
On Representing Relationships in
Object-Oriented Databases

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
der Universität Dortmund
am Fachbereich Informatik

von
Torsten Polle

Dortmund
2000



Tag der mündlichen Prüfung: 29.10.1999
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Abstract

Things in the real world, which surrounds us, do not come as singularity, rather we find
them associated. These relationships occur in various forms, for example a person and
a car owned by that very person are things associated via the ownership association.

When designing a database for an application, we have to identify and model things
pertaining to the application and their relationships. To ease this task, an object-
oriented data model offers to model identified things as objects. We model relationships
between things as attributes of the corresponding objects. So we introduce for instance
for a person and its car objects and define for the “person” object an attribute “owns”
holding an reference to the “car” object, or the other way round, i. e., the “car” object
receives an attribute holding a reference to the person object. This modelling technique
finds its limits when three or more things are associated.

In this work we give a solution to this problem by using first a data model that
directly supports relationships, namely the entity-relationship data model, and then by
translating results into an object-oriented data model. We propose a transformation
called pivoting to derive different representations from the initial translation results in
a systematic way, and we compare the different representations with respect to their
quality. To measure the quality, we give rigorous and precise quality measurements. To
do so, we need and subsequently define a formal object-oriented data model and a formal
way to tell whether two representations represent the same section of the real world.

Kurzfassung

Dinge in unserer Umwelt stehen häufig nicht nur für sich allein, sondern sie stehen in
Beziehung zu anderen Dingen der Welt. Diese Beziehungen kommen in den unterschied-
lichsten Ausprägungen vor, so gibt es beispielsweise Personen und Autos, die diesen
Personen gehören.

Beim Entwurf von Informationssystemen müssen wir nun diese Dinge sowie die zu-
gehörigen Beziehungen identifizieren und modellieren. Bei einem objektorientierten Da-
tenmodell lassen sich Beziehungen als Attribute von Objekten modellieren. Auf Personen
und Autos bezogen bedeutet das, daß wir Objekte für Personen und Objekte für Autos
modellieren und ein Personenobjekt mit einem Attribut versehen, das auf das der Person
gehörende Auto verweist. Allerdings scheitert diese Modellierungsart, wenn es sich um
Beziehungen mit mehr als drei Objekten handelt.

In dieser Arbeit stellen wir eine Lösung dieses Problems vor, die darauf beruht,
ein Datenmodell zu verwenden, das Beziehungen direkt modelliert. Wir benutzen das
Entity-Relationship Datenmodell. Eine erfolgreiche Modellierung übersetzen wir an-
schließend in ein objektorientiertes Datenmodell. Anschließend können wir das Resultat
noch weiter bearbeiten und erhalten so unterschiedliche Alternativen zur Darstellung
der ursprünglichen Beziehung. Um sicher zu stellen, daß die verschiedenen Alternativen
auch den gleichen Ausschnitt aus der realen Welt darstellen, verwenden wir einen for-
malen Äquivalenzbegriff. Weiterhin untersuchen wir die Alternativen in bezug auf ihre
Qualität, wobei wir Qualität mittels formaler Indikatoren messen.
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Chapter 1

Introduction

In today’s world we are literally inundated by a data flood, which stems from various
sources. Because of this flood the data itself becomes meaningless, and therefore we
have to harness the flood. We virtually canalise the data into a data stream. In order
to gather information from this stream, we divert portions, which are sometimes mere
data trickles being distilled into information. How do we accomplish this feat? We
have to find a model representing the section in the real world under consideration. We
obtain such a model by abstracting certain aspects of facts in the reality. The process
of obtaining a model starts by analysing the relevant section in the real world.

To put the analysis on formal grounds, we need a formal language to express our
models, a data model. We call such a data model a conceptual data model or conceptual
model for short. We use the term conceptual, because we want to capture the concepts
of the section in the real world. A concrete description of a section expressed in the
data model is a schema. A schema consists of two components; one for structuring data
and one for restricting data complying with the structure description. The actual data
stored under a schema is called an extension.

Another way in dealing with the data flood is the use of computer systems. Com-
puters are very good at doing things we tell them to do very fast and accurate. So in
principle, they offer support for this task. In fact, this was realised a long time ago.
So called database management systems (DBMS) were invented. What is a database
management system? A database management system (cf. [Bis95b]) serves

• to store

• a large amount of data

• persistently,

• dependable,

• shared, and

• efficiently, i. e. supporting queries and updates.

1



2 CHAPTER 1. INTRODUCTION

Usually a database management system needs a description of the data to be stored. We
need a language to express these descriptions, a data model. For this kind of data model
we use the term physical data model, physical model for short, because we give physical
specifications such as the types of access to records, indices, ordering and physical place-
ment [BLN86]. Again we call the description a schema, a physical schema, and the data
to be stored an extension, a physical extension. An actual schema and an extension of
this schema is called a database.

There are a number of data models around, which follow different paradigms. They
are grouped according to the paradigm they follow into classes like: hierarchical data
models, relational data models, object-oriented data models [Ull88, EN94, AHV95].

Although the mainstream of research has shifted from database design to other fields,
object-oriented database design still needs more work [Kim95, ME96]. In this spirit we
want to make a contribution to object-oriented database design.

In principle, every physical model can be used in the way a conceptual model is.
Indeed, this is done extensively for object-oriented database design. Mostly a variant
is used, which drops some of the physical specification features and which is enhanced
by more conceptual features. This approach has the advantage that a mapping from
the “conceptual” model to the “physical” model is straightforward. A disadvantage of
this approach is that in the section in the real world there are entities and relationships
among them. But the object-oriented model offers only a natural solution for the repre-
sentation of binary relationships. However in reality, relationships are not only binary.
For that reason, we advocate the use of a conceptual model that offers the concept of a
relationship of greater arity than two. Then a conceptual schema expressed in the con-
ceptual model has to be mapped to the physical object-oriented model, when we design
for a DBMS following the object-oriented paradigm. As conceptual model we settle on
the entity-relationship model (ER-model) initially proposed by Chen [Che76], because
it fully meets the aforementioned requirements. The ER-model underwent many revi-
sions and enhancements [ABLV83, CL80, TYF86, KS88, NP88, STH91, GC91, Tha93a,
HMPR93, dBL93, JOS93, Hoh93, Gog94, ON95].

This decision provokes a new problem, which we are willing to accept. We have
to map a conceptual schema to a physical schema. Therefore Biskup et. al. [BMP96]
propose a three step method to design physical object-oriented databases (cf. Fig. 1.1).

• At the first step of conceptual modelling an entity-relationship schema is con-
structed. This is done by analysing the requirements of an application, which
constitutes the section in the real world. The constructed ER-schema can then
be augmented to capture a larger section in the real world, or we can integrate
existing ER-schemas.

• At the second step of abstract logical formalisation the initial entity-relationship
schema is transformed into an abstract object-oriented schema. They use F-
logic [KLW95] as basis for the target model. The abstract object-oriented schema
can be further improved at this step, in order to exploit object-oriented features.
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optimisation

entity-relationship schema

abstract logical formalisation

semantic modelling

abstract object-oriented schema

concrete class declarations

concrete object-oriented schema

augmentation
integration

tuning

iteration
improvements

Figure 1.1: A three-step method for object-oriented database design

• At the third step of concrete class declarations the intermediate abstract object-
oriented schema is expressed as concrete class declarations of an object-oriented
DBMS. We do not deal with this step in this work at all. At this step the schema
can be finely tuned and optimised for the specific features offered by the DBMS,
which is used.

The reason for the intermediate step is that we can concentrate on particular aspects of
design and screen off all disturbing elements. Working in the entity-relationship model at
the first step, a designer only has to identify which entities and relationships constitute
the application domain without having to think in terms of only binary relationships or
to think about the physical placement. She benefits from the graphical representation
of ER-schemas as ER-diagrams as well.

Given a real world application, a database designer has to find a description that
models the application. In this task she is often confronted with the problem that there
are various descriptions for the same application. To facilitate the task of selecting the
most appropriate, criteria have been developed to measure the quality of descriptions.
The measures are given in different guises; some are mere heuristics, others are for-
malised. Surely, when we want to open database design to algorithmic treatment, we
prefer the latter. Formalising measures presupposes a precise and well-founded data
model. F-logic or better a data model based on F-logic appears to be ideally qualified
to serve as formal reference model. For at least in principle all important concepts of
object-oriented data models concerning data representation and storing, data deduction,
integrity maintenance, and high-level querying can be made fully precise within an F-
logic based data model. In that way we can apply formal measures for object-oriented
data models to schemas obtained in the first step, provided we have a transformation
from the ER-model to the object-oriented model. A schema being thus produced can
be improved according to the measures.
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Semantic constraints play a vital rôle in these improvements, because they are able to
capture the dynamics of the real world. They do so by telling which transitions between
extensions are permissible.

Often when different applications work in the same section in the real world, the
efforts of enforcing semantic constraints are duplicated in every application. Every
application has its own code for the enforcement. Fig. 1.2 depicts this situation for two
applications.

code

DBMS

code

enforcement

code
application

native

Application 2Application 1

native
application

code

enforcement

code

Figure 1.2: Duplicated enforcement code

Since the applications work on the same section in the real world, there must exist
semantic constraints that are enforced by both applications. A careful investigation,
formalisation and classification might reveal these constraints, because when the en-
forcement of semantic constraints is embedded in the application code, the same class
of semantic constraints occurs in different guises. A situation is desirable where we min-
imise or even erase the portion of code in an application responsible for the enforcement
of semantic constraints. Instead the code is placed in the database management system
(Fig. 1.3). A better option still is when the data model can enforce the constraints
through the model rather then trough the code.

We deal in this work not with a general classification of semantic constraints in
object-oriented data models. Our attention lies on semantic constraints involved in the
process of representing relationships in object-oriented data models.

We concentrate in the first step of conceptual modelling more on the structural
aspects of the application domain, i. e., we focus on determining the basic entities and
their relationships. In the second step of abstract logical formalisation we decide on
how to represent the relationships by grouping the corresponding data around objects.
This decision and how to reach it on formal grounds is the main concern of this work.
Our main means in the examination are onto constraints [Tha93a] and path functional
dependencies [Wed89, Wed92], which we combine in this work. Onto constraints can be
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Figure 1.3: Common enforcement code

seen as variants of inclusion dependencies expressed in the relational data model. The
notation of an onto constraint has been mentioned by Thalheim [Tha93a] without giving
it a name. Path functional dependencies are a generalisation of functional dependencies
in the relational data model. To work with these semantic constraints, we give inference
rules for the combination of onto constraints and path functional dependencies and show
them to be sound and complete.

One criterion to measure the quality of schemas is redundancy. This work focuses
especially on redundancy in object-oriented representations of relationships. We do not
want duplicated data that essentially holds the same information. Our idea of removing
redundancy is to introduce a new object storing the redundant data just once and
replacing the redundant data everywhere else by a handle to this object. The objects
formerly holding the redundant data share the data after this process. This process
takes place at the data level. What we want is to identify these situations at design
time, i. e. at the schema level. A schema is said to have potential redundancy if any of
its extensions contains redundant data.

A second criterion to assess the quality of a schema is the algorithmic complexity
of enforcing semantic constraints. What are the costs of performing updates on exist-
ing data and ensuring that the resulting data still is in compliance with the semantic
constraints.

We propose a transformation for object-oriented data models, called pivoting, which
has an impact on both the redundancy potential of a schema and the costs for enforcing
semantic constraints under updates. Given our formal data model, we can analyse this
impact formally.

This work is organised as follows. In Chapter 2 we lay the foundations for our formal
object-oriented data model. In that chapter we present a slight simplified version of
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F-logic [KLW95]. We show that the concept of predicate definitions used in predicate
logic can be adapted to F-logic. Having set out our basis, we introduce and discuss our
formal object-oriented data model in Chap. 3. Based on F-logic, our data model comes
with a formal syntax and semantics, which is essential for our investigations. Based
on this data model, we formally define three classes of dependencies: onto constraints,
class inclusion constraints and path functional dependencies in Chap. 4. Class inclu-
sion constraints had to be invented for technical reasons. Without them we could not
present the sound and complete axiomatisation for onto constraints and path functional
dependencies. The axiomatisation lays the foundations to make our ensuing results
amenable to algorithmic treatment. The inference rules are an extension of Weddell’s
inference rules [Wed89, Wed92], which deal with path functional dependencies alone in
a semantic data model without inheritance. In the annex to that chapter we roughly
discuss possible extensions to this work. As we draw our attention to the representation
of relationships, we only sketch a canonical transformation from the ER-model to our
object-oriented data model and give references for further reading in Chap. 5. When
dealing with transformations in data models, the relation between input and output is
of concern. We define a framework for the comparison of schemas in Chap. 6. We do
this in our logical framework by means of molecule definitions. They enable us to define
schema and extension transformations, so called translation schemes [MR96, MR98].
Our framework allows us to formulate formulae speaking about schema aspects. Our
revision of translation schemes offers to translate these formulae as well. That chap-
ter concludes with a comparison of different approaches to equivalence of databases in
object-oriented data models. For the comparison we define the other approaches in our
notation. Finally, Chapter 7 brings together the previous results and combines them to
define the transformation pivoting and to analyse it. We show when pivoting produces
an output equivalent to the input schema. Additionally, we investigate the impact of
pivoting on semantic constraints. Of special interest are path functional dependencies.
This investigation is coupled with an analysis of how pivoting behaves with respect to
the aforementioned quality measures. The results are then compared with the relational
model.

Before we embark on our work, we present two examples accompanying us through-
out this work. The first one is the “good” example. The second one is the “bad”
example. We do not reveal what makes the first one “good” and the second one “bad”
until Chap. 7. The examples are both given as entity-relationship diagrams, and we
assume the reader to be familiar with the entity-relationship data model. In our no-
tation rectangles ( ) denote entity sets, diamonds ( ) denote relationship sets
and ellipses ( ) denote attributes.

Example 1.1

We start with the presentation of the “good” example. We give in Fig. 1.4 an example of
a conceptual schema an experienced designer would intuitively tend to model with smaller
relationships. The ER-diagram reflects the Assignment from Teachers and Assistants to
Courses in combination with the Date they take place at, and Rooms and Wings they
are taught in. The semantic constraints are added later in the refinement of the original
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conceptual schema. They can be already declared in the conceptual schema, but we refrain
from doing so, because it would overload the diagram. For every Course there is assigned
exactly one Assistant and it takes place at only one Date. At this school each Teacher is
assigned a fixed Room. Additionally, each Room is situated in only one Wing.

title

Assistant

Course

name

address Wing year

Date

month

daywing

assistant date

teacher Teacher name

name Room

course
Assignment

size

room

Figure 1.4: An ER-digram of the “good” example

And now to the “bad” example. One might consider the design below as unfit. Still
it is chosen with full purpose and is used to demonstrate how it can be improved in
Chap. 7.

Example 1.2

Suppose a database designer, be it an experienced one or not, is given the task to model
the following scenario. In a modern office1 a phone belongs to the standard equipment.
We assume in this scenario the absence of mobile phones2. At the end of each month
someone has to be charged for the accrued telecommunication costs. For simplicity we
assume further that one faculty is charged with the cost of at most one phone identified
by its phone number. To make matters more complicated, perhaps we should call at
this point for an experienced database designer, the bill is sent to the school for which
a person works. Finally, schools are grouped into departments for better handling. For
example each department is alloted a stock of phone numbers, preferably some with the
same prefix.

A first attempt to formalise this scenario is to draw a nice entity-relationship diagram,
like the one in Fig. 1.5. The diagram in Fig. 1.5 is far from being complete for various
reasons.

• It does not capture relationships like “a faculty is charged with the cost of at most
one phone”.

• It does not provide for the recording of phone calls, and

• the subsequent billing.
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Figure 1.5: An ER-diagram of a phone administration.

Nevertheless, we are convinced that this design is a realistic one a designer will come
forward with, because she starts laying out the four entity sets Faculty, School, Phone
and Department as formalisation of the corresponding real world entities. In a next
step the stated complex (real world) relationship is modelled as relationship set Phone-
admin. Only in a second attempt this relationship is decomposed into smaller fragments
by analysing the relation between the entities. Every faculty member works in exactly
one school. She has at most one phone at her disposal. Each school is integrated within
exactly one department, and finally exactly one department is responsible for the ad-
ministration of phone numbers. All these restrictions can be formalised as cardinality
constraints [Tha93b], but again we refrain from doing so until Chap. 5.

1As can be found in almost all universities.
2Remember it could be a university.



Chapter 2

F-Logic

Logic programming has had a profound impact on databases [GM92]. The theory
of logic programming has been used to provide a solid theoretical foundation for
databases. We follow this approach by using a deductive and object-oriented data
model. A number of deductive and object-oriented database languages has been pro-
posed, such as O-logic [Mai86], revised O-logic [KW89], C-logic [CW89], HiLog [CC89],
IQL [AK89], IQL2 [Abi90], F-logic[KL89a, KLW95], LOGRES [CCCR+90], LLO [LÖ90],
LOL [BM92], Datalogmethod [ALUW93], Coral++ [SRSS93], DLT [BB93], Gulog [DT95],
Rock & Roll [BFP+95], DM logic [DTM95], Sorted HiLog [CK95] and ROL [Liu96].
From this palette we choose F-logic as the basis for our data model, because it is a
very powerful language, although it does not treat sets as first class citizens [Liu96].
This choice is motivated by the appropriate combination of expressiveness and flexibil-
ity, which F-logic offers. In particular we can base our investigations on the precise and
formal semantics. For at least in principle, all important aspects concerning data rep-
resentation and storing, data deduction, integrity maintenance and high-level querying
can be made fully precise within F-logic. So it is an ideal tool for our needs.

F-logic is a rich and powerful language that uniformly combines the highlights of
deductive and object-oriented databases. Incorporating the object-oriented paradigm,
F-logic accounts for most of the structural aspects of object-oriented languages.

• F-logic supports object identity by means of logical object identifiers.

• Objects are built from frames, so they have an internal structure and thus can
form complex objects.

• Objects with a common structure can be grouped into classes. The classes can
build a class hierarchy.

• Signatures as types of operations are inherited to subclasses.

On the side of the deductive paradigm F-logic has

• a syntax, which, among other things, allows the user to explore schema and data
using the same declarative language,

9
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• a model theoretic semantics, which offers a precise semantics and is supplemented
by a sound and complete proof theory, and

• a sound and complete operational semantics.

For our purposes we slim down F-logic a little bit. We will only deal with non-inheritable
data expressions.

2.1 Syntax

F-logic comes with a higher-order syntax, but the underlying semantics remains first-
order. An F-logic language is defined over an alphabet. It consists of object constructors,
which play the rôle of functional symbols, predicate symbols, variables, some auxiliary
symbols and the usual logical connectives and quantifiers.

Definition 2.1 (Alphabet)

The alphabet A of an F-logic language, L, consists of,

• a set of object constructors F ,

• a set of predicate symbols P including the equality predicate
◦
=,

• an infinite set of variables V,

• auxiliary symbols, such as, (, ), [, ], →, →→, ⇒, ⇒⇒, etc., and

• usual logical connectives and quantifiers, ∨, ∧, ¬, ←− , ∀, ∃, ∃=1.

The set of object constructors F and the set of predicate symbols P are disjoint, F∩P =
∅. We denote the union F∪P of the set of object constructors F and of predicate symbols
P by S.

Each object constructor has an arity — a non-negative integer that determines how
many arguments this constructor can take. Constructors of arity 0 play the rôle of
constant symbols; constructors of arity greater than 1 are used to construct larger terms
out of simpler ones. Such id-terms are first-order terms composed of object constructors
and variables, as in predicate calculus.

Definition 2.2 (id-Term)

Let A be an alphabet. Id-terms over the alphabet A are built out of object constructors
and variables.

• An object constructor c ∈ F of arity 0 is an id-term.

• A variable V ∈ V is an id-term.

• If f ∈ F is an object constructor of arity n, and T1, . . . , Tn are id-terms, then
f(T1, . . . , Tn) is an id-term.
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• An id-term is called ground if it is variable-free. The set of all ground id-terms is
denoted by U(F). This set is commonly known as Herbrand Universe.

Ground id-terms play the rôle of logical object identifiers. They are an abstraction of
the implementational concept of physical object identity.

We have the convention for alphabets and id-terms that symbols set in sans-serif font
are ground and symbols set in italic font beginning with lower-case letters are ground
while symbols beginning with capital letters denote id-terms that may be non-ground.

Example 2.3

The terms X, bob, alice, child(bob), child(X) are id-terms. Following the convention,
here bob, alice, child(bob) are ground id-terms and X, child(X) are non-ground id-terms,
because both contain variable X.

In predicate calculus, the atom formulae are facts. In F-logic the atom formulae are built
from molecular formulae, which state facts about objects and classes. These molecular
formulae are of different forms. Some take the form “id-term operator id-term”, so-
called is-a assertions. Some take the form of frames, where methods take the rôle of
slots. These are called object molecules and define the method values for objects and
their signatures. For our purposes we modify F-logic slightly. In particular, we shall
not use so-called inheritable data expressions, only non-inheritable data expressions.
Therefore we do not introduce inheritable data expressions at all. The interested reader
is referred to [KLW95] for more detail on the distinction between inheritable and non-
inheritable data expressions. As both form an orthogonal feature of F-logic, the modified
definitions do not raise any problems.

Definition 2.4 (Molecular Formula)

Let A be an alphabet. A molecule over alphabet A in F-logic is one of the following
statements:

1. An is-a assertion of the form C :: D or of the form O : C, where C, D and O are
id-terms over alphabet A.

2. An object molecule of the form O[“;”-separated list of method expressions], where
O is an id-term over the alphabet A. A method expression can be either a data
expression or a signature expression.

• Data expressions take one of the following two forms:

– a scalar data expression (k ≥ 0):

M @ Q1, . . . , Qk → T ,

– a set-valued data expression (l,m ≥ 0):

M ′ @ R1, . . . , Rl →→ {S1, . . . , Sm} ,

where M , Q1, . . . , Qk, T , M ′, R1, . . . , Rl, and S1, . . . , Sm are id-terms over
alphabet A.
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• Signature expressions also take two forms:

– a scalar signature expression (n, r ≥ 0):

M @ V1, . . . , Vn ⇒ (A1, . . . , Ar) ,

– a set-valued signature expression (s, t ≥ 0):

M ′ @ W1, . . . ,Ws ⇒⇒ (B1, . . . , Bt) ,

where M , V1, . . . , Vn, A1, . . . , Ar, M
′, W1, . . . ,Ws, and B1, . . . , Bt are id-

terms over alphabet A.

3. A predicate molecule (abbrev. P-molecule) of the form p(T1, . . . , Tn), where p ∈ P
is an n-ary predicate symbol and T1, . . . , Tn are id-terms over alphabet A.

Is-a assertions of the form C :: D in (1) state that class C is a subclass of class D and
of the form O : C that object O is in the extension of class C.

Example 2.5

The following is-a assertion states that the object representing person Bob is in class
Faculty, thereby modelling the fact that Bob is employed as faculty. The next one states
that the object representing person Alice is in class Person. The last is-a assertion
indicates that every faculty is also a person.

bob : Faculty
alice : Person
Faculty :: Person

In object molecules in (2) the id-term O denotes an object. In data expressions, methods
are either invoked as scalar methods or set-valued methods on object O. Single headed
arrows,→ and⇒, indicate that method M denotes a scalar function. The double headed
arrows, →→ and ⇒⇒, indicate that the corresponding method is set-valued.

The return values of the method invocation on object O are represented by T and
S1, . . . , Sm for scalar and set-valued methods, respectively. In signature expressions, the
id-terms V1, . . . , Vn and W1, . . . ,Ws represent the types of the arguments a method is
invoked with. The types of the return values of the method invocation are represented
by A1, . . . , Ar and B1, . . . , Bt. The results returned by the respective functions must
belong to all result types.

Example 2.6

The object molecule bob[children @ alice →→ {john}] contains the set-valued data ex-
pression children @ alice →→ {john}. The object molecule states that the invocation
of the respective function for method children on the object corresponding to id-term
bob with an argument object corresponding to alice returns at least the object corre-
sponding to id-term john. The signature for method children on class Person might be
Person[children @ Person ⇒⇒ (Person)]. It demands that the invocation of the respec-
tive function for method children on objects of the class corresponding to id-term Person
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takes objects of the class corresponding to id-term Person and returns objects of the class
corresponding to id-term Person.

The polymorphism of F-logic allows the simultaneous declaration of object molecule
Person[children @⇒⇒ (Person)]. Here method children is invoked without arguments. This
declaration might be appropriate if method children without arguments is defined to return
the union of the results when the method is invoked with arguments, thereby defining the
value.

In most cases it is possible to relax the strict syntax. We shall not define this relax-
ations formally rather we give an example for it, to give the reader a flavour.

bob : Faculty, alice : Person, john : Person,
Faculty :: Person,
bob[children @ alice→→ {john}],
bob[children @→→ {john}]

is on a par with

Faculty :: Person,
bob : Faculty[children @ alice : Person→→ john : Person;

children→→ john] .

Sometimes we normalise molecules by breaking them apart into their constituent atoms.
The semantics of F-logic ensures that an object molecule is logically on a par with its
set of constituent atoms.

Definition 2.7 (Constituent Atom)

Let G be a molecule.

• If the molecule G is an is-a assertion or P-molecule, it is a constituent atom.

• If the molecule G is an object molecule of the form G = O[method expressions],
the constituent atoms are:

– For every scalar data expression M @ Q1, . . . , Qk → T in molecule G, the
corresponding constituent atom is:

O[M @ Q1, . . . , Qk → T ] .

– For every set-valued data expression M ′ @ R1, . . . , Rl →→ {S1, . . . , Sm} in
molecule G, the corresponding constituent atoms are:

O[M ′ @ R1, . . . , Rl →→ {}] , and

O[M ′ @ R1, . . . , Rl →→ Si] for i ∈ {1, . . . ,m}.
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– For every signature expression1 M @ V1, . . . , Vn ≈> (B1, . . . , Bt) in molecule
G, the corresponding constituent atoms are:

O[M @ V1, . . . , Vn ≈> ( )] , and

O[M @ V1, . . . , Vn ≈> Bi] for i ∈ {1, . . . , t}.

The syntactic restrictions on id-terms when they occur as results of set-valued methods
guarantee that they stand for only elements not sets of elements. The semantics of these
id-terms can be seen as being iterative and thus ensuring the first-order semantics.

In F-logic, it follows from the syntax that every logical id-term can denote either
an entity or a method, depending on the syntactic position of this id-term within the
formula. An entity in this context should be taken to mean it can either be a class or an
object. In an occurrence as a method, this id-term denotes either a scalar function or a
set-valued function. The type of the invocation can be determined by the context. This
behaviour might be appropriate for some applications. We do not need this freedom
and, consequently, impose a restriction on id-terms in Chap. 3.

With molecular formulae as ingredients, we can build larger formulae, so-called F-
formulae.

Definition 2.8 (F-Formula)

Let A be an alphabet. F-formulae over the alphabet A are built up from simpler F-
formulae by means of logical connectives and quantifiers:

• Molecular formulae over the alphabet A are F-formulae over the alphabet A,

• α ∨ β, α ∧ β, ¬α are F-formulae over the alphabet A, if so are α and β, and

• (∀X)α, (∃Y ) β, (∃=1Z) γ are F-formulae over the alphabet A, if so are α, β, γ
and X, Y, Z ∈ V are variables.

If S is the set of symbols of the alphabet A and α is an F-formula over the alphabet A,
then we say α is an S-formula. This parlance is intensively used in Sec. 2.5.

Throughout this work, we shall often use the implication connective, “←− ”. In
F-logic, this connective is defined as usual. The formula α ←− β stands for α ∨ ¬β.

Definition 2.9 (F-Logic Language)

Let A be an alphabet. The F-logic language L over the alphabet A is the set of all
F-formulae over the alphabet A.

Example 2.10

The construct
P [children→→ C] ←− P [children @ S →→ C]

is an F-formula with P , C and S as variables and children as object constructor according
to our convention.

1The arrow ≈> in the signature expression M @ V1, . . . , Vn ≈> (B1, . . . , Bt) stands for both kinds of
arrows either ⇒ or ⇒⇒. So with the signature expression above the statement is valid for both scalar
and set-valued signature expressions.
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In the sequel we deal with certain concepts, so we define abbreviations for them here.

Definition 2.11 (Literal, F-Horn-rule)

Let L be an F-logic language.

• A literal is either a molecular formula, called positive literal, or a negation of a
molecular formula, called negative literal.

• A formula head ←− body where head is a positive literal and body is a conjunction
of positive literals is called an F-Horn-rule, corresponding to their counterpart,
Horn-rules, in classical logic.

The formula in Exam. 2.10 is an F-Horn-rule.

Definition 2.12 (Free and Bound Occurrence of Variables)

Let α, β be F-formulae.

• If α is a molecule, all occurrences of variables in α are free.

• Let X be a variable occurring free in α or β.

– Variable X occurs free in α ∨ β, α ∧ β, ¬α, (∀Y )α, (∃Y )α, (∃=1Y )α, where
X 6= Y .

– Variable X occurs bound in (∀X)α, (∃X)α, (∃=1X)α.

Definition 2.13 (Closed and Classical F-Formula)

• An F-formula is a closed F-formula or sentence, if all variable occurrences in it
are bound.

• An F-formula is a classical F-formula, if all molecules occurring in it are P-
molecules.

2.2 Semantics

As mentioned before, F-logic is furnished with a first-order, model-theoretic semantics.
Semantic structures that describe the potential worlds are called F-structures. These
structures give meaning to classes, objects, methods and alike. In preparation for the
definition of F-structures, Def. 2.15, we need the following auxiliary definitions.

Definition 2.14

Let U , V be a pair of sets, and ≺U and ≺V be partial orders defined on U and V ,
respectively.

• The set of all total functions U 7→ V is denoted by Total(U, V ).

• Similarly, the set of all partial functions U 7→ V is denoted by Partial(U, V ).
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• The expression PartialAntiMonotone≺U ,≺V (U, V ) stands for the set of partial anti-
monotonic2 functions.

• The power-set of a set U is denoted by ℘(U).

• ℘↑(U) is the set of all upward-closed3 subsets of U .

• Given the collection of sets {Si}i∈N parameterised by the natural numbers, N,∏∞
i=0 Si stands for the Cartesian product of the Si’s, i. e., the set of all infinite

tuples, 〈s0, . . . , sn, . . .〉.

Now we are ready to define F-structures.

Definition 2.15 (F-Structure)

Let L be an F-logic language. An F-structure is a tuple

I = 〈U ,≺U ,∈U , IF , IP , I→, I→→, I⇒, I⇒⇒〉 .

Here

• U is the domain of I (sometimes denoted I(U)),

• ≺U is a partial order on U for the class hierarchy, we write a �U b if a ≺U b or
a = b,

• ∈U is a binary relation over U for the population of classes, such that if u ∈U v
and v ≺U w, then u ∈U w.

• IF is a mapping, F 7→
⋃∞
i=0 Total(U i, U), for the interpretation of object construc-

tors (sometimes denoted I(F)),

• IP(·) is a relation on U , IP(p) ⊂ Un, for any n-ary predicate symbol p ∈ P\{ ◦=},
and IP(

◦
=) := {〈a, a〉 | a ∈ U} (sometimes denoted I(P)),

• I→ is a mapping, I→ : U 7→
∏∞

k=0 Partial(Uk+1, U), for the interpretation of scalar
methods,

• I→→ is a mapping, I→→ : U 7→
∏∞

k=0 Partial(Uk+1, ℘(U)), for the interpretation of
set-valued methods,

• I⇒, I⇒⇒ are mappings, U 7→
∏∞

k=0 PartialAntiMonotone~≺
Uk+1 ,⊂(Uk+1, ℘↑(U)), for

the interpretation of signatures, where ~≺Uk+1 is the extension of ≺U on Uk+1 with:
for any (u1, . . . , uk+1), (v1, . . . , vk+1) ∈ Uk+1, we write

(u1, . . . , uk+1)~≺Uk+1(v1, . . . , vk+1)

if ui ≺U vi for all i ∈ {1, . . . , k + 1}.
2For the partial function ρ : U 7→ V , anti-monotonic means that if u, v ∈ U , u ≺U v, and ρ(v) is

defined, then ρ(u) is also defined and ρ(u) �V ρ(v).
3A subset U ′ of U is upward-closed, if for all v ∈ U ′, u ∈ U with v ≺U u, then u ∈ U ′.
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The domain U constitutes the universe of discourse. Its elements stand for classes,
objects and methods. The elements of U(F), ground id-terms, play the rôle of logical
object identifiers. They are interpreted by the elements in U via the mapping IF : F 7→⋃∞
i=0 Total(U i, U). This mapping interprets each k-ary object constructor by a total

function Uk 7→ U . For k = 0, IF(f) can be identified with an element of the domain U .
The semantic counterpart of the subclass hierarchy is put up by the ordering ≺U on

the domain U . An expression a ≺U b is interpreted as a statement that element a is a
subclass of element b. To model class memberships, we use the binary relation ∈U over
the domain U . An expression a ∈U b is interpreted as statement that element a is in the
extension of element b.

Id-terms can also denote methods. These methods are interpreted by the mappings
I→, I→→, I⇒, I⇒⇒. As methods are invoked on host objects with a list of arguments,
either as scalar methods or as set-valued methods depending on the context, an F-
structure has to attach appropriate functions to each method in order to assign meaning
to methods.

To allow the use of variables in id-terms at method positions, id-terms by themselves
are not interpreted as functions, instead the elements of U associated with these id-
terms via mapping IF are interpreted as tuples of functions. This tuple provides exactly
one function for each arity. This is because of the polymorphism of F-logic, since each
method can have different arities.

Furthermore, F-logic does not demand that every method invocation returns a proper
value. This is formally captured by the use of partial functions.

In addition to different arities, every method can be invoked as a scalar or set-valued
function. This is achieved by interpreting the set-valued incarnations of methods sepa-
rately. The interpretation of set-valued methods returns sets instead of just elements.

The arity of the interpreting function is one greater than the arity of the correspond-
ing method because the former takes the host object as argument.

The mappings I⇒ and I⇒⇒ specify the type of a method. This type is a functional
type, since methods are interpreted as functions. Therefore the allowed arguments and
results of method invocations are specified. In addition, the specification must allow for
the polymorphism. For the same reason we mentioned above, mappings relate objects
of the domain U to each other. The anti-monotonicity and upward-closeness are needed
to ensure that when the result type is specified, all its superclasses are a valid result
type as well.

The definition of an F-structure I depends on the set of symbols S underlying the
F-logic language L. Therefore we say sometimes an F-structure I is an S-structure.

An F-structure is an extension of a structure in classical logic. We can restrict an
F-structure to the classical components. Additionally, we can restrict an F-structure to
interpret only symbols in a subset of the original set of symbols.

Definition 2.16 (Restriction and Classical Restriction)

Let I = 〈U ,≺U ,∈U , IF , IP , I→, I→→, I⇒, I⇒⇒〉 be an S ′-structure, and S ⊂ S ′ be a set of
symbols.

• The restriction I�S is defined as I except for the interpretation of I�S(F) and
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I�S(P).

– I�S(F)(f) := IF(f) for all object constructors f ∈ S.

– I�S(P)(p) := IP(p) for all predicate symbols p ∈ S.

• The classical restriction IdS := 〈IdS(U), IdS(F), IdS(P)〉 is defined as follows:

– IdS(U) := U .

– IdS(F)(f) := IF(f) for all object constructors f ∈ S.

– IdS(P)(p) := IP(p) for all predicate symbols p ∈ S.

In the definition of an F-structure the relationship between I→ and I⇒, or I→→ and I⇒⇒,
respectively, is not fixed. Although I⇒ and I⇒⇒ specify the argument and result types,
so far this is not enforced. In Sect. 2.4 we will capture this on a meta level. Later on we
will use semantic constraints as defined in Sect. 3.1.

Now we come to the satisfaction of F-formulae by F-structures. Therefore we have to
assign variables to elements of the domain U and, subsequently, extend this assignment
over id-terms.

Definition 2.17 (Variable Assignment)

Let I be an F-structure. A variable assignment ν is a mapping from the set of variables
V to the domain U , ν : V 7→ U . Variable assignments extend to id-terms in the usual
way:

• ν(d) := IF(d) if d ∈ F has arity 0, and,

• recursively, ν(f(. . . , T, . . .)) := IF(f)(. . . , ν(T ), . . .).

The satisfaction of an F-formula by F-structures is defined inductively over the structure
of the formula. Therefore we define first what is meant by the satisfaction of F-molecules.
An is-a assertion C :: D or O : C is true if the corresponding objects ν(C), ν(D) and
ν(O) are properly related via ≺U and ∈U . An object molecule O[· · · ] is satisfied by an
F-structure I with respect to a variable assignment ν, if the corresponding object ν(O)
in I has properties it says it has. A P-molecule p(T1, . . . , Tn) is satisfied if the tuple of
interpreted id-terms 〈ν(T1), . . . , ν(Tn)〉 is an element of the interpretation of predicate
symbol p.

Definition 2.18 (Satisfaction of F-molecules)

Let I be an F-structure, ν be a variable assignment, and G be an F-molecule. The F-
molecule G is satisfied by the F-structure I with respect to the variable assignment ν,
denoted I |=ν G iff all of the following holds:

1. When G is an is-a assertion then:

(a) ν(C) �U ν(D), if G ≡ C :: D, or

(b) ν(O) ∈U ν(C), if G ≡ O : C.
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2. When G is an object molecule of the form O[method expressions], then for every
method expression E in G, the following conditions must hold:

(a) If E is a scalar data expression of the form M @ Q1, . . . , Qk → T , the element
I(k)
→ (ν(M))(ν(O), ν(Q1), . . . , ν(Qk))

4 must be defined and equal ν(T ).

(b) If E is a set-valued data expression, M ′ @ R1, . . . , Rl →→ {S1, . . . , Sm}, the
set I(l)

→→(ν(M ′))(ν(O), ν(R1), . . . , ν(Rl)) must be defined and contain the set
{ν(S1), . . . , ν(Sm)}.

(c) If E is a scalar signature expression, N @ V1, . . . , Vn ⇒ (A1, . . . , Ar), then
the set I(n)

⇒ (ν(N))(ν(O), ν(V1), . . . , ν(Vn)) must be defined and contain the set
{ν(A1), . . . , ν(Ar)}.

(d) If E is a set-valued signature expression, N ′ @ W1, . . . ,Ws ⇒⇒ (B1, . . . , Bt),
then the set I(s)

⇒⇒(ν(N ′))(ν(O), ν(W1), . . . , ν(Ws)) must be defined and contain
the set {ν(B1), . . . , ν(Bt)}.

3. When G is a predicate molecule of the form p(T1, . . . , Tn):
〈ν(T1), . . . , ν(Tn)〉 ∈ IP(p).

Instead of saying G is satisfied by I with respect to the variable assignment ν, we often
say G is true under I with respect to ν.

The satisfaction of an ordinary F-formula is now defined in the standard way.

Definition 2.19 (Satisfaction of F-formulae)

Let I be an F-structure, ν be a variable assignment, and γ be an F-formula. The
formula γ is satisfied by the F-structure I with respect to the variable assignment ν,
denoted I |=ν γ, iff all the following holds:

• I |=ν α or I |=ν β, if γ ≡ α ∨ β,

• I |=ν α and I |=ν β, if γ ≡ α ∧ β,

• I 6|=ν α , if γ ≡ ¬α,

• I |=µ α for every variable assignment µ that agrees with ν everywhere except
possibly on X, if γ ≡ (∀X)α,

• I |=µ α for some variable assignment µ that agrees with ν everywhere except
possibly on X, if γ ≡ (∃X)α, or

• I |=µ α for one and only one variable assignment µ that agrees with ν everywhere
except possibly on X, if γ ≡ (∃=1X)α.

Definition 2.20 (Model)

Let I be an F-structure, α be an F-formula, and Γ be a set of F-formulae.

4The expression I(k)
→ (ν(M)) denotes the k’s component in the Cartesian product I→(ν(M)).
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• F-structure I is a model of F-formula α, iff I |=ν α for all variable assignments
ν.

• F-formula α is logically implied or entailed by the set Γ, iff every model of Γ is a
model of α, written Γ |= α.

For a closed F-formula α, a formula without free variable occurrences, we can omit the
variable assignment ν and simply write I |= α, since the meaning of a closed formula is
independent of the choice of variable assignments.

2.3 Herbrand Structures

For our purpose, the design of object-oriented databases, it is always of advantage if not
a fundamental prerequisite to derive knowledge from the syntactic information provided
by schemas. This is supported by so-called Herbrand structures as known from classical
logic. There is a direct correspondence between F-structures and Herbrand structures,
the details of which lie beyond the scope of this work (cf. [KLW95] for more details).
Here we only present what is absolutely necessary for the understanding of our work.

Definition 2.21 (Herbrand Base)

Let L be an F-logic language. The Herbrand base of L, HB(F), is the set of all ground
molecules.

In classical logic a Herbrand structure is a simple subset of the Herbrand base. In F-
logic similar phenomena arise as in predicate calculus with equality. Ground molecules
may imply molecules in a non-trivial way. The source for this kind of implication is for
example the class hierarchy. For instance, the set of is-a assertions {a :: b, b :: c} implies
the is-a assertion a :: c. Because of this fact a Herbrand structure in F-logic is not only
a simple subset of the Herbrand base. It has to be closed under the logical implication,
“|=”.

Definition 2.22 (Herbrand Structure)

Let L be an F-logic language, and H ⊂ HB(F) be a subset of the Herbrand base. The
set H is a Herbrand structure (H-structure for short) :iff it is closed under the logical
implication, “|=”.

The satisfaction and logical entailment in H-structures is defined based on the member-
ship of ground molecules, thus relying strictly on syntactic material.

Definition 2.23 (Satisfaction of F-Formulae under H-Structures)

Let H be an H-structure. Then:

• A ground molecule t is true in H (denoted H |= t) :iff t ∈ H.

• A ground negative literal ¬t is true in H, H |= ¬t, :iff t 6∈ H.

• A ground clause L1 ∨ · · · ∨ Ln is true in H :iff at least one literal, Li, is true in
H.
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• A clause C is true in H :iff all ground instances of C are true in H.

If every clause in a set of clauses S is true in H, we say that H is a Herbrand model
(an H-model) of S.

As in classical logic, it is possible to convert all formulae into prenex normal form and
then to skolemise them. Skolemised formulae are then transformed into an equivalent
clausal form. So the satisfiability of clauses is sufficient to decide on the satisfiability of
general formulae.

2.4 Well-Typed Programmes

So far we have not defined the relationship between signature expressions and data
expressions. We do not present a detailed discussion of the concepts used, because a
thorough discussion is carried out in [KLW95]. Instead we give solely the rudimentary
definitions necessary for our expositions, especially in Sec. 3.1.

As it is done in strongly typed languages, a method should be only invoked when a
corresponding signature exists for that method. The arguments and results should then
obey the types declared by the signature expressions. The method invocation must be
covered by all its signature expressions.

Definition 2.24 (Typed H-Structure)

Let H be an H-structure.

1. If α is a data atom of the form o[m @ a1, . . . , ak ∼> v] ∈ H5 and β is a signature
atom of the form c[m @ b1, . . . , bk ≈> . . .], we shall say that β covers α if, for each
i = 1, . . . , k, we have o : c, ai : bi ∈ H.

2. We shall say that H is a typed H-structure if the following conditions hold:

(a) Every data atom in H is covered by a signature atom in H.

(b) If a data atom o[m @ a1, . . . , ak ∼> v] ∈ H is covered by a signature of the
form c[m @ b1, . . . , bk ≈> w] ∈ H, then v : w ∈ H.

Based on the notation of a typed H-structure, we give a generic definition for typed
canonic models [Prz88], that is models that reflect the intended semantics of a set of
F-formulae; the details of these models will be immaterial for the discussions that follow.

Definition 2.25 (Typed Canonic Model)

Let Γ be a set of F-formulae. A typed canonic model of Γ is a (usual) canonic model
for Γ that, in addition, is a typed H-structure.

Following the generic definition of typed canonic models, we define what it means that
a set of F-formulae is well-typed.

5By a misuse of notation v is either a ground id-term or { } if ∼> is →→.
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Definition 2.26 (Well-typed Programme)

Let Γ be a set of F-formulae. This set, Γ, is well-typed if every canonic H-model of Γ
is a typed canonic H-model. Otherwise, Γ is said to be ill-typed.

A well-typed programme is a set of F-formulae such that the data expressions are re-
stricted by the signature expressions. This is certainly what we want when dealing with
databases. But the definitions above are sometimes not easy to work with. There-
fore, we use semantic constraints in Sec. 3.1 that ensure that we work with well-typed
programmes.

2.5 Molecule Definitions

In classical logic, we sometimes define new symbols based on other symbols [HB69,
HB70, EFT92, Llo87]. These definitions do not increase the expressiveness, but often
it is more convenient. We show in this section that something similar holds for F-logic
as well, i. e., we can define new predicate symbols and object constructors as before and
additionally we can define the interpretations of F-molecules.

In some cases (cf. Sec. 6.1) we want to redefine existing predicate symbols. So given
a structure that already interprets the predicate symbol we want to redefine, we aim at
constructing a structure that interprets this predicate symbol differently and chimes in
with the original structure everywhere else. The way to do so is to rename the predicate
symbol, and bestow the new symbol, in the structure at hand, with the interpretation
of the original predicate symbol. Then the original predicate symbol becomes in terms
of the modified structure a new, virginal predicate symbol and thus free to be deployed
again.

Now we can encode the semantics of is-a assertions and object molecules with pred-
icates as well. So they interpret predefined predicate symbols, which are never explicitly
mentioned. Nevertheless we sometimes intend to change these predefined predicate sym-
bols. As with already existing predicate symbols intended for re-interpretation, we must
apply a renaming, which is harder to achieve, because their interpretation is hardwired
into the definition of F-structures. To alleviate this problem, we define F-structures
based on structures of the form I = (U,IP), which are purely relational structures. In
doing so, we show that F-logic or better our slimmed version of F-logic can be simulated
in classical logic. A fact that is claimed by the inventors of F-logic, but to our knowledge
has not been shown in public.

When we define predefined predicate symbols, we have to keep in mind that restric-
tions are imposed on them; for example the predicate for is-a assertions has to form a
partial order. These restrictions are met by means of the set Σ of sentences that confines
the set of interpretations to those that comply with the restrictions.

In the following a formula α(V1, . . . , Vn) is a formula with V1,. . . ,Vn as distinct free
variables. When we write α(T1, . . . , Tn) for such a formula, we denote the formula that
is the result of replacing every free occurrence of a variable Vi by an id-term Ti.

Definition 2.27 (S-Definition)

Let Σ be a set of classical S-sentences.
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1. Let p 6∈ S be a predicate symbol with arity n, and ϕp(V1, . . . , Vn) be a classical
S-formula. We say that

∀V1 · · · ∀Vn(p(V1, . . . , Vn)⇔ ϕp(V1, . . . , Vn))

is an S-definition of p in Σ.

2. Let f 6∈ S be an object constructor with arity n, and ϕf (V1, . . . , Vn+1) be a classical
S-formula. We say that

∀V1 · · ·Vn+1(f(V1, . . . , Vn)
◦
= Vn+1 ⇔ ϕf (V1, . . . , Vn+1))

is an S-definition of f in Σ, if

Σ |= ∀V1 · · · ∀Vn∃=1Vn+1 ϕf (V1, . . . , Vn+1) .

The sentence in the implication above ensures that the defining formula ϕf acts as
a total function, as it is required of the interpreting function assigned to an object
constructor.

3. Let ϕ::(C,D) be a classical S-formula. We say that

∀C∀D(C::D ⇔ ϕ::(C,D))

is an S-definition of :: in Σ, if

Σ |= ∀C ϕ::(C,C) ,

Σ |= ∀C∀D∀E(ϕ::(C,D) ∧ ϕ::(D,E)⇒ ϕ::(C,E)) ,

and
Σ |= ∀C∀D(ϕ::(C,D) ∧ ϕ::(D,C)⇒ C

◦
= D) .

The first sentence requires that the definition of :: is a reflexive relation. The
second requires the definition of :: to be a transitive relation. The third sentence
guarantees that the definition of :: is an anti-symmetric relation. Together, this
means the definition of :: is a partial order, as it is demanded of �U .

4. Let ϕ:(O,C) and ϕ::(C,D) be classical S-formulae. We say that

∀O∀C(O:C ⇔ ϕ:(O,C))

is an S-definition of : in Σ, if

Σ |= ∀O∀C∀D(ϕ:(O,C) ∧ ϕ::(C,D)⇒ ϕ:(O,D)) .

This formula captures the interplay between : and ::. So the definitions of : and ::
behave like ∈U and �U , respectively.
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5. Let ϕ→n(M,O,A1, . . . , An, R) be a classical S-formula. We say that

∀M∀O∀A1 · · · ∀An∀R(O[M @ A1, . . . , An → R]⇔ ϕ→n(M,O,A1, . . . , An, R))

is an S-definition of →n in Σ, if

Σ |= ∀M∀O∀A1 · · · ∀An∀R∀R′
(ϕ→n(M,O,A1, . . . , An, R) ∧ ϕ→n(M,O,A1, . . . , An, R

′)⇒ R
◦
= R′) .

→n represents a mapping to partial functions. This property is enforced by the
sentence above.

6. Let ϕσ→→n (M,O,A1, . . . , An) be a classical S-formula. We say that

∀M∀O∀A1 · · · ∀An(O[M @ A1, . . . , An →→ {}]⇔ ϕσ→→n (M,O,A1, . . . , An))

is an S-definition of { }n in Σ.

7. Let ϕ→→n(M,O,A1, . . . , An, R) and ϕσ→→n (M,O,A1, . . . , An) be classical S-
formulae. We say that

∀M∀O∀A1 · · · ∀An∀R(O[M @ A1, . . . , An →→ R]⇔ ϕ→→n(M,O,A1, . . . , An, R))

is an S-definition of →→n in Σ, if

Σ |= ∀M∀O∀A1 · · · ∀An∀R
(ϕ→→n(M,O,A1, . . . , An, R)⇒ ϕσ→→n (M,O,A1, . . . , An)) .

Whenever the invocation of a method on some host object yields a result, the in-
vocation of the method is defined and yields also the empty set.

8. Let ϕσ≈>n (M,C,A1, . . . , An) and ϕ::(C,D) be classical S-formulae. We say that

∀M∀C∀A1 · · · ∀An(C[M @ A1, . . . , An ≈> ( )]⇔ ϕσ≈>n (M,C,A1, . . . , An))

is an S-definition of ( )≈>n in Σ, if

Σ |= ∀M∀C∀A1 · · · ∀An
∀C ′∀A′1 · · ·A′n

(ϕ::(C,C
′) ∧ ϕ::(A1, A

′
1) ∧ · · · ∧ ϕ::(An, A

′
n) ∧ ϕσ≈>n (M,C ′, A′1, . . . , A

′
n)

⇒
ϕσ≈>n (M,C,A1, . . . , An)) .

This sentence is part of the formulae that capture the anti-monotonicity of the
definition of signatures.
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9. Let ϕ≈>n(M,C,A1, . . . , An, R), ϕ::(C,D) and ϕσ≈>n (M,C,A1, . . . , An) be classical
S-formulae. We say that

∀M∀C∀A1 · · · ∀An∀R(C[M @ A1, . . . , An ≈> R]⇔ ϕ≈>n(M,C,A1, . . . , An, R))

is an S-definition of ≈>n in Σ, if

Σ |= ∀M∀C∀A1 · · · ∀An∀R
∀C ′∀A′1 · · · ∀A′n

(ϕ::(C,C
′) ∧ ϕ::(A1, A

′
1) ∧ . . . ∧ ϕ::(An, A

′
n) ∧ ϕ≈>n(M,C ′, A′1, . . . , A

′
n, R)

⇒
ϕ≈>n(M,C,A1, . . . , An, R)) ,

Σ |= ∀M∀C∀A1 · · · ∀An∀R∀R′
(ϕ≈>n(M,C,A1, . . . , An, R) ∧ ϕ::(R,R

′)⇒ ϕ≈>n(M,C,A1, . . . , An, R
′))

and

Σ |= ∀M∀C∀A1 · · · ∀An∀R
(ϕ≈>n(M,C,A1, . . . , An, R)⇒ ϕσ≈>n (M,C,A1, . . . , An)) .

The first set of formulae captures the anti-monotonicity of signatures. The second
requires that the set of result types is upward-closed. The third guarantees whenever
a result type is given, the signature is defined.

Throughout this work we assume that the symbols {::, :}∪
⋃
i∈N{→i,→→i, { }i,⇒i, ( )⇒i

,
⇒⇒i, ( )⇒⇒i

} used in the definition above are never included in a set of symbols of an
alphabet, i. e., these symbols never occur as object constructors or predicate symbols.
In the following we shall assume that S is a set of symbols of an alphabet and Σ is a
set of S-sentences. Let S∆ ⊃ S and ∆ be a set of S-definitions in Σ such that

• for each symbol in (S∆\S)∪{::, :}∪
⋃
i∈N{→i,→→i, { }i,⇒i, ( )⇒i

,⇒⇒i, ( )⇒⇒i
} there

is one and only one S-definition of this symbol in Σ,

• there are only S-definitions of the symbols (S∆\S)∪{::, :}∪
⋃
i∈N{→i,→→i, { }i,⇒i,

( )⇒i
,⇒⇒i, ( )⇒⇒i

} in Σ in the set ∆.

In classical logic a structure consists only of its universe, an interpretation for function
symbols and an interpretation for predicate symbols. We call such a structure I =
〈I(U), I(F), I(P)〉 a classical structure.

Lemma 2.28

If the classical S-structure I = 〈I(U), I(F), I(P)〉 is a model of Σ in the classical sense,
then there is one and only one S∆-structure I∆ with

I∆dS = I and I∆ |= ∆ . (2.1)
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Proof. We show the existence of such an S∆-structure

I∆ =
〈
U∆,≺∆

U ,∈∆
U , I∆

F , I∆
P , I∆

→, I∆
→→, I∆

⇒, I∆
⇒⇒
〉

by construction. The universe U∆ is identical to the universe I(U),

U∆ := I(U) .

Defining the rest of the structure, we stipulate the interpretation of all symbols in
S to be identical to the interpretation of these symbols under I.

• I∆
F (f) := I(F)(f) for all object constructors f ∈ S.

• I∆
P (p) := I(P)(p) for all predicate symbols p ∈ S.

Then we define the interpretations of all symbols (S∆\S)∪ {::, :} ∪
⋃
i∈N{→i,→→i,

{ }i,⇒i, ( )⇒i
,⇒⇒i, ( )⇒⇒i

} based on the truth values of the respective defining for-
mulae under the structure I.

• I∆
F (f)(ν(V1), . . . , ν(Vn)) := ν(Vn+1) :iff I |=ν ϕf (V1, . . . , Vn+1) for all object

constructors f ∈ S∆\S with arity n and variable assignments ν.

• (ν(V1), . . . , ν(Vn)) ∈ I∆
P (p) :iff I |=ν ϕp(V1, . . . , Vn) for all predicate symbols

p ∈ S∆\S with arity n and variable assignments ν.

• ν(C) �∆
U ν(D) :iff I |=ν ϕ::(C,D) for all variable assignments ν.

• ν(O) ∈∆
U ν(C) :iff I |=ν ϕ:(O,C) for all variable assignments ν.

• I∆
→

(n)
(ν(M))(ν(O), ν(A1), . . . , ν(An)) := ν(R) :iff I |=ν

ϕ→n(M,O,A1, . . . , An, R) for all S-definitions →n in the set of S-definitions
∆ with defining formula ϕ→n(M,O,A1, . . . , An) and all variable assignments
ν.

• For all S-definitions →→n in the set ∆ of S-definitions,6

I∆
→→

(n)
(ν(M))(ν(O), ν(A1), . . . , ν(An))

:=


{µ(R) | ex. µ ≡R ν : I |=µ ϕ→→n(M,O,A1, . . . , An, R)} ,

if I |=ν ϕσ→→n (M,O,A1, . . . , An)
undefined else .

• For all S-definitions ≈>n in the set ∆ of S-definitions,

I∆
≈>

(n)
(ν(M))(ν(C), ν(A1), . . . , ν(An))

:=


{µ(R) | ex. µ ≡R ν : I |=µ ϕ≈>n(M,C,A1, . . . , An, R)} ,

if I |=ν ϕσ≈>n (M,C,A1, . . . , An)
undefined else .

6Here µ ≡R ν for two variable assignments µ and ν means that the assignment µ is equal to the
assignment ν except possibly for the assignment of the variable R.
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For this construction I∆ we prove the following properties:

1. The construction I∆ is an F-structure.

The classical structure I is a model of Σ, which guarantees that the defining
formulae behave like the corresponding elements of an F-structure.

2. I∆dS = I.

Trivial according to the construction of I∆.

3. I∆ |= ∆.

Trivial according to the construction of I∆.

It remains to show that the constructed structure I∆ is unique. So let J be an
S∆-structure with J |= ∆. Then for every newly defined symbol σ ∈ (S∆\S) ∪
{::, :} ∪

⋃
i∈N{→i,→→i, { }i,⇒i, ( )⇒i

,⇒⇒i, ( )⇒⇒i
} the defining formula ϕσ uniquely

determines the interpretation of σ in the structure J , which is consequently equal
to I∆. 2

A spin-off of the preceding lemma is that we know that we can define some F-structures
by means of classical structures. We waive the question whether all F-structures can be
defined by S-definitions until later in this chapter.

It should be intuitively clear that the introduction of newly defined symbols does not
increase the expressiveness, because it is possible to find for every formula α containing
defined symbols an equivalent formula α∇ without defined symbols. This is achieved by
replacing every defined symbol by its defining formula. The following theorem captures
this formally.

Theorem 2.29 (Definition Enlargement)

Let S∆ ⊃ S be a set of symbols, and Σ be a set of classical S-sentences. Every symbol in
S∆\S∪{::, :}∪

⋃
i∈N{→i,→→i, { }i,⇒i, ( )⇒i

,⇒⇒i, ( )⇒⇒i
} has exactly one S-definition, and

∆ be the set of these S-definitions. Then there exists for every S∆-formula α(V1, . . . , Vn)
a classical S-formula α∇(V1, . . . , Vn) such that:

1. If I is a classical S-structure with I |= Σ and u1, . . . , un ∈ I(U), then

I∆ |=ν α iff I |=ν α
∇ ,

where ν(Vi) = ui. (The structure I∆ be the uniquely determined S∆-enlargement
of I with I∆ |= ∆, according to Lem. 2.28.)

2. Σ ∪∆ |= α⇔ α∇.

Proof for 1. We define ∇ : LS∆ → LS inductively. We denote a language L over an
alphabet A as LS where S is the set of symbols of the alphabet A. For α ∈ LS∆

let V1, . . . be an enumeration of all variables occurring in α. Then V ′1 , . . . is an
enumeration of variables not occurring in α.

We first define α∇ for expressions α of the form t
◦
= X, where X is a variable,

inductively over t.
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t ≡ Y with Y is a variable:

[Y
◦
= X]∇ := Y

◦
= X .

t ≡ f(t1, . . . , tn):

[f(t1, . . . , tn)
◦
= X]∇ :=



∃V ′1 · · · ∃V ′n
(

[t1
◦
= V ′1 ]∇ ∧ . . . ∧ [tn

◦
= V ′n]∇∧

ϕf (V
′

1 , . . . , V
′
n, X)

)
,

if f ∈ S∆\S ,

∃V ′1 · · · ∃V ′n
(

[t1
◦
= V ′1 ]∇ ∧ . . . ∧ [tn

◦
= V ′n]∇∧

f(V ′1 , . . . , V
′
n)
◦
= X

)
,

if f ∈ S .

We define α∇ for remaining S∆-formulae α(V1, . . . , Vn) by induction on the struc-
ture of α. Without loss of generality we assume that all molecules are broken apart
into their constituent atoms.

1. α ≡ t1
◦
= t2 where t2 is no variable:

α∇ := ∃V ′1([t1
◦
= V ′1 ]∇ ∧ [t2

◦
= V ′1 ]∇)

2. α ≡ p(t1, . . . , tn):

α∇ :=



∃V ′1 · · · ∃V ′n
(

[t1
◦
= V ′1 ]∇ ∧ . . . ∧ [tn

◦
= V ′n]∇∧

ϕp(V
′

1 , . . . , V
′
n)
)
,

if p ∈ S∆\S ,

∃V ′1 · · · ∃V ′n
(

[t1
◦
= V ′1 ]∇ ∧ . . . ∧ [tn

◦
= V ′n]∇∧

p(V ′1 , . . . , V
′
n)
)
,

if p ∈ S

3. α ≡ t1::t2:

α∇ := ∃V ′1 ∃V ′2
(

[t1
◦
= V ′1 ]∇ ∧ [t2

◦
= V ′2 ]∇ ∧ ϕ::(V

′
1 , V

′
2)
)

4. α ≡ t1:t2:

α∇ := ∃V ′1 ∃V ′2
(

[t1
◦
= V ′1 ]∇ ∧ [t2

◦
= V ′2 ]∇ ∧ ϕ:(V

′
1 , V

′
2)
)

5. α ≡ to[ ]:

α∇ := true
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6. α ≡ to[tm @ ta1 , . . . , tan I tr]:

α∇ := ∃V ′1 · · · ∃V ′n+3

(
[ta1

◦
= V ′1 ]∇ ∧ . . . ∧ [tan

◦
= V ′n]∇∧

[tm
◦
= V ′n+1]∇ ∧ [to

◦
= V ′n+2]∇ ∧ [tr

◦
= V ′n+3]∇∧

ϕIn(V ′n+1, V
′
n+2, V

′
1 , . . . , V

′
n, V

′
n+3)

)
Here I stands for →, →→, ⇒ or ⇒⇒.

7. α ≡ to[tm @ ta1 , . . . , tan →→ {}]:

α∇ := ∃V ′1 · · · ∃V ′n+2

(
[ta1

◦
= V ′1 ]∇ ∧ . . . ∧ [tan

◦
= V ′n]∇∧

[tm
◦
= V ′n+1]∇ ∧ [to

◦
= V ′n+2]∇∧

ϕσ→→n (V ′n+1, V
′
n+2, V

′
1 , . . . , V

′
n)
)

8. α ≡ tc[tm @ ta1 , . . . , tan ≈> ( )]:

α∇ := ∃V ′1 · · · ∃V ′n+2

(
[ta1

◦
= V ′1 ]∇ ∧ . . . ∧ [tan

◦
= V ′n]∇∧

[tm
◦
= V ′n+1]∇ ∧ [tc

◦
= V ′n+2]∇∧

ϕσ≈>n (V ′n+1, V
′
n+2, V

′
1 , . . . , V

′
n)
)

9. α ≡ ¬β:
α∇ := ¬(β)∇

10. α ≡ (β1 ∨ β2):
α∇ := (β∇1 ∨ β∇2 )

11. α ≡ ∃V β:
α∇ := ∃V (β)∇

12. α ≡ ∃=1V β:
α∇ := ∃V =1(β)∇

13. α ≡ ∀V β:
α∇ := ∀V (β)∇

It is not difficult to prove 1 by the help of the definitions above. The proof is
carried out inductively. In particular, the following holds:

I∆ |=ν (α(V1, . . . , Vn)⇔ α∇(V1, . . . , Vn)) , (2.2)

where ν(Vi) = ui.

Proof for 2. Let I ′ be an S∆-structure with I ′ |= Σ ∪∆ and u1, . . . , un ∈ I ′(U). It
remains to show that I ′ |=ν (α(V1, . . . , Vn)⇔ α∇(V1, . . . , Vn)) where ν(Vi) = ui for
i ∈ {1, . . . , n}. We know that I∆ = I ′ for the structure I := I ′dS by Lem. 2.28.
Therefore, the assertion follows from (2.2).

2
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A symbol set is called relational if it contains only predicate symbols. In classical logic
function symbols can be replaced by predicate symbols to obtain a relational symbol
set. The idea is to look at the graph of a function instead of the function itself. This
idea can be extended to F-logic. In the case of the restricted F-logic we use, we can even
encode is-a assertions and object molecules by means of predicate symbols. This is not
surprising since F-logic is a first-order logic.

Definition 2.30

Let S be a set of symbols. pf be a new predicate symbol with arity n+ 1 for every object
constructor f ∈ S with arity n. Sr consists of the predicate symbols in S, the newly
introduced predicate symbols for object constructors, and the predicate symbols7 ::2, :2,
{→i+3

i | i ∈ N}, {→→i+3
i | i ∈ N}, {σi+2

→→i
| i ∈ N}, {⇒i+3

i | i ∈ N}, {σi+2
⇒i
| i ∈ N},

{⇒⇒i+3
i | i ∈ N}, and {σi+2

⇒⇒i
| i ∈ N}.

The additional predicate symbols are meant to encode is-a assertions and object
molecules. We deliberately choose predicate symbols close to the “built-in” predicates.
Thus it should be easy for the reader to identify their counterparts. This is different for
the predicates like σ→→i

. Their meaning is not self-explanatory. They are necessary to
indicate that a value of a set-valued method or of a signature is defined at all. Without
them the distinction between the case that the invocation of a method on a host object
is undefined for given arguments or is the empty set is not possible.

We relate each S-structure I to an Sr-structure Ir, by replacing functions by their
graphs and the “built-in” predicates by ordinary predicates.

Definition 2.31

Let I be an S-structure. The structure Ir := 〈U r, IrP〉 is the Sr-structure defined as
follows:

1. U r := U ;

2. for every predicate symbol p ∈ S: IrP(p) := IP(p);

3. for every object constructor f ∈ S with arity n:

(u1, . . . , un+1) ∈ IrP(pf ) :iff IF(f)(u1, . . . , un) = un+1 ;

4. for :::

(u1, u2) ∈ IrP(::) :iff u1 �U u2 ;

5. for ::

(u1, u2) ∈ IrP(:) :iff u1 ∈U u2 ;

6. for →n:

(um, uo, a1, . . . , an, u) ∈ IrP(→n) :iff I(n)
→ (um)(uo, a1, . . . , an) = u ;

7We indicate the arity of these new predicate symbols by the superscript numbers.
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7. for →→n:

(um, uo, a1, . . . , an, u) ∈ IrP(→→n) :iff u ∈ I(n)
→→ (um)(uo, a1, . . . , an) ;

8. for σ→→n:

(um, uo, a1, . . . , an) ∈ IrP(σ→→n) :iff I(n)
→→ (um)(uo, a1, . . . , an) defined ;

9. for ≈>n:

(um, uc, a1, . . . , an, u) ∈ IrP(≈>n) :iff u ∈ I(n)
≈> (um)(uc, a1, . . . , an) ;

10. for σ≈>n:

(um, uc, a1, . . . , an) ∈ IrP(σ≈>n) :iff I(n)
≈> (um)(uc, a1, . . . , an) defined .

Accordingly, it is possible to translate every S-formula into an Sr-formula by replacing
atomar sub-formulae like f(X, Y )

◦
= Z by pf (X, Y, Z). Nested formulae are treated in

the same manner as in the proof of Theor. 2.29. A sentence α is satisfied by an S-
structure I if and only if αr is satisfied by the Sr-structure Ir, as proven by the next
theorem. It contains the formal definition of αr.
Theorem 2.32

For every S-formula α(V1, . . . , Vn) there exists a classical Sr-formula αr(V1, . . . , Vn) that
does not contain object constructors, such that for all S-structures I and all u1, . . . , un ∈
I(U):

I |=ν α iff Ir |=ν α
r , (2.3)

where ν(Vi) = ui for i ∈ {1, . . . , n}.

Proof. Instead of showing this assertion directly, we can make use of Theor. 2.29. We
start by obtaining the relational structure Ir from the structure I. Afterwards
we define the set ∆ of S-definitions in Σ, also defined by us in this proof, such
that Ir∆�S = I, which is proven after the definitions of the sets Σ and ∆. The
set of symbols S ∪ Sr takes on the rôle of S∆ and Sr the rôle of S according to
Theor. 2.29.

The purpose of the set of sentences Σ is to guarantee that the predicates used to
encode functions and the special “built-in” predicates behave properly. The rules
of conduct are set up by the definition of F-structures.

We give for every special predicate a set of sentences and explain their meaning.

Σ:: := {∀V ::(V, V )}
∪
{∀Vx∀Vy∀Vz(::(Vx, Vy) ∧ ::(Vy, Vz)⇒ ::(Vx, Vz))}
∪
{∀Vc∀Vd(::(Vc, Vd) ∧ ::(Vd, Vc)⇒ Vc

◦
= Vd)}
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The first sentence requires that the interpretation of :: is a reflexive relation. The
second requires the interpretation of :: to be a transitive relation. The third sen-
tence guarantees that the definition of :: is an anti-symmetric relation. Together,
this means the interpretation of :: is a partial order, as it is demanded of �U .

Σ: := {∀Vu∀Vv∀Vw(:(Vu, Vv) ∧ ::(Vv, Vw)⇒ :(Vu, Vw))}

This formula captures the interplay between : and ::. The interpretations of : and
:: behave like ∈U and �U , respectively.

ΣF := {∀V1 · · · ∀Vn∃=1Vn+1 pf (V1, . . . , Vn+1) | f ∈ S}

It ensures that the interpretation of pf is a graph of a function.

Σ→ := {∀Vm∀Vo∀Va1 · · · ∀Van∀Vr∀Vr′
→n(Vm, Vo, Va1 , . . . , Van , Vr) ∧→n(Vm, Vo, Va1 , . . . , Van , Vr′)⇒ Vr

◦
= Vr′

| n ∈ N}

→n represents a mapping to partial functions. This property is enforced by the
above sentences.

Σ→→ := {∀Vm∀Vo∀Va1 · · · ∀Van∀Vr
→→n(Vm, Vo, Va1 , . . . , Van , Vr)⇒ σ→→n(Vm, Vo, Va1 , . . . , Van)
| n ∈ N}

Whenever the invocation of a method on some host object gives a result, the
invocation of the method is defined. This has to be reflected by the predicates
σ→→n .

Σ≈> := {∀Vm∀Vc∀Va1 · · · ∀Van∀Vr
∀V ′c∀V ′a1

· · · ∀V ′an
::(Vc, V

′
c ) ∧ ::(Va1 , V

′
a1

) ∧ . . . ∧ ::(Van , V
′
an) ∧

≈>n(Vm, V
′
c , V

′
a1
, . . . , V ′an , Vr)⇒ ≈>n(Vm, Vc, Va1 , . . . , Van , Vr) | n ∈ N}

∪
{∀Vm∀Vc∀Va1 · · · ∀Van∀Vr∀V ′r
≈>n(Vm, Vc, Va1 , . . . , Van , Vr) ∧ ::(Vr, V

′
r )⇒ ≈>n(Vm, Vc, Va1 , . . . , Van , V

′
r )

| n ∈ N}
∪
{∀Vm∀Vc∀Va1 · · · ∀Van∀Vr
≈>n(Vm, Vc, Va1 , . . . , Van , Vr)⇒ σ≈>n(Vm, Vc, Va1 , . . . , Van)
| n ∈ N}

The first set of formulae captures the anti-monotonicity of signatures. The sec-
ond requires that the set of result types is upward-closed. The third guarantees
whenever a result type is given, the signature is defined.

Σσ≈> := {∀Vm∀Vc∀Va1 · · · ∀Van
∀V ′c∀V ′a1

· · · ∀V ′an
::(Vc, V

′
c ) ∧ ::(Va1 , V

′
a1

) ∧ . . . ∧ ::(Van , V
′
an) ∧

σ≈>n(Vm, V
′
c , V

′
a1
, . . . , V ′an)⇒ σ≈>n(Vm, Vc, Va1 , . . . , Van) | n ∈ N}
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This sentence is still part of the formulae that capture the anti-monotonicity of
the definition of signatures.

We define
Σ := Σ:: ∪Σ: ∪ΣF ∪Σ→ ∪Σ→→ ∪Σ≈> ∪Σσ≈>

and

∆ := {∀C∀D(C::D ⇔ ::(C,D))}
∪
{∀O∀C(O:C ⇔ :(O,C))}
∪
{∀V1 · · · ∀Vn+1 f(V1, . . . , Vn)

◦
= Vn+1 ⇔ pf (V1, . . . , Vn+1) | f ∈ S with arity n}

∪
{∀M∀O∀A1 · · · ∀An∀R

O[M @ A1, . . . , An ∼> R]⇔ ∼>n(M,O,A1, . . . , An, R) | n ∈ N}
∪
{∀M∀O∀A1 · · · ∀An

O[M @ A1, . . . , An →→ {}]⇔ σ→→n(M,O,A1, . . . , An) | n ∈ N}
∪
{∀M∀C∀A1 · · · ∀An∀R

C[M @ A1, . . . , An ≈> R]⇔ ≈>n(M,C,A1, . . . , An, R) | n ∈ N}
∪
{∀M∀C∀A1 · · · ∀An

C[M @ A1, . . . , An ≈> ( )]⇔ σ≈>n(M,C,A1, . . . , An) | n ∈ N} .

The set ∆ contains for every object constructor f and every “built-in” predicate
one Sr-definition in Σ.

Because of Theor. 2.29 it holds for every S ∪ Sr-formula α(V1, . . . , Vn) that
α∇(V1, . . . , Vn) is a classical Sr-formula not containing object constructors and
that every Sr-structure I satisfying Σ and for all u1, . . . , un ∈ I(U):

I∆ |=ν α iff I |=ν α
∇ , (2.4)

where ν(Vi) = ui.

For an S-formula α we define αr := α∇.

It remains to show that (2.3) is true. Let I be an S-structure. Because of its
definition Ir satisfies Σ, therefore Ir∆ |= ∆. Because of Ir∆ |= ∆ exactly those
interpretations for predicate symbols, object constructors and special “built-in”
predicate symbols are added to Ir in order to obtain Ir∆ that were eliminated
in the transformation from I to Ir, hence Ir∆�S = I. Let α(V1, . . . , Vn) be an
S-formula and ν be a variable assignment:

I |=ν α iff Ir∆�S |=ν α
iff Ir∆ |=ν α
iff Ir |=ν α

∇ (2.4)
iff Ir |=ν α

r (αr = α∇) .
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2

The converse of the above theorem is also true. It is proven similarly.

Theorem 2.33

For every classical Sr-formula α(V1, . . . , Vn) there exists an S-formula α−r, such that
for all S-structures I and all u1, . . . , un ∈ I(U):

Ir |=ν α iff I |=ν α
−r , (2.5)

where ν(Vi) = ui for i ∈ {1, . . . , n}.

Proof. The proof is similar to the proof of Theor. 2.32. We stipulate S∆ := S∪Sr and
take ∆ nearly as in the proof above. We only swap the left-hand sides and right-
hand sides of ⇔. The resulting set does not exclusively consist of S-definitions,
because some right-hand sides are not classical S-formulae. But they do not define
special predicates. Thus we obtain an S-definition for every predicate symbol in
Sr\S in the empty set of sentences. For every S-structure I, we have I∆dSr = Ir,
hence by Theor. 2.29 the assertion. 2



Chapter 3

An Object-Oriented Data Model

The task of a data model is to give a means to describe data and operations defined on
that data. So when we speak of data in this context, what do we really mean? Commonly
in database management systems two fundamentally different types of information are
present. First of all we store data in the traditional sense like pieces of goods or their
part lists. Other types of information are used to give the former structure. It is meta
data like the knowledge that every product has a price going along with it. The meta
data is imperative when dealing with bulk data. The reasons are manifold and stretch
over all requirements on database management systems mentioned in the introduction.
Without structuring data, it is impossible to define index structures for the efficient
evaluation of queries. Efficiently storing data without knowing the underlying structure
is simply not feasible. For these reasons we divide the data into two parts. Meta data
is data that is relatively stable over the time and describes the time-varying data. Thus
giving formats for enumerations, rules to derive knowledge and semantic constraints to
restrict the time-varying data and capture dynamic aspects.

3.1 Schema

Our data model describes two parts, a schema and an instance. The schema is meant to
describe the part of the application domain that is relatively stable over a long period of
time. It gives the structure for the application domain. The schema comprises basically
only formulae, which we group according to their nature.

Classes are a means to structure the application domain. Since that structure is
normally fixed over a long period, the subclass hierarchy and the signatures of the
classes are part of the schema. The signatures of the classes constitute the interface
of a class, defining the structural part of the objects of that class. Furthermore, the
restrictions that are imposed on the time-varying parts are an ingredient of a schema.
These restrictions can be divided into a part that is vital for technical reasons and a
part that is relevant for the application. In this section we deal only with the former.
The latter is discussed in Chap. 4.

This view of a schema is very similar to Liu’s [Liu96]. But his definition lacks the

35
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possibility to declare semantic constraints, which are important for our work. It is also
in accordance with many other object-oriented data models [Ban88, AK89, ABD+89,
Bee89, KL89b, CM90, GPvG90, ABGO93, LX93, ST93]. However, having based the
data model on F-logic, we can exploit the flexibility, expressiveness, precise syntax and
semantics, and proof theory to tailor our data model to meet our needs. These needs
are among others the potency of conceiving formulae that talk about schema aspects.

Definition 3.1 (Schema)

Let L be an F-logic language. A (database) schema D for L is of the form

D = 〈CLASSD|METHD|HIERD|SIGD|SCD〉

where CLASSD,METHD,HIERD, SIGD, SCD 6∈ V ∪ S with

• a finite, non-empty set of constants, CLASSD ⊂ F0, for class names,

• a finite set of constants, METHD ⊂ F0, for method names,

• a finite set of ground is-a assertions,

HIERD ⊂ {a :: b | a, b ∈ CLASSD} ,

to form the class hierarchy,

• a finite set of signatures,

SIGD ⊂ {c[m @ a1, . . . , ak ≈> (r1, . . . , rl)] | c, a1, . . . , ak, r1, . . . , rl ∈ CLASSD,
m ∈ METHD, k ≥ 0, l ≥ 1} ,

to declare signatures for classes and methods, and

• a set of F-sentences, SCD, to restrict the set of allowed instances, which comprises
besides application-dependent constraints as introduced in Chap. 4 the following:

– the set of unique name axioms

UNAD = {6 ◦= (t, t′) | t, t′ ∈ U(F), t 6≡ t′} ,

– the set of definedness axioms

DEFD = {∀C ∀M
∀O ∃V
(O[M ∼> V ]←− C[M ≈> ( )] ∧O : C)1

|≈>≡⇒,∼>≡→ or ≈>≡⇒⇒,∼>≡→→} ,

1By a misuse of notation variable V may be { } if ∼> is →→.
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– and the set of well-typedness axioms

WTD = {∀O ∀M ∀A1 · · · ∀Ak ∀V
∃C ∃B1 · · · ∃Bk

(O : C ∧ A1 : B1 ∧ . . . ∧ Ak : Bk ∧ C[M @ B1, . . . , Bk ≈> ( )]
←−
O[M @ A1, . . . , Ak ∼> V ])2

| k ∈ N and ≈>≡⇒,∼>≡→ or ≈>≡⇒⇒,∼>≡→→}
∪
{∀O ∀M ∀A1 · · · ∀Ak ∀V
∀C ∀B1 · · · ∀Bk ∀W
(V : W
←−
C[M @ B1, . . . , Bk ≈> W ] ∧O[M @ A1, . . . , Ak ∼> V ] ∧
O : C ∧ A1 : B1 ∧ . . . ∧ Ak : Bk)
| k ∈ N and ≈>≡⇒,∼>≡→ or ≈>≡⇒⇒,∼>≡→→} .

The sets CLASSD and METHD are disjoint, CLASSD ∩METHD = ∅.

When the language and the schema are understood from the context, we will not mention
them explicitly in subsequent sections.

The set CLASSD serves to declare the class names used in the application domain.
The classes form a hierarchy, which is defined by the set HIERD. The structural part of
classes is defined by signatures in the set SIGD. These signatures are used for a special
kind of semantic constraints, WTD, that enforces typing in method invocations. Here
we do not follow the approach laid out in Sect. 2.4 of using special models, rather we
use the semantic constraints in WTD, which connect method invocations and method
signatures. This relationship will be discussed later on in more detail. Due to the F-
logic semantics of ::, subclasses inherit all signatures from their superclasses, and each
element of a subclass is also an element of the corresponding superclasses.

Semantic constraints defined in the set SCD identify “meaningful schemas” and re-
strict the set of instances for the schemas. Part of the semantic constraints are unique
name axioms [Rei80] for the elements of the Herbrand universe. These ensure that dif-
ferent ground id-terms stand for different objects. The reason for this is that we want to
derive conclusions based on syntactic material, namely Herbrand bases, assuming that
syntactically different things are also semantically different. The existence of unique
name axioms has an effect on the equality theory. The equality predicate

◦
= is even

diagonal on the constants of the Herbrand universe. This entails that a schema has an
acyclic class hierarchy if we demand that the set HIERD is a model of the unique name
axioms, HIERD |= UNAD, which we do throughout this work.

There are two different kinds of well-typedness axioms. The first kind is a formal-
isation of the notion that a data atom is covered by a signature expression. This has

2Again by a misuse of notation variable V may be { } if ∼> is →→.
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to hold for every data atom in a model of WTD. Therefore the first condition 2a in
Def. 2.24 is satisfied. The second kind is a formalisation of condition 2b in Def. 2.24.
Theorem 3.9 shows the correspondence in more detail.

The set of definedness axioms is introduced to prevent the occurrence of null values,
i. e. if an object is element of some class, the method invocation for a method that is
declared for the class and takes no arguments has to return a value.

The set of semantic constraints is infinite for two reasons. The set of unique name
axioms is infinite if the Herbrand universe U(F) is infinite. The set WTD is infinite by
definition. As we will see later in Sect. 3.2 instances of a schema may be infinite. But
this means that we cannot give an a priori upper bound for the highest possible arity of
methods.

The sets UNAD, WTD and DEFD are independent of the underlying schema D. The
sets WTD and DEFD are even independent of the underlying language. So we define
the set of axioms

AX := UNAD ∪WTD ∪DEFD

independently of the underlying schema.
We mention above that a schema includes rules to derive further knowledge. These

rules lack in our definition of a schema. As our focus is on different aspects of database
design, we will not pursue this issue in this work. It is possible to derive a view mecha-
nism based on Def. 3.13.

It is possible to minimise the sets HIERD and SIGD, by removing redundancies. For
instance, the set {a :: b, b :: c, a :: c} can be reduced to the set {a :: b, b :: c} because
the is-a assertion a :: c is a logical consequence of the two is-a assertions a :: b, b :: c.
Similarly, it is possible to reduce the size of the set SIGD.

Example 3.2

The entity-relationship schema in Exam. 1.2 can be modelled as schema with the follow-
ing components:

CLASS := {Person,Phone-admin,Faculty, School,Phone,Department},
METH := {children, fac, sch, ph, dep},
HIER := {Faculty :: Person},

SIG := {Person[children @ Person⇒⇒ Person],
Phone-admin[fac⇒ Faculty; sch⇒ School;

ph⇒ Phone; dep⇒ Department]} .

We added to the schema the class Person as a superclass of the class Faculty, although
this is-a relationship is not present in Fig. 1.5. The class Person has one set-valued
method, which takes as argument an object of class Person and returns a set of Persons.
This set represents the children of the Person host object.

Its “schema graph” is depicted in Fig. 3.1. Here arrows like denote that
the class at the bottom of the arrow is a subclass of the class the arrow is pointing to.
The arrows like

�

denote signature expressions for scalar methods that take no
arguments. The class at the butt is the class the method m is declared for, and the class
at the point is a result class for that method.
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sch ph

Person Phone-admin

SchoolFaculty Phone Department

depfac

Figure 3.1: The schema graph of the F-logic schema

We used the first step of the method presented in [BMP96] to generate this schema.
The basic idea underlying this step is that entity sets are mapped onto classes and rela-
tionship sets are mapped onto classes with appropriate method declarations. Additionally
some semantic constraints are needed for the classes introduced for relationship sets. As
we present these constraints first in Chap. 4, we leave them out here.

In principle a schema D is a set of F-formulae. These formulae are classified according
to their nature. For convenience, we sometimes write D ∪ Γ for a schema D and a set
of F-formulae Γ to denote the schema resulting when we include the formulae in Γ into
D. The nature of the set of formulae Γ is taken from the context in case of ambiguities.

Scalar methods that take no arguments play an important rôle in this work. We
shall call these scalar methods attributes. Sometimes it is important to guarantee that
an attribute is only defined for exactly one class. These attributes are proper attributes.

Definition 3.3 (Attribute)

Let D be a schema.

• A method m ∈ METHD is called an attribute for class c ∈ CLASSD :iff the
following holds:

HIERD ∪ SIGD |= c[m⇒ ()] .

• A method m ∈ METHD is called a proper attribute for class c ∈ CLASSD :iff all
of the following holds:

– SIGD |= c[m⇒ ()], and

– SIGD 6|= d[m⇒ ()], if c 6≡ d.

The set of attributes {m ∈ METHD | HIERD ∪ SIGD |= c[m ⇒ ()]} for a class c is
denoted AttrD(c). The set of all attributes

⋃
c∈CLASSD

AttrD(c) is denoted by AttrD.

Note that the polymorphism of F-logic allows a method m ∈ METHD to occur as
attribute and as method that takes arguments.

In the preceding definition we used the logical entailment to make assertions about
properties of elements of a schema. Because of our restrictions on the material used in
a schema, it is possible to decide the implication using only simplified resolution rules.
For these the implication problem is decidable.

Theorem 3.4

Let D be a schema. The implications HIERD |= c::d and HIERD ∪ SIGD |= c[m ⇒ d]
are decidable.
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Proof. To prove the hypothesis, we can devise an algorithm based on the inference
rules given for F-logic. Due to the finiteness of the input HIERD and SIGD and
the form of the applicable inference rules (IS-A reflexivity, IS-A acyclivity, IS-
A transitivity, type inheritance, input restriction and output relaxation), we can
exhaustively apply the inference rules on the input and stop after a priori finitely
many steps. If the molecule to be tested is an element of the result, the implications
hold otherwise the implications do not hold.

2

3.2 Instance

Having described the part of our data model that is relatively stable over a long period
of time, we come now to the time-varying part, the instance, that comprises objects and
their method values. An instance consists of two different kinds of F-formulae. The
first kind populates classes and the second kind defines method values for these objects.
Furthermore, an instance has to obey the semantic constraints set out by its schema.
To define an instance, we start off by defining the syntactic part of an instance, the
extension.

Definition 3.5 (Extension)

Let D be a schema for a language L. An extension f ∈ ext(D) of the schema D is of
the form

f =
〈
popf |obf

〉
where popf , obf 6∈ V ∪ S with

• a set of ground is-a assertions,

popf ⊂ {o : c | o ∈ F0\(CLASSD ∪METHD), c ∈ CLASSD} ,

populating classes, and

• a set of ground object molecules with data expressions,

obf ⊂ {o[m @ a1, . . . , ak ∼> r] | k ≥ 0 and m ∈ METHD and
o, a1, . . . , ak, r ∈ F0\(CLASSD ∪METHD) and
popf |= ∃C ∃C1 · · · ∃Ck ∃R

(o:C ∧ a1:C1 ∧ · · · ∧ ak:Ck ∧ r:R)}
∪
{o[m @ a1, . . . , ak →→ {}] | k ≥ 0 and m ∈ METHD and

o, a1, . . . , ak ∈ F0\(CLASSD ∪METHD) and
popf |= ∃C ∃C1 · · · ∃Ck

(o:C ∧ a1:C1 ∧ · · · ∧ ak:Ck)} ,

for the definition of method values for objects.
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The extension level of a database is restricted to facts for populating elements of CLASSD
and for defining the values for method invocations. We do not permit the declaration of
new classes, changes to the class hierarchy, or the introduction of new signatures. We
bound id-terms occurring in an extension to constants. This limitation conforms to the
definition of a schema, where it is not possible to deduct knowledge from the internal
structure of id-terms.

Alas, objects and classes have the same domain and are interwoven together such that
there is no clear separation of the notions of schema and extension in F-logic. Therefore,
we introduce this separation in our data model.

Next we define what can be deduced from an extension and its schema.

Definition 3.6 (Completion)

Let D be a schema and f be an extension of the schema D. The completion of f under
D is

complD(f) := {α ∈ HB(F) | CLASSD ∪METHD ∪ HIERD ∪ SIGD ∪
popf ∪ obf |= α} .

The definition above is somewhat sloppy since class names, the elements in CLASSD,
and method names, the elements in METHD, are not F-formulae. In this context we see
every class name c ∈ CLASSD and method name m ∈ METHD as object molecule with
no method expression, c[ ] and m[ ], respectively. The addition of all class names and
method names for the evaluation of the completion of an extension ensures that every
class name and every method name is activated in its completion.

Theorem 3.7

Let f be an extension of a schema D. The completion of f under D is the smallest
H-model of CLASSD ∪METHD ∪ HIERD ∪ SIGD ∪ popf ∪ obf with respect to the set
inclusion ⊂.

Proof. It is clear that the set complD(f) is an H-structure. The set complD(f) is a
subset of the Herbrand base, complD(f) ⊂ HB(F), by definition and also closed
under the logical implication by definition. It is also trivial that complD(f) is an
H-model of CLASSD ∪METHD ∪ HIERD ∪ SIGD ∪ popf ∪ obf .

Whenever there is an H-model H of CLASSD∪METHD∪HIERD∪SIGD∪popf ∪
obf , every ground molecule α implied by CLASSD ∪METHD ∪ HIERD ∪ SIGD ∪
popf ∪ obf is element of H, α ∈ H, by definition, and hence complD(f) ⊂ H,
since complD(f) comprises all implied ground molecules of CLASSD ∪METHD ∪
HIERD ∪ SIGD ∪ popf ∪ obf by definition.

2

An instance of a schema is an extension that obeys the semantic constraints declared in
that schema.

Definition 3.8 (Instance)

Let f be an extension of a schema D. Then f is called a(n) (allowed) (database) instance
of D, f ∈ sat(D), if complD(f) is an H-model of SCD.



42 CHAPTER 3. AN OBJECT-ORIENTED DATA MODEL

The definition of method values in instances is always materialised. We do not allow in
this definition the evaluation of method values. But this is not a problem for us, because
we are especially interested in directly defined method values.

In Sect. 2.4 dealing with typing aspects in F-logic, we presented well-typed pro-
grammes. The link between well-typed programmes and instances are the completions
of the latter under the schemas of the latter.
Theorem 3.9

Let f be an instance of a schema D. The completion complD(f) is a typed H-structure.

Proof. The completion complD(f) is an H-model of the semantic constraints SCD.
These semantic constraints include the well-typedness axioms, which ensure that
first every data atom in complD(f) is covered by a signature and second that if
a data atom is covered by a signature the result value is of the required type.

2

The set CLASSD ∪METHD ∪HIERD ∪SIGD ∪popf ∪ obf is simply a set of F-formulae,
so an F-programme. The theorem above can now be used to make statements about
CLASSD ∪METHD ∪HIERD ∪SIGD ∪popf ∪ obf as well-typed programmes. A prereq-
uisite for that is an appropriate definition of canonic models. In this work we define the
completion of the instance f under the schema D to be the canonical model of the set
CLASSD∪METHD∪HIERD∪SIGD∪popf ∪obf , thus the completion complD(f) is the
only typed-canonic model and therefore CLASSD∪METHD∪HIERD∪SIGD∪popf∪obf
is a well-typed programme.

Example 3.10

An instance of the schema in Exam. 3.2 can be composed of the following components:

popf := {bob : Faculty, alice : Person, john : Person},
obf := {bob[children @ alice→→ john],

alice[children @ bob→→ john]} .
The set of all objects for an extension and the set of classes an object is element of in
an extension is defined below.
Definition 3.11

Let f be an extension of a schema D.

• The set of all objects for extension f is denoted obj(f) := {o | ex. c : o : c ∈ popf}.

• The class-label lCl(o) for an object o ∈ obj(f) is the set of classes object o is
element of, lCl(o) := {c | HIERD ∪ popf |= o : c}.

The next lemma justifies the use of only some syntactic material in the deduction of
knowledge from schemas and extensions.

Lemma 3.12

Let f be an extension of a schema D. Then o ∈ obj(f) and c ∈ lCl(o) iff complD(f) |=
o:c.

Proof. The assertion follows from the proof theory of F-logic.
2
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3.3 Queries and Views

In this section we present the first and only operation that is defined for our data model.
It is a fundamental must for databases because it allows us to retrieve information stored
in a database instance of a schema.

Definition 3.13 (Query)

Let D be a schema. A set

Q ⊂ {H ←− T | H ←− T is an F-Horn-rule}

is a query over D.

The definition of queries is based on arbitrary F-Horn-rules. This allows to extract
information about instances as well as schemas. This is due to the great flexibility
that F-logic offers. It is credited to the uniform framework in which F-logic deals with
signatures and data. Though some condemn this flexibility (cf. [AK92]) because it
seems to come with the trade off that no strict typing is possible in earlier versions of
F-logic [Mai86, KW89, KL89a]. In fact, that is not the case in the current version of
F-logic as presented in [KLW95].

In general we could define views based on queries, following the ideas in the work of
dos Santos [dSAD94] on views in object-oriented data models; but we refrain from doing
so, and in addition we even present only a simplified version of a semantics for queries,
which is based on the immediate consequence operator for non-recursive F-Horn-rules.
The rationale for this simplified semantics lies in that we use queries in Chap. 7 to
construct new instances. However, syntactically, the F-Horn-rules in those queries are
recursive, although their semantical nature is intended to be non-recursive.

Example 3.14

The set Q := {O:d ←− O:d} is a query in the sense above. We use this query later in
Chap. 7 to populate the class d in a new instance based on the population of the class d in
an original instance. So in fact, although the syntactic form of the rule is recursive, we
have to read the rule for this application as O:dnew ←− O:dold, which is non-recursive.

The following is a simple but for our needs sufficient approach to define the semantics
of queries.

Definition 3.15 (Eval)

Let f =
〈
popf |obf

〉
be an instance of a schema D, and Q be a query over D. We define

eval(Q, f) :=
⋃

H←−T∈Q

{ν(H) | complD(f) |= ν(T )} .

Since complD(f) is an H-structure and satisfies the unique name axioms, its universe
is a subset of the Herbrand universe U(F), and so ν(H) and ν(T ) are a well-formed
ground molecules.

Because we do not need concepts like updates or transactions in this work, we do
not define these concepts.
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Sometimes we have two schemas the structures of which are nearly identical. Then
projection queries help to populate the extensions of one schema by means of the exten-
sions of the other schema.

Definition 3.16 (Projection Query)

Let C,A ⊂ F0 be two sets of constants. The query

projC,A := {O:c ←− O:c | c ∈ C} ∪ {O[m→ R] ←− O[m→ R] | m ∈ A}

is called projection query.
If C = CLASSD and A = METHD for a schema D, then idD := projC,A is called

identity query.

The projection of an extension is an extension as is shown in the following lemma.

Lemma 3.17

Let f be an extension of a schema D, C ⊂ CLASSD be a set of classes, and A ⊂ METHD

be a set of attributes.

1. Then for all classes c ∈ C

o:c ∈ complD(f) iff o:c ∈ eval(projC,A, f)

and for all attributes m ∈ A

o[m→ r] ∈ complD(f) iff o[m→ r] ∈ eval(projC,A, f)

hold.

2. Then the evaluation eval(projC,A, f) is an extension of the schema D.

Proof for 1.

o:c ∈ complD(f) iff complD(f) |= o:c (Def. 2.23)

iff ex. ν with ν(O) ≡ o:
complD(f) |= ν(O:c)

iff o:c ∈ eval(projC,A, f) (O:c ←− O:c ∈ projC,A and Def. 3.15)

o[m→ r] ∈ complD(f) iff complD(f) |= o[m→ r] (Def. 2.23)

iff ex. ν with ν(O) ≡ o and ν(R) ≡ r:
complD(f) |= ν(O[m→ R])

iff o[m→ r] ∈ eval(projC,A, f)
(O[m→ R] ←− O[m→ R] ∈ projC,A and Def. 3.15)

Proof for 2. If o:c, o[m → r] ∈ eval(projC,A, f), then, due to 1, o:c, o[m → r] ∈
complD(f). Therefore the molecular formulae o:c and o[m → r] comply with the
restrictions imposed on elements of extensions of the schema D.

2
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We close this section with the observation that whenever the completions of two instances
are the same, their query results will be equal.

Lemma 3.18 (Eval Function)

Let f and f ′ be two extensions of a schema D. Whenever the completions of the instances
f and f ′ are equal, complD(f) = complD(f ′), then the query evaluations under the
instances are equal, eval(Q, f) = eval(Q, f ′).

Proof. This lemma follows from the definition of a evaluation eval(Q, ·).
2
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Chapter 4

Application-Dependent Constraints

As mentioned previously, the semantic constraints of a schema can be divided into two
parts. Both parts are necessary to identify meaningful schemas and to restrict the set of
instances of schemas such that restrictions of the application domain are reflected. In the
relational world there are a number of well understood classes of semantic constraints
(functional dependencies, multi-valued dependencies, join dependencies, inclusion de-
pendencies). They do not miss in any standard database textbook. These constraints
have been profoundly investigated. The theory of database design has benefited from
these investigations. A number of normal forms based on semantic constraints char-
acterise desirable relational database schemas. Alas, the theory of database design for
object-oriented databases lacks such clear and well-understood normal forms due to
the lack of well-understood classes of semantic constraints. We surmise that the ori-
gins of object-oriented databases from object-oriented programming led to a plethora
of database operations. This newly found freedom in expressing restrictions seduced
to burden nearly all semantic constraints on the shoulders of application programmers,
which hid these in the program logic of the applications.

In this work we want to use path functional dependencies, a class of semantic con-
straints, which can be understood as extension of functional dependencies for object-
oriented database models. Path functional dependencies were introduced by Wed-
dell [Wed89, Wed92].

We employ path functional dependencies for the design of object-oriented database
schemas where they occur among others in the output of a schema transformation called
pivoting defined in Sec. 7.1. This transformation is meant to improve object-oriented
schemas. To obtain path functional dependencies in the output of pivoting, the input
schema must contain path functional dependencies. A second kind of semantic con-
straints generated by the transformation pivoting are onto constraints. Their nature is
completely different from path functional dependencies. They are more like inclusion
dependencies as known from the relational world. The concept of an onto constraint has
been mentioned by Thalheim [Tha93a], but without naming it.

Although we motivate the existence of onto constraints and path functional depen-
dencies in their connection to pivoting, they can exist independent of this transformation.
For path functional dependencies examples are given by Weddell; they may serve various

47
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purposes like for example query optimisation.
In a given schema, we explicitly define semantic constraints. Beyond that there are

additional constraints that hold for every instance. Therefore we say a set of semantic
constraints Γ implies a constraint γ under a schema D if and only if all instances of
the schema D satisfying the set of constraints Γ satisfy the constraint γ. This notion
of implication is very similar to the logical implication denoted |=. Unfortunately, the
correspondence is not as close as in the relational data model. In our framework only
the following holds.

Lemma 4.1

Let D be a schema with minimal semantic constraints, i. e. SCD = AX, and SC and
SC′ be two sets of sentences. Then sat(D ∪ SC) ⊂ sat(D ∪ SC′) if SC |= SC′.

Proof.

f ∈ sat(D ∪ SC) iff complD(f) |= AX ∪ SC

then complD(f) |= AX ∪ SC′

iff f ∈ sat(D ∪ SC′) .

2

Unfortunately, the converse does not hold as demonstrated in the next example.

Example 4.2

Let D be a schema with HIERD := {a::b}, and two sets of semantic constraints SC :=
{b::c} and SC′ := {b::d}. Additionally, let f be an extension of the schema D. When we
look at the completion of the extension f under the schema D, we observe the only non-
trivial class is-a assertion found in the completion is the molecule a::b, since there is only
one in the syntactic material of the schema D, namely the molecule a::b, and non-trivial
class is-a assertions can only be implied from class is-a assertions. Consequently, it is
clear that sat(D ∪ SC) = sat(D ∪ SC′) = ∅ holds, but neither SC |= SC′ nor SC′ |= SC
hold.

Both sets of semantic constraints SC and SC′ include assertions over the schema D,
but, unfortunately, the schema D does not supply the schema element requested by
the semantic constraints. This mismatch takes its root in that we can only define
formulae over an alphabet not over the structural part of a schema. We might think we
could exclude formulae from the semantic constraints based on our knowledge on the
structural part of a schema, because we can easily spot the discrepancy between the is-a
assertions in the class-hierarchy-giving part of the schema and the semantic constraints
in Exam. 4.2. However, problems arise when formulae are non-ground unless we want
to put serious restrictions onto the formulae employed as semantic constraints. In that
case we need a schema-relativism of the formulae, which stretches over formulae not only
domain elements.

In the relational data model it is indeed possible to define the notion of a formula over
the structural part of a schema, because the structural part of the schema constitutes the
underlying alphabet. Thus we can conclude from the relationship between sets of allowed
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instances what the relationship between the respective sets of semantic constraints in
terms of the logical entailment is, i. e., the converse of Lem. 4.1 can be established in the
relational data model. Consequently, we have to consider interpretations and formulae
over all schemas. Despite this fact, we speak about formulae over schemas indicating
that the underlying languages are identical.

Common to all schemas are unique name axioms, well-typedness axioms and defined-
ness axioms. The well-typedness axioms and definedness axioms do not even depend on
the language used.

4.1 Onto Constraints

For pivoting, the decomposing transformation studied in Sect. 7.1, we need so-called
onto constraints on grounds of technical requirements, which will become clear when
pivoting is described formally. An onto constraint guarantees that all objects of a result
class of an attribute are referred to by an object of the class the attribute is defined for.
Thus onto constraints are a special type of inclusion dependencies. They correspond to
unary inclusion dependencies, which connect only singleton sets of attributes.

Example 4.3

We come back to Exam. 3.2 and extend the presented schema by semantic constraints
that reflect restrictions imposed on its instances. An example for an onto constraint is

Phone-admin{fac|Faculty} .

It states that every Faculty must have a phone.1

Definition 4.4 (Onto Constraint)

Let D be a database schema, and c ∈ CLASSD be a class.

Syntax: An onto constraint for c over D is of the form c{m|cm}, where m ∈ AttrD(c)
is an attribute for c and cm ∈ CLASSD is a class.

Semantics: The onto constraint F-formula for an onto constraint c{m|cm} is

∀V ∃O(O:c[m→ V ] ∧ c[m⇒ ()]←− V :cm) .

The set of onto constraint F-formulae for c in SCD is denoted OCD(c). OCD denotes
the set of all onto constraint F-formulae in SCD.

Often we blur the clear distinction between syntax and semantics and write c{m|cm} ∈
OCD(c) whenever that is appropriate.

In the definition above there is no connection between the class cm and the rest of
the definition, i. e., cm is not necessarily a result class of the attribute m for the class
c although we might expect such a connection. When we look at the inference rules
given in Def. 4.7 below, we see that inference rule “range restriction” produces onto

1Remember this is only hypothetical.
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constraints with only a weak connection between the class cm on the one hand and the
class c and the attribute m on the other hand.

We observe the similarity between definedness constraints and onto constraints when
it comes to their semantics. The scope of these constraints stretches over two classes.
The former demand that all attributes return a proper value, and the latter demand
that an object is referred to by another object.

To obtain an algorithmic decision procedure for the implication of onto constraints,
we have to conceive inference rules. However, the implication of onto constraints does
not always yield onto constraints from a given set of onto constraints.

Example 4.5

Let D be a schema with onto constraint d{m|c} ∈ OCD and signature atom HIERD ∪
SIGD |= d[m⇒ c′]. Then this clearly implies the formula ∀O(O : c′ ←− O : c), because
all elements of class c have to be referred to by an object of class d, which entails that
the referred object of class c is also an object of class c′ due to the signature atom and
the well-typedness axioms.

We formalise formulae as presented in the preceding example as class inclusion con-
straints.

Definition 4.6 (Class Inclusion Constraint)

Let D be a schema, and c, c′ ∈ CLASSD be two classes.

Syntax: A class inclusion constraint (CIC) for c, c′ over D is of the form c ⊂ c′.

Semantics: A class inclusion constraint F-formula for a class inclusion constraint c ⊂ c′

is

∀O(O : c′ ←− O : c) .

The symbol CICD denotes the set of all class inclusion constraint F-formulae in the set
SCD of semantic constraints.

In this section we restrict the set of semantic constraints of a schema to class inclusion
constraints and onto constraints plus unique name axioms, well-typedness axioms and
definedness axioms until2 otherwise mentioned, i. e.

SCD = AX ∪ CICD ∪OCD .

Since the presence of the axioms has a more technical flavour, we shall often speak
of semantic constraints meaning the constraints that are not axioms but application-
dependent constraints.

Having class inclusion constraints, we can give inference rules for class inclusion
constraints and onto constraints. The first rule incarnates the transitive nature of class
inclusion constraints. The second rule captures the influence of the class hierarchy: if a
class is a subclass of another class, each element of the subclass must be an element of
its superclass. As the class hierarchy depends solely on the underlying schema, this rule

2In Sec. 4.4.
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introduces a dependency of the inference mechanism on the underlying schema. The
next rule embodies the interplay between onto constraints and signature declarations as
shown in Exam. 4.5. Its effect is the introduction of class inclusion constraints orthogonal
to the class hierarchy. While the last three rules saw class inclusion constraints as results,
the next two rules deal with the inference of onto constraints. The first of these rules
allows a restriction of the range of an onto constraint, whereas the second grants the
relaxation of the domain of an onto constraint.

Given a set of class inclusion constraints and onto constraints over a schema the
derivation from this set is not influenced by the set of constraints in the schema itself.

Definition 4.7 (Inference Rules for CICs and OCs)

Let Υ ∪ {υ} be a set of class inclusion constraints and onto constraints over a schema
D. The constraint υ is derivable from Υ, written Υ `D υ, iff it is a member of Υ or is
the result of one or more applications of the following inference rules.

C1. C-transitivity: For classes c, c′, c′′ ∈ CLASSD, if both c ⊂ c′ and c′ ⊂ c′′ can be
derived, then so can c ⊂ c′′.

C2. Subclass inclusion: For classes c, c′ ∈ CLASSD, where HIERD |= c :: c′, derive
c ⊂ c′.

C3. Signature inclusion: For classes c, c′ ∈ CLASSD, if d{m|c} can be derived, where
HIERD ∪ SIGD |= d[m⇒ c′], then so can c ⊂ c′.

C4. Range restriction: For classes d, c ∈ CLASSD, if c ⊂ c′ and d{m|c′} can be derived,
then so can d{m|c}.

C5. Domain relaxation: For classes d, c′ ∈ CLASSD, if c ⊂ c′ and c{m|d} can be
derived, where m ∈ AttrD(c′), then so can c′{m|d}.

In this definition we bring the logical entailment to bear to extract knowledge about the
class hierarchy and the signature of classes; but we have to keep in mind here that these
extractions can be algorithmically decided because of Theor. 3.4.

An example for the application of the inference rules is shown in Exam. 4.10.
The closure of a set of class inclusion constraints and onto constraints contains all

class inclusion constraints and onto constraints that can be derived from the set of class
inclusion constraints and onto constraints.

Definition 4.8 (Closure)

Let Υ be a set of class inclusion constraints and onto constraints over a schema D. The
closure of Υ over the schema D, written Υ+D , is the set of all class inclusion constraints
and onto constraints υ over the schema D where Υ `D υ.

Although the formulae expressing the semantic constraints depend only on the under-
lying language not on the schema itself, the inference rules C1 to C5 make use of the
underlying schema. So when we show the correctness of the inference rules, we take the
underlying schema into account.
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Theorem 4.9 (Soundness of the Inference Rules C1 to C5)

The inference rules C1 to C5 are sound, i. e., for a set Υ ∪ {υ} of class inclusion
constraints and onto constraints over a schema D: if υ ∈ Υ+D , then every instance of
the schema D satisfying Υ satisfies υ, sat(D ∪Υ) ⊂ sat(D ∪ {υ}).

Proof. We show this by using the proof theory provided by F-logic. Admittedly, the
use of the proof theory seems exaggerated, because the correctness of the inference
rules seems to manifest itself semantically, but the proof theory helped the author
in his efforts to develop the inference rules.

The proof goes now as follows. We show for all inference rules that the antecedents
logically entail the conclusions. But the antecedents for the rules C2 (subclass
inclusion), C3 (signature inclusion) and C5 (domain relaxation) comprehend parts
of the class hierarchy giving and signature declaring components of a schema. So
we show that if the constraint υ is derivable from the set Υ of constraints, then

D ∪Υ |= υ (4.1)

holds. But now every completion of an instance under the schema D ∪ Υ is an
H-model of the set D ∪Υ, and hence because of (4.1) an H-model of υ. Therefore
every instance of the schema D ∪Υ is also an instance of the schema D ∪ {υ}.
We need for this proof only a subset of the F-logic inference rules, namely the
rules resolution and subclass inclusion. For this reason we do not introduce all
F-logic inference rules only the two mentioned above. We merely sketch how the
two F-logic inference rules work.

The symbols L and L′ are used to denote positive literals, C and C ′ denote clauses,
and P , Q, Q′, R′ denote id-terms. Resolution looks very much like resolution in
classical logic.

Resolution: Let ¬L∨C and L′∨C ′ be a pair of clauses standardised apart (without
common variables). Then the resolution rule is

¬L ∨ C,L′ ∨ C ′,Θ = mguv(L,L′)

Θ(C ∨ C ′) .

In this rule Θ is the most general unifier of the literal L into the literal L′.

Subclass inclusion: Let (P :Q)∨C and (Q′::R′)∨C ′ be a pair of clauses standardised
apart. Then the subclass inclusion rule says:

(P :Q) ∨ C, (Q′::R′) ∨ C ′,Θ = mguv(Q,Q′)

Θ((P :R′) ∨ C ∨ C ′)

With the F-logic inference rules at hand, we can proceed nearly as in classical
logic. Therefore we have to transform the formulae into clausal normal form. To
obtain the clausal normal form of the onto constraint formula

∀V ∃O(O : c[m→ V ] ∧ c[m⇒ ()]←− V : cm) ,
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we skolemise it. So we get

f(V ) : c[m→ V ] ∧ c[m⇒ ()]←− V : cm .

Then we bring the skolemised formula into conjunctive normal form, by first re-
placing the implication with its definition as disjunction,(

f(V ) : c[m→ V ] ∧ c[m⇒ ()]
)
∨ ¬V : cm ,

and then applying the distributive law and simultaneously breaking the first object
molecule into its constituent atoms,(

f(V ) : c ∨ ¬V : cm
)
∧
(
f(V )[m→ V ] ∨ ¬V : cm

)
∧
(
c[m⇒ ()] ∨ ¬V : cm

)
.

The conjunctive normal form of class inclusion constraint formulae is similarly
obtained. It is

O : c′ ∨ ¬O : c

for a class inclusion constraint c ⊂ c′. Inference rule “signature inclusion” contains
a signature atom in its antecedent. The way to capture this signature atom is to
make use of the well-typedness axioms. In this case it is the axiom

∀O ∀M ∀V ∀C ∀W (V : W ←− C[M ⇒ W ] ∧O[M → V ] ∧O : C) .

Its conjunctive normal form is

V : W ∨ ¬C[M ⇒ W ] ∨ ¬O[M → V ] ∨ ¬O : C .

Now we give the refutations for all inference rules. In some refutation steps we
implicitly make the clauses standardised apart without mentioning this explicitly.

C1: i. O : c′ ∨ ¬O : c from c ⊂ c′

ii. O : c′′ ∨ ¬O : c′ from c′ ⊂ c′′

iii. ¬a : c′′ from c ⊂ c′′

iv. a : c ”
v. O : c′′ ∨ ¬O : c by resolving (i) and (ii)
vi. ¬a : c by resolving (iii) with (v);

Θ = {O\a}
vii. 2 by resolving (iv) with (vi)

C2: i. c :: c′

ii. ¬a : c′ from c ⊂ c′

iii. a : c ”
iv. a : c′ by the rule of subclass inclusion,

using (i) and (iii)
v. 2 by resolving (ii) and (iv)
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C3: We witness in this refutation for the first time the influence of
axioms inherent in a schema. In this case it is a part of the well-
typedness axioms.

i. f(V ) : d ∨ ¬V : c from d{m|c}
ii. f(V )[m→ V ] ∨ ¬V : c ”

iii. d[m⇒ ()] ∨ ¬V : c ”
iv. d[m⇒ c′]
v. V : W ∨ ¬C[M ⇒ W ] ∨
¬O[M → V ] ∨ ¬O : C

the well-typedness axiom

vi. ¬a : c′ from c ⊂ c′

vii. a : c ”
viii. V : c′ ∨ ¬O[m→ V ] ∨ ¬O : d by resolving (iv) and (v);

Θ = {C\d,M\m,W\c′}
ix. V : c′ ∨ ¬f(V ) : d ∨ ¬V : c by resolving (ii) and (viii);

Θ = {O\f(V )}
x. V : c′ ∨ ¬V : c by resolving (i) and (ix)

xi. ¬a : c by resolving (vi) and (x);
Θ = {V \a}

xii. 2 by resolving (vii) and (xi)

C4: i. O : c′ ∨ ¬O : c from c ⊂ c′

ii. f(V ) : d ∨ ¬V : c′ from d{m|c′}
iii. f(V )[m→ V ] ∨ ¬V : c′ ”
iv. d[m⇒ ()] ∨ ¬V : c′ ”
v. ¬O : d ∨ ¬O[m→ a] ∨
¬d[m⇒ ()]

from d{m|c}

vi. a : c ”
vii. a : c′ by resolving (i) with (vi);

Θ = {O\a}
viii. f(a) : d by resolving (ii) and (vii);

Θ = {V \a}
ix. f(a)[m→ a] by resolving (iii) and (vii);

Θ = {V \a}
x. d[m⇒ ()] by resolving (iv) and (vii);

Θ = {V \a}
xi. ¬f(a)[m→ a] ∨ ¬d[m⇒ ()] by resolving (v) with (viii);

Θ = {O\f(a)}
xii. ¬d[m⇒ ()] by resolving (ix) and (xi)
xiii. 2 by resolving (x) and (xii)

C5: i. O : c′ ∨ ¬O : c from c ⊂ c′

ii. f(V ) : c ∨ ¬V : d from c{m|d}
iii. f(V )[m→ V ] ∨ ¬V : d ”
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iv. c[m⇒ ()] ∨ ¬V : d ”
v. c′[m⇒ ()] from m ∈ AttrD(c′)

vi. ¬O : c′ ∨ ¬O[m→ a] ∨
¬c′[m⇒ ()]

from c′{m|d}

vii. a : d ”
viii. f(a) : c by resolving (ii) with (vii);

Θ = {V \a}
ix. f(a) : c′ by resolving (i) with (viii);

Θ = {O\f(a)}
x. f(a)[m→ a] by resolving (iii) with (vii);

Θ = {V \a}
xi. ¬f(a)[m→ a] ∨ ¬c′[m⇒ ()] by resolving (vi) and (ix);

Θ = {O\f(a)}
xii. ¬c′[m⇒ ()] by resolving (x) and (xi)
xiii. 2 by resolving (v) and (xii)

2

We demonstrate how the inference rules work by means of an example, which serves as
a running example throughout the remainder of this section, Sections 4.2 and 4.3. The
purpose of this example is to convey an intuition for the technicalities involved in the
proof of the completeness of the inference rules for class inclusion constraints and onto
constraints, therefore we do not come up with an example that offers an interpretation
in the real world rather it uses class names and attribute names like e, e′, j and alike.

Example 4.10

Before we demonstrate how the inference rules do their job, we present a schema and
then show how we can derive from a given set of semantic constraints, which are in this
case only onto constraints, new semantic constraints, which an instance of the given
schema has to satisfy as well due to the correctness of the inference rules (Theor. 4.9).

The schema T we use has the components

CLASST = {e, e′, f, f ′, f ′′, g, h} ,
METHT = {j, k, n, p} ,
HIERT = {e::e′, f ′′::f ′} ,

SIGT = {e[j ⇒ f ], e′[k ⇒ h],
f ′′[p⇒ e],
h[n⇒ g],
g[k ⇒ h]} , and

SCT = AX .

This schema is represented in Fig. 4.1.



56 CHAPTER 4. APPLICATION-DEPENDENT CONSTRAINTS

ghf ′′
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Figure 4.1: The schema T in Exam. 4.10

An instance of this schema T is

t = 〈 {oe:e, of :f ′′, of :f, oh:h, og:g} |
{oe[j → of ; k → oh],
of [p→ oe],
oh[n→ og],
og[k → oh]} 〉 .

This instance t is depicted in Fig. 4.2.

ogohof

oe
lCl(oe) = {e, e′}

lCl(of ) = {f ′′, f ′, f}
lCl(og) = {g}

lCl(oh) = {h}

k

n

j k

p

Figure 4.2: The instance t of the schema T in Exam. 4.10

The set of semantic constraints used in this example to exhibit how the inference
rules for class inclusion constraints and onto constraints operate is the set Ω of onto
constraints over the schema T with

Ω = {e{j|f ′}, e{k|h},
f ′′{p|e}} .

For this set Ω of onto constraints we give an example for each of the inference rules C1
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to C5.
e[j ⇒ f ]
e{j|f ′}

}
C3

`T f ′ ⊂ f

f ′′::f ′
}C2

`T f ′′ ⊂ f ′

C1

`T f ′′ ⊂ f

e{j|f ′}
f ′′ ⊂ f ′

}
C4

`T e{j|f ′′}

e{k|h}
e ⊂ e′

e′[k ⇒ h]

 C5

`T e′{k|h}

To summarise, the set of all class inclusion constraints that can be derived from the set
Ω of onto constraints under the schema T is

{e ⊂ e, e′ ⊂ e′, f ′′ ⊂ f ′′, f ′ ⊂ f ′, f ⊂ f, h ⊂ h, g ⊂ g,
e ⊂ e′, f ′′ ⊂ f ′, f ′′ ⊂ f, f ′ ⊂ f} , and

the set of all onto constraints that can be derived from the set Ω of onto constraints
under the schema T is

{e{j|f ′}, e{j|f ′′},
e{k|h}, e′{k|h},
f ′′{p|e}} .

The instance t of the schema T is also an instance of the schema T ∪Ω, and hence due
to Theor. 4.9 an instance of the schema T ∪ Ω+T .

In the sequel we often revert to the schema T ′ := T ∪ Ω.

An aspect where our data model differs from the relational data model is that we allow
infinite instances. One of the reasons for the infinity is that the inference rules C1 to
C5 are no longer complete for only finite instances (‖obj(f)‖ ∈ N). The other reason is
discussed when we delineate the proof of the completeness.

Example 4.11

In this example we do not resort to the schema T in Exam. 4.10 because if we had
done so, we would have over-freighted that example. Instead we use a schema D, which
includes the signature atom

c[m⇒ e] (4.2)

and use the onto constraints
c{m|d} (4.3)

and
d{f |e} (4.4)

over the schema D. From (4.2) and (4.3), we derive the class inclusion constraint
d ⊂ e by the inference rule C3 (signature inclusion). From (4.4), we conclude that the
cardinality of the set of objects of the class d is greater than or equal to the cardinality
of the set of objects of the class e in every instance f of the schema D. Consequently,
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in every finite instance of the schema D, every object of the class d is also an object of
the class e and vice versa, and so the onto constraint

c{m|e} (4.5)

holds for every finite instance of the schema D.
An infinite instance of the schema D that satisfies the onto constraints (4.3) and (4.4)

but not the onto constraint (4.5) is represented in Tab. 4.6. The table merely introduces
a creation scheme and uses “syntactic sugar”. We read a “molecule” like y′:c[m →
y:{d, e}] as follows. The is-a assertion y′:c retains its known meaning. The expression
y:{d, e} stands for the two is-a assertions y:d and y:e.

y′:c[m→ y:{d, e}] y:d[f → z:e]
x′:c[m→ x:{d, e}] x:d[f → y:e]
w′:c[m→ w:{d, e}] w:d[f → x:e]

...
...

Table 4.6: The creation scheme for an infinite instance in Exam. 4.11

The first column in the creation scheme defines objects ({y′, x′, w′, . . .}) of the class
c along with their values for the attribute m ({y, x, w, . . .}), which are elements of the
class d as well as of the class e, thereby satisfying the well-typedness axioms activated
by the signature atom (4.2) and satisfying the onto constraint (4.3).

The second column defines objects ({y, x, w, . . .}) of the class d, which are already
known to be elements of the class d, and their values for the attribute f ({z, y, x, . . .}),
which are elements of the class e, thereby satisfying the onto constraint (4.4). We detect
in the first row and in the second column the object z, which is an element of the class
e, but which is never referenced by an object of the class c via the attribute m. So the
object z is a witness that the onto constraint (4.5) does not hold in this infinite instance.

A result with respect to the inference rules C1 to C5 is that the inference rules are
complete if we regard only class inclusion constraints alone. In this case we only use the
inference rules C1 and C2 since it is not possible to derive onto constraints from a given
set of class inclusion constraints, and so the rules C3 to C5 do not apply.

Lemma 4.12 (Completeness of C1 to C2 for CICs)

Let Λ∪{c ⊂ c′} be a set of class inclusion constraints over a schema D with only the set
AX of axioms as semantic constraints, SCD = AX. Then if the inclusion sat(D ∪ Λ) ⊂
sat(D ∪ {c ⊂ c′}) holds, we can derive the class inclusion constraint c ⊂ c′ from the set
Λ under the schema D, Λ `D c ⊂ c′.

Proof. We conduct this proof by contraposition, i. e., we assume conversely that Λ 6`D
c ⊂ c′ holds and show then that there exists an extension f with f ∈ sat(D ∪ Λ)
and f 6∈ sat(D ∪ {c ⊂ c′}).
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We construct the extension of the arbitrary schema D satisfying the axioms AX
and the set Λ of class inclusion constraints but not the class inclusion constraint
c ⊂ c′. This extension f consists of two objects o and o′ where the object o is
element of all classes d, for which we can derive Λ `D c ⊂ d, and the object o′

is element of all classes. The object o′ is the value of object o for all attributes
declared on all classes d, for which we can derive Λ `D c ⊂ d, and the value of
the object o′ for all attributes for all classes, because the object o′ is element of all
classes.

f := 〈 {o:d | Λ `D c ⊂ d} ∪ {o′:d | d ∈ CLASSD}|
{o[m→ o′] | m ∈

⋃
d∈{d′|Λ`Dc⊂d′}AttrD(d)} ∪

{o′[m→ o′] | m ∈ AttrD} 〉
A sketch of the extension f is outlined in Fig. 4.3.

o o′

lCl(o) = {c, . . .}
lCl(o

′) = CLASSD

Figure 4.3: Sketch for the extension in the proof of Lem. 4.12

The extension f satisfies the unique name axioms, well-typedness axioms and
definedness axioms. So it is an instance of the schema D.

The objects o and o′ satisfy the set of class inclusion constraints Λ by definition.
Therefore the extension f is also an instance of the schema D ∪ Λ.

Since the hypothesis Λ 6`D c ⊂ c′ holds, we know due to the inference rule C2 that
HIERD 6|= c::c′ holds, which means complD(f) 6|= c::c′ holds by the proof theory
of F-logic. But then the object o is not an element of the class c′. Therefore the
extension f is not an instance of the schema D ∪ {c ⊂ c′}.

2

Before we conclude this section with an outline of how we prove the completeness of
the inference rules C1 to C5 when both kinds of semantic constraints, class inclusion
constraints and onto constraints, are present, we show the problem Υ `D υ is decidable
for a finite set Υ ∪ {υ} of class inclusion constraints and onto constraints.

Theorem 4.13 (Decidability of the Derivability Problem for C1 to C5)

Let Υ ∪ {υ} be a finite set of class inclusion constraints and onto constraints over a
schema D. The problem Υ `D υ is decidable.

Proof. Because of the finiteness of most components in a schema our syntactic ma-
terial is restricted. Due to Theor. 3.4 the set of all non-trivially implied class
is-a assertions that can be deduced from the set HIERD, which is finite, can be
effectively computed as well as the set of all implied signature atoms that can be
deduced from the set HIERD ∪ SIGD, which is finite again. Both deduced sets are
finite, and so the set of all constraints derivable from Υ by the inference rules C1
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to C5 is finite with an upper bound, which is set by the number of all class in-
clusion constraints and onto constraints over the schema D, and can be effectively
computed. 2

The proof of the completeness of the inference rules for class inclusion constraints and
onto constraints when both kinds of semantic constraints are present is harder to show.
Therefore we give first an outline of how we conduct this proof. We show for a set
Υ∪{υ} of class inclusion constraints and onto constraints and for a schema D with only
the set AX of axioms as semantic constraints, SCD = AX, that if every instance of the
schema D ∪Υ is an instance of the schema D ∪ {υ}, then Υ `D υ can be derived. But
instead of showing this assertion directly, we conduct the proof by contraposition. So
we assume conversely that we cannot derive the constraint υ from the set Υ, Υ 6`D υ.
Then we construct an instance f of the schema D such that f is

• an instance of the schema D ∪Υ,

• but not an instance of the schema D ∪ {υ}.

Such an instance has to be constructed with great diligence in order to meet the demands
above. The idea is to start first with an extension that satisfies at least the set AX of
axioms and later on to amend this extension to satisfy the set Υ of constraints by
upholding the invariant that the extension does not satisfy the constraint υ. We call
such a prototype instance an S-tree (Def. 4.30).

The way to construct such an S-tree for a schema D and a set Υ∪{υ} of constraints
where υ is of the form d{m|c} or c ⊂ d is to take an object r of the class c in both cases
as starting point. As mentioned before we want the constructed extension to satisfy first
the set AX of axioms. Applying this insight to our extension, consisting so far only of
the object r, means that the definedness axioms DEF have to be satisfied. Thus we have
to introduce appropriate values for the attributes of the object r. According to the well-
typedness axioms, these attribute values are objects of some classes, which in turn have
signatures declared on them. So again as for the object r, we have to introduce attribute
values to satisfy the definedness axioms. This process where we always introduce new
objects to avoid conflicts with the unique name axioms has to be iterated until all axioms
are satisfied (Lem. 4.32). The outcome of this iteration has the form of a tree with the
object r as root, hence the name S-Tree. If the declaration of signatures in the schema D
contains a cycle, e. g. declarations like a[m⇒ b] and b[n⇒ a], the tree becomes infinite.
Therefore we allow infinite extensions and instances.

A node of this tree is an object of the extension, and an edge o
m−→ o′ with the label

m represents that the object o′ is the value for the attribute m of the object o. This
edge has been introduced, because the object o is an element of some class d, for which a
signature d[m ⇒ d′] is declared. Looking from a different perspective, we discover that
knowing the schema is sufficient to describe an attribute value path in an S-tree. For
example if a schema contains the signature atoms d[m⇒ d′] and d′[n⇒ g], they might
describe the attribute value path o

m−→ p
n−→ q in the S-tree. We use “might” in the

preceding sentence, because the signature atoms only possess the potential to describe
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an attribute value path. If and only if the object o is element of the class d, the attribute
value path o

m−→ p
n−→ q must exist. Instead of using signature atoms, we condense

the imparted information of these signature atoms into the notion of a path description,
.m.n in this example. By means of this path description, we can describe the attribute
value path o

m−→ p
n−→ q.

Because of the definedness axioms and the scalarity of scalar methods, hence at-
tributes, a path description appropriately applied to an object describes exactly one
attribute value path, and we therefore denote path descriptions as path functions
(Def. 4.23).

Coming back to the extension, known to be an S-tree and satisfying the set AX of
axioms, we recall our immediate goal: we want to amend the S-tree in such a way that
the set Υ of constraints is satisfied. When an onto constraint d{m|c} is violated in the
extension there exists an object o, element of the class c, that is not referenced by an
object of the class d via the attribute m. To remedy the violation, we insert a new
object o′ into the extension, make the object o′ an element of the class d, and stipulate
the object o as value for the attribute m of the object o′.

We soon discover we have to bestow some care making the insertion—we have to
ensure that the set AX of axioms is satisfied again. So instead of inserting only one
single object o′, we insert an S-tree with root o′, which we prune by cutting off the
branch starting with the attribute in the violated constraint, which is the attribute m
in our example. We call such a pruned S-tree pruned-S-tree (Def. 4.33).

We simultaneously insert pruned-S-trees for all objects violating onto constraints and
call this operation extrev (Def. 4.37), which upholds the invariant that if an extension
satisfies the set AX of axioms, then extrev(f) satisfies the set AX of axioms (Lem. 4.39).

Applying the operation extrev on an S-tree does not yield an extension that looks
like a tree any longer. For example we assume that the root r of an S-tree does not
satisfy the onto constraint d{m|c}. To remedy this violation, we insert a new object o,
make the object o an element of the class d and insert the edge o

m−→ r into the S-tree.
But then we can no longer describe this edge by a path function starting at the root
r. The edge o

m−→ r runs in the reverse direction when we look from the perspective
of the root r. A fact that is covered by the concept of a way description (Def. 4.23),
which is an extension of the concept of a path function to capture this reverse traversal
of attribute value paths.

Iterating this process of introducing new objects produces then an extension that
satisfies the onto constraints derivable from the set Υ of class inclusion constraints and
onto constraints (Lem. 4.40).

To satisfy the class inclusion constraints derivable from this set but not the class
inclusion constraint υ, we follow a different strategy, which ensures that the class inclu-
sion constraints are satisfied from the outset but not the class inclusion constraint υ.
So when we begin with the root of the initial S-tree, we ensure that the root is element
of all classes required by the set Υ of constraints but of no other classes. As we do not
know at this stage whether the inference rules are complete, we obtain the knowledge
about the required class memberships by derivation using the inference rules, which are
at least correct (Theor. 4.9). The iteration process does not alter the class membership
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of any object, so all objects satisfy all class inclusion constraints derivable from the set
Υ of constraints.

Finally, we know that the iteration process generates an output that satisfies both
the set AX of axioms and the set Υ of constraints but not the constraint υ, and thus we
prove the completeness of the inference rules C1 to C5 (Theor. 4.41).

4.2 Schema and Instance Navigation

As mentioned before in the proof outline, we construct an extension that satisfies all
derivable class inclusion constraints, which influence the class membership of the objects
in this extension. Our starting point in the construction is a class c occurring in either
a class inclusion constraint c ⊂ d or an onto constraint d{m|c}. Our first object in
the construction, the root of the S-tree, becomes a member of this class c and all other
classes c′ with c ⊂ c′ according to what we can derive from the set Υ of constraints.
We denote this set of classes the folder of the class c. A folder of a class c specifies all
classes an object of the class c must be a member of.

Definition 4.14 (Folder)

Let D be a schema. We define the folder of a class c ∈ CLASSD as

FolderD(c) := {d | SCD\AX `D c ⊂ d} .

Note that the set SCD of semantic constraints consists in this section only of axioms,
class inclusion constraints and onto constraints; but we do not make this fact explicit
in the definition because we want to reuse the definition in other sections where the
semantic constraints are not exclusively restricted to axioms, class inclusion constraints
and onto constraints.

Example 4.15

In Exam. 4.10 the folder of the class f ′′ is FolderT ′(f
′′) = {f ′′, f ′, f}.

Having determined which classes the initial object has to be a member of, we have to find
out about the class memberships of other objects included in the initial extension due to
the definedness axioms and well-typedness axioms, and later on in the iterated extensions
even due to unsatisfied onto constraints. For this task we employ way descriptions, which
describe the attribute value ways in the extension. Way descriptions are an extension of
path functions [Wed89, Wed92], which capture that we follow attribute value edges like
o

m−→ o′ not only in the forward direction from o to o′ but also in the reverse direction
from o′ to o. Syntactically, way descriptions are strings of attribute names separated
by dots or minuses, where dots signify the forward traversal while minuses signify the
backward traversal. In our first definition of (arbitrary) way descriptions, we arbitrarily
string attribute names together.

Definition 4.16 ((Arbitrary) Way Description)

The set of (arbitrary) way descriptions Warb(D) over a schema D consists of all finite
sequences of ‘dot or minus separated’ attribute names together with the identity way
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description denoted as .Id where Id 6∈ V ∪ S.

Warb(D) :=
{
π1m1 · · ·πnmn | n > 0 and mi ∈ AttrD, πi ∈ {.,−}, i ∈ {1, . . . , n}

}
∪ {.Id}

The length of the way description .Id is 0, len(.Id) := 0. The length of a way description
w ≡ π1m1 · · ·πnmn is n, len(w) := n.

Example 4.17

For the schema T in Exam. 4.10 the following are arbitrary way descriptions over the
schema T :

−j−k.p−n.k−k,
.Id,
.j.k.p.n.k,
.k.n,
−n−k,
−k,
−k−p .

A path function is a special way description with only dots as separating symbols, because
a path function is intended to describe attribute value paths.

Definition 4.18 ((Arbitrary) Path Function)

The set of (arbitrary) path functions Parb(D) ⊂ Warb(D) over a schema D consists of
all arbitrary way descriptions with only ‘dots’ occurring in them.

Example 4.19

The arbitrary way descriptions
.Id,
.j.k.p.n.k,
.k.n

are arbitrary path functions over the schema T in Exam. 4.10.

The set of arbitrary way descriptions is too large, because way descriptions describe
attribute value ways that do not appear in any instance of the underlying schema.
In addition, there are arbitrary way descriptions we are not interested in. These way
descriptions take on the form · · · .m−m · · · or · · · −m.m · · · , which we exclude by means
of the concatenation of arbitrary way descriptions.

Definition 4.20 (Concatenation of Arbitrary Way Descriptions)

Let w1, w2 ∈Warb(D) be two way descriptions over a schema D. Then the concatenation,
written w1 ◦ w2, is defined as

w1 ◦ w2 :=



.Id if w1 = w2 = .Id, or w1 = πm, w2 = π̄m
w1 if w1 6= .Id, w2 = .Id
w2 if w1 = .Id, w2 6= .Id
w′1 if w1 = w′1πm, w2 = π̄m
w′2 if w1 = πm, w2 = π̄mw′2
w′1 ◦ w′2 if w1 = w′1πm, w2 = π̄mw′2
w1w2 otherwise

,
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where, if π = . or π = −, then π̄ = − or π̄ = ., respectively.

Example 4.21

We give examples for the concatenation of arbitrary way descriptions for the arbitrary
way descriptions in Exam. 4.17.

.Id ◦ .Id = .Id
−j−k.p−n.k−k ◦ .Id = −j−k.p−n.k−k
.Id ◦ −j−k.p−n.k−k = −j−k.p−n.k−k
.k.n ◦ −n−k = .Id
−n−k ◦ .k.n = .Id
.k.n ◦ .k.n = .k.n.k.n

The concatenation of arbitrary way descriptions is associative as the next lemma indi-
cates, for instance

(.k.n ◦ −n−k) ◦ .k.n = .Id ◦ .k.n = .k.n = .k.n ◦ .Id = .k.n ◦ (−n−k ◦ .k.n) .

Lemma 4.22 (Associativity of Arbitrary Way Descriptions)

Let w1, w2, w3 ∈Warb(D) be three way descriptions over a schema D. The concatenation
of way descriptions is associative,

(w1 ◦ w2) ◦ w3 = w1 ◦ (w2 ◦ w3) .

Proof. The proof of this lemma includes some technical subtleties but is obvious.
2

Our objective is to use only those way descriptions, well-formed way descriptions, that
always describe an attribute value way starting at an object in certain instances. These
instances are minimal in the sense that apart from a given set of objects they only
contain objects whose existence is demanded by the semantic constraints and they form
a directed acyclic graph. Then we intend to determine the compulsory class memberships
of the object reached by the attribute value way. In fact there is a close correspondence
between the compulsory class memberships of such an object and the definition of way
descriptions.

The definition of a well-formed way description starts with the shortest possible well-
formed way description, .Id, and then considers longer descriptions by distinguishing the
prolongation of an already existing well-formed way description by an attribute either
in the forward or the reverse direction.

We simultaneously define the domain and the range of a well-formed way description.
The former is the set of classes from which a way description may start, i. e. a well-
formed way description always describes an attribute value way if the starting point is
an object that is element of a class in the domain of the way description. The latter is a
set of classes an end node of an attribute value way must be a member of provided the
start node is element of a class in the domain of the way description and the extension
under consideration obeys certain restrictions.
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Definition 4.23 (Well-Formed Way Description)

1. The set of well-formed way descriptions Wwf(D) ⊂Warb(D) over a schema D is
the smallest set such that

• .Id ∈Wwf(D), where

– DomD(.Id) := CLASSD, and

– RanD(c, .Id) := FolderD(c) for all c ∈ CLASSD,

• if w ∈ Wwf(D) is a well-formed way description with a domain class c ∈
DomD(w) such that m ∈

⋃
d∈RanD(c,w) AttrD(d) for some attribute m and

len(w) < len(w ◦ .m), then w ◦ .m ∈Wwf(D), where

DomD(w ◦ .m) := {e ∈ DomD(w) | m ∈
⋃

f∈RanD(e,w)

AttrD(f)} , and

RanD(e, w ◦ .m) := {h ∈ FolderD(g) | ex. f : f ∈ RanD(e, w) and
HIERD ∪ SIGD |= f [m⇒ g]}

for all e ∈ DomD(w ◦ .m) ,

• if w ∈ Wwf(D) is a well-formed way description with a domain class c ∈
DomD(w) such that d{m|f} ∈ (SCD\AX)+D for some class f ∈ RanD(c, w),
some attribute m, and some class d, and len(w) < len(w◦−m), then w◦−m ∈
Wwf(D), where

DomD(w ◦ −m) := {e ∈ DomD(w) | ex. f, g : f ∈ RanD(e, w) and
g{m|f} ∈ (SCD\AX)+D} , and

RanD(e, w ◦ −m) := {h ∈ FolderD(g) | ex. f : f ∈ RanD(e, w) and
g{m|f} ∈ (SCD\AX)+D}

for all e ∈ DomD(w ◦ −m) .

2. For each class c ∈ CLASSD we write WayDesD(c) to denote all way descriptions
w ∈Wwf(D) where c ∈ DomD(w), i. e. all way descriptions starting at the class c.

3. The set PathFuncsD(c) ⊂ WayDesD(c) denotes the set of all well-formed path
functions starting at the class c.

When we speak in the sequel of way descriptions (path functions), we always mean
well-formed way descriptions (path functions) unless otherwise mentioned.

Example 4.24

Some of the arbitrary way descriptions in Exam. 4.17 are well-formed way descriptions.
First of all the arbitrary way description .Id is a well-formed way description with

DomT ′(.Id) = CLASST ′ = {e, e′, f ′′, f ′, f, h, g} , and
RanT ′(f

′′, .Id) = FolderT ′(f
′′) = {f ′′, f ′, f} .

Based on this knowledge we calculate for the way descriptions .k.n and −k−p their
domains and some of their ranges.
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We begin with the way description .k.n. Therefore we show first that .k is a well-
formed way description and then determine its domain and range.

We know that the way description .Id is well-formed. Now for the class g ∈
DomT ′(.Id) the range RanT ′(g, .Id) of the way description .Id is FolderT ′(g) = {g}.
The set AttrT ′(g) of attributes for the class g is {k}, hence k ∈ AttrT ′(g). Finally,
the inequation len(.Id) = 0 < 1 = len(.k) = len(.Id ◦ .k) holds, and therefore the way
description .k is well-formed with

DomT ′(.k) = DomT ′(.Id ◦ .k)

= {a ∈ DomT ′(.Id) | k ∈
⋃

b∈RanT ′ (a,.Id)

AttrT ′(b)}

= {e, e′, g}

and

RanT ′(g, .k) = RanT ′(g, .Id ◦ .k)

= {c ∈ FolderT ′(b) | ex. a : a ∈ RanT ′(g, .Id) and
HIERT ′ ∪ SIGT ′ |= a[k ⇒ b]}

= {h} .

Now we know g ∈ DomT ′(.k), h ∈ RanT ′(g, .k), n ∈ AttrT ′(h) and len(.k) = 1 < 2 =
len(.k.n) = len(.k ◦ .n), and thus the way description .k.n is well-formed with

DomT ′(.k.n) = {e, e′, g} and

RanT ′(e, .k.n) = RanT ′(e
′, .k.n) = RanT ′(g, .k.n) = {g} .

We exhibit how the definition can be used with way descriptions like −k. The way
description −k is well-formed, because h ∈ DomT ′(.Id), h ∈ RanT ′(h, .Id), e′{k|h} ∈
Ω+T ′ and len(.Id) < len(−k) holds. So the way description −k is well-formed with

DomT ′(−k) = {h} and

RanT ′(h,−k) = {e, e′} .

When we concat two way descriptions such that the second is applicable to a class in
the range of the first, we obtain a way description again, independent of the form of
both way descriptions.

Lemma 4.25 (Concatenation of Way Descriptions)

Let w,w′ ∈ Wwf(D) be two way descriptions over a schema D such that there exist
classes c, c′ with c ∈ DomD(w) and c′ ∈ RanD(c, w) ∩ DomD(w′). Then w ◦ w′ is a
way description over the schema D, w ◦ w′ ∈ Wwf(D), with c ∈ DomD(w ◦ w′) and
RanD(c′, w′) ⊂ RanD(c, w ◦ w′).

Proof. We conduct the proof by induction on the length of the way description w′.
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len(w′) = 0. Then c ∈ DomD(w) = DomD(w ◦ w′) and

RanD(c′, w′)
Def. 4.23

= FolderD(c′) ⊂ RanD(c, w) = RanD(c, w ◦ w′) .

The equation FolderD(c′) ⊂ RanD(c, w) holds because of the hypothesis c′ ∈
RanD(c, w), Def. 4.14 and Def. 4.23.

len(w′) = n+ 1, n ≥ 0. Then the way description w′ is of the form w′′ ◦ .m or
w′′ ◦ −m, and w′′ ∈ Wwf(D) is a way description over the schema D with
c ∈ DomD(w ◦ w′′) and RanD(c′, w′′) ⊂ RanD(c, w ◦ w′′) according to the
inductive assumption.

w′ = w′′ ◦ .m. Then we distinguish two cases according to the form of the
way description w ◦ w′′.
w ◦ w′′ = xπy with π ∈ {.,−}, y ∈ METHD, πy 6= −m. Because of c′ ∈

DomD(w′), c′ ∈ DomD(w′′) holds, and there exists a class d ∈
RanD(c′, w′′) with m ∈ AttrD(d). Consequently, c ∈ DomD(w ◦ w′′),
d ∈ RanD(c, w ◦ w′′), m ∈ AttrD(d) and len(w ◦ w′′) < len((w ◦
w′′) ◦ .m). Then by Def. 4.23, c ∈ DomD((w ◦ w′′) ◦ .m) and
RanD(c′, w′′ ◦ .m) ⊂ RanD(c, (w ◦ w′′) ◦ .m).

w ◦ w′′ = x−m. Then x = w◦w′ is a way description with c ∈ DomD(x),
and RanD(c′, w′) ⊂ Ran(c, x) by Def. 4.23 and by the fact that the
way description x is a prefix of the way description w ◦ w′′.

w′ = w′′ ◦ −m. Then we distinguish two cases according to the form of the
way description w ◦ w′′.
w ◦ w′′ = xπy with π ∈ {.,−}, y ∈ METHD, πy 6= .m. Because of c′ ∈

DomD(w′), c′ ∈ DomD(w′′) holds, and there exists a class d ∈
RanD(c′, w′′) with e{m|d} ∈ (SCD\AX)+D . Consequently, c ∈
DomD(w ◦ w′′), d ∈ RanD(c, w ◦ w′′), e{m|d} ∈ (SCD\AX)+D

and len(w ◦ w′′) < len((w ◦ w′′) ◦ −m). Then by Def. 4.23, c ∈
DomD((w◦w′′)◦−m) and RanD(c′, w′′◦−m) ⊂ RanD(c, (w◦w′′)◦−m).

w ◦ w′′ = x.m. Then x = w ◦ w′ is a way description with c ∈ DomD(x),
and RanD(c′, w′) ⊂ Ran(c, x) by Def. 4.23 and by the fact that the
way description x is a prefix of the way description w ◦ w′′.

2

A well-formed way description might describe several attribute value ways when starting
at the same object. Mostly we are interested in the end points of an attribute value way
described by a well-formed way description.

Definition 4.26 (Application of Way Descriptions)

Let f be an instance of a schema D, o ∈ obj(f) be an object, c ∈ lCl(o) be a class,
m ∈ AttrD be an attribute, and w ∈WayDesD(c) be a way description.

• If w = .Id, then o.w := {o}.
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• If w = .m, then o.w := {o′} with obf |= o[m→ o′].

• If w = −m, then o.w := {o′ | obf |= o′[m→ o]}.

• If w = w′.m, then o.w := {o′′ | ex. o′ : o′ ∈ o.w′ and obf |= o′[m→ o′′]}.

• If w = w′−m, then o.w := {o′′ | ex. o′ : o′ ∈ o.w′ and obf |= o′′[m→ o′]}.

Example 4.27

The application of way descriptions .k, .k.n, −k, −k−p and −k−p−j to some objects
in the extension t in Exam. 4.10 yields the following results

oe..k = {oh} ,
oe..k.n. = {og} ,
oh.−k = {oe, og} ,

oh.−k−p = {of} and

oh.−k−p−j = {oe} .

The instance t is definitely not an instance we are interested in, because the instance
does not form a directed acyclic graph. So the application of the way description −k
on the object oh yields the set {oe, og}, and the object og is not a member of one of the
classes in RanT ′(h,−k).

4.3 Completeness of OCs and CICs

As mentioned in the outline of the completeness proof, we use special extensions with
certain qualities. These extensions satisfy the set AX of axioms and the set of class
inclusion constraints derivable from the given set of class inclusion constraints and onto
constraints.

There is a tight correspondence between the satisfaction of the axioms and the class
inclusion constraints. When a class inclusion constraint demands that an object o is
element of a class d, this object o delivers a value for an attribute declared on the class
d due to the definedness axioms. On the other hand if the object o is the value for
the attribute k of an object o′, o′[k → o], the object o′ is element of the class d′ and
the signature d′[k ⇒ d] is declared, the object o is a member of the class d due the
well-typedness axioms, and hence a member of all classes e for which we derive d ⊂ e.

Our means to observe the accordance is to adorn each object in the special extensions
with a label, a way-label. Each way-label is a way description and indicates that this
object is reachable by an attribute value way described by the way-label. The attribute
value way begins at a particular object in the extension called root, which is identical
with the root of an S-tree mentioned in the proof outline. We denote the special exten-
sions extensions with labelling, and a root3 carries the way-label .Id. An extension with
labelling is parameterised with an underlying schema with only the set AX of axioms as

3We allow several roots in an extension with labelling, a feature that we exploit in Sect. 4.5.
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semantic constraints, a set of class inclusion constraints and onto constraints over the
schema and a set of classes, which stipulate the set of classes a root is a member of.

Definition 4.28 (Instance (Extension) with Labelling)

Let f be an instance (extension) of a schema D with only the set AX as semantic
constraints, SCD = AX, Υ be a set of class inclusion constraints and onto constraints
over the schema D, and C ⊂ CLASSD be a set of classes. The instance (extension) f is
an instance (extension) with labelling based on the sets C and Υ, if there is a way-label
lWf(o) ∈

⋃
c∈C WayDesD∪Υ(c) for each object o ∈ obj(f) with the following properties

1. lCl(o) =
⋃
c∈C∩DomD∪Υ(lWf(o))

RanD∪Υ(c, lWf(o)), and

2. for all objects o′ ∈ obj(f), if obf |= o[m→ o′], then lWf(o) ◦ .m = lWf(o
′).

We call an object o ∈ obj(f) with lWf(o) = .Id root for the instance (extension) f . The
set of roots for f {r|r ∈ obj(f) and lWf(r) = .Id} is denoted Root(f).

This definition is well defined due to Lem. 4.12, because the definition of a range of a
way-description relies on the definition of a folder of a class, which in turn relies on the
derivation of class inclusion constraints.

We choose way-labels to be way descriptions over not only the schema D but also the
schema D ∪Υ, and thus lay the foundation for satisfying the axioms and the derivable
class inclusion constraints. Property 1 of extensions with labellings ensures that the
class membership is correctly chosen, and property 2 ensures that way-labels are not
arbitrarily chosen.

Example 4.29

An instance with labelling for the schema T and the set Ω of constraints in Exam. 4.10,
and the set {h} of classes is sketched in Fig. 4.4. The object oh is the only root of this
instance.

The prototype extension, an S-tree, for the counterexample of the completeness proof is
an extension with labelling that contains only path functions as way-labels, because an
S-tree merely aims at satisfying the axioms and the derivable class inclusion constraints.
An S-tree is very similar to a C-Tree defined by Weddell [Wed89, Wed92], where C
stands in this case for a single class instead of a set of classes. Both kinds of trees
possess adorned objects; but each C-Tree is an S-tree with labelling based on {C} and
the empty set of constraints.

The construction idea of an S-tree is to start with an object r, the root of the S-tree,
to make the root an element of all classes derivable from a set C of classes and the set
Υ of constraints, and to introduce new objects as attribute values of the root r due to
the definedness axioms. These attribute values are made elements of classes according
to the well-typedness axioms and the set Υ of constraints. We iterate this process of
introducing attribute values for newly inserted objects. Instead of actually performing
this process, we use path functions, precisely those that start at the classes in the set C.

To keep the information of why we insert an object, we adorn the object with the
corresponding path function that leads to the insertion of this object. This adornment
helps later on to prove properties of this object.
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oh

og

o′h

lCl(og) = {g}
lWf(og) = .n

lCl(o
′
h) = {h}

lWf(o
′
h) = .n.k

k

n
lWf(oh) = .Id
lCl(oh) = {h}

oe

o′f

lCl(oe) = {e, e′}
lWf(oe) = −k

lCl(o
′
f ) = {f ′′, f ′, f}

lWf(o
′
f ) = −k−p

of
lCl(of ) = {f}
lWf(of ) = −k.j

k

p

j

k

Figure 4.4: A sketch of the instance with labelling according to the parameters in
Exam. 4.29

Definition 4.30 (S-Tree)

Let D be a schema with only the set AX as semantic constraints, SCD = AX, Υ be a
set of class inclusion constraints and onto constraints, and C ⊂ CLASSD be a set of
classes. An S-tree is an extension f :=

〈
popf |obf

〉
of the schema D with labelling based

on the sets C and Υ constructed as follows.

Step 1: For each p ∈
⋃
c∈C PathFuncsD∪Υ(c) take a new constant v and for all d ∈⋃

c∈C∩DomD∪Υ(p) RanD∪Υ(c, p) add v : d to popf , and add an additional label lWf(v)
assigned p.

Step 2: For each u, v ∈ obj(f), where p = lWf(u) and p ◦ .m = lWf(v), add u[m → v]
to obf .

Example 4.31

An S-tree for the schema T and the set Ω of constraints in Exam. 4.10, and the set
C = {h} of classes is outlined in Fig. 4.5.

To show that an extension as defined above is an instance of the corresponding schema,
we have to check that the completion of f under D satisfies the semantic constraints,
which consist in this case only of unique name axioms, well-typedness axioms and de-
finedness axioms. As we always take a new constant for objects and only one per path
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lWf(oh) = .Id
lCl(oh) = {h}

Figure 4.5: An outline of the S-tree according to Exam. 4.31

function, a violation of unique name axioms is not an issue here. The addition of at-
tribute values is based on path functions as well. So no well-typedness and definedness
axioms are violated. The satisfaction of the set Υ is not an issue at this point. The next
lemma proves all as stated above.

Lemma 4.32

Let f be an S-tree of a schema D with only the set AX of axioms as semantic constraints,
SCD = AX, based on a set C ⊂ CLASSD of classes and a set Υ of class inclusion
constraints and onto constraints over the schema D. Then the S-tree f is an instance
of the schema D with labelling based on the sets C and Υ.

Proof. To show that the S-tree f is an instance of the schema D, we show that all
remaining semantic constraints are satisfied, which are in this case only unique
name axioms, definedness axioms and well-typedness axioms. But before the pre-
sentation of this proof, we show that properties 1 and 2 of instances with labellings
are satisfied.

Property 1 is satisfied according to the first construction step of the S-tree f
and Lem. 4.12, because as no constraints apart from the axioms are present, the
inference rules are complete in this case; and so we observe that for each object
o ∈ obj(f), the set of classes this object o is element of can be syntactically
determined, which is done indeed due to the fact that the right side of the equation
in property 1 relies on folders of classes.

lCl(o) =
⋃

c∈C∩DomD∪Υ(lWf(o))

RanD∪Υ(c, lWf(o)) . (4.6)

Property 2 is satisfied due to the second construction step of the S-tree f .

UNA: The sound and complete proof theory of F-logic reveals that there are three
possible ways to introduce equality between F-logic objects:
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1. by explicitly stating the equality,

2. by is-a acyclicity, and

3. by scalarity.

The first possibility can be ruled out because of the definitions of schemas and
extensions, which simply lack this possibility. The second possibility cannot
occur, because the schema D has an acyclic class hierarchy. The third way
cannot occur, because for each path function only one object is introduced.

DEF: Let o ∈ obj(f) be an object according to the definition of S-tree f . This
means for every attribute m ∈ AttrD∪Υ(c′) for some class c′ ∈ lCl(o) exists a
class c ∈ C ∩ DomD∪Υ(lWf(o)) such that c′ ∈ RanD∪Υ(c, lWf(o)). Therefore
lWf(o) ◦ .m ∈ PathFuncsD∪Υ(c) since lWf(o) is a path function. According to
the definition of S-tree f there exists then an object o′ with lWf(o

′) = lWf(o).m,
and hence obf |= o[m→ o′].

WT: Let obf |= o[m→ o′]. Then lWf(o) ◦ .m = lWf(o
′).

1. Because the way-labels lWf(o) and lWf(o
′) are path functions, there exists

a class c′ ∈ RanD∪Υ(c, lWf(o)) for some class c ∈ C∩DomD∪Υ(lWf(o)) with
HIERD∪Υ ∪ SIGD∪Υ |= c′[m ⇒ ( )], hence HIERD ∪ SIGD |= c′[m ⇒ ( )].
Because of (4.6) the class c′ is an element of lCl(o), c

′ ∈ lCl(o), and
therefore c′[m⇒ ( )] covers o[m→ o′].

2. Let c ∈ lCl(o) be a class such that HIERD ∪ SIGD |= c[m⇒ c′] for some
class c′. Due to (4.6), there exists c′′ ∈ C ∩ DomD∪Υ(lWf(o)) such that
c ∈ RanD∪Υ(c′′, lWf(o)). Finally, this means c′ ∈ RanD∪Υ(c′′, lWf(o) ◦ .m),
and hence c′ ∈ lCl(o

′).

2

In general an S-tree does not satisfy onto constraints. So we modify an S-tree by adding
a new object whenever an onto constraint is violated. This object refers to the object
that gave rise to the violation via the corresponding attribute. But the addition of one
object for every violation is not sufficient. The definedness axioms call for the addition
of an S-tree for every object violating onto constraints. Then such an S-tree is pruned.
The branch that starts with the attribute of the violated onto constraint is removed,
and the object that led to the violation is grafted instead. The way-labels of the objects
of the pruned-S-tree are prolonged to adjust the relative position of the objects to the
new context.

Definition 4.33 (Pruned-S-Tree)

Let D be a schema with the set AX as semantic constraints, SCD = AX, Υ be a set of
class inclusion constraints and onto constraints over the schema D, C ⊂ CLASSD be a
set of classes, m ∈

⋃
c∈C AttrD(c) be an attribute, w ∈Wwf(D ∪Υ) be a way description

such that w ◦ −m is a way description, and o be a constant. A pruned-S-tree is an
extension pst(C, o,m,w) := 〈pop|ob〉 of the schema D with labelling based on the sets
C and Υ constructed as follows.
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Step 1: For each p ∈
⋃
c∈C PathFuncsD∪Υ(c)\{x ∈ Wwf(D ∪Υ) | ex. y ∈ Warb(D ∪

Υ): x ≡ .my} take a new constant v and for all d ∈
⋃
c∈C∩DomD∪Υ(p) RanD∪Υ(c, p)

add v : d to pop, and add an additional label lWf(v) assigned w ◦ −m ◦ p.

Step 2: For each u, v ∈ obj(pst(C, o,m,w)), where lWf(u) ◦ .n = lWf(v), add u[n → v]
to ob.

Step 3: Add o′[m→ o] to ob, where o′ is the object with way labelling w◦−m, lWf(o
′) =

w ◦ −m, i. e., o′ is the object added for the path function .Id. Because of this
“historical” background we call the object o′ a root as well.

Technically, pst(· · · ) is not an extension. The addition of the data atom o′[m → o] in
the last step thwarts that, because the object o is not a member of any class. We neglect
this minor defect, because pruned-S-trees are not a “stand-alone” concept.

Example 4.34

When we look at the S-tree in Exam. 4.31, which was constructed for the schema T ,
the set Ω of constraints in Exam. 4.10 and the set C = {h} of classes, we notice that
the object oh violates the onto constraint e{k|h}. We fix this violation by inserting the
object oe and by making the object oh the value for the attribute k of the object oe. The
object oe is a member of the classes e and e′. So the definedness axioms require that
a value for the attribute j of this object is defined, because the attribute j is declared
on the class e. Therefore we insert not only the object oe but instead the pruned-S-tree
pst({e, e′}, oh, k, .Id) shown in Fig. 4.6. The parameter .Id passed for the construction
indicates where the root of the pruned-S-tree is inserted relatively to the root of the S-tree,
while the argument oh indicates the absolute position of the pruned-S-tree.

oh
lWf(oh) = .Id
lCl(oh) = {h}

oe
lCl(oe) = {e, e′}
lWf(oe) = −k

of
lCl(of ) = {f}
lWf(of ) = −k.j

k j

Figure 4.6: The pruned-S-tree pst({e, e′}, oh, k, .Id) from Exam. 4.34

We determine the set of objects that violate onto constraints. Each of these objects
should then be referred to by a root of a pruned-S-tree. It might be the case that an
object violates several onto constraints having the same attribute. In this case only one
pruned-S-tree is introduced.

Definition 4.35 (Unsat)

Let D be a schema with only the set AX of axioms as semantic constraints, SCD = AX,
Υ be a set of class inclusion constraints and onto constraints over the schema D, C ⊂
CLASSD be a set of classes, and f be an instance of the schema D with labelling based
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on the sets C and Υ. The set of unsatisfied objects under Υ with the violated classes
and attributes is

unsat(f,Υ) := {({d | ex. c : c ∈ lCl(o) and d{m|c} ∈ Υ+D and
for all o′ ∈ obj(f) : d 6∈ lCl(o

′) or obf 6|= o′[m→ o]},
o,m) | o ∈ obj(f) and m ∈ AttrD} .

Example 4.36

The set unsat(f,Ω) for the S-tree f in Exam. 4.31 and the set Ω of constraints in
Exam. 4.10 is

unsat(f,Ω) = {({e, e′}, oh, k), (∅, oh, n), . . .} .

In Exam. 4.34 we utilised the information of the vector ({e, e′}, oh, k) for the parameters
in the construction of the pruned-S-tree pst({e, e′}, oh, k, .Id) where the way description
.Id is the way-label of the object oh, lWf(oh) = .Id.

In the next construction step we want to ensure that violated onto constraints are
satisfied. Therefore, for every object that violates an onto constraint, we introduce
a new object referring to that particular object. But instead of creating just one object,
we insert a pruned-S-tree that has as root the inserted object.

Definition 4.37 (Extrev)

Let D be a schema with only the set AX as semantic constraints, SCD = AX, Υ be a set
of class inclusion constraints and onto constraints over the schema D, C ⊂ CLASSD be
a set of classes, and f be an instance of the schema D with labelling based on the sets C
and Υ. Then the extension extrevΥ(f) of the schema D with labelling based on the sets
C and Υ is defined as

extrevΥ(f) := f ∪
⋃

(C, o,m) ∈ unsat(f,Υ) and
C 6= ∅

pst(C, o,m, lWf(o)) ,

where every object introduced in one of the pruned-S-trees does not occur in neither any
other pruned-S-tree nor the instance f .

Both the definition of unsat and the definition of extrev take instances of the underlying
schema with labelling as input, because only the initial extension is an S-tree. The
output of the operation extrev is then further used as input again. To enable this
iteration, the output has to be an instance with labelling again as we show in Lem. 4.39.

Example 4.38

Coming back to the S-tree f in Exam. 4.31, we apply the operation extrev on this S-tree
with the set Ω of constraints in Exam. 4.10. Since the vector ({e, e′}, oh, k) is an element
of the set unsat(f,Ω), we add among others the pruned-S-tree pst({e, e′}, oh, k, lWf(oh))
as depicted in Fig. 4.6 and get the extension with labelling as shown in Fig. 4.7 as result.
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Figure 4.7: Operation extrev applied on the S-tree in Fig. 4.5

Lemma 4.39

Let D be a schema with only the set AX as semantic constraints, SCD = AX, Υ be a set
of class inclusion constraints and onto constraints over the schema D, C ⊂ CLASSD be
a set of classes, and f be an instance of the schema D with labelling based on the sets
C and Υ. Then extrevΥ(f) is an instance of the schema D with labelling based on the
sets C and Υ.

Proof. That every pruned-S-tree is nearly an instance can be proven along the same
lines of arguments as in the proof of Lem. 4.32 except for the satisfaction of the
well-typedness axioms and the definedness axioms for the pruned attribute. But
then the definedness axioms are satisfied, because the pruned attribute receives the
object violating onto constraints as value. The satisfaction of the well-typedness
axioms for the pruned attribute remains to be shown.

So we consider the root o′ of a pruned-S-tree introduced for the set of classes E,
object o and attribute m, and a ∈ lCl(o

′) be a class with

HIERD ∪ SIGD |= a[m⇒ b] . (4.7)

According to the definition of a pruned-S-tree and Lem. 4.12

lCl(o
′)

Def.4.28
=

⋃
e∈E∩DomD∪Υ(.Id)

RanD∪Υ(e, .Id)
Def.4.23

=
⋃
e∈E

FolderD∪Υ(e) .

Therefore, there exists a class a′ ∈ E with a′ ⊂ a, a′{m|b′} ∈ Υ+D and b′ ∈ lCl(o).
By inference rule domain relaxation, we have

a{m|b′} ∈ Υ+D . (4.8)
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Thus b′ ⊂ b follows from signature inclusion with (4.7) and (4.8). Consequently,
we have b ∈ lCl(o) and hence the satisfaction of all well-typedness axioms.

Conditions 1 and 2 of Def. 4.28 are also satisfied, because every pruned-S-tree
is nearly an instance with labelling except for the root of the pruned-S-tree and
the pruned attribute. But the root of the pruned-S-tree satisfies condition 1 by
definition as well as condition 2. 2

Having the instance with labelling that violates the onto constraints in a set of con-
straints, we can fix the violations by applying the operation extrev to that instance; but
we purchase thereby new violations of onto constraints, which we fix by iterating the
application of the operation. The final outcome is then an instance of the underlying
schema D with labelling that satisfies the set of constraints as well.

Lemma 4.40

Let D be a schema with only the set AX of axioms as set of semantic constraints,
SCD = AX, Υ be a set of class inclusion constraints and onto constraints over the
schema D, C ⊂ CLASSD be a set of classes, and f be an instance of the schema D with
labelling based on the sets C and Υ. Then

⋃
i∈N extreviΥ(f) is an instance of the schema

D ∪Υ with labelling based on the sets C and Υ.

Proof. Because of Lem. 4.39, extreviΥ(f) is an instance of the schema D with labelling
based on the sets C and Υ provided f is an instance of the schema D with la-
belling based on the sets C and Υ. Therefore

⋃
i∈N extreviΥ(f) is an instance of

the schema D with labelling based on the sets C and Υ. It remains to show that
the extension

⋃
i∈N extreviΥ(f) satisfies the set Υ of class inclusion constraints and

onto constraints.

Due to Def. 4.30 and Lem. 4.12 each derivable class inclusion constraint is satisfied
in any extension extreviΥ(f) and hence in

⋃
i∈N extreviΥ(f).

If object o is generated in the i-th iteration, then all onto constraints that are vio-
lated by o are satisfied in the i+1-th iteration. This continues to be so throughout
further iterations. 2

Finally we are ready to prove the completeness of the inference rules for class inclusion
constraints and onto constraints. The proof will be conducted by contraposition. We
assume that we cannot derive a constraint υ from the set Υ of constraints, Υ 6`D υ.
Then we construct an instance f of the schema D such that the extension f is

• an instance of the schema D ∪Υ,

• but not an instance of the schema D ∪ {v}.

Theorem 4.41

Let Υ ∪ {υ} be a set of class inclusion constraints and onto constraints over a schema
D with only the set AX of axioms as semantic constraints, SCD = AX, such that the
constraint υ cannot be derived from the set Υ, Υ 6`D υ. Then there exists an instance f
of the schema D such that the extension f is
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• an instance of the schema D ∪Υ,

• but not an instance of the schema D ∪ {v}.

Proof. Let the constraint υ be of the form c ⊂ d or d{m|c}. Then let g be an S-tree
built for D, the sets {c} and Υ, and the object r be its root, Root(g) = {r}.
Due to Lem. 4.32 the S-tree g is an instance of the schema D with labelling, and
therefore, by Lem. 4.40, f :=

⋃
i∈N extreviΥ(g) is an instance of the schema D ∪Υ

with labelling based on the sets {c} and Υ. It remains to show that the extension
f does not satisfy the constraint υ.

We prove by contradiction that the extension f does not satisfy the constraint υ,
be it a class inclusion constraint or an onto constraint. So we assume conversely
that the extension f satisfies the constraint υ.

If the constraint υ takes on the form c ⊂ d, then the root r is a member of the
class d, d ∈ lCl(r). Due to Def. 4.28, the fact that the S-tree is constructed only
for the class c and the fact that the object r is a root, lWf(r) = .Id, the equation

lCl(r) = FolderD(c) (4.9)

holds. So in contradiction to the assumption we derive c ⊂ d, because d ∈ lCl(r) =
FolderD(c).

If the constraint υ takes on the form d{m|c}, then there exists an object o with
obf |= o[m → r]. Because of the construction of the S-tree g, the S-tree g does
not satisfy the onto constraint d{m|c}. So the object o must have been introduced
in the first application of the operation extrev on the S-tree g. This means there
exists a vector (C, r,m) ∈ unsat(g,Υ) with C 6= ∅. Consequently, there is a class
c′ ∈ lCl(r) and an onto constraint d′{m|c′} ∈ Υ+D such that d ∈ FolderD(d′), hence
d′ ⊂ d and d{m|c′} ∈ Υ+D , because the onto constraint can only be satisfied if m
is an attribute declared for the class d, m ∈ AttrD(d). Finally, (4.9) holds in this
case as well and (4.9) implies c ⊂ c′, and therefore we derive the onto constraint
d{m|c} from the set Υ, d{m|c} ∈ Υ+D , which is a contradiction.

2

Thus we have proven the completeness of the inference rules for class inclusion constraints
and onto constraints.

4.4 Path Functional Dependencies

Path functional dependencies as introduced by Weddell [Wed89, Wed92] are an extension
of functional dependencies as known in the relational data model. While functional
dependencies are defined on a relation scheme, path functional dependencies are declared
for classes and employ path functions in lieu of simple attributes in there left-hand and
right-hand sides. A path functional dependency then states if two objects in the class
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given in the dependency deliver identical results for each path function in the left side
of the dependency, the objects have to agree on the value for each path function in the
right side.

Example 4.42

Again, we come back to Exam. 3.2 and extend it by semantic constraints that reflect
restrictions imposed on instances of the class Phone-admin. They require that if two paths
of the form stated in the left-hand side deliver identical results, so do the corresponding
paths of the form stated in the right-hand side. In this example we have only path
functions of length 1 in the path functional dependencies. So in fact they are purely
functional dependencies. These path functional dependencies are the starting point to
perform pivoting in Exam. 7.3.

The first path functional dependency demands that for every Phone-admin object the
value for attribute fac uniquely determines the value for attribute sch. So any objects of
class Phone-admin agree on their value for the attribute sch whenever they agree on the
value for attribute fac.

Phone-admin(.fac→ .sch)
Phone-admin(.fac→ .ph)
Phone-admin(.sch→ .dep)
Phone-admin(.ph→ .dep)

In general, both sides of a path functional dependency can also contain sequences of
path functions where the pertinent conditions on each path function are understood to be
conjunctively connected.

Examples 7.2 and 7.3 show how path functional dependencies with longer path func-
tions look like.

The path functions in a path functional dependency are chosen in a way that they start
all at the class the path functional dependency is declared for. In that way, we guarantee
when we apply one of these path functions to an object of the respective class, we always
obtain a defined result.

We have to bear in mind here that the set of path functions starting at a class is
influenced by class inclusion constraints and onto constraints. When we derive a class
inclusion constraints c ⊂ d, every path function or better way description starting at
the class d starts also at the class c.

Definition 4.43 (Path Functional Dependency)

Let D be a database schema, and c ∈ CLASSD be a class.

Syntax: A path functional dependency for the class c is of the form

c(p1 · · · pk → pk+1 · · · pn) ,

where 0 < k < n, and where pi ∈ PathFuncsD(c) for i ∈ {1, . . . , n}.

Semantics: To define that a database instance satisfies a path functional dependency,
we construct F-formulae. We facilitate this task by using a term X[p→ Y ] with

p ≡ .mp
1 · · · .m

p
l ∈ Parb(D)\{.Id}



4.5. INFERENCE RULES FOR CICS, OCS AND PFDS 79

as a shorthand form for

(∃Xp
1 · · · ∃X

p
l−1(X[mp

1 → Xp
1 ] ∧Xp

1 [mp
2 → Xp

2 ] ∧ · · · ∧Xp
l−1[mp

l → Y ])) ,

and the term X[.Id→ Y ] as a shorthand form for X
◦
= Y .

For a path functional dependency

c(p1 · · · pk → pk+1 · · · pn)

the path functional dependency F-formulae are

X[p→ P ]←− X : c[p1 → P1; . . . ; pk → Pk] ∧
Y : c[p1 → P1; . . . ; pk → Pk; p→ P ]

for each p ∈ {pk+1, . . . , pn}.

The set of path functional dependencies in SCD is denoted by PFDD.

The F-formulae in the preceding definition are no longer F-Horn-rules, as they contain
existentially bound variables, but we assume that all visible variables are universally
bound. They are instead in the so-called implicative normal form. Although formally
the F-formulae above are no F-Horn-rules, we make the following observation. An
existentially bound variable in a formula

(∃Xp
1 · · · ∃X

p
l−1(X[mp

1 → Xp
1 ] ∧Xp

1 [mp
2 → Xp

2 ] ∧ · · · ∧Xp
l−1[mp

l → Y ]))

depends in a sense only on the variable X and its assigned values, because the methods
are scalar methods and the presence of definedness axioms in our schemas.

From now onwards, we limit the set of semantic constraints in a schema to class
inclusion constraints, onto constraints and path functional dependencies plus unique
name axioms, well-typedness axioms and definedness axioms, i. e., a schema consists of
the following components unless otherwise said:

D = 〈CLASSD|METHD|HIERD|SIGD|AX ∪ CICD ∪OCD ∪ PFDD〉 .

We simply call a set of class inclusion constraints, onto constraints and path functional
dependencies a set of constraints in the remainder of this work.

4.5 Inference Rules for CICs, OCs and PFDs

Again as in the case for class inclusion constraints and onto constraints, we need inference
rules for path functional dependencies to make the decision problem of the implication
amenable to an algorithmic treatment.

To be more precise, we need inference rules for class inclusion constraints, onto con-
straints and path functional dependencies. It turns out that class inclusion constraints
and onto constraints affect the implication of path functional dependencies, but not the
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other way round. The impact of class inclusion constraints and onto constraints already
starts at the declaration of path functional dependencies, because these constraints po-
tentially enlarge the set of path functions for a class. Because of this one-way influence,
a fact that we prove later in Theor. 4.55, the inference rules C1 to C5 are even com-
plete when path functional dependencies are added to the set of semantic constraints.
Then we supplement these inference rules to capture the implication of class inclusion
constraints, onto constraints and path functional dependencies.

Weddell [Wed89, Wed92] presents five inference rules for path functional dependen-
cies alone, which we adapt to our data model as well. The first rule (A1: reflexivity)
captures the reflexivity of path functional dependencies. The second rule (A2: path
function augmentation) allows to extend both sides of a path functional dependency by
a set of path functions. The third rule (A3: transitivity) shows that path functional de-
pendencies are transitive. These three rules exist in similar forms, with only attributes
instead of path functions, for relational functional dependencies.

The next two rules simple attribution and simple prefix augmentation have no coun-
terparts in the relational data model. The rule simple attribution says that an object
uniquely determines its attribute values. While the first four rules act locally on one class
only, simple prefix augmentation includes two classes. If a path functional dependency
can be derived for a class c2 and this class is reachable from a class c1 via the attribute
a, then the path functional dependency that results from prolonging each path function
in the original path functional dependency declared for the class c2 can be derived for
the class c1.

The following inference rule (A6: simple prefix reduction) is the inverse of simple
prefix augmentation. Simple prefix reduction is described by Thalheim [Tha93a] under
the name reduction. Simple prefix reduction allows to telescope the path functions in a
derived path functional dependency provided the path functions have a common prefix
and an onto constraint is derivable with the common prefix as attribute. The last
rule (A7: path functional dependency inheritance) brings class inclusion constraints into
play. A path functional dependency declared for a class c2 holds also for every subclass
of the class c2 where we use the term subclass to denote both real subclasses and those
classes for which we can derive a corresponding class inclusion constraint. So the word
inheritance in the name of the rule is actually a misnomer.

For the inference rules C1 to C5 we use the notation `D to denote a derivation of a
class inclusion constraint or onto constraint. Since the inference rules A1 to A7 produce
only path functional dependency and therefore no conflicts arise, we reuse this notation
even for these rules.

Definition 4.44 (Inference Rules)

Let Ξ be the set of constraints in a schema D, Υ be a set of class inclusion constraints
and onto constraints in the schema D, and π be a path functional dependency over the
schema D. π is derivable from the set Ξ, written Ξ `D π, iff it is a member of the set
Ξ or is the result of one or more applications of the following inference rules.

A1. Reflexivity: For every class c ∈ CLASSD and for all non-empty Y ⊂ X where X
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is a finite subset of PathFuncsD(c), derive c(X → Y ). Abbreviated

∅
c(X → Y )

A1 .

A2. Path function augmentation: For every class c ∈ CLASSD and finite subsets X, Y
and Z of PathFuncsD(c), if c(X → Y ) can be derived, then so can c(XZ → Y Z)
(where XZ, for example, denotes the union of all path functions in X and Z).
Abbreviated

{c(X → Y )}
c(XZ → Y Z)

A2 .

A3. Transitivity: For every class c ∈ CLASSD and finite subsets X,Y, Z ⊂
PathFuncsD(c), if both c(X → Y ) and c(Y → Z) can be derived, then so can
c(X → Z). Abbreviated

{c(X → Y ), c(Y → Z)}
c(X → Z)

A3 .

A4. Simple attribution: For every class c ∈ CLASSD and attribute a ∈ AttrD(c), derive
c(.Id→ .a). Abbreviated

∅
c(.Id→ .a)

A4 .

A5. Simple prefix augmentation: For every class c1 ∈ CLASSD and attribute a ∈
AttrD(c1), if

c2(p1 · · · pm → pm+1 · · · pn)

can be derived, where c2 ∈ RanD(c1, .a), then so can

c1(.a ◦ p1 · · · .a ◦ pm → .a ◦ pm+1 · · · .a ◦ pn) .

Abbreviated
{c2(p1 · · · pm → pm+1 · · · pn)}

c1(.a ◦ p1 · · · .a ◦ pm → .a ◦ pm+1 · · · .a ◦ pn)
A5 .

A6. Simple prefix reduction: For every class c1 ∈ CLASSD, if

c2(.a ◦ p1 · · · .a ◦ pm → .a ◦ pm+1 · · · .a ◦ pn)

can be derived, where c2{a|c1} ∈ Υ+D , then so can

c1(p1 · · · pm → pm+1 · · · pn) .

Abbreviated

{c2(.a ◦ p1 · · · .a ◦ pm → .a ◦ pm+1 · · · .a ◦ pn), c2{a|c1}}
c1(p1 · · · pm → pm+1 · · · pn)

A6 .
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A7. Path functional dependency inheritance: For every class c1 ∈ CLASSD, if c2(X →
Y ) can be derived where c1 ⊂ c2 ∈ Υ+D , then so can c1(X → Y ). Abbreviated

{c2(X → Y )}
c1(X → Y )

A7 .

In the remainder of this section we show that the inference rules are sound and complete.
As in Sections 4.1, 4.2 and 4.3 we present a running example to illustrate the concepts
used in these proofs, but again there are too many aspects to be captured for presenting
an example that offers an interpretation in the real world. To compensate this lack,
we give an example of how some of the inference rules do their job for a variant of the
schema in Exam. 3.2.
Example 4.45

In example 7.3 we will present a schema that is result of a transformation on the schema
in Exam. 3.2. This schema, which is depicted in Fig. 4.8, includes path functional
dependencies and onto constraints. We assume that at least the semantic constraints

Phone-admin(.fac→ .fac.sch)

and
Phone-admin{fac|Phoning-faculty}

are part of this schema. We can derive the path functional dependency

Phoning-faculty(.Id→ .sch)

from these semantic constraints by “simple prefix reduction”. We can even show that

Phone-admin(.fac→ .fac.sch)

is redundant. By “simple prefix augmentation”, we can derive from the trivial dependency

Phoning-faculty(.Id→ .sch)

(by “simple attribution”) the dependency

Phone-admin(.fac→ .fac.sch) .

Example 4.46

For the demonstration of how the inference rules work, we declare a schema S with the
components as depicted in Fig. 4.9. The schema is graphically depicted in Fig. 4.10.

Noteworthy is in this example the path functional dependency f ′′(.p.j → .q), because
the path function .q in the right side is only a path function starting at the class f ′′

due to the fact that the class inclusion constraints f ′′ ⊂ f holds. In this derivation we
employ the class inclusion constraint f ′ ⊂ f , which we derive by signature inclusion with
e{j|f ′} and e[j ⇒ f ]. From the set CICS ∪ OCS ∪ PFDS we derive the path functional
dependencies as depicted in Fig. 4.11.
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Phoning-faculty

School

Phone

Phone-adminFaculty

ph

Department

depsch

fac

Figure 4.8: An F-logic schema

CLASSS = {d, e, e′, f, f ′, f ′′, g, h, i} ,
METHS = {j, k, n, p, q, u, v, w} ,
HIERS = {e::e′, f ′′::f ′} ,

SIGS = {e[j ⇒ f ], e′[k ⇒ h],
f [q ⇒ i;w ⇒ i],
f ′′[p⇒ e],
h[n⇒ g; v ⇒ d],
g[u⇒ h]} ,

SCS = AX
∪{
e{j|f ′}, e{k|h}, f ′′{p|e}

}
∪{
f(.q → .w), f ′′(.p.k.v → .p.j), f ′′(.p.j → .q), h(.v → .n.u)

}
Figure 4.9: The schema components for the Exam. 4.46

In the following sections we need to know which constraints, be it class inclusion con-
straints, onto constraints or path functional dependencies, we can derive from a set of
constraints in a schema by means of the inference rules C1 to C5 and the inference
rules A1 to A7. In addition, we are sometimes only interested in the path functional
dependencies that we can derive from a set of constraints in a schema.

In the relational data model we can determine the set of attributes over a relational
scheme that are functionally determined by another set of attributes over this scheme.
Likewise we can determine the set of path functions starting at a class that is functionally
determined by another set of path functions starting at the same class.

Definition 4.47 (Closure)

Let Ξ be a set of constraints over a schema D.

1. The closure of the set Ξ, written Ξ+D , is the set of all constraints ξ over the schema
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e

e′

f

i

f ′

f ′′ h

g

d

w

v

q

n
j

u

kp

Figure 4.10: The schema for the Exam. 4.46

A1

`S h({.v, .n} → .v)

h(.v → .n.u)
A2

`S h({.v, .n} → {.n.u, .n})
h({.v, .n} → .v)
h(.v → .n.u)

}
A3

`S h({.v, .n} → .n.u)

A4

`S h(.Id→ .n)

h(.v → .n.u)
A5

`S e′(.k.v → .k.n.u)

f ′′(.p.k.v → .p.j)
f ′′{p|e}

}
A6

`S e(.k.v → .j)

f(.q → .w)
f ′ ⊂ f

}
A7

`S f ′(.q → .w)

Figure 4.11: Examples for the application of A1 to A7

D where Ξ `D ξ.

2. The PFD-closure of the set Ξ, written Ξ⊕D , is the set of all path functional depen-
dencies π over the schema D where Ξ `D π.

3. The closure of a finite, non-empty set of path functions X ⊂ PathFuncsD(c)
for some class c ∈ CLASSD, written X+D,c, is the set of all path functions
p ∈ PathFuncsD(c) where Ξ `D c(X → p).

As for the inference rules C1 to C5, showing the correctness of the inference rules A1 to
A7 is the easier part.
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Theorem 4.48 (Soundness of the Inference Rules A1 to A7)

The inference rules A1 to A7 are sound, i. e., for the set Ξ of constraints in a schema D
and a path functional dependency π over the schema D: if π ∈ Ξ+D , then every instance
of the schema D satisfies the path functional dependency π, sat(D) ⊂ sat(D ∪ {π}).

Proof. Showing the correctness of the inference rules is straightforward. It is possible
to use theorem proving for this task. 2

When we want to show the completeness of the inference rules A1 to A7, we have to show
the completeness of the inference rules C1 to C5 under class inclusion constraints, onto
constraints and path functional dependencies first. Proving this completeness should
follow the lines of the completeness proof of the inference rules C1 to C5 under only
class inclusion constraints and onto constraints. The prerequisite is that the extension⋃
i∈N extreviΥ(f) is an instance of a schema D with path functional dependencies. Un-

fortunately, this is not true in general, although every S-tree satisfies all path functional
dependencies trivially, because only one object is introduced for every path function.
The problem arises when we want to remedy violations of onto constraints, because
then we can no longer guarantee that a way description occurs only once as way-label.
For example, when we consider a schema with the following components

HIERD = {c′::c} ,
SIGD = {c[g ⇒ e;h⇒ e], c′[h⇒ f ]} , and

SCD = AX
∪{
c(.g → .h), c′{g|e}

}
, and

we build the S-tree for the schema (D\SCD) ∪ AX and the sets {c} and
{
c′{g|e}

}
, the

resulting S-tree t (Fig. 4.12(a)) satisfies the path functional dependency c(.g → .h). Alas,
applying the operation extrev{c′{g|e}} to this S-tree results in an extension (Fig. 4.12(b))
that does not satisfy the path functional dependency c(.g → .h) because of the objects
oc and o′c.

If we want to cure this violation, we might think of tampering with the class mem-
berships of the object oc instead of introducing a new object, i. e., we might be tempted
to make the object oc a member of the class c′. But this is not a good idea, because then
the resulting extension satisfies semantic constraints the original S-tree does not satisfy.
A different solution might be to stipulate the object o′e as value for the attribute h of
the object o′c. But again we have to tamper with the class memberships this time of the
object o′e because of the signature c′[h⇒ f ] and incur the same problems as before.

We take more drastic precautions by simply not allowing such situations in that
we demand that whenever an onto constraint d{m|c} over a schema is declared, this
attribute m is a proper attribute for the class d.

Definition 4.49 (Proper Constraints)

Let Ξ be a set of constraints over a schema D. The set Ξ of constraints is a proper set of
constraints if for each onto constraint d{m|c} ∈ Ξ the attribute m is a proper attribute
for the class d.
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oe o′e
lWf(o

′
e) = .h

lCl(o
′
e) = {e}

lWf(oc) = .Id
lCl(oc) = {c}oc

hg

lCl(oe) = {e}
lWf(oe) = .g

(a) An S-tree satis-
fying path functional
dependencies

o′′e

lWf(oe) = .g
lCl(oe) = {e}

oe o′e
lWf(o

′
e) = .h

lCl(o
′
e) = {e}

lWf(oc) = .Id
lCl(oc) = {c}oc

lCl(o
′
c) = {c′, c} o′c

lWf(o
′
c) = .Id

lCl(o
′′
e) = {e, f}

lWf(o
′′
e) = .h

g hh g

(b) A changed S-tree violating path
functional dependencies

Figure 4.12: Reasons for the restriction on onto constraints

The next lemma shows that when we restrict the set of constraints to proper sets of
constraints, situations as mentioned above, i. e. the violation of path functional depen-
dencies, do not occur. This is because whenever an object o is referenced by an object
via an attribute m, the reparation of violations of onto constraints never introduces
another object referencing the object o via the attribute m.

Lemma 4.50

Let f be an instance of a schema D. Let Ξ be a set of proper constraints over the schema
D. Whenever obf |= o′[m→ o], c ∈ lCl(o) and c′{m|c} ∈ Ξ+D holds, then c′ ∈ lCl(o

′).

Proof. The onto constraint c′{m|c} ∈ Ξ+D can only be derived by the inference rules
C4 and C5 when an onto constraint d′{m|d} ∈ Ξ exists such that d′ ⊂ c′ and c ⊂ d
can be derived from the set Ξ of constraints. But then the attribute m is a proper
attribute for the class d′, SIGD |= d′[m ⇒ ( )]. Because of the well-typedness
axioms there exists a signature atom HIERD ∪ SIGD |= e[m ⇒ ( )] that covers
o′[m → o], hence e ∈ lCl(o

′), and therefore, because of the fact that the attribute
m is a proper attribute for the class d′, the class e is a subclass of the class d′,
HIERD |= e::d′. Then we derive e ⊂ d′, and hence e ⊂ c′ by transitivity, which
implies due to the correctness of the inference rules c′ ∈ lCl(o

′).
2
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In the sequel we deal only with proper sets of constraints without saying this explicitly.
The next corollary draws the connection between the preceding lemma and the op-

eration extrev, which can be reused because the operation unsat can be applied to a set
of constraints as well.

Corollary 4.51

Let f be an instance of a schema D. Let Ξ be a set of proper constraints over the schema
D. If (C, o,m) ∈ unsat(f,Ξ) and obf |= o′[m→ o], then the set C is empty, C = ∅.

To show the completeness of the inference rules C1 to C5 under class inclusion con-
straints, onto constraints and path functional dependencies, we exploit a property of
extensions with labelling, which is in a sense a generalisation of property 2 of extensions
with labelling for attribute value paths.

Lemma 4.52

Let f be an instance of a schema D with only the set AX as semantic constraints,
SCD = AX, with labelling based on a set C ⊂ CLASSD of classes and a set Υ of class
inclusion constraints and onto constraints over the schema D. Let o ∈ obj(f) be an
object, c ∈ lCl(o) be a class, and p ∈ PathFuncsD∪Υ(c) be a path function. Then there
exists an object o′′ ∈ obj(f) with o.p = {o′′} and lWf(o) ◦ p = lWf(o

′′).

Proof. We show this by induction on the length of the path function p.

len(p) = 0. Then o.p = {o} according to Def. 4.26, and lWf(o) ◦ .Id = lWf(o).

len(p) > 0. Then the path function p is of the form p = p′ ◦ .m, and o.p′ = {o′}
according to the inductive assumption. Since f is an instance with labelling
based on the sets C and Υ,

c ∈ lCl(o) =
⋃

c′∈C∩DomD∪Υ(lWf(o))

RanD∪Υ(c′, lWf(o)) ,

and hence there exists a class c′ ∈ C ∩ DomD∪Υ(lWf(o)) with c ∈
RanD∪Υ(c′, lWf(o)). Since p ∈ PathFuncsD∪Υ(c) is a path function, there
exist classes g and i such that i ∈ RanD∪Υ(c, p′) and HIERD∪Υ ∪ SIGD∪Υ |=
i[m⇒ g]. So c′ ∈ C ∩DomD∪Υ(lWf(o) ◦ p′) with i ∈ RanD∪Υ(c′, lWf(o) ◦ p′) by
Lem. 4.25, and consequently due to the inductive assumption (lWf(o) ◦ p′ =
lWf(o

′)) c′ ∈ C ∩DomD∪Υ(lWf(o
′)) with i ∈ RanD∪Υ(c′, lWf(o

′)), which means
i ∈ lCl(o

′), because f is an instance with labelling based on the sets C and
Υ. Since HIERD∪Υ ∪ SIGD∪Υ |= i[m⇒ g] holds, HIERD ∪ SIGD |= i[m⇒ g]
holds as well. This signature atom demands due to the unique name axioms
and to the definedness axioms the existence of exactly one object o′′ with

obf |= o′[m→ o′′] , (4.10)

which leads to the conclusion o.p = {o′′}. Additionally, (4.10) implies lWf(o
′)◦

.m = lWf(o
′′) by property 2 of way-labellings. Finally, we have lWf(o) ◦ p =

lWf(o) ◦ (p′ ◦ .m) = (lWf(o) ◦ p′) ◦ .m = lWf(o
′) ◦ .m = lWf(o

′′).
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2

An immediate consequence of this lemma is presented in the next corollary.

Corollary 4.53

Let f be an instance of a schema D with only the set AX of axioms as semantic con-
straints, SCD = AX, with labelling based on a set C ⊂ CLASSD of classes and a set Υ
of class inclusion constraints and onto constraints over the schema D. For all objects
o, o′ ∈ obj(f), and for all classes c ∈ lCl(o)∩lCl(o

′) if o.p = o′.p for p ∈ PathFuncsD∪Υ(c),
then lWf(o) = lWf(o

′).

Finally, we are ready to show that the extension
⋃
i∈N extreviΥ(t) for an S-tree t satisfies

even the path functional dependencies in a schema and therefore is the counterexample
needed to prove the completeness of the inference rules C1 to C5 under class inclusion
constraints, onto constraints and path functional dependencies.

Lemma 4.54

Let D be a schema, Ξ := CICD ∪ OCD ∪ PFDD be the set of constraints in the schema
D, and t be an S-tree of the schema D\Ξ based on a set C ⊂ CLASSD of classes and
the set Υ := CICD ∪OCD. Then

⋃
i∈N extreviΥ(t) is an instance of the schema D.

Proof. From Lem. 4.40, we know that f :=
⋃
i∈N extreviΥ(t) is an instance of the

schema D\PFDD. So we deal now with the satisfaction of the path functional
dependencies in the set PFDD.

Let c ∈ CLASSD be a class and o, o′ ∈ obj(f) be two objects such that c ∈ lCl(o)
and c ∈ lCl(o

′), and o.p = o′.p for some path function p ∈ PathFuncsD\PFDD(c).
According to Cor. 4.53 it follows that lWf(o) = lWf(o

′). The generation of the S-tree
t produces only one object for each way-label, and the operation extrevΥ retains
this invariant due to Cor. 4.51, hence o = o′. Therefore every path functional
dependency in the set PFDD is trivially satisfied.

2

Now we can prove the completeness of the inference rules C1 to C5 under class inclusion
constraints, onto constraints and path functional dependencies. The proof will be con-
ducted by contraposition. We assume that we cannot derive a class inclusion constraint
υ or onto constraint υ from the set Ξ of constraints in a schema D, Ξ 6`D υ. Then we
construct an instance of the schema D that is not an instance of the schema D ∪ {υ}.
Theorem 4.55 (Completeness of C1 to C5 under CICs, OCs and PFDs)

Let D be a schema, and υ be a class inclusion constraint or onto constraint over the
schema D such that υ cannot be derived from the set Ξ := CICD ∪ OCD ∪ PFDD of
constraints in the schema D, Ξ 6`D υ. Then there exists an instance f of the schema D
such that f is not an instance of the schema D ∪ {υ}.

Proof. The proof of Theor. 4.41 can be used nearly unchanged. We only revert to
Lem. 4.54 instead of Lem. 4.40. 2
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Knowing that the inference rules C1 to C5 are even complete under class inclusion
constraints, onto constraints and path functional dependencies, we give an outline of
how we prove the completeness of the inference rules A1 to A7. The basic idea is to
show the completeness by contraposition. So instead of showing for a path functional
dependency c(X → Y ) that if every instance of a schema D is an instance of the
schema D∪{c(X → Y )}, then the path functional dependency is derivable from the set
CICD ∪OCD ∪PFDD, we construct an instance of the schema D not satisfying the path
functional dependency c(X → Y ), if the dependency c(X → Y ) is not derivable from
the set CICD ∪OCD ∪ PFDD.

In principle, the construction of the counterexample exploits two ideas. The core of
the counterexample generalises the well-known Armstrong construction for similar proofs
in the relational data model, using two tuples agreeing exactly on the closure of a set of
attributes X. In our case we use two objects of the class c. But, in general, two objects
are not sufficient, so we take two S-trees with their roots being members of the class c.
Then these roots have to agree exactly on their values for path functions in the closure
X+D,c , because we want the roots to violate the path functional dependency c(X → Y ).
Thus we merge the two S-trees by removing some nodes, exactly those whose way-labels
appear in the closure X+D,c , from one of the S-trees and afterwards by inserting missing
attribute values for objects in the S-tree whose nodes got removed. These attribute
values are objects of the S-tree that is still intact and carry the corresponding way-labels
as the removed objects. The result, called Two-S-graph, satisfies the path functional
dependencies in the schema D, but not the path functional dependency c(X → Y )
(Lem. 4.64) and thus forms the prototype of the counterexample.

A Two-S-graph looks like a “Siamese twin”: the roots are the heads and the objects
with way-labels in the closure X+D,c are the limbs that are grown together.

The satisfaction of class inclusion constraints is reached by carefully choosing the
class memberships of the objects in the Two-S-graph.

Again we face the problem that a Two-S-graph does not satisfy onto constraints
and simply applying the operation extrev on a Two-S-graph does not suffice, because,
in general, the outcome does not satisfy the derivable path functional dependencies.
For that we have to merge objects being inserted in different pruned-S-trees. Looking
only at the newly inserted objects suffices, because once two objects satisfy the path
functional dependencies, the objects reachable from these objects by path functions
remain unchanged (Lem. 4.67). We call the operation that first performs the operation
extrev and then merges objects, merge (Def. 4.65).

As with the operation extrev, applying the operation merge leads to new violations
of onto constraints, thus we iterate the process over and over again. The final outcome
is then the counterexample we are looking for: It is an instance of the schema D but
does not satisfy the path functional dependency c(X → Y ).

The outcome of the iteration has still some similarity with the initial Two-S-graph,
which looks like a “Siamese twin”. First of all it is possible to reach every object by
following the object’s way-label starting from one of the roots. We call this property
root-reachability (Def. 4.56). Secondly, there are only two roots, and, thirdly, if we reach
one object by applying the object’s way-label to one of the roots, there exists another
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object reachable from the other root by applying the first object’s way-label to this other
root. This property is called root-isomorphism (Def. 4.59). These two properties are
exploited later on.

We begin with the definition of root-reachability, which is a property of instances
with labelling being invariant under the transformation merge.

Definition 4.56 (Root-Reachability)

Let D be a schema, and f be an instance of the schema D\(CICD ∪OCD ∪PFDD) with
labelling based on a set C ⊂ CLASSD of classes and the set CICD ∪OCD. The instance
f is root-reachable, if for all objects o ∈ obj(f) there exists a root r ∈ Root(f) such
that r.lWf(o) = {o}.
A root-reachable instance has the property that whenever we apply an appropriate way
description to a root, we get at most one object as result. But before we show this
property, we prove whenever an object in an instance with labelling is reachable from a
root by an appropriate way description, this very way description is the object’s way-
label.

Lemma 4.57

Let f be an instance of a schema D with only the set AX of axioms as semantic con-
straints, SCD = AX, with labelling based on a set C ⊂ CLASSD of classes and a set Υ
of class inclusion constraints and onto constraints over the schema D. We have that for
all objects o ∈ obj(f), for all roots r ∈ Root(f), for all classes c ∈ lCl(r), and for all
way descriptions w ∈WayDesD∪Υ(c), if o ∈ r.w, then lWf(o) = w.

Proof. We show this by induction on the length of way description w.

len(w) = 0. This means that w = .Id and therefore lWf(r) = .Id.

len(w) > 0. This means w is of the form w′ ◦ πm where π ∈ {.,−} and m ∈
METHD. Let o ∈ r.w. We distinguish two cases according to the structure
of π:

π = ., then there exists o′ ∈ r.w′ with obf |= o′[m → o] and lWf(o
′) = w′ by

the inductive hypothesis. Additionally, we know that w′ does not end
in −m, because w is a well-formed way description and is of the form
w = w′.m. Then lWf(o) = lWf(o

′) ◦ .m = w′ ◦ .m = w′.m = w because of
Def. 4.28.

π = −, then there exists o′ ∈ r.w′ with obf |= o[m → o′] and lWf(o
′) = w′

by the inductive hypothesis. Additionally, we know that w′ does not end
in .m, because w is a well-formed way description and is of the form
w = w′−m. Now we assume two cases:

lWf(o) = y−m, then y = y ◦ (−m ◦ .m) = (y ◦ −m) ◦ .m = y−m ◦ .m =

lWf(o) ◦ .m
Def. 4.28

= lWf(o
′) = w′ and therefore lWf(o) = w′−m = w.

lWf(o) = yπ′m′, π′ ∈ {.,−}, m′ ∈ METHD, π′m′ 6= −m, then we know

the following w′ = lWf(o
′)

Def. 4.28
= lWf(o)◦ .m = yπ′m′◦ .m = yπ′m′.m,

which is a contradiction, because w′ does not end in .m.
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2

Lemma 4.58

Let D be a schema, and f be a root-reachable instance of the schema D\(CICD ∪OCD ∪
PFDD) with labelling based on a set C ⊂ CLASSD of classes and the set CICD ∪OCD.
Then for all roots r ∈ Root(f), for all classes c ∈ lCl(r), and for all way descriptions
w ∈WayDesD(c): |r.w| ≤ 1.

Proof. We show this by induction on the length of way description w.

len(w) = 0. Trivial.

len(w) = 1. This means that w is of the form πm where π ∈ {.,−} and m ∈
METHD. We consider two cases.

π = ., then |r..m| = |{o}| = 1 for the object o with obf |= r[m→ o].

π = −, then we assume o1, o2 ∈ r.−m with o1 6= o2. We know lWf(o1) =
lWf(o2) = −m because of Lem. 4.57. Because of the root-reachability
there exists r′ ∈ Root(f) with r′.−m = {o1}. Since {o1, o2} ⊂ r.−m and
o1 6= o2, r and r′ are different objects, r 6= r′. So we know o1 ∈ r.−m
and o1 ∈ r′.−m as in Fig. 4.13. But then obf |= o1[m→ r] ∧ o1[m→ r′],
which is a contradiction to the scalarity of m. This means |r.−m| ≤ 1.

o2

r′ r
m m m

o1

Figure 4.13: The situation that cannot arise in the case len(w) = 1 and π = −

len(w) = n+ 1, n > 0. So w is of the form w′πm where π ∈ {.,−} and m ∈
METHD, and |r.w′| ≤ 1 by the induction hypothesis. If |r.w′| = 0, then we
know that |r.w| = 0. So the case that |r.w′| = 1 needs to be investigated. We
consider two cases according to the structure of π.

π = ., then |r.w′| = 1, say r.w′ = {o}, and |r.w| = |o..m| = 1.

π = −, then |r.w′| = 1, say r.w′ = {o}, and lWf(o)
Lem.4.57

= w′. We assume
now o1, o2 ∈ r.w with o1 6= o2. Again we know lWf(o1) = lWf(o2) = w
because of Lem. 4.57, and obf |= o1[m → o] ∧ o2[m → o]. Then there
exists a root r′ ∈ Root(f) such that r′.w = {o1} because of the root-
reachability of the instance f . Since {o1, o2} ⊂ r.w and o1 6= o2, r and r′

are different objects, r 6= r′. Now o 6∈ r′.w′, because if we assume that
o ∈ r′.w′ as in Fig. 4.14(a), then {o1, o2} ∈ r′.w, which is a contradiction.
Then there exists o′1 with o′1 ∈ r′.w′ as in Fig. 4.14(b), and therefore
obf |= o1[m → o′1] ∧ o1[m → o], which is a contradiction to the scalarity
of m. This means |r.w| ≤ 1.
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Figure 4.14: Situations that cannot arise in the case len(w) = n+ 1 and π = −

2

As mentioned previously, the extensions obtained during the construction of the coun-
terexample look the same which ever root we assume as vista point. This feature is
captured by the property root-isomorphism. Again this property is invariant under the
transformation merge.

Definition 4.59 (Root-Isomorphism)

Let D be a schema, and f be a root-reachable instance of the schema D\(CICD ∪OCD ∪
PFDD) with labelling based on a set C ⊂ CLASSD of classes and the set CICD ∪OCD.
The instance f is root-isomorphic if

• the instance f has at most two roots, |Root(f)| ≤ 2, and

• for all roots r ∈ Root(f), for all objects o ∈ obj(f) with r.lWf(o) = {o}, and for
all roots r′ ∈ Root(f) there exists an object o′ ∈ obj(f) such that r′.lWf(o) = {o′}.

The prototype for the counterexample is a Two-S-graph, which we compose out of
two S-trees, hence the name Two-S-graph. From one of these trees we remove objects
and create links to the other S-tree by inserting objects of the other S-tree for missing
attribute values.

Definition 4.60 (Two-S-Graph)

Let D be a schema, and Ξ := CICD∪OCD∪PFDD be the set of constraints in the schema
D. A Two-S-graph for the schema D and a path functional dependency c(X → Y ) over
the schema D is an extension f =

〈
popf |obf

〉
of the schema D\Ξ with labelling based

on the sets {c} and CICD ∪OCD constructed as follows.

Step 1: Construct two S-trees f1 := 〈pop1|ob1〉 and f2 := 〈pop2|ob2〉 of the schema D\Ξ
with labelling based on the sets {c} and CICD∪OCD such that obj(f1)∩obj(f2) = ∅.
Let R1, R2 denote the single element in Root(f1), Root(f2), respectively.

Step 2: Remove any v : cv ∈ pop2 and u[m→ v] ∈ ob2 whenever lWf(v) ∈ X+D,c.
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Step 3: popf := pop1 ∪ pop2 and obf := ob1 ∪ ob2.

Step 4: For each u : cu ∈ popf and m ∈ AttrD(cu) where due to Step 2 obf 6|= u[m→ w]
for all w ∈ obj(f), add u[m→ R1.lWf(u).m] to obf .

Example 4.61

The Two-S-graph (Fig. 4.15(b)) built for the schema in Exam. 4.46 and the path func-
tional dependency h(.v → .n) is composed out of two S-trees (Fig. 4.15(a)). The closure
of the set {.v} contains the path function .v, therefore we remove the object xd and insert
the object od as attribute value for the object xh. Because of the path functional depen-
dency h(.v → .n.u) the path function .n.u is an element of the closure {.v}+S,h, hence
the removal of the object x′h and all objects reachable from the object via path functions.

A Two-S-graph constructed for a schema satisfies at least the set AX of axioms.

Lemma 4.62

Let g be a Two-S-graph for a schema D and a path functional dependency c(X → Y )
over the schema D. The Two-S-graph g is an instance of the schema D\(CICD∪OCD∪
PFDD).

Proof. The two S-trees needed for the construction of the Two-S-graph g are instances
of the schema D\(CICD ∪OCD ∪ PFDD) according to Lem. 4.32. Because of the
congruence replacing some objects of one S-tree by objects of the other S-tree
does not lead to a violation of the unique name axioms, well-typedness axioms or
definedness axioms. 2

The construction of a Two-S-graph ensures that only those objects are removed whose
way-labels are elements of the closure of the corresponding set of path functions.

Corollary 4.63

Let g be a Two-S-graph for a schema D and a path functional dependency c(X → Y )
over the schema D. Then for all objects o ∈ obj(g), R1.lWf(o) = R2.lWf(o) = o iff
lWf(o) ∈ X+D,c.

A Two-S-graph is indeed a prototype of the counterexample in that a Two-S-graph po-
tentially satisfies the derivable path functional dependencies but not the path functional
dependency the Two-S-graph is constructed for. Additionally, a Two-S-graph looks like
a “Siamese twin”, i. e., it is root-isomorphic.

Lemma 4.64

Let D be a schema, Ξ := CICD ∪ OCD ∪ PFDD be the set of constraints in the schema
D, c(X → Y ) 6∈ Ξ+D be a path functional dependency not derivable from the set Ξ. Let
g be a Two-S-graph for the schema D and the path functional dependency c(X → Y ).

1. The Two-S-graph g is root-isomorphic.

2. (a) The Two-S-graph g is an instance of the schema (D\Ξ) ∪ Ξ⊕D .
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(a) The two S-trees for the Two-S-graph
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(b) The Two-S-graph

Figure 4.15: How to construct the Two-S-graph in Exam. 4.61

(b) The Two-S-graph g is not an instance of the schema (D\Ξ)∪Ξ⊕D ∪ {c(X →
Y )}.

Proof. 1. The Two-S-graph is an instance of the schema D\Ξ according to
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Lem. 4.62.

For each object o inserted in one of the S-trees f1 or f2 during the construction
of the Two-S-graph g, we know that the way-label lWf(o) is a path function.
Without loss of generality, we assume that o has been inserted into the S-tree

f1. Then there exists an object o′ with R1.lWf(o) = {o′} and lWf(o
′)

Lem.4.57
=

lWf(R1) ◦ lWf(o) = .Id ◦ lWf(o) = lWf(o); but only one object is introduced for
each S-tree and path function, and therefore o = o′. The removal of nodes
and edges from one of the S-trees and the addition of missing links does not
mar this property, and thus the Two-S-graph is root-reachable.

A similar argumentation holds for the property root-isomorphism. The in-
troduction of objects in the S-trees f1 and f2 during the construction of the
Two-S-graph g is executed according to the set of path functions starting at
the class c. So whenever an object is reachable from a root of the Two-S-
graph g either this object is reachable by the other root as well or the object
with the same way-label. Therefore the Two-S-graph g is root-isomorphic,
because the Two-S-graph g contains only the roots R1 and R2 by definition.

2. (a) Let

c′(p1 · · · pm → pm+1 · · · pn) ∈ Ξ+D (4.11)

be a path functional dependency, o, o′ ∈ obj(g) be two objects such that
c′ ∈ lCl(o) ∩ lCl(o

′), and

o.pi = o′.pi for all i ∈ {1, . . . ,m} . (4.12)

Then w := lWf(o) = lWf(o
′) because of Cor. 4.53. We consider two cases:

i. There exists a root r ∈ Root(g) such that o, o′ ∈ r.w. Then o = o′

because g is root-reachable, and therefore |r.w| ≤ 1 (Lem. 4.58).

ii. There does not exist a root r ∈ Root(g) such that o, o′ ∈ r.w. Then
there are roots r, r′ ∈ Root(g) with r.w = o 6= o′ = r′.w. Because of
c′ ∈ lCl(o) and g is an extension with labelling, c′ ∈ RanD(c, w), and
therefore we can derive

c(w ◦ p1 · · ·w ◦ pm → w ◦ pm+1 · · ·w ◦ pn) (4.13)

from (4.11) by simple prefix augmentation. Because of (4.12) r.w ◦
pi = r′.w ◦ pi for i ∈ {1, . . . ,m}. By Cor. 4.63, it follows that w ◦
pi ∈ X+D,c for i ∈ {1, . . . ,m}. This means w ◦ pj ∈ X+D,c for
j ∈ {m+1, . . . , n} because of (4.13). Consequently, r.w◦pj = r′.w◦pj
for j ∈ {m+ 1, . . . , n}, and hence o.pj = o′.pj for j ∈ {m+ 1, . . . , n},
which means (4.11) is satisfied.

(b) The Two-S-graph g does not satisfy c(X → Y ) because c(X → Y ) 6∈ Ξ+D ,
and therefore there is p ∈ Y \X+D,c , hence R1.p 6= R2.p by Cor. 4.63.

2
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Having the prototype of the counterexample, we deal with the satisfaction of onto con-
straints. The basic idea is to insert a pruned-S-tree whenever an object violates an onto
constraint. Unfortunately, this insertion entails in general a violation of path functional
dependencies, which we cure by removing objects from except from one all of the inserted
pruned-S-trees and adding missing links.

Definition 4.65 (Merge)

Let D be a schema, Ξ := CICD ∪ OCD ∪ PFDD be the set of constraints in the schema
D, and Υ := CICD ∪OCD be the set of class inclusion constraints and onto constraints
in the schema D. Let f be a root-isomorphic instance of the schema D\Ξ with labelling
based on a set C ⊂ CLASSD of classes and the set Υ. The transformation mergeD(f)
is defined as the outcome of the following steps.

Let r ∈ Root(f) be an arbitrary root. We define

close = {u ∈ obj(f) | ex. r′ ∈ Root(f)\{r} : r.lWf(u) = r′.lWf(u)} .

For every object r′′ that is the root of a pruned-S-tree pst(C ′, o,m, lWf(o))
newly inserted in extrevΥ(f), and that is reachable from r′ ∈ Root(f)\{r}
(r′′ ∈ r′.lWf(r

′′)) and not reachable from r (r′′ 6∈ r.lWf(r
′′)), we define

π(r′′) = {p ∈
⋃

d∈lCl(r′′)

PathFuncsD(d) | r′′.p ⊂ close} ,

and

Π(r′′) =
⋃

d∈lCl(r′′)

 ⋃
∅6=N⊂π(r′′)∩PathFuncsD(d) and |N |∈N

N+D,d

 .

Then we apply the following steps to f ′ := extrevΥ(f).

1. For each p ∈ Π(r′′)\π(r′′) remove the object u with r′′.p = {u} and any
incident edge into u from f ′.

2. For each remaining object o′, class d ∈ lCl(o
′), and attribute n ∈

AttrD(d) where due to the first step obf 6|= o′[n→ o′′] for all remaining
objects o′′ add o′[n→ r.lWf(o

′) ◦ .m].

We designate extensions satisfying the derivable path functional dependencies as input
for the operation merge. As the set X of path functions was taken in the construction
of a Two-S-graph to determine which objects had to be removed, the set π(r′′) for the
root r′′ of a newly inserted pruned-S-tree is used for this job as well. Applying a path
function from the set π(r′′) to the root r′′ yields an object that is a member of the set
close, which comprises all objects reachable from all roots.

Example 4.66

The Two-S-graph in Exam. 4.61 violates the onto constraint e{k|h} for two objects, oh
and xh. So we insert for both of them a pruned-S-tree, but this extension (Fig. 4.16(a))
violates the path functional dependency e(.k.v → .j) derivable from the set of constraints
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in the schema S. We remedy this violation by removing the object xf and stipulating the
object of as value for the attribute j of the object xe (Fig. 4.16(b)).

The extension in Fig. 4.16(b) does not satisfy the onto constraint f ′′{p|e}, which leads
to another application of the operation merge on the outcome. In this application two
objects o′f and x′f are introduced, which violate the path functional dependency f ′′(.p.j →
.q). But this violation is repaired due to the fact that of ∈ close and hence .p.j ∈ π(x′f ),
and so, finally, .q ∈ π(x′f )

+S,f ′′ .

The removal of objects in the operation merge leaves the objects in the original instance
untouched.

Lemma 4.67

Let D be a schema, Ξ := CICD ∪ OCD ∪ PFDD be the set of constraints in the schema
D, and Υ := CICD ∪OCD be the set of class inclusion constraints and onto constraints
in the schema D. Let f be a root-isomorphic instance of the schema D\Ξ with labelling
based on a set C ⊂ CLASSD of classes and the set Υ, and an instance of the schema
(D\Ξ)∪Ξ⊕D . In the construction process of mergeD(f) no object o ∈ obj(f) is removed,
i. e. for all objects o ∈ obj(f), o ∈ obj(mergeD(f)).

Proof. We show
⋃
p∈Π(r′′)\π(r′′) r

′′.p ∩ obj(f) = ∅ for the root r′′ of any pruned-S-tree

pst(C ′, o,m, lWf(o)) newly inserted in extrevΥ(f). Let r′ 6= r be a root of the
extension f ′ in Def. 4.65 with r′.lWf(r

′′) = {r′′}.
Let us conversely assume v ∈ r′′.p ∩ obj(f) for a p ∈ Π(r′′)\π(r′′). Then v 6∈ close
by definition. Because of r′.lWf(r

′′) ◦ p = {v} and the root-isomorphism there
exists v′ ∈ r.lWf(r

′′) ◦ p ∩ obj(f) distinct from v, v 6= v′. Every path function in
π(r′′) has got the prefix .m due to its definition. The path function p has got the
prefix .m since v ∈ obj(f). p ∈ Π(r′′) and therefore d(N → p) ∈ Ξ+D for a class
d ∈ lCl(r

′′) with m ∈ AttrD(d) and some finite, non-empty set of path functions
N ⊂ π(r′′)∩PathFuncsD(d). The root r′′ was added because of d′′{m|d′} ∈ Υ+D for
some class d′′ with d′′ ⊂ d and for some class d′ ∈ lCl(o). Then d′′(N → p) ∈ Ξ+D

holds by path functional dependency inheritance. Due to simple prefix reduction,
this entails d′(α(.m,N) → α(.m, {p})) ∈ Ξ+D with α(P, S) := {t | Pt ∈ S}. But
then o and r.lWf(o) violate this path functional dependency, because o 6= r.lWf(o),
o.q = r.lWf(o) ◦ q for each q ∈ α(.m,N) and o.p′ = v 6= v′ = r.lWf(o) ◦ p′ for
{p′} = α(.m, {p}), which is a contradiction to the fact that f is an instance of
(D\Ξ) ∪ Ξ⊕D . 2

A Two-S-graph forms the prototype for the counterexample, i. e., the Two-S-graph is
a “Siamese twin”, and satisfies the derivable path functional dependencies but not the
path functional dependency it is constructed for. The operation merge treats these
properties as invariants.

Lemma 4.68

Let D be a schema, Ξ := CICD ∪ OCD ∪ PFDD be the set of constraints in the schema
D, Υ := CICD ∪ OCD be the set of class inclusion constraints and onto constraints in
the schema D, and c(X → Y ) 6∈ Ξ+D be a path functional dependency. Let f be a
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oe of
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(b) . . . , then merging objects

Figure 4.16: Applying the operation merge on the Two-S-graph in Fig. 4.15(b)
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root-isomorphic instance of the schema D\Ξ with labelling based on the sets {c} and Υ,
such that the instance f is an instance of the schema (D\Ξ)∪Ξ⊕D and not an instance
of the schema (D\Ξ) ∪ Ξ⊕D ∪ {c(X → Y )}.

1. The extension mergeD(f) is root-isomorphic.

2. The extension mergeD(f) is an instance of (D\Ξ) ∪ Ξ⊕D .

3. The extension mergeD(f) is not an instance of (D\Ξ) ∪ Ξ⊕D ∪ {c(X → Y )}.

Proof. 1. We show first that the extension mergeD(f) is root-reachable. Because
of Lem. 4.67 and the root-reachability of the instance f , for each object
o ∈ obj(f), there exists a root r ∈ Root(mergeD(f)) such that r.lWf(o) = {o}.
So we consider now objects added in the construction of mergeD(f). Let
o ∈ obj(f) be an object for which a pruned-S-tree pst(C ′, o,m, lWf(o)) has
been introduced. Then the only access to an object in the pruned-S-tree is
via the object o. But then there exists a root r ∈ Root(mergeD(f)) with
r.lWf(o) = {o}. The root o′ of the pruned-S-tree has lWf(o)◦−m as way-label
and lWf(o) does not end in .m due to Cor. 4.51. This implies r.lWf(o

′) = {o′},
and therefore r.lWf(o

′′) = {o′′} for each object o′′ in the pruned-S-tree, because
lWf(o

′′) = lWf(o
′)◦p for some path function p. The removal of nodes and edges

from pruned-S-trees and the addition of missing links does not impair this
property, and thus the extension mergeD(f) is root-reachable.

The same lines of arguments can be followed when proving the property root-
isomorphism.

2. The construction process for mergeD(f) does not lead to a violation of AX.
So we have to look at the path functional dependencies in Ξ⊕D .

By contradiction. Let

c′(p1 · · · pm → p) (4.14)

be a path functional dependency derivable from Ξ and o, o′ ∈ obj(mergeD(f))
be two distinct objects violating this path functional dependency (o.pi = o′.pi
for i ∈ {1, . . . ,m} implies lWf(o) = lWf(o

′) by Cor. 4.53, and o.p 6= o′.p).
Because of the root-isomorphism and lWf(o) = lWf(o

′), the objects o and o′

are either both old objects, o, o′ ∈ obj(f), or newly inserted objects, o, o′ ∈
obj(mergeD(f))\obj(f). Since f is an instance of (D\Ξ) ∪ Ξ⊕D and because
of Lem. 4.67 two objects in obj(f) cannot violate (4.14), and so both objects
must have been newly added in two distinct pruned-S-trees. Distinct because
way-labels are unique in pruned-S-trees.

Let u, u′ be the corresponding roots of the pruned-S-trees involved. Let
e′{a|d′′} be an onto constraint that gave rise to the introduction of the root
u. The onto constraint e′{a|d′′} is derivable from a proper onto constraint
d′{a|d′′} with Υ+D `D d′ ⊂ e′ and, by Lem. 4.50, gave rise to the introduc-
tion of the root u. Then the onto constraint d′{a|d′′} gave also rise to the
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introduction of the root u′ because of o.pi = o′.pi for i ∈ {1, . . . ,m} and the
root-isomorphism of the extension f .

Since all onto constraints are proper and lCl(u) = Ran(D\Ξ)∪Υ(c, lWf(u)),
Υ+D `D d′ ⊂ e holds for all classes e ∈ lCl(u). Then there exists a unique
q ∈

⋃
d∈lCl(u) PathFuncsD(d) with u.q = {o} and u′.q = {o′}. As a conse-

quence u and u′ violate

d′(q ◦ p1 · · · q ◦ pm → q ◦ p) (4.15)

for the class d′, which can be derived from (4.14) by iterated application of
simple prefix augmentation.

Since u 6= u′ and the root-reachability of mergeD(f), there are distinct roots
r, r′ ∈ Root(mergeD(f)) such that r.lWf(u) = {u} and r′.lWf(u) = {u′}.
Without loss of generality let r be the root chosen in the construction of
mergeD(f). Then {q ◦ p1, . . . , q ◦ pm} ⊂ Π(u′), because if q ◦ pi 6∈ Π(u′),
then neither u′.q ◦ pi ∈ close nor u′.q ◦ pi is removed in the first step of the
construction of mergeD(f) and therefore o.pi = u.q ◦ pi 6= u′.q ◦ pi = o′.pi,
which contradicts o.pi = o′.pi.

Since there exist a finite, non-empty set of path-functions N ⊂ π(u′) ∩
PathFuncsD(d′) such that q ◦ pi ∈ N+D,d′ and the path functional depen-
dency (4.15), q ◦ p ∈ N+D,d′ holds.

If we assume that

• q ◦ p ∈ π(u′), then u.q ◦ p = u′.q ◦ p by definition of π(u) and

• q ◦ p ∈ N+D,d′\π(u′), then u′.q ◦ p is removed in the first step of the
construction of mergeD(f), and therefore by the second step of the con-
struction u.q ◦ p = u′.q ◦ p.

The equality u.q ◦ p = u′.q ◦ p contradicts that the path functional depen-
dency (4.15) is violated. Therefore (4.14) cannot have been violated.

3. According to Lem. 4.67, the construction process does not touch the set v ∈
obj(f) of objects. Therefore the pair o, o′ ∈ obj(f) of objects that violates
c(X → Y ) in f still violates c(X → Y ) in mergeD(f).

2

Finally, we show the completeness of the inference rules A1 to A7 by contraposition. So
we assume conversely that we cannot derive a path functional dependency c(X → Y )
from the set of constraints in a schema D. Then we construct an instance of the schema
D that does not satisfy the dependency c(X → Y ).

Theorem 4.69 (Completeness of A1 to A7 under CICs, OCs and PFDs)

Let D be a schema, Ξ := CICD∪OCD∪PFDD be the set of constraints in the schema D,
Υ := CICD ∪ OCD be the set of class inclusion constraints and onto constraints in the
schema D, and c(X → Y ) 6∈ Ξ+D be a path functional dependency over the schema D.
Then there exists an instance f of the schema D that is not an instance of the schema
D ∪ {c(X → Y )}.
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Proof. Let g be a Two-S-graph for the schema D and the path functional dependency
c(X → Y ). As proven in Lem. 4.64, the Two-S-graph g is a root-isomorphic
instance of the schema (D\Ξ) ∪ Ξ⊕D but not an instance of the schema (D\Ξ) ∪
Ξ⊕D ∪ {c(X → Y )}. From Lem. 4.68, we know that the operation mergeD leaves
these properties untouched such that f :=

⋃
i∈N mergeiD(g) is an instance of the

schema (D\Ξ)∪ Ξ⊕D but does not satisfy the path functional dependency c(X →
Y ).

Due to Def. 4.28 and Lem. 4.12 each derivable class inclusion constraint is satisfied
in every extension mergeiD(g) and hence f .

If object o is generated in the i-th iteration, then all onto constraints violated by o
are satisfied in the i+ 1-th iteration. This continues throughout further iterations.

Therefore the extension f is an extension of the schema D that does not satisfy
the path functional dependency c(X → Y ).

2

4.6 Possible Extensions

Certainly, there are numerous possibilities to extend the presented semantic constraints.
First of all, the flexibility of F-logic offers the possibility to conceive completely different
constraints. Therefore we want to confine our attention to extensions that are based on
the constraints we presented so far.

Innate to all presented constraints is the restriction that they are based on scalar
attributes. A possible extension is therefore to use set-valued attributes whenever we
employed scalar attributes.

Without going into detail, we want to discuss the problems connected with these
extensions. We start with allowing even set-valued attributes in the definition of onto
constraints. The semantics can even be left unaltered except that we have F-formulae
with scalar or set-valued attributes. We surmise that the inference rules for onto con-
straints and class inclusion constraints remain the same. Matters get more complicated
when we bring path functional dependencies into play. But the analysis of the conse-
quences is not within the scope of this work.

The next suggested change deals with onto constraints again. It is possible to replace
the simple attribute by a full path function or perhaps with a way description. Again
we will not pursue this extension any further.

Possible modifications of path functional dependencies include the use of set-valued
attributes in path functions or the use of way descriptions. A similar modification is the
use of schema subgraphs instead of path functions. To generalise these ideas, we make the
following observation. The principal idea of general functional dependencies is that some-
thing uniquely determines something other. These somethings are somehow semantically
connected things. The semantic connection can be seen at functional dependencies in the
relational data model as attribute values of tuples or sets of path functions as in our ap-
proach. The work of Klein and Rasch [KR97] tries to build up a framework to investigate
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these considerations in more depth. They also give a broad overview over the existing
approaches. A crucial point in the generalisation in an object-oriented data model is the
identification of objects based on values [AK89, BT98, Kim95, AVdB95, ST93].



Chapter 5

From Conceptual to
Object-Oriented Models

The ER-model and other conceptual models, which are not object-oriented, have received
much interest as starting point for database design transformations. A survey is given by
Fahrner and Vossen [FV95]. This survey does not include object-oriented data models as
target model. Some work has been done in that direction [NCB92, Get92, HG92, NNJ93,
PTCL93, GHC+93, EN94, Bar95, KS95, MGG95, BMP96, ME96, ME98]. A detailed
analysis and comparison of these approaches lie beyond the scope of this work. Instead
we present the method of Biskup et. al. [BMP96] in this work by means of examples.

For the design of object-oriented databases, entity sets are simply formalised as
(entity) classes whose basic types are determined by the pertinent properties of entities.
In order to formalise a relationship set, we can always canonically simulate the relational
approach [NCB92, Get92, HG92, GHC+93, NNJ93, EN94, BMP96, Rum87].

For every entity we create an object. The properties of the entity are modelled
by attributes whose result classes are the classes corresponding to the data types of the
properties. Because F-logic is purely object-oriented, values like Ints have to be modelled
as objects without internal structure. For every individual relationship we construct an
object that is counterpart to the corresponding tuple in the relational approach. Then
these objects are understood as instances of a (relationship) class. As objects correspond
in this case to tuples, we also need canonical semantic constraints to ensure that they
behave as such. These constructs require that the attribute values of a relationship
object uniquely represent the relationship, i. e., there is at most one object for any value
combination. This kind of constraint is formalised as key functional dependency for the
class. The construct usually accommodates all attributes of this class.

From the ER-schema in Fig. 1.4, we can derive the schema Assignment. Its com-
ponents are depicted in Fig. 5.1 and the schema graph in Fig. 5.2. All entity sets
are mapped onto corresponding classes, for example the entity set Course onto the class
Course. The property title is formalised in the object-oriented data model as the at-
tribute title with result class String. The only relationship set Assignment is mapped
onto the (relationship) class Assignment. Its attributes are determined by the entity
sets participating in the relationship. Every entity set is formalised as an attribute

103
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CLASS := {String, Int,Assignment,Course,Teacher,Assistant,Date,Room,Wing}
METH := {course, teacher, assistant, room,wing, title, te name, as name, ro name,

date, year,month, day, size, address}
HIER := ∅

SIG := {Course[title⇒ String],

Teacher[te name⇒ String],

Assistant[as name⇒ String],

Date[year⇒ Int; month⇒ Int; day⇒ Int],

Room[size⇒ Int; ro name⇒ String],

Wing[address⇒ String],

Assignment[course⇒ Course;

assistant⇒ Assistant;

date⇒ Date;

teacher⇒ Teacher;

room⇒ Room;

wing⇒ Wing]}
SC := AX ∪

{Assignment(.course→ .assistant .date),

Assignment(.teacher→ .room),

Assignment(.room→ .wing),

Assignment(.course .teacher→ .Id)}

Figure 5.1: An object-oriented schema for the “good” example

with the class corresponding to the entity set as result class. Therefore the attribute
course with result class Course models the entity set Course. The semantic constraints
declared for the class Assignment are of main interest. For every Course there is exactly
one Assistant and it takes place at only one Date. The path functional dependency
Assignment(.course → .assistant .date) enforces that this restriction is met. Imagine
that in the application at hand a Teacher is assigned a fixed Room, then the path
functional dependency Assignment(.teacher→ .room) ensures just this requirement. Ad-
ditionally, the constraint that a Room is situated in only one Wing is reflected in the
path functional dependency Assignment(.room→ .wing).

The method of Biskup et. al. requires the declaration of two kinds of canonical se-
mantic constraints for the enforcement of:

• complete representation of relationships, and
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Figure 5.2: The schema graph for the “good” example

• unique representation of relationships.

The former ensures that for every (relationship) object all attribute values stemming
from the formalisation of the relationship are defined. These constraints are covered by
the definedness axioms. The latter, for the unique representation of relationships, are
present to ensure that every object of a relationship class behaves as a tuple. These
constraints can be expressed in our data model as key functional dependencies. In the
example a formalisation of the unique representation of relationships is enforced by the
key functional dependency

Assignment(.course .teacher .assistant .date .room .wing→ .Id) . (5.1)

We can reduce the canonical semantic constraint (5.1), which is necessary to make each
Assignment-object to simulate a tuple. For the reduction we exploit the path functional
dependencies in SC and get the key path functional dependency

Assignment(.course .teacher→ .Id) ,

by applying the inference rules path function augmentation and transitivity.
From the ER-schema in Fig. 1.5, we can derive the components of a schema in our

F-logic based data model Phone-Admin = 〈CLASS|METH|HIER|SIG|SC〉 as shown in
Fig. 5.3. We used the method presented above to generate this schema. Its seman-
tic constraints stem from the formalisation of the restrictions imposed on its instances.
The path functional dependency Phone-admin(.fac → .sch) reflects the restriction that
a Faculty is affiliated at most to one School. The Faculty is charged with the cost of
at most one Phone, hence the path functional dependency Phone-admin(.fac → ph).
That a School is accommodated by one Department is formalised by the path functional
dependency Phone-admin(.sch → .dep). Finally, the prefix of a Phone number deter-
mines the Department. This relationship is captured by the path functional dependency
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CLASS := {Phone-admin,Faculty, School,Phone,Department}
METH := {fac, sch, ph, dep}
HIER := ∅,

SIG := {Phone-admin[fac⇒ Faculty; sch⇒ School;
ph⇒ Phone; dep⇒ Department]}

SC := AX ∪
{Phone-admin(.fac→ .sch),

Phone-admin(.fac→ .ph),

Phone-admin(.sch→ .dep),

Phone-admin(.ph→ .dep),

Phone-admin(.fac .sch .ph .dep→ .Id)}

Figure 5.3: An object-oriented schema for the “bad” example

Phone-admin(.ph → .dep). Again the unique representation of relationships is captured
as key functional dependency,

Phone-admin(.fac .sch .ph .dep→ .Id) .



Chapter 6

Equivalence of Databases

When designing databases, we are often faced with the fact that the same data is struc-
tured in various ways. This issue is called data “relativism”. It is central to database
design. It arises in sundry situations like view construction, view integration, transfor-
mations between different data models and interoperable databases. A survey is given
in [Hul86, DT93, MIR93]. In our work we concentrate on equivalence of databases given
in one data model.

An approach to equivalence of database schemas is to compare their sets of in-
stances. Prominent exponents of this approach are the works of Hull [Hul86] and Biskup
et. al. [BR88]. These are the high ends of this kind of work, which are based on the work
of Codd [Cod72]. Kohlrausch [Koh96] presents a comparison of these works. The idea
underlying these approaches is to consider mappings between sets of instances of two
schemas and properties of these mappings. The symmetric conception schema equiva-
lence is based on the asymmetric conception dominance, which captures the idea that
one schema has the capacity to contain at least as much information as the other. If
two schemas dominate each other, they are equivalent.

Unfortunately, the test for dominance, and therefore for equivalence, is not decidable
for arbitrary schemas [BR88, MIR94]. Miller et. al. [MIR94] offer an alternative to
remedy the dilemma. They develop several tests that serve as sufficient conditions
for information capacity dominance or equivalence. Simple schema transformations are
introduced. For these transformations the relation with respect to equivalence between
input and output schema is known. The composition of simple schema transformations
is used to check whether one schema dominates another. The test succeeds if and only
if a sequence of simple transformations exists such that one schema can be transformed
into the other. Alas, the data model used by Miller et. al., schema intension graphs
(SIG), is inheritly data centric. In this data model it is impossible to express constraints
on the structure of individual entities, i. e., (path) functional dependencies cannot be
expressed.

An approach to equivalence of hierarchical data models is the work of Abiteboul
and Hull [AH88]. Their data model allows to define types using tuple, set and union
constructors. On objects of this data model rewrite operations are defined, which allow
to transform objects of one type into objects of a different type. A class of rewrite oper-
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ations is the class of simple rewrite operations. This class is closed under composition.
Then transformations on types are presented, called capacity preserving transformations.
Connected to type transformations are restructuring functions, which can be represented
as families of simple rewrite rules. That type transformations are capacity preserving
indeed — as the name indicates — is illustrated under the equivalence notion absolute
dominance [Hul86]. This approach relates the semantic requirement of schema equiv-
alence formalised as dominance to a syntactic property, the presence of simple rewrite
operations. However, the data model does not contain object identity.

A different approach to schema equivalence is taken by Qian [Qia96] and Makowsky
et. al. [MR96, MR98]. Their works are founded on signature interpretations or trans-
lation schemes, respectively. The central idea is to define the mapping connecting the
schemas in a way that it is possible to transform both schemas or at least important
schema elements, and instances. Common to both approaches is that a schema de-
fines structure and semantic constraints for its data. It is now possible to translate
besides instances arbitrary formulae in the respective data models, and thus semantic
constraints. With these means at hand schema equivalence is defined. Unfortunately,
the approach of Qian runs into the same undecidability problems as previous works,
because the advantage gained due to the ability to transform semantic constraints is
neither sufficiently investigated nor exploited. In contrast, Makowsky and Ravve build
up an entire framework and accordingly gain a rich harvest from their efforts. They
can give syntactic criteria for the test for schema equivalence. Thus they connect the
semantic requirement schema equivalence with a syntactic property.

6.1 Translation Schemes

Although the work of Makowsky and Ravve has been carried out in the context of the
relational data model, it can be transferred to our data model as well. This is possible
because the work is based on first-order logic. It is grounded on the atomar elements
of formulae, positive literals, likewise it is possible to ground it on the atomar elements
of F-logic, namely is-a assertions, object molecules and P-molecules, as it was shown in
Sect. 2.5 about molecule definitions.

Despite the similarity of using predicate definitions or molecule definitions, there
is one fundamental difference between the use of predicate definitions in the relational
framework and the use of molecule definitions in F-logic. This difference is rooted in
the variance of the conception of a schema. In the relational model a schema can be
understood as the declaration of a set of symbols in contrast to the complex declaration
of a schema in F-logic. Instead of simply defining a new set of symbols, the values of
“built-in” predicates are defined. So we define even the structure of a schema by means
of molecule definitions. This is also of advantage, because formulae in F-logic may range
over structural aspects such as signatures or the class hierarchy. Having defined schemas
by molecule definitions, we have defined the class hierarchy and signatures by molecule
definitions. So it becomes possible to translate arbitrary F-formulae. Before we go into
detail, we give some definitions.
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The transformation pivoting, which lies in the focus of our interest, deals with at-
tributes only. For this reason we restrict our attention to schemas and formulae that
involve attributes as only methods.

Definition 6.1 (Simple Structure, Simple Formula, Simple Schema)

• Let I be an F-structure. It is called a simple F-structure if

– I→ is a mapping I→ : U 7→ Partial(U,U) and everywhere else undefined,

– the mapping I→→ is undefined everywhere,

– I⇒ is a mapping U 7→ PartialAntiMonotone(U,℘↑(U)) and everywhere else
undefined, and

– the mapping I⇒⇒ is undefined everywhere.

• Let α be a formula. It is called a simple formula if in every data expression and
every signature expression no arguments occur.

• Let D be a schema. It is a simple schema if it contains only simple formulae.

In the sequel we assume that we deal with simple formulae and simple schemas only. In
principle it is possible to extend the following definitions to range over ordinary formulae
and ordinary schemas though.

A transformation for schemas comes hand in hand with the transformation for their
extensions. A translation scheme should accordingly contain definitions for all “built-in”
predicates. Additionally, a schema consists of a set of classes and methods. We declare
for these “defining formulae” as well. The following definition defines a set of formulae
as pre-translation scheme. At first we do not couple this set with any schema.

Definition 6.2 (Pre-Translation Scheme)

A set of formulae

Φ = {φCLASS(C), φMETH(M), φ::(C,D), φ⇒(M,C,R), φ:(O,C), φ→(M,O,R)}

is called a pre-translation scheme.

Having a schema D and a pre-translation scheme Φ, we define a mapping Φ∗ for schemas.
It uses the defining formulae in the pre-translation scheme to deduce a new schema from
the input schema. For the elements CLASSΦ∗(D), METHΦ∗(D), HIERΦ∗(D) and SIGΦ∗(D)

we take the constants, which are plugged into the respective formulae, such that the
respective ground formulae are logically implied by the structural part of the schema.
The set SCΦ∗(D) is simply the set of formulae at least contained by definition.

Definition 6.3

Let D be a schema, and Φ be a pre-translation scheme.

Φ∗(D) :=
〈
CLASSΦ∗(D)|METHΦ∗(D)|HIERΦ∗(D)|SIGΦ∗(D)|SCΦ∗(D)

〉
is defined as follows:



110 CHAPTER 6. EQUIVALENCE OF DATABASES

• CLASSΦ∗(D) := {c | c ∈ F0 and D\SCD |= ϕCLASS(c)}, where

ϕCLASS(C) = φCLASS(C) ∧ ¬φMETH(C) ,

• METHΦ∗(D) := {m | m ∈ F0 and D\SCD |= ϕMETH(m)}, where

ϕMETH(M) = φMETH(M) ∧ ¬φCLASS(M) ,

• HIERΦ∗(D) := {c::d | c, d ∈ F0 and D\SCD |= ϕ::(c, d)}, where

ϕ::(C,D) = φ::(C,D) ∧ ϕCLASS(C) ∧ ϕCLASS(D) ,

• SIGΦ∗(D) := {c[m⇒ r] | m, c, r ∈ F0 and D\SCD |= ϕ⇒(m, c, r)}, where

ϕ⇒(M,C,R) = φ⇒(M,C,R) ∧ ϕMETH(M) ∧ ϕCLASS(C) ∧ ϕCLASS(R) ,

and

• SCΦ∗(D) := AX.

In general, Φ∗(D) is not a schema according to Def. 3.1. We call pre-translation schemes
translation schemes from a schema if the outcome produces a schema. First of all the
syntactic criteria imposed on the sets CLASSΦ∗(D), METHΦ∗(D), HIERΦ∗(D) and SIGΦ∗(D)

must be satisfied. In addition, we want the formulae to define their output independent
from extensions of the input schema. This is impossible for the definition of the class hi-
erarchy, because of the fact that ∀X X::X is a tautology, which means that the definition
of :: depends on the extension. For that reason, we want the definition of the class hier-
archy at least to be independent for non-trivial cases, i. e. when there are two different
objects on the left-hand side and right-hand side of ::. Since we redefine “built-in” pred-
icates, the defining formulae must form a set of S-definitions. The redefinition is done
by first renaming the “built-in” predicates and then defining them again. The renaming
is plainly done by translating arbitrary formulae into their relational counterpart.

Definition 6.4 (Translation Scheme)

Let Φ be a pre-translation scheme, and D be a schema. Φ is a translation scheme from
D, if all of the following holds:

1. CLASSΦ∗(D) is finite and non-empty,

2. METHΦ∗(D) is finite,

3. HIERΦ∗(D) is finite,

4. SIGΦ∗(D) is finite,

5. for all constants c ∈ F0 and all extensions f ∈ ext(D) of D:

D\SCD |= ϕCLASS(c) iff complD(f) |= ϕCLASS(c) ,
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6. for all constants m ∈ F0 and all extensions f ∈ ext(D) of D:

D\SCD |= ϕMETH(m) iff complD(f) |= ϕMETH(m) ,

7. for all constants c, d ∈ F0 and all extensions f ∈ ext(D) of D:

D\SCD |= ϕ::(c, d) iff complD(f) |= ϕ::(c, d) ,

8. for all constants m, c, r ∈ F0 and all extensions f ∈ ext(D) of D:

D\SCD |= ϕ⇒(m, c, r) iff complD(f) |= ϕ⇒(m, c, r) ,

9. for all extensions f ∈ ext(D) of D:

complD(f) |= ∀C∀D(φ::(C,D) ∧ C 6 ◦= D ⇒ ϕCLASS(C) ∧ ϕCLASS(D))

and

10. the set ∆Φ with

∆Φ := {∀C∀D(C::D ⇔ (φ::(C,D))r),
∀M∀C∀R(C[M ⇒ R]⇔ (ϕ⇒(M,C,R))r),
∀M∀C(C[M ⇒ ()]⇔ (∃Rϕ⇒(M,C,R))r),
∀O∀C(O:C ⇔ (ϕ:(O,C))r),
∀M∀O∀R(O[M → R]⇔ (ϕ→(M,O,R))r)}
∪
{∀V1 · · · ∀Vn+1(f(V1, . . . , Vn)

◦
= Vn+1 ⇔ pf (V1, . . . , Vn+1))

| f ∈ S with arity n}

is a set of S-definitions in the set of sentences as chosen in the proof of Theor. 2.32.

We redefine object constructors by giving them their original values.

We have to write φ:: in the S-definition of :: in the set of S-definitions ∆Φ, because
ϕ:: is too restrictive. The “built-in” predicate is reflexive on all elements of the
domain including objects.

It is obvious that a translation scheme from a schema produces a schema as shown in
the next lemma.

Lemma 6.5

Let Φ be a translation scheme from a schema D. The transformation result Φ∗(D) is a
schema.

Proof. The sets CLASSΦ∗(D), METHΦ∗(D), HIERΦ∗(D) and SIGΦ∗(D) are finite by the
definition of translation schemes. The formulae in the definition of Φ∗ are chosen
to reflect the restrictions imposed on schemas and S-definitions.

2
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Schemas that are results of the application of a translation scheme are special, because
the sets HIER and SIG are nearly logically closed. The set of class declarations HIER
violates this because it does not satisfy the tautology ∀X X::X. The set of signature
declarations SIG is not logically closed because it does not contain formulae of the form
c[m⇒ ( )] although they are implied by formulae of the form c[m⇒ r].

In general, a schema with

HIER1 = {a::b, b::c}

and a schema with

HIER2 = {a::a, b::b, c::c, a::b, b::c, a::c}

are equivalent with respect to their class hierarchy. It is apparent that HIER1 |=| HIER2.
Similar considerations can be made for the set SIG. We extend this idea of equivalence
to schemas. In the following definition we see schemas simply as sets of formulae.

Definition 6.6

Let D and D′ be two schemas. D is equivalent to D′, written D ' D′, if

D\SCD |=| D′\SCD′ and SCD |=| SCD′ .

It is easy to prove that a schema D that is equivalent to a schema D′ in the sense above
can be used interchangeably with it.

We split a schema into its structure giving part and its semantic constraints, because
semantic constraints may come in the same form as formulae in the structure giving
part.

This property is in particular of interest in the case of schemas that are equivalent
to the image of some translation scheme. Therefore we give the following definition,
because it enlarges the set of images of a translation scheme substantially.

Definition 6.7

Let D and D′ be two schemas, and Φ be a translation scheme from D. Φ is a translation
scheme from D to D′, if

Φ∗(D) ' D′ .

Note that D′ has only semantic constraints with the following property, SCD′ |=| AX.
Since that is clear, we sometimes give schemas without any semantic constraints not
even axioms rather assume that these are automatically added.

The same mechanism that is used to define Φ∗ on a schema can be employed when
it comes to extensions. The defining formulae in the translation scheme Φ are used to
deduct the elements pop and ob of an extension. Again there are restrictions imposed
on extensions, which have to be obeyed by the formulae.

Definition 6.8

Let f be an extension of a schema D, and Φ be a translation scheme from D.

Φ∗(f) :=
〈
popΦ∗(f)|obΦ∗(f)

〉
is defined as follows:
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• popΦ∗(f) := {o:c | o, c ∈ F0 and complD(f) |= ϕ:(o, c)}, where

ϕ:(O,C) = φ:(O,C) ∧ ¬ϕCLASS(O) ∧ ¬ϕMETH(O) ∧ ϕCLASS(C) ,

and

• obΦ∗(f) := {o[m→ r] | m, o, r ∈ F0 and complD(f) |= ϕ→(m, o, r)}, where

ϕ→(M,O,R) = φ→(M,O,R) ∧ ϕMETH(M) ∧ ¬ϕCLASS(O) ∧ ¬ϕMETH(O) ∧
¬ϕCLASS(R) ∧ ¬ϕMETH(R) .

Lemma 6.9

Let f be an extension of a schema D, and Φ be a translation scheme from D. The
outcome Φ∗(f) of applying the mapping Φ∗ to the extension f is an extension of the
schema Φ∗(D).

Proof. The formulae in the definition of Φ are chosen to reflect the restrictions imposed
on extensions. From that the assertion follows.

2

Makowsky and Ravve [MR96, MR98] define with the help of translation schemes a way
to translate formulae. As input they use formulae over the image of the input schema.
The output are formulae over the input schema. We can do a similar thing. But as
we redefine molecules, we have no such conception of “a formula over a schema”. The
redefinition is carried out by first renaming the “built-in” predicates and then redefining
them based on the renamed predicates. The renaming is simply performed by translating
the formulae into their relational counterparts.

Definition 6.10

Let Φ be a translation scheme from a schema D. The transformation Φ# translates
formulae into formulae as follows:

Φ#(α) := α∇−r ,

where α is a simple formula and ∆ := ∆Φ.

As already mentioned before the sets HIERΦ∗(D) and SIGΦ∗(D) are nearly logically closed.
This property holds also for the components popΦ∗(f) and obΦ∗(f) of a translated exten-
sion Φ∗(f). Lem. 6.11 captures this behaviour formally.

Lemma 6.11

Let f be an extension of a schema D, and Φ be a translation scheme from D.

1. c::d ∈ HIERΦ∗(D) or c
◦
= d ∈ complD(f) iff c::d ∈ complΦ∗(D)(Φ

∗(f)).

2. c[m⇒ r] ∈ SIGΦ∗(D) iff c[m⇒ r] ∈ complΦ∗(D)(Φ
∗(f)).

3. o:c ∈ popΦ∗(f) iff o:c ∈ complΦ∗(D)(Φ
∗(f)).
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4. o[m→ r] ∈ obΦ∗(f) iff o[m→ r] ∈ complΦ∗(D)(Φ
∗(f)).

Proof. The definitions of HIERΦ∗(D), SIGΦ∗(D), popΦ∗(f) and obΦ∗(f) are based on for-
mulae that are S-definitions. These are defined in a way that they are “logically
closed” as complΦ∗(D)(Φ

∗(f)). 2

Because of Theor. 2.29, Theor. 2.33 and Def. 6.10 a formula α∇−r(V1, . . . , Vn) exists for
every formula α(V1, . . . , Vn) such that for every simple structure I and u1, . . . , un ∈ I(U):

I |=ν α
∇−r iff Ir |=ν α

∇ iff Ir∆ |=ν α

where ν(Vi) = ui.
Moreover complD(f) is the smallest H-model of D\SCD ∪ f and a simple structure,

and so
complD(f) |= α∇−r iff complD(f)r |= α∇ iff complD(f)r∆ |= α .

A schema D and an instance f span an H-model namely complD(f). We are interested
in the H-model complΦ∗(D)(Φ

∗(f)) spanned by Φ∗(D) and Φ∗(f). What is its relation

to complD(f)r∆? It turns out that complΦ∗(D)(Φ
∗(f)) is the restriction of complD(f)r∆

to the set F ∪ { ◦=} of symbols.

Lemma 6.12

Let f be an extension of a schema D, and Φ be a translation scheme from D.

1. complD(f)r∆ |= c::d iff complΦ∗(D)(Φ
∗(f)) |= c::d.

2. complD(f)r∆ |= c[m⇒ r] iff complΦ∗(D)(Φ
∗(f)) |= c[m⇒ r].

3. complD(f)r∆ |= c[m⇒ ( )] iff complΦ∗(D)(Φ
∗(f)) |= c[m⇒ ( )].

4. complD(f)r∆ |= o : c iff complΦ∗(D)(Φ
∗(f)) |= o : c.

5. complD(f)r∆ |= o[m→ r] iff complΦ∗(D)(Φ
∗(f)) |= o[m→ r].

6. complD(f)r∆ |= a
◦
= b iff complΦ∗(D)(Φ

∗(f)) |= a
◦
= b.

Proof. In this proof we make not such a big fuss about translating the formulae as we
do in the proof of Theor. 2.29. We have only ground formulae in this case. So the
translation boils down to simple replacements.

For 1.

complD(f)r∆ |= c::d iff complD(f)r |= (c::d)∇ by Theor. 2.29
iff complD(f)r |= φ::(c, d)r

by Def. α∇ (Proof of Theor. 2.29)
iff complD(f) |= φ::(c, d) by Theor. 2.32

iff D\SCD |= ϕ::(c, d) or complD(f) |= c
◦
= d

by Def. 6.4 (7, 9, 10)

iff c::d ∈ HIERΦ∗(D) or complD(f) |= c
◦
= d

by Def. 6.3
iff complΦ∗(D)(Φ

∗(f)) |= c::d by Lem. 6.12.
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For 2.

complD(f)r∆ |= c[m⇒ r] iff complD(f)r |= (c[m⇒ r])∇

iff complD(f)r |= ϕ⇒(m, c, r)r

iff complD(f) |= ϕ⇒(m, c, r)
iff D\SCD |= ϕ⇒(m, c, r) by Def. 6.4 (8)
iff c[m⇒ r] ∈ SIGΦ∗(D)

iff complΦ∗(D)(Φ
∗(f)) |= c[m ⇒ r]

.

For 3. Because of its definition complD(f)r∆ |= c[m ⇒ ( )] if there exists r ∈ F0 such
that complD(f)r∆ |= c[m ⇒ r]. According to 2 we know complΦ∗(D)(Φ

∗(f)) |=
c[m⇒ r], hence complΦ∗(D)(Φ

∗(f)) |= c[m⇒ ( )]. The same line of argumentation
can be followed when we show the reverse direction of the proof.

For 4.

complD(f)r∆ |= o:c iff complD(f)r |= (o:c)∇

iff complD(f)r |= ϕ:(o, c)
r

iff complD(f) |= ϕ:(o, c)
iff o:c ∈ popΦ∗(f) by Def. 6.8
iff complΦ∗(D)(Φ

∗(f)) |= o:c .

For 5.

complD(f)r∆ |= o[m→ r] iff complD(f)r |= (o[m→ r])∇

iff complD(f)r |= ϕ→(m, o, r)r

iff complD(f) |= ϕ→(m, o, r)
iff o[m→ r] ∈ obΦ∗(f) by Def. 6.8
iff complΦ∗(D)(Φ

∗(f)) |= o[m→ r] .

For 6.

complD(f)r∆ |= a
◦
= b iff complD(f)r |= (a

◦
= b)∇

iff complD(f)r |= a
◦
= b

iff complD(f) |= a
◦
= b

iff complΦ∗(D)(Φ
∗(f)) |= a

◦
= b .

2

We summarise the results of the preceding pages.

Theorem 6.13

Let Φ be a translation scheme from a schema D, and α(V1, . . . , Vn) be a formula. Then
for all extensions f ∈ ext(D) of D and all u1, . . . , un ∈ complD(f)(U):

complD(f) |=ν Φ#(α) iff complΦ∗(D)(Φ
∗(f)) |=ν α ,

where ν(Vi) = ui.
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Proof. By Theor. 2.33 and Theor. 2.29 we have

complD(f) |=ν α
∇−r iff complD(f)r |=ν α

∇

iff complD(f)r∆ |=ν α .

By induction on the structure of α, we can show that

complD(f)r∆ |=ν α iff complΦ∗(D)(Φ
∗(f)) |=ν α .

For atomar formulae we make use of Lem. 6.12. The rest is then straightforward.
2

In [MR98] this is called the fundamental property of translation schemes. It shows that
the mappings Φ∗ and Φ# are dual to each other. By its help we are enabled to relate
semantic requirements desirable for database design to syntactic properties [Bis95a].

Definition 6.14 (Weak Reduction and Reduction)

Let Φ be a translation scheme from D, KR ⊂ ext(D) be a set of extensions of D, and
KS ⊂ ext(Φ∗(D)) be a set of extensions of Φ∗(D). The translation scheme Φ is a weak
reduction (reduction) from KR to KS if for every extension f ∈ KR implies that (iff)
Φ∗(f) ∈ KS.

In this work we are interested in families KR and KS such that KR = sat(D) and
KS = sat(D′) for a translation scheme Φ from D to D′\SCD′ .

The definition of a translation scheme does not touch semantic constraints of the
original schema. Theorem 6.15 shows the relation between the semantic constraints of
the original schema and an arbitrary set of semantic constraints for the output schema
with respect to properties underlying translation schemes, namely weak reduction and
reduction.
Theorem 6.15

Let Φ be a translation scheme from D, and SC be a set of sentences.

1. The translation scheme Φ is a weak reduction from sat(D) to sat(Φ∗(D) ∪ SC) iff
sat(D) ⊂ sat(D\SCD ∪ Φ#(AX ∪ SC)).1

2. The translation scheme Φ is a reduction from sat(D) to sat(Φ∗(D) ∪ SC) iff
sat(D) = sat(D\SCD ∪ Φ#(AX ∪ SC)).

Proof for 1. =⇒:

f ∈ sat(D) then Φ∗(f) ∈ sat(Φ∗(D) ∪ SC) (Φ weak reduction)
iff complΦ∗(D)(Φ

∗(f)) |= AX ∪ SC
iff complD(f) |= Φ#(AX ∪ SC) (6.13)
iff f ∈ sat(D\SCD ∪ Φ#(AX ∪ SC)) .

1Originally, we define the set of instances sat only for schemas. The “schema” D\SCD ∪ Φ#(AX ∪
SC) might not be a proper schema according to Def. 3.1, because it is not guaranteed that AX ⊂
Φ#(AX ∪ SC) or at least Φ#(AX ∪ SC) |= AX. However, the set sat of instances is well defined for
D\SCD ∪ Φ#(AX ∪ SC). Therefore we use it even in this context.
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⇐=:

f ∈ sat(D) then f ∈ sat(D\SCD ∪ Φ#(AX ∪ SC)) (by hypothesis)
iff complD(f) |= Φ#(AX ∪ SC)
iff complΦ∗(D)(Φ

∗(f)) |= AX ∪ SC (6.13)
iff Φ∗(f) ∈ sat(Φ∗(D) ∪ SC) .

Proof for 2. =⇒:

f ∈ sat(D) iff Φ∗(f) ∈ sat(Φ∗(D) ∪ SC) (Φ reduction)
iff complΦ∗(D)(Φ

∗(f)) |= AX ∪ SC
iff complD(f) |= Φ#(AX ∪ SC) (6.13)
iff f ∈ sat(D\SCD ∪ Φ#(AX ∪ SC))

⇐=:

f ∈ sat(D) iff f ∈ sat(D\SCD ∪ Φ#(AX ∪ SC)) (by hypothesis)
iff complD(f) |= Φ#(AX ∪ SC)
iff complΦ∗(D)(Φ

∗(f)) |= AX ∪ SC
iff Φ∗(f) ∈ sat(Φ∗(D) ∪ SC)

2

In [MR98] it is shown that this result is equivalent to syntactic properties. In this case the
syntactic properties deal with the implication of semantic constraints. In our framework
we cannot transfer their result directly. The difficulty stems from the difference that we
redefine “built-in” predicates whereas they solely define new predicates. Lemma 4.1 and
Exam. 4.2 shed more light on this issue.

Now we put translation schemes to work.
When we deal with database transformations, it is one objective that we can recover

the original instances from the transformed instances. In other words we need the
left inverse for the instance transformation. This means the database transformation
must be information preserving. Information preservation is also called losslessness,
in particular, in literature about relational normal forms[Ull88, Dat94, EN94, AHV95].
There it appears in the context of decomposing relational schemas to obtain relational
normal forms.

Definition 6.16 (Information Preservation)

Let D be a schema, Φ be a translation scheme from D, and Ψ be a translation scheme
from Φ∗(D) to D\SCD. The translation scheme Φ is information preserving on schema
D with left inverse Ψ, if for every instance f ∈ sat(D) of D:

complD(f) = complΨ∗(Φ∗(D))(Ψ
∗(Φ∗(f))) .

If a translation scheme Φ from schema S to schema T\SCT is information preserving on S
and a weak reduction from sat(S) to sat(T ), we say in the notation of Hull [Hul86] T dom-
inates S. It is known [ABM80] that this notion is equivalent to query-dominance [Cod72].



118 CHAPTER 6. EQUIVALENCE OF DATABASES

When we try to draw the connection between this semantic requirement and syntactic
properties, we discover the following. The syntactic property is based on the logical
implication.

Theorem 6.17

Let D be a schema, Φ be a translation scheme from D, and Ψ be a translation scheme
from Φ∗(D) to D\SCD. The translation scheme Φ is information preserving on schema
D with left inverse Ψ if for every formula α we have SCD |= (α⇔ Φ#(Ψ#(α))).

Proof. Let δ be an element of complD(f) for an instance f ∈ sat(D) of D. Because
of f ∈ sat(D), we know that complD(f) is an model of SCD. We take complD(f)
now in its rôle as H-model of δ, complD(f) |= δ. Then under the assumption
SCD |= (ϕ ⇔ Φ#(Ψ#(ϕ))) we get complD(f) |= Φ#(Ψ#(δ)). Using Theor. 6.13
twice, once for Φ and once for Ψ, we get complΨ∗(Φ∗(D))(Ψ

∗(Φ∗(f))) |= δ, and
therefore complD(f) ⊂ complΨ∗(Φ∗(D))(Ψ

∗(Φ∗(f))). The proof of the inclusion
complD(f) ⊃ complΨ∗(Φ∗(D))(Ψ

∗(Φ∗(f))) follows the same lines of argumentation.
2

Unfortunately, this theorem is not as strong as the corresponding one in [MR98]. In
their framework the equivalence holds. The reason is that the notion of a schema in their
framework only gives a set of symbols. Therefore, their extensions are logical structures
and vice versa, that is every S-structure where S is a set of symbols given by a schema
declaration is an extension. Our notion of a schema is different. Therefore, we have to
speak about the completion of an extension under a schema. Though every completion of
an extension under a schema is an H-structure, not every F-structure is a completion of
some extension under some schema. Even, when it satisfies the semantic constraints. We
conjecture that exactly that is possible when we take a different definition of a schema.
Essentially the definition is the same. The only difference is that all restrictions are
expressed by semantic constraints. Although this approach seems promising, it lies
beyond the scope of this work.

Besides the desire to recover every original database instance, we want that the trans-
formed schema does not allow to store inconsistent data from the point of view of the
original schema. In order to achieve that goal, the semantic constraints of the original
schema must be preserved in the transformed schema. Makowsky and Ravve [MR98] dis-
cuss several alternatives to define dependency preservation in their framework. Because
of the similarity of our work to their work we will not repeat this discussion. Instead we
decide to take what they call the most natural choice for the definition of dependency
preservation (Option (B)).

Definition 6.18 (Dependency Preservation)

Let T and S be two schemas, and Ψ be a translation scheme from T to S\SCS. The
translation scheme Ψ is dependency preserving on S if SCT |= Ψ#(SCS).

In the definition above we deviate slightly from the original definition. The rationale for
that is that their definition is given in a setting where three alternatives are discussed.
This setting comes with an overhead, which we discard in our context.
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By aid of these two definitions we define translation-refinement and translation-
equivalence. Note that the hypotheses information preservation and weak reduction
correspond to the notion of dominance as defined by Hull [Hul86].

Definition 6.19 (Translation Refinement and Equivalence)

Let S and T be two schemas.

• We say that T is a translation refinement of S if there is a translation scheme
Φ from S to T\SCT that is a weak reduction from sat(S) to sat(T ), information
preserving on S with left inverse Ψ, and Ψ is dependency preserving on S.

• We say that schemas S and T are translation equivalent if S is a translation
refinement of T and T is a translation refinement of S.

Before we embark on a comparison of these definitions with the definitions of Qian, we
point out that a translation refinement has an impact on the accompanying translation
schemes.

Lemma 6.20

Let T and S be two schemas, and Ψ be a translation scheme from T to S\SCS that is
dependency preserving on S. Then the translation scheme Ψ is a weak reduction from
sat(T ) to sat(S).

Proof. By the hypothesis we have SCT |= Ψ#(SCS). This implies sat(T ) ⊂
sat(T\SCT ∪ Ψ#(SCS)) by Lem. 4.1. This inclusion entails the assertion by
Theor. 6.15. 2

With the lemma above we can then prove that a translation scheme Φ as in Def. 6.19 is
a reduction from sat(S) to sat(T ).

Theorem 6.21

Let S and T be two schemas such that T is a translation refinement of S, and Φ and Ψ
be the corresponding translation schemes. Then the translation scheme Φ is a reduction
from sat(S) to sat(T ).

Proof. Because of the hypothesis, translation scheme Φ is a weak reduction from sat(S)
to sat(T ). And so it is sufficient to show for all extensions f ∈ ext(S) of S if
Φ∗(f) ∈ sat(T ), then f ∈ sat(S).

If Φ∗(f) ∈ sat(T ) for an extension f ∈ ext(S) of S, then Ψ∗(Φ∗(f)) ∈ sat(S)
because Ψ is a weak reduction from sat(T ) to sat(S). By the hypothesis that the
translation scheme Φ is information preserving with left inverse Ψ, we know that
complD(f) = complΨ∗(Φ∗(D))(Ψ

∗(Φ∗(f))), hence f ∈ sat(S).
2
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6.2 Signature Interpretations

We compare the definitions above with the definitions of Qian [Qia96]. His notion of
a signature interpretation σ corresponds to an induced mapping Φ#. From this he
derives an induced mapping Mσ that corresponds to Φ∗. So this correspondence renders
it possible to compare the definitions in our framework. We do so by restating his
definitions. We begin with his definition of a constraint-preserving transformation.

Definition 6.22 (Constraint-Preserving Transformation)

Let S and T be two schemas, and Φ be a translation scheme from S to T\SCT . We say
that Φ is a constraint-preserving transformation from S to T if

SCS |= Φ#(SCT ) .

We observe that the preceding definition is identical to our Definition “Dependency
Preservation”. (Notice that we have to swap the schemas.) This in turn means that Φ
is a weak reduction from sat(S) to sat(T ) by Lem. 6.20.

The next definition in [Qia96] is that of an instance-preserving transformation.

Definition 6.23 (Instance-Preserving Transformation)

Let S and T be two schemas, and Φ be a translation scheme from the schema S to the
schema T\SCT . We say that Φ is an instance-preserving transformation from S to T
if, for every instance fT ∈ sat(T ) of the schema T , there is an instance fS ∈ sat(S) of
the schema S such that complT (Φ∗(fS)) = complT (fT ).

This definition finds no direct counterpart in our framework. But in combination with
Def. 6.22 (Constraint-Preserving Transformation) Qian defines information-preserving
transformations. For these we are able to give the correspondence in our framework.

Definition 6.24 (Information-Preserving Transformation)

Let S and T be two schemas, and Φ be a translation scheme. We say that Φ is an
information-preserving transformation from S to T if it is both a constraint-preserving
and instance-preserving transformation from S to T .

Note that although the definitions of dependency preservation and constraint-preserving
transformations are identical, Qian uses a constraint-preserving transformation from S
to T in the preceding definition and we use a dependency preserving translation scheme
in the reverse direction, namely from T to S in the definition of translation refinements.

If we have a translation scheme that is an information-preserving transformation,
then the translation scheme is a reduction.

Lemma 6.25

Let S and T be two schemas, and Φ be an information-preserving transformation from
S to T . The translation scheme Φ is a reduction from sat(S) to sat(T ).

Proof. As indicated before Φ being a constraint-preserving transformation from S to
T implies that Φ is a weak reduction from sat(S) to sat(T ). It is even a reduction
from sat(S) to sat(T ), because it is an instance-preserving transformation from S
to T . 2
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6.3 View Instance Support

We give now the definition of view instance support from Biskup [Bis95a]. His stance is
that all aspects of the original schema have to be supported by the transformed schema as
a view. The definition we use here deviates slightly from the original definition, because
we work on saturated instances. In this context, we use on the one hand queries over a
schema, whose semantics we comprehend not only in the narrow sense of Def. 3.15, on
the other hand the result of a query should deliver only sets conforming to extensions.

Definition 6.26 (View Instance Support)

• A schema S provides view instance support for a schema T if there exists a query
Q over S such that

{complT (fT ) | fT ∈ sat(T )} ⊂ {complT (eval(Q, fS)) | fS ∈ sat(S)} .

• If we have equality, the view instance support is called faithful.

• If additionally the supporting query is injective on the saturated elements of sat(S),
i. e., if eval(Q, f) = eval(Q, f ′), then complS(f) = complS(f ′), the view instance
support is called unique.

A property of view instance support that we need in the following sections is that view
instance support is transitive.

Lemma 6.27 (Transitivity of (Faithful, Unique) View Instance Support)

Let S, T , V be schemas such that the schema T provides (faithful, unique) view instance
support for the schema S with supporting query QT→S and such that the schema V
provides (faithful, unique) view instance support for the schema T with supporting query
QV→T . Then the schema V provides (faithful, unique) view instance support for the
schema S with supporting query QT→S ◦QV→T .

Proof. We have to prove the subset relation

{complS(fS) | fS ∈ sat(S)} ⊂
{complS(evalT (QT→S, evalV (QV→T , fV ))) | fV ∈ sat(V )} . (6.1)

Now be fS ∈ sat(S) an instance of the schema S, then due to the view instance
support of the schema T for the schema S, there exists an instance fT ∈ sat(T ) of
the schema T , such that

complS(fS) = complS(evalT (QT→S, fT )) (6.2)

holds. Likewise there exists an instance fV ∈ sat(V ) of the schema V such that

complT (fT ) = complT (evalV (QV→T , fV ))

holds. By Lem. 3.18, this equality entails

evalT (QT→S, fT ) = evalT (QT→S, evalV (QV→T , fV )) .
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Replacing evalT (QT→S, fT ) in (6.2) with evalT (QT→S, evalV (QV→T , fV )), we get

complS(fS) = complS(evalT (QT→S, evalV (QV→T , fV ))) .

Hence, the schema V provides view instance support for the schema S with sup-
porting query QT→S ◦QV→T .

Analogous, we can show that the schema V provides faithful view instance support
for the schema S with supporting query QT→S ◦QV→T .

Since the concatenation of two injective functions is an injective function again, the
schema V provides unique view instance support for the schema S with supporting
query QT→S ◦QV→T . 2

6.4 Comparison

We want to compare all approaches. In order to do so, we observe that the mapping Φ∗

induced by a translation scheme Φ from a schema S to the schema T ' Φ∗(S) can be
taken as a query over S. So in that respect we can abstract from the actual definitions
and see them merely as abstract mappings on instances. For the comparison we iden-
tify the following properties of these mappings and relate them to already introduced
properties.

We start off with translation schemes. Their properties are based on the proper-
ties information preservation and dependency preservation. In Figure 6.1(a) we indi-
cate that every instance fS ∈ sat(S) of schema S can be mapped onto an extension
Φ∗(fS) ∈ ext(T ) of schema T . The left inverse Ψ maps Φ∗(fS) back onto fS. Actually
Ψ∗(Φ∗(fS)) is in general not equal to fS. Only complΨ∗(Φ∗(D))(Ψ

∗(Φ∗(fS))) = complD(fS)
is guaranteed. Nevertheless, we continue with this sloppiness.

The property that Φ is a weak reduction implies that every image Φ∗(fS) of an
instance fS ∈ sat(S) of S is an instance of T , Φ∗(fS) ∈ sat(T ). Figure 6.1(b) shows
this situation. The rectangle drawn with dashed lines on the left side of the diagram
represents sat(S). This rectangle is mapped by Φ or better its induced mapping Φ∗ onto
the rectangle with dashed boundaries on the right side. It lies completely in the dotted
rectangle. The latter rectangle depicts sat(T ).

The property dependency preservation implies that Ψ is a weak reduction. So every
image Ψ∗(fT ) of an instance fT ∈ sat(T ) of T is an instance of S, Ψ∗(fT ) ∈ sat(S).
Figure 6.1(c) shows this situation. The rectangle drawn with dotted lines on the right
side of the diagram represents sat(T ). This rectangle is mapped by Ψ or better its
induced mapping Ψ∗ onto the rectangle with dotted boundaries on the left side. It lies
completely in the dashed rectangle. The latter rectangle depicts sat(S).

In Figure 6.1(d) we draw the situation for translation refinements. We obtain this
diagram by thinking of Figures 6.1(a) and 6.1(b) as transparent slides and laying these
slides one over the other.2 Again the translation scheme Φ has translation scheme Ψ as
left inverse.

2The order is irrelevant.
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ext(S) ext(T )

Φ

Ψ

(a) Information preserving translation scheme
(Def. 6.16)

sat(S)

ext(S)

sat(T )

ext(T )
Φ

(b) Weak reduction (Def. 6.14)

sat(S)

ext(S)

sat(T )

ext(T )
Ψ

(c) Dependency preserving translation scheme
(Def. 6.18)

sat(S)

ext(S)

sat(T )

ext(T )

Φ

Ψ

Ψ

(d) Translation refinement (Def. 6.19)

Figure 6.1: Translation schemes
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For every instance fS of the schema S, the translation scheme Ψ is the left inverse
such that complΨ∗(Φ∗(D))(Ψ

∗(Φ∗(fS))) = complS(fS). Additionally, we know that every
instance fT ∈ sat(T ), be it an image of any instance fS ∈ sat(S) or not, is mapped onto
an instance of sat(S) by mapping Ψ∗. This knowledge is acquired from the property
that Ψ is a weak reduction from sat(T ) to sat(S). The phrase “or not” in the sentence
preceding the last sentence is captured by the lower most arrow labelled Ψ.

Next we discuss Qian’s approach. We can graphically represent the property
for information-preserving transformations as follows. If a translation scheme is a
constraint-preserving transformation every instance fS ∈ sat(S) is mapped onto an
instance of T , Φ∗(fS) ∈ sat(T ), (cf. Fig. 6.2(a)). The big dashed rectangle on the left
side is mapped onto the small one on the right side. The small rectangle lies in the rect-
angle with the dotted boundaries, which represents sat(T ), because the set of images of
sat(S) is a subset of sat(T ).

Figure 6.2(b) captures the situation when Φ is an instance-preserving transformation.
Every instance fT ∈ sat(T ) is an image of an instance fS ∈ sat(S) of S, fT = Φ∗(fS).
This means graphically that the image of the smaller dashed rectangle on the left side
spans the big one on the right side, which represents sat(T ).

Having an information-preserving transformation, we can describe the situation as
in Fig. 6.2(c). We inflate the small dashed rectangles in Figures 6.2(a) and 6.2(b) to the
size of the respective surrounding dotted rectangles. Technically, Φ∗ is a total and onto
mapping from sat(S) to sat(T ).

Finally, we capture the properties for view instance support in Fig. 6.3(a). A schema
S provides view instance support if the set of images of instances fS ∈ sat(S) of S
includes the set of instances sat(T ) of T . Therefore the dashed rectangle representing
the images of instances of sat(S) surrounds the set of instances sat(T ). The arrow is
labelled with QΦ. This notation indicates that the induced mapping Φ∗ of a translation
scheme Φ can be regarded as query over schema S.

At this stage we commence a comparison between the three approaches, although we
have not completely described view instance support. The comparison is appropriate
at this point, because matters are simple. Comparing Fig. 6.2(b) and Fig. 6.3(a), we
discover that the description can be restated such that it is equivalent to the property of
being an instance-preserving transformation. When we deflate the right dashed rectangle
to the size of the dotted rectangle in Fig. 6.3(a), the deflation is accompanied by deflating
the dashed rectangle on the left-hand side. The side-effect is that a dotted rectangle
appears again to represent sat(S). The equality of both notations signifies that if Φ is an
instance-preserving transformation, then S supports T with supporting query QΦ. The
converse does not hold since not every query can be expressed as a translation scheme,
provided the query language is sufficiently powerful.

The case that S supports T faithfully is depicted in Fig. 6.3(b). In graphical terms
that means that the dotted rectangle for sat(T ) is increased up to its boundaries, which
are set by the rectangle drawn with dashed lines. Comparing this time Figures 6.2(c)
and 6.3(b), we see they are identical. This identity means that if Φ is an information-
preserving transformation from S to T , S provides faithful view instance support for
T .
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sat(S)

ext(S)

sat(T )

ext(T )
Φ

(a) Constraint-preserving transformation (Def. 6.22)

sat(S)

ext(S)

sat(T )

ext(T )Φ

(b) Instance-preserving transformation (Def. 6.23)

sat(S)

ext(S)

sat(T )

ext(T )Φ

(c) Information-preserving transformation (Def. 6.24)

Figure 6.2: Signature Interpretations

When S provides even unique view instance support the supporting query is injec-
tive. Again thinking of the figures as slides, we can employ our overlay technique using
Figures 6.1(a) and 6.3(b), and end up with Fig. 6.3(c). This case can be expressed
neither in our framework nor in the notation of Qian. Figure 6.1(d) reveals that the
notion translation refinement comes close to unique view instance support. If we require
that every instance of T is an image of some instance of S, Figures 6.1(d) and 6.3(c) are
identical. We reach exactly this goal when we revert to the notation of Qian. When a
translation scheme Φ is additionally an instance-preserving transformation, the schema
S provides unique view instance support for schema T .
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sat(S)

ext(S) ext(T )

sat(T )

QΦ

(a) View instance support

sat(S)

ext(S) ext(T )QΦ

sat(T )

(b) Faithful view instance support

sat(S)

ext(S) ext(T )QΦ

sat(T )
Φ

Ψ

(c) Unique view instance support

Figure 6.3: View instance support (Def. 6.26)

When we collate our notation and Qian’s notation, we spot the similarity of de-
pendency preservation and constraint-preserving transformations. This similarity is in
effect equality. The difference lies in the application. While dependency preservation
is used in the definition of translation refinements in the direction from T to S, a
constraint-preserving transformation is used in the definition of information-preserving
transformations from S to T .

We can conceive schemas S and T such that there is an information-preserving
transformation from S to T , but we never find a translation scheme to show that T is a
translation refinement of S. The idea is that we need schemas S and T whose transition
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from S to T involves an unrecoverable loss of information. So let S be a schema with
HIERS := {c::d} and Φ be a translation scheme with φHIER(C,D) := C

◦
= D and

φpop(O,C) := O:C ∧ C ◦
= d. So the class hierarchy is flat. Formula φHIER(C,D) is

deliberately chosen in a way such that C and D are free variables but the formula is
only true for assignments ν such that ν(C) = ν(D). Formula φpop(O,C) populates only
the class d with the objects that were an element of class d in the original extension.
The translation scheme Φ is a translation scheme from S to a schema T such that
HIERT = ∅. The translation scheme suppresses the information that some objects of
class d are also objects of class c. We assume further that S and T do not contain
application-dependent semantic constraints. We can see that the translation scheme Φ
is a constraint-preserving and instance-preserving transformation from S to T , but the
translation scheme Φ is not a witness for the fact that the schema T is a refinement
of schema S. We can even find no way to define Φ, more specific φpop(O,C) such that
there is a left inverse on sat(S). We can construe every instance of T as instance of S.
But still the set of instances of S is larger than the set of instances of T , because there
are instances that are identical to instances of T with respect to the population of class
d. They differ in the population of class c.

We conclude this section by showing that we can track down two schemas S and
T such that the schema T is a translation refinement of the schema S, but there is no
information-preserving transformation from the schema S to the schema T . This time we
choose a schema T whose information capacity is higher than the information capacity
of the schema S. So let S be a schema with SIGS := {c[x ⇒ c]} and T be a schema
with SIGT := {c[x ⇒ c; y ⇒ c]}. For these schemas the translation scheme Φ with

φ⇒(M,C,R) := (M
◦
= x∨M ◦

= y)∧C ◦
= c∧R ◦

= c and φ→(M,O,R) := (M
◦
= x∨M ◦

=

y)∧O:c[x→ R] and with the left inverse Ψ with ψ⇒(M,C,R) := M
◦
= x∧C ◦

= c∧R ◦
= c

and with ψ→(M,O,R) := M
◦
= x ∧ O:c[x → R] are witness that the schema T is a

translation refinement of the schema S. In this case it is impossible to stumble upon a
translation scheme that is instance-preserving. The number of instances of the schema
T is the number of instances of the schema S to the power of 2.
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Chapter 7

Pivoting: A Database
Transformation

Having defined our data model and knowing how to obtain a schema in this data model,
we want this schema to possess some nice properties. We derive these properties from
properties required of data management systems. We mention the latter properties
in the introduction. A database schema should not structure redundant data, and
should support cheap insertion, deletion and update operations on its instances. In
this chapter we propose a database transformation that has the potential to improve
database schemas along with their instances. An improvement means that the resulting
schema exhibits more “nice properties” than the original schema. We call this database
transformation attribute pivoting. A variant of it has been introduced in [BMPS96] under
the name property pivoting. We altered the name to attribute pivoting, because what
is called a property in [BMPS96] is called an attribute in this work. Attribute pivoting
as well as property pivoting are special cases of the transformation pivoting presented
in [BMP96]. Since we do not refer to (general) pivoting in this work, we use the term
pivoting meaning attribute pivoting.

Our entry point to achieving nice properties are formalisations of relationships. The
features of object-oriented data models offer a wide range of possibilities to formalise
relationships between entities of the real world. The algorithm in Chap. 5 formalises
entity sets simply as (entity) classes the basic types of which are determined by the
pertinent properties of the entities. In order to formalise a relationship set, the relational
approach is simulated. For every individual relationship an object that is counterpart
to the corresponding tuple in the relational approach is constructed. Then these objects
are understood as instances of a (relationship) class.

One goal is to identify redundancy in instances of (relationship) classes at design time.
We use application-dependent semantic constraints for the identification of potential
redundancy. Our objective is to eliminate the potential redundancy by decomposing a
(relationship) class into smaller fragments. Roughly speaking, we transplant attributes
from one class to another class. The classes chosen to receive new attributes are called
pivot classes.

Pivoting is guided by application-dependent semantic constraints. The effect of the

129
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transformation is not automatically redundancy removing. We resume this issue later
again.

A second effect of pivoting is its impact on semantic constraints. We see in Sec-
tions 7.4 and 7.5 that pivoting is capable to transform certain schemas with onto con-
straints and path functional dependencies into schemas with only onto constraints.

In the remainder of this chapter, we assume that the set SCD of semantic constraints
consists only of proper onto constraints and path functional dependencies.

7.1 Pivoting

Now we define pivoting in detail, i. e., we define how we can obtain the target schema and
the view instance supporting query for a given source schema. The effect of pivoting is
concentrated on two classes and their attributes. Above we talked about transplanting
attributes to the pivot class. This is not quite correct. Instead we introduce a new
subclass of the pivot class and perform all operations on this subclass. The introduction
of the new subclass enables a smoother treatment of pivoting in connection with onto
constraints, and we often use the term pivot class for both the original pivot class and
the newly introduced subclass.

Definition 7.1 (Pivoting)

Let S = 〈CLASSS|METHS|HIERS|SIGS|SCS〉 be a schema, p be a constant symbol not
used elsewhere, c ∈ CLASSS be a class, M ⊂ AttrS(c) be a non-empty set of proper
attributes for c, and mp ∈ (AttrS(c)\M) be a proper attribute for c, called pivot attribute,
with the unique result class cp, called pivot class.
We assume that c{mp|cp} 6∈ OC+S

S otherwise we will not have to introduce the class
p. Then the pivoted schema T := 〈CLASST |METHT |HIERT |SIGT |SCT 〉 is obtained as
follows:

• For introducing a new subclass, we add the constant symbol p to the set of classes,

CLASST := CLASSS ∪ {p} ,

and we make the new class p a subclass of the pivot class cp,

HIERT := HIERS ∪ {p :: cp} .

• For transplanting attributes, we introduce new attributes and remove the obsoles-
cent ones. The constant symbols for denoting these new attributes are chosen in a
way that it is possible to keep track of the transformation process and avoid name
clashes with already existing symbols,

METHT := (METHS\M) ∪ {c mp m | m ∈M} ,

and we add appropriate signatures p[c mp m ⇒ cm] for all attributes m ∈ M and
for their result classes cm,

{p[c mp m⇒ cm] | m ∈M and SIGS |= c[m⇒ cm]} ,



7.1. PIVOTING 131

and, accordingly, we remove the obsolescent signatures for class c of the form
c[m⇒ cm] for all attributes m ∈M ∪ {mp} and their result classes cm,

SIGS\{c[m⇒ cm] | m ∈M ∪ {mp} and cm ∈ CLASSS} .
Finally we add the signature c[mp ⇒ p] in order to enable navigation to the new
subclass p, and further onto the pivoted attributes, from the class c,

{c[mp ⇒ p]} .
Thus the new signatures are summarised as

SIGT := {p[c mp m⇒ cm] | m ∈M and SIGS |= c[m⇒ cm]} ∪
SIGS\{c[m⇒ cm] | m ∈M ∪ {mp} and cm ∈ CLASSS} ∪
{c[mp ⇒ p]} .

• For adjusting the semantic constraints, we replace the obsolescent attributes m ∈M
by the new navigational paths mp.c mp m wherever they occur in the set of path
functional dependencies,

PFDT := PFDS[mp.c mp m/m | m ∈M] .

Correspondingly, for an onto constraint of the form c{m|cm} with an obsolescent
attribute m, we replace c by the new subclass p and m by the new attribute c mp m.
We add the onto constraint c{mp|p} as a means to ensure the equivalence of both
schemas,

OCT := {p{c mp m|cm} | m ∈M and c{m|cm} ∈ OCS} ∪
{d{m|cm} ∈ OCS | m 6∈M} ∪
{c{mp|p}} .

For treating the original schema S as a view on the pivoted schema T , we define a query
QT→S that collapses a new navigational path mp.c mp m to the obsolescent attribute m,
for m ∈ M, and suppresses objects of the new subclass p, while leaving the rest of an
instance unchanged,

QT→S := {O:d←− O:d | d ∈ CLASSS} ∪ (7.1)

{O[m→ R]←− O[m→ R] | m ∈ (METHS\M)} ∪ (7.2)

{O[m→ R]←− O:c[mp → P ] ∧ P :p[c mp m→ R] | m ∈M} . (7.3)

For treating the pivoted schema T as a view on the original schema S, we define a
query QS→T that retains the class population and the values for most attributes. The
obsolescent attributes and their values are transplanted to the pivot class p and its objects,
respectively. This class is populated with objects of class cp that are referenced by an
object of class c via the pivot attribute mp.

QS→T := {O:d←− O:d | d ∈ CLASSS} ∪ (7.4)

{O[m→ R]←− O[m→ R] | m ∈ (METHS\M)} ∪ (7.5)

{P :p[c mp m→ R]←− O:c[mp → P ;m→ R] | m ∈M} (7.6)

Finally, we define the tuple piv(S, p, c,M,mp) := (T,QT→S, QS→T ).
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To give an impression of how pivoting works, we perform pivoting on the examples that
have been accompanying us throughout this work. First comes the “good” example.

Example 7.2

We perform pivoting on the schema in Fig. 5.1. To get a smoother exposition, we
dispense with the introduction of cryptic method names. We stick to the original method
names instead. This is possible, because no name clashes can occur in this example.
Additionally, we include four onto constraints.

Assignment{teacher|Teacher}
Assignment{course|Course}
Assignment{room|Room}
Assignment{wing|Wing}

These onto constraints are formalisations of the restrictions that

• every Teacher has to give a Course,

• if there is a Course, we have some information about it,

• every Room is occupied,

• we have a Teacher in every Wing.

We perform pivoting with the pivot attribute course and the pivoted attributes assistant
and date. Since we assume the presence of the onto constraint

Assignment{course|Course} ,

the introduction of the subclass becomes unnecessary. (Example 7.3 shows how that is
done.) Therefore we keep the set of classes and the class hierarchy unchanged.

CLASS := {String, Int,Assignment,Course,Teacher,Assistant,Date,Room,Wing}
HIER := ∅

Next we consider the set of attributes. We refrain from the introduction of new cryptic
method names, therefore even the set of methods remains unaltered.

METH := {course, teacher, assistant, room,wing, title, te name, as name, ro name,

date, year,month, day, size, address}

When we look at the set of signatures, we have to declare the signatures for the attributes
assistant and date on the pivot class Course.

Course[assistant⇒ Assistant;
date⇒ Date]
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Assignment Teacher
teacher te name

String

Int
size

course

Wing String
address

Course

Date

month

Int

Int
year

Int
day

String
title

RoomString
ro name

Assistant
as name

String

date

assistant

wing

room

Figure 7.1: First applying pivoting with course as pivoted attribute

The old declarations for these attributes are obliterated. Finally, the redirection of result
classes of the pivot attribute course is unnecessary, because we do not introduce a subclass
of the pivot class. The resulting schema graph is shown in Fig. 7.1.

SIG := {Course[title⇒ String;
assistant⇒ Assistant;
date⇒ Date],

Teacher[te name⇒ String],
Assistant[as name⇒ String],
Date[year⇒ Int; month⇒ Int; day⇒ Int],
Room[size⇒ Int; ro name⇒ String],
Wing[address⇒ String],
Assignment[course⇒ Course;

teacher⇒ Teacher;
room⇒ Room;
wing⇒ Wing]}

For adjusting the semantic constraints, we replace the attributes assistant and date oc-
curring in path functional dependencies by the “path functions” course.assistant and
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course.date, respectively. The onto constraints remain unchanged.

SC := AX ∪{
Assignment(.course→ .course.assistant .course.date),
Assignment(.teacher→ .room),
Assignment(.room→ .wing),
Assignment(.course .teacher→ .Id),
Assignment{teacher|Teacher},
Assignment{course|Course},
Assignment{room|Room},
Assignment{wing|Wing}

}
The view instance supporting query QT→S is

QT→S := {O:String ←− O:String, O:Int ←− O:Int,
O:Assignment ←− O:Assignment, O:Course ←− O:Course,
O:Teacher ←− O:Teacher, O:Assistant ←− O:Assistant,
O:Date ←− O:Date, O:Room ←− O:Room, O:Wing ←− O:Wing}
∪
{O[course→ R] ←− O[course→ R], O[teacher→ R] ←− O[teacher→ R]
O[room→ R] ←− O[room→ R], O[wing→ R] ←− O[wing→ R],
O[title→ R] ←− O[title→ R], O[te name→ R] ←− O[te name→ R],
O[as name→ R] ←− O[as name→ R],
O[ro name→ R] ←− O[ro name→ R],
O[year→ R] ←− O[year→ R], O[month→ R] ←− O[month→ R],
O[day→ R] ←− O[day→ R], O[size→ R] ←− O[size→ R],
O[address→ R] ←− O[address→ R]}
∪
{O[assistant→ R] ←− O:Assignment[course→ P ] ∧ P : Course[assistant→ R],
O[date→ R] ←− O:Assignment[course→ P ] ∧ P : Course[date→ R]} ,

where S is the schema Assignment and T the pivoted schema.

Now comes the “bad” example from the introduction.

Example 7.3

To demonstrate pivoting, we perform it on class Phone-admin of the schema in Fig. 5.3
We reduce the left side of the key path functional dependency

Phone-admin(.fac .sch .ph .dep→ .Id)

to .fac and get the key path functional dependency

Phone-admin(.fac→ .Id) .

The reduction is possible, because the attribute fac determines all other attributes func-
tionally.
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The pivot class is the class Faculty. As pivoted attributes we choose the attributes sch
and dep. To render the example more readable, we do not introduce the cryptic names
of attributes. Instead we use the original names. As subclass for the pivot class Faculty
we introduce the class Phoning-faculty. It is populated with the objects that are referenced
by Phone-admin-objects via attribute fac.

The outcome is then the schema Phone-Admin-Piv :=
〈CLASS|METH|HIER|SIG|SC〉 with

CLASS := {Phone-admin,Faculty,Phoning-faculty, School,Phone,Department}
METH := {fac, sch, ph, dep}
HIER := {Phoning-faculty::Faculty}

SIG := {Phone-admin[fac⇒ Phoning-faculty; ph⇒ Phone],
Phoning-faculty[sch⇒ School; dep⇒ Department] }

SC := AX ∪{
Phone-admin(.fac→ .fac.sch),
Phone-admin(.fac→ .ph),
Phone-admin(.fac.sch→ .fac.dep),
Phone-admin(.ph→ .fac.dep),
Phone-admin(.fac→ .Id),
Phone-admin{fac|Phoning-faculty}

}
.

The transformation pivoting removes in the class Phone-admin the declarations for the
attributes sch and dep. These declarations occur again as declarations for the class
Phoning-faculty. This change in the signature declarations has to be reflected by the path
functional dependencies. For example, whenever the path function .sch appears in a path
functional dependency, we replace it by the path function .fac.sch. This replacement is
done for the path functional dependency

Phone-admin(.fac→ .sch)

and leads to the path functional dependency

Phone-admin(.fac→ .fac.sch) .

We do not have to change any onto constraints in this example, because there is no onto
constraint in the original schema. But we have to introduce the onto constraint

Phone-admin{fac|Phoning-faculty} .

The schema graph for the pivoted schema Phone-Admin-Piv can be found in Fig. 7.2.

7.2 Pivoting and Equivalence

The next theorem gives us the answer to the question of when a pivoted schema captures
as much information as the original schema, i. e., when it provides unique view instance
support, in the sense of Def. 6.26, and vice versa.
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Phoning-faculty

School

Phone

Phone-adminFaculty

ph

Department

depsch

fac

Figure 7.2: Schema graph of the pivoted schema

Theorem 7.4

Let S be a schema, and the vector (T,QT→S, QS→T ) := piv(S, p, c,M,mp) be the outcome
of pivoting the schema S. Then the following statements are equivalent.

1. The schema T provides unique view instance support for the schema S with sup-
porting query QT→S.

2. The schema S provides unique view instance support for the schema T with sup-
porting query QS→T .

3. All pivoted attributes are elements of the closure of the pivot attribute, M ⊂
{.mp}+S,c.

Proof for 1 =⇒ 2. Since the schema T provides unique view instance support for
the schema S with query QT→S, the equation

{complS(fS) | fS ∈ sat(S)} = {complS(evalT (QT→S, fT )) | fT ∈ sat(T )} (7.7)

holds and the query QT→S is injective on the saturated elements of sat(S). We
have to show that the equation

{complT (evalS(QS→T , fS)) | fS ∈ sat(S)} = {complT (fT ) | fT ∈ sat(T )} (7.8)

holds and the query QS→T is injective on the saturated elements of sat(T ).

We show first that the query QS→T is the inverse of the query QT→S on the
saturated elements of sat(T ).

To show that the query QS→T is the inverse of the query QT→S on the saturated
elements of sat(T ), we have to prove the following equation

complT (fT ) = complT (evalS(QS→T , evalT (QT→S, fT ))) ,

and that the chaining of the query evaluations is well-defined.
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The rules in (7.1), (7.2) and (7.4), (7.5) are equal and constitute the projection
query on the schema T and S, respectively. By Lem. 3.17, these rules ensure for
all classes d ∈ CLASSS

o:d ∈ complT (fT ) iff o:d ∈ evalT (QT→S, fT )

and o ∈ F0\(CLASSS ∪METHS), and for all attributes m ∈ METHS\M

o[m→ r] ∈ complT (fT ) iff o[m→ r] ∈ evalT (QT→S, fT )

and o, r ∈ F0\(CLASSS ∪METHS), i. e. the restrictions on molecular formulae in
an extension of the schema S are met.

If op:p[c mp m → r] ∈ complT (fT ) for an attribute m ∈ M, then, due to the fact
that fT is an instance of the schema T satisfying the onto constraint c{mp|p},
there exists an object oc element of the class c referencing the object op via the
attribute mp in the completion of the instance fT , oc:c[mp → op] ∈ complT (fT ).
Then the instantiation of the body of a rule in (7.3),

oc:c[mp → op] ∧ op:p[c mp m→ r] ,

is satisfied by the completion complT (fT ), and thus oc[m→ r] ∈ evalT (QT→S, fT )
and oc, r ∈ F\(CLASSS ∪ METHS) hold. The fact that oc:c[mp → op] ∈
complT (fT ) entails that oc:c[mp → op] ∈ evalT (QT→S, fT ) since c ∈ CLASSS
and mp ∈ METHS\M. Hence the instantiation of the body of a rule in (7.6)
oc:c[mp → op;m→ r] is satisfied by evalT (QT→S, fT ) and therefore op:p[c mp m→
r] ∈ evalS(QS→T , evalT (QT→S, fT )) holds.

If op:p[c mp m → r] ∈ evalS(QS→T , evalT (QT→S, fT )), then an instantiation of a
rule in (7.6) must exist with oc:c[mp → op;m → r] satisfied by evalT (QT→S, fT ).
This satisfaction entails that an instantiation of a rule in (7.3) must exist with
op:p[c mp m→ r] ∈ complT (fT ).

Having established proof that the query QS→T is the inverse of the query QT→S
on the saturated elements of sat(T ), we prove for any two instances fS ∈
sat(S) and fT ∈ sat(T ), if complS(fS) = complS(evalT (QT→S, fT )) holds, then
complT (evalS(QS→T , fS)) = complT (fT ) holds as well.

Now if we assume complS(fS) = complS(evalT (QT→S, fT )), then, by Lem. 3.18 this
equality implies the equality evalS(QS→T , fS) = evalS(QS→T , evalT (QT→S, fT )).
Since the query QS→T is the inverse of the query QT→S on the saturated elements,
the equality

complT (evalS(QS→T , evalT (QT→S, fT ))) = complT (fT )

holds, and hence the equality

complT (evalS(QS→T , fS)) = complT (evalS(QS→T , evalT (QT→S, fT )))

= complT (fT ) .
(7.9)
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Finally, we are ready to proof (7.8). For each instance fT ∈ sat(T ) of the schema
T , there exists due to (7.7) and (7.9) an instance fS ∈ sat(S) of the schema S such
that

complT (evalS(QS→T , fS)) = complT (fT ) .

Likewise for each instance fS ∈ sat(S) of the schema S, there exists due to (7.7)
and (7.9) an instance fT ∈ sat(T ) of the schema T such that

complT (evalS(QS→T , fS)) = complT (fT ) .

What remains is to show that the queryQS→T is injective on the saturated elements
of sat(T ). This can be done by showing that the query QT→S is the inverse of the
query QS→T on the saturated elements of sat(S), which follows the same line of
reasoning as showing the query QS→T is the inverse of the query QT→S on the
saturated elements of sat(T ) as done above.

Proof for 2 =⇒ 3. Since the schema S provides unique view instance support
for the schema T with supporting query QS→T , (7.8) holds. This means
complT (evalS(QS→T , fS)) satisfies the unique name axioms of the schema T . There-
fore for any op:p ∈ evalS(QS→T , fS) only one r exists with op[c mp m → r] ∈
evalS(QS→T , fS), because op:p and op[c mp m → r] can only be results of (7.6).
This means the path functional dependency c(.mp → .m) is satisfied by the in-
stance fS.

Since all instances in sat(S) satisfy the path functional dependency c(.mp → M)
and the fact that complD(f) is a minimal model,M ⊂ {.mp}+S,c holds by definition.

Proof for 3 =⇒ 1. We have to show that the equation

{complS(fS) | fS ∈ sat(S)} = {complS(evalT (QT→S, fT )) | fT ∈ sat(T )} (7.10)

holds and the query QT→S is injective on the saturated instances.

Let fS ∈ sat(S) be an instance of the schema S. We construct for the in-
stance fS an instance fT of the schema T such that the equality complS(fS) =
complS(evalT (QT→S, fT )) inures. We define fT as fT := evalS(QS→T , fS).

First of all we show that fT is an extension of the schema T . Due to rules (7.4)
and (7.5) and Lem. 3.17, we have for all classes d ∈ CLASSS

o:d ∈ complS(fS) iff o:d ∈ fT (7.11)

and o ∈ F0\(CLASSS ∪METHS), and for all attributes m ∈ METHS\M

o[m→ r] ∈ complS(fS) iff o[m→ r] ∈ fT (7.12)

and o ∈ F0\(CLASSS ∪METHS).

Due to rule (7.6) and the fact that fS is an instance, we have for all attributes
m ∈M

oc[m→ r] ∈ complS(fS) iff op:p[c mp m→ r] ∈ fT (7.13)
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and op, r ∈ F0\(CLASSS ∪ METHS). The proof goes along the same line of
reasoning as showing the query QS→T is the inverse of the query QT→S as done in
1 =⇒ 2.

The next steps to show that fT is an instance of the schema T is to show that fT
satisfies the unique name axioms, the definedness axioms and the well-typedness
axioms.

Due to the nature of the rules in (7.4), (7.5) and (7.6) and the inference rules for
F-logic, the only way to introduce a violation of the unique name axioms is by the
rules (7.5) and (7.6) because of scalarity. But because of (7.12) and the fact that
fS is an instance the rules in (7.5) do not introduce a violation of the unique name
axioms.

A rule in (7.6) could introduce a violation of the unique name axioms, if there
existed

oc:c[mp → op;m→ r], o′c:c[mp → op;m→ r′] ∈ complS(fS) .

But this is impossible because M ⊂ {.mp}+S,c holds and fS is an instance of the
schema S.

Due to the similarity of the schemas S and T , and (7.11), (7.12) and (7.13) a
violation of the remaining axioms cannot occur.

Then we prove that all semantic constraints in the schema, i. e. all onto constraints
and path functional dependencies, are satisfied by the extension fT .

Since the extensions fS and fT agree on the parts that are relevant for the satis-
faction of the semantic constraints present in both schemas S and T and since fS
is an instance of the schema S, the extension satisfies these semantic constraints.

We consider an onto constraint p{c mp m|cm} ∈ OCT newly added to the semantic
constraints in the schema T because of the onto constraint c{m|cm} ∈ OCS. Let
r be an object of the class cm, r:cm ∈ complT (fT ). By the construction of the ex-
tension fT and Lem. 3.17, r:cm ∈ fT holds. Then due to (7.11) r:cm ∈ complS(fS)
holds. But then because of the onto constraint c{m|cm} ∈ OCS and the fact that
fS is an instance of the schema S, there exists oc[m → r] ∈ complS(fS), which
entails op:p[c mp m→ r] ∈ fT by (7.13). Thus the onto constraint p{c mp m|cm}
is satisfied by the extension fT .

When considering a path functional dependency tampered with by the transforma-
tion pivoting, we focus on the path-functions in the path functional dependency.
We will show that any path described by such a path-function has the same end
node as the original path. Therefore we consider an edge o[m→ r] ∈ complS(fS).
If m ∈ METHS\M, this edge is not changed on the modified extension. If m ∈M,
then o[mp → op], op[c mp m→ r] ∈ complT (fT ) by (7.11), (7.12) and (7.13). These
edges are exactly described by the replacement mp.c mp m for the attribute m in
the original path-function. Hence all path functional dependencies in PFDT are
satisfied, because fS satisfies PFDS.
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Similarly, we can show that for each instance fT ∈ sat(T ) of the schema T that
evalT (QT→S, fT ) is an instance of the schema S, and finally,

complT (evalS(QS→T , evalT (QT→S, fT ))) = complT (fT ) .

Thus the query QT→S is injective with the inverse QS→T .
2

7.3 Pivoting and Translation Schemes

Up to now we favoured the approach of Biskup (view instance support) and gave the
definition of pivoting in his notation. We continue this bias in this work. An in-depth
discussion of pivoting under translation schemes lies beyond the scope of this work. Nev-
ertheless, we make a short detour and define pivoting by means of translation schemes.

Firstly, we give the translation scheme Φ from the original schema to the pivoted
schema. In the definition the terms class(C) and meth(M) are abbreviations for the

expressions
(∨

c∈CLASSS
C
◦
= c
)

and
(∨

m∈METHS
M

◦
= m

)
, respectively. The set of piv-

oted attributes M is {m1, . . . ,mn}. Table 7.1 shows how we define pivoting by means
of translation schemes. At first glance there seems to be no similarity between the view
instance supporting query QS→T given in Def. 7.1 and the formulae in the translation
scheme. But when we compare the components carefully, we detect that there are simi-
larities. The similarities are hidden behind the different concepts used by view support
and translation schemes.

We start the comparison with the schema components. In Definition 7.1 we employ
an ad-hoc schema transformation by describing how we change schema components.
With translation schemes we can put these descriptions on solid grounds. The “S-
definition”1 φCLASS(C) binds a variable to the already existing set of classes by the first
term in the disjunction. In Definition 7.1 this is expressed by placing the set of classes
CLASSS of the original schema into the union. The right side of the disjunction C

◦
= p

allows the variable C to range over p as well if the formula is true. The correspondence
in the definition of CLASST is the singleton {p} in the union.

The same correspondence can be found when we look at the “S-definition”
φMETH(M). The addition of new methods is captured in the disjunction (M

◦
=

c mp m1) ∨ · · · . The removal of the obsolescent methods m ∈ M is embodied in the

conjunction M 6 ◦= m1 ∧ · · · . The succession to the remaining methods is expressed by
the factor meth(M).

The real S-definition of :: follows the same principles. The same applies to the
formula φ⇒(M,C,R) only that the formulae become more complex. The first three
lines in the defining formula φ⇒ correspond to the first line in the definition of SIGT in
Def. 7.1. They introduce the new signature declarations for the newly created attributes.
These declarations are not completely independent from the signature declarations of the

1The formula φCLASS(C) is not an S-definition in the formal sense, but it defines the set of classes
in the same spirit, hence this misuse of notation.
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φCLASS(C) := class(C) ∨ C ◦
= p

φMETH(M) := (meth(M) ∧M 6 ◦= m1 ∧ · · · ∧M 6
◦
= mn) ∨

(M
◦
= c mp m1) ∨ · · · ∨ (M

◦
= c mp mn)

φ::(C,D) := (C::D) ∨ (C
◦
= p ∧D ◦

= cp)

φ⇒(M,C,R) := (M
◦
= c mp m1 ∧ C

◦
= p ∧ c[m1 ⇒ R])

∨ · · · ∨
(M

◦
= c mp mn ∧ C

◦
= p ∧ c[mn ⇒ R]) ∨(

C[M ⇒ R] ∧ ¬
(
(M

◦
= m1 ∧ C

◦
= c) ∨

(M
◦
= m2 ∧ C

◦
= c) ∨

...

(M
◦
= mn ∧ C

◦
= c) ∨

(M
◦
= mp ∧ C

◦
= c)

))
∨

(M
◦
= mp ∧ C

◦
= c ∧R ◦

= p)

φ:(O,C) := (O:C) ∨
(
C
◦
= p ∧ ∃Oc(Oc:c ∧Oc[mp → O])

)
φ→(M,O,R) := (O[M → R] ∧M 6 ◦= m1 ∧ · · · ∧M 6

◦
= mn) ∨(

M
◦
= c mp m1 ∧ ∃Oc(Oc[mp → O] ∧Oc[m1 → R])

)
∨ · · · ∨(
M

◦
= c mp mn ∧ ∃Oc(Oc[mp → O] ∧Oc[mn → R])

)

Table 7.1: A translation scheme for pivoting

obsolescent attributes. The new attributes take over the result classes of the respective
old attributes. Then we carry over the attributes defined in the original schema except
for the attributes in the set M ∪ {mp}. Finally, we add the declaration of the signature
c[mp ⇒ p].

The population of classes is done based on the old population as indicated in the left
side of the disjunction of φ:(O,C). The right side expresses that whenever an object O
is referenced by an object of class c via attribute mp, the object O is a member of the
pivot class p. The formula φ: is reflected in Def. 7.1 in the supporting query QS→T . We
find the effect of φ: at two places in QS→T ; once in the set {O : d ←− O : d | · · · } and
in the set {P : p[c mp m→M ]←− · · · }.

The S-definition of →0 defines first the values for all old attributes without the
pivoted attributes and then for all new attributes.
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What remains is to show that we really have a translation scheme. So we have to
check whether the restrictions in Def. 6.4 are met, but here we merely give an outline
of the proof: The finiteness follows from the finiteness of the original schema and the
independence from the extension from the syntactic form of the defining formulae.

Secondly, the left inverse Ψ of the translation scheme Φ in Table 7.1 is defined in
Table 7.2. The inverse nature becomes apparent when comparing the formulae one by
one with the respective ones of the translation scheme Φ.

ψCLASS(C) := class(C) ∧ C 6 ◦= p

ψMETH(M) := (meth(M) ∧M 6 ◦= c mp m1 ∧ · · · ∧M 6
◦
= c mp mn) ∨

(M
◦
= m1) ∨ · · · ∨ (M

◦
= mn)

ψ::(C,D) := C::D ∧ ¬(C
◦
= p ∧D ◦

= c)

ψ⇒(M,C,R) := (M
◦
= m1 ∧ C

◦
= c ∧ p[c mp m1 ⇒ R])

∨ · · · ∨
(M

◦
= mn ∧ C

◦
= c ∧ p[c mp mn ⇒ R]) ∨

(M
◦
= mp ∧ C

◦
= c ∧R ◦

= cp) ∨(
C[M ⇒ R] ∧ ¬

(
(M

◦
= mp ∧ C

◦
= c ∧R ◦

= p) ∨
(M

◦
= c mp m1 ∧ C

◦
= p)

∨ · · · ∨
(M

◦
= c mp mn ∧ C

◦
= p)

))
ψ:(O,C) := O:C ∧ C 6 ◦= p

ψ→(M,O,R) := (O[M → R] ∧M 6 ◦= c mp m1 ∧ · · · ∧M 6
◦
= c mp mn) ∨(

M
◦
= m1 ∧ ∃P (O[mp → P ] ∧ P [c mp m1 → R])

)
∨ · · · ∨(
M

◦
= mn ∧ ∃P (O[mp → P ] ∧ P [c mp mn → R])

)
Table 7.2: An inverse translation scheme for pivoting

Before we carry on our work in the notation of Biskup, we sketch the impact of the
translation schemes Φ and Ψ for pivoting on path functional dependencies. We start
with a path functional dependency declared in the original schema S. The dependency
is of the form

c(p1 · · · pk → pk+1 · · · pn) .
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The corresponding path functional dependency F-formulae are

X[p→ P ]←− X : c[p1 → P1; . . . ; pk → Pk] ∧
Y : c[p1 → P1; . . . ; pk → Pk; p→ P ]

for each p ∈ {pk+1, . . . , pn}. A term X[p→ Y ] where p ≡ .mp
1 · · · .m

p
l ∈ Pwf(D)\{.Id} is

an abbreviation for

(∃Xp
1 · · · ∃X

p
l−1(X[mp

1 → Xp
1 ] ∧Xp

1 [mp
2 → Xp

2 ] ∧ · · · ∧Xp
l−1[mp

l → Y ])) .

What does pivoting make of any of these Xp
i [mp

i+1 → Xp
i+1]? We can supply the answer

to this question, when we explore Ψ#(Xp
i [mp

i+1 → Xp
i+1]). The relevant part of Ψ in this

case is ψ→(M,O,R). An analysis of ψ→ reveals that

Ψ#(Xp
i [mp

i+1 → Xp
i+1]) = Xp

i [mp
i+1 → Xp

i+1]

if mp
i+1 6∈M and

Ψ#(Xp
i [mp

i+1 → Xp
i+1]) = ∃P (Xp

i [mp → P ] ∧ P [c mp m
p
i+1 → Xp

i+1])

if mp
i+1 ∈M. Therefore the application of Ψ# on path functional dependency F-formulae

yields path functional dependency F-formulae. In particular exactly those that are
obtained, when pivoting is performed in the standard way.

7.4 Semantic Constraints under Pivoting

Apart from the redundancy removing effect of pivoting, we can observe the following
behaviour. Looking at the semantic constraints exposed in Exam. 7.3 reveals that the
path functional dependency

Phone-admin(.fac→ .fac.sch) (7.14)

is redundant as well. As already shown in Exam. 4.45, (7.14) can be derived from the
trivial path functional dependency

Phoning-faculty(.Id→ .sch) ,

which in turn can be derived from (7.14) and the onto constraint

Phone-admin{fac|Phoning-faculty}

by “simple prefix reduction”. In fact, each path functional dependency in the original
schema of the form

Phone-admin(.fac→ .m)

with m a pivoted attribute is transformed into a path functional dependency

Phone-admin(.fac→ .fac.m) ,
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which is redundant in the pivoted schema.
This behaviour is called in [BMPS96] natural enforcement of dependencies, because

this kind of path functional dependencies is enforced due to a feature of object-oriented
data models, namely by the fact that

Phoning-faculty(.Id→ .m)

is a trivial path functional dependency in the pivoted schema. This natural enforcement
can be compared with multi-valued dependencies that trivially hold in any unfolding of
a nested relation scheme, but are not part of a nested relational schema.

The following theorem captures this behaviour formally. We show that we can remove
a path functional dependency in the pivoted schema when the original path functional
dependency is of the form

c(L→ R)

where L comprises the pivot attribute mp, .mp ∈ L, and apart from that the sets L and R
consist only of pivoted attributes, (L\{.mp})∪R ⊂M. In addition we can simplify some
path functional dependencies in the pivoted schema, namely those whose corresponding
path functions in the original schema contain only pivoted attributes as path functions.
So if a path functional dependency c(L → R) with only pivoted attributes as path
functions, L ∪ R ⊂ M, exists in the original schema, we substitute the path functional
dependency p(L→ R) for the corresponding path functional dependency in the pivoted
schema.

Formally, this is done in the theorem by removing all path functional dependencies
(the set (7.15)) whose corresponding original path functional dependencies are of the
form c(L→ R) with L ⊂ {.mp} ∪M and R ⊂M and then adding the set (7.16) of path
functional dependencies of the form p(L→ R) with L ∪R ⊂M.

To obtain from an original path functional dependency its pivoted counterpart, we
introduce the operation Pc,mp . This operation performs the same substitution for pivoted
attributes as was applied in Def. 7.1. The simplified forms are gained by means of the
operation Rc,mp , which replaces a pivoted attribute by its “cryptic” counterpart.

We blur the clear distinction between attributes and path functions of length 1 in
the following expositions.

Definition 7.5 (Simplification)

Let S be a schema, and the vector (T,QT→S, QS→T ) := piv(S, p, c,M,mp) be the outcome
of pivoting the schema S.

• The set Pc,mp(M) for a set M ⊂ AttrS(c) of attributes for the class c is

{m′ | m′ = .mp.c mp m, if m ∈M ∩M, and
m′ = .m if m ∈M\M} .

• The set Rc,mp(M) for a set M ⊂ AttrS(c) of attributes for the class c is

{.c mp m | m ∈M} .
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• The schema sim(S, p, c,M,mp) is defined

– by removing path functional dependencies that stem from path functional de-
pendencies of the form c(L→ R) where {.mp} ⊂ L ⊂ {.mp}∪M and R ⊂M,
because these are naturally supported, and

– by simplifying path functional dependencies that stem from path functional
dependencies of the form c(L → R) where L ∪ R ⊂ M, because they can be
simplified.

sim(S, p, c,M,mp) :=(
T\{c(Pc,mp(L)→ Pc,mp(R)) | c(L→ R) ∈ PFDS and

L ⊂ {mp} ∪M and R ⊂M}
) (7.15)

∪
{p(Rc,mp(L)→ Rc,mp(R)) | c(L→ R) ∈ PFDS and L ∪R ⊂M} (7.16)

Theorem 7.4 gave conditions under which the original schema and the pivoted schema
were equivalent with respect to view instance support. As it turns out, these conditions
are sufficient to ensure the equivalence between the pivoted schema and its simplifica-
tions.

Lemma 7.6 (Equivalence of Simplified Schemas)

Let S be a schema, and the vector (T,QT→S, QS→T ) := piv(S, p, c,M,mp) be the outcome
of pivoting the schema S where M ⊂ {.mp}+S,c. Then the schema T provides unique
view instance support for the schema sim(S, p, c,M,mp) with supporting query idT and
vice versa.

Proof. (7.15) and (7.16) merely change the semantic constraints of the schema T . We
will show that despite these changes the semantic constraints of the schemas T and
sim(S, p, c,M,mp) are equivalent, and therefore the schemas are equivalent with
respect to view instance support.

If c(L → R) ∈ PFDS is a path functional dependency with {.mp} ⊂ L ⊂
{.mp} ∪ M and R ⊂ M, then c(Pc,mp(L) → Pc,mp(R)) is removed in the
schema sim(S, p, c,M,mp). Now due to reflexivity, the path functional dependency
p(.Id∪Rc,mp(L\{.mp})→ .Id) is trivially valid in the schema sim(S, p, c,M,mp) as
well as, by simple attribution, the path functional dependency p(.Id→ Rc,mp(R)).
By simple prefix augmentation with the prefix .mp, these dependencies imply
c(Pc,mp(L) → .mp) and c(.mp → Pc,mp(R)), respectively. By transitivity, we get
c(Pc,mp(L)→ Pc,mp(R)), which was removed from the schema T but still holds in
the schema sim(S, p, c,M,mp).

If c(L → R) ∈ PFDS is a path functional dependency with L ∪ R ⊂ M, then
c(Pc,mp(L) → Pc,mp(R)) is in the schema T . Then due to the onto constraint
c{mp|p} ∈ SCT added to the schema T and simple prefix reduction, p(Rc,mp(L)→
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Rc,mp(R)) ∈ SC+T
T holds, which was added to schema sim(S, p, c,M,mp) for the

path functional dependency c(L→ R).
2

The lemma above shows that it is safe to remove some kind of constraints and to replace
others by simpler forms. An interesting question is what happens if we have as input
schema one with proper and purely functional dependencies, i. e. we have a proper
schema.

Definition 7.7 (Proper Schema)

Let D be a schema. The schema D is said to be proper :iff

• all onto constraints in OCD are proper, i. e., if c{m|d} ∈ OCD is an onto con-
straint, then the attribute m is a proper attribute for class c.

• all path functional dependencies in PFDD are functional, i. e., if c(L → R) ∈
PFDD is a path functional dependency, all path-functions in L ∪R have length 1,
and

• all functional dependencies in PFDD are proper, i. e., if c(L → R) ∈ PFDD is a
functional dependency, all attributes in L ∪R are proper attributes for class c.

When we have a proper schema, it is sufficient to know the proper functional depen-
dencies defined for a class to determine all implied proper functional dependencies for
that class as the next lemma shows. In this case even the inference rules reflexivity,
augmentation and transitivity as known from the relational data model are complete.
This means many results from the relational data model can be applied in this case.

Lemma 7.8 (Completeness of Proper Inference)

Let D be a proper schema. All derivable proper functional dependencies for a class can
be derived using only the inference rules reflexivity, augmentation and transitivity, i. e.
if the inclusion sat(D) ⊂ sat(D ∪ {c(X → Y )}) for a non-trivial proper functional
dependency c(X → Y ) over the schema D holds, we can derive the proper functional
dependency by only using the inference rules reflexivity, augmentation and transitivity.

Proof. We conduct this proof by contraposition, i. e. we assume conversely that we
cannot derive the non-trivial, proper functional dependency c(X → Y ) by only
using the inference rules reflexivity, augmentation and transitivity and show then
that there exists an extension f with f ∈ sat(D) and f 6∈ sat(D ∪ {c(X → Y )}).
We define the closure L∗S,d for a set L of proper attributes for a class d in a
schema S as the set of proper attributes l for the class d where the proper func-
tional dependency c(L→ .l) can be derived by using the inference rules reflexivity,
augmentation and transitivity.

We construct the extension f of the schema D satisfying the axioms AX and the
semantic constraints SCD of the schema D but not the proper functional depen-
dency c(X → Y ). The extension f consists of infinitely many objects o, o0, o1, . . .,
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but we are particularly interested in the objects o and o0, because they agree on
their values for attributes in the closure X∗D,c .

f := 〈 {q:d | q ∈ {o} ∪ {oi | i ∈ N} and d ∈ CLASSD}|
{o[m→ o] | m ∈

⋃
d∈CLASSD

AttrD(d)} ∪ {o0[m→ o] | m ∈ X∗D,c} ∪
{oi+1[m→ oi] | i ∈ N and m ∈ X∗D,c} ∪
{oi[m→ oi] | i ∈ N and m ∈

⋃
d∈CLASSD

AttrD(d)\X∗D,c} 〉

Fig. 7.3 renders how the extension f looks like. An arrow signifies that for the
object at the butt the values of the attributes in the label are the object at the
point.

oo1
X∗D,c

⋃
d∈CLASSD

AttrD(d)\X∗D,c

... X∗D,c o0
X∗D,c

⋃
d∈CLASSD

AttrD(d)\X∗D,c
⋃
d∈CLASSD

AttrD(d)

Figure 7.3: Sketch for the extension in the proof of Lem. 7.8

The extension f satisfies the axioms AX and all onto constraints by definition.

We observe that if any two objects q, r ∈ popf agree with their values for an
attribute m, popf ∪ obf |= ∃O(q[m → O] ∧ r[m → O]), then {q, r} = {o, o0} and
m ∈ X∗D,c hold.

Let c′(L → R) ∈ PFDD be a proper functional dependency for the class c′ ∈
CLASSD\{c}. Then the set L is a proper set of attributes for the class c′. Therefore
L∩X∗D,c = ∅ holds, which entails that the proper functional dependency c′(L→ R)
is satisfied.

Let c(L → R) ∈ PFDD be a proper functional dependency for the class c and
q, r be two objects such that they agree on their values for all attributes in L. As
observed above, {q, r} = {o, o0} and L ⊂ X∗D,c hold. Since c(L → R) ∈ PFDD

holds, R ⊂ X∗D,c is implied. Thus according to the construction of the extension
f , the objects q and r agree on their values for attributes in the set R, which means
the proper functional dependency c(L→ R) is satisfied.

Therefore, the extension f is an instance of the schema D, f ∈ sat(D).

According to the construction of the extension f , the objects o and o0 agree on
their values for attributes in the set X, but there exists an attribute y ∈ Y \X∗D,c
such that the objects o and o0 do not agree on their values for the attribute y.

2

To achieve some of the results we are striving for, we have to normalise the syntactical
form of proper functional dependencies further. We want their left-hand and right-hand
sides to be as small as possible.
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Definition 7.9 (L-minimum and Canonical)

• A set of functional dependencies Π over a proper schema D is L-minimum, if for
every c(X → Y ) in Π and for all ∅ 6= X ′ ( X we have D ∪ Π 6|= c(X ′ → Y ).

• A set of functional dependencies Π over a proper schema D is canonical, if the set
Π is L-minimum and the right-hand side of each dependency consists of just one
path-function.

A canonical set Π equivalent to a set Π′ is a canonical cover of the set Π′. Such cover
can be always found [MR92], when dealing with (traditional) functional dependencies.
[MR92] contains algorithms to compute such a cover. Due to Lem. 7.8, we can use these
algorithms in our setting, when we consider the proper functional dependencies for one
class only.

When we have a proper schema with canonical functional dependencies, we can give
necessary and sufficient conditions to ensure that the simplified pivoted schema is proper.
These conditions can be found in a theorem in [BMPS96]. There the conditions were
used to ensure the equivalence of the original and the pivoted schema. Since in our
setting we have path functional dependencies at our disposal, the choice of the set of
pivoted attributes M = {.mp}∗S,c\{.mp} is sufficient to ensure the equivalence.

Lemma 7.10 (Retaining Functional Dependencies)

Let S be a proper schema where PFDS is canonical, T be the schema sim(S, p, c,M,mp)
where M = {.mp}∗S,c\{.mp}. Then the following statements are equivalent:

1. for all subsets M ⊂ PrS(c) the conditions 1a, 1b and 1c hold:

(a) M∗S,c = (M\M)∗S,c ∪ (M ∩M)∗S,c,

(b) (M\M)∗S,c ∩M = ∅ or .mp ∈ (M\M)∗S,c, and

(c) (M ∩M)∗S,c ∩ (PrS(c)\M) = ∅;

2. the schema T is proper.

Proof for 1 =⇒ 2. The set of functional dependencies PFDS(c) in the schema S can
be partitioned into five sets.

{c(L→ .r) ∈ PFDS | L ⊂ PrS(c)\M and r ∈ PrS(c)\M} , (7.17)

{c(L→ .r) ∈ PFDS | L 6⊂ PrS(c)\M and r ∈ PrS(c)\M} , (7.18)

{c(L→ .r) ∈ PFDS | L ⊂M and r ∈M} , (7.19)

{c(L→ .r) ∈ PFDS | {.mp} 6= L 6⊂M and r ∈M} and (7.20)

{c(L→ .r) ∈ PFDS | L = {.mp} and r ∈M} . (7.21)

We regard the sets (7.17) - (7.21) and show that the sets (7.18) and (7.20) are
empty in the schema S.

So we consider a functional dependency c(L→ .r) ∈ (7.18), which means .r ∈ L∗S,c
holds. Therefore, due to condition 1a, .r ∈ (L\M)∗S,c or .r ∈ (L ∩M)∗S,c must
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hold. By condition 1c, .r 6∈ (L∩M)∗S,c can be implied, hence .r ∈ (L\M)∗S,c . This
entails c(L\M→ .r) ∈ SC∗DD , contrary to the fact that PFDS is canonical.

Now we consider the functional dependency c(L → .r) ∈ (7.20). We distinguish
two cases.

(L\M)∗S,c ∩M = ∅: By condition 1a, .r ∈ (L ∩ M)∗S,c follows. In this case, we
consider two cases.

L ∩M = ∅: Then, by definition, (L ∩M)∗S,c = ∅ holds, in contradiction to
condition 1a.

L ∩M 6= ∅: Then c(L ∩M → .r) ∈ PFDS(c)∗S,c can be inferred. But since
L ∩M ( L holds, the set PFDS(c) is not canonical, in contradiction to
the hypothesis.

(L\M)∗S,c ∩M 6= ∅: By condition 1b, .mp ∈ (L\M)∗S,c holds, thereby c(L\M →
.mp) ∈ PFDS(c)∗S,c .

Because of r ∈ M and the choice of the set M, c(.mp → .r) ∈ PFDS(c)∗S,c

holds. By transitivity, c(L\M→ .r) ∈ PFDS(c)∗S,c holds, in contradiction to
the fact that PFDS is canonical.

Consequently, the functional dependencies of the schema S are of type (7.17),
(7.19) and (7.21).

Dependencies of type (7.17) are not changed by the transformation sim. A depen-
dency c(L→ .r) of type (7.19) is transformed into a proper functional dependency
p(Rc,mp(L)→ Rc,mp({.r})). Dependencies of type (7.21) are removed by transfor-
mation sim. All onto constraints remain proper. Hence, the schema T is proper.

Proof for 2 =⇒ 1. Since the schema T is proper, all path functional dependencies
are functional dependencies. Any functional dependency c(L→ .r) of type (7.18)
or (7.20) with L ( {.mp} ∪ M in the schema S would have resulted in a non-
functional dependency that would not have been removed by the transformation
sim. A functional dependency c(L → .r) of type (7.20) with L ⊂ {.mp} ∪ M
cannot exist because the set PFDS(c) is canonical. Therefore all path functional
dependencies in the schema S must be of type (7.17), (7.19) or (7.21).

Due to Lem. 7.8, the closure X∗D,d of any set X of proper attributes can be
determined by exhaustively applying the inference rules reflexivity, augmentation
and transitivity, i. e., whenever the left-hand sides of the antecedents are subsets
of the so far calculated set, the right-hand sides are added to this set.

Since the dependencies in PFDS(c) are either of type (7.17), (7.19) or (7.21), any
derivation sequence can be ordered by first using all dependencies of type (7.17),
then of type (7.21) and finally of type (7.19).

If we regard an attribute a ∈M∗S,c , then we can consider two cases.
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1. The attribute a occurs in the ordered derivation sequence after all applications
of dependencies of type (7.17). In this case only attributes in (M\M)∗S,c have
been used as left-hand sides of dependencies, therefore .a ∈ (M\M)∗S,c .

2. The attribute a does not occur in the ordered derivation sequence after all
applications of dependencies of type (7.17). Again, we consider two cases.

(a) The pivot attribute .mp occurs in the derivation sequence after all ap-
plications of dependencies of type (7.17). Then .mp ∈ (M\M)∗S,c and
because of M ⊂ {.mp}∗S,c , .a ∈ (M\M)∗S,c .

(b) The pivot attribute .mp does not occur in the derivation sequence after
all applications of dependencies of type (7.17). Then only attributes in
(M ∩M)∗S,c have been used as left-hand sides of dependencies, therefore
.a ∈ (M ∩M)∗S,c .

Hence, condition 1a is satisfied by the schema S. Likewise we can show that
conditions 1b and 1c are satisfied by the schema S.

2

7.5 Naturally Enforced Functional Dependencies

Our goal is to transform a schema such that all original functional dependencies are nat-
urally enforced. In order to reach this objective, we have to consider two things. Firstly,
it is in general impossible to discard all functional dependencies in one transformation
step. Secondly, not all kinds of functional dependencies can be naturally enforced.

Example 7.11

The first observation leads for example to a recursive application of the transformation
as shown in Fig. 7.4 on the schema shown in Fig. 5.2.

We first choose teacher as pivot attribute with room and wing as pivoted attributes,
which leads to the schema graph in Fig. 7.5. Then we perform pivoting on the resulting
schema with pivot attribute room and pivoted attribute wing (Fig. 7.4).

We get the same outcome (Fig. 7.4) if we take first room as pivot attribute and
wing as pivoted attribute (Fig. 7.6) and afterwards choose teacher as pivot attribute and
room as only pivoted attribute. This example indicates that the outcome of pivoting is
in a sense independent of the order in which single pivot steps are performed when we
consider only transformations that lead to purely functional dependencies.

In this example we perform pivoting with transformation sim. So we remove some of
the path functional dependencies. When we perform pivoting according to the instruc-
tions above, we obtain the schema in Fig. 7.7.

Note that we can discard all functional dependencies and that two onto constraints

Teacher{room|Room}
Room{wing|Wing}

wandered from the class Assignment to other classes.
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Assignment Teacher
teacher te name

String

Int
size

course
Course

Date

month

Int

Int
year

Int
day

String
title

Room

room

String
ro name

Assistant
as name

String

assistant

date

wing

Wing String
address

Figure 7.4: Applying recursive pivoting

Assignment Teacher
teacher te name

String

Int
size

course
wing

Wing String
address

Course

Date

month

Int

Int
year

Int
day

String
title

Room

room

String
ro name

Assistant
as name

String

assistant

date

Figure 7.5: First applying pivoting with teacher as pivot attribute

The schema graph for the schema above is shown in Fig. 7.8.

Noteworthy is that the two branches starting at the node representing the class
Assignment with arrows labelled course and teacher are totally independent from each
other. This independence is a result of the natural enforcement of all functional de-
pendencies. Updates in one branch do not incur any look-ups or changes in the other
branch.



152 CHAPTER 7. PIVOTING: A DATABASE TRANSFORMATION

Assignment Teacher
teacher te name

String

Int
size

course
Course

Date

month

Int

Int
year

Int
day

String
title

RoomString
ro name

Assistant
as name

String

assistant

date

wing

Wing String
address

room

Figure 7.6: First applying pivoting with room as pivot attribute

We can even dismiss the class Assignment. The class represents a binary relationship
between Courses and Teachers, which can be modelled by a set-valued method, which takes
no arguments, either declared for the class Course or the class Teacher. The binary
relationship is substantiated by the key path functional dependency

Assignment(.course .teacher→ .Id) .

When we decide to model the relationship as a set-valued attribute for the class Teacher,
we get the signature declaration

Teacher[course⇒⇒ Course]

and can abolish the class Assignment. We do not pursue this aspect in this work, because
general pivoting [BMP96] subsumes it.

As said above not all kinds of functional dependencies can be naturally enforced. Natural
enforcement of functional dependencies works only for those the left-hand side of which
is a singleton, because pivoting can be applied only with at most one pivot attribute.
Functional dependencies of this form are called unary functional dependencies [MR89].
We follow this notation and call path functional dependencies the left-hand side of which
are singletons unary functional dependencies.

Definition 7.12 (Unary Path Functional Dependency)

A path functional dependency π is called a unary path functional dependency, if the
left-hand side of the path functional dependency π is a singleton.
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CLASS := {String, Int,Assignment,Course,Teacher,Assistant,Date,Room,Wing}
METH := {course, teacher, assistant, room,wing, title, te name, as name, ro name,

date, year,month, day, size, address}
HIER := ∅

SIG := {Course[title⇒ String;
assistant⇒ Assistant;
date⇒ Date],

Teacher[te name⇒ String;
room⇒ Room],

Assistant[as name⇒ String],
Date[year⇒ Int; month⇒ Int; day⇒ Int],
Room[size⇒ Int; ro name⇒ String; wing⇒ Wing],
Wing[address⇒ String],
Assignment[course⇒ Course;

teacher⇒ Teacher]}
SC := AX ∪{

Assignment(.course .teacher→ .Id),
Assignment{teacher|Teacher},
Assignment{course|Course},
Teacher{room|Room},
Room{wing|Wing}

}
Figure 7.7: Multiple pivoted schema

Unfortunately, the restriction to unary functional dependencies is not sufficient in order
to eliminate all functional dependencies by recursive pivoting. To achieve this, we further
have to make the set of pivoted attributes comprise all attributes in the closure of
the pivot attribute in each transformation step. If we select as pivoted attributes all
attributes in the closure of the pivot attribute without the pivot attribute itself, we call
the underlying pivoting maximal pivoting.

Definition 7.13 (Maximal Pivoting)

Pivoting a schema D with sim(D, p, c,M,mp) is called maximal pivoting, if the set of
pivoted attributes M comprises the closure of the pivot attribute except the pivot attribute
itself, M = {.mp}∗D,c\{.mp}.

Now what thwarts maximal pivoting? The obstacle is a possible violation of the condi-
tions given in Theor. 7.10. We will analyse these conditions in more depth.

Condition 1a is satisfied since we limit the use to unary functional dependencies.
For having only sets of unary functional dependencies means that their closures are



154 CHAPTER 7. PIVOTING: A DATABASE TRANSFORMATION

Assignment Teacher
teacher te name

String

Int
size

course
Course

Date

month

Int

Int
year

Int
day

String
title

Room

room

String
ro name

Assistant
as name

String
wing

Wing String
address

date

assistant

Figure 7.8: Applying recursive pivoting

topological [DLM92]. Therefore the equation

X∗S,c =
⋃
a∈X

{a}∗S,c (7.22)

holds in a proper schema S, ensuing the fulfilment of condition 1a.
Condition 1b is harder to deal with. Here we consider a selection of a pivot attribute

mp with a corresponding set M of pivoted attributes such that the selection violates
condition 1b. This means there is a set of attributes or to be more precise due to (7.22)
an attribute m ∈ Attr(c)\M such that {.m}∗S,c ∩ M 6= ∅ and .mp 6∈ {.m}∗S,c . To
describe this situation in a better way, we build a dependency graph for the set PFD(c)
of functional dependencies.

The set of vertices of the graph is the set of attributes occurring in PFD(c). For
each L → R1 · · ·Rn ∈ PFD(c) we add the edges (L,Ri) to the graph. An example
for this graph can be found in Fig. 7.9, which uses the functional dependencies in class
Assignment in Fig. 5.1.

The graph describing the situation with the violation of condition 1b above is as
depicted in Fig. 7.10. There is a path from m to an attribute m′ ∈ M. Due to the
fact that m′ ∈ M, there is a path from mp to m′. In addition there is neither a path
from m to mp nor vice versa. This kind of structure can be forbidden if we say that
the graph has to form a forest, i. e., whenever there is one vertex reachable from two
different nodes, one of these must be reachable by the other. Formally, we capture this
without explicitly building the graph. Subordination expresses that any two attributes
may not be simultaneously elements in their mutual closures.
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course

date room

teacher

wing

assistant

Figure 7.9: A dependency graph

mpm

m′

Figure 7.10: No forest

Definition 7.14 (Subordination)

Let D be a schema, c ∈ CLASSD be a class, and m,m′ ∈ PrD(c) be two proper attributes.
The attributes m and m′ are subordinate if either is an element of the closure of the
other, .m ∈ {.m′}∗D,c or .m′ ∈ {.m}∗D,c but not both.

Definition 7.15 (Forest)

Let D be a proper schema, c ∈ CLASSD be a class. The set PFDD(c) of functional
dependencies forms a forest if for all proper attributes m,m′ ∈ PrD(c) for the class c,
m and m′ must be subordinate if their closures contain common elements, {.m}∗D,c ∩
{.m′}∗D,c 6= ∅.
Condition 1c is nearly satisfied since we take nearly all attributes in the closure as
pivoted attributes. So condition 1c can only be violated if .mp ∈ M∗S,c holds. Which
means since we are having only unary functional dependencies that .mp ∈ {.m}∗S,c holds
for some attribute m ∈M. Due to subordination condition 1c is satisfied, because if we
require that any pairs of attributes in a schema are subordinate, .mp 6∈ {.m}∗S,c holds
for any attribute m ∈M.

We can give conditions under which we achieve a full natural enforcement for all
functional dependencies of a class. One of the criteria is to use maximal sets of pivoted
attributes, i. e. all attributes in the closure of a pivot attribute without the pivot at-
tribute itself. We call recursive pivoting recursive maximal pivoting if at each stage of
the transformation the set of pivoted attributes is maximal in the sense above. Finally,
we get the following equivalence.

Theorem 7.16 (Full Natural Enforcement of Functional Dependencies)

Let D be a proper schema such that

• PFDD = PFDD(c) for some class c ∈ CLASSD, and

• PFDD(c) is canonical.
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Then the following is equivalent:

1. PFDD(c) is a set of unary functional dependencies and forms a forest.

2. Recursive maximal pivoting gives a proper schema without path functional depen-
dencies.

Proof for 1 =⇒ 2. Let S0, S1, . . . , Ss be a sequence of schemas performed for recur-
sive maximal pivoting with S0 := D and Si+1 = sim(Si, pi, ci,Mi,mpi).

By induction on the length s of the transformation sequence, we show that

• each onto constraint in OCSs is proper, and

• for each class d ∈ CLASSSs , the set of path functional dependencies PFDSs(d)
is canonical and a set of proper, unary functional dependencies, and forms a
forest.

s = 0. The schema S0 = D fulfils these properties by the hypotheses.

s→ s+ 1. Since PFDSs(cs) is unary, the equation

X∗Ss,cs =
⋃
a∈X

{.a}∗Ss,cs (7.23)

holds for any set of attributes X ⊂ PrSs(cs) [DLM92].

From (7.23) it immediately follows that condition 1a of Theor. 7.10 holds.

Let M ⊂ PrSs(cs) be a set of attributes. If an attribute a′ exists with
a′ ∈ (M\Ms)

∗Ss,cs ∩ Ms, then there exists an attribute a ∈ M\Ms with
.a′ ∈ {.a}∗Ss,cs by (7.23). Since PFDSs(cs) forms a forest and Ms =
{.mps}∗Ss,cs\{.mps}, the attributes a and mps must be subordinate. So ei-
ther .a ∈ {.mps}∗Ss,cs or .mps ∈ {.a}∗Ss,cs holds but not both. But since
a ∈ M\Ms holds, .mps ∈ {.a}∗Ss,cs must hold, which means condition 1b of
Theor. 7.10 is satisfied.

Let M ⊂ PrSs(cs) be a set of attributes. If an attribute a′ exists with
a′ ∈ (M ∩ Ms)

∗Ss,cs ∩ (PrSs(cs)\Ms), then there exists an attribute a ∈
M ∩ Ms with .a′ ∈ {.a}∗Ss,cs by (7.23). Then due to the definition of
Ms = {.mps}∗Ss,cs\{.mps}, a′ = mps and .a ∈ {.mps}∗Ss,cs hold. Thus both
.mps ∈ {.a}∗Ss,cs and .a ∈ {.mps}∗Ss,cs hold, in contradiction to the induc-
tive assumption that PFDSs(cs) forms a forest, which means condition 1c of
Theor. 7.10 is satisfied.

Since conditions 1a, 1b and 1c of Theor. 7.10 are satisfied for the proper
schema Ss where the set PFDSs is canonical, the application of transformation
sim produces, by Theor. 7.10, a proper schema Ss+1.

If either sets PFDSs+1(cs) and PFDSs+1(ps) were not canonical, the cor-
responding derivations could be lifted into the schema Ss. Thus the set
PFDSs(cs) would not be canonical.
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Since PFDSs(cs) contains only unary functional dependencies, the transfor-
mation sim does not introduce non-unary functional dependencies, hence the
sets PFDSs+1(cs) and PFDSs+1(ps) contain only unary functional dependen-
cies.

Because all functional dependencies are proper, the functional dependen-
cies in PFDSs(d) do not contain any attribute in Ms for all classes d ∈
CLASSSs\{cs}, and hence are not changed by the transformation sim. No
path functional dependency is added to PFDSs+1(d). Therefore for each class
d ∈ CLASSSs\{cs}, the set of path functional dependencies PFDSs+1(d) re-
mains canonical and a set of unary functional dependencies, and forms a
forest.

Let m,m′ ∈ PrSs+1(cs) be two attributes such that their closures are not
disjunct, {.m}∗Ss+1,cs ∩ {.m′}∗Ss+1,cs 6= ∅. We observe that removing func-
tional dependencies from a set of functional dependencies makes its closure
smaller. Therefore {.m}∗Ss,cs ∩{.m′}∗Ss,cs 6= ∅ holds. Since the set PFDSs(cs)
forms a forest, we assume w. l. o. g. .m ∈ {.m′}∗Ss,cs . As was shown in the
proof of Theor. 7.10 (2 =⇒ 1) .m ∈ {.m′}∗Ss,cs can be derived by an ordered
derivation sequence using only functional dependencies of type (7.17). Since
these functional dependencies are not changed by the transformation sim,
.m ∈ {.m′}∗Ss+1,cs can be derived using the same sequence. Thus PFDSs+1(cs)
forms a forest.

The proof that PFDSs+1(ps) forms a forest follows the same line of reasoning
except that dependencies of type (7.19) are employed.

Now let d(.m→ .m′) ∈ PFDS0(c0) be a functional dependency. Due to the nature
of the transformation sim and the properties of the schemas Si proven above, this
functional dependency is either left unchanged, removed or altered into a different
functional dependency in a transformation step. But the alteration just changes
the class name and the attribute names. So this functional dependency can be
traced throughout the transformation process. When the transformation uses the
class d, possibly renamed, as pivot class and the attribute m, possibly renamed
as well, as pivot attribute, then the attribute m′, again possible renamed, will
be a pivoted attribute, since maximal pivoting is performed. Consequently, the
functional dependency d(.m→ .m′) is removed in that very pivot step.

Proof for 2 =⇒ 1. Let S0, S1, . . . , Ss be a sequence of schemas performed for re-
cursive maximal pivoting with S0 be the final schema without path functional
dependencies and Si−1 = sim(Si, pi, ci,Mi,mpi).

We show that PFDSs(c) is a set of unary functional dependencies by contradiction.
We assume there exists a functional dependency c(L→ .r) ∈ PFDSs(c) with L =
{.m, .m′}. Since the schema S0 does not contain any path functional dependencies,
the functional dependency c(L → .r) or a variant of it must have been removed
and not simplified in a maximal pivot step i. Hence, {.mpi} ⊂ L ⊂ {.mpi} ∪M,
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and we assume w. l. o. g. mpi ≡ m. Then the functional dependency ci(.m →
.m′) ∈ PFDSi(ci)

∗Si,ci holds. A derivation sequence that witnesses this fact can be
lifted into schema Ss for the functional dependency c(.m→ .m′) ∈ PFDSs(c)

∗Ss,c ,
in contradiction to the fact that PFDSs(c) is canonical.

Following the same line of reasoning, we can prove that every set PFDSi is canon-
ical.

By induction on the length s of the transformation sequence, we show that

• each onto constraint in OCSs is proper, and

• for each class d ∈ CLASSSs , the set of path functional dependencies PFDSs(d)
is a set of proper functional dependencies and forms a forest.

s = 0. The schema S0 fulfils these properties by the hypotheses.

s→ s+ 1. Any onto constraint in OCSs is proper. Since the transformation sim
does not make an onto constraint proper that has not been proper previously,
any onto constraint in OCSs+1 is proper.

The transformation sim adds only proper functional dependencies. Since all
path functional dependencies in schema Ss are proper, all path functional
dependencies in the schema Ss+1 must have been proper.

Since the set PFDSs(d) for a class d ∈ CLASSSs+1\{cs} forms a forest and
this set remains unchanged, the set PFDSs+1(d) forms a forest as well.

As was shown in the proof of Theor. 7.10 (2 =⇒ 1), the set PFDSs+1(cs) can
be partitioned into the sets (7.17), (7.19) and (7.21).

We assume now for two attributes m,m′ ∈ PrSs+1(cs) that their closures are
not disjunct, {.m}∗Ss+1,cs ∩ {.m′}∗Ss+1,cs 6= ∅, and distinguish four cases.

m,m′ ∈ PrSs(cs). If {.m}∗Ss+1,cs∩{.m′}∗Ss+1,cs∩Ms 6= ∅, then, by Theor. 7.10,
.mp ∈ {.m}∗Ss+1,cs ∩ {.m′}∗Ss+1,cs . Therefore .a ∈ {.m}∗Ss+1,cs ∩
{.m′}∗Ss+1,cs exists and a derivation sequence of functional dependen-
cies of type (7.17). Since these functional dependencies also exist in
PFDSs(cs), .a ∈ {.m}∗Ss,cs ∩ {.m′}∗Ss,cs holds. This means the attributes
m and m′ must be subordinate under the schema Ss. The corresponding
derivation sequence can be reused under schema Ss+1.
If we assume .m ∈ {.m′}∗Ss+1,cs and .m′ ∈ {.m}∗Ss+1,cs , we can show, as
above, that .m ∈ {.m′}∗Ss,cs and .m′ ∈ {.m}∗Ss,cs holds, which contradicts
the fact that PFDSs(cs) forms a forest.

m,m′ ∈Ms. Analogous with functional dependencies of type (7.19).

m ∈ PrSs(cs), m
′ ∈Ms. Due to condition 1c of Theor. 7.10, {.m′}∗Ss+1,cs ⊂

Ms holds, which entails {.m}∗Ss+1,cs ∩ {.m′}∗Ss+1,cs ⊂ Ms and .m 6∈
{.m′}∗Ss+1,cs . By condition 1b of Theor. 7.10 and since maximal pivoting
is performed, .m′ ∈ {.m}∗Ss+1,cs follows.

m ∈Ms, m
′ ∈ PrSs(cs). As above.
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Hence, PFDSs+1(cs) forms a forest.

2

The prerequisites in the theorem above appear to be very strict. But in fact we have
to remember that for every set of functional dependencies there is a cover that is and
canonical. Additionally, it is possible to relax the restrictions slightly. We propose two
ways to do it without being formal.

The first relaxation is that we want to permit path functional dependencies that are
of the form c(A → .Id). These are called key path functional dependencies [Wed92]. In
doing so, we can handle the case where the sets of attributes in the closure of two pivot
attributes are identical. If we include either of them into the set of pivot attributes
of the other, let us say the pivot attribute m′p into the set of pivoted attributes M of
pivot attribute mp, we obtain c(.mp.c mp m

′
p → .mp) in the output schema. This path

functional dependency is implied by p(.c mp m
′
p → .Id). Alternatively, if we really insist

on functional dependencies, we tamper with the definition of maximal. We denote the
set of attributes in the closure of the pivot attribute as maximal if it does not contain
attributes that determine the pivot attribute functionally.

The next approach to relax the prerequisites benefits from a supplementary trans-
formation. It is aimed at functional dependencies that cannot be expressed as unary
functional dependencies. We assume that we have a functional dependency c(A → B),
which is not unary, and no unary cover exists for it. We excise the set A of attributes from
class c and introduce a new class cA with attributes A. We replace the set A of attributes
by an attribute mA in c. The path functional dependency c(A → B) is then mutated
into c(.mA.A→ B). This path functional dependency is implied by c(.mA → B) because
cA(.Id → A) holds by successive application of “simple attribution”. By “simple prefix
augmentation”, we can derive c(.mA → .mA.A). Due to transitivity, we get c(.mA → B)
as claimed.

7.6 Pivoting and Redundancy

In the introduction to this chapter we mention that a schema should possess nice prop-
erties. It is of importance in database design that theses properties find their way into
rigorous definitions. If we fail to provide precise characterisations, we fail to prove that a
schema possesses these properties. Mok et. al. [MNE96] show in their work what dangers
arise, when a rigorous syntactic justification exists without a rigorous semantic justifica-
tion. They carry out their work on database normalisation theory. They illustrate that
when examples are provided instead of a rigorous semantic justification, these examples
may be misleading.

As nice properties we mention in the introduction to this chapter that a schema
should not structure redundant data. In order to give a rigorous semantic justification
for this nice property, we pose the question, “What is redundant data?” Certainly,
redundant data is not simply data that occurs literally at different locations in an in-
stance. The fact that two persons have the same last name does not mean that their
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last names are redundant. But, when we know that both are husband and wife, it is
very likely that they have the same last name. Let us put this observation more exactly.
Data is redundant if we can reconstruct it from the remaining data and perhaps further
knowledge over the application domain.

Our notation of redundancy is based on the idea that an attribute value is redundant
if we can erase it, and from what remains and a single path functional dependency
determine what the attribute value must have been before.

Definition 7.17 (Redundancy-Afflicted Attribute)

Let D be a schema, c(X → Y ) ∈ (OCD ∪ PFDD)+D be a path functional dependency
such that X, Y ⊂ AttrD(c) and X ∩ Y = ∅. Let f be an instance of D, o, o′ ∈ obj(f)

be two distinct objects, complD(f) |= o 6 ◦= o′, of class c, c ∈ lCl(o) and c ∈ lCl(o
′). If

the implication complD(f) |= o[m → om] ∧ o′[m → om] holds for all attributes m ∈ X,
then the set of attributes Y is redundancy-afflicted in the instance f caused by the path
functional dependency c(X → Y ).

Example 7.18

In the instance f of the schema in Fig. 5.3 with

complD(f) |= o[fac→ bob; sch→ cs; ph→ 42; dep→ engin] ∧
o′[fac→ john; sch→ cs; ph→ 43; dep→ engin] .

The attribute dep is redundancy-afflicted caused by the path functional dependency

Phone-admin(.sch→ .dep) .

The definition above is defined on the instance level. If a schema D may have redundant
instances, the schema has potential redundancy.

Definition 7.19 (Potential Redundancy)

A schema D is said to have potential redundancy if there exists a redundancy-afflicted
set of attributes in any instance of D caused by a path functional dependency implied by
OCD ∪ PFDD.

Having a rigorous definition of redundancy, we continue by showing that pivoting reduces
the redundancy potential of a schema. We conduct this examination on a rather informal
level. We focus our attention on the instance in Exam. 7.18. We select the attribute
sch in the left-hand side of the path functional dependency Phone-admin(.sch → .dep)
as pivot attribute. The right-hand side is the candidate pivoted attribute. The output
schema is sketched as follows:

Phone-admin[fac⇒ Faculty; sch⇒ School; ph⇒ Phone]

School[dep⇒ Department] .

We assume in this example that every School is associated with a Department. This
association can only spring from the relationship modelled by the (relationship) class
Phone-admin, and can be formalised as onto constraint Phone-admin{sch|School}. With
this onto constraint the introduction of a subclass of the pivot class becomes superfluous.
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Transforming the instance from Exam. 7.18 yields

complD(f) |= o[fac→ bob; sch→ cs; ph→ 42] ∧
o′[fac→ john; sch→ cs; ph→ 43] ∧
cs[dep→ engin] .

The redundancy-afflicted attribute dep is removed from class Phone-admin. So the re-
dundancy potential with respect to the class Phone-admin is reduced. However, we do
not increase the potential with respect to any other class. This reduction is no magical
trick. It uses a feature of object-oriented data models, namely sharing. Two objects, in
this case o and o′, may reference the same value, cs. They share this value. Figure 7.11
gives an impression of how the situation looks like when we draw the instance. Objects
are rectangles labelled with their oid. Their attributes are indicated by dividing the
rectangles into drawers. The attribute name is written on the drawer and the arrow
starting from it points to the attribute value. We contrast this digram with the diagram

o′cso

sch sch

engin

dep

Figure 7.11: A redundancy-free, pivoted instance

representing the original situation before performing pivoting in Fig. 7.12. In this case
both objects o and o′ have a drawer for the attribute dep. Whereas the transformed
instance has the attribute transplanted to the object cs.

o′cso

sch sch

dep dep

engin

Figure 7.12: A “redundant” instance

The tight connection between redundancy and constraint enforcement becomes evi-
dent in the discussion above. By choosing the left-hand side of a path functional depen-
dency causing redundancy, we can remove redundancy-afflicted attributes caused by this
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very path functional dependency. So the effect of pivoting is twofold. It decreases the
redundancy potential and it increases the number of naturally enforced dependencies.
Again we can make this point clearer by comparing Fig. 7.12 with Fig. 7.11. If the
attribute value dep for object o changes, we have to look up objects agreeing with object
o on their value for attribute sch. If none exists, we are done. But if we encounter such
an object, we have a violation of the path functional dependency

Phone-admin(.sch→ .dep) .

There are then several possibilities to deal with the situation

• rejecting the update,

• asking the originator of the update for her opinion,

• changing the value.

In the relational world this problem comes under the name update anomalies. There
are normal forms for relational schemes to avoid these update anomalies and decompo-
sitions of relation schemas into these normal forms [MR92]. (Confer Sec. 7.7 which gives
a broader perspective on this issue.) We can even make the observation that maximal
recursive pivoting with the transformation sim on an input schema obeying the restric-
tions given in Theor. 7.16 leads to a schema without potential redundancy. This result
is not surprising since all path functional dependencies are naturally enforced and onto
constraints alone do not imply non-trivial path functional dependencies.

We do not conceal that these advantages have a price. The reduction of the re-
dundancy potential and the easier enforcement of some path functional dependencies
increase the costs for the enforcement of others. Pivoting changes the purely functional
dependency

Phone-admin(.ph→ .dep)

into the path functional dependency

Phone-admin(.ph→ .sch.dep) ,

which cannot be further simplified, at least according to our current knowledge about
pivoting. The attributes sch and dep are not comparable although their closures inter-
sect. So there is a trade off between the removal of redundancy and natural enforcement
of dependencies and the prolongation of path functions in path functional dependencies.

Now we disclose why we call Exam. 1.1 the “good” example and Exam. 1.2 the
“bad” example. As we see in Fig. 7.9, the set of path functional dependencies for the
class Assignment forms a forest. Therefore maximal recursive pivoting yields a schema
as in Fig. 7.8 without any path functional dependency. Whereas the path functional
dependencies for Exam. 1.2 do not form a forest. Performing pivoting with that example
always comes with both:

• the removal of potential redundancy and natural enforcement of dependencies, and

• the prolongation of path functional dependencies.
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7.7 Relational Normal Forms

Comparing pivoting with the restriction that we are confined to functional dependencies
with the decomposition into Boyce-Codd normal form based on the work of Delobel
and Casey [DC73], we find a strong resemblance between both transformations. This
is not surprising as both transformations consider mainly sets of attributes and sets of
functional dependencies. In fact we can even simulate pivoting in the relational model.
Then it comes really close to the decomposition into Boyce-Codd normal form. In this
case we use foreign keys in relations that represent relationship sets in order to access
represented entities participating in a relationship. A subtle difference between both
transformations is that pivoting uses object identificators for the reference mechanism
whereas the relational model uses foreign keys, which are value oriented. Often in the
modelling process using the relational model, keys are introduced that comprise only
one attribute, e. g. a student number uniquely identifies a student. This can be seen
as an attempt to simulate object identificators. Using this approach throughout the
modelling process shifts pivoting even closer to the decomposition into Boyce-Codd
normal form. Theorem 7.16 underlines the importance of unary functional dependencies
as these dependencies can be naturally enforced. As a by-product, we know that if
a set of functional dependencies consists only of unary functional dependencies, the
corresponding Armstrong relation can be found in polynomial time [MR89].

When we allow the introduction of path functional dependencies in the output
schemas, we can transform arbitrary schemas and still obtain an information-preserving
and dependency-preserving transformation. In this respect pivoting is closed for path
functional dependencies. This is in contrast to Boyce-Codd normal form. We cannot
guarantee the preservation of dependencies, because the set of functional dependencies
is not closed under the decomposition into Boyce-Codd normal form. Makowsky and
Ravve [MR98] show there exist a translation refinement for a schema such that the
following holds.

• The semantic constraints of the translation refinement comprises functional de-
pendencies and inclusion dependencies.

• The translation schemes Φ and Ψ that constitute the translation refinement are
compositions of projections and joins, but the left inverse Ψ uses vectorisation.

• The translation refinement is in Boyce-Codd normal form with respect to its im-
plied functional dependencies.

Vectorisation becomes necessary, because they propose a solution by splitting attributes.
Looking at the dependency graph spanned by a set of functional dependencies in the

case when it forms a forest, we see that this forest is a set of scheme trees. For a scheme
tree T , MVD(T ) denotes the union of all the multi-valued dependencies represented by
the edges in T [MNE96]. Let F be a set of functional dependencies that corresponds to
a tree T in a forest, i. e. a maximal connected subgraph. The tree T is also a scheme tree
and the set of multi-valued dependencies implied by F is equal to the set of multi-valued
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dependencies MVD(T ). This result is obtained due to the definitions of a tree T and
the set MVD(T ). Thus we establish the relationship between Vincent et. al. [VS93] and
Mok et. al. [MNE96], which investigate redundancies and normal forms.

Johnson and Fernandez [JF97] show that the normalisation process from relational
database design remains useful in its object-oriented counterpart. They examine how
relational normal forms including 3NF and BCNF can be used in re-engineering a rela-
tional schema into an object-oriented schema. Their work is carried out on an informal
level. For instance, they bring an example that violates 3NF, and its synthesis into 3NF
and an object-oriented schema reflecting this decomposition. But this object-oriented
schema can be obtained using pivoting. In essence, they show how relationships that are
broken into smaller components due to normal forms in the relational framework can be
represented in an object-oriented framework.



Chapter 8

Conclusion

In this work we have investigated how to represent relationships in object-oriented data
models. Our aim has been to put these investigations onto solid grounds, and our starting
point for these investigations have been application-dependent semantic constraints,
namely class inclusion constraints, onto constraints and path functional dependencies.
In order to accomplish this task, we have devised a formal object-oriented data model
that incorporates those semantic constraints.

We have analysed different representations of the same relationship with respect to
constraint enforcement and redundancy. To obviate problems, we have delivered rigorous
definitions for both constraint enforcement and redundancy. Because if we lack rigorous
definitions, we fail to prove that schemas possess these properties.

We have obtained different representations by means of the database transformation
pivoting, which breaks relationships represented as (relationship) classes into smaller
components. The starting point for pivoting is a canonical representation of the rela-
tionship, which is later on decomposed. Instead of creating completely new classes as
it is done in the relational data model, these components become subclasses of already
existing classes.

Pivoting realises two principles: abstraction and sharing. Abstraction [VdB93] means
the identification of information that can represent concepts in its own right, independent
of its surroundings. To put the abstracted information to use, we extract the informa-
tion from all sources and merge it. Finally, we establish references to the extracted
information in the sources, i. e., the sources share the common information afterwards.

As 3NF and BCNF and their respective decompositions have found their way into
practise, we conjecture that it is possible to devise a normal form for object-oriented
schemas and use pivoting as decomposition. Accordingly, these results may find their
way into practise as well, providing guidance in object-oriented database design. The
closeness of pivoting to 3NF and BCNF is especially interesting in the field of reverse
engineering of relational schemas. The potential normal form we have in mind is based
on Theor. 7.16, but the details lay beyond the ken of this work.

To pave the path for pivoting to find its way into practise, we need the capability to
syntactically manipulate semantic constraints. An issue which we have partly solved for
class inclusion constraints, onto constraints and path functional dependencies. For the
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combination of these constraints, we have presented a sound and complete axiomatisa-
tion for our object-oriented data model, which includes inheritance and multiple class
membership. However, the decision problem of the implication is still an open problem
for the combination of class inclusion constraints, onto constraints and path functional
dependencies. The problem is solved positively for the case where only path functional
dependencies are allowed in a semantic data model [IW94, vBW94]. We surmise that
when all onto constraints are acyclic, the decision procedure of Ito and Weddell can be
used.

As our investigations have been based on different representations of the same re-
lationship, the issue of whether these representations are really equivalent was part of
the problem. To solve this problem, i. e., to compare the information capacity of an
original schema and its transformed schemas, we have introduced translation schemes
in our object-oriented data model. Translation schemes enable us to compare even the
semantic constraints of schemas. These semantic constraints may stretch over formu-
lae that deal with schema aspects, a capability not found in the relational data model.
The application fields for translation schemes can be all areas of schema integration and
translation [MIR93]. In particular, translation schemes offer a way to mediate between
the relational data model and our object-oriented data model. This is because our def-
inition of an object-oriented data model encompasses predicates, i. e. relations as first
class citizens.

Still an open point is an investigation into the trade off between natural enforcement
of semantic constraints and the prolongation of path functions in path functional de-
pendencies. A cost model, in which we can measure the enforcement and update costs,
is indispensable at this point.
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