for the grassmannian oscil-
lator not the case) the fundamental fermionic Poisson brackets are

{n*n°}rpp =0, {pa,pstrpe =0 and {n*, ps}rrB = —05. (2.10)

The fermionic Poisson bracket (2.9) can be combined with the classical Poisson bracket to a generalized or
super Poisson bracket. The derivation is analogous to (2.8), but now one has to calculate a time derivative
of a function F(q,p,n, p,t) that depends on bosonic and fermionic coordinates. This gives then the following
expression for the generalized Poisson bracket:

(2.11)

OF G  OF 8G oLFoLtG  oLFoLG
{F,G}GPB:< el ) (_1)E<F>( )

dqi dp;  Ip; Oq’ o Opa + Opa On°

The symmetry of the generalized Poisson bracket (2.11) depends on the Grassmann grade of F' and G and
is given by: {F,G}app = —(—1)*F<E{G, Flgpp. Furthermore one has a generalized Leibniz rule

{F,GH}app = {F,G}appH + (-1)"DDGF H}app (2.12)

and a generalized Jacobi identity

{{F,G}app, HYopp + (1) OO+ (G HYyopp, Flars
+ (=) IO +ENUH Fyopp, Glaps = 0. (2.13)

In grassmannian mechanics even the simplest systems like the free particle or the oscillator are systems
with constraints. The two constraints for the oscillator are

i
Xa = Pa + §5a577ﬁ =0 (2.14)
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with o = 1, 2. Calculating the fermionic Poisson brackets for the constraints gives:

{x1,x1}trpe = {X2, X2} FrPB = —i and {x1,x2}rpB = {X2, X1 }FPB = 0. (2.15)

Since not all of the Poisson brackets are zero the y, are second class constraints. Summarizing the brackets
(2.15) in a matrix Cop = {Xa, X3} Fpp One gets

_.( 10 o _ . 1 0
C(xﬁ——l<0 1) and C —1<0 1), (2.16)
where C*? is the inverse of Cop. With this matrix one defines the fermionic Dirac bracket as
{F,G}rpp = {F,G}rprs — {F.Xa}rre C*’ {x5,G}rprp. (2.17)

By substituting all Poisson brackets by Dirac brackets one takes into account the constraints and achieves a
description that is equivalent to mechanics in a reduced phase space. The Dirac brackets of the constraints
are now all zero and the Dirac brackets of the canonical coordinates are

i

e’ « 1 (o3
{n*,n°Yppp = —i6°7, {pa,pp}rpB = _Z(Saﬁ and  {n%,ps}rpB = —555- (2.18)

Just as the bosonic and fermionic Poisson bracket can be generalized to a super Poisson bracket (2.11) one
can also combine the bosonic and the fermionic Dirac bracket to a generalized Dirac bracket.

2.2 The Grassmannian Oscillator in the Star Product Formalism

Because of the two constraints (2.14) in the case of the grassmannian oscillator the basis for constructing
a star product is not the Poisson bracket but has to be the Dirac bracket (2.17). This bracket can also be
written as:

5L 31 5L 31
{F, G}FDB — F(_l)e(F) [(8 0 0 0 >

0% Opa  Opa O

(200 9 0P s (0Pxs O 9P O
on® 9dpa Opa ON™ on® O0pa Opa ON*

G. (2.19)

Working this out and using the relation between the left and right derivatives of functions of Grassmann
variables

ofF oLr
— (1))
g0 (-1) TR (2.20)
one obtains . . e o PR
10 0 10 0 o 0 io 0
P o -2 9 ;3¢ 9 19 9 g 2.21
{F,G}rDB (287]0‘ opa + 2 Dpe O Jrlana on® 4 0pa apa> ( )

Note that the notion of right and left derivatives is now included in the vector notation. Also the sum over
all « is understood. From now on the Dirac brackets are used instead of the Poisson brackets, and the
constraints are implemented as strong equations, according to Dirac’s method [29]. The only independent
variables are then the n®, so that in (2.21) only the third term remains.
Then one can construct a fermionic Moyal product from (2.21) which gives
F x,, G = Fexp <Z@ia@§a> G. (2.22)
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This shows that the deformation quantization of grassmannian mechanics leads to a star product that was
postulated in [113]. For the star anticommutators one obtains

{77&7 77’6}*1\4 = Tla * Tlﬁ + 77’3 *ar ,r’a = h(;aﬁ- (223)

This means that the fermionic star product leads to a cliffordization of the Grassmann algebra of the fermionic
coordinates.
With the fermionic star product (2.22) one can now calculate the star exponential of the Hamilton

function H = —iwn'n? of the fermionic oscillator. Using the fact that (—iwn'n?) *,, (—iwn'n?) = # one
gets
1 =it \" L
Expy (Ht) = ;ﬁ <h> H™m
e} 2n e} 2n+1 2 9\ "N
_ 1 wt 1.9 1 t Rw
- Yo () el mm () ()
t 2 t
= cos u;) - ﬁnan sin (g) (2.24)
= e T 4l (2.25)
with the projectors
M 1 i M 1 i
5/2) = 5 - ﬁ?’}l’I]Z and 7T(_1/)2 = 5 + ﬁ7717]2. (226)

Using expression (2.24) it is easy to see that the star exponential fulfills the defining differential equation

d t t
ih%ExpM(Ht) = —ih% sin (2) — iwn'n? cos <u;> = H #,, Exp,,(Ht). (2.27)
The projectors or fermionic Wigner functions w(iﬂf/)Q are idempotent and complete, i.e. W&M) *as WEM) =

5agwéM) and 71'5%) + wgﬂf/)2 =1, so that the time development of the projectors can be calculated easily with

(2.25) as
Exp, (—Ht) * W(iﬂf/)Q *y Expy (Ht) = ﬂ(iAf/)2eii“’t. (2.28)

The x-eigenvalue equations are

() _ hw

H x,, Ty =5 Mg H x,, T Ty Ty (2.29)
so the energy eigenvalues are
Ei% = % , (2.30)
and the spectral decomposition of H is
H= Y E.,n™ =—iwn'n’. (2.31)

a1
n=xtgz

Just as in the bosonic case it is also here possible to formulate the whole problem in holomorphic

coordinates ) )
2 sl £ 2 sl
= — + and =— - . 2.32
f 7 (n* +in') n f 7 (n* —in") (2.32)
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The fermionic Moyal star product (2.22) in these variables is

Fxy, G =F ¥ (0r9749591) (2.33)

which delines a fermionic star product that was suggested for example in [13]. With this star product one
finds

- - h —~ —~ h
f*w]f:ff+§7 f*Mf:ff“"§a (2'34)
and o -
{f’f}*M = {f7f}*M =0, {f7f}*M =h. (2‘35)
The Hamilton function in holomorphic coordinates is
H=uwff, (2.36)
and the time-evolution function is
wt 21 - . wt (M) jut (M) _jwt
Exp,,(Ht) = cos 5 —Effsm o) = Tpe +m e, (2.37)
with 1
r =5 - fff and 7)) =2 + =ff. (2.38)

It is obvious that these projectors satlsfy the required orthonormality and completeness conditions, as well as

the corresponding *-eigenvalue equations for the energy levels E. /5, = iHQ , so that the time development

of (2.38) is also given by (2.28), while the time development of the holomorphic coordinates is given by:
Exp,;(—Ht) %, f %y Expy, (Ht) = fe vt and Exp,, (—Ht) *,, f *y Exp,, (Ht) = fel*t.  (2.39)

Furthermore one can show that f and f act as annihilation and creation functions:

I *um 77'(_]&[/)2 = .f*M 775%) =0, (2'40)

and u
P 7w f=hr0), o ml)y s [ = bt (2.41)
The expression 7 = %ff is an involution, i.e. 7 *,, 7 = 1. It thus has the two eigenvalues +1, and
the projectors onto the even and odd eigenspaces are w(iM) = %(1 + 7) in agreement with (2.38). In the

conventional operator approach to supersymmetric quantum mechanics the above quantities are represented
as 2 X 2 matrices, and the star product corresponds to ordinary matrix multiplication. The matrices one

uses are
(i) rea(in) (00 e

The matrix representation f and f f for f and f reproduce the anticommutator relations (2.35) if one replaces
the star product by the matrix multiplication. Using (2.38) and the 7-matrix, the matrix representation of

the projectors becomes:
-y (10 2O _ 0 0
S12 T ( 0 0 >’ T2 = ( 01 ) (2.43)

Relations such as (2.41) are then simple exercises in matrix multiplication. One sees here also that the
projectors are normalized according to

T (78),) = 1. (2.44)
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As in the bosonic case it is also possible to construct a normal star product for fermionic functions:

Fiy G = Fehdsdr g, (2.45)
We then have ) ) B B
f*x f=ff+h, [~ f=ff, (2.46)
and o -
{faf}*zv :{f7f}*1\1 :Oa {faf}*zv :hv (247)

which is consistent with the previous results for the Moyal product, as it must be. One easily calculates the
time-evolution function

Expy (Ht) = 7i¥) 4 7{Memiwt, (2.48)
with

1. 1.
w(gN>:1_ﬁff, W§N>=ﬁff. (2.49)

These projectors satisfy the required properties, including the *-eigenvalue equations:
H xy 7T(()N) =0, H xy 7T§N) = hw 7T£N), (2.50)

so that the energy levels are 0 and fw. As in the bosonic case there is a shift of %ﬁw in the oscillator energy
levels between the Moyal and the normal product, but now the spectrum is shifted upwards whereas the
bosonic spectrum was shifted downwards.

Just as in the Moyal case f and f act as creation and annihilation functions:

Frym™) = Fayn™ =0, (2.51)

and
f*y F(()N) *y f = hﬂ%m, T ng) *y f = hw(()N). (2.52)

2.3 The Supersymmetric Star Product

It is now straightforward to combine the bosonic and the fermionic star product into a supersymmetric star
product. The supersymmetric star product of the Moyal type is

Fio G = F exp [2 (88 — 0l + 8,07 + @-@)} . (2.59)

The supersymmetric star product factorizes in a bosonic and a fermionic Moyal product, so that the su-
persymmetric star product of two purely bosonic functions reduces to the bosonic Moyal product of these
functions and analogously for purely fermionic functions. The Hamilton function of the supersymmetric
oscillator is just the sum of the Hamilton functions for the fermionic and the bosonic oscillators. So it can
be written (with the supersymmetric star product) as

Hsy =w (f*su f+a*sya) =w (ff +aa) = Hp + Hp. (2.54)

Another possibility to write Hgy that clarifies the relation of the bosonic and fermionic sectors and allows
an easy generalization to nonlinear supersymmetry is

Hsy =w [(d *ar a)WSAf/)Q + (a*y d)wg%)] =w [(d *ar a)wgﬂf/)z + (@ *ya+ h)ﬂ%)} . (2.55)
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So one sees that there are two bosonic oscillators shifted by fw and that they live in sectors separated by

the projectors 7T§:A14/)2.

One can then define functions that relate the energy levels of these two sectors:

Q+:ﬁ(a*SU f):\/;af and Q- :\/g(a*SU f):ﬁaf' (2.56)

These functions are nilpotent,

Q+ *su Qr = Q1 =0, (2.57)
and the Hamiltonian of the supersymmetric oscillator may be written as
Hsy = w{Q+’ Q_}*SU : (2'58)

With (2.57) one sees immediately that Hgy is supersymmetric:

[Q+7HSU]*SU = [Q*vHSU]*SU =0. (259)

One may also use the hermitian functions

Q=Q++CQ- and  Qy=—i(Qy —Q-), (2.60)

so that the supersymmetric Hamiltonian becomes
Hsy = wQTY = wQ3*sv. (2.61)

Since the supersymmetric star product factorizes into a bosonic and a fermionic part one can also choose
a factor ansatz for the star exponential of the supersymmetric oscillator. The product of (1.120) and (2.25)

leads to:

o (3) -3 () e () = (3)
() o (5) oo [ (52 0 (5)]
exp {(2%9}‘]) tan (“;)} . (2.62)

This ansatz fulfills the differential equation for the time evolution with the supersymmetric star product:

. d
1h$EXPSU(HSUt) = (Hp *u Expy (Hpt)) Expy (Hpt) + (Hp *u Expy (Hpt)) Expy (Hrt)
= Hsu *sv Expgy(Hsut). (2.63)

The Fourier-Dirichlet expansion is

1/2

Expgy (Hsut) = Y Z A Q) (M) =B+ B )2/, (2.64)
np=—1/2 np=0

This means that the supersymmetric projectors ﬂ%i({L)B are just the product of the fermionic and the bosonic

projectors. They also fulfill the x-eigenvalue equation

Hsy *so 750 = (E,, + E,.)75Y) (2.65)

ngnp ?’LpnB7
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and are idempotent:

SU (SU) _
7(an)3 *su T, 5’”,1-7‘7’7,/1;.

Oppyn TEY) (2.66)

ﬂ— anB nEnpg"*
The spectral resolution of the Hamilton functlon is

1/2
Hsy= Y Z (Bup + Enp) w39 (2.67)

np=—1/2 np= =0
The functions @+ now act on the supersymmetric projectors as:

Q+ *su nggL)B *su Q- = hwfzili)l np—1 and Q- *su 7rnFnB *su Q+ = h“np )1 mp+l (2.68)

and one sees that the Q4 relate energy levels of the two sectors of the supersymmetric oscillator that lie on
the same footing.

The functions ﬂﬂf}w Q. and Q_ fulfill the relations:

ﬂ-(i]\;[/)g *su ﬂ-(ij\f/)Q = ﬂ-(i]\f/)Q’ Q:t *su 7T:F1/2 Qi and ﬂ-(ij\f/)Q *su Qj: = Qi; (269)

so that these functions form a Fredholm quadruple =. With this quadruple one can then define an index
[51]:

ind=

1
tr [ 1/2 Q+ *gy Q- ] —tr [WS_A{[/)2 — EQ_ * 50 Q_,J

M 1 aa M 1 aa
tr [77( 1/)2 ( h)] —tr [775_1/)2 (2 - h)} . (2.70)

The trace tr is here the sum over all bosonic and fermionic states:

Z > /dzaTr (rD 7D g, F), (2.71)

np=0 ngp= i1/2

where Tr is defined as in (2.44). The terms in the round brackets of (2.70) give the sum of the number of the
bosonic states. Since all states with £ > 0 are paired as they appear in the bosonic and the fermionic sector,
these two terms cancel each other. The first term in the round brackets counts the number of states, so that
the index is the difference of the number of states in the bosonic and the fermionic sector. Because of the
pairing of states with E > 0 the index is zero if there is a state with £ = 0 in the bosonic and the fermionic
sector and it is one if only one of the sectors has a EF = 0 state. This index is called the Witten index and

describes if the supersymmetry is exact or broken [83]. Since the second terms in the round brackets of

(M)

(2.70) cancel anyway, the same result can be obtained just with the elliptic pair 7 /2"

(M) (M)

ind= = tr |«w -7 . 2.72
—1/2 +1/2

Just as one can construct a supersymmetric star product of the Moyal type it is also possible to construct
a supersymmetric star product of the normal type:

F gy G = Fe(9:9:+9:37) (2.73)

All calculations that were done for the Moyal type star product can be done analogously for the normal type
star product. For example the star exponential is now the product of (1.95) and (2.48) which leads to

Expgyy (Hsut) = e~ 150/ exp [h (Fremeeny aae‘lEB“")} (2.74)
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2.4 Supersymmetric Quantum Mechanics with Star Products

Crucial for the vanishing of the star commutator (2.59) is that the )+ are nilpotent (2.57). But this is
already assured by the fermionic part of the )+, so that one can use a bosonic part that is more general
than a or a, as in (2.56). In supersymmetric quantum mechanics one usually goes over to the new coordinates

1 D _ 1 . D >
B=—(W(q) +i— and B=— (W -i—], 2.75
5 (v +i) 5 (v -1t (2.7
where W (q) is the superpotential and m an additional mass parameter. The Q4 can then be generalized to
Q4+ = Bf and Q_ = Bf, which results in a system with interaction between the fermionic and the bosonic
sector [83].

In the star product formalism one can proceed in an analogous way. Therefore one first transforms the
Moyal product into the new coordinates (2.75), which gives

L OW 1

Sy = (9895-0805) (2.76)

[N

Fx,,G=Fe

The star commutator and anticommutator are then

_ 2 _ hoOW
B.BY, =W? L B.B|, = %%
(BB =W+ L and (BBl - =

To implement the new coordinates one uses the fact that the supersymmetric Hamilton function of an
oscillator can be written as in (2.55). By analogy, the Hamilton function for the general supersymmetric
system is then:

(2.77)

Hsy = (B *m B) 77(_]\;[/)2 + (B * B) Wg%) (2.78)
1 1 " 1 1 M

= (5B Bl - 5158 ) 70l (5B BYy + 5B Bl )2 20

1 /p? 9 h oW (M) 1 /p? 9 h oW (M)
= —(Byawro 20 S(E w0 2.80
2(m+ vm 9q T2ty Gy T +\/ﬁaq /2 (2.80)

M M

= HuyyrY), + Hayml)y). (2.81)

In the conventional operator approach to supersymmetric quantum mechanics the projectors are represented
as 2 X 2 matrices, see Eq. (2.43), and the two systems H ) and H ) are represented as blocks of a matrix.

Using the orthogonality and idempotence of the projectors one can simplify the *-eigenvalue equation for
HSU:

SU M M M M (M M)
HSU *su 77(_1/;%531) = HSU *su (777(1,531))7((_1/)2> = (H(l) * s W;g))> 7'('(_1/)2 = E(l)ﬂ-ng))ﬂ-(_l/y
SU M M M M M M
HSU *su ﬂ-(—l/;,ng) = HSU *su (71'7(1([5))775/2)> = (H(2) * s 7T7(1§32))> 775/2) — E(Q)Wig))ﬂ§/2), (2.82)

This means that the problem is reduced to two bosonic *-eigenvalue equations:

Hy) *u W(](VII)) = B, Bx,, 71'(12/1[)) = E(l)ﬂ(i\{)) (2.83)
g g "B

and H9) % ’/T(](sz)) = Bx,, Bx,, w(lg)) = E(Q)W(Jg)). (2.84)
"B np "B
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The connection between the two systems can be found immediately with the help of the associativity of the
star product:

H(l) *r <B * s ﬂ':g)) * s B> = B x,, (B %, B #yy wi]g)) *r B) :E(Q) (B *,r w;](‘ﬁ)) * s B) ,
B B B

H 9y %y <B % 77(](\/1[)) % B) = By, (B % B %y w(](\f)) . B) = Eq) (B * s w(](\{)) * s B) ) (2.85)
ng np "B

E(3) is then also an eigenvalue of H(;) and E(;) is an eigenvalue of H(s), just as B x,, w‘f(‘f} *x,, B is an
"B

eigenfunction of H () and Bx*,, ﬂ(]g)) %, B is an eigenfunction of H (). One sees then that B and B relate two
"p

systems with supersymmetric partner potentials V(1) = % (W2 — \/%%—V;) and V(o) = % (W2 + \/Lﬁ%)

To show how the star product formalism works one considers the superpotential W(q) = Atanh(agq).
The two partner potentials are in this case

1 ho 1 1 ha 1
Vin==(42-4 A+>> d V, :<A2—A<A—>). 2.86
=3 ( ( Vvm ) cosh?(aq) a )~ 3 Vvm ) cosh?(aq) (2.86)

For A = ha/\/m these expressions become

h2a? 2 h2a?
Vi) = 1— and Vg = , 2.87
(1) 2m ( COShQ(O[q)> (2) 2m ( )

so the first system is the Poschel-Teller potential and the second system is the free particle.
2
One can then first consider the free particle with the Hamiltonian Hp) = - + % Using (H(Q))n*M =

(H(2))" one gets for the star exponential

Hyyt
Expys (Hyt) = exp (fh)) . (2.88)

The projectors can be obtained from the *-eigenvalue equation

Ho)(p) % mity) = B mits) (2.89)
as
T = 0(p — k), (2.90)

where the energy eigenvalues are Ej = % + ’i—;j‘f The Fourier-Dirichlet expansion is given by

Eit Hot
Expy; (Heyt) = /dkwl(cjg)) exp (lh) = exp ( i(h) > . (2.91)

The Poschel-Teller potential as the supersymmetric partner potential has one bound state with energy

zero and a continuum of reflectionless states. The projector Wé%) for the bound state can be calculated

in terms of the eigenfunctions 1, of the Hamilton operator according to (1.55). With the ground state

wavefunction ¥51) = /9 —+— of the Poschel-Teller potential this gives the projector [23]:
0 2 cosh(aq)

LD _ sin(2pq/h)
0 ginh(2aq) sinh(pr/ah)’

(2.92)
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The projectors ™) for the reflectionless states can now be obtained with the help of the functions B and

k(l)

B from the projectors 7TI(€(2) =d(p—k):
0 = L [Bewnd e B]
= 7/ ( +1— tanh (anra%) 71% tanh (aq—o%)
+L tanh (aq + a%) tanh (aq _ ag)) ellP—k)y (2.93)
- 5;5@ £)+i éﬁ:ﬂ((g(yp__k@f//jf)@' (2.94)

Equation (2.93) is the same result that one gets by calculating the projector with Eq. (1.55), using the
wavefunction 1, = Bel*?. B is the operator form of Eq. (2.75). For the case W(q) = nh—\/% tanh(aq) with n
bound states one can proceed in a similar way [23].

2.5 Spin and Star Products

In conventional quantum mechanics spin 1/2 fermions are described by using 2 x 2 Pauli matrices. As seen
above, such matrices can be described in the star product formalism with products of Grassmann variables.
This suggests the use of appropriate Grassmann variables in order to describe spin 1/2 particles in the
framework of deformation quantization. With this motivation one introduces the Grassmann variables 6;,
(i=1,2,3), and in analogy to (2.22) the Clifford star product

d
h PR
F*c G=F exp (2 E 39",897,,) G. (2.95)
n=1

The variables 6, form a Clifford algebra with respect to this product: {6;,6;}.. = 1d;;. With the 6; variables
one can construct the quantities

7 ijk ijk
g =& J ﬁ/[e‘y,ak]*c = ﬁ&j ajak, (296)
which fulfill the relations

(08, 07)., = 2ieFo® and {o%, 07}, =20". (2.97)
The o obviously correspond to the Pauli matrices &; in the operator formalism and will therefore be called
Pauli functions. The Pauli functions are real, i.e. ; = o;, where the complex conjugation F' +— F' for a
superfunction F is defined as in [11] and fulfills:

F=F FEF=FKF and cF=¢F, (2.98)

where c¢ is a complex number. The realness of the Pauli functions corresponds to the fact that the Pauli
matrices are hermitian: (6;)7 = &;.

In order to construct the analogy of the trace for the o one must define the Hodge dual for Grassmann
monomials, which maps a Grassmann monomial with grade r into a Grassmann monomial with grade d — r;
d is the number of Grassmann basis elements, which is here three:

L vy 0;,. (2.99)

*(9i10i2 o 0741‘) = (d — 7“)' G1%2...0p Cbrdl
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The trace of a function F'(#;,0s,03) is then defined as:

2

Tr(F) = W

/d&gd@gd@l *F, (2100)
where the integral is given by the Berezin integral. The Berezin integral has the property that [ df; 6; = §;;h.
A h appears here, because the variables 6; have in our case the unit v/A. This definition of the trace leads

immediately to ‘ A ‘ N
Tr(c*) =0 and Tr(o" *c 07) = 26". (2.101)

Moreover one can see the correspondence between spin and the fermionic quantum oscillator. If one
considers the two dimensional fermionic oscillator as described above embedded in a three dimensional space
with coordinates 6;, (i = 1,2,3), then the Clifford product corresponds to the fermionic Moyal product
(2.23). The two canonical momenta are given according to (2.14) by —16; and —16,, so that the angular

momentum of the two dimensional fermionic oscillator is § = (0,0,53) with

S3 = (9192 — 9291) = —19102 = ga?’. (2102)

i

2
The Hamilton function of the fermionic oscillator (2.6) can then be written as H = wS3 and the corresponding
Wigner functions are in analogy to (2.26) given by

o 1 i 1
D = 5 F30ita=5(1£0%, (2.103)

which shows that the WES)/Q

(2.103) are normalized according to:

are just nonrelativistic spin projectors. With the trace (2.100) the projectors

© Vo (tils)
T (rl),) =T (2 + 50 ) =1. (2.104)

One sees that (2.100) is the Grassmann analogue of the matrix trace used in (2.44) and (2.71). Moreover
(2.100) allows now also the calculation of expectation values, which makes clear that the projectors (2.103)
correspond to spin up and spin down states, because the expectation values of the S; are given by:

h h
S) = T (nﬁ>/2 . 201) 0 . (S)=T (@cp/ . 202> .
C h h = c K2 ok 3
(53) = Tr (”(ﬂ)/g *c 203) =45, (§7)=Tr (Tr(il)ﬂ *o 40 C) =77 (2.105)

The star exponential (2.25) allows the calculation of the time development of the o

ol (t) = Expo(—Ht) e 0t xc Expo(Ht) = o' cos(wt) — o sin(wt)
0%(t) = Expo(—Ht) *c 0% o Expo(Ht) = o' sin(wt) + o2 cos(wt)
o3(t) = Expo(—Ht) % 0% %o Exp (Ht) = o°. (2.106)
With these expressions it is easy to see that the -Heisenberg equation ihdl;(ft) = [F(t),H(t)], for the spin
is given by:
asi(t) 1 dSa(t) 1
= —[Si(t), H], = —wSs(t = —[Sy(t), H],  =wS(t
dt IFL [Sl( )7 ]*C UJSQ( )’ dt IFL [SQ( )7 ]*C UJSl( )
ass(t) 1
and =g = i [0 Al =0 (2.107)
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For w = % B3, where Bj is the third component of the magnetic field B = (0,0, B3), this leads to the
equation of motion for the spin:
S e o =
— =—BxS. 2.108
dt  m ( )
So here one has the case that the classical equations of motion follow from the star product time evolution.
Furthermore the spin S is in the fermionic #-space the generator of rotations. A rotation J = @7 with
angle ¢ and rotation axis 7 is described by the star exponential
~ _lizs
Expo(3-5) = ;297 = cos% — (G - ) sin g. (2.109)
The vector § = (61,02,03)T transforms then passively (in opposite to the active transformation of time

development as in (2.106) which has the opposite sign structure) according to:
Expo(@ - S) *o 0 %o Expa(—3 - S) = R(§)F, (2.110)

where R($) is the well known SO(3)-rotation matrix. The axial vector & transforms in the same way.

Note that the passive transformation (2.110) of the #; amounts to an active transformation of vectors
3

The spin Wigner function 7r_(ﬁ)/2 = 7r§rc+) corresponds to the density matrix |+)(+| and the spin Wigner

function 7T(_C1)/2 = 79 corresponds to the density matrix |—)(—|, so there should also exist off diagonal

Wigner functions 7rf_) and 7.9, With the ansatz wic_) = ag + a;0’ and wﬁ) = by + b0’ for these functions
one can determine the coefficients by the functional analogues of the fundamental relations. The density

matrices |—)(+]| and |+){—| fulfill:

T (r0) =T (+9) =0, (2.111)
WSFC_) *c ﬂic_) = 7r(_(,2 ko 7T(_0+) =0, (2.112)
and 7TS_C_) *o 7r(_c+) = ws_c_g, 77(_(’1_) *e ’/TS_C_) =79, (2.113)
The results for 7T'S_C_) and 77(_642 are
7TS_C_) = %( 1 _ig?) and 7T(_C_2 = %(01 +i0?). (2.114)
With these projectors the Pauli matrix 6% can be written as
N Tr (o %, wgg_) Tr (o %, 7'('_(,'_0_)
7 Tr (o %4 WEC;) Tr (o %o 7' (2.115)
and the angular momentum functions in the Schwinger representation (1.140) become
Ji= > aTr <;0 %o ﬂfj) ay. (2.116)

s,8' =%

The su(2)-algebra structure (1.137) the angular momentum functions (1.140) fulfill with the star product
(1.133) is then a reflection of the algebra (2.97) the sigma functions satisfy:

1 .1 .
[Jiij]*M Z asTr ([201, 20]} *o 7T£052> Qs
*C

s,s'==%

a1
Z asTr (ie”kQJk *o 7r£?> Qg

s,s'==%

= isiijk (2.117)
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This makes clear how the angular momentum in the Schwinger representation is decomposed into spins and
how the fermionic star product algebra translates into a bosonic one. What the Schwinger representation
actually does is that it replaces the (s|-part of the Wigner function that annihilates a spin s = + on the
right by the bosonic annihilation function as. But with the annihilation and creation functions as and as
one can construct arbitrary bosonic angular momentum Wigner functions. For example the simplest spin
states (j = 3,m = +1) are given by

M _ M M _ M
WJ(‘:I)/2,m:1/2 =Gy %y 7r7(1+)207n7:0 *nr Gy and 7(-_5’:1)/27771:—1/2 =G_ %y 777(1+i07n7:0 s a—, (2.118)

where 7T7(l]\f7)717 is the two dimensional harmonic oscillator Wigner function as discussed in the last chapter.

The Wigner function for an arbitrary angular momentum is then

1 . . . .
M) Gl x Wr(LAfio,n_:O %o aj__maf_m (2.119)

S GamlG —mp

and fulfills (1.142).

As a further physical application one can show that the Pauli Hamilton function, which describes the
2-dimensional motion of a charged spin 1/2 particle in a constant magnetic field along the z-axis, may be
described in the star product formalism in a supersymmetric framework. To this purpose introduce the
Moyal-Clifford star product

3

Fiye G =F exp [1: > (an8y = 8,8, 00,80, | G, (2.120)
n=1
and the quantities
1 1 2
Q1 = N [— (p2 —eds) o' + (p1 — eA1) 0], (2.121)
1
Q2 = Nor [(p1 — eAr) o' + (p2 — eds) 0?] (2.122)
where A(g1, q2) is the vector potential of the magnetic field. One finds
- 1 2% g PESYS 1 2 _
{Q1, Q2hiare = 5~ [(Pl —eA)"M = (p2 — eAy) } {o 07 e =0, (2.123)

and

Q1 *re @1 = Q2 *nre Q2 [(pl - €A1)2*M =+ (p2 - €A2)2*M}

2m
1
+% [(p1 — €A1) y (pQ — GAQ)]*M (O’l *o 0'2). (2124)
Calculating the star commutator
[(p1 - €A1) s (pg - GAQ)]*M = —¢€ [pl, AQ}*M — € [Al,pg]*M = ieth (2125)
with B = V x A the Hamilton function is now
1 /. N\2*m eh | o
Hp = Ql *ve Ql = QQ *mo QQ = (p - €A) ——o0 - B. (2.126)
2m 2m

This is the Pauli Hamilton function, with a gyromagnetic factor g = 2. @1, @2 and Hp form a supersymmetric
algebra, as in Eq. (2.59).
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One should note that (2.122) together with (2.126) is the Feynman trick (see page 79 of [98]) in the star

S N A2 N2
product formalism, i.e. for commuting quantities p’ and A one has Kﬁ — eA) . 5’] = (ﬁ — eA) I, whereas

= (p—ecA — hed - B.

_ 2¢Mmc N\ 2% M
in the non-commuting case an interaction term is induced: [(p — eA) . 3}

Or more generally there exists a star product Gordon decomposition for two vector valued functions f; and
g; of the variables ¢; and p; with ¢ = 1,2, 3:

(Ulfi) *mc (Ujgj) = <Elmnih9m9nfi) *mo (Ejrsihy esgj) = fi*um gi +1ie J (fz *nm gj)g . (2'127)

The next task is to find the Wigner function for (2.126). Since this problem separates in conventional
quantum mechanics into a space and a spin part, one can here also consider the two terms of the Pauli
Hamiltonian separately. First consider the bosonic part of this problem describing a charged particle in a
magnetic field, which corresponds to the Landau problem. The magnetic field points in the direction of
g3 and can be described with the gauge potential A= %(—qg, q1,0). For this gauge potential the Moyal
product in (2.126) reduces to a conventional product and the bosonic part is the Landau Hamiltonian

Hy= o (7 +73), (2.128)
where one defines
pr=pi—edi=p+ %q& and  Pr=ps—edy =ps — %CH (2.129)
with w = %. In order to quantize this two dimensional system one transforms the Moyal product from
canonical coordinates into (g;, p;)-coordinates, which leads to
g = fexp [j (B, — Bl + D08, — 980 + 22 (8,85, 5,325;;1)} o (2130)

(M) (M)

The *-eigenvalue equation ﬁ (]5% + j)’%) ¥ T = E,m, ’ can easily be calculated by comparison with
the bosonic oscillator. As seen above the x-eigenfunctions of the bosonic oscillator depend only on the

Hamiltonian. Therefore also the 7r7(lM) should depend on p; and py only. Taking this as an ansatz, only the
second part of the star product (2.130), which can be written as

exp [1; (5(1;1) Dor — '_525(1"1)):| ; (2.131)

has to be taken into account for the x-eigenvalue equation.
Setting ¢ = % and p = py the Landau Hamiltonian Hj reduces to the Hamiltonian of the bosonic
harmonic oscillator and (2.131) becomes the Moyal product in canonical variables. Then it is clear that the
x-eigenfunctions of the Landau Hamiltonian are in analogy to the one dimensional harmonic oscillator given
by
R o) = w0 ) = 21" e (-2 ) £ (S22 ). (2132)

The energy levels are the Landau levels F,, = hw (n + %)

Since the system considered here is described in a four dimensional phase space one can expect that
another observable which commutes with the Hamiltonian is needed to characterize all the energy -
eigenfunctions. To find such an observable it is useful to write the star product (2.130) in the two forms

i ihe = s s S s e B,
f*Mg = fexp [12 (a(hafh — Ups (8111 - mwaﬁz) + afh P2 — Upe (a(lz + mwaﬁ1)>] g (2'1333)

i _ ~ . L
= fexp |:12 ((6Q1 - mwaﬁz)aﬁ1 - a;51 6111 + (aqz + mwaﬁ1)8ﬁ2 - 8ﬁ26<h):| g (2133b)
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by simply rearranging the terms in the argument of the exponential function. By observing that the functions
G =q + #wﬁg and ¢ = qo — ﬁﬁl fulfill the equations

(0 — Mmw0p,)G; =0 and (04 + mw0p, )G =0 (2.134)

it is obvious from equations (2.133) that every (analytical) function of ¢; commutes with every (analytical)
function of p;, e. g.

Hyp %y f(G1,G2) = Hof(G1,G2) = f(@1,G2)Hr = f(q1,G2) % He. (2.135)

On the one hand this means that ¢; and gz are two conserved phase space functions and on the other hand

it follows that all functions of the form f(qy, qg)wﬁl )(pl, D2) are x-eigenfunctions of the Hamiltonian as well.
Obviously this function becomes a *-eigenfunction of the angular momentum

Js = qip2 — qap1 = ——HL + 7(q1 +d3) (2.136)

by choosing f(G1,g2) to be a x-eigenfunction of “* (G? + ¢3). Using (2.134) only two terms in the argument
of the exponential function contribute to the star product (2.133b) in this x-eigenvalue equation, so that

2 2
mw N ~ ~ o mw h - 5 -
@A B) R @) = <ql+q2>exp[2( TR ma%)}
mw2

ih s oo s - o
= PG B ew | oo (00 - 00| fan). 137

where in the last step the definition of ¢; was used. Setting ¢ = ps and p = mwq;, the whole problem again
reduces to the one dimensional harmonic oscillator, so that f(g1,d2) becomes

1), ~ o~ mw , _ _ 2mw , _
" (G, @) = 2(=1)" exp (—7(61?+q§)) Lz( - (Qf+q2)> (2.138)

and the x-eigenvalues of ™% (g? + ¢3) are h (1 + 3).
Thus, the Wigner functlons of the Landau problem are 77( )(ql, Go,P1,D2) = 7"1( )(ql, G2) T, (M )(pl,pg) and

lead with the x-eigenvalue equation Hp, *,, 77( ) — =F, 7T( 1) to the Landau levels F,, = hw (n + 5), whereas
the equation J3 %, ﬂfljlw) = ]nlﬂ—g]lw) gives rise to the angular momentum eigenvalues j,; = h(l —n). The same
results can be obtained with holomorphic coordinates, as it was done in [27].

It is now straightforward to include the spin, because the interaction term H; in the Pauli Hamiltonian

for B = (0,0, Bs) can be written with (2.96) as

h .
H; = —e—a B = —iwf,0, (2.139)
2m

which is nothing else than the Hamiltonian of the fermionic harmonic oscillator (2.6). Then one can combine
the Clifford star product (2.95), which corresponds to the fermionic Moyal product in canonical coordinates

for the harmonic oscillator, with the Moyal product (2.130) to a Moyal-Clifford product just like in (2.120).

MC MC . . . .
flln) = E’”v"sﬂ-fz,l,nz then decomposes into a bosonic part that is equiv-

alent to the Landau problem with the Wigner functions 7T7(l]l\/1) and energy levels E,, = hw (n + %) and a
fermionic part that is equivalent to the fermionic harmonic oscillator with Wigner functions (2.103) and

energy levels E, _11/5 = h“’ The full Wigner function for the Pauli Hamiltonian is then the product of

T(LNZIS: = WE%)W,(LC) and the energy levels are E,, ,,, = hw (n + % + %)

The *-eigenvalue equation Hp *,,c 7

these two, i.e. 7
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2.6 The Dirac Equation

After having established the star product formalism in supersymmetric quantum mechanics and quantum
mechanics with spin one can now extend the star product formalism to Dirac theory. In order to do that
one uses the fact that the Dirac Hamiltonian is a supercharge with respect to the S-matrix. In the operator
formalism a hermitian operator Q = QT is called supercharge with respect to the involution 7 if it consists
just of an fermionic part [83], where the bosonic and the fermionic part of an hermitian operator can be
projected out with the projection operator 74+ = %(1 £ 7).

This can now be directly translated into the star product formalism, where the involution is 7 = % ff
and the projectors are 7+ = T4/9 = %(1 +17), see (2.43). With the projectors 71 a phase space function F
can then be decomposed into its even (bosonic) and odd (fermionic) part:

F=(mysy Frymp+m_ sy Fyym_ )+ (g sy Fyyme + 7 %y Fxyy i) = Fp + Fp, (2.140)

because with 7%, 71 = £y and [7,74].,, = 0 follows (x,, is here the fermionic Moyal product (2.33)):

*M

[g kp By g, Tlay, =0 and {my % F oy g, Thiy, = 0. (2.141)
In analogy to the operator formalism a phase space function @ = @ is then defined as a supercharge with
respect to the involution 7 if @ = Qp, or equivalently {Q, 7}.,, = 0. An example for a supercharge are the

functions (2.60). For example one easily calculates for Q1 = \/% (af + af) the star anticommutator with 7

as {Q1,7}x,, = 0. The square of the supercharge then gives the supersymmetric Hamiltonian (see (2.61)).
The Dirac operator for a massless particle is the simplest example for a supercharge with respect to the
[B-matrix [83]:

=0 ( 05 77 ) -ortenis 2112

with D = DT = ﬁf? . ]3’ and (2.42). The corresponding supersymmetric Hamilton operator is then defined
as the square of Q divided by m in order to get the right units:

. 1 ( wD'D 0

which corresponds to the supersymmetric Hamilton operator if one substitutes D and Dt by B= Q(B) and
Bt = Q(B). The difference is that (2.143) is a 4 x 4 matrix whereas the supersymmetric Hamilton operator
is a 2 X 2 matrix.

The analogy of (2.142) in the star product formalism is then immediately given by:

Hp =Q=Df + Df, (2.144)

with D =D = ﬁé’ -p. Tt follows then, that {Hp, 7}, = 0 for 7 = %ff, so that Hp is a supercharge. The
supersymmetric Hamiltonian is:

Hsy = %Q *sp @ = [(D * D)(f*M f)+(D *nm D)(f *nm f)]

[(D %y D) hmy o + (D *,, D) hﬂ',l/z] , (2.145)

Slm3l-

where the star product between D and D is a bosonic Moyal product and the star product between f and
f is a fermionic Moyal product.
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D and D are still 2 x 2 matrices, but one can now use the formalism of the last section to turn these
matrices with the Clifford star product into Pauli functions. The ¢ in D and D are then no longer Pauli
matrices but the corresponding expressions (2.96) and furthermore to the supersymmetric star product with
its bosonic and fermionic Moyal part the Clifford part has to be added:

s /e = = = Bfe = ==\ hf<~e =
3> (00,0, = 80,8, + 5 (8597 +8;0;) + 5 (Z b, gn>

n=1

FryeG=F exp G. (2.146)

With this product one finds:
Hp #ye Hp = (5 9) #ue (G- ) =52, (2.147)

which corresponds to the relativistic relation between energy and momentum for massless particles: E = |p/|.
To describe the Hamilton function for massive particles and antiparticles one needs a generalized super-
charge Hp = @Q + M %, 7, where M is a bosonic function that commutes with @ and 7: [M, Q] =

[M, 7], = 0. Take M to be of the form e
M = My}, + M 790, (2.148)
where M4 are purely bosonic functions. Then
M #ye=Mmi)) — Mzl (2.149)

One sees here explicitly that the M, correspond to the rest mass of the particle and the antiparticle,
respectively. One finds

Hp *ye Hp = (Q + M *y6 7—) *me (Q + M *p6 7—)

— (D #aro D+ My saso Mi)TM) 4+ (D tye D+ M- #y00 M_)r™),

— [P (0" %0 0) + (M 4y M) 700 4 [0 (0% w0 0) 4 (M5, MY 7%, (2.150)
For the choice M1 = m just the relativistic relation between energy and momentum for massive particles is
obtained: E? = |p'|? + m2.
In order to calculate the nonrelativistic limit for this Hamilton function one can use the resolvent method
[106], with the resolvent (Hp — m — z)~'*m¢ | where the notation ( )~!* denotes the formal inverse with
respect to the star product. First define the expressions

Ax=Hptm+z=Q+2mnl)), + 2. (2.151)

With 7'('5%) spe Q = Q *ye w(_ﬁf/)z one has then

Ay e Al = Qxpe Q —2mz — 22 = A_xy0 Al (2.152)
This can be written as
A:I*MC_‘ — A+ * (A7 *are A+>_1*MC’
1 22 T pre

with Hy, = ﬁ@ *ye Q. Using the associativity of the star product it is easy to establish the identity

(A+B) ™" =(1+A"x«B) *xAalx (2.154)
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Using this relation with A = H,, — 2z and B = f% equation (2.153) can be written as:

22

—lxye
7(H<>o _ Z)_l*Mé> * 06 (Hoo —_ Z)_l*Mé (2.155)
m

Substituting Ay according to (2.151), this reads

1%
e + 2z 22 e MC e
(Hp —m—z)"Y*me = ( 1]/@ + sz )*M@ (1 — %(H>o —2)7! Mc) $pre (Hoo —2) 71 me . (2.156)
The limit m — oo is then:
lim (Hp —m—2)" 8¢ = 70050 (Ho — 2) 700 (2.157)
With the idempotency of 7t , [Hoo 730 v =0and (1 —2)~"* =32 2" one can then calculate:
1/2 1/2 ME =0
e 1 H., H., 2% 6
W%) *rye (Hoo — 2) e = —7271—5%) e |1+ Pl + (Z) + -

1 Hoo 3%, A Hoc 2%
j [ 5%) +7T(/ )*Mé Wg%) *nmé 7 + ( i%)) me *mé (Z) +]

1 Hoo HOO 2*1\46
= =g e |14 re =2+ (W%) *ae ) oo
— 1%, A
= Wﬁ%) *me (Wi%) *pe Hoo — Z) " (2‘158)

Putting this into equation (2.157) one can read off from the resolvent that the non-relativistic limit is the
Pauli Hamiltonian:
ey

1
Hp = ﬁ%) #ue Hoo = 5=m)3) *ue @ fure Q = (D sye D) 5/2) (2.159)

The interpretation of this equation is as follows. The projectors wiﬂf/)z effectively project onto the subspaces

describing particles and antiparticles. The projector 77%) indicates that the expression one is concerned with

is in the positive energy sector: in the non-relativistic limit the contribution of the antiparticles vanishes. The
coeflicient of the projector determines the dynamics in the positive energy sector: it is just the non-relativistic
Pauli Hamilton function for spin 1/2 particles: Hp = D * e D.

One can now also include by hand a magnetic ﬁeld by setting: D = D = & - (]5'— e/f), so that with
(2.127) the Pauli Hamiltonian reads:

1 - 1 . N 2% M eh |, =
Hp = 5—(D#ye D) = 5 - (p - eA) 95l B, (2.160)
in agreement with equation (2.126).

With the grassmannian representation of the Pauli matrices (2.96) it is also possible to give a more
direct approach to Dirac theory. One uses therefore the fact that in the matrix representation the alpha
and beta matrices have a tensor structure: &* = 6! ® 6F and B — 4% ® I. This can now be imitated in
the grassmannian representation by starting with six grassmannian variables 61, ..., 0 and constructing two
triples of o = %eklmﬂﬂm, one for k,l,m € {1,2,3} and one for k,l,m € {4,5,6}. The four functions
defined as

af =oFet for k=1,2,3 and [=05, (2.161)
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fulfill then the equations
{aF ol =20" {a* B} =0 and  Br. =1, (2.162)

where one used the Clifford star product (2.95) for d = 6. Conceptually Dirac’s ansatz was turned around.
While Dirac tried to find quantities o and § that fulfill the Dirac algebra, one can also look for a product
such that the relations of the Dirac algebra are fulfilled, which leads to the Clifford star product.

In this approach to the Dirac theory one combined two copies of the three dimensional fermionic spaces
which in the last section appeared to be suitable to describe spin. Thereby just the Grassmann subalgebra
of even grade was used. But from the algebraic point of view one can ask whether it is necessary to use a
Grassmann algebra with six generators to reproduce the Dirac algebra (2.162). Indeed, the functions

2 2i
o = ﬁa% and (= %9495, (2.163)

also fulfill the Dirac algebra (2.162) by using five Grassmann variables and the star product (2.95) for d = 5.
This representation corresponds to the one obtained by constructing the Dirac Hamiltonian as a supercharge
from supersymmetric quantum mechanics as done above.

Since the Clifford algebra of the Dirac matrices is four dimensional it should also be possible to start
with a four dimensional Grassmann algebra 61, ...,60,, that is turned into a Clifford algebra with the four
dimensional Clifford star product. Indeed the dimensionless variables

o = \/zek and 3= \/204 (2.164)

obey the relations (2.162) and form another representation of the Dirac algebra. With respect to the Clifford
star product the generators of the Grassmann algebra become here generators of the Clifford algebra.

This four dimensional representation of the Dirac algebra can be motivated by consideration of symmetry
transformations [105]. With the definition of o* in equation (2.96) one could reproduce the commutation
relations of the corresponding Pauli matrices and in equation (2.110) it was shown that the S, = %ak
generate rotations of the Grassmann algebra. So far only the even part of the Grassmann algebra was
involved, so that the question arises what kind of transformation the 6, are related to. The definition
K =i\/h/26;, = i% a® leads to the commutation relations

[Sk, S1]

oo = iReFT S, [Sk, Ki],, =ihe™"" K, and Ky, K], = —ihe"™ S, (2.165)

so that K can be identified as the generator of the Lorentz boost. The star exponential Expq (& - K )

—

transforms 6 = (1,6) like a four vector:
Expes (d)’ . K) xc 0 xo Expe (JJ’ . K’) = Expgs (JJ’ . I?) ko 0" %o Expo (J) . K’) = A" (D) 6". (2.166)

Note that K = —K in contrast to § = S, so that the sign structure is here different to that in (2.110).
Besides the continuous Lorentz transformations (2.110) and (2.166) there is also the discrete parity

transformation P in the fermionic space, which acts as P(6) = —6. This transformation cannot be represented
without extending the algebra. By introducing an additional generator 64 to the Grassmann algebra and by
extending the star exponential (2.95) to d = 4 a representation of the parity transformation can be given by

P(F) =B+ F #c B (2.167)

with the definition 8 = 1/2/h64. As it should be the scalar 1 and the axial vector & are unchanged under
this transformation.
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Since in the four dimensional representation (2.164) the alpha functions are just proportional to the 6;,
also o = (1, @) transforms like a four vector, i.e. one has the transformation equations:

Expeo (cI} . I?) ko ' ko Expo (a_} - I?) A (D) o (2.168)

and Expe (gZa’ §) *c @ xc Expe (—aﬁ §) = R(P) a. (2.169)
Theses equations are independent of the representation of the alpha functions, because K = i%
Si = %6’”’”910,,1 = fsklmal *xo '™ can be represented just with alpha functions so that the transformation
equations (2.168) and (2.169) depend just on the algebraic behavior of the alpha functions, which is the
same for all representations (2.164), (2.163) and (2.161).
The boosts (2.168) and the rotations (2.169) can be cast into one equation by going over to the functional
analogue of the gamma matrices:

o and

V=8 and A =prca" = [P =20 (2.170)

Star-multiplying (2.168) with 3 from the left and using that 3 anticommutes with K; o< of, leads to
Bxpe (=3 K) e 7" 50 Bxpe (8- K ) = A%, (@)1, (2.171)

With the definition o#” = %[v“, v"]«e the six generators of the Lorentz transformation can be written as

h .h h
K, = 15 of = 1570 se vt = 500’“ (2.172a)
_ h klm l _ h klm k _ iz’ kim _lm
S = 14 o ko™ = ey koY = 5 E ehmat™, (2.172b)

I<m

Therefore all Lorentz transformations are generated by %0“” with © < v. Because § commutes with

Sy o< efmal %, o™, one can replace @ by 7 in equation (2.169) and the resulting equation can finally be

unified with (2.171) ¢

h R
Expe <—4O’MVWW/> xc v *o Expo <+4UWWW) = A (wu )" (2.173)

This is the usual form of Lorentz transformation known from Dirac theory.

The Clifford algebra (2.170) of the v-functions can be constructed with each representation of the a- and
[-functions (2.161), (2.163) and (2.164). For all these representations with d = 4, 5 or 6 generators 6; a
trace can be defined in the same way as in equation (2.100):

4

Tr(F) = 7

/d@ddgd 1. d02d01 * F. (2174)

and with (2.170) all the well-known trace rules for the gamma matrices are reproduced. Also note that
the trace Tr(F') projects out the scalar part of F', which is the fermionic equivalent of taking the vacuum
expectation value.

With «; and 8 the Dirac Hamiltonian is given by

Hp=@&-p+Pm (2.175)

and by using Hp *,,c Hp = p? +m? one can calculate the star exponential as

oo

LN o\ i I
ExpMo<HDt>—Zn|(m> Hpy e = a5 ) e 4 759 () e, (2.176)
n=0
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with the Wigner functions

1 H
M () = 3 <1 + Ef’) (2.177)

and E = 1/p? + m2. The energy projectors 71':(‘:1%0) (p) are idempotent, complete and fulfill the *-eigenvalue
equations

Hp *unc 7"'SEEC)( ) tFE W(iAéC) (ﬁ) (2178)
One can then find projectors that are also x-eigenfunctions of the spin, which is defined as Sz = %75 *o

(7-§) with §being a unit vector orthogonal to p. One has then Szx. Sz = (%)2, so that the star exponential
for Sz is given by

1 PN" qure __(C) 2\ +ip/2 (C) 2y —ip/2
Expo(S Z;(E) S —”_%(5)6 +7T+%(8)€ (2.179)

n=0

with the Wigner functions

WfR( )=3 L S~ (2.180)
These are the star product analogues of the Dirac spin pro Jectors and they obey the x-eigenvalue equation
C)) h ),
Sy ke 13(3) = iiwi%)(s). (2.181)
Since one has for p’- §=0:
8,47 % (7-)],. =0 and  [5-@" % (7-5)], =0, (2.182)

so that [Hp, 3], . = 0, the Wigner functions Wiﬂéc) (7) and 771(’;) (8) and the observables Hp and Sz commute
2
under the star product. The Wigner function for the Dirac problem is therefore given by

MC N MC C)/—>
iE,ié(P §) =75 (B) *are wig(s) (2.183)

and the x-eigenvalue equations are
(MC) [ = o\ _ (MC) (= o (MC) oo Nonoy -
HD*MC?T:!:E,:&:%(p’S)_:I:EW:I:E,:N:%(p’S) and Sg*McwiEyi%(p,s)—:|:§7riE’i%(p,s). (2.184)

The Dirac Wigner functions are idempotent: Wij\égé (P, 8) *nmc w(ij\éci)l (p,8) = 7 M) (p,§) and with the

+E,+1
trace (2.174) the Dirac Wigner functions (2.183) are normalized to 1.
It is now also possible to calculate the time development of the position according to

qi(t) = Expyo(—Ht) *pe Gi *are Exppo(HL). (2.185)

This expression can be calculated by shuffling all the powers of Hp that appear in the starexponential on
the left side of g; to the right side by using the relations

[Hp, @i]spe = —1hay and {Hp, i }srie = 2p;. (2.186)
One obtains
HB*MC *vo g = H(Dn_k)*Mc Vel [Qi *vmo Hf)*MC — ihay * e ch_l)*Mc

—(k — 1)ifpi #arc ch*%*m] for odd k, (2.187)

nxMC
HD *nme Qi

HY ™ e @i se HE™ = Kilp: oo HY ™) for even k, (2.188)
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so that it is possible to write

. k
Z 1 (it X . —1)x . —2)%
=a H <lh> [Qi *amo Hg M —iha; ke ng Lrue _ (k - 1)1hpi *nmo ch e

k odd
+ ) % (g)k [qi sao HIEME — Kilp; %0 Hg“‘Q)*MC] : (2.189)
keven
Adding then
1 /it\" (k—2)xpc 1 [t k. (k—2)* 10
0= kgd [M (h) ihp; * e Hp 1 <h) ihp; * e Hy) ] (2.190)

Eq. (2.189) turns into

EXPMC(_Ht) *me 4 = qi *mc EXPMC(_Ht) + pit *pc H,Sl*MC * o EXpMC(—Ht)
in s —24
) (0 #are Hp M€ = p; spge Hp?* Y ) syo (BExpyyo(—Ht) — Expye(Ht)), (2.191)

where Hgl*M ¢ = ﬁzﬁi)nz is the inverse of Hp with respect to the Moyal-Clifford star product. This gives

eventually for the time development

Qi(t) = EXpMc(—Ht) *mc 4i *mc EXPMc(Ht>
= g+ pit sae Hp'
ih _ —1x
+3 (i — pi *ae Hp"M€) syo H™ M 5y (Exp e (2Hpt) — 1). (2.192)

The first two terms correspond to the classical movement while the last term is the well-known term that
represents the Zitterbewegung.

In order to calculate the non-relativistic limit it is straightforward to translate the Foldy-Wouthuysen
transformation [53] into the star product formalism. The time development of the Wigner function is given
by [113]

L om(t)
2D = (1), (1)

This can be translated into an equation for the unitary transformed Wigner function 7'(t) = U(t) *yce
7(t) *me U(t) ™1, which leads to ih0, 7' (t) = [H'(t), 7' (t)] with

*MC

(2.193)

*MC

H'(t) = U(t) *pe (H(t) —ih0y) *pe U(t) 7L (2.194)

The Hamiltonian can be written as

Hp=0m+E&+0 (2.195)
with
1 1
5 - (Hp — B%*c Hp *c f3) .
2 2
The function £ has positive parity and O is a function with negative parity.

Following the conventional Foldy-Wouthuysen transformation choose

Bm+E=-(Hp+B*cHp*cf) and O =

oo

1 *MC
Ut)=>_ — (2€n *rro 0) , (2.196)

n=0

47



so that (2.194) gives

H = Bmsue <1 O 8;304*%) E- 0.(lo.€1.,,. +in0)]

2m 8m *MO

1 1 in ,
+%5 $ae [0,8], — WO?’*MC + %ﬁ fae O+ ..., (2.197)

*MC

where the first row just contains even functions only whereas the second row just consists of odd functions.
This shows that (2.197) can be written as H = fm + £ + O’. Repeating this transformation leads to
H" = 3+ &', where all odd terms of the order (-5)? or higher are neglected.

1
m

For the Hamiltonian H = & - (ﬁ — e/f) + Bm + e® one has
E=¢ed and O=a-(j—eA). (2.198)

Up to terms of order (1) in H” the transformed Hamiltonian H” is therefore given by

1 1 ih .
1 = e (14 Jome - Lowe) e 2o (0.1, + 2o)]
2 8 MC m

8 *MC
(_) A, 2xpmC
p—e ) pt eh R
= pfm om 782:713 T g tue @ Bied
eh - eh? -
T (E X ﬁ) — o divE. (2.199)

In order to compare this result with the conventional operator expression one has to apply a Weyl transfor-
mation Oy, which transforms a product of phase space variables into the totally symmetrized product of
the corresponding operators and the ¢!, o; and /3 into the corresponding matrices. The Hamilton operator
corresponding to (2.199) is then

. 1 N 2 2 ﬁ4 eh ~ = A
' = 7(-»_ A) I &
B (m + 2m p—e 8m3 2mﬁ0 te
eh % 2 iefi? 2 % eh? .=
which is the conventional result. It was used that
S 1/ o 4+~ 5 5~ ik 2,
QW(Exp):§(E><p—p><E):Exp—l—;rotE. (2.201)

It is also possible to derive the Dirac equation in the star product formalism by using the fact that in the
rest frame it should coincide with the *-eigenvalue equation (2.178). By setting 7 = 0 this equation becomes

(MO) (MO)

(V¥mFm) xc iy (0)=0  with 7y (0) =< (1£4%). (2.202)

M| —

The solution 71'5[1%0)(0) can also be directly obtained from (2.177). According to (2.171) the equations in

(2.202) can be boosted into a moving frame by S = Expq (& - K), where the parameter & depends on the
momentum p of the particle in the moving frame.

S e (’Yom Tm) *c W%C)(O) xo S = (S *o V%o Sm T m) *c S %, W(ijvéc)(O) xS =0
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Equation (2.171) leads to S™!#. 1Y % S = ’5 so that with the definition 7r§E C)( ) =S"1x, wiEC)(O) *xc S
the equation above turns into

+p+m

(16 Fm) *ue Wi]\:[nc) (p)=0 with Wi]t{zC)(p) = 2m

, (2.203)
which corresponds to the Dirac equation and the well-known energy projector.

The same discussion as for the Lorentz boost of the energy *-eigenvalue equation (2.178) can be repeated
for the spin *-eigenvalue equation (2.181) with its solution (2.180). By assuming that Sz = g% *o (+8) is
a valid spin observable in the rest frame it takes on the form Sy = S %, Syx. S = —%75 *c # in the moving
frame by applying a formal boost with S = Exp (& - KL) The condition 52 = 1 and - § = 0 have to be
translated into s*s, = —1 and p#s, = 0 respectively to ensure that Sg *c S5 = (2)2 and [Ss, Hplse = 0
hold true in every frame. Finally the relativistic version of the spin *-eigenvalue equation and its solution
become
C)()_l 1 LF 95 % £

(s)-:l:h (C)(s) with 7,7 (s _§iﬁs‘5‘: 5

©n_ N (©)
Ss ko T (5)—_775*6‘5*0 B :I:%

+1 5 Tii (2.204)

by replacing Sz with Sy in both (2.181) and (2.180). One can see that the spin projector ﬂ'fﬁ takes on the
2
form which is know from Dirac theory. As in equation (2.183) the two projectors in equations (2.203) and
(2.204) can be combined to the functional analogue of the Dirac projectors:
7_(_:(‘:]\7/7[1(;):1 (p,s) = W(MC) (P) *nrc 7T( )( ) = ftC;)( ) *rc W(i]\;,[lc) (p). (2.205)
They fulfill both *-eigenvalue equations in (2.203) and (2.204) and they are idempotent and normalized with
respect to the trace (2.174).

2.7 Fermionic Star Products and Chevalley Cliffordization

One important feature of the fermionic star product is that the Grassmann algebra of the fermionic phase
space variables is transformed into a Clifford algebra. In mathematics this concept is known as Chevalley
Cliffordization [20]. In this section it will be shown, that the physically motivated deformation with fermionic
star products is equivalent to Chevalley Cliffordization. Starting point is a Grassmann algebra

AV=ReVeVAV)e..eAV)a..., (2.206)

where V' is a vector space with Grassmann basis {61,...,0,}. In Chevalleys approach a Clifford algebra is
constructed as the endomorphism algebra on the linear space of the Grassmann algebra. In order to achieve
this one defines an element iy, € V* by

L.gi (QJ) = Gléﬁj = B(GZ,Q]) = g(@i, 93) + A(@l, 9]'), (2207)
where B(0;,0;) is a bilinear form that consists of a symmetric part g(6;,6;) and an antisymmetric part

A(6;,0;). If ig,(8;) = 0;; then iy, is called the euclidian dual isomorphism. The so defined action of V* on
V can be extended to monomials of the 6; if one requires for homogenous u,v,w € AV the following rules:

QZﬁﬂj = 3(9“9]) (2208&)
0; 1 (uv) = (Giéu)v—k(—l)e(“)u(ﬁiév) (2.208D)
(uv) Jw = u]_gn(véw), (2.208c¢)



where e(u) is the Grassmann grade of u. The extension to arbitrary u,v,w € AV is then straightforward.
From (2.208b) with w = v = 1 it is clear that Hiél = 0 and from (2.208¢c) with u = v = 1 it follows that

1 Ju = u. For any two homogeneous u and v the equation
e(ugv) = €(v) — e(u). (2.209)

holds true as follows from equations (2.208a) and (2.208b).
For u € AV one can define the operator

B._ AV — AV
Vo = B ) (2.210)
U = YU = Hiu—|—0i143u

The map

V — CUB,V)
VB = { (2.211)

Oi — v =00 +0iy

where C4(B, V) is a Clifford algebra on V, is called Clifford map and it follows C£(B,V) C End (A V). With
(2.208) it is easy to calculate how two 74 act on an arbitrary u € A V:

7£7£u = B(@l, 97)U + (9197)§u + 919]11 + [Gz(ejénu) — 9]‘ (Gléu)] (2.212)

The Clifford structure as endomorphisms on A V' becomes obvious by taking the part that is symmetric in
91' and Qj:
{7678 Yu = (Ve + Y676 u = 29(6:, 05 )u. (2.213)

Note that the Clifford algebra is constructed with the bilinear form B, but that for the Clifford structure
only the symmetric part g is important. This situation is similar to the one encountered in the star product
formalism, where different star products have the same antisymmetric part so that the anticommutator leads
to the Poisson bracket.

The last point suggests that there is a connection between the Chevalley Cliffordization described so far
and the fermionic version of the twisted product:

uop v = uexp Z B(0;, ej)égia_:gj v. (2.214)

,J
Considering without loss of generality two monomials u and v the n-th term in the expansion of wop v is of
grade €(u) + €¢(v) — 2n one can compare the e(u)-th term with UL, which is of the same grade €(v) — €(u)

as was stated in equation (2.209). In fact, both turn out to be identical, i.e.

e(w)
1 .
up = ;B(ei,ej)aeiagj v

n

- > 11 (B(9¢’9j)59i59_7)kij v, (2.215)
S kij=e(u) W=t

1

2,7
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where one uses the fact that the k;; are either 1 or 0. To prove this equality one has to show that the three
axioms of (2.208) are fulfilled. Using (2.215) the first axiom is trivial, the second one reduces to the Leibniz
rule

i 3 (uv) Z B(0;,0;)0, (uv)

> B(0:.05) | @,y + (~1)u(dy,v)]

= (B gu)o + (=) u(6; 10) (2.216)

and a proof of (2.208c) can be found in appendix A. Therefore ugv is equal to the term of the expansion of

wop v in which all basis elements of 8; in u are cancelled by corresponding derivatives 5@. Such a term will
only exist if e(u) < €(v) and if the necessary derivatives appear, i.e. the corresponding B(6;,6;) have to be
non-zero.

One can now formulate the Clifford map with the help of a circle product as

'ygu: (9i+9i§)u:9i OB U. (2.217)
With this notation (2.212) reads
Yovpu = biopbjopu
= 00;u+ > B(0;,0)B(0;,0,)0p,0p,u + B(0:,0;)u
Kl
+0; > B(0;,01)0,u— 0; > B(0;,0,)3p,u. (2.218)
k l

Therefore the anticommutator (2.213) can be written as
{'76%775]-} = {eiﬂej}OB = 29(9i’6j)' (2219)

The same constructions that were described here can also be applied to the bosonic case in a similar manner.
The important point is now that having established 75 = f;0op one can use this as a definition for the

Chevalley cliffordization map instead of definition (2.211). Defining the Chevalley cliffordization with the

circle product allows us to generalize the definition (2.211) to monomials u of arbitrary Grassmann grade:

By =wopv. (2.220)

With this generalized definition of the cliffordization map one immediately sees that the cliffordization is a
homomorphism, because one trivially has:

Ty = Vuopv: (2.221)

which is not true for the Clifford map (2.211).

The choice of the bilinear form B(6;, ;) specifies the Clifford map v defined in equation (2.211). Starting
from a Clifford map specified by a symmetric bilinear form, i.e. B(6;,6;) = g(6;,6;) Fauser used in [47] the
concept of the so-called Wick isomorphism e~#Cl(g,V)et! to induce an additional antisymmetric scalar
part determined by F = F7¢,6;. It is here important to note that e=¥'Cl(g, V))e™ ¥ # C4(B,V). In order to

see what the Wick isomorphism does and what it does not do, first consider the connection of 2 and J, for
g
which one has .
Osu =" (9(0:,0k) + A(6:,01)) Tou = 0; su + 0i v, (2.222)
g

k

|
B

o1



but this does not generalize to Z, i.e. v§u # (7§, +74}) u. So the connection of the two Clifford maps 7
and fygi cannot to be established by a simple linear combination. But also the Wick isomorphism cannot

transform 'ygi into 'VQB; . To see this and to see how the Wick isomorphism transforms 'ygi one has to calculate
—-F 9, '
e

Yo, F. Therefore one first calculates
0y F = Z B(6:,0;)09, F*'0,.0, = Z 2B(0;,0;)F7*6y, (2.223)
J

where (2.215) was used. With equation (2.216) this leads to

0; JF™ = n(0; JF)F™ 1 = 0; sef = (0; s F)el, (2.224)
B B B B
so that one gets
{91#}(6 u)] = Gléu + (91143F)u. (2.225)

With these equations one can eventually calculate

e~ ’y efu = Ou+ HzJu + (0;2F)u, (2.226)
9

which is different from 75 u! So the Wick isomorphism does not transform the 'ygi into 75 , but it changes
the term that amounts to a multiplication of v with a scalar. Such a term does not exist in the case of just
one Clifford map as considered in (2.226). Terms where just a scalar is multiplied appear first in the case of
two Clifford maps:

et ('yg_’yg_eFu> = 00;u+g(0;,0;)u+0,(0;.F)u—0;(0; 2F)u
L 9 9
+9l(91Ju) — QJ(GlJu) + (92JF> (HJ‘JU) — (9jJF> (Hijl}> + eiJ(tngu) — <9JJF)(91'JF)U
g g g g g g g9 g g g
9 g
namely the terms g(6;,6;)u and (0;2(6;2F))u. It is always possible to choose F', such that
9 "9
0;2(0;.F) = (0:0;)2F = A(6;,6,), (2.228)
9 "9 g

which is shown explicitly in the following calculation, where (2.215) is used:

6305 F) = 6. (zk:g(ej,ak)agkwseres)
= 0|2 0;,0,)F0,
;( ZQ( i+ 0r) >

= 2ZF” (6:,05)9(0;,0,) = A(6,6;). (2.229)

So the Wick isomorphism has induced an antisymmetric scalar term A(6;,6;) that combines with the sym-
metric term g(6;,6;) to B(0;,0;). If one then forms the anticommutator

{e7 g e g e} = 29(0:,65) (2.230)

one sees that the anticommutator is not changed, because the antisymmetric part induced by the Wick
isomorphism is cancelled out.
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Just as here two different Clifford maps were compared one can also compare two different circle prod-
ucts. In the circle product formalism different circle-products are c-equivalent if they are related by the
T-transformation

uo v="T"Y(TuoTv), (2.231)

with T = exp (Tij 5gi59].). Transforming now the Clifford maps into the circle product notation as in

(2.217) one notices that the Wick isomorphism is not a transformation that transforms o, into op, like a
T-transformation would do. This can be seen from the simple fact that for u = 1 equation (2.227) leads to

e (vgﬂgjeF) = e F(0i050;04€")

= 919] + g(ei, 93) + (HZ-JF)HJ- + Hl(HJJF) + (Hi_lF)(tg]‘JF) + Hi_l(ej_lF), (2.232)
g g g g g g

where more than one term of order two appears, while in 6; 0g 6; there is just the term 6;0; of order two. The
Wick isomorphism does not lead to a T-transformation of the corresponding circle product but it induces
an antisymmetric scalar part and this scalar part is just the scalar part of the T-transformed circle product.
So if (F') projects on the scalar part of F' there is the following

Theorem 1
<91'1 op+-+0OR Gin>0 = <€7F (071 Og +*+ Oy Gin Og €F)>0. (2233)

First consider the case of n being odd. Since the circle product always contracts an even number of basis
elements, it is clear that (6;, op - op 0;,,,.,)0 = 0. The same argument shows that on the right hand side
e (0, 0+ 0;y,.., 0g ") reduces to terms of the form e=¥((6;, - “Biy001) Og ef') with m’ = 0,...,m. But
expanding the circle product leads to terms which all have grade higher than zero. This is because in order
to reduce 6;, - - 92’2m/ ., to a constant one needs 2m’ + 1 derivatives from o4, but then there are also 2m/ +1
derivatives acting on ef’. An odd number of derivatives of e cannot create an constant term in the inner
derivatives, since F' has an even grade. So for odd n both sides of the theorem are zero.

For an even n the left hand side gives

(i, 0808000 = > (=1)7B(0s(iy) (i) - B0o(ian_1)> 0o(ian))
g€ESam
= Z (=17 (900 (ir)s Oo(in)) + AOs(ir)s 0o (i)
oESom

(9O (i 1)1 O (inm)) F Ao (inyn_1)5 O (inm)))
DD Y XOo(i) Ooiin) - X (O (ing 1) Ooiam))-

oESam X=g,A

In order to calculate the right hand side one first notices that

biy 0g -+ 0g iy, = 05 -0, + Z (=17 [g(ea(il)v 90(%’2))60(1’3) T ea(izm)

gESom
+9(00(i1)s 00(i2)) 9O (is)> O (ia)) 0o (is) ** * Oo(inm)
ot 900y Oo(in) GO (inn 1)+ Ootinn))] s (2:234)

which corresponds to the Wick theorem. In each term of (2.234) one has the product of an even number of
6;, which has to be circle multiplied with e. Using (2.229) it is easy to see that

((0ir -+ 0is,) 0g €Yo = D (=1)7A0o(ir): O (in) - Ao(iay1)s o(ian))- (2.235)
og€Sa,
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Combining the results (2.234) and (2.235) one gets:

<6_F(9i1 Og """ % Oinn Og eF)>0 = Z (_1)0 Z X(aa(h)a 00’(!’2)) T X(aﬂ(i2m_1)v 00(7327”))’ (2'236)
o€Sam X=g,A

which finishes the proof.0

This theorem tells us that the application of the Wick isomorphism leads to the same change in the
scalar component as a c-equivalence transformation. The projection onto the scalar component corresponds
physically to taking the vacuum expectation value. As shown above a T-transformation results just in a shift
of the spectrum, i.e. it changes the vacuum, which is also the result of a Wick isomorphism [45]. Moreover,
the situation is analogous to the bosonic case. In the bosonic case all star products in R?” are c-equivalent
and have the same antisymmetric scalar part that constitutes the Poisson bracket. In the fermionic case one
uses antisymmetric variables, so all Clifford maps equivalent under the Wick isomorphism lead to the same
symmetric scalar part. So while in the bosonic case the antisymmetric part is important, in the fermionic
case the symmetric part is important, both physically and mathematically. Physically because it constitutes
the fermionic Moyal bracket and mathematically because in mathematics one uses a symmetric bilinear form
in order to construct a Clifford algebra.

Having shown that the star product formalism leads to a cliffordization clarifies on the one hand the
mathematical nature of a fermionic deformation, but on the other hand it also allows to subsume various
attempts to describe physics with the help of Chevalley cliffordization under the realm of the star product
formalism which makes the underlying structures much clearer. Chevalley cliffordization was for example
used to describe the Dirac equation in [44] and to describe the Wick theorem in [48]. This approach was the
starting point for many investigations of the algebraic structures appearing [50]. In one of the next sections
it will be shown how these structures appear in the star product formalism in the most natural way.
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Chapter 3

Star Products in Quantum Field
Theory

After having established the star product formalism in nonrelativistic quantum mechanics and Dirac theory
one can now proceed to apply the star products in quantum field theory. For this purpose the approach
of Curtright and Zachos can be used, who generalized the derivatives of the Moyal product to functional
derivatives. In contrast to their work here the normal product will be used, which allows one to connect
the star product formalism with the work of Brouder and Oeckl, who investigated the algebraic structure of
quantum field theory.

3.1 The Forced Harmonic Oscillator

Before coming to quantum field theory one can first consider the harmonic oscillator in interaction with a
time-dependent external source J(t). The classical Hamilton function is

H =waa — J(t)a— J(t)a. (3.1)

In the case of the normal star product the star exponential or time evolution function U} is then characterized
by the differential equation

ih%UJ(t,ti) = [H + h(wa — J(t))9s]) Us(t, t;), (3.2)
which has the solution

_ 1 . i 23 L
Us(ty,ti) = e~/ exp {haae“”(tf_t’i)—&-i;ae‘“tf/ dse ' J(s)
t’.

i . ty . 1 [t ty . _
+ ﬁae_’“’tf/ dse“*J(s) — ﬁ/ ds/ du =) J(s)J(u)|. (3.3)
t; ti s

i

In the scattering situation one requires that the source term becomes negligible as |[t| — oo. The
asymptotic dynamics is then governed by the classical Hamilton function for the free system: Hy = H|j—o.
The scattering function relates the asymptotic in-states to the asymptotic out-states, where the source term
is effective only in an at first limited time interval =T <t < T

S = lim U(0,T) s Us(T,=T) 5 U(=T,0). (3.4)
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The phase space variables a and a develop in time under the influence of the free time evolution function
U(t,0) = Expy (Ht) as solutions of the free equations of motion. One finds then with (1.95) for a general
function f(a,a)

Expy(—Hto) #y f(a,a) *y Expy(Hty)

S _ it T
= Expy(—Htz) *y Z ] (04 f(a,a@)) (—a+ae™“") EXPN(Htl)]
n=0
= Expy(—Hto) *y [f(ae™", a)Expy (Ht1)]
= 1 ta T — 1 : oty
= Z o (—a+ae“*) Expy(—Ht) Z hm<n> (02=™ flae ", @) (—a + ae™ ") " Expy (Hty)
n=0 m=0
1 ]. —iw m _ — iw m—+n n —iw _
= Expy(Ht1)Expy(—Hts) Z o ot (—a+ae ") (—a+ae?)" " 9L flae™ " a)
n,m=0
= flae™¥h,a"h), (3.5)
so that one has ' _
U(0,T) #x fla,a) *x U(=T,0) = f (ae ", ae“"). (3.6)
For the harmonic oscillator with a time-dependent source this yields, from (3.3):
i - i 1 _
_ sz T iw|s—ul
S[J] = exp {ha](w)—i— haj( w) — o //dsdue J(s )J(u)}7 (3.7)
where j(w) = [ dsJ(s)e** is the Fourier transform of J(s). Let ¢(t) = ae™ ! + ae™?, and let J(t) be real.
Then (3. 7) may be written as
i 1
S[J] = en J IO oxpy [_%2 // dtdt' J(t)Dp(t — t’)J(t’)} , (3.8)
with ' _
Dp(t) = h[0(t)e™™" + 6(—t)e""] (3.9

As shown below the scattering function S[J] corresponds to the scattering operator of quantum field theory,
and Dp(t) corresponds to the Feynman propagator (this correspondence is the reason for the factor & in the
above equation). The generating functional is the vacuum expectation value of the scattering operator. In

the phase space formalism this quantity can be calculated with w(()N) = e /M (see (1.97)) as

1
ZlJ] = 5 d?a S[J] *y ﬂ'éN)
1
= 57 d*a S[Je 76”“7T(()N)
1 .
= Py d?a exp [a] ~ o2 //dtdt J(t)Dp t—t)J( ):| eaa/h

= exp {—27112// dtdt’J(t)DF(t—t’)J(t’)] ﬁ/d% exp [—;aajt }iiaj(w)}
= exp {222// dtdt’J(t)DF(tt’)J(t/)] , (3.10)

where in the last step the normalization of the Wigner function was used. Decomposing D (t —t') into the
real and imaginary parts according to

Dp(t) = hlcos(wt) — ie(t) sin(wt)], (3.11)
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one can write (3.10) with e(t) = 20(¢t) — 1 as

exp {—222/ dtdt’J(t)DF(t—t’)J(t’)}

— e[ ff e o (3 ) 1 (- ) e - )Y ]
= i@ /2h o {—%Q // dtdt' J(t)Dp(t — t’)J(t’)] , (3.12)

where
Dr(t) = hO(t) (et — @) = —2ihf(t) sin(wt) (3.13)
is the retarded propagator. So up to a phase given by the retarded propagator the expression (3.10) is equal
to exp [—|j(w)|?/2h].
One can also calculate off-diagonal matrix elements of the scattering operator by making use of the
Wigner functions

1
T e !n!ﬂo ama”, (3.14)
which are obviously straightforward generalizations of the projectors: 7T7(1N) = T, n). The transition amplitude

for the system to go from the ground state to the state with energy E,, under the influence of the source is
then given by

1
Amp(0 —n) = Ey /anﬁ(()J’\Q kn S[J] *n W(()N)

_L 2 _(N) i—- _L ’ Y, ’ —aa/h
= 27Th/d amy, *n (exp [ha](w) 2h2/ dtdt' J(t)Dp(t —t')J(t )] e

[ 1 ] _ 5 . _ L
= exp _ﬁ // dtdtlj( )DF(t _ t/)J(t/) —aa/heaa(—a-‘rlj)e—aa/h-‘rla]/h

27rﬁ \/hn
1 _
=exXp -5 //dtdt J(t)Dp(t —t')J(t ) d*a (ij(w))" e~a/h

= exp —ﬁ//dtdt’J(t)DF(t—t’)J(t’) \/%(ij(w))" (3.15)

Using the factorization (3.12) for the exponential function, the probability for the above transition is

27h v hrn!

: 2n 5
P, = |Amp(0 — n)]> = Ug"i)he*'jw Ik, (3.16)
'n!
This corresponds to the well-known Poisson distribution for the number of emitted quanta in the field
theoretical context:

P,=e¢"—, (3.17)

.:_\ 3

where 7 is the average number of emitted quanta:

Z w)|?/h. (3.18)

The aim in this section was to demonstrate that one can calculate quantities of physical interest working
exclusively at the level of phase space, that is, within the framework of deformation quantization. These
quantum mechanical results may be taken over to the field theoretical context by a formal extension to the
case where the system considered has an infinite number of degrees of freedom.
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3.2 The Wick Theorem

In order to see how the structures of perturbative quantum field theory arise in the star product formalism,
one first notes that the Moyal product can be written as

(f *u 9)(2) = €12 f(21)g(22) ; (3.19)
Z1=Z22=2Z2
where
. 2d
ih 0 0
My = () Z ol —— | (3.20)
2 = 62’1 82%
and zi, i = 1,...,2d, is the i-th component of phase space point z,. In canonical coordinates, z =
(q15---+49ds D1, - -, Pd), Mio is proportional to the Poisson bracket operator:
. d
ih g 0 o 0
Mo = <> ( - — — > . (3.21)
2 ; dqy Opy  Opy 95
Analogously, for two holomorphic coordinates:
(f %, g) (a7 d) = (31\/112f(al7 dl)g(ag, dg)‘ o1 —ag—a (322)
aj=ag=a
with "
M12 = i(aala& - aﬁ18a2)7 (323)
and for the normal product one gets
(f #x 9)(a.a@) = N2 f(ar,an)g(az, )|, ... (3.24)
a)=ag=a
with ng = h&“@az.
The Moyal product of r functions can then be written as
J1%a foknr - *ur fr = exp ZMij H Jm(@m, @) (3.25)
i<j m=1 i
There is a similar formula for the normal product. For functions f,, which are linear in a and a,

the star product may be written in the form of a Wick theorem. For example, the star product of four linear
functions can be written by expanding the exponential:

fisn fosar fasar o = fifofsfa+ Gia (fafa) + Gis (fafa) + Gia (f3fs3)
+Gas (f1fa) + Gaa (f1fs) + Gaa (fif2)
+G12G34 + G13Go4 + G14Ga3, (3.27)

where the contractions "
Gij = Mi;fif; = §(AiBj — A;B;) (3.28)
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are constants. One has then the relation

o 0
M = G — —— 2
i sz afz 3f] y (3 9)
and (3.25) may be written as
o 0 .
fl * s f2 EIVEREEE Y fT = exp Z G”Wﬁ H fm(am, dm)- (3.30)
i<j P m=1

It should be clear from the above that not only the original form, but also the various generalized Wick
theorems which have been discussed in the literature [1],[88], are direct consequences of the structure of the
relevant star products. The operator form of the Wick theorem can be obtained if one identifies the functions
fi with the fields and then applies the quantization operator Q. In the Weyl quantization scheme one has

fl"'fr: QW{(fl O VIR Ve fn)(ch&)}: Ow exp ZMij H fm(ama&m)

1<j m=1

(3.31)

Qe

Q8

m
m

For a quantization scheme which is c-equivalent to the Moyal scheme one uses the corresponding contractions
Xij instead of the Moyal contractions M;;. One may write X;; = Xy;;) + M;;, where X5, = %(Xij + X,i)
is the symmetric part of X;;, since the antisymmetric part is fixed for all c-equivalent star products, by
property (iii) of the definition of the star product.

One additional important ingredient is the time ordering. The time-ordered product of r time-dependent
operators is given by the prescription

I

T{Ai() - fr(te) } = Qx S exp | 3o (Kyy + elts = 1)Mg) | T] fnlams s ) . (332

1<j m=1

since the transposition of two operators leaves Xy;;; invariant, while the signs of €(t; —¢;) and of M;; reverse.
For the case of normal ordering the exponent in (3.32) may be written as

h
Tij = N{ij} + E(ti — t])MZ = 5 [(8[11.8[1]- + aajaai) + G(ti — tj)(aaiaaj - 8;1].8&1.)}
h
= 5 [(1 + E(ti — tj))aaiaaj + (1 — G(ti — tj))aajaai]
= R[0(t1 — t2)04,0a, + 0(ta — t1)04,04,] - (3.33)

Suppose now that the functions f,, are linear in a and a, and have a periodic time dependence:
fm(t) = Ajae™*t + B,,ae“". (3.34)
By (3.33) the relevant contractions are
Dij(t; —t;) = h[A;B;0(t; — tj)e ™" + A;B;0(t; — t;)e"] (3.35)

which is a generalization of the expression in (3.9). In analogy to (3.29) one can write

10 b0
nj_/ dtdt 5fi(t)Du(t t)(;fj(t,), (3.36)
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where the 6/ f(t) are functional derivatives. For the operators
fm(t) = Apae ! + By afe! (3.37)

one gets the quantum mechanical form of Wick’s theorem by inserting these expressions into (3.32):

) fi(t) - fr(tr) . . (3.38)

am=a

TR () fr(t)} = On d exp z//dtdt’éff(t)Dij(t—t’)

Since one has modified the star product contractions in (3.32) by the insertion of the e(t; — t;) factor, the
time-ordered product is not the Weyl transform of a star product. This can be seen form the fact that the
time-ordered product is symmetric in its arguments, whereas the star products have an antisymmetric part.

The generalization of the foregoing results to the field theoretical context is formally straightforward:
the free real scalar field is equivalent to an infinite collection of harmonic oscillators. One at first considers
the system to be confined to a box of finite volume V. The Fourier representation of the free field is of the
variables a(k), a(k) is

[ (Feike 4 a(E)ei’ﬂ, (3.39)

0= 5 L i

where hk® = hwy = \/h2|E|2 + m?2 is the energy of a single quantum of the field. The normalization of the
field is fixed by the equal-time commutator

= i) (& — 7). (3.40)

20=y0

[6(2), 8(y)]

*

The Hamilton function in the normal product scheme is the generalization of H = waa:

H = S gt (3.41)

The vacuum state in the normal product scheme is

A 7] (ea(E)a(E)/h) _ o SpalBalR)/n (3.42)

and is normalized in the usual manner:

/1;[ <‘§;{:> M =1. (3.43)

The vacuum expectation value of H vanishes:
dQG/“ N
/H <27ﬂ§> Hsxy i =0. (3.44)
E

In the case of the Moyal product quantization scheme one would have found an infinite vacuum energy,
arising from the zero-point energy in the spectrum. This fact has been used to argue that the normal
product is the only admissible star product in the context of free field theory. From now on one shall go
over to the continuum normalization of the fields:

ek (3.45)
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To form the Moyal product of fields one first calculates the relevant contractions by generalizing (3.23)
to a system with an infinite number of degrees of freedom,

1 d‘3k1 d3k2 1 L A 5 5 0 d

(a1(k1) “he g, lk””l) ( —ikowa 4 aQ(E2)61k2I2)
= %[D+(961—$2)+D (z1 — 2)],
(3.46)
where . P
D) = jE/ (2r)? 2w, e (3.47)

are the propagators for the components of positive and negative frequencies, and D(z) is the Schwinger
function. The Moyal product of the fields is then, in analogy to (3.30),

6a0) o+ blan) =exp |3 Y [ [ dtadty 5 Dia ) IT émlem) (3.48)
'L<j (b ( ) m=1 =0
For the quantum field operators
n _ P’k 1 ~ TN, —ikx ~t N ikx
(x) = / o1 VI [a(B)e + af (F)e'™] (3.49)
one obtains
b(x1) - p(x,) = Qw < exp Z/ dz dly 3 D(z —vy) H 10) (3.50)
1<j ¢1( ) m=1 Pm=0¢

However, the Moyal product is not appropriate in the field theory context. To treat local interactions
in perturbation theory causality requires the use of the Feynman propagator, which propagates the positive
frequencies forward in time, and the negative frequencies backwards in time. For this one needs the analogy
of (3.38):

~ 5 T
T{o(er) -+ dlw)} = O exp | Y [[atedtys " Deto =) | 1] mlom) (351)
- &m 56,) | A2, )
7 m ¢m—¢
Here D, the Feynman propagator, is given by the infinite dimensional generalization of (3.35):
Dr(iy —12) = /// d3k1 d3k2 1 1
A 2 7r 2 Q/lezl ﬁ/QQJEQ
) )
xh G(tlftg)i +9( )
5&1( ) 5&2( ) 50,1 6@2
X (al(];;l)efik‘lml + &1(k_1)eik1$1> (a2(k2) leIQ + a E lkgibg)
= 9(t1 7t2)D+(3]1 71]']2) 79(t27t1)D7($1 71‘2). (352)
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One may simplify (3.51) by using the symmetry of the Feynman propagator, Dp(x1 — x3) = Dp(xe — x1);
it becomes:

T{(z1)- - d(x,)} = On {exp B // d*z d4y(M;§(w)DF(:c - y)&;(y)] G(x1) - ¢(m)} . (3.53)

Note that in this case it is no longer necessary to use different fields which are set equal only after the
differentation; because of the symmetry the correct combinatorics are guaranteed by the Leibnitz rule for
differentiation. Eq. (3.53) is the field-theoretic version of Wick’s theorem.

The propagator for positive frequencies D (z) is c-equivalent to éD(m) by use of the transition operator

= exp [—//d4 —= [DJF(:E—y) - D™ (z—y)] &j(y) . (3.54)

The time-ordered product for the field operators, Eq. (3.51), is the Weyl transform of the expression which
results from the Moyal star product, Eq. (3.48), by replacing D by D¥, restricting the integration to
positive times 2° > 3°, and symmetrizing.

For r = 2 Wick’s theorem is

T{d(a1)d(x2)} = Qn{d(21)$(x2)} + D (a1 — x2). (3.55)
Since the vacuum expectation value of the normal product vanishes, this yields the familiar relation
Drp(1 — x2) = (0T {(21)d(x2)}[0). (3.56)

Wick’s theorem may also be written in the form of a generating function:
T{e% fd4zJ(:E)<£(I } QN {eﬁ fd4w-]($)¢(ai) exp |: 2h2 // d4.’E d4yJ DF(.’IJ _ )J( >:| , (357)

where J(x) is an external source, and Eq. (3.51) results by expanding both sides of Eq. (3.57) in powers of
J and comparing coefficients. Note that

S =T {e—if d4wJ<w>¢3<w>} -T {e—% J d4zﬁ1im(ﬂc)} (3.58)

is the scattering operator of quantum field theory, so that Eq. (3.57) is the perturbation expansion of the
scattering operator for this interaction. This is just the operator form of our previous result, Eq. (3.10),
which was derived completely within the phase space formalism of deformation quantization theory. The
generating functional for the perturbation series is, by Eq. (3.57),

ZolJ] = (0[317]0) = exp [—2; [ty a@pet - y)J(yﬂ , (3.50)

in agreement with (3.10). When a self-interaction term is included in the interaction Hamiltonian, Hi,; =
—J¢ + V(¢), the generating functional for the interacting theory becomes

1 I3
217 = e Jatav 55 1], (3.60)
where the normalization constant is N = Z[J = 0].
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3.3 Quantum Groups and Twisted Products

As shown above the time ordering cannot be described with a star product, because the time ordered product
is symmetric. In the first chapter a symmetric product of the star product type was called circle product.
Circle products were originally introduced by Rota and Stein in the context of Hopf algebra theory. Here
it will be shown that the circle product of Rota and Stein has just the form of a symmetric star product.
It is then possible to unify the star product formalism with Hopf algebra theory and apply both aspects in
quantum field theory. In order to establish the connection between star product and Hopf algebra theory
first the necessary notation will be briefly reviewed.

K is the field of real or complex numbers. An algebra H is a vector space K with two linear maps
H ® H — H (the product) and 7 : K — H (the identity) such that the product is associative and the unit
mapping is (1) =1 € H. A coalgebra H is a vector space over K with two linear maps A : H — H® H (the
coproduct) and € : H — K (the counit). In Sweedler notation for the coproduct: A(u) = > u(1) ® u(a). The
coproduct must be coassociative: » (Auy) ® uez) = > u) ® (Auz)). The counit satisfies D e(u))u@) =
> u@)e(u)) = u. A bialgebra is a vector space over K which is an algebra and a bialgebra, with the
compatibility condition that A and € are algebra homomorphisms: A(uv) = A(u)A(v) and e(uv) = e(u)e(v).

A bialgebra H is a Hopf algebra if there is a linear mapping S : H — H (called the antipode) such
that > S(umy)ue) = Y ua)S(ue)) = e(u)l. A Hopf algebra is commutative if the algebra product is
commutative, and cocommutative if Y wuq) @ woy = D> u) ® ug).

A quantum group is a Hopf algebra with a coquasitriangular structure: this is an invertible bilinear map
R : H x H— K such that

R(uv,w) ZR u, w(y))R(v,wz)), R(u,vw) Z’R u(1y, w)R(u(2), v). (3.61)

For a commutative and cocommutative Hopf algebra the coquasitriangular structure can be explicitly given
by the following rule. Let w = uy -+ up, v =v1 - - Uy, with u;,v; € H. For m # n R(u,v) =0. For m =n

R(u,v) = perm R(u;,v;) Z R(u1,V5(1)) - - - R(Un, Vo (n)), (3.62)
ceP
where the sum is over all the permutations o of the indices 1,...,n. This function is called the permanent

of the square matrix R(u;,v;).
One can use R to define a twisted product, denoted by o. When the Hopf algebra is cocommutative this
product may be written as

wov =3 R(uq), vn)u)ve) = D umrmR(ue, ve)- (3.63)

It can be shown that the twisted product is associative.

Now let V' be a vector space and T'(V') the tensor algebra over V. There is then a unique Hopf algebra
structure on T'(V) such that A(v) =v®14+1®wv, e(v) =0and S(v) = —v for v € V. For v1,vq, - v, €V
the coproduct is

Un) = Z Z Vo (1) ** " Vo(k) @ Vo(k+1) " * Vo(n) (3.64)
k=00€Pp,x

where P,,;, denotes the set of all permutations of (1,...,n) such that
c(l)<o2)<..<ok) and o(k+1)<..<a(n). (3.65)
We see from this that the coproduct is cocommutative. The antipode is

S(’Ul’UQ e ’Un) = (71)“1}774 s s VoV7. (366)
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For the special case of the symmetric algebra S(V') over V the formula for the coproduct simplifies. To
begin with one considers V' to be two-dimensional, with basis elements a,a. The coproduct of the monomial

u=a an iS lhen n
AU/— E E m " a‘aj®am van j. (3.61)

i=0 j=0
In this case the twisted product can be written as an exponential:

wov = ueR(@.0)0.0:+R(@,8)009+R(a,a)9a0a+R(a,a) 02 da) v, (3.68)
which makes immediately obvious in which sense the circle product is a generalization of the star product.
That the circle product (3.63) can be written in an exponential form as in (3.68) has been demonstrated for
vector spaces of higher dimension in the literature [14]. In Appendix B a combinatoric proof is given that
is more direct than these proofs. It should also be emphasized that no other assumptions are necessary for
the result except the basic structures of the present section.

The connection of the above twisted product and the star products will now be discussed in more detail.
In order to make contact to physics one first identifies the variables a and @ with the holomorphic coordinates
of a flat two dimensional phase space (the generalization to higher dimensions is straightforward). Since a
and @ then have dimension A~'/2 the coquasitriangular structure R must be proportional to %, so that the
twisted product fulfills

lim v o v = uwv. (3.69)
h—0

Since the circle product is an associative product it satisfies nearly all the requirements of a star product.
To get a star product one must impose the additional requirement

.1 _ _
%E%ﬁ(aoa—aoa):{a,a}pgzl, (3.70)

If the circle product can be written in the exponential representation (3.68), condition (3.70) reduces to
R(a,a) — R(a,a) = h, (3.71)

so that the basic coquasitriangular structures are no longer independent. Condition (3.70) can be fulfilled
in various ways, where a particularly convenient choice is R = Ry, with

Ry(a,a) =h and Ry(a,a) = Ry(a,a) = Ry(a,a) =0. (3.72)

One can then directly prove for this case that the twisted product reproduces the well-known formula for
the normal star product. For the choice (3.72) the only terms which survive in the sum (3.63) are those
for which u(y) contains only a-factors and v(y) only a-factors. Taking u = a"a® and v = a™a" one finds
that the relevant terms in the coproduct formulae for v and v are (:) a'a® ® a" ' and (?) amal @ a* !t with
r —i=n —[. These terms yield a contribution to the sum in (3.63) which is

™ (1N s o i e rinl AL s

where (3.62) was used, which for the present case is Ry (a™,a") = n!R(a,a)™. However, this is just the
(n — I)-term in the expansion of the exponential

wowv = a’al RN (®0)%aa gman — 4 hdaday, (3.74)

which is the expression for the normal star product u*, v. In the 2d-dimensional case the only non-vanishing
basic coquasitriangular structure is
RN(ai,dj) = héij, (375)
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which leads to the corresponding d-dimensional normal product. The other possible generalization is to
choose another scheme, for example R = Ry, with

h
Ru(a,a) == , Ru(a,a)= -3 and Rp(a,a) =Ry (a,a) =0, (3.76)
this leads to the Moyal product.

The general case of an antisymmetric circle product can be discussed with the filter functions that describe
the different quantization schemes. The operator that corresponds to a function f(a,a) can be written as:

1 2 —2 — — — ~ — A
Q¢(f)(d7 &T) _ dQO( d2a e(;mz +rva +)\aa)67(aa7aa)e(aa‘\7aa)f(a’ EL)
(2m)?
1 o JE
_ (2 )2 / dZOé d2a e(u8§+1/827)\8a35)€7(aa7aa)e(aaf7o¢a)f(a’ a) (377)
T
where ¢, (o, &) = e(na®+va®+Xad) g the filter function that parametrises the ordering scheme. (Note

that this is the parametrization where the holomorphic coordinates are considered as primary, see footnote
on page 7.) For 4 = v = XA = 0 one gets Weyl ordering, for p = v = 0, A = % normal ordering and

h
2

, is the T-operator that relates the Moyal product to the star products that correspond to
the ordering schemes given by the parameters p, v and A. For example, the T-operator that relates the
Moyal product to the most general twisted product satisfying the antisymmetry condition (3.71),

for 4 = v = 0, A = —& antinormal ordering. One can also easily see that the filter function, written as

e(HO2 4192 —2040a)

foag = fe(R(a,a)éaéa+R(a,a)5a,5a,+73(a,a)5a, 53 +(R(a,a)—h)dz8a) g (3.78)

according to foa g =T Y (Tf %, Tg), is given by

T — o(—3R(a,0)8; —3R(a,a)9; —(R(a,a)~ §)0a0a) (3.79)

Comparing the filter function and the T-operator one sees that there is a direct correspondence between the
three independent basic coquasitriangular structures and the parameters pu, v and A.

The coquasitriangular structure can be recovered from the twisted product by the formula R(u,v) =
e(uow) [15]. This just means that R(u,v) is given by the constant term in u o v. For example, for the
normal star product of (3.74) one just gets the relations (3.72). Furthermore for u,v € S(V) monomials in
a and @ one finds that Ry (u,v) = 0 unless u = ™ and v = @", in which case Ry (u,v) = nlfi”. This is
consistent with the general rule (3.62) that the coquasitriangular structure of two monomials decomposes
into the permanent of the basic coquasitriangular structures (3.62).

3.4 The Fermionic Case

In the fermionic case the basis of the vector space V consists of Grassmann variables fi,..., f, and one
considers the antisymmetric algebra A(V). A monomial in this algebra is at most linear in one of the f;
and has the form u = f;, --- f;, with r < n. The use of fermionic variables leads in the definition of the
coproduct (3.64) to a factor (—1)? under the sum and the coquasitriangular structure given by

R(u,v) = det R(u;,v;) = Z (=1)°R(u1,v4(1)) - - - R(tn, Vo(n))- (3.80)
oeP

If one now tries to construct a circle product like in (3.63) the two possible definitions of the circle product
are no longer the same. For example the first term of p-th order in ) R(u(1),v(1))u(2)v(e) is formed by the
coproduct terms

UL Up @ Upy1 Uy DA V1 Vp @ Upg1 - U (3.81)
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whereas the same term in the definition ) u(1yv1)R(u(2),v(2)) is formed by the coproduct terms
Uppl - Up @ UL~ Up AN Vppq - Uy @ VL~ - V. (3.82)

But these terms differ in the coproduct by a sign factor of (—1)?(»~P) and (—1)?(™~P) respectively.

This ambiguity corresponds to the fact that one has to distinguish between left and right derivatives for
fermionic variables. So the exponential representiation of the circle product can be written either with left
or with right derivatives. For the definition of the fermionic circle product one chooses:

uov = ZR(u(l),v(l))u(z)v(z) (3.83)

U exp Z R(fl,f])éia_% v=uexp |—(—1)"™ Z R(fi,fj)éfigfj v, (3.84)

i,j=0 i,5=0

where one uses the relation between left and right derivative
R L
o"F - _(_1)77(F)87F
afi ofi
and encoded the left and right derivatives in the vector arrows. The proof that (3.83) can be written in the

exponential form (3.84) can be found in Appendix B.
Just as in the bosonic case one can also define a normal product for fermionic variables:

(3.85)

Uy U= U exXp (-(—1)”(%2@8}) v (3.86)

i=0

so that the basic coquasitriangular structures are:
R (fi, fj) = hoij, and R (fi, f;) = Ru(fi, ;) = R (fis f5) = 0. (3.87)

In order to describe the field theoretic case for fermionic fields

d3]€ 1 —ikx ikx
z/;(x) = /(271’)3\/@25: (fs,EuS(k)e k -l—hS’EUS(/C)ek )’ (388)

- A3k 1 - . - ;
S - s (R)e™ + B 5o, (K)e ™) 3.89
we can take into account the time ordering in the normal star product (3.86). The time ordering destroys
the antisymmetry of the normal star product and one gets a circle product for linear functions

, 5 5 5 ¢
f(t1) orn g(t2) = f(t1) exp </d3kz [ha(tl —t2) <5f Z5F - + Sh_ = 6h ~>
3 s,k s,k s,k s,k

5 8 5 0
- ﬁa(tg — tl) <5f_ E 6fs’]g + 5;% ﬂéh E>‘|> g(tg). (390)

The coquasitriangular structures for two fields are

3
Ron($(21), (r2)) = /(273‘32]3;; o (t —tz)Zus(k)as(k)e—ik(m—m)
—hl(ta —t1) Z Us(k)vs(k)eik(xl—m)]
_ d4k 1(% + m) —j (;I*ZEQ) . _
= fl/ (2m)4 k2 — m? +i66 k = Sp(x1 — x2) (3.91)
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and
Ro(¥(x1), ¥(x2)) = Re(d(z1),9(22)) = 0, Re(¢(x1),¥(x2)) = —Sp(z2 — 21). (3.92)

Here the completeness relations for the spinors
Z us(k)us(k) = 4+ m, Z vs(k)Us(k) = # —m (3.93)

have been used. Sg(z) is the Dirac propagator [97].
As in the bosonic case it is also possible to write multiple fermionic op-products. In quantum electrody-
namics, for example, the vacuum expectation value of the scattering operator is

So = (0T exp [—ie/d4m @(x)v“l/}(x)A(:v)} |0). (3.94)

In the above notation this can be written as:

S0 = >0 E [anr o dine (B Aea)oton) or - or (9lan) Alea)bn)]

n=0
S
€| ex drd* g 0 0 gop —$LL
l plz//d dy<SF‘ Vr@om W?@)Mf(@ﬂ

XY (@) AN (@) (@) - P () 407 () (xn)]

= i (_nll)n/dxl-udmn

n=0

Ser Y (=ie) (A (@ISR @1 =) - (—ie) (Aays (007" (21 —2m))

15:+4,Qn

— Det [1 - eA(x)l] . (3.95)

p—m+ie
Here the Cayley-Hamilton formula for the expansion of the the determinant of a matrix I' was used, i.e.
Det(I —T) = exp(TrIn(I —T)) = Y (=1 > > erTarap, - Tanar,» (3.96)

n!
n ay-ay P

for the matrix
Loy = —1€ Y AaalSF(@ = y)lan,- (3.97)

Here the notations Det and Tr indicate a sum over discrete variables and an integration over continuous
ones. The result (3.95) can be written as

So(A)

Det [I - 641}

p—m+ie
} _ Det [p—ed —m + i€
p—m+ie|]  Det[p—m+ie

Det [(}5 —ed —m+ie) (3.98)

a well-known result usually derived using path integral methods [97].
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Chapter 4

Star Products and Geometric Algebra

The approach to spin in the last chapter was analogous to the procedure in the conventional formalism. One
starts with quantum mechanics without spin and then adds the spin structures that were described above
with a fermionic star product. In this and the next chapter it will be shown that it is actually the other
way round. The fermionic structures introduced in the last chapter appear already in classical mechanics in
the context of geometric algebra. With the fermionic Clifford star product it is then possible to reformulate
geometric algebra as deformed superanalysis. This allows to describe vector analysis, spin and differential
geometry in a superanalytic language.

4.1 Geometric Algebra and the Clifford Star Product

As described in the last chapter one has the situation that grassmannian mechanics itself is not a physical
theory, but can nevertheless be used to describe a physical phenomenon like spin. So one might wonder
what the physical status of grassmannian mechanics actually is. The problem is not the theory itself but
the interpretation, because in grassmannian mechanics one interprets the Grassmann numbers as dynamical
variables. Such fermionic variables do not physically exist as dynamical variables but they serve as the basis
vector structure of space and space-time. This can be seen if one compares the formalism of the last chapter
with geometric algebra.

Geometric algebra goes back to early ideas of Hamilton, Grassmann and Clifford. But it was first
developed into a full formalism by Hestenes in [73] and [74]. The formalism of geometric algebra is based
on the definition of the geometric or Clifford product that is the sum of the scalar and the wedge product
of vectors. This product equips the space with the algebraic structure of a Clifford algebra. The geometric
product then appeared to be a very powerful tool, that allows to describe and generalize the structures of
vector analysis, of complex analysis and of the theory of spin in a unified and clear formalism. The algebraic
power of this concept is due to the fact that the geometric product is in contrast to the scalar product
associative. This formalism can then be used to describe classical mechanics in the realm of geometric
algebra instead of linear algebra [74]. The formalism can also be generalized from the algebra of space to
the algebra of space-time in order to describe electrodynamics and special relativity [73, 34].

In [35] it was shown that geometric algebra can be expressed with the help of Grassmann variables.
Comparing this grassmannian formulation of geometric algebra with the formalism of the last chapter leads
immediately to the conclusion that the geometric product is actually the Clifford star-product and that
the Grassmann variables are actually the basis vectors of space. The Clifford algebra that appeared as the
deformation of the Grassmann algebra is then the Clifford algebra of the basis vectors. In order to make
this explicit the formalism of geometric algebra will be shortly sketched in the following and it will then be
shown how geometric algebra can be reformulated with the Clifford star product.
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Starting point for geometric algebra [73] is an d-dimensional vector space over the real numbers with
vectors a, b, c,.... A multiplication, called geometric product, of vectors can then be denoted by juxtaposi-
tion of an indeterminate number of vectors so that one gets monomials A, B, C,.... These monomials can
be added in a commutative and associative manner: A+ B = B+ Aand (A+ B)+C = A+ (B + (),
so that they form polynomials also denoted by capital letters. The so obtained polynomials can be multi-
plied associatively, i.e. A(BC) = (AB)C and they fulfill the distributive laws (A + B)C' = AC + BC and
C(A+ B) = CA+ CB. Furthermore there exists a null vector a0 = 0 and the multiplication with a scalar
Aa = a), with A € R. The connection between scalars and vectors can be given if one assumes that the
product ab is a scalar iff @ and b are collinear, so that v/a? is the length of the vector a. These axioms
define now the Clifford algebra C¢(V') and the elements A, B, C, ... of C£(V) are called Clifford or c-numbers.

Since the geometric product of two collinear vectors is a scalar, the symmetric part of the geometric
product (ab + ba) = 1((a + b)? — a® — b*) is a scalar denoted a - b = 1(ab + ba). The product a - b
is the inner or scalar product. Omne can then decompose the geometric product into its symmetric and
antisymmetric part:

1 1
ab= _(ab+ba) + S(ab—ba)=a-b+anb, (4.1)

where the antisymmetric part a A b = %(ab — ba) is formed with the outer product. For the outer product
one has obviously a Ab = —b A a and a A a = 0, so that a A b can be interpreted geometrically as an
oriented area. The geometric product is constructed in such a way that it gives information about the
relative directions of a and b, i.e. ab =ba = a-b = a A b = 0 means that a and b are collinear whereas
ab = —-ba =a/Nb= a-b=0 means that @ and b are perpendicular. The important point is that the
geometric product (4.1) is associative, in contrast to the scalar and the cross product of conventional vector
analysis. This allows the construction of a much more powerful multivector formalism that includes complex
analysis and the theory of spins. As will be shown below it is in so far much better suited for doing physics.
The first step in the construction of the multivector formalism is to define with the outer product simple

r-vectors or r-blades
Apy=aiNax A...\Nay, (4.2)

which can be interpreted as r-dimensional volume forms. The geometric product can then be generalized to
the case of a vector and a r-blade:
aA(T) =a- A(T) +aAN A(T)7 (4.3)

which is the sum of a (r — 1)-blade @ - A,y = 3(adq) — (—1)"A(ya) and a (r + 1)-blade a A A(,) =
$(aA(y+(=1)"A(ya). Applying this recursively one sees that each c-number can be written as a polynomial
of r-blades, and using a set of basis vectors ey, e, ..., e, a c-number reads:

(4.4)

e

. 1 .. 1 . .
A= AO + Alei + 514111261‘1 Neiy + ...+ f'All"'Zreil Neg, N...e;
! n!
A is called multivector or r-vector if the highest appearing grade is r. It decomposes into several blades:
A=A+ (A1 +...+(A)r = (A, (4.5)
n=0

where ( ), projects onto the term of grade n. A multivector A, is called homogeneous if all appearing
blades have the same grade, i.e. Ay = (A(),. The geometric product of two homogeneous multivectors
Ay and B, can be written as

AyBsy = (A Bs))r+s + (A Bisy)ras—2 + - + (A By jr—s| - (4.6)
The inner and the outer product stand now for the terms with the lowest and the highest grade:

Ay - By = (A Bo))jr—s)  and Ay A Bisy = (A Bs))rts- (4.7)
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In the case r = 0, i.e. one of the multivectors is a scalar function f, one defines f-B(,) = 0 and fAB(,) = fB(s).
One should note that the inner and outer product here in the general case do not correspond anymore to the
symmetric and the antisymmetric part of the geometric product. For example in the case of two bivectors one
has A2y A B2y = B(2) A A(2), so that the outer product is symmetric. Actually one finds for the symmetric
and the antisymmetric parts of A2y B(g):

1 1
7 A@Be) + BaAw) =Aw - Be) + A ABe)  and  5(A@)Be) — Be)dwe) = (Ae)Be)2- (48)
In general the commutativity of the outer and the inner product is given by:
A(r) A B(s) = (71)”3(8) A A(r) and A(r) : B(S) = (71)T(S+1)B(S) : A(r) (4.9)
and both products are always distributive:
ANB+C)=AANB+ANC and A-(B+C)=A-B+A-C. (4.10)

Just as the outer product of r-vectors is in general associative, i.e. AA (BAC) = (AAB)AC, for the inner
product one gets:
A(T) . (B(S) . C(t)) = (A(r) . B(S)) . C(t) for r+1t<s. (4.11)

If one has to calculate several products of different type, one uses the convention that the inner and the
outer product always have to be calculated first, i.e.

ANBC =(AAB)C #AN(BC) and A-BC=(A-B)C #A-(BO). (4.12)

The formalism of geometric algebra briefly sketched so far can now be described with Grassmann variables
and the Clifford star product that turns the Grassmann algebra into a Clifford algebra. In order to make
the equivalence even more obvious one goes over to the dimensionless Grassmann variables

2

These variables play here the role of dimensionless basis vectors and will therefore be written in bold face,
whereas the ; played in the discussion of the last chapter the role of dynamical variables with dimension
VI In the o-variables the Clifford star product (2.95) has the form
d — —
o 0
] c.

; (90'2‘ 802»

As a star product the Clifford star product is associative and distributive.

In order to show what the geometric algebra in terms of Grassmann variables and with the Clifford star
product looks like one first considers the two dimensional euclidian case. There are two Grassmann basis
elements o, and o3, so that a general element of the Clifford algebra is a supernumber A = A° + Alo +
A%0y + A20109 = (A)o + (A)1 + (A)2 and a vector corresponds to a supernumber with Grassmann grade
one: a = a'o + a’o3. The Clifford star product of two of these supernumbers is

Fx.G=F exp

(4.14)

axcb=ab+a é af_i 621] b= (a'd® —a* o109+ a'b' +a*?* =anb+a-b, (4.15)

where the symmetric and the antisymmetric part of the Clifford star product is given by:
%(a*cb—i—b*c a)=a'bt' +d**=a-b (4.16)
and %(a %o b—bxca)=(a'b? —a’b)ooo =ab=a b, (4.17)
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which are terms with Grassmann grade 0 and 2 respectively. Note that now a juxtaposition like ab is just
as in the notation of superanalysis the product of supernumbers and not the Clifford product, which should
be described explicitly with the star product (4.14). Note further that the o; form an orthonormal basis
under the scalar product: o;-0; = %(o-i %o O + 0 *¢ o) = ij-

The unit 2-blade i = 0102 can be interpreted as the generator of F-rotations because by multiplying
from the right one gets

O1*ci=01-i=09 , Oo*%ci=o09-i=—-0; and o01*ci*ci=—01, (4.18)
so that a vector & = zloy + 2?05 is transformed into @’ = x %, 1 = -1 = a'loy — z20. The relation
i%*¢ = —1 describes then a reflection and furthermore one has with (2.98): 1 = o201 = —i, so that i

corresponds to the imaginary unit. The connection between the two dimensional vector space with vectors
x and the Gauss plane with complex numbers z is established just by star multiplying « with o:

z2=01 % x =" +iz> (4.19)

Such a bivector that results from star multiplying two vectors is also called spinor. While the bivector i
generates a rotation of 7 when acting from the right, the spinor z generates a general combination of a
rotation and dilation when acting from the right. One can see this by writing z = 2! + iz? = |z\eiﬁ with
|2]2 = 2% Z = (') 2 + (22) 2. Acting from the right with z causes then a dilation by |z| and a rotation by
¢, one has for example: o *; z = x, which is the inversion of (4.19). Here one can see that the formalism
of geometric algebra reproduces complex analysis and gives it a geometric meaning.

After having described the geometric algebra of the euclidian 2-space one can now turn to the euclidian
3-space with basis vectors o1, o3 and o3 and with the Clifford star product (4.14) for d = 3. The basis
vectors are orthogonal: ;- o; = §;; and a general c-number written as a supernumber has the form

A=A+ Alo, + A%09 + A3os + APo109 + A3 os0q + AP os0s + AP o10905. (4.20)

This multivector has now four different simple multivector parts. Besides the scalar part A° there is the
pseudoscalar part corresponding to I(3) = 010203, which can be interpreted as a right handed volume form,
because a parity operation gives (—o1)(—02)(—03) = —I(3). Moreover I(3y has also the properties of an
imaginary unit: E = —I3y and I3y *c I(3) = I(3) - I3y = —1. While the pseudoscalar (3 is an oriented
volume element the bivector part with the basic 2-blades

B1=0'20'3:I3*CO'1 s 8220'30'1213*00'2 and B3=O’10’2213*CO'3 (421)

describes oriented area elements. Each of the B; plays in the plane it defines the same role as the i of the
two dimensional euclidian plane defined above. Star-multiplying with the pseudoscalar I(3) is equivalent
to taking the Hodge dual, for example to each bivector B = b'B; + b?B, + b®B3 corresponds a vector b =
bloi + b20y + bo3, which can be expressed by the equation B = I(3) *¢ b. This duality can for example be
used to write the geometric product of two vectors a = a'o1 + a?02 +a®03 and b = blo; + b%0s + b2o3 as:

axcb=a-b+ I3 *:(axb), (4.22)
where a-b =" a’b’ and a x b = e;;7a'bl o). Furthermore one finds:
01X 0y = —I3)%c O1 %c Oy = —I(3) *%c 0102 = 03 (4.23)

and cyclic permutations.
The multivector part of (4.20) with even Grassmann grade can be described in the basis 1, Q; = o102,
Q2 = 0103, Q3 = 0203, note that Q; = By, Q3 = Bz, but Q2 = —By. The bivectors Q; fulfill

Q¢ = Q3" = Q3" = Q1 #¢ Qo #0 Q3 = —1, (4.24)
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so that the even multivectors Q = ¢" 4+ ¢’Q; form a closed subalgebra under the Clifford star product, namely
the quaternion algebra. The multivector part of (4.20) with odd grade does not close under the Clifford star
product, but nevertheless one can reinvestigate the definition of the Pauli functions in (2.96). Replacing in
(2.96) the scalar i by the pseudoscalar I(3) one sees that the basis vectors o; fulfill

[O’Z‘,O'j] = 26Z‘jkl(3) *o O and {O'i,O'j}*c = 251‘3', (425)

*C

which justifies denoting them o;. With the pseudoscalar I(3) the trace (2.100) can be written as
Tr(F) = 2/da'3d0'2do'1 *F = 2/do'3da'2d0'1 I(3) *c F. (4.26)

So one has here achieved with the Clifford star product a cliffordization of the three dimensional Grassmann
algebra of the o;.

Just as in the two dimensional case one can also investigate in three dimensions the role of spinors and
rotations. To this purpose one first considers a vector transformation of the form

T — T = —ukcT*cu, (4.27)

where u is a three dimensional unit vector: u = uloy +u20s +ulos with |u| = /(ub)2 + (u2)? + (u?)2 = 1.
This transformation can be identified as a reflection if one decomposes x into a part collinear to v and a
part orthogonal to wu:

x=x|+xL = (T u+TU)*C U, (4.28)

with &) = (z - u)u and x; = (zu) *c u = (zu) - u. One can check that
x| ke U =uxc T = x|l and T xcU=—U*cT] = x) Llu. (4.29)

This decomposition of & can most easily be obtained if one just star-divides  *c u = - u + x A u by wu,
which gives with u=1*¢ = u:

T = (@ u) e u 1 4 (Tu) v u I = (@ w)u + (Tu) o u =z + T4 (4.30)

Using (4.29) one sees that the transformation (4.27) turns @ into &’ = —u *¢ @ *c u = —x| + =1, so that
only the component collinear to w is inverted, which amounts to a reflection in the plane where u is the
normal vector. Two successive transformations (4.27) lead to:

T = VT F V=V UK Tro U eV =U %5 T %o U, (4.31)
where U can be written as:

1
A

1 1
U=v*;u=v-u+vAu=cos (2|A|> + A¢ sin (2A|) =eZ,. (4.32)

The angle between the unit vectors w and v is described by an bivector A = v A u = vu = |vu|Ay. Hereby
the unit bivector Ag = vu/|vu| defines the plane in which the angle lies, while the magnitude |vu| gives the
angle in radians, furthermore it fulfills Ag *- Ag = —1. If one chooses for example the basis vectors o for u
and v, Aj is given by one of the bivectors in (4.21). The additional factor 1/2 in (4.32) becomes clear if one
investigates the action of the transformation (4.31). Therefore one proceeds analogously to the discussion of
the reflection (4.27). One first decomposes the vector  into a part @ in the plane defined by A and a part
@, perpendicular to that plane. This is done analogously to (4.30) by star-dividing @ *c A=z -A+x AA
by A which leads to

T = (m . A) *o Ao 4 (mA) * o Alre = T+, (433)
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with | #c A = —A*c @) and x| *c A = A*c x. One then has for the transformation (4.31):
U*Cm*CU—e*ﬁ/ %o T *g ei/CQ =T, + x| *c eﬁc. (4.34)

So the component perpendicular to the plane defined by A is not changed while the component inside this
plane is rotated in that plane with the help of the spinor e . by an angle of magnitude [A|, just as described
in the two dimensional case above. One sees here why the rotation in the two dimensional case could be
written just by acting with a spinor from the right. This is due to the fact that when the vector lies in the
plane of rotation one has

—a/2 A/2
e*c/ *o T *e e*/c =@ *c ). (4.35)
A rotation can be described with the bivector A, but also with the dual vector a defined by A = I(3) *¢ a,
where the direction of a defines the axis of rotation, while the magnitude gives the angle in radians |a| = |4|.

So U can also be written as:
U= 2lomee (4.36)

which corresponds to the star exponential (2.109).
It is now straightforward to generalize the formalism to the case of d dimensions and an arbitrary metric

n;; = diag(1,...,1,—1,...,—1), with p+ ¢ = d. One has then d basis vectors o; which together with the
——— ———
p q
star product
b a
Fx.G=F exp E Nij =— 90 9o, (4.37)

i,j=1

form the Clifford algebra C4(n) = C{p, 4. In the d-dimensional case an additional operation becomes impor-
tant, namely the commutator product that is defined for two multivectors A and B as

AxB:%(A*CB—B*CA):%[A,B] (4.38)

*xo )
which should not be confused with the vector cross product as used in (4.22). The cross product of two

three-dimensional vectors @ and b and the commutator product of the corresponding bivectors A = I(3) *c a
and B = I(3) *c b are connected according to

1
—I3)%c (a xb) = 3 [I(3) %c @, I(3) *c b]*c = A xB. (4.39)

The special feature of the commutator product is, that the commutator product A,y X B(g) of an r-blade
Ay = Avirg, .o and a two blade By = Bjkaja'k gives again an r-blade:

r

T

Ay X Bigy = AZ1 “ir gk [‘711 .0, 00, — 00,0 ...0;
( TN, Oy Oy 00— (—1) T 0, O Jiraj)
s = s—1 -
( ngmso']o'Zl Gy oy, — (1) T 080, . G, ...o'ir)
S
1 1) (50, 70 e Nae . .
*' njzs Nkiy — MkigNjis — NkisMNjie + n]ztnkzs) O ...04,...04 ...0;,
T os<t

s

yeoori T2k - .
= Alrir B E VT (ki OO0y o Ty O — i TGy . T, T (4.40)
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It is also easy to see, that Ax acts as a derivative, i.e.

AX (BxcC)=(AXB)*cC+ Bx*c(Ax B) (4.41)
and that the commutator product fulfills a Jacobi-identity

AX(BxC)=(AxB)xC+Bx(AxC(O). (4.42)

In general one can not only work in the basis of the o; but also in an arbitrary basis of basis vectors
b1, by, ..., by, which do not have to be orthonormal. Then one can calculate the reciprocal base with vectors
b', b2, ..., b% which is defined by the relation b; - b = 7. The b’-vectors can be constructed with the help

of the pseudoscalar By = bio? ... 6% =\ (d)> where A is a real number. The space on which the basis vector
b; is normal is given for a d-dimensional euclidian space by the (d —1)-blade (=1)7"1b1b, . .. Ezj ...bg, where

b; means that this basis vector is missing. The corresponding reciprocal basis vector is then given by
¥ = (=1 "'biby... b ... ba*c By™ /| B, (4.43)
where B(_CS*C = %I(_di*c = %Udo'dfl ...oq is the inverse of B4 with respect to the Clifford star product.

The absolute value of the d-blade By is given by |Bg)| = y/B(a) *c B(ay- With the above definitions one

has then b; - b/ = 55 , which in the case of a orthonormal euclidian basis reduces to o; = o*.
The reciprocal basis allows the definition of the nabla operator

V =00, (4.44)

The nabla operator can act on multivector fields in the following ways. First the generalized gradient is
given by
gradA = V %, A, (4.45)

which reduces to the conventional gradient if A is a scalar field, and acting on a vector field @ = a'(x1, z2, 23)0;
one obtains

Visca=V-a+VAa=diva+ I3) *c 10t a. (4.46)
Furthermore there is a generalized divergence
divA=V-A (4.47)
and a generalized rotation
rotA = VA. (4.48)
Note that the product rule for the nabla operator acting on a product of multivectors is given by
Vo (FxoG) = (Ve F)xc G+ 0" %o F %, 0; G, (4.49)

because in general the o; do not commute with the multivector F'. This can also be written in a coordinate-
free manner with accents that indicate which functions is being differentiated:

V*C(F*CG):ﬁ*cF*cG+v*cF*cé. (4.50)

The star product formalism in the context of geometric calculus as described so far has the advantage
that it gives an explicit expression for the geometric product. In contrast to the star product formalism
geometric algebra as Hestenes constructed it, it is formulated with respect to the scalar and the wedge
product, which represent the lowest and the highest order terms of the geometric product. All other terms
of the geometric product are then formulated with the help of these two products. This approach is very
practical, especially if one has only terms that are at most bivectors. But in the general case the highest
and the lowest terms of an expansion have on a formal level the same status as all other terms. The star
product gives now all these terms of different grade as terms of an expansion, that can be calculated in a
straightforward fashion.
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4.2 Vector Manifolds

In geometric algebra the points of a manifold are treated as vectors, so that a manifold can be seen as a
surface in a flat background space. The at least (d + 1)-dimensional flat background space is spanned by the
rectangular basis vectors o, and it is equipped with the constant metric 74,. The corresponding Clifford
star product is then given by

d+1 5§
FxoG=F b —— —— , 4.51
from which it follows that
Oq: Op = TNab- (4.52)

With (4.43) it is possible to calculate the reciprocal basis vectors o®. The denominator in (4.43) is the
determinant and the nominator leads to the cofactor of 74, so that the reciprocal basis vectors are

o = oy, (4.53)
where 7% is the inverse of 74p, i.e. N1’ = 0S. One has then
.- =05 and oo’ =n", (4.54)
or more generally
b

Ty %o Oy = Nap + T4, 0o *e 0l = (52 + o407, and 0%« o’ = + g%t (4.55)

It is then straightforward to calculate coordinate transformations. In a three dimensional euclidian space,
i.e. Nap = dap, a vector in spherical coordinates is given by

x=1z%r,0,p)o, =1rsinb cos poy + rsinfsin pos + rcosfos, (4.56)

so that the corresponding spherical basis vectors are 7, = 0,x, 79 = Opx and 7, = J,x. The spherical
metric can then be calculated as g,, = T, - T = diag(1, 72, 7? sin? 0) and the three dimensional Clifford star
product in spherical coordinates is

3 — -

Fx.G=F exp Z 0 9

P 4.57
et 9 b@Ta oty ( )

Embedded in a (d + 1)-dimensional background space with basis vectors o, one can then imagine a

d-dimensional vector manifold M. The vector manifold is parametrized by smooth functions f(x!,...,z%)
as x(x!,... 2% = fo(2!,...,2%)0o,, more common is the following notation, where the coordinates and the
functions have the same name: x(z?,...,2%) = 2%(z!,..., 240, = 2%(2")o,. The vectors
ox
) = : 4.58
) = 5o (1.59)
are the frame vectors of the manifold, which in the ambient space can be expanded as
§i(x) =& (z)oa. (4.59)
The &;(x) span the tangent space T M, on which the Clifford star product acts as
d o
Fs.G=F i(x)—— | @, 4.60
c exXp ijZ=1 g ]( )661 85] ( )
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so that the scalar product of two basis vectors is given in the tangent space by

In the ambient space the scalar product &, -&; = (§f0) - (f?o-b) also has to be g;;, so that the metric of the
vector manifold and of the ambient space are connected according to

£ = gij- (4.62)

The &% (x) are here tetrad fields and the condition (4.62) assures that (4.61) is valid intrinsically, i.e. calculated
with the Clifford star product (4.60) and externally, i.e. calculated with the Clifford star product (4.51) and
the expansion (4.59).

For an orientable manifold there exists a global unit-pseudoscalar Iy(x) = &€,&,...£,/1&:&5 - - - &,4|, which
allows with (4.43) the calculation of the reciprocal frame vectors & of T, M. In the tangent space (4.43)
gives for the reciprocal base vectors &' = gijfj, where ¢% is the inverse of Gij, i.e. gijgj’c = 55, so that

g -& =4, (4.63)

where the scalar product is calculated intrinsically with (4.60). In the ambient space the reciprocal frame
vectors can be expanded as ¢' = £, and to make sure that (4.63) is also valid in the ambient space with
the Clifford star product (4.51) the expansion coefficients have to fulfill

el =al. (4.64)

Finally it is easy to show that one has as well intrinsically in the tangent space as extrinsically in the ambient
space the relation o N
§-&=g". (4.65)
In general one has for both, the extrinsic Clifford star product (4.51) and the intrinsic Clifford star product
(4.60): ) . , , . g o
& *c Ej = Gij + £i€j7 & xc & = 55 +&:¢, and € xc & =97 +£¢. (4.66)
With the unit pseudoscalar one can furthermore define a projector P on the vector manifold, which
projects an arbitrary multivector A(x) in the ambient space onto the vector manifold:

P(A(@),x) = (A(z) - L) (@) *c [} (@). (4.67)

A vector v = v%0, in the ambient space can then be decomposed into an intrinsic part

P(v) = (& - v)€' = (va&])€' (4.68)

which is tangent to the manifold and an extrinsic part P, (v) = v— P(v). Especially for a tangent vector one
has P(&;) = &,. Applying the projector to the nabla operator of the ambient space gives a vector derivative
intrinsic to the manifold:

d=P(V)=¢(& V) =¢(0.) =£'0; (4.69)

and for a tangent vector a the directional derivative in the a-direction is a - 8 = a'0; = a'¢%d, = a - V.
With the intrinsic vector derivative (4.69) the cotangent frame vectors &' can also be obtained as the
gradient of the coordinate functions x*(x) that arise from the inversion of the vector manifold parametrization
x==x(z!,... 2): ‘

¢ = 9. (4.70)

If one now applies the directional derivative @ - @ on a tangent multi-vector field A(x) the result does
not in general lie completely inside the manifold. So if one wants to have a purely intrinsic result one has
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to use the projection operator P again. This leads to the definition of a new type of derivative that acts
on tangent multi-vector fields and returns tangent multi-vector fields. This new derivative is the covariant
derivative and is defined by:

(a-D)A(z) = P((a-9)A(x)). (4.71)
In the case of a scalar field f(«) on the manifold the covariant and the intrinsic derivative are the same:
(a-8)f =(a-D)f, (4.72)
while for tangent vector fields a and b one has
(a-9)b=P((a-0)b)+ P ((a-0)b) =(a-D)b+b-S(a), (4.73)

where S(a) is the so called shape tensor, which is a bivector that describes both intrinsic and extrinsic
properties of the vector manifold. The covariant derivative can be seen as a map that maps two tangent
vectors into a third tangent vector, fulfilling the defining relations of an affine connection:

(a-D)b+c) = (a-D)b+ (a-D)c, (4.74a)
((@+b)-D)c = ((a-D)+ (b-D))c, (4.74b)
(fa-D)b = f(a-D)b, (4.74c)
(a-D)fb = ((a-D)f)b+ f(a-D)b. (4.74d)

As a tangent vector (a - D)b can be expanded in the &, base:

(a-D)b=d’((D;b")¢,; + bi(Djﬁi)kfic) =a’ (9;0" + b* é'k)ﬁi’ (4.75)

where _ ‘ 4
Ui, = (D€x) - € = (Djé) (4.76)

is the i-th component of D;&,, which extrinsically can be written as
i = (Dj&loa) - &0’ = (9;€0)6. (4.77)

One of the properties the Ffj fulfill is the metric compatibility which can be found if one applies Dy on
both sides of (4.61):
Orgij — Thigiy — iy = 0, (4.78)

which means that the ]f‘;-k are the Christoffel symbols and (a - D)b is the Levi-Civita connection. The
symmetry in the lower indices of I'}, can be seen from the holonomy condition that is fulfilled because the
frame vectors (4.58) form a coordinate basis:

&-Ej — GJEZ = (818] — 5381)3: = 0. (479)

Projecting into the manifold gives

so that the symmetry of the F;k in the lower indices follows. From (4.79) follows further, that
(a-8)b— (b-0)a = (a/(9;b") — b/ (0;a"))¢&; (4.81)
is an intrinsic quantity that corresponds to the Lie-derivative or the Jacobi-Lie-bracket

Zab=1la,bl;, s =(a-0)b—(b-8)a=(a-D)b—(b-D)a. (4.82)

(s



The holonomy condition (4.79) can then be written with &; - 8 = 9; as % §; = [si’gj]JLB = 0. It is easy
to see that the Lie-derivative fulfills the relations

(Za, Dol = (Lo — LHLa)c=Lap),,,C (4.83)

JLB

Za(fb) = ((a-D)f)b+ f(Zab). (4.84)

One can also conclude with (4.73) that since [a, b];; 5 is an intrinsic quantity, the extrinsic parts in the
Jacobi-Lie-bracket have to cancel, i.e.

a-S(b) =b-S(b). (4.85)

Equation (4.75) shows that the intrinsic change of a vector field b in direction a consists of two parts,
on the one hand the active change of the coefficients of the vector field and on the other hand a correction
which corresponds to an passive change of the basis vectors due to the curvature of the manifold. If these
two contributions cancel each other as one moves along a curve ¢(t) in the manifold the vector b(e(t)) does
not move in the local frame of the £€,(¢(t)). One says then that the vector b is parallel transported along
c(t) and the condition for the parallel transport is

(e(t) - D)b = 0. (4.86)

If the tangent vector ¢(t) is parallel transported in its own direction the resulting curve is a geodesic and
fulfills

(e(t) - D)é(t) = (& + i) €, =0, (4.87)

where the ¢ are the components of ¢ in the &; frame.
The covariant derivative of tangent vector fields can then be generalized to the covariant derivative of
multivector fields by applying (4.73) to the Clifford star product b *. ¢ of two tangent vector fields b and ¢:

(@a-D)b*xcc) = ((@-9)b)xcc+(S(a)-b)*cc+bx ((a-8)c)+bxc (S(a)-c)
= (a-9)(bxcc)+8(a)x (bxcc), (4.88)

where one uses the associativity of the Clifford star product and S(a) - b = (S(a) *c b — b *¢ S(a)). In
general one has then
(a-8)A=(a-D)A+ AxS(a), (4.89)

where A x B = (A *c B— Bxc A) = 3 [A,B],_ is the commutator product (not to be confused with the
vector cross product used in (4.22); the cross product of two three-dimensional vectors @ and b and the
commutator product of the corresponding bivectors A = I(3) *c @ and B = I(3) *c b are connected according
to —Ig) *c (@ x b) = % [1(3) *o a, I3y *c b]*c = A x B ). The commutator product of an r-vector and a
bivector gives again an r-vector so that all terms in (4.89) are r-vectors. Furthermore it is clear that (4.89)
reduces to (4.73) if A is a vector field and to (4.72) if A is a scalar field.

A natural generalization of the Lie-derivative to multivectors is given by the Schouten-Nijenhuis bracket

Ly Bis) = [Aw) Bs)] ()" Y (A - D)B(g) + (=1)"*(=1)*""(B) - D) Ay

= (D Aw)B + (=1)"*(D - B Ay (4.90)

SNB

That the Schouten-Nijenhuis bracket can be written in this way can be seen from fact that (4.90) has the
grade r + s — 1, fulfills

[Aw): Bolsxs = (1" [Bey Aw]snn (4.91)

and  [Aw), BiyColsyp = [Aw) Beolsws Co + (0B [Aw, Colgyp - (492)
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and reduces for scalar functions f, g and vector fields a and b to

[f,9lsnp =0, la, flsyg = (a-D)f and [a,blgnpg = Zab. (4.93)

Furthermore one has the Jacobi-identity

(=1 [[Aw), B(S)}SNB ’C(t)]SNB +(=1)" [[Bes), C(t)]SNB ’A(T)]SNB
+ (_1)St I:[C(t)a A(T‘)]SNB ) B(s)] SNB = 0 (494)

4.3 Exterior Calculus

The exterior calculus can be constructed by noting that the cotangent frame vector or 1-form (4.70) can be
written with (4.72) as [56]
¢" = Da* = 82F = da*. (4.95)

In order to see how the directional covariant derivative acts on a general 1-form w = wiEi one first applies
D; on both sides of &, - &/ = & which gives with (4.76)

(D;€") - & = (D;€")r = —Ty, (4.96)
so that the covariant derivative of w reads
(a-D)w = d’ ((Djw;)€" + wi(D;€"),€") = o’ (9jw; — wi LK) € (4.97)

That the exterior product with the covariant derivative D corresponds to the exterior derivative can be
seen if one applies the exterior derivative on &*:

ddz' = D¢ = ¢ D;(§"Dya)
= ¢ [(D,€)(Dia’) + €D, Do’
—£j§ll“§la;€xi + £j£k8j8kxi =0, (4.98)

due to the antisymmetry in the upper indices and the symmetry in the lower indices. The closedness of &°
can for example be used to calculate the relation of the I’ and the metric:

L= (D& € = (D) + (i) € (199)

= % & - (D&,) + T 90€™ + &, - (DE)) + T4, 50u€™] - € (4.100)

= % & - (Dgim€™) + &k - (Dgjm€™) + (Omgin)€™] - € (4.101)

= % [(Ongkm)&; - €™ + (Ongjm )&, - €"E™ + (Omg;n)€™] - € (4.102)

= % [(Onghm ) (7 €™ = 67°€"™) + (Ongjm) (SR E™ = 61'€") + (Dmg;n)€™] - €' (4.103)

= %g“ 03911 + Okgji — Dug;l , (4.104)

where one uses in (4.99)

& - (D€) =&, (§'Di€y) = &; - (€' Ti&) = Tik(0;€, — giu€") = D€y, — Tipgné’, (4.105)
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in (4.100) the metric compatibility (4.78) and in (4.101) D&* = 0.
The expression (4.104) can be used to show that the shape bivector can be written as

1

S(a) = 5 (£'0a; — §;8a" + €'(a- 9)E,), (4.106)
or ) )
Si =8(&) = igjékakgij + igjaigj' (4.107)
This can be proved by calculating
Lo Y i iNET 1 (8. 1 1k i
b-S(a) = L(B008 B (B0)€ — bi(Da)E + b (0,00 + B (0,6) — B E (& - 0,€) (4108)
1 ) , . S —_
= i(akbz(ajgik)ﬁj — a"b (0, 9;1)€ + a't’ (0:§;) — albrE' (&, - 0;€,)) (4.109)
= T LV E (D) + SV (0F) — LoV E €, 948 (1110)
= MUTLE + e VER [(0) €] + 50V (D) (1111)
= a't’ (0:¢;) — a'VTE, (4.112)
= (a-90)b—(a-D)b (4.113)
= Pi((a-9)b), (4.114)
which corresponds to the definition (4.73). In (4.109) relation (4.104) was used, in (4.110) relation (4.61)

and in (4.111) one uses

§8[(0:¢)) - &) = ot [(0:8h0a) - Goy] = (0:80) o0 = ;€. (4.115)

While the exterior derivative of the reciprocal basis vectors is zero, the exterior derivative of a general
1-form w = w;¢" is a two-form

dw = (Dw;)¢’ +w; D¢ = (Qjw;)E'¢E’. (4.116)
A general r-form is then a covariant r-blade A" and can be written as [56]

1 o 4 1 o ,
A(T) = ﬁAiliQ--»irdxll dx" ... dz'" = ﬁAilig...irgllgm . .ng. (4117)

Applying the exterior differential, to A" gives with (4.98)

aam -1 (aAm“'”> ol da do” . da'r — - <8Ai1i2~~ir) gighen | g, (4.118)

7! oxI 7! oI
which is a (r + 1)-form or a covariant (r + 1)-blade. Furthermore it is easy to see that (4.98) generalizes to
ddA™ = 0. (4.119)

In a three dimensional manifold the vector operations like grad, div and rot can be represented with the
exterior derivative as

df = (01f)dat + (0of) dz? + (8sf) da®, (4.120)
dAY) = (A5 — O3Ay)dx?da® + (03A; — 01 Az)dxdal + (0 Ay — Dp Ay )datdz?,  (4.121)
dA® = (9A] + 0y Ay + 03A3)dat dada?®, (4.122)

80



which gives the foundations for the integral theorems. Consider for example the integral of a scalar function
f over a curve c(t) = c'(t)o1 + c*(t)oa. The curve is a vector manifold with one coordinate z' = t and
tangent vector field &, which is equal to the reciprocal frame field &' = dt. The integral from t =0 to t = T
of f over the curve is then

/df - /é@f
B Of det  Of dc?
‘-A“Q&ﬁ+%wJ
af dct ﬁd&

= Jim Y aetetty) - dite(t)] (55 5+ 555 )

AC—0 p—1

& ; of det  9f dc?
= Jm Yy (ete) - €cle))| (555 + )

r=1
T 1 2
:/Jm%£+ﬁ£
0 Ocl dt ~ 0c? dt

- f‘o, (4.123)

which is the easiest version of the Stokes theorem

/S dA") = /a ) AT, (4.124)

The important point is here that in the geometric algebra formalism the duality of the infinitesimal volume
element dx'dz?...dz%€,&,...&, and the differential forms gte? .Ed can be expressed with the scalar
product, so that the ordinary scalar integral remains.

It is then also straightforward to translate other structures of exterior calculus into the language of
superanalytic geometric algebra, for example the Hodge dual is given by

i1 ¢i iy .V lgl g in i
() = G a7 (4.125)
with eil“‘”irﬂmid = ghthr ...g“jTEjl_“jriHl__,id and ¢;,. ;, = 1 for even permutations. In the euclidian or

Minkowski case the Hodge dual can be written as
* A = (—1)(d=r)rdr(r=1)/2(d) - A() (4.126)

For example in a d-dimensional Minkowski space with reciprocal basis vectors 4" one has

1

7(d) ko YHL Lyt = mgﬂwln_ﬂdu%”m,},urﬂ By N s (4.127)
= (-1 (@-nyrr-n2_1 Hrt1 fhd A bor B m tr 4.128
= (-1 (d—r)lgm“'”n NS Alliiie SR Ll Dole Tab e 4 (4.128)
- - - 1 Vi...Up "
= (_1)(d ryr+r(r 1)/29H1V19M1M1 o g/h-urgu’ Hor m&_ 7HT+1.”H{17M7‘+1 oAy ((4.129)
= (—D)@Err T2 gyt (4.130)

81



where there is no summation over pyq, ..., y-. Applying the Hodge star operator twice gives

*oayt At = (=)= Dr/2 p(d) i (4.131)
= (=D)drtr=Dr/2(_qyr(d=)+(d=r)=1)(d=)/2[(d) y | [(d) s P i (4.132)

_ (71)(rfl)r/Q(71)(d272rd+r27d+r)/2(71)7d(d71)/2m wo I %, ~AH L AR (4.133)

(=1)rd=mght  gddapa - e (4.134)

so that in the euclidian case one has for the inverse Hodge star operator
*x L= (=1)r ) = (=)D )y (4.135)

while in the four dimensional Minkowski case one has an additional minus sign, i.e. +~1 = (—=1)7(d=")+ 1y
With the Hodge star operator as defined in (4.125) the coderivative d'is given in the Riemannian case
as

df AW = (—1)drtdH1 gy AT (4.136)

and in the Minkowski case as
diAD = (=)@ T s dx AM), (4.137)

Writing this down in components one directly sees that the coderivative as an operator that maps an r-form
into an (r — 1)-form can be written as
dTAM) = —d. A", (4.138)

The interior product that maps an r-blade A into an (r — 1)-blade is just the scalar product with a
vector a = a’€;:

iqAT =a . A" = alAji, 0 E7 L€, (4.139)

so that one has for example
i, §'€7=¢, - ¢ =¢, g, 67" =€ - =0 and i, £%¢' =€ -£¢ =€ (4140)
The interior product can be generalized to the case of two multivectors A, and BG):
ia,,B® =4, BY. (4.141)

With this generalized interior product one can for example write the contracted exterior derivative of a
1-form as

igpdw = (a- 8)(b-w) — (b-8)(a w) —w-[a,b],;, 5 = (Ow;)(a’t —alb") (4.142)
or in general
r+1
Lalaz,ma?,ﬂdA(r) = Z(—l)"“(an -0)(ar...an...ary1) - AM
n=1
+ Z (=1)mtn ([am7 Qn) g Q1. Gy Gy a,+1) A0, (4.143)
m<n

The Lie derivative of a 1-form is defined with the interior product as
Lbﬁaw = ﬁa(ibw) - L.gabw, (4144)
so that Cartan’s magic formula follows

Lgw = (diq + iqd) w = (a'(Ow;) + (0ja")w;) €. (4.145)
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The exterior derivative can then be written with the Lie derivative as
dw = ¢ L w, (4.146)
which is the generalization of df = £'9;f, and for the coderivative one has similarly
dw =& L w. (4.147)

It is easy to see that the Lie derivative of a 1-form fulfills the following relations

[Zoy Lo|lw = (Lol — LoLa)w = "Sf[a’b]\zww’ (4.148)
[ga, L'b] w = (faib — ipLa)w = L'[a’b]JLB(.«J7 (4.149)
dLpw = ZLpdw. (4.150)
The Lie derivative of an r-form is
ZLaA") = (dig 4 iqd) A" = D(a-A") +a- (DAM). (4.151)

Up to now only the coordinate basis of the &, was used, in general it is also possible to use a non-coordinate
basis given by

9, =9  and & =079, (4.152)

where 9% are functions of the x*, with 979l = 5{ and g;; = U{9jgrs. Analogously the reciprocal non-

coordinate basis 9" can be expanded with the 97 in the reciprocal coordinate basis of the Ei. A special
choice for the non-coordinate frame fields is obtained by the conditions ¥, - ¥5 = 7,s and 9;9, = 0. This
means the 9, span a (pseudo)-euclidian base and they move on the vector-manifold so that

D9, = -9, - S,. (4.153)

This shows that the shape tensor that in the ¥,-frame has the form S, = S(49,) = ¥.S; is proportional to
the Fock-Ivanenko bivector I'; [102], i.e. S; = —2T;.

For non-coordinate basis vectors the Jacobi-Lie bracket is no longer zero, one rather has

[0:,95) ;5 = U3(& - D)(0LE;) — 05(&; - D)(¥1E;) (4.154)
= 0, [(Div))€; + 0U(Di€;)] — 9, [(Did])€; + 0L(Di€;)] (4.155)
= [0LD¥] — 9D €, (4.156)
= [9,0] — 0,9]] V0 (4.157)
= C!w, (4.158)
with

Ct, =9, Vsl 1 p 9t = [&ﬁg — 83193;] 193 (4.159)

For tangent vector fields @ = a", and b = b9 it follows then that
Zab=1[a,b];; 5= (a"(8,b°) = b"(8,a°))Vs +a"b* [9,,94] ;, 5 » (4.160)

which reduces in a coordinate basis to (4.81).
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In the non-coordinate basis the I'., are given by

Fis = - [("97" : D)ﬁt] Yy = — (19?(51 . D)I%Sk} -1925]» (4.161)
= 050,0:0] + T59,9,.9) (4.162)

| , ,
= '95‘19381‘1975 + 59“ [0igj1 + 0jgi — O1gij] VL9507 (4.163)

| . _
= 050,090+ 59" [Bigj1 + 0390 — Dugis) 9,9,V (4.164)

1 _ _
= ?9367“191 + igtu [al (ﬂyﬁfng) + aj (ﬁfﬁzﬂng) - 61(19;)19}1)91;1,})] 1%192?9%(4.165)
1 1

= §gm [8T93u + asgru - augrs] =+ igtu(c’urs + Cusr — Csru)~ (4-166)

In (4.162) one uses , ,
9700y = —0,0:9], (4.167)
which results from acting with d; on ¥79% = 67, in (4.164) one uses
Vig" = 05(0,049"°) = 6,0.9" = V.g" (4.168)
and in (4.165) one uses the definition
Crsu = gtuC»,t‘5~ (4169)

While in the coordinate base [£i7£ j] g =0 insured that the Ffj are symmetric in the lower indices,
one has with (4.162) and (4.159) in the non-coordinate basis the relation

rt, -1t =CrL,, (4.170)
which implies that the non-coordinate 1-forms 19" are not closed:
@ = ED0E) = (O]~ e E (4.171)
= % (05 (95 - 9)9; — V5(9s - 9)v7) 9097 99" (4.172)
- % (19;(1% L) — 0l (9, - 8)19;?) 99" (4.173)
- —% (970, - 0)0, — 050, - 9)0 ) 90" (4.174)
= _%O[uﬂtﬁ“, (4.175)
which is the Maurer-Cartan equation, that with (4.170) can also be written as d9” = —I',,9°9". The
exterior derivative of a general non-coordinate 1-form a = ;9" is
da = (Da,)9" + a,DVY" = (0,as — a; It ,)9"9%, (4.176)

which should be compared with (4.116), and for the exterior derivative of a general r-form in the non-
coordinate basis A" = %Asl_,srﬁsl ...19°" one obtains

A = D e

D . OUOT L, (AT

31~~~5k—1t5k+1~~57-])

where the square brackets antisymmetrize the lower indices.
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4.4 Tensor Calculus

The formalism developed so far can then in a straightforward fashion be extended to tensor calculus. A
tensor is a multilinear map of r vectors and s one-forms into the real numbers, and can be written as
T = 70~ 156 ‘® Sis ® Ejl ®R-® Ejr' (4.178)

MAREEVES

The components of the tensor can be obtained as
T]’LII .]r = T(Eil Yo aéis7€j1 yeee 75]’,‘) = ££i1®-~~®£h‘T = (Ell ®-® 5]7) - T (4179)
A change of the base according to
g =€6,  and ¢ =¢'¢, (4.180)

. ./ ) -
where &}, and &} are functions with £,¢] = d], and

0t  OE .ogr €,
;, — LA — and ‘] = —_—— = J 4].8].
¢ o8,  o¢ & o¢ 0 ( )
leads to a change of the tensor components according to
T = lejlljléglll R ® gi; ® £J1 R-® 5];
v OET gt ogh (’“)JT . .
= Th-ts 5 5 ﬁ . ﬁ 5“ "'®£is®£h®'”®£h' (4.182)

J1---J7 aé-z’l 8£zg 8‘5]1 £]r

It is clear that the special case of a totally anti-symmetric tensor that maps r vectors into a scalar is a
r-form, i.e. it has the form

A=A, EVANLNET=A T e (4.183)

The covariant derivative and the Lie derivative of a tensor can be obtained by acting on the components
and the basis vectors of the tensor. As an example one can consider the metric tensor

g =98 @& = giyda’ @ do’, (4.184)

that maps two vectors @ = a’¢; and b = b’¢, into a scalar according to

gla,b) =iqgpg = (akgk ® blfl) . (gijﬁi ® €j) = gijaibj. (4.185)

The covariant derivative of g is then
Dig = (Drgi)€' @& +gi;(Dpg’) ® € + i€ ® (Dig’) (4.186)
= (Ocgij — Thigy — Thj90)€ ®@ &, (4.187)

so that the condition (4.78) can be written as (Dyg);; = 0. The Lie derivative of the metric tensor is

gag ( agzj) ® £j + gij( aéi) Y €j +gl]€7® (gagj)
(ak(?kgw + Gkj (Oia ) + Gik (8jak))’$l ® ¢’
= (a"(0kgij — 0igj. — O;gik) + Osa; + 9ja;)€' @ &

= (0ia; — Thar + dja; — Thap)€ @ €.
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If the metric tensor does not change in the direction of the vector field a, i.e.
(Zag)ij = aiyj — aj; =0, (4.192)

with a;,; = 0;a; — F?Z-ak, then a generates an isometry and is a killing vector.
The above tensor concept can be generalized in several ways. For example one can consider a function
that maps r contravariant and s covariant blades of arbitrary grade into a scalar, i.e. tensors of the form

T=10A" e 0A @Bl @B, (4.193)

J1---Js (S

The other possibility is to consider multivector valued tensors. In this case a tensor maps a number of
(multi)vectors into a multivector. The above notation runs into difficulties if one generalizes tensors in this
way. So the tensor concept is founded in geometric algebra on a linear map F(a) that maps a vector a
into another vector, that in general does not have to lie in the same space as a. The linear map F is then
generalized to multivectors by the rule

F(ab) = F(a)F(b), (4.194)
so that it is grade preserving, i.e. F(A()) = (F(A()))r. The adjoint map F' is defined by
a-F(b) =F(a) - b, (4.195)

with (FT)f(a) = F(a) and (FG)'(a) = G'F(a). It is easy to see that the definition (4.195) of the adjoint
map generalizes to bivectors as By - F(By) = F(By) - By and to multivectors as
(Ao FT(B))g = (F(A) % B)o. (4.196)
The determinant of F is defined as
F(I(a)) = det(F)I(a), (4.197)

where a short calculation shows that det(FG)I(4 = det(G) det(F)I4) and det(F') = det(F). Having defined
the determinant it is then possible to calculate the inverse F~! of F. To this purpose one notices that from
(4.197) it follows that

det(F)I(g) o B = F(I(g)) *c B = F(I(g) *c F'(B)), (4.198)
where one uses in the last step
F(Aw) - FT(Bs))) = F(Aw) - B for r > s. (4.199)
Setting now A = I(4) *c B one obtains
det(F)A = F(I(g)*c FT(I(—d;*c % A)) (4.200)
~ Fl4) = #(F)J(d) ro I %c A). (4.201)
The components of the tensor F in a &;-base are obtained as
Fij=¢&-F(&) and F7=¢-F¢) (4.202)
and the components of the adjoint tensor are found by transposition:
Fl, =Fi(§) & =& F(&) =Fj. (4.203)

The coefficients of F(a) are &, - F(a) = F;;a’, which is the product of a matrix and a vector. Similarly one
obtains the product of two matrices with (4.195) as

(FG)ij = FG(€;) - & = G(&;) - FI(&) = G(&;) - (&4(€" -FI(€))) = G(&)) - &F'", = F Gy (4.204)
Furthermore if one changes the basis according to 9, = ¥.¢, the coefficients transform according to
Fro = 0, - F(9,) = Vi, - F(9IE,) = 0109, (4.205)
which is just the transformation property in (4.182).
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4.5 Curvature and Torsion

Curvature can be described if one transports a vector around a closed path and measures the difference of
the initial and the transported vector. The path can be thought of as spanned by two tangent vectors a and
b and closes by [a,b];; 5. One can then act with a curvature operator on a tangent vector ¢ = ¢"9,:

[(a-D)(b-D)—(b-D)(a-D)—[a,b],, 5 Dlc
=a"b’c" (D.Ds — DD, — C".D,) 9 = a"b°c' R*,, 0., (4.206)

with
Rty = [(DyDs—DsD, — [9,,9,] ;.5 D)9 - 9" (4.207)
0T — QT + TU, T — TU, T + TS, ~TUTS,, (4.209)

which in the case of a coordinate basis reduces to

R!

,

ik =[(DiD; — D;D;)¢,] - & = 0,1}y — O,TL, + T, T — T T (4.210)

i im jm~ ik
Since the curvature operator maps three vectors into a fourth one it can also be written as a tensor

R=R

st

9, @9 ®9° 9" (4.211)

In general the curvature operator can act on a multivector A which with (4.89) can be written as

[(a -D)(b-D)—(b-D)(a-D)— [a,b]JLB ~D]A
= [(a -0)S(b) — (b- 0)3(a) + S(a) x S(b) — s(]a, b]JLB)] x A =R(ab) x A, (4.212)
which reduces to
[(a-D)(b-D)—(b-D)(a-D)—[a,b], 5 -Dlc=R(ab)-c (4.213)

acting on a vector. The bivector-valued function of a bivector
R(ab) = (a-3)S(b) — (b- 9)S(a) + S(a) x S(b) — S([a, b ;, ;) (4.214)
fulfills the Ricci and Bianchi identities

a-R(bc)+b-R(ca)+c-R(ab) =0 (4.215)
and (a - D)R(bc) + (b- D)R(ca) + (c- D)R(ab) = 0. (4.216)

Comparing (4.206) with (4.213) shows that the curvature may be described by a bivector-valued function
of a bivector according to
a"b*c' R, 9, = R(ab) - c. (4.217)

rst

But it is also possible to describe it by a scalar-valued function of a bivector, i.e. a 2-form R} (ab) = iqpR}'
according to
a"b*c' R, 9., = 'R} (ab)?,. (4.218)
It is now easy to see from this definition and (4.209) that the curvature 2-form R} is
Ry = (0T, + Ti I, 4+ Tu T0, ) 979", (4.219)

vrT wt
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which also can be expressed in another way. To this purpose one notices that the exterior derivative of 19,
is a vector-valued 1-form:

d¥, = 9°D,9, =T, 99, = wl 9, (4.220)
where w! =T 9°. With w! the curvature 2-form (4.219) can also be written as
R} = dw} + wrwy, (4.221)

which is the first Cartan structure equation. Exterior differentiation of (4.221) gives the Bianchi identity for
the curvature 2-form:

dR. + W} R! — Rjw' = 0. (4.222)

It is possible that the path spanned by two tangent vectors a and b is not closed by [a, b];; 5. This is
measured by the torsion

(a-D)b— (b-D)a — [a,b],, 5 =a"b*T 0, (4.223)
with
T!, = [D,9s — D9, — [9,,9,] ;5] -9 =TL, T —CI

rs?

(4.224)

which reduces in a coordinate basis to T[} = Ffj — F;“Z This means that for non-vanishing torsion the Ffj
are no longer symmetric in the lower indices so that ddx’ is no longer zero and the exterior differential of
an r-form is given by

1

dA") = DAD) = <8A

oI

—~ > D2 Dz Dz ... Dx'r
r!

+—|Ai1i2mir [DDx“Dx” ...Dx'"" — Dz**DDx"*>Dx" ... Dz
7l
+...4 (-1)""'D2" Dz* ... DDz"]. (4.225)
The torsion maps two vectors into a third one and so can also be written as a tensor

T=T' 929" @9 (4.226)
The other possibility is to describe the torsion with a scalar-valued function of a bivector, i.e. a 2-form
Tt (ab) = iqpT" according to

a"b*T! 9 = T'(ab)V;. (4.227)

It is then easy to see with (4.224) that the torsion 2-form can be written as
t t 1 t .95
T' = (I7, - 50t ) 970", (4.228)
With the Cartan 1-form w! this can also be written as

Tt = d¥' + wiv", (4.229)

which is the second Cartan structure equation, and applying the exterior differentiation on both sides of
(4.229) gives the second Bianchi-identity

dT' + w!T" = R'9". (4.230)
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4.6 Rotor Groups and Bivector Algebras

Following [34] it is now straightforward to translate the theory of Lie groups and Lie algebras into a superan-
alytic language. Starting point is the fact that an orthogonal transformation can be decomposed into several
reflections. A reflection of a vector  at a plane with normal unit-vector w can be written as —u*o o u ™ 1*C.
The u form under the Clifford star product the group Pin(p,q) if one has a metric with (p, g)-signature.
An element U € Pin(p,q) is a multivector with U *., U = £1. The multivectors of even Grassmann grade
are closed under the Clifford star product and form the subgroup Spin(p,q), which is a double covering of
SO(p,q). An element S € Spin(p, q) fulfills S *. S = 41 and a transformation S *. @ *o S™1*¢ gives again
a vector-valued result. The elements R € Spin(p, q) with R*. R = +1 are called rotors and form the rotor
group Spin™(p,q), which in the euclidian case is equal to the spin-group. For a rotor one has R~'*¢ = R,
so that a multivector A transforms as R . A . R.

A rotor can be written as a starexponential of a bivector. This can be seen if one considers a path R(t)

in the rotor group manifold. Differentiating x(t) = R(t) *¢ @ *c R(f) one obtains

%x(t) = R(t) % o %o R(t) + R(t) *¢ @0 *c R(t) (4.231)
= R(t) %c R(t) %c (t) — 2(t) *c R(t) *c R(t), (4.232)

where one uses
R(t) *c R(t) + R(t) *c R(t) = 0, (4.233)

which follows from differentiating R(t) #. R(t) = 1. Since the left hand side of (4.231) is vector-valued the
right hand side R(t) % R(t) *c x(t) — x(t) *c R(t) *c R(t) has to be vector-valued too, so that R(t) xo R(t)
has to be a bivector $B(t). With this bivector (4.233) can be written as a defining equation for the rotor,

i.e.

. - 1
R(t) = —R(t) *c R(t) *c R(t) = §B(t) xc R(t). (4.234)
It is now easy to see that the bivector B is independent of ¢. This is because one has on the one hand
d 1
&R(t +u) = §B(t +u) *c R(t +u) (4.235)
and on the other hand
d 1 1
2 (R xc R(u)) = 5B(t) xc R() xe R(u) = 5B(t) xc R(t+u), (4.236)
so that B(t + u) = B(¢) is actually independent of ¢ and (4.234) can be integrated to
R(t) = e2". (4.237)

This result is only true in the euclidian case where the rotor group manifold is connected. In general a rotor
can be written as .
R(t) = +eZ.. (4.238)
On the other hand it is also easy to show that the transformation with the above constructed rotor
conserves the vector-grade, i.e.

x(t) = e*%g ko Lo *o e:C%B (4.239)
is vector-valued. If one considers the derivatives of x(t):
d t _t
() = €22 % (B o) *e €x 2 (4.240)
d? is —iB
ﬁx(t) = e, %c (B- (B @) *c €x (4.241)
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and so on, () can be written as

1
x(t) = zo + t(B- xo) + ?tz (B-(B o))+, (4.242)
which is vector-valued.

As a simple example one can consider the rotation in a two dimensional vector space with vectors

x = 2'oq + 2205. The bivector B = o105 generates the rotation given by

/

T _t
' = R(t) xc @ *c R(t) = ef? ko @ ko 6*02]3 = (2! cost + 2?sint)oy + (z? cost — a*

sint)os. (4.243)

This means that the bivector o105 generates a right rotation, i.e. a rotation in the mathematically negative
direction, whereas the bivector o201 = —0 105 generates a left rotation, i.e. a rotation in the mathematically
positive direction.

The bivector basis B; of a rotor constitutes an algebra under the commutator product

B; x Bj = C;By, (4.244)

where the ij are the structure constants (note that one has here an additional factor % due to the definition
of the commutator product). Furthermore one can directly calculate

Rij = Bi . Bj7 (4245)

which is (proportional to) the Killing metric. Note that here no detour over the adjoint matrix representation
of the algebra elements has to be made to define the Killing metric. As an example one can consider the
group SO(3). Given a three dimensional euclidian space with basis vectors o; the rotor is given by

R:R0+R10'20'3+R20'30'1+R30'10'2, (4246)

with R*. R = R2+ R? + R2 + R2 = 1, so that the rotor can also be parametrized with three parameters a,
0 and ¢ as':

R(a,0,¢) = cosacosf + sinacos poa03 + sinasin poso; + cosasinfoios. (4.247)
The three basis bivectors By = o203, By = 0301 and Bg = o105 fulfill
Bi X Bj = *gijkBk and Rij = Bi . Bj = 75ij~ (4248)

It is easy to see that the group vector manifold, which for SO(3) is an S® embedded in a four dimensional
euclidian space with basis vectors 7,, can be read off from (4.247) as

rr(a,0,p) =cosacosf i +sinacos o T9 + sinasin o 73 + cos asin 0 74. (4.249)

On this group vector manifold one can apply the formalism described in the last section and calculate the
coordinate basis £ = 0,TR, £ = OpTR, §3 = 0,7 and the coordinate metric g;; = §; - §;.

The rotors act on themselves by left- and right-translation. A left-translation with a rotor R’ is given by
{pR = R’ #¢ R and on the group vector manifold by ¢gr/7r = T"rwor- The left-translation induces a map
Trlp between the tangent spaces at 7r and rri..g. A vector field a(rg) on the group vector manifold is

1In general R #¢ R is not as in the above case a scalar but a multivector, so that R ¢ R = 1 gives not one but several
conditions on the R;. This insures that the degrees of freedom in the even multivector R correspond to the number of linear
independent bivectors, which constitute the group algebra.
Note further that the parametrization in «, 6 and ¢ is much easier than the parametrization in ¢; that follows if one rewrites

1
with the Baker-Campbell-Hausdorff formula the rotor R = e? (f1O102+120301H59298) 4 the from of (4.246).

90



left-invariant if Trlp a(rg) = a(rr.«.r). Left-invariant vector fields on the group vector manifold can be
obtained if one considers the multivector fields on the rotors given by Bl®(R) = R . B;. For two rotors R
and R’ one has

BY(R' %o R) = R +¢ B(R). (4.250)

Just as to each rotor R in the o,-space corresponds a vector rg in the 7T,-space there is also for each
multivector field BX**(R) in the o,-space a left invariant vector field ¥ pere(r)(TR) = ¥ in the T4-space.
These vector fields are closed under the Jacobi-Lie-bracket, i.e. they form a Lie subalgebra of all vector fields
on rp and they form a non-coordinate basis on rr. For the SO(3)-case one has for example

19B’licft(R) . 19B;cft(R) = 5”- and |:T9B’licft(R), ﬁB}cft(R):| LB = €ijk'l93}ccft(R). (4.251)

The multivector fields B}eft (R) are uniquely defined by the bivectors at R = 1 and the corresponding left-
invariant vector fields are uniquely defined by their value in 7r—;. In the SO(3)-example the tangent space
at rr=1(0,0,0) = 7 is spanned by the vectors ¥, = 7,11 and constitutes the s0(3) algebra in the 7,-space,
where the commutator product in the bivector algebra corresponds here in the so(3)-case to the vector cross
product on the ¥g,-space, i.e. one has an algebra anti-homomorphism between the algebra of left-invariant
vector fields and the bivector algebra?

U8, xp; = —Up, X Up,. (4.252)

To each basis-bivector B; of the bivector algebra a two form ©% can be found so that i5,© = B; - ©7 = 55
and to the two-forms ©! correspond then in the 7,-space one forms 9° =9 that generalize to reciprocal
non-coordinate basis vector fields on rp, which clearly obey the Maurer-Cartan equation (4.175). For a

r-form A" on the group vector manifold that is vector-valued in the o ,-space one can then in analogy to
(4.143) define the BRST-operator s as

(9192 Or11) - sAD = %(71)"“&, ((191...19n...19r+1) -A(’“)>

n=1

S (B Ol D1 D DDt ) - AT (4.253)

m<n

Note that the first scalar product on the right hand side is the scalar product in the o ,-space and the second
scalar product is the scalar product in the 7,-space. The s-operator has then the form (see for example [5]
and the references therein):

0
0"
Combining a left-translation with R’ and a right-translation with R’ gives R’ *- R R’, which is an inner

automorphism on the rotors. The derivative at the identity is the adjoint representation, i.e. the adjoint
action of the rotor group on the bivector algebra is given by [34]

s =10'B; + ck Y — (4.254)

AdpB = R %, B, R, (4.255)

where B = b'B; is a general element of the bivector algebra, to which corresponds a vector b = b'd5, in the
Up,-space. Adp is a bivector algebra homomorphism, i.e.

AdR(A X B) = AdgrA x AdgB (4256)

2For an arbitrary algebra one can analogously define a generalized vector cross product with the structure constants ij

instead of sfj.
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and a left action, i.e.
Adp..r = AdrAdg. (4.257)

For all elements R of the rotor group the adjoint action (4.255) constitutes the adjoint bivector orbit of B,
to which in the ¥p,-space corresponds an orbit vector manifold. In the SO(3)-case the adjoint action (4.255)
leaves |B|? = Zg’:l(bi)2 = |b|? invariant, so that the adjoint orbit vector manifold is an S2.
t
Let now A be an element of the bivector algebra and consider the rotor R(t) = 632. The adjoint action
of this one-parameter rotor subgroup gives a curve in the bivector orbit and the derivative at t = 0 is

adyB = 4 R(t) #c B*¢ R(t) = A x B. (4.258)
dt|,_,

In the ¥g,-space the vector ¥yxp is the tangent vector in direction 19, to the orbit vector manifold in the
point g, i.e. ¥y«p generates the adjoint action corresponding to A. It is also possible to define the coadjoint
action AdJ, of the rotor group on a two form © by

B-Ad;0 = AdgB- ©, (4.259)

which is the right action Ad}© = R . © . R. The coadjoint left action is given by Ad%@. Infinitesimally
one has B-ad;© = ad,B- O, or ad;© = © x A. In the SO(3)-case the rotor acts on an euclidian space where
the basis vectors and the reciprocal basis vectors are actually the same, so that B; = ©' and there is no
difference between the adjoint and the coadjoint action.

In the above discussion the rotor R acts intrinsically from the left on a vector space. But more generally
a rotor in an ambient space can also act from the left on a vector manifold z(z?) by @' = R*. @ *. R if 2’ is
again a point in the vector manifold. The left-action of the rotor R(t) = e,és induces on the vector manifold
x(z*) the vector field?
4 R(t) %¢c © *c R(t) =B - . (4.260)

dt|i—o

If on the other hand a tangent vector field a(x) on the vector manifold is given that can be expressed as
a(x) = B - x, for a constant bivector B in the ambient space, then the flow x(¢) generated by a(x) is due
to a rotor action. Furthermore one has an algebra anti-homomorphism between the bivector algebra in the
ambient space and the induced vector fields on the vector manifold, given by

A-x,B-x];, 5 =—(AXB)- x. (4.261)

This relation can be proved by direct calculation. For bivectors A = Agro,. and B = B o .0 ¢ in the
ambient space spanned by the basis vectors o, the right hand side of (4.261) gives:

(A X B) T = xaAchef(nceo-ba'f + MofOcOc — MNcfObOe — nbeo'caf) *O0q
= 4x“Achef77acm,f0'C — 4x“AbCBefnab7]@Co'f. (4.262)

The vector field induced by the bivector A can be expanded in the coordinate basis on the vector manifold,
ie.:

A-x=21,A% . = d'€, = a'¢Co., (4.263)

so that the corresponding coefficients are a' = 2z, A°°¢? and similarly for the vector field induced by the

3The corresponding right-action @’ = R(t) *¢ @ *c R(t) induces the vector field —B - = x - B.
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bivector B one has the coefficients b* = 2z, B/°¢%. The left hand side of (4.261) gives then

A B x|, = (2becbggai(2xereq;) - Qmereg;ai(gbecbgg)) o, (4.264)
= 4Abcpef (mbnehfi@(mhg}) — menbhf}@(mhfg)) §joa (4.265)

= 4Abpef (xbnecéjﬁ + xbxefgf — TeMyflp — xbxeF}c) o, (4.266)

)

= 4xaAbCBefr]abnef0'f — 4xaAchefnaenbfa'c (4.267

which is up to a sign the same result as the right hand side (4.262).

The rotor in the ambient space acts not only on the vectors x of the vector manifold, but in the same way
also on tangent vectors a at the manifold which are vectors in the ambient space too. The transformation
of x and a in the ambient space of the vector manifold induce a transformation in the tangent bundle. The
tangent bundle manifold can be seen as a 2d-dimensional vector manifold in a (2d + 2)-dimensional ambient
space with basis vectors o, and T, i.e. as

(x+a)(z’,a") = 2%(2")o, + ajgf(mi)‘ra. (4.268)
Analogously one can define multivector bundles, for example a bivector bundle manifold has the form
(x +B)(z', B'*) = 2%(z")o, + Bjké“?(xi)ﬁ,g(xi)ﬂ'aﬂi'b. (4.269)

The tangential lift of the rotor action is given by R . @ *» R + R %o a * R, where the rotor acts on the
Ta-Space in the same way as on the o,-space. In the case of a flat vector manifold the tangent bundle is just
a 2d-dimensional vector space and the rotor acts separately and intrinsically on both subspaces. Instead of
two rotors that act separately on the o, and 7, spaces one can consider also a lifted rotor with a bivector
Bliftea that is the sum of the two single bivectors, so that one can write Ryifted *c (€ + @) *¢ Riifted. 1f one
describes the tangent vector in a reciprocal ambient space, i.e. as a one-form « the cotangent bundle has
the form

(x+ a)(xi, ;) = x“(xi)aa + aiffl(xi)T“ (4.270)

and the corresponding cotangent lift is given by R %o © *¢ R + R *¢ o ¢ R or Riifted *o (x + a) *¢ Riifted-

In order to construct unitary transformations [36] one can consider a 2d-dimensional space with basis
vectors o; and 3, for 1 = 1,...,d. The two subspaces spanned by a; and 3; should have the same metric,
Le. aj-aj = ;- B; and ;- B; = 0. On this space one can define the bivector

d d
1= B =) 3, (4.271)
i=1 i=1

which connects the two subspaces according to

o; - J = ﬁz and ,81 J = -y, (4.272)

so that one has
(a;-J)-J=—ay and (B;-3)-I=-0; (4.273)
or in general for a vector & = a'a; + b3, one has (x-J)-J = —x. The 2n-dimensional vector & corresponds

to an n-dimensional complex vector with components
k _ ; _ ko ik
=z -ar+iz- B, =a"+1b". (4.274)
The complex internal product can then be written as

(xly) ="y, = (- " +iz - By -ar —iy-By) =z -y +i(zy) - J. (4.275)
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A unitary transformation generated by the rotor R leaves the above complex product invariant, i.e. (x|y) =
(R *c € *c R|R *c Yy *¢ R). This means that on the one hand the scalar product « - y has to be invariant
and on the other hand the more restrictive condition that

(xy) - I = ((R*c @ *c R)(R*cy+*c R))-J = (xy) - (R*c J*c R), (4.276)
B/2

which means that J = R#. J*¢ R is the defining relation for the unitary rotor and with the ansatz R = e,
one obtains the defining relation for the bivector B

BxJ=0. (4.277)
A bivector that fulfills this equation can easily be found if one considers that
(- 3)(y-J) xI=—(zy) x J, (4.278)

so that B has the form
B=zy+ (x-J)(y-J). (4.279)

Putting in this formula the basis vectors for  and y one obtains the d? basis bivectors of the u(d)-algebra:
Eij =k + ﬁiﬁj’ Fij = ai,Bj — ,Biaj and Ji = (11,61 (4280)

fori < j=1,...,d. It is easy to show that these basis bivectors form a closed algebra under the commutator
product. The bivector J is part of the u(d)-algebra, if one excludes this generator of a global phase one obtains
the su(d)-algebra. For example the bivector basis of su(2) is given by

Bi =ajas + 61ﬁ27 By = a1ﬁ2 — ﬁlag and By = 01,81 — a2ﬁ2 (4281)

and it is easy to see that these bivectors fulfill the same commutator-product algebra as the so(3) basis
bivectors.

In order to describe Gi(n) one proceeds similarly to the unitary case. One considers a 2n-dimensional
space spanned by the basis vectors a; and 3, for i = 1,...,n, but now the sign of the metric in the spaces
spanned by a; and B, is opposite, i.e. the Clifford star product is given by

b 9 o a
= e —— — N —— 4.282
*o = €XP [N da; 6aj Mij 98, aﬂj ) ( )
so that a; - a; =iz, B, - B; = —mij and «; - B; = 0. On this space one defines
K=a;3, (4.283)
which relates the two subspaces according to
a; - K=—-0, and B; K= —ay, (4.284)

or in general for a vector & = a’a; + b'3; one has (z - K) - K = . While J generates a complex structure, K
generates a O-structure, i.e. one can decompose a vector & according to

wz%(w—km%)—i—%(m—w%):w++w7, (4.285)

so that 4 - x4y = x_ - x_ = 0. One has then two subspaces V; and V_ that are defined by

T, K=z and r_-K=wx_. (4.286)
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A Gl(n)-transformation now transforms a vector in V into another vector in V4, i.e.

(R#*c @y *c R) ‘K= R*c T4 *c R, (4.287)

which can be written as -
Ty = T4 - (R *o K *o R) (4288)

or K = R+, K+, R. With the same argumentation as above one can see that a bivector generator must have
the form
B=xzy — (- K)(y-X), (4.289)

note the different sign compared with (4.279). The n? basis bivectors of gl(n) are then
Eij = aiaj — ﬂi,@j, Fij = alﬂj — ﬁiaj and Ki = aiﬁi (4290)

for i < j = 1,...,n. It is here also easy to show that these bivectors form a closed algebra under the
commutator product. Note that the doubling of the dimension is here necessary to have sufficient degrees
of freedoms for the bivector algebra. In the case of an orthogonal group this is not necessary, so that the
generating bivectors live directly in the space on which the transformation acts.

What is actually happening in the Gi(n)-case is that one performs a transformation of the variables of
the vector = = a’a; + b°3; into variables ¢*, p’, , and p, according to

z, = S(z+z-K) = %(ai —bv)(au — B;) =q'n; (4.291)

€Xr_ =

N — N —

(@ —a-K) = %(ai—i—bi)(ai—l—,@i) = pip,. (4.292)

It is then straightforward to transform the star product (4.282) and the generators (4.290) into these new
variables. For the star product one obtains

Mij 5 5 5 5
— g - 4.293
e T e [ 2 <6777: apj - op; 371j 7 (4.203)
which is a fermionic version of the Moyal product
inh (9 8 b§ a
- —nY - rl . 42 4
*ar exp [ D) n <8q1 apj 6pl 6qj >‘| ( 9 )

This suggests that the vector & = ¢'n, + p’p; can not only be transformed with a fermionic star exponential
as described above, but can also be transformed in the bosonic coefficients with a bosonic star exponential
according to [3]

iy M K —ai ;MY g ik 1 Im [Agij -k
[y *ar @ Fap €y =q" + [Mjaq } + 57 Qm [M ) [MJ,(I ]

o T3 +., (4.295)

*M ]*M

where [f, g]*M = f %y g — g %y f is the star-commutator. In analogy to the fermionic case one can now
demand that for a GI(n) transformation the ¢* have to be a linear combination of the ¢’ alone and no terms
in p’ should appear. This means that [M%, ¢*] ,,, must be a function of the ¢’ alone. This is achieved if one
chooses the bosonic generators

B9 =g'pl +¢'p',  F9=gq'p—¢'p', and K'=dp, (4.296)

which form a closed algebra under the Moyal star-commutator.
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4.7 Spinors

It is now also possible to describe spinors in the language of geometric algebra [55]. To this purpose one
notices that multivectors of even grade play a special role in the Clifford algebra C¢, , because they form

the subalgebra CE; ¢» Which is isomorphic to a geometric algebra of smaller dimension:

Cly 2 Clyp—1 = Clpg_1. (4.297)

As shown in the discussion of the complex numbers to each d = (p + ¢)-dimensional vector & corresponds
an element of the even subalgebra, which is called a paravector and can be obtained according to

T =T *cu, (4.298)

where u is a unit vector. While x as a grade-one quantity is invariant under the involution * = «, the
paravector is invariant under the hermitian conjugate

I = Uk TroUu=Uke Uke TH e U =T %o u = . (4.299)

The transformation under a passive rotation is given for a vector by
' = R*cx % R, (4.300)
where R = eif/ % is an element of the group Spiny (p,q). The paravector transforms oppsitely to (4.300) as
' = Rxc ke RT = Rxo @ %o Rxcu = % u. (4.301)

Besides the vectors and paravectors that transform as in (4.300) and (4.301) there are also multivectors
1) called spinors that transform according to

Y = Rx . (4.302)

In the vector case the product @ *. & = |z|? is invariant under rotation, in the paravector case the product
T *c T = |z|? and in the spinor case the product

w*cqﬁlza*cﬁ*cR*clb:E*cw- (4.303)

The spinor ¥ can obviously be represented by the even multivectors of C@; o

In two euclidian dimensions the relation of vectors, paravectors and spinors simplify due to the fact that
in two dimensions a vector transforms as

x' = Ry *c  *c Ryjo = Ry *o . (4.304)
A paravector transforms then according to
' = Ry)p %o T %o RL/2 =Ryjo*c ®%c Ryjo o = Ry %c T ke U= Ry %o T, (4.305)

i.e. in two dimensions the paravectors as even multivectors of maximal grade two and spinors as general even
multivectors are the same and they both correspond to complex numbers as discussed above. Furthermore
the hermitian conjugate and the involution are the same in two dimensions, for example if u = o one has
for an even multivector U in two dimensions

Ul =09%c U e 0y = 09 % (U + Uso103) % 09 = Uy + Usoroy = U. (4.306)

In three euclidian dimensions the relation (4.304) is no longer valid, so that here paravectors and spinors
have a different transformation behavior and so cannot be identified. But in three dimensions the maximal
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even grade is two, so that here paravectors and spinors are both multivectors with maximal grade two and
are related according to
x=1)x. )l (4.307)

This becomes obvious if one considers the transformation of the paravector:
' = R¥c 1 *c 7;[}1 *c Rt = R*c#}*cu*ca*cﬁ*cu = *c WT, (4.308)

with z//T = (R*c )" = u#c 1 *c R*cu. The Pauli spinor can therefore be represented in three dimensions
as
b =90+ FB = (v° + ¢¥°Bs) + (¥? + ¢'B3) #c Ba, (4.309)

which is isomorphic to a quaternion. The representation (4.309) shows that Bs = o105 plays the role of the
unitary unit i and the even multivector 1 corresponds in the conventional formalism to the spinor

b= ( _1/’1221“1/’;1 ) (4.310)
From (4.310) and (4.309) one has the following correspondences
¢+=<(1))<—>¢+=1 and @—Z(?)*ﬂﬁ—:mUs (4.311)
and the x-eigenvalue equation can be written as:
Gahs = Fihy © 05 %c Vi %o O3 = Fiy. (4.312)

It is clear that a spinor in geometric algebra is a rotor that is not normalized, i.e. 1 = |¢|R with |+)|?

()2 +(¥1)2+(¥?)2+(®)2. Furthermore in the star product formalism the hermitian product (¢, ¢) i = 116
can be written as

(W, ) = % (@ %o ¢ — B3 *¢ @*c ¢ *c BS) = E *o ¢+ [(@ *o ¢) X BS] *c B3 (4.313)

and 1T6F4 can be written as (1) ¢ 03 % © % T )o.

In order to describe Dirac spinors in geometric algebra one has to go over to the four dimensional space-
time. Geometric algebra in the Minkowski space is called space-time algebra C¢; 3. The space-time basis
vectors are 7q, 1, Yo and 5 and the Clifford star product is

)
Fs.G=F ,— 2| aq, 4.314
te P 77# 67“ 6’71/ ( )
so that
1
Yo Yo =5 (Y *o Yo + V0 e V) = s (4.315)

2

or {'yu,'y,/}*c = 21, A space-time vector is then given by @ = z#~, and a general space-time multivector
has the form

A= A(O) + Aétl)’Yp + A'ELQD)A//L’YD + A€L3V)p7p7y7p + A(4)’70717273' (4316)

Just as in the three dimensional case it is now possible to define with a timelike vector u, i.e. u*c =1, a
paravector = & %, u and a hermitian conjugation AT = w %, A %, u. The choice of u defines a space-time
split and the easiest choice is u = 7, so that the paravector is given by

T=TxcYy =T Yo+ v =" +x =1+, (4.317)
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One should note that x = @y, = z'v,7, is a space-time bivector, but corresponds to a space vector. This is
due to the fact that the two-blades ~,;7v, behave in space-time like the o; in space:

Oixc0j=Izy*xcor = ;% = L) *c VYo for cyclic 1, j, k, (4.318)

1 1
0;:0;=5(0i*c0j+0oj%c0i) = 5 (7i0 *e Yo + Y0 *e ViYo) = g (4.319)
Igy=01%c 0% 03 = Y% *c Y20 *e Y30 = YoY17Y2¥s = L(4), (4.320)

where on the left hand side the three dimensional euclidian Clifford star product and on the right hand side
the four dimensional Clifford star product (4.314) is used.

The Dirac spinor ¥ is now a general element of Cffg, which can be written with two Pauli spinors )y,
1 and using o;=v,7, as

U= Y1+ drxe 370 (4.321)
= (Y] +¥jo2*c O3+ V]os %0 01 +io) %0 03)

F (WY + V102 %60 05 + V7103 %0 01 + V7101 %6 03) % Y37 (4.322)

=P —PryeYs — YT — YiTYe T UhrYaYo + YirYaYo — YTiYo + YirvoriveYs (4.323)

= Uy 4+ Whwoy1vs — (s + Wa ko 7193) %o Y03 (4.324)

The ¥,, are the “complex” components of the four-spinor, where the role of the unitary unit i is played here
by the two-blade 57, so that ¥,, = ¥, ge + ¥, 1m7Y27Y1- The even multivector ¥ corresponds then to the
four spinor

Ui Re + 11 1m
Vs Re +1¥2,1m

U= : 4.325
W3 Re + 103, 1m ( )
\114,Re + i\114,Im
The hermitian product <‘i’, <i>> g = \i/T’yoil can in the formalism of geometric algebra be written as
(U, @)y = Ul s, By + U 5o By — Ul xp & — Wl @3 — Wl 5 @y (4.326)

Furthermore all bilinear covariants can be translated in this language, as examples only the scalar (V. W)
and the vector observable J = W *. v *» ¥ should be mentioned.

4.8 Symplectic Vector Manifolds

A symplectic vector space can be considered as a 2d-dimensional euclidian space with vectors

2=2, =q" Ny + 0" P> (4.327)
where a =1,...,2d and m =1,...,d, and a closed two form
1 . d d
Q= 0u('¢" = mZ_l n"p" = mz_jl dg™dp™, (4.328)

where 4, is a non-degenerate, antisymmetric matrix [91]. The euclidian metric on the vector space defines
a scalar product and a relation between vectors and one forms. The two form 2 gives now an additional
possibility to establish such structures, i.e. one can define the symplectic scalar product as

25, W= ireyQ = (wz) Q=12 (Q w)=2°Quu’ (4.329)
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and furthermore one can map with € a vector in a one form according to 2 = i,Q = z - Q, so that
z -5, w = —z-w’ (the other possibility to define b used for example in [73] is Q- & = —x - Q). The inverse
map of a one form into a vector can be described with the bivector

2d d

1., 1

J= 5‘] bCaCb = 5 Z QabCaCb = Z N Pm>s (4330)
a,b=1 m=1

so that the vector corresponding to a one form w is given by w? = J - w. The map § should be inverse to b,
from which follows that J® = (Q_,")7 = Qb@. Especially for the nabla operator V = d = {* 52 one has

d’ = i n i—p 9 (4.331)
map»fn maqm )

m=1

so that for example the Hamilton equations can be written as

3 =d'H, (4.332)
or explicitly
d
OH OH OH OH
m =17 — )= —p, = . 4.333
("N + D" Pp) = (n Erid apm> mz_:l( pmaqm+nmapm) (4.333)

Furthermore the Poisson bracket can be written as

(F,G}pp=Fd-s,dG=J% gfa gg) (4.334)

The bivector J plays the role of the compatible complex structure to Q [91], because one has
(z:3) s, (W-J) =25, w and Zg (W-J)>0  Vz#0. (4.335)
Furthermore one has J-J = —1, (z-J)-J = —z and the symplectic scalar product can be written as

zg, w=(z-J) w. A metric space with a two form Q and a compatible complex structure is a Kéhler
space.
A symplectic vector manifold is an even-dimensional vector manifold z(x?) with a closed two form
Qz) = 1Q,;6'¢, ie.
&‘ij + anki + 8inj =0. (4.336)

The tangent spaces at the symplectic vector manifold are symplectic vector spaces. A vector field z(x) on a
symplectic vector manifold is symplectic if 2° is closed, i.e. if d(z - Q) = 0. Symplectic vector fields conserve
the symplectic structure, i.e. Z,Q = di,Q2 = 0 and they form an algebra under the Jacobi-Lie bracket, i.e.
for two symplectic vector fields z(z) and w(x) one has d( [z, w];, Q) = 0. If 2” is not only closed but also
exact, the vector field is called hamiltonian. According to the Poincaré lemma every closed form is locally
exact, so that a symplectic vector field is locally hamiltonian. This means for a local (global) hamiltonian
vector field hy exists locally (globally) a function H so that

hy Q= dH, (4.337)

which in the coordinate basis reads
hy =d*H = J9(9;H)E,. (4.338)
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The Lie-bracket of two symplectic vector fields z(x) and w(x) is always a hamiltonian vector field with
hamiltonian (zw) - ©, i.e. h(zy).0 = [2, W], 5 or

[z,w]; 5 Q=d((zw) - Q). (4.339)
This follows easily using .Z,Q = %, = 0 and df2 = 0:

Zw] ;5 Q = ZLoiwd—iwZQ (4.340)
= (diz+izd)ipQ (4.341)
= d((zw) - Q) + iz(diw + iwd) (4.342)
d((zw) - Q) + i LW (4.343)
= d((zw)- Q). (4.344)

With a hamiltonian vector field the Poisson bracket can then be written as

or, using (4.337) in this equation, as

{F,G}pB = ihpheQ = (hghr) - Q. (4.346)

It is easy to see that the hamiltonian vector fields form a Lie subalgebra of the symplectic vector fields with

[hF7 hG]JLB = *h{F,G}PB- (4.347)

Given a symplectic vector field z that preserves the Hamilton function H, i.e. Z,Q2 = Q and £, H = 0,
then this symplectic vector field z can be written locally as a hamiltonian vector field hr with

ZnpH=hp-dH = {F,H}pp =0, (4.348)

which shows that F' is a conserved quantity. This is Noethers theorem for the symplectic case.

The metric g;;(x) on the vector manifold is induced by the ambient space and so exists naturally on the
vector manifold. It was used in the above discussion just to contract vector fields and forms with the scalar
product. The metric can also be used to define a compatible almost complex structure. This is a bivector
field J(x), that maps via the scalar product a tangent vector into another tangent vector. If the structures
gij(x), J(x) and Q(x) are compatible the metric scalar product of two tangent vectors z and w in a point
x can be written as

z-w=z-, (w-J) (4.349)

and the symplectic product can be written as
zZg,w=(z-J) w. (4.350)

A vector manifold with these three compatible structures is a Kahler vector manifold.

Symplectic manifolds of special physical interest are cotangent bundles, for which the symplectic two-
form is globally exact. The cotangent bundle of a d-dimensional euclidian vector space is a 2d-dimensional
euclidian vector space with elements g + 7w = ¢"n,,, + pmp™. On this vector space one can define with a
vector a + w = a™n,,, + w,P™ a canonical one form O(q + 7) by

(a+w) 0(g+m)=a"ppy, (4.351)

so that 8 = p,,n™ = p.,,dq™, where the nabla operator is given by V = d = nm% + pmap%. The
symplectic two form on the cotangent bundle can then be obtained as

Q=-d0=n"p,, =dq"dpn,. (4.352)
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The above definitions generalize readily to the case of a cotangent bundle of a d-dimensional vector manifold.
In a (2d + 2)-dimensional ambient vector space with basis vectors o, and 7% the cotangent bundle can be
described as the 2d-dimensional vector manifold (g+7)(¢%,p;) = ¢*(¢")oa+p;EL(¢")T%, with tangent vectors
a+w=a'¢lc, +w T at this bundle vector manifold. With a projection operator T'r, defined as

Trg(a+w) =Trg(a) = a’¢Ta, (4.353)
which is the tangent function of the projection m4(g + 7) = g, one can write (4.351) as
(a+w) O(g+m)=Trg(a+w)-m, (4.354)

so that @ = p;&" = pydq’.
The special feature of a cotangent bundle manifold, namely that the symplectic two form €2 is globally
exact, i.e. 2 = —d#, allows to define globally the Liouville vector field I by

1-Q=-6, (4.355)

which in local coordinates is given by I = p;& 7%, while the directional derivative is I - d = pia%i. The
Liouville vector field fulfills
£60=20 and 240 =Q. (4.356)

This follows easily with the Cartan formula:
240 =id0+di0=—-i2=20 (4.357)

and applying d on both sides one obtains d(.Z0) = d6, which is equivalent to £ = Q. The Liouville
vector field can then be used to measure the order of a scalar function on the cotangent bundle that is
polynomial in the fibres. Such a scalar function of order k has the form

, 1 ..
Hd'pi) = 5 1 (@i - i (4.358)

so that acting with the directional derivative in direction of the Liouville vector field on f(¢*,p;) gives
l-df = Z4f = kf. Scalar valued functions that are polynomial in the fibres can be obtained with an
isomorphism P from tensors T =T (¢")€; @...® &, on the base space according to

1 . o
P(T) = HTZI""’Zk(qZ)Pil <Dy - (4.359)

A tangent vector field @ = a?(¢*)€; on the configuration space g(¢') is then mapped into a scalar function
on the cotangent bundle that is linear in the fibres:

Pla) = P(a’ (¢")€;) = a’ (¢")p;. (4.360)

The scalar function P(a) is the so-called momentum of a and P is the universal momentum map of the
cotangent bundle 7*@Q. Furthermore one has

c 0 0

P(la,bl,,5) = P <(a 8qib7 —b aqia )§]> (4.361)
7 a 1 a aj X

= (a 8qib] b a0 >p] (4.362)

= —{d’p;,b'pi}rn (4.363)

= —{P(a),P()}prs. (4.364)
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In the discussion so far the symplectic structure was defined via a two form. The metric on the vector
manifold that is induced from the ambient space was then used to contract vectors and forms. But this
contraction is actually independent of the metric. So a metric structure is actually not necessary to define
a symplectic structure. In the case of a cotangent bundle it suffices to use the natural duality on this space.
This duality can also be described with a star product, for example on the cotangent bundle of a vector
space one can define

Fsxp,G=Fexp|——
on, 9p”

0 0 ] G, (4.365)

so that (4.351) reads iq1w0(q + ) = iqm™ = (@ *p 7)o = @ -p ™ and further i(gyw)p+y 2 =@ o X —b-pw,
which can easily be generalized to manifolds [90]. The other possibility is to define a symplectic star product,
by using €);; instead of the metric 7;; in the fermionic star product. On a 2d-dimensional vector space the
symplectic star product in Darboux coordinates is given by

d P — — -
b 3 § 8
G=Fep lz <8nm 0py 0P, 8%)

m=1

b i

Qop —
¢, 9¢,

F x5, G=F exp (4.366)

On a 2d-dimensional vector manifold the tangent space can also be spanned by Darboux basis vectors
N = M€ and p,, = pi €. so that one has analogously

d — — — -
b 8 5 3
G=Fow [Z <8nm 0Py 0P 5%)

m=1

b d
! 0€; ¢,

Fss,G=F exp G. (4.367)

The indices are now lowered and raised with {2;;, i.e. for a tangent vector a = a'€; one has a; = Q;;a’ and
& =Qv §;, where Qiijk = 0F. The relations b and f between vectors and one forms can then be written as

@ = Q¢ = (Qha)¢, (4.368)
w“ = wiQijEj = (jS Twi)Ej = inwigj. (4369)

Furthermore it follows for the scalar products that
éi ‘Sy 5_7 = Qt]? Sl ‘Sy 5] = _SJ ‘Sy 51 = 6; and Si ‘Sy €J = _Q” = J” (4370)

If one establishes the symplectic structure with the symplectic star product and not with a metric star
product and a two form, the contraction of vectors and one forms has to be defined with the symplectic
scalar product §; -5, &= —4§7. This leads to a different sign structure compared with the case of a metric
star product, for example instead of (4.337) one has for a hamiltonian vector field on a vector space with a

symplectic star product
hy s, Q=—-dH (4.371)

and since a -5, & = —a - 8 there is no minus sign on the right side of (4.347). So these two sign conventions
correspond to the usage of an metric or a symplectic star product on the vector space.

4.9 Poisson Vector Manifolds

A vector manifold M with a bivector J(z) = $J¢,£; and
JU o, TR - Jikg, g1 4 g9, g% =0 (4.372)
is a Poisson vector manifold, where (4.372) can also be expressed with (4.90) as

13,3 gnp = 0. (4.373)
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The bivector J defines as discussed above a map from T4 M to T M by o = J-a = J9 a;€;, where a = a;€'
is an element of T3 M. Especially the hamiltonian vector field (4.338) can be written as

hyg =iggJ=J -dH. (4374)
The Poisson bracket is then given by
{F,G}pp = igracJ = (dGdF) - J, (4.375)

where (4.372) insures the Jacobi-identity of the Poisson bracket. With the Poisson bracket the hamiltonian
vector field hy can be defined for all scalar functions F' as

hy - dF = {F,H}pp. (4.376)
Equating (4.346) and (4.375) shows how Q and J determine each other:
(hchr) - Q = (dGdF) - 3. (4.377)

Since a Poisson manifold can be odd-dimensional the hamiltonian vector fields in general do not span the
tangent space of the Poisson manifold. This suggests to define the range ran(J(x)) of J(x) as the span of all
tangent vectors that can be expressed as a = J -« for a one form a € T5M. The range of J(x) is also the
span of all hamiltonian vector fields at . The dimension of ran(J(x)) is the rank of the Poisson manifold
in  and equal to the rank of the matrix .J*/, which is an even number because of the anti-symmetry of .J%.
The even-dimensional vector space ran(J(x)) is then the tangent space of a symplectic leaf in the point x.
The symplectic leaf is a submanifold of the Poisson manifold, which follows from the Frobenius theorem,
that states that a system of vector fields on a manifold is integrable iff it is in involution and rank-invariant.
Equation (4.347) shows that the hamiltonian vector fields are in involution and they are rank-invariant
because they conserve the Poisson bivector and so especially also the rank, i.e. for all functions H one has

S =0. (4.378)

The Poisson manifold is then foliated by symplectic leafs. Only when the rank of a Poisson manifold M is
everywhere equal to dim(M) the Poisson manifold itself is a symplectic manifold.

The formalism developed so far can now directly be generalized to multivectors, which leads to Poisson
calculus (see [107] and the references therein). The r-vector that corresponds to an r-form is given by

(AM)F = %J’“l“ L P S (4.379)
and in analogy to (4.141) one has i 4 B(s) = Al . Bysy, so that

ar o (A = (—1)ad .. .al- AM), (4.380)
It is then also possible to define a Poisson bracket for one forms by

{a,B8}pp = Zo:B — Lgra+ d((Ba) - J), (4.381)

so that {a, ,B}EDB = [ah, ,8“} ;g With this Poisson bracket one can further define an exterior differential d
in analogy to (4.143) as

r+1
(alag N Oé»,qu) . dA(r) = Z(—l)"“(ai . 8) (a1 .. .dn . ar+1) . A(T)

n=1

+ 3 (i ({am, P - - am) CAgy, (4.382)

m<n
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which can also be written as &A(T) =[5, A0 ] gnp-
The easiest nonconstant Poisson tensor fulfilling (4.372) is a linear tensor

Ji(x) = Oz, (4.383)

where the antisymmetry of J* and (4.372) ensure that the C,ij are structure constants of a Lie algebra. The
corresponding Poisson bracket is the so called Lie-Poisson bracket

{F,G}Lpp = CY2*0;F0,G. (4.384)

The fundamental example is the Lie-Poisson structure on g*. To this purpose one considers the bivector
space spanned by the basis bivectors B; with bivector algebra (4.244) and its reciprocal basis with two forms
©', i.e. B; - ©/ = §]. For scalar-valued functions F' and G of general two forms © = ;0" a Lie-Poisson

bracket is given by
OF 0G
F,G 0)=Clbprg o
(F.Glrp(0) = Choigg o0
where d is the exterior differential in the bivector basis: d = Bia%i' In the SO(3)-case, where ©° = B; the
Lie-Poisson bracket can be written as

—[@F xd0) - ©, (4.385)

{F, G}LPB(B) =B- ((I(3) *o d)F X (I(3) *o d)G) =B- (dF X dG) . (4386)

The symplectic leaves induced by the symplectic foliation with the Lie-Poisson bracket on g* are the
orbits of the coadjoint action of the corresponding group G on g*. This can be seen if one considers a scalar
linear function H(©) = B-© = b%0; on g* with dH = B. For the Lie-Poisson bracket one has then for any
scalar function F' on g*:

{F,H} pp(©) = (dF xdH)-© = —(Bx dF) -0 = —(adgdF) - © = —dF - ad; 0. (4.387)

On the other hand one can define in analogy to (4.376) the hamiltonian bivector field hy of the Hamilton
function H(O) as

hH(@) -dF = {F, H}LPB(@) = (dF X dH) -0 = —ad;G) . dF‘7 (4388)

so that hy(0) = —adg® = —adjy©. This means that the hamiltonian bivector fields hy that span the
tangent space of the symplectic leaf are, up to a sign, the generators of the coadjoint action determined by
B. If © varies now over the coadjoint orbit one can define a skew-symmetric bilinear form on the orbit by

Qo(ad;0,ad;0) =A% B- O, (4.389)

which defines on the coadjoint orbit a symplectic structure, that is the restriction of the Lie-Poisson bracket
to the orbit [90]. Q2o can be seen as a generalized antisymmetric tensor of the form (4.193) that maps two
bivectors into a scalar.

The next step is to investigate the hamiltonian action of a rotor group on a Poisson vector manifold.
The scalar functions P, ..., P, on the Poisson manifold M generate a hamiltonian action of a Lie group G
on M if their Poisson brackets satisfy

{P;, Pj}pp = —C}; P, (4.390)

where the C’fj are the structure constants of the Lie algebra g of G. The corresponding hamiltonian vector
field hp, satisty then with (4.347)

[hp, hp,] 5 =Clhp, (4.391)
and therefore generate a local action of G on M. The quotient manifold M /G inherits a Poisson structure
from M. Functions F,H on M/G correspond to G-invariant functions F, H on M, i.e. functions with
hp, -dF = {F,P,}pp = 0 for i = 1,...,r. The Poisson bracket {F,H}%éc on M/G corresponds then
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to the G-invariant function {F, H}pp on M. The so defined Poisson bracket on M /G fulfills clearly the
defining relations for a Poisson bracket, so that it remains to show that the Poisson bracket {F,H}pp
of two G-invariant functions on M is again a G-invariant function. But this is just a consequence of the
Jacobi-identity:

{{F,H}pp, Pi}pp = {{F,Pi}pp, Hypp +{F,{H, Pi}pp}pp = 0. (4.392)
If there is a hamiltonian system on M where each of the P; is a first integral, i.e. {P,,H}pp = 0 for
1 =1,...,r, one says that G is a hamiltonian symmetry group. The Hamiltonian H is then a G-invariant

function and there exists a reduced hamiltonian system on M/G with Hamiltonian H whose solutions are
the projections of the solutions of the system on M.

If the hamiltonian action is given by a rotor group the aim is to find the Hamilton function Py of the
vector field B - @, that is induced according to (4.260) by the rotor left-action with bivector B, i.e.

hp, =B-x. (4.393)
Since hp, - dH = {H, Ps} pp, it is possible to write the defining relation for B as
{H,P}pp=(B-x)- -dH, (4.394)

for all scalar functions H. B is defined by (4.393) only up to a function G with hg = 0, so that hp, 1 ¢ = hp,.
Furthermore one has for two bivectors A and B with (4.347) and (4.261)

h{PA7PB}PB =hp,,,- (4.395)

While in the symplectic case a symplectic vector field is always locally hamiltonian, in the Poisson case
an infinitesimal Poisson automorphism is in general not locally hamiltonian. This means that if the rotor
left-action is canonical, i.e. Z.,J = 0, there does not exist in general a function P, so that (4.393) is
fulfilled. The additional condition that B - x is also hamiltonian can be expressed with the momentum map.
A momentum map is here a two form II(x) with

isI1=B -1 = B, (4.396)

So if the hamiltonian vector field hp, corresponding to the function Bz = B-II is the same as the vector field
B- induced by the rotor left-action, i.e. if one has hg.; = (J-d)-(B-II) = B-x, then II is a momentum map.
If a momentum map of a rotor action exists and H is a Hamilton function that is invariant under the rotor
action, then equation (4.394) reduces to {H, Pz} pp = 0 and the momentum map is a constant of the motion
described by H. This follows because {H, Pz} pp = 0 means that Py is constant along the hamiltonian flow
of H, which must then also be true for the left hand side of (4.396), i.e. for II, because B is constant. This
is the Noether theorem in the Poisson case.

If on the other hand a hamiltonian action of a rotor group with r bivector generators on a Poisson
vector manifold is given, there are scalar functions FPs,,..., Ps, on the Poisson manifold that generate the
hamiltonian action. The momentum map is then

(x) = P, (x)0". (4.397)

A momentum map II(x) that is determined by a hamiltonian group action is equivariant, i.e. it respects the
rotor left-action on the vector manifold:

(R *c @ *¢ R) = R*c H(x) *¢ R, (4.398)

which can also be written more precisely as

AdgB - TI(R *c T #c R) = Pagps(R*c T %c R) = Py(x) =B - Il(x) (4.399)
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To see that the momentum map (4.397) is equivariant, it suffices to show the infinitesimal version of (4.398)

(R, -d)P3,©' = B;xII (4.400)
{Ps,, B, } pBO’ P3;B; x © (4.401)
—CiB, 0 = DB, Cl0N (4.402)
Infinitesimal equivariance [90] implies that
Pyxg =A{Ps, Ps}pB. (4.403)

In this case momentum maps are Poisson maps, i.e. for scalar-valued functions F' and G on g* one has
{F,G}rpp(Il(x)) = {F(Il(z)), G(I(z))} p5- (4.404)
To prove this one shows that the left hand side of (4.404) can be written as
{F,G}rpp((x)) = dF x dG - 1(z) = Pirxag = {Par, Pac} PB, (4.405)

where one uses in the last step infinitesimal equivariance. The right hand side of (4.404) gives the same
result:

{F(I(x)), GAl(z))}pp = JY 0, F (I1(x))0,G(Il(z)) = JY0; Par0; Pac = {Par, Pac} PB, (4.406)

using

A special case for a momentum map is the momentum map of the cotangent lift of a rotor action on a
vector manifold ¢ = ¢%(¢")o,. In order to find this momentum map one first states that it is possible to find
for a tangent vector field a(q) = a'¢%a, a function P,(q%, p;) = Pa(q + m) on the cotangent bundle, which
is given with the projection operator (4.353) as:

Pa(q',pi) = Trgla) - (q+m) = 70 - ("o + pr& ") = d? (¢')p;- (4.408)
The other possibility to obtain P, (¢, p;) is to use the universal momentum map (4.359):
P(a) = o’ (¢")p; = Pald’,pi)- (4.409)

These functions form an algebra on the cotangent bundle, i.e.

{Pa,Pp}pB =

BPa 8Pb 8Pb (9Pa 6ai : 61)1 :

2 76 Ut — (L~ i)y, =Py, . 4.410
9q* Opi  0q* Op; dq’ ag " )" v (4410)
The rotor action of a rotor R(t) = eéﬁ on the vector manifold q induces a flow g(t) = R(t) *¢ q *c R(t) and
a tangential vector field b = B - q. The inverse cotangent lift of this rotor action is

(g + 7)(t) = Riitted(—1t) *c (@ + 7) *¢ Riifted (—t) = Riitted (t) *o (@ + 7) *¢ Riigrea(t), (4.411)

which induces on the cotangent bundle a tangent vector field bjifteqa = Biitted * (@ + ), Where Bygeq can
be written as Biigea = B + T'mg(B). The vector field biifreq is then the hamiltonian vector field of Py, i.e.
biitieca = h Py - This can be proved very easily if one considers that the cotangent lift of a rotor action leaves
the canonical one-form invariant, i.e.

Doisea® = 0. (4.412)
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Cartan’s magic formula (4.145) gives then
biteed - 2 = —ip,,,.,d0 = dip,,.,0 = d(biied - 0). (4.413)
On the other hand one has with (4.351) and (4.353)
biitied - 0(q + ) = Tg(biitiea) - ™ = T'mg(b) - ™ = Py(q + 7). (4.414)

Putting this into (4.413) gives
biifte - 2 = d Py, (4.415)

which shows that byeq is the hamiltonian vector field of Py, so that for a scalar function F(q+m) = F(q%, p;)

0
bitrea - dF (g +m) = a1 F(Riifted *c (g + ) *c Riifted) (4.416)
t=0
oF ;  OF
= 9B O+ 5 (Tma(B) - m)i = {F. Bo}ps (4.417)
with %% =V = (B- q)i and
0Py 0 0 0 -
¢ aiqiTﬁq(B q) = aTIiTWq <6t . Riitted *o q *c Rlifted) - (4.418)
dq 0 -
= Tmq ) | Riifted *c T *¢ Riifrea = —(T'mg(B) - 7);. (4.419)
dqt) Ot|,_,

The momentum map of the cotangent lift of a rotor action on the vector manifold q is then given for
b=B-qby
B-I(q+m) =Trq(B-q)  (g+m)=P(B-q) =Po(q+m). (4.420)

Moreover this momentum map is also equivariant:

B I(Riifted *c (@ + ) *c Rigtea) = T7g(B: (R*c q*c R)) - (Riifted *c (g + ) *c Riftea) (4.421)
= Trng(AdzB-q) - (q+ ) (4.422)
= AdzB-II(g+ ) (4.423)
B AdTI(q + ), (4.424)
using in the second step that
_ _ _ 1 _ _
R+c (B (R*c q*c R))xc R = R*c§(B*CR*cq*cR—R*cq*cR*cB)*CR (4.425)
= (R#cB*cR)-q=AdzB-q. (4.426)

A simple example is the action of the rotation group on a three dimensional euclidian vector space with
vectors q = ¢'n, for i = 1,2,3. The tangent bundle is then a six dimensional euclidian vector space with
vectors q + ™ = qini + pipi and a canonical symplectic structure Q2 = nipi. A rotation on the g-space is
generated by the bivectors

1
B; = 5 5ik Mk (4.427)

For example a rotation around the 1;-axis is generated by Bs = 1,1, and the corresponding vector field is
bs = B3 - q = ¢*n; — ¢'ny. The lifted rotation is a rotation that acts in the p,-space just the same way as
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in the n;-space, the lifted generator is then B**d = n,n, + p'p? and the corresponding lifted vector field is
given by

by =Byl (g + ) = ¢y — g'my + pap’ — pr1p”. (4.428)
The Hamilton function Py, that generates this vector field fulfills i . Q = dP;, or
O0Ps, 0P, OPs, 0P,
2,1 1,2 2 1 1.2 1 B3 291 B3 B3 B3
_ - = + + , 4.429
U R A B e B o b el ( )
which is solved by the angular momentum function. The angular momentum functions Py, = Equj Dk are

the generators of the active rotations, that rotate the ¢’ as well as the p; coefficients. They form the
algebra {Ps,, Py, tpB = €41 D, , so that there is a hamiltonian action of the rotations on the six dimensional
symplectic space. The momentum map II(q",p;) = P, (q",p;)©’ is just the angular momentum bivector
L = gp and connects the generators of the active and passive rotations.

Another simple example is the circle action of S! on S? [91]. The two-dimensional sphere (6, ) =
sin @ cos po1 4 sin fsin po 5 + cos fo 3 is a symplectic vector manifold with the symplectic two form

Q=2'o?c?® + 2?0’ + .1'30'10'2’32 = sin¢%¢%, (4.430)
which is the volume form on the S2. A left rotation around the o3-axis is generated by B = —o,05 and

induces on S? the vector field

B x =sinfcospos —sinfsinpo; = 0, = § (4.431)

o
The Hamilton function P that generates this vector field fulfills according to (4.337) the equation £, - Q =
dP)B7 or

—sin 0g% = €90, Py + €70y Py, (4.432)

which is solved by P; = cosf = z3.

As a third example one can consider a four dimensional symplectic vector space with vectors @ =
atay +a’or+bt B, +b*B, and symplectic two form Q = alB'+a2B2. The Lie group that acts symplectically
on the four dimensional vector space is the SU(2) with bivector generators B; given in (4.281). The action
of this group has an equivariant momentum map defined by

Py =B Ti(z) = %(m(B @) Q. (4.433)
That this is an momentum map follows with (z(B-y)) - Q= (y(B-x)) - Q from
y-dB(x) = %(y(B x)) Q4+ %(m(B ) Q= (yB- ) Q (4.434)

so that dPs = hp, - Q. The momentum map I(z) = Pp, (x)©" can be calculated with

B Tl(x) = B'Ps, = %(m(B -x)) - Q. (4.435)
One obtains
P, (x) = a’b' —a'b?, (4.436)
P, (x) = a'a®+ b2, (4.437)
By(x) = (a')®—(a?)?+(0")? — (b*)*. (4.438)

Restricting  now on an S3, i.e. (a')? + (a?)? + (b')? + (b*)? = 1, one has |II(x)|gs| = 1/2. This means
that the momentum map maps an S® in the z-space onto a two dimensional sphere with radius 1/2 in the
B;-space. II(x)|ss is the Hopf fibration.
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Applying now the concepts discussed so far to the cotangent space of a group manifold T*G, which is a
vector manifold with vectors r 4+ ¢, one arrives at the Lie-Poisson reduction [90]. As seen above the rotors
act on the group vector manifold with a left translation £z which induces the tangential maps T4 and T*/g.
A scalar function F(r +9) = F(R, R) on T*G is left invariant if FoT*{r = F. Such left invariant functions
can be identified with reduced functions on g, i.e. F(r+9) = F(R, R) = F(1,R%c R) = f(0), where R*, R
is an element of the bivector algebra that can also be expressed in the dual basis. This reduction can now
be described with the momentum map II : TG — g*, i.e. F(r+9) = f(II(r +9)). One has then a Poisson
map between the Poisson bracket of left invariant functions on T*G and the Lie-Poisson bracket of reduced
functions on g*. In this way a left invariant Hamilton function on 7*G induces a Lie-Poisson dynamic on
g*. This will be explained for the example of the rigid body in the next section.
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Chapter 5

Physical Applications for
Superanalytic (Geometric Algebra

One can now apply the formalism described in the last chapter to physics. It is clear that all the applications
in the literature of geometric algebra can immediately be translated into the superanalytic formalism. In
addition here the Lie-Poisson and the Euler-Poincaré reduction may be discussed for the rigid rotor. More-
over while the fermionic Clifford star product gives in classical mechanics the geometric structure, it appears
then natural to combine the Clifford star product with the bosonic Moyal product in order to obtain a non-
commutative version of geometric algebra that describes the quantum case. The consequences of deforming
geometric algebra on space, space-time and phase space will be described in the following.

5.1 The Rigid Body

The rigid body is an example where the formalism described above can be shown to work very effectively.
If one considers a free rigid body B in a three-dimensional ambient space spanned by the basis vectors o,
and a body-fixed coordinate system &,(t), a point of the body in the ambient space is given by

x(t) = R(t) *c Tp *c E(t), (5.1)

where xp is the vector in the body-fixed system. The velocity is then given by

T = R*C:vlg*cﬁ—i—R*c:cB*cﬁ (5.2)
= R (R%c R¥c®p—Tp*c R+c R)%c R (5.3)
= R¥oR4ox—T%c R*c R (5.4)
= 2(R#cR) - =, (5.5)
where one uses R*o R=1= R %o R+ R+*o R =0. And for the body-fixed velocity one obtains
g = Rx. @ *c R=2(R*cR) - xp. (5.6)
On the other hand one has & = w X @, where w is the axial vector of angular velocity. Using that the vector
cross product can be written as @ x b = —(I(3) *¢ a) - b this leads to
& =—(I3 *cw) x=-W-x, (5.7)
where S
W=-2R *CR:I(g) *o W (58)

110



is the angular velocity bivector that generates the rotation. Equation (5.8) can be rewritten to obtain the

rotor equation

1
R=—ZWxc R, (5.9)

_t
which integrates for constant angular velocity to R = e.2 Y With the angular velocity bivector (5.8) one

can also write (5.7) as B -
& = (R*cxp*c R) W= Rx*. (xp-Wg)*c R, (5.10)
where Wg = R %o Wko R = —2R #, R, so that the rotor equation becomes R= f%R *o Wg.

The angular momentum bivector is given by

L = /dga: plx)zd = /d?’xg p(xp) (R *c x5 *c R)(R *c (x5 - Wg) *c R) (5.11)

= Rxo (/ i p(xp) Ts(Ts ~w3)> ¥c R= R*cI(Wg) *c R, (5.12)
where the bivector-valued function of a bivector
I(B) / Pap pls) os(@s -B), (5.13)

corresponds to the inertial tensor. The equation of motion of the free rigid body can be obtained from

0=L = R=x. I(Wg) *c R+ R*c I(Wg) *c ﬁ—l— Rxc I(Wg) #c R (5.14)
= R (I(Wg) —Wp x I(Wg)) *c R (5.15)

as I(Wg) —Wp x I(Wg) = 0, which are for Wz = I(3)*cwp = Z?=1 wijl3)*c&; and I(B) = Z?=1 I;BjI(3)*c €&
the Euler equations

Lwpy —wpewps(lo — I3) = 0, (5.16)
Iywpy —wpswpi(ls — 1) = 0, (5.17)
Izwps —wpiwpe(lh — 1) = 0, (5.18)

where the I; are the principal moments of inertia. Alternatively one can also calculate

0=L = R#.Lg*cR+LxXW (5.19)
= Rx*. (LB + L X ng) *o R (520)
= R (I(Wg) —Wp x I(Wg)) *c R, (5.21)

where (5.19) should be compared with the corresponding vector equation L = R+. Lg%, R+ w x L, where
L= I(3) *o L.

The aim is now to derive the equations of motion in the Lagrange or Hamilton formalism. The kinetic
energy of the free rigid body can be written with (5.6) as

1 _ .
T = o / Pap pas) 2B o B) - 52 (5.22)

1

- §/d3%ﬂ(mzs) W5 - 5] (5.23)
1

= EWB'I(WB) (5.24)
1_

= =W-L. 2
= (5.25)
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Equation (5.22) is the left invariant Lagrangian L(R, R) and (5.24) the reduced Lagrangian [(Wg) of the free
rigid body. This means that the dynamics is transferred by (5.1) from the vectors (t) to the rotors or the
generating bivectors, i.e. one considers the dynamics on the rotor group or the bivector algebra respectively.

The question is now how to vary the corresponding Lagrangians. In analogy to the matrix representation
[90] one has

OWg = 0(—2R*c R) = 2R%c0R*c R*c R—2Rx*.0R (5.26)
= —R¥c0R*cWp—2R %o 0R (5.27)

and defining the bivector B = 2R . 6 R so that

. 1 _ .

B = Wg *¢ §B + 2R %, 0R, (5.28)
one obtains
oW = —B+Wg x B. (5.29)
The variation
1 _

0= 5Z(WB) = §/dt §WB . I(WB) = /dt/deB p(iBB) OWg - [iBB(:BB -WB)] (5.30)
= /dt I(Wg)- (—B+Ws x B) (5.31)
= /dt [I(Wg) + I(Wg) x Wg] - B, (5.32)

leads then again to the Euler equations, where one uses in (5.30)
Ws - [@p(zs - 0Wp)] = 0 - [xs(zs - Wp)] (5.33)

and in (5.31) equation (5.29).
The procedure described above is the Euler-Poincaré reduction in the rotor-case. Given is a left invariant
rotor Lagrangian L(R, R) and its reduction to the bivector algebra I(Ws). The variation of L(R, R) corre-

sponds to the variation of {(Wg) for variations dWg = —B + Wg x B, where B is a bivector that vanishes at the
endpoints. The Euler-Lagrange equation for the rotor corresponds to the bivector equation
d ol ol

—— =W X —. 5.34

dtovg P Sug (5.34)

The Euler-Poincaré reconstruction of the rotor from the bivector Wi can then be done with the rotor equation

and in a last step the dynamics (¢) is reobtained by (5.1). The Clifford calculus can also be used to treat
the case of a spinning top very elegantly without Euler angles, this is described in [102].

In the Hamilton formalism the analogous construction is called Lie-Poisson reduction and can also be
done in the rotor case. The Hamiltonian (5.24) of the free rigid body can be written as

L2 L2 L%,

1
H=-(=2BL,4 =B 7B 5.35
2<Il+12+13 (5-35)

With the Lie-Poisson bracket (4.386)
{F,G}Lpre(Lg) =Lg - ((I;3) *c VF) x (I;3) *c VG)) =L - (dF x dG) (5.36)

the Euler equations are obtained by Lgi = {Lgi, H}rpp. They preserve the coadjoint orbit, i.e. the Casimir
function |Lg|? is a constant of motion: {(L%, + L%, + L%3), H}ps = 0. The conserved quantity that results
from the left-invariance is the angular momentum, which follows from the calculation in (5.14) and (5.15).
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The procedure described above is the bivector version of the Poincaré equation [72]. In order to derive
the Poincaré equation one considers a vector manifold x(g") with coordinate basis vectors &, = 0, and
non-coordinate basis vectors ¥, = 9.€,. For a scalar-valued function f(q*(t)) on a trajectory q(t) = x(¢"(t))
one has

d of dqt ;

—f= 21—, 5.37
or % = ¢'0;. In the non-coordinate basis the coefficients are s" = ¥7¢*, so that % = s§"0,. The variation of
the trajectory q(t) = q(t,u = 0) is given by

= L Gt = w (5.38)
q = du u:oq y ) = w-, .

where the coefficients in the non-coordinate basis are w” = ¥7w'. So there is a vector s = ¢ that describes
the variation along the trajectory and a vector w that describes the orthogonal variation of the trajectory.
It is now important that these variations commute, i.e. the operators

d d

%:s-azsar and %:'ww?:w@r (5.39)
must commute:

s"0-(w®0s) = w®0s(s"0) (5.40)

d d
s"w® (0,05 — 0s0r) = <duSt — dtwt> Oy (5.41)

d d
sTwiCl. 0y = <du$t - dtwt> Oy (5.42)

d t _ d t t .r, .S

s = v + Cp s"w?, (5.43)

where one uses (4.159) in (5.42). For the vectors s and w one has then

d d
8= W [s,w]; 5- (5.44)

This equation can now be used for varying the Lagrange function L(q*(t,u), s"(t,u)):

0=465 = /b dt 6L (5.45)
= [ e g (oot (0
= /ab dt [(&L + gfs s'Cy — Zgj) w” + % <(§SI; w’”)} L (5.47)
from which the Poincaré equation follows
% gf - gf s'Ci = O L. (5.48)

If the configuration space is a rotor group the Lagrange function is L = L(R, R) and one has to vary
R(t,u). Instead of vectors s and w the variations are described by bivectors

s=2R%-R and w=2R=x.0R, (5.49)
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so that the operators (5.39) are now expressed as &+ =§-d and L =%-d. It follows further that

d _ _ . _ . 1 _ .
i = —2R+c0R%cRrc R+ 2R+ 0R = —swros+ 2R+ R, (5.50)
d _ . _ _ . 1 _ .
dlt’ = —2R+c R#c R#c0R+2R+c0R = — s vcw+ 2R+ 6 (5.51)

Equating the expressions for 2R . 6R gives the bivector analog of (5.44):

d
—s=—w+sXu. (5.52)

0=465 = dt 6L (5.53)
llb d
= /a dt {w'dLJr(s <dtw+s><w>}u_0 (5.54)
b
_ d oL L d (_ 0L
so that the bivector version of the Poincaré equation follows
d oL OL

In the Hamilton formalism the hamiltonian is given by H(q%,p;) = p;¢’ (¢, pi) — L(¢%,s" (¢, 4 (¢",p")))

and the canonical momentum is p; = aL =7 g &LT The Poincaré equation follows then as
d OL oL -
e e = {9ip;, H .
dt Os” {85T’ }PB {Wipi, HYps (5:57)
L (g, O 0L s oif
O pi\d 8pj dst ¢! p,
, 0¢7 OL OLOs* OL 9st 0¢’
) (pjo — o e — =T 5.58
r (pﬂ d¢ g 0stdg  Ost 9§ g (5.58)
v OL L OL 095 0L
= L9ty — W= —L + 9 — .
8q] 1 5'8 t + 'r’a tq 8q1 'r‘aql (5 59)
09" o s OL oL
= o Ty S99 ) 85— + 0! 5.60
7 (6(]] s 8 j ) a t + Ta i ( )
cOL
= Cls ‘at—k@L (5.61)

The Hamilton equations ' = {2, H}pp in the bivector case, i.e. for a Hamilton function H(z) with a
bivector z = 2'B; are obtained by using the Lie-Poisson bracket instead of the Poisson bracket. In the
50(3)-case the Hamilton equations read then

z=zxdH = —ad}yz. (5.62)
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5.2 Geometric Algebra and the Kepler Problem

As the second example consider the solution of the Kepler problem by spinors [76, 7]. One uses here the fact
that the radial position vector » = ry01 + 1903 + r3o3 can be written as a rotated and dilated basis vector:

r=Usxs 01 % U. (5.63)

The components r; of r can then be expressed in terms of the components u; of U = u; +usos03+usosor+
UW0102:

™ Uy U2 —U3 —Ug Uy
T2 —Uq4 U U2 —Up U2
_ 3 , (5.64)
T3 Uz Ugq Uy U2 us
0 —U2 U1 —Ug us Uy

which is the well known Kustaanheimo-Stiefel transformation [86]. Comparing (5.63) and (5.64) leads to the
notational correspondence -
r=Ux,01% U — 7= L, (5.65)

where 7 and u are four dimensional space vectors considered as tupels of numbers as in the conventional
formalism. One should note here that the KS-transformation increases the degrees of freedom by one, which
means that the bivector U in (5.63) is not unique [76]. This gauge freedom can be reduced by imposing an
additional constraint on U as will be shown below. Squaring (5.65) leads to the relations

Usx.U=UP=r o LaLL =a?=r, (5.66)
with r = |r| = |F| = r? 4+ r2 + r3. Differentiating (5.65) with respect to ¢ one obtains the KS-transformation
for the velocities as - N ) _

r=Uxc01%cU+Usxc01 % U — 7 =2Lz. (5.67)

One can then choose for the constraint
Usoor%e U =U *g 01 *c U s 74 =0, (5.68)

which means that the surplus fourth component r4 stays zero for all times. With this constraint it is possible
to invert the geometric algebra relation (5.67) for U. Implementing (5.68) in (5.67) gives 7 = o %o 01 % U,
which can be solved for U, so that the inverse relation to (5.67) is

1 1

U= g7 He Ukc o - = 5L57'7. (5.69)
By introducing a fictitious time s which is defined as
d d dt
— =, - = 5.70
ds _'dat’ ds (5.70)
it is then possible to regularize the divergent 1/r-potential so that (5.69) reads % = %7’“ xc U %o 01 Or
d’U 1 . ) au 1/. 1.
FEERE (rr xo U xo 01 + T %o T *o al) =3 (r *o P+ 2r2*c> xo Ul (5.71)
Substituting now the inverse square force
. T
mr = —kr—g (5.72)
one obtains: 2 N
U L (1 5 E
L *c _ 2 U=-—"U 5.73
ds>  2m (er 7“) te 2m (5.73)
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which is the equation of motion for a harmonic oscillator. This equation can be solved straightforwardly and
much easier than the equation for r. The orbit can then be calculated by (5.63).

The Kepler problem can also be treated in the canonical formalism. For this purpose one first needs the
KS-transformation for the momentum. If w = Zizl w0, is the canonical momentum corresponding to
u= Zi:l Up 0, the KS-transformation is given by

1 1

P:E(W*Cal x¥o U+ U xo 01 *CW) PN p= ZLEU_}’ (5.74)

with W = w; + we0203 + w3o301 + wyo102. For p>*¢ = p? + p2 + p? one gets with (5.74)
1
e = —_|W|* - pd 5.75
P 47" | Py, ( )

where [W |2 = W s W = w? + w? + w3 + w] and

1

ps = o (u1wa — ugwy + uzwy — ugw3) - (5.76)

Equation (5.75) allows to transform the Hamiltonian into u;- and w;-coordinates. This is done in several

steps [103]. Starting from the Hamiltonian H = 5= (p? + p3 + p3) — £ one first extends the phase space by

a qo- and a pp-coordinate and forms the homogeneous Hamiltonian as H; = H + py. This leads for the zero
component to two additional Hamilton equations

dgo  OHy 1 dpo ~ OHy  OH;  Opo

and

dt — dpo dt ~  dqp ot o’ (5.77)

which shows that gy corresponds to the time t and pg is a constant and corresponds to the negative energy
of the system, so that Hy = H + pg = 0 for a conservative force. Since the time is now a coordinate the
development of the system has to be described with a different parameter. This development parameter
is the fictitious time s that is connected to the time by (5.70). The relation (5.70) can be implemented if
one chooses Hy = rH;. The Hamilton equations that describe then the development according to s are
differential equations with respect to s:

dqi _ 8H2 dp,' _ 6H2

ds  Op; and ds  0q;

for i =0,1,2,3. (5.78)

dqo dt _ 0Hs __

Especially for the zero component one gets < = 9- = ope = T which corresponds to (5.70). After having

so far regularized the Hamiltonian one can then go over to KS-coordinates and obtains with (5.75)

1 1
Hs = 3 (w} 4+ w3 + wi +wj) — %rpi —k—Er. (5.79)
Imposing now the constraint p, = 0, which for w; = ma; is just (5.68), and considering bound states with
FE < 0 the Hamiltonian is given by

1
Hy = B (w% + w3 4+ w3 + wi) + | E] (u% +ud +ul+ ui) —k, (5.80)
which describes a four dimensional harmonic oscillator with fixed energy and frequency w = (| E|/2m)"/2.
The above discussed transformation of the Kepler problem can now be used to calculate the energy levels
of the hydrogen atom. To this purpose one introduces holomorphic coordinates

! (@un + ilwn> (5.81)

V2

a, =
dmw
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so that the Hamiltonian Hy in (5.80) can be written as:

4
Hi=w (Z an&n> —e?, (5.82)
n=1

where k = e2. Introducing then holomorphic coordinates for left and right moving quanta

1 . 1 . 1 . 1 .
AR,y = 7 (a1 —iag), arp,, = 7 (a1 +iaz) and ag,, = 7 (ag —iaq), ap,, = 7 (az + iaq)
(5.83)
the Hamiltonian (5.82) turns into
Hy=w (a’RIQ@R12 +ar,,0L,5 + GR3,GR3y + aL34a’L34) — e, (584)

One can now quantize this system with the Moyal product. The Moyal star product transforms under the
KS-transformation and the above transformations into

4

w=ep | Yo (80,8, — Budl) | = exp S (0ud - 0ud)| . 689)

n=1 X=R12,L12,R34,L34

o

The energy levels can then be obtained by the x-eigenvalue equation

Hy s, wM) =0, (5.86)

nin2m3ng

where ﬁﬁ%?zn?)w is the product of four Wigner functions of the one dimensional harmonic oscillator given in
(1.118). Eq. (5.86) gives then

e? = hw (NR,y, + MLy + MRy + N0y, +2). (5.87)
To get the energy levels of the hydrogen atom one has to impose the constraint
P4 = QR,,QRy5 — ALy50L,, + QR34 Rgy — OL3y ALy, = 0, (588)

which for the energy levels corresponds to ng,, —np,, +MRry, —Nrg, = 00r NR, + Ry, =Nr, +np,, =n—1.
Putting this and w = y/|E|/2m into (5.87) one gets the well known energy levels of the hydrogen atom

e*m 1

B,=-2m
2h n?

(5.89)

5.3 Active and Passive Rotations on Space and the Theoretical
Prediction of Spin

In the classical case the fermionic Clifford star product gives the geometric structure, while the coefficients
are bosonic, commuting scalars. It is then possible to go over to the noncommuting case by demanding that
the coefficients have to be multiplied by a bosonic star product. The Moyal and the Clifford star product
are then combined to the Moyal-Clifford star product that acts on functions on the phase space that are
vector valued on the physical space, it has the form

3.
Z (15 (5%5% - 519775%) + ;ngan)

n=1

Fxye G=F exp G. (5.90)
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In section 4.6 it was demonstrated that an arbitrary transformation on a vector space can be represented in
a star product formalism by doubling the dimensions, while passive rotations could be described intrinsically
without such a doubling. Since here only rotations will be considered the doubled fermionic coodinates do
not for reasons of simplicity appear in the above star product. The combination of bosonic and fermionic
star products as above was also considered in a different context in [40, 54].

To see the consequences of a Moyal deformation in geometric algebra one can consider as a simple example
the Moyal-Clifford product of two vectors in d = 2 dimensions. The deformed generalization of (4.15) can
be written as

a *y0 b= (ay %y ba — ag #y, b1)0 109 + ay x,, by + as *,, ba. (5.91)

Under the Moyal product the coefficients in general do not commute if they are functions of ¢, and p,,. This

means that the Moyal-Clifford product of the same vectors a *,,c @ is in general not a scalar, but has also

a bivector part. It is this additional bivector part, which appears only for i # 0, that constitutes the spin

as a physical observable. This can be seen if one considers the minimal substituted Hamiltonian which is in

the formalism of deformed geometric algebra given by:
1

H = %{(pl-kez‘h)o'l+(P2+6A2)°'2+(p3+eA3)03

1 *M *M *M
= %[(lereAl)z + (p2 + eA2)*™ + (p3 + eAs)? }

1
2m

:|2*IMC

(5.92)

1
o102+ %[(m +eA1), (p3s + 6143)} 0103

*M

+ [(Pl +eAr), (p2 + 6142)}

*M

o (2t eda) (s 4+ eds)| oo (5.93)

2m * N p

The first three terms Hy = ﬁ 22:1 (pn + eAn)2*M describe the Landau problem of a charged particle
in a magnetic field which can be solved in the star product formalism as described in section 2.5 or [27].
The other three terms that describe the interaction of the spin and the magnetic field only appear because
by introducing the bosonic Moyal product the phase space variables no longer commute. If the magnetic
field points in o3-direction the vector potential is given by A = —%qgal + %qlag and only the first
Moyal-commutator in (5.93) contributes:

hw s (5.94)

Hspin = [(pl +edr),(p2+eds)| o100=

2m *M

where w = 252 and ¢ = —io 05 is a real quaternion, which is constructed according to (4.13) and (2.96).
The difference between this calculation and the conventional approach is, that in the conventional formalism
the Clifford structure is introduced in an ad hoc manner by inserting Pauli matrices by hand in (5.92).
The Pauli matrices describe then the spin and lead analogously to the additional term in the Hamiltonian.
This approach, which is also known as the Feynman trick, is actually wrong, because the Pauli matrices are
tuple representations of the basis bivectors. But (p + eA) is neither a bivector nor an axial vector, it is a
vector and so one has to insert the basis vectors and not the basis bivectors. That the Feynman trick leads
nevertheless to a sensible result is due to the fact that there are in three dimensions as many basis vectors
as basis bivectors and that they fulfill a similar algebra. In contrast to the tuple formalism in geometric
algebra the Clifford structures do not have to be added by hand, they are just the basis vectors that already
exist in classical mechanics, but become apparent as physical objects in the quantum case.

The *-eigenfunctions of Hgpin are Wg_g)/z = %(1 Fioi02), ie.
c hw (¢
Hpin *c wil)/,z - 17@1}2 (5.95)
so that Hgpin can be decomposed as
hw (o) ©)
Bspin = o (750, =7 D)) (5.96)
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The 71':(‘:01)/2 are the spin Wigner functions and as such they are projectors:

(9] @ _ _(C) () e _ _(©) @) _
Tty *c Tyiyo = Taiyn and Tty o Ty g = T yyg %o Wiy = 0. (5.97)

It is then clear that the *-eigenfunctions of the whole Hamiltonian (5.93) are products of the Moyal eigen-

functions of Hy and the spin Wigner functions w(ic)

H e D7), = (HO 2, wwp/z)) e 7M7), = <E n f”;) 02O (5.98)
It is evident that the time development and the expectation values of the spin are calculated just as in
section 2.5. While there the construction of the spin term was based on pseudoclassical mechanics, one can
see here that the spin does not need to be constructed and added a posteriori, but rather appears naturally
by deforming geometric algebra.

The Moyal deformation of geometric algebra gives rise to multivector valued extra terms. Such a multivec-
tor is invariant under a combined transformation of the bosonic coefficients and a compensating transforma-
tion of the fermionic basis vectors. The bosonic transformation of the coefficients is an active transformations
and the fermionic transformation of the basis vectors is a passive transformation. In a tuple formalism this
difference can not be made and so active and passive transformations are mixed up with left and right trans-
formation, whereas in a multivector formalism one rather has that an active right transformation corresponds
to a passive left transformation and the other way round. To illustrate the concept of active and passive
transformations in the star product formalism one can consider rotations in space. In the three dimensional
euclidian space with vectors * = wz'o; the active rotations [3] are generated by the angular momentum
functions

Lt = gtk gipk, (5.99)
which fulfill with the three dimensional Moyal product the active algebra
(L, L7], ~=ihe"L*. (5.100)
An active left-rotation has then the form
' =Usxyx*, U= e:jakLk g T ¥y efl\(;kLk = (R;-xj)ai, (5.101)

where the R; is the well known rotation matrix. The corresponding passive rotation [4, 36] is generated by
the bivectors

1
B, = §5ijko'jo'k (5102)
that fulfill as seen above the passive algebra
B; X Bj = _EijkBk; (5103)

so that the passive left-rotation is given by

- —1qk 1ok . .
' =R*cx+c R=e, 2" B o T *o ezl B — ' (Rlo;). (5.104)
It is clear that the above transformations generalize to arbitrary multivectors A(x?) and that such a multi-
vector is invariant under a composed active and a compensating passive transformation [82]. The generator
of such a composed transformation is then the sum of the active and passive generators, so that one has

infinitesimally

7 1 n 7 n n ijk jh 0 n
L'+ §Bi7A($ ) =[L" Az )LM +B; X A(z") = |77z T oLk +B;x| A(z"). (5.105)
*MC
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In the conventional formalism one states that in quantum mechanics one has to go over from the angular
momentum operator L; to the operator J; that includes also a Pauli matrix. In geometric algebra this follows
from the invariance behavior of multivectors.

In order to establish the relation of the Wigner functions obtained above and the spinors described in
section 4.7 one has to notice that the deformation of the three dimensional geometric algebra with the Moyal
star product means that one works on the complex even subalgebra Céaf 3(C). But this subalgebra is isomorph

to the full real Clifford algebra C{g 3(R), i.e. CE&S((C) ~ Cly 3(R), with the substitutions
11, ielg), 00;<00; and —igjpo0, < ;. (5.106)

For the spin hamiltonian and the Wigner functions this means:

hw hw 1 1
570102 < 503 and 5(1 Fioi09) < 5(1 +o3) (5.107)

So for 7T:(|:C1)/2 = %(1 +o3) and ¥4 =1, ¥y = o103 one has

7T(i(i)/z = P+ *c 7"53)/2 *o P (5.108)

i.e. the spinors relate the two Wigner functions. Furthermore it is possible to relate the x-eigenvalue equa-
tions:

O3 %c Pt *c O3 = T4 (5.109)

1 — 1 _
& 03 %c Pt *c O3 *¢ 5(1 +03) *c Px = £t *c 5(1 +03) *c Pt (5.110)
& Oyre Ty )y =L (5.111)

and

Ty ke T )y = ETL (5.112)
< O3 %o wi *C7T+1/2 *C'(/)i— P4 *C7T+1/2 *o P4 (5 3)
= (iwi — 03 *%c P+ *¢ 0'3) *c (1+0'3) =0 (5.114)
= Og*c Yt *c 03 =%y, (5.115)

5.4 Space-Time Algebra and Relativistic Quantum Mechanics

The formalism of space-time algebra can also be used to describe relativistic kinematics. If a particle is
moving in the -, -system along x(7), where 7 is the proper time, the proper velocity is given by u(r) =
d%x(r), with u?*¢ = 1. For the space-time split of the proper velocity one obtains:

d d dt  dxdt
U=UkcYg=U- Y+ UYy=1U+u= E(w(r) ko Yo) = %(H—x) = E+%%' (5.116)
Comparing the scalar and the bivector part leads to
dt dx dxdr uYyp
— UV = — d - = = 5.117
o =110 dr an " dt drdt wu-v ( )
and with 1 = u?*¢ = u(1 — u?*¢) one has
1
= 1. (5.118)

Ug=U-Y) = ——————
0 Yo T—u2c
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It is now also possible to specify a Lorentz transformation from a coordinate system v, to an in ;-
direction moving coordinate system «/,. For the coefficients this transformation is given by ¢ = (' + 32’ 1),

2t =~(a" 4 Bt)), 22 = 2, and 2® = 2/°. The condition = = aty, = x4, leads then to

Yo =v(vo + B71) and vy =7(71 + Bo)- (5.119)

Introducing the angle « so that § = tanh(a) this can be written as

7y = cosh(ahyo + sinh(a)yy = €510 ke vy, (5.120)
~y = cosh(a)y; + sinh(a)y, = €527 ¢ vy, (5.121)
or with L; = efgﬂ"/z as 7; = L1 *c v, *c L.

General passive Lorentz transformations as rotations in Minkowski space are generated by the space-time
bivectors. In four dimensions one has six bivectors:

B1 =7Y1%0; By = 7270, B3 = 7370 (5.122)
and By = 1(4) *c Bl = Y379, Bs = 1(4) *c Bo =173, B = 1(4) *o B3 = v57Y1, (5.123)
with the pseudoscalar I(4) = 47,7273, For these bivectors one has B%EC,S =1, Bifsfﬁ = —1 and
B; X B; = —Sijk(l(4) *o Bk), B; X (1(4) *o Bj) = €;;kBr, (5.124)
(1(4) *o Bi) X Bj = 5ijkBk7 (1(4) *o Bi) X (1(4) *o Bj) = EijkBk~ (5125)

In analogy to the tuple formalism one can also write the bivectors as

Iy
Ouv = % *o ['7#771/} *c (5126)

The generators for the passive boosts and rotations are

1 1
K; = —00; and L; = B} Z&ijkajk (5.127)

2 ‘
i<k

and they satisfy in the case of the nonstandard metric (for the standard metric one has to replace I(4) by
—1(4))

[Li,Ljl, ., = —1(a) *c €kl [Li,Kjl,, = —L) *c ijnKe,  and  [Ki, K], = T4y %o €ijule. (5.128)

The passive Lorentz transformation is then given by
Lroxcat o, —irokcat o,
z = efc(zk) c " ke T *o 6*04 (4)*c B — ot (AZ’YV) (5.129)

where A# is the well known Lorentz transformation matrix.

In the light of geometric algebra it now becomes clear that Dirac by factorizing the Klein-Gordon equation,
found nothing else than the basis vectors of space-time. Taking these into account the Lorentz transformation
in the coefficients of a four vector p = p"+,, have to be compensated by a passive Lorentz transformation in
the basis vectors if one demands invariance. This passive Lorentz transformation which in geometric algebra
is naturally given had to be constructed by Dirac a posteriori to insure Lorentz invariance of his equation
[73, 37]. Tt would now be straightforward to formulate Dirac theory in the star product formalism, which
would reproduce the results of section 2.6. But the important point is here that by doing this one ignores
two severe conceptual problems that lie in Dirac theory itself [41] and are again made obvious by the star
product formalism.
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The first problem is that one uses in the star product formalism for Dirac theory a four dimensional
fermionic Clifford star product in order to generate the Clifford algebra of the -, but on the other hand
a three dimensional bosonic Moyal product. Using the three dimensional Moyal product just reflects the
special role the time plays in Dirac theory. But for the star product formalism this means that the algebraic
structure is not supersymmetric and that one can not represent active Lorentz transformations. With a
three dimensional Moyal product one can only represent active rotations, to include the boosts one would
need a four dimensional star product, i.e.

in ) b a
f*u g=fexp [2 n <8qu o O 6(]”)] g. (5.130)

Here again the nonstandard metric should be chosen, so that the three dimensional part reduces to the
conventional Moyal product. The generators of an active Lorentz transformation are then

M* = q¢"p” —ptq”, (5.131)
with
[M*, MPo], = iR (" MY7 —n"P MM + nh? MPY — 5”7 MPF). (5.132)
The generators of boosts and rotations are
K'=M" and L'=Y R0, (5.133)
i<k

They form the following active Moyal star-commutator algebra

(L1, 7], =iheVFLF,  [L', K7 =ihe""K*  and = [K' K9] = —ihe"FLF, (5.134)
*M *M *M
so that an active Lorentz transformation of the four-vector g = ¢"v,, is given by
_ i w MPY i L MHPY v
q =e ;" f @ s €1y = (A/zfq )'YW (5.135)
Taking the translations with the generators p, into account the Lorentz algebra is with [p,,, pl,}*M =0 and
[M*ppl,,, = 1R (1""py — 0" py) (5.136)

extended to the Poincaré algebra.

The second severe conceptual problem that is related closely to the first one is that the Dirac equation has
no classical limit. This contradicts the philosophy of deformation quantization, where quantum mechanics
is a deformation of classical mechanics and where the limit 7 — 0 leads again to classical mechanics. So
following the philosophy of deformation quantization means to deform a manifest covariant version of the
canonical formalism to obtain relativistic quantum mechanics. Covariance of the canonical formalism means
that the physical laws, expressed by Poisson bracket relations, have to be invariant under a transformation
from one inertial system into another inertial system. Such transformations preserving the Poisson brackets
are canonical transformations, so that a canonical system is relativistically invariant if one has a canonical
realization of the relativity group. Manifest covariance means that in addition to the requirement of rela-
tivistic invariance of the physical laws the labeled trajectory of a particle in configuration space ¢(t) has to
behave like a world line. This means that the relativity postulate leads only to the requirement of a Poisson
bracket realization of the Poincare group, while manifest covariance requires that the dynamical quantities
(t,q(t)) constitute an space-time event [104]. There are now two approaches to a manifest covariant extension
of the canonical formalism in classical mechanics. The first approach is that one describes the particles by
their canonical coordinates and the time coordinate and then derives conditions that describe the fact that
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(t,q(t)) transforms like an event in space-time. These additional conditions lead then to the consequence
that no interactions are allowed [104].

The alternative method is to use a parameter formalism. In this approach the events that constitute the
world lines are labeled by an observer independent parameter s that increases monotonically as the world
line is traversed. The four space-time coordinates of an event on the world line are then functions of this
parameter and going from one inertial system to another one does not change the parameter. The four
space-time coordinates are then regarded as the dynamical quantities, while the parameter s describes the
evolution of the system. So the time has no longer the two roles of a dynamical variable and an evolution
parameter. But this just fits perfectly to the solution of the first conceptual problem, because using the four
dimensional Moyal product (5.130) for deformation quantization means that the one particle phase space is
extended by the two variables ¢° and p°, which means that the time development is not described by the
time, that is now a phase space coordinate, but by an additional parameter. So what is actually deformed
by the four dimensional Moyal product (5.130) is parametrized Hamiltonian dynamics. And in the limit
h — 0 the star product reduces to the conventional product so that one reobtains the classical undeformed
parametrized Hamiltonian dynamics, so that the conceptual problem of the missing classical limit is also
solved. In the operator formalism of canonical quantization this would mean that time is no longer a scalar
but an operator, for a discussion concerning the existence of such a time operator see [59].

It is now straightforward to develop a parametrized relativistic mechanics [43, 81]. One defines to this
purpose a parameter-dependent action

§= / ds Lu(g", ", 5), (5.137)

where ¢* is the derivation with respect to the parameter s:

dg*
ds

gt = (5.138)
Requiring that the variation of the action vanishes: §S = 0 leads to the parametrized version of the Euler-
Lagrange equation:

d OLs OLg
el — = 5.139
ds dg¢"*  Ogt ( )
With the Legendre transformation
K(q",pu,s) = ¢"pu — Ls(q", ¢", ) (5.140)
one then obtains the parametrized Hamilton equations:
0K oK
= d ), = ——. 5.141
q ap# an b, dgh ( )
Using the Hamilton equations to calculate
d af
—f(qd",pu,s) =4{f, K - 5.142
750" oy s) = U K pp + o (5.142)

one arrives at the four-space Poisson bracket

af 0dg dg Of
_ _ =7 ZJ .14
{fa g}PB aqu ap# 8(];,, ap#a (5 3)

for which follows
{¢";p.ypp =29 and  {¢",¢"}pB = {pPu;Pv} P =0. (5.144)
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For example the covariant Hamiltonian of the free particle is
n
K = %pupy (5.145)

so that the Hamilton equations (5.141) lead to

pt =0 = pu = pou = const
" I
and gt = AN =g+ Po,. (5.146)
m m

Variation of ¢* gives then dg"dq, = pgﬂ#(és)Q = (6s)? with the initial condition m? = p{jpo,,, which shows
that the parameter s is just the proper time.
In the case of a charged particle in an electromagnetic field the Hamiltonian (5.145) generalizes to

n 1
K= o [y —eAulpy —eA)] = %ﬂ'“wu, (5.147)

with the kinetic momentum 7, = p, — eA,. The Hamilton equations (5.141) lead to

° Tr;L ° e v
== and = —7"0,A,. 5.148
ql»“ m py m [ i ( )
Combining these two equations gives p, = eq”d,A, and for the derivation of the kinetic momentum with
respect to s one obtains 7, = p, — edy, A, q". Equating then the expressions for p,, gives the Lorentz force
law

= eFl . (5.149)

The classical mass is then a constant associated to the kinetic momentum which can be obtained as follows.
With (5.149) and (5.148) one can calculate

Tyt = - — (m,mt) = emF,, ¢V ¢" = 0. (5.150)

From - (m,m") = 0 follows then that 7, 7" = mo,m is an integration constant with respect to s. In order
to be consistent with the case 4, = 0, where p,p" = po.pl = m? one chooses the integration constant as
TouTy = m?. This shows that the classical mass is a secondary concept in the proper time formalism, while
energy and momentum are primary concepts.

Just as in the nonrelativistic case the connection of the four dimensional Poisson bracket (5.143) and the
four dimensional star product (5.130) is given by

1
lim — = 151
h% lh, [f,g]*M {f?g}PBa (5 ) )
so that the star commutators of the canonical coordinates are

[¢",p.],,, =ihél and 4", q"].,, = [Pu,p],,, = 0. (5.152)

The structures of deformation quantization in the nonrelativistic case can then be generalized to the four
dimensional case in a straightforward manner. The development of the system in s is generated by the four
dimensional Hamiltonian. In the star product formalism this is described by the star exponential, which is
in the four dimensional case given by

n! h

n=0

. o0 1 s n y
Expy (Ks) = e/ =3 = (1‘9) K™ (5.153)
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where K™ is the n-fold star product. The star exponential fulfills the proper time generalization of the
time dependent Schrodinger equation:

d
iFL%EXpM(KS) = K x, Exp,;(Ks). (5.154)

The calculations to determine the spectrum and the Wigner eigenfunctions then parallels the calculations in
the non-relativistic case.

But there is now also the additional effect due to noncommutativity known from the nonrelativistic case.
Combining the Moyal product (5.130) and the Clifford product (4.314) into one supersymmetric formalism
one obtains a noncommutative version of space-time algebra. In the commutative or classical case the
generalized Hamiltonian (5.147) can be written as

1 1

with 7 = 7#'7,,. But if one introduces noncommutativity via the Moyal product, the Moyal product of 7,
and 7, is in general not symmetric in the indices, one rather has

[7T;u 7711]*M - iheFlU/' (5156)

This leads then to the appearance of an additional term that describes the spin:

1 1 1 1
K = %ﬂ' *pve T = % (W# * s 77”) (7;5 *o ’Y]/) = %ﬂ"uﬂ'u + % (71'# * s 7TV)"YM")’V. (5157)

In the case of a stationary particle in a homogenous magnetic field (5.157) reduces to

m 4 eh
SRS Ykl
2 2m

K= Bsv172, (5.158)

so that one has the spin eigenfunctions % + %7172, that fulfil

, 1 i 1 i
ive ke g 52 | =+ 5E 57172 ) (5.159)

5.5 Deformed Geometric Algebra on the Phase Space and Super-
symmetric Quantum Mechanics

The concept of deforming geometric algebra that on space and space-time produced extra spin terms can
now also be used to deform geometric algebra on the phase space as described in section 4.7. It will be
shown here that this deformation leads naturally to the appearance of supersymmetric quantum mechanics.
While in section 2.4 supersymmetric quantum mechanics was constructed via pseudoclassical mechanics one
will see here that it appears naturally and geometrically. One can restrict oneself to the simplest case of a
flat two dimensional phase space, i.e. a point in the phase space is given by z = 2°¢, = qn + pp and the
Clifford star product is given by

Aeen=om | nigl | 5 (5.160)
i J

where 7;; = diag(1, 1) is here the euclidian metric on the vector space. Furthermore one has a closed two-form

Q= 504;¢'¢7 = np = dqdp. (5.161)
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A Hamilton function can now be written as the square of the vector
w = W(q)n +pp, (5.162)

where W (q) is the superpotential, one has then

1 1 1
H=_-wx* . w= W w =g [p* + W?(q)] (5.163)

[\

and in holomorphic coordinates B = %(W(q)Jrip), B = %(W(q)fip) and f = %(nJrip)7 f= %(nfip)
one obtains
w=Bf+Bf=Q, +Q_ (5.164)

and H = BB.

Up to now the coefficients were commuting quantities, but one can go over to the noncommutative or
quantum case by demanding that the coefficients have to be multiplied by the Moyal product. In this case
the square of w is no longer a scalar, but one has an bivector valued extra term

Heowy = gwsnc o = 5 [(W(g) 0 W(@))(m %o m) + (W () 500 D)1 %0 p)
+(p *a W(Q)(p *e ) + (%2 D) (P %0 )] (5.165)
= % [+ W2(@)] + ZavgéQ) %np- (5.166)

The next thing one has to notice is that 1, p and —inp fulfill under the Clifford star product the Pauli
algebra, i.e. one has for the star commutators and anticommutators of these real basis elements of the two
dimensional Clifford algebra:

,pl.. =2np, [n,—inpl,, =-2ip, [p,—inpl, = 2in (5.167)
and {0, n}ic = {p, plic = {~inp, —inp}.. =2, (5.168)

while the other star commutators and star anticommutators vanish. This means that 1, p and —inp would be
represented in a tuple representation by the Pauli matrices, so that Hg is the supersymmetric Hamiltonian.
Furthermore for the holomorphic basis vectors f = %(n +1ip) and f = %(n — ip) one has the tuple

representation
1 0 1 1 - 0 0

§:C) = %(1 Finp), i.e. for these multivectors one has

The two eigen-multivectors of —inp are 7
—inp *¢ W(ic) = iw(ic). (5.170)
In the star product formalism these multivectors are fermionic Wigner functions and as such they are

projectors:

w(ic) *o ﬂ(ic) = ﬁic) and 7T(+C) %o ﬂ(,c) = ﬂ(,c) *o ﬁsrc) =0. (5.171)

The holomorphic basis vectors % f and %} serve here as lowering and raising operators, i.e. one has

f % wg_c) xo = 279 and I *c 7@ %o f = 271'3_0), (5.172)

while the other combinations give zero.
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With the multivectors 7T§:C) the supersymmetric Hamilton function (5.166) can then be written as

Hsusy = % [pQ +W2(q) - ﬁag{;q)} (; - ;np>
+% [pQ +W2(q) + havgq(q)] (; - ;np) (5.173)

(©)

= Hn'9 4 Hyr (5.174)

From (5.171) it is then clear that the Moyal-Clifford star eigenfunctions of Hg,sy, are a product of 7r(+c) and
Moyal star eigenfunctions of H; or products of 71'(_0) and Moyal star eigenfunctions of Hy. The Moyal star
eigenfunctions for supersymmetric partner potentials were for example discussed in [24].

The vectors Q. defined in (5.164) fulfill

Qi e Qe =0, Q #ucQy =Hin'", Qy *ycQ =Hyr'” (5.175)
so that Hgusy can be written as
1
Hsysy = §{Q+7Q_}*MC, (5.176)

and with (5.175) one has [QJr, HSHSy]*MC = [Qf, HS“SY]*MC = 0. Defining finally

Qi=Q,+Q_ and Q,=-1(Q, -Q_) (5.177)

the supersymmetric Hamilton function factorizes as

1 1
Hgysy = §Q1 ke Q= in *a0 Q. (5.178)

In conclusion one sees here that supersymmetric quantum mechanics appears naturally if one deforms
geometric algebra on the phase space. The deformation of geometric algebra on the three space induced an
extra bivector valued term that splits the system in a version with spin up and one with spin down, i.e. the
noncommutativity transforms the Schréodinger Hamilton into the Pauli Hamiltonian. The analogue procedure
on the phase space leads similarly to a split into two supersymmetric partner systems. The appearance of
these structures can also be stated in a different way: Just as the factorization of the Klein-Gordon equation
exhibits in Dirac theory the Clifford structure of space-time, the factorization of a Hamilton function into
supercharges exhibits the Clifford structure of the phase space.

5.6 Active and Passive Transformations on the Phase Space

A flat phase space can be considered as an 2d-dimensional euclidian vector space with vectors (4.327) and a
two-form (4.328). The time development is described by the hamiltonian vector field hy = ¢™n,, + p"p,, =
J¥9;H(,, so that one has for a scalar phase space function f

f=%2-(df)=(hu-d)f =Ln,f={f H}pp. (5.179)

where hy - d is the Liouville operator. The above equation for the time development can immediately
be generalized from O-forms f to arbitrary r-forms. For example the time development of the symplectic
two-form is given by Q = %,,Q = 0, which means that the symplectic form is preserved by the time
evolution.
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The temporal development of a system can be described by an active time transformation of the coeffi-
cients, which corresponds to the Hamilton equations

= Lyt = J90;H. (5.180)

In the formalism of geometric algebra it is also possible to write down a time transformation of the basis
vectors

i = LnpCy = =T 0k0,HE, (5.181)

which corresponds to the Jacobi equation that appeared in the path integral formulation of classical me-
chanics [65].
Active and passive time development can directly be discussed for the example of the harmonic oscillator.

The Hamiltonian H = §(p? + ¢®) generates via the star exponential U (t) = e;jm an active rotation of the
state vector zg = qn + pp according to [114]

z(t) = U(t) #a 20 *a U(t) = (geost + psint)n + (—gsint + pcost)p = q(t)n + p(t)p. (5.182)
The same transformation passively can be achieved with the rotor R(t) = e,%gt and the bivector H = np as
z(t) = R(t) *¢ zo *¢ R(t) = ¢(costm —sint p) + p(sintn + cost p) = qn(t) + pp(t). (5.183)

With the hamiltonian vector-field hyy = pn — gp and the relation {f,g}pp = lims—o = [f, gl,,, the active
Hamilton equations 2! = %,,, 2% can be written as

1 1
¢=lim —[q, H], =p and p=lim — [p,H], = —gq. (5.184)

h—0 ih h—0 ik ]*M

With (5.181) one can then calculate the corresponding time inverted passive Hamilton equations. Using the
Clifford star commutator defined by

[Aw), Bes)),. = Ay *e Brs) = (=1)""B(s) *c A (5.185)

these equations can be written as

] =
] —

n=-MnH, =p and p=-[pH, =-n, (5.186)

where H = %np is the passive Hamiltonian. The passive Hamiltonian is connected with the active one
through (5.185) and (5.181) by

1 .

(G H, = =T 00 HE. (5.187)
The passive Hamiltonian H is here just the free Hamiltonian of pseudoclassical mechanics [11] (the additional
factor % is due to the definition of the Clifford product which is defined without a factor %)

A Lagrangian that takes into account both the time development according to (5.180) and the time
development according to (5.181) should be called the extended Lagrangian and has the form

Le = yi (3 —JI0;H) +i¢, (at(s{ - ijalakH) Al
= it +iGN — He, (5.188)
where the extended Hamiltonian Hy is given by

Hp =y J90;H +i¢; J7F 0,0, HX'. (5.189)
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The extended Lagrangian first appeared in the path integral approach to classical mechanics [65, 66],
where the classical analogue of the quantum generating functional was considered:

Zem [J] = N/DZ(S [2(t) — za(t)] exp [/ dt Jq/)] : (5.190)

The delta function here constrains all possible trajectories to the classical trajectory obeying (5.180). It can

be written as ' N _ _
§[2(t) = za(t)] = 0 [5' — QY 0;H| det [§50, — Q" 0,0, H] . (5.191)

The delta function on the right side can be expressed by a Fourier transform
§[#—QY0;H] = / Dy; exp [i / dty; (' — QijajH)} (5.192)
and the determinant can be written in terms of Grassmann variables as
det [5:0, — Q*0,0;H| = / DX'DC; exp {— / dt¢; [6:0, — Q% 0,0,H | AJ} , (5.193)

so that Zecpy [0] becomes
chu [0] = /Dz’DyZD)\JDCJ exp |:l/dtZE:| . (5194)

The important point is here that the path integral formalism of classical mechanics gives the fermionic basis
vectors of geometric algebra the physical interpretation of ghosts. On the other hand the superanalytic
formulation of geometric algebra has naturally the fermionic structures that in the conventional formalism
have to be added ad hoc and per hand.

The 2* and ¢, form together with the newly introduced variables y; and A’ the extended phase space. On
this extended phase space one can then introduce an extended canonical structure. This can easily be done
in analogy to the Moyal and the Clifford star product structures of the phase space. Defining the extended
Moyal-Clifford star product as

i b6 o o 186 4 a 9
F G=F - — -+ ——— G 5.195
*pMmco exp [2 <8Zk 5yk ayk 8zk> + B (aAk ack + ack 8)\k> ( )
the extended Poisson bracket has the form
1
{F7 G}EPB = T {F *pne G — (_1)€(F)6(G)G *BMmC F} , (5.196)

where €(F) gives the Grassmann grade of F. In the bosonic part of the extended Clifford star product a
factor h can be included like in the Moyal product, so that in the definition of the extended Poisson bracket
(5.196) the limit & — 0 has to be taken. The extended canonical relations are then given by

{",y;}epe =00  and  {¢ N }ppp = —id], (5.197)

while all other extended Poisson brackets vanish. Furthermore one can calculate the equations of motion as

i = {2 Hp}epp = QVY0;H, (5.198)
¢ = {¢iHplers = - 00,HC,, (5.199)
g = {viHelers = %V 00H — i, 0,0,0,HN., (5.200)
N = (N Hglpps = QU9;0. HAF. (5.201)
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The extended Hamiltonian also generates the time development of r-vectors and r-forms according to [69]
X = %X ={X,Hp}eprs. (5.202)

Having now a superanalytic formalism for classical mechanics that takes into account active and passive
time development, one can ask if there is a supersymmetry in this formalism, i.e. a symmetry that relates
the bosonic coefficients with the fermionic basis vectors. This supersymmetry was found by Gozzi et al. in
[65]. There it was shown that Hp is invariant under the following BRST-transformation

o2F =eXF, 8¢, =ieyr, A =6y =0 (5.203)
and the following anti-BRST-transformation
62k = —eQkl¢,, AR = g0y, 6¢, = Oy =0, (5.204)
where € and € are Grassmann variables. These symmetries are generated by
Qprsr =yN  and  Qppsr = ¢y (5.205)
according to X = {X,eQprsr + EQprsrtern- The two charges Qprsr and Qpxrgr are conserved, i.e.
{Qprsr-He}ers = {Qprsr Hitsrs =0 (5.206)

and fulfill
{Qsrsr: Qprsr}ers = {QprsT QerRsT EPE = {QBRsT, QBRsTEPE = 0. (5.207)
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Conclusions

After the discussion so far, one can now come back to the original question if a formally unified way
to describe physics is possible. The most obvious formal break between classical and quantum physics is
that classical physics is described on the phase space while quantum mechanics is described on a Hilbert
space. The bosonic star product formalism gives here an alternative approach that allows to formulate also
quantum mechanics on the phase space. Although the star product formalism is not always optimal for
practical calculations and there are still many open questions, it nevertheless shows a way to overcome this
first formal break between classical and quantum physics.

The second formal break between classical and quantum physics is that one uses in classical mechanics
a vector formalism, while in quantum physics one actually is using a multivector formalism. This formal
break is not so well noticed, because the multivectors in quantum mechanics are described as tuples in
additional representation spaces. Closely related to this is the question which status fermionic degrees
of freedom have. Conventionally fermionic degrees of freedom are connected with quantum mechanics,
but they nevertheless appear also in classical physics for example in the classical BRST-formalism and in
pseudoclassical mechanics, where they can be used to describe spin. Geometric algebra gives here a natural
and confined picture that is interesting in several ways. Firstly the Clifford calculus of geometric algebra
can be formulated as a Grassmann calculus that is deformed with a fermionic star product. So Grassmann
variables that play in geometric algebra the role of basis vectors are no longer introduced a posteriori and ad
hoc, but in a natural and geometric manner. Furthermore geometric algebra is a multivector formalism that
can be used in classical and quantum mechanics. Secondly by using a fermionic star product to describe
geometric algebra one obtains a fermionic counterpart of the bosonic star product formalism, which means
that geometry and quantum mechanics are formulated in the same formalism. Thirdly one can combine the
bosonic and the fermionic star product formalism into a noncommutative version of geometric algebra. By
doing so one realizes that spin terms are naturally generated by the noncommutativity. The bosonic star
product gives in this way a natural transition from a classical to a quantum geometry.

So the central question is which role Grassmann variables actually play. Conventionally Grassmann
variables are introduced ad hoc and a posteriori, because they are needed or just because it is possible to
introduce them. In this way they represent a sort of mathematical epicycle. But this is exactly the opposite
of what Grassmann originally intended with his theory of extension. Grassmanns program, that is beautifully
described in [78], was to constitute a unified geometric calculus. With the work of Clifford this program
was completed for the flat space. (To be historically correct one has to state, that Grassmann himself found
the Clifford product even before Clifford, but did not realize its fundamental importance.) But due to
unfortunate historical circumstances the early form of geometric algebra was not applied in physics, instead
the tuple formalism was established by Gibbs and Heavyside in the beginning of the 20th century. The tuple
formalism does not include the algebraic structures Grassmann and Clifford already found. Unfortunately
theses structures play a central role if one wants to describe curvature or noncommutativity and so they
had to be reintroduced supplementary. In the historical process this did not happen systematically so that
several lines of development emerged. The Grassmann algebra was for example reintroduced in geometry
by Cartan through his calculus of differential forms, which is a homogenous multivector formalism. Later
on Kéhler generalized the calculus of differential forms into an inhomogenous multivector formalism by
introducing a Clifford structure, which led to a formalism that is equivalent to geometric algebra [82]. The
opposite direction of development was initiated by Dirac who discovered the Clifford structure in physics.
Shortly afterwards Fock and Ivanenko generalized the Dirac calculus to curved spaces and constructed the
Grassmann product as the antisymmetrized matrix product of Dirac matrices [52]. This formalism, that is
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also equivalent to geometric algebra, was later on very effectively used in general relativity [102]. Moreover
the spinor calculus, that was introduced into physics by Pauli and later on generalized by Penrose to spinor
and twistor geometry, can also be subsumed under geometric algebra [55].

The description of geometric algebra as a deformed Grassmann algebra gives now also the possibility to
interpret the program of supersymmetry and BRST-symmetry from a Clifford calculus point of view. The
fermionic basis vectors and their algebraic structure become here apparent if one factorizes functions that are
defined on the space spanned by these basis vectors. For example the factorization of a Hamilton function
into supercharges exhibits the basis vector structure of the phase space and the Clifford star-anticommutator
is then nothing else than the scalar product on this space. Furthermore one can transform on the one hand
actively the bosonic coefficients and on the other hand the passive basis vectors. Since these transformations
are related one can also find transformations that relate bosonic and fermionic degrees of freedom. If the
parallelism of bosonic and fermionic star product structures is founded in geometry one can turn the logic
around and demand such supersymmetric star product structures for a physical theory. This implies in the
case of relativistic quantum mechanics the postulate of a four dimensional Moyal product, which leads to the
quantum proper time formalism. So the star product formalism overcomes here naturally a further formal
break between classical and quantum mechanics, namely that the classical relativistic Hamilton formalism
is manifest covariant, while in Dirac theory time plays a special role. So far the results can be summarized
in the following table:

’ Classical Physics \ Quantum Physics \ Formal Synthesis ‘
Phase Space Hilbert Space Bosonic Star Products
Vector Formalism Multivector Formalism Fermionic Star Products
Manifest Covariance Covariance Supersymmetric Star Products

In the prefrace of his book [70] Grassmann stated “I am aware that the form which I have given the
science is imperfect.” and he went on to say “there will come a time when these ideas, perhaps in a new
form, will arise anew and will enter into a living communication with contemporary developments.” This
prediction indeed proofed to be true when more than hundred years later Hestenes and Kaehler resumed
Grassmanns program in the context of Dirac theory. Today geometric algebra is applied in a great variety of
areas [34] and this work was a further step in this program. Future research will show in how far geometric
algebra can be seen as the basis of supersymmetric structures.

132



Appendix A

In this appendix it will be shown that the representation (2.215) fulfills axiom (2.208c), i.e. (uv)éw =
u§(v§w). Without restriction of generality one chooses u =6;...60,, v =0,41...05, and w =0;, ...0;, with
t > s. Using the abbreviations B(0;,0;) = B; ; and 0y, = 0; it follows for the left hand side:

S

1 -
— - B.: 0.0
(uv)éw uv E ' 5.;0:0; | w
2,3
= 9198 E Bl)ia(l) -~-Bs7io(s)(818ig(l))---(85 io(s)) 91‘1 ...Qit
U‘GSs,t
= 0;---0; E Bl)ia(l) -~-Bs7iﬂ(s)81~--888ia(s) "'81‘6(1) 92‘1 ...Hit
O‘GSs,f,
_ s(s—1)/2 N ~
= (71) (e=1)/ E B17i0(1) T Bsuio(s)aio(s) e aia(neh 0, (A'l)
0ESs ¢
where S, ; is the set of all permutations of s elements out of ¢.
The right hand side of (2.208¢) leads to:
ué(vﬁlw) = u§ Ory1--0s E BT+177:U<7‘+1) o 'Bs)ia(s)aT-i-l o '858ia(s) T 6i0(r+1) Oy -+ 0;,
G’Gszr,t
— (s=r)(s—r—1)/2 ) . > 3. . )
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— (_1)[(5 r)(s—r—1)+r(r—1)]/ E Blvia’(l) o BM},/(T) BT+1,iU(7-+1) o stia(s)
TESs_pt
a'€Sp ¢
%1010 " Bigr1 Oig sy Oig iy i - i
_ s(s—1)/2
= (-1) (o=1)/ E : Blﬂio/(l) e BT,ia/(r)BT-Fl»io(mﬂ) T Bs,ia(s)
TESg_pt
o'eSr ¢
X0y Frriny Oy O Oy 0,
— (—1)s(s—1)/2 § . ) 5. - . f,
= ( 1) Blwa(l) Bssla(s)ala(s) ala(nen 9%7 (A'2)
oESs ¢

which is the same result as the left hand side. In the last step one uses that a term in the sum is zero if
o(i) = ¢’(j) because of the fermionic character of the derivatives.
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Appendix B

To prove that uowv can be written as an exponential function one decomposes the monomials u = a™a"™
and v = a"a® with the coproduct (3.67). Then the definition of the twisted product (3.63) leads to

m,n,r,s
m\ [(n\[r\ /(s - , ,
_ R(ata’ k=l m+r—1—k—n+s—j—l. B.1
uUov E (z)(])(k)(l) (a'a’,a"a")a a (B.1)
1,5,k,1=0
In this sum the R(a‘a’,a*a@') are non-vanishing only if i + j = k +[. One includes this condition by setting

i=p1+ps3, j=p2+ps, K=p1+ps and [ =ps+ps, (B.2)

so that i +j =k +1 = p; + p2 + p3 + ps. Hence the sum over 4, j, k, [ is replaced by:

m,n,r,s m—+n=r—+s

> o~ > > (B.3)

%,5,k,1=0 q=0  pi1+p2+p3+ps=q

This substitution alone would lead to multiple counting, for example the term ¢ = j = k =1 =1 in (B.1)
can be written with p; = ps = 1, p3 = p4 = 0 and with p; = p; =0, p3 = p4 = 1. But the multiple counting
is taken into account in the calculation of R(a‘a’, a*a'). To see this one separates p; factors from a* and a*
and p» factors from @’ and a':

P1 3 p2 P4
i-j _ eSS
a'a aaq---aa-----a (B.4)
aat = a---ad----aa---aa-- (B.5)
e Ve
P1 p3 P2 Pa

Different values for p; and po, that fulfill the condition (B.2) lead to different separations of R(a‘a’,a*a’)
into the four basic coquasitriangular structures, but how often does such a separation appear? There are

(* 1;;”3) (p"’;;p“) ways to separate p; factors from a’ and p, factors from @’; secondly the permutation of the

a’s and a’s leads to a factor (p1 + pa)!(p2 + p3)!. Then the coquasitriangular structure can be written as:

%,J
R(a'd,aba') = 3 <p1+p3) (pﬁp“) (p1 + pa)!(p2 + p3)!R(a, ) R(a, @)"> R (a, @) R (@, a)"*. (B.6)
~ b1 D2
P1,p2=0
(B.2)

The sum in (B.6) corresponds exactly to the multiple counting, so that (B.1) can be written as:

+n=r+ - _ _
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Here the symbols

( q >:q’ (B.7)
P1, P2, D3, P4 D1!p2!pslps!

are the multinomial coefficients which occur in the multinomial formula

@ttay = S (1 Jaar (B3)
p » Pn

p1t-+pn=q L

In the fermionic case one has to prove, analogously, that

uowv = ZR(u(l),v(l))u(g)v@) = u exp ZR(fi, fj)gfcgfi v (B.9)

5]

foru = f;, --- fi, and v = f;, --- f;,. In the p-th order one combines the coproduct terms of the permutations
o for w and ¢ for v that lead to
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4,9

where one uses the relation (3.80) for the fermionic coquasitriangular structure. The expression (B.10) is
just the p-th order term in the exponential form.
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