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Foreword
“Engineers must study not only what technologies can do FOR people
but also what they do TO people,

and they must learn to steer technology
more sensitively and skillfully through the political process.”

— Edward Wenk [225]
(Science Advisor to three US presidents)

hile our modern societies rapidly turn into information societies, powerful players like govern-
ments, secret services and public prosecutors ever more strongly demand for complete surveil-

lance of fax, phone, e-mail, payment transactions and more. However, this thesis advocates to design
the information infrastructures so that they can respect and enforce the legitimate security interests of
ALL participants, be they active users or passive usees1 of the computer systems. So the pleading at
the heart of this thesis is:

As little observability of citizens in every day’s transactions and 
as much security against misuse and fraud as possible. 

This is not an impossible dream, this is a vision that can become reality if citizens are getting more
conscious and demanding rather than getting distracted by the exciting features of today’s applica-
tions. The customers, employers, tax payers, voters, i.e., all individuals of an information society, per-
form numerous transactions with each other and with provider organizations every day. Almost any of
these transactions leaves digital traces about individual clients at the provider’s organization. Since
digital traces are easily accumulated into digital profiles on individual behavior, the privacy of any
individual is at risk. The problem should neither be disregarded as a hobbyhorse of some frustrated
researchers or as the paranoia of some radical dropouts; it is a serious threat to democratic societies.
Privacy threats are insidious for two reasons. (i) They are not easy to quantify because its impacts are

1) The term “usee” describes those whose data is processed by computer systems but who usually do not use these computer
systems themselves.
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diffuse: What happens if patients face the fact that their medical records including genetic fingerprints
are released or sold to third parties, e.g., employers, insurance companies, pharmaceutical suppliers?
How will citizens (and also small enterprises) react if information about their consuming behavior,
social and political activities is available as digital goods on the Web? It is unrealistic to assume that
conformity to majority opinions would not increase under such conditions. (ii) Privacy threats are eas-
ily overlooked because individuals do not feel to be observed, therefore do not feel to be threatened
individually, and therefore feel little need to defend themselves appropriately. Unlike countries or large
enterprises engaged in information warfare [97], individuals seldom know their observers, can hardly
measure their loss of privacy, are usually not organized and only few are skilled to take appropriate
countermeasures. (iii) Privacy threats are ubiquitous through the installation of video cameras and
other biometric scanning technology. Places of public interest, roads, tunnels, bridges, gas stations,
train stations, airports, and ATM are only a few examples of non-stop video monitoring. The next
generation of public key infrastructures will replace passwords by biometric recognition facilities. A
profound overview of surveillance technologies has been compiled by DuncanCampbell [55] for the
STOA unit of the European Parliament and was presented to the European Parliament. Simson
Garfinkel has published a thorough analysis of privacy threats in the US [115]. 

The threat to privacy is illustrated by an episode in 1996 that has been partially documented at
the Cambridge Workshop on “Personal Medical Information — Security, Engineering, and Ethics” [2].
The British National Health Service (NHS) had proposed to build a UK-wide medical network in order
to increase efficiency of all transactions between General Practitioners (GPs), clinics, hospitals, phar-
macies and other points of care. After serious and persistent requests, it was promised that patient
data should not be sent in clear but only in encrypted form and the NHS as a national organization
had therefore looked for a method that was acceptable to the intelligence community. The NHS was
advised (if not oppressed) to employ an unpublished encryption mechanism called “redpike”. The ser-
vice’s obvious intention was to keep easy access to all data sent along the medical network. Had only
the patients been affected, this proposal supposingly would have been accepted without much noise. In
this case however, many medical doctors have felt not only their patients’ privacy threatened but also
their own, and so the British Medical Association (BMA) started a campaign against the NHS pro-
posal. (The controversy died out later because the NHS did not pursue the original plan further.)

Evidently, anonymity is not an end in itself. In small communities, anonymity can be counterpro-
ductive, and even in large societies it has to be balanced against other legitimate interests like for
example fighting organized crime, terrorism and money laundry. It shall be shown that for not so
small classes of applications fair privacy protecting solutions exist. It must be left to the democratic
process to decide about which technical infrastructures we want to face in the next millennium.
iv



           
Abstract
rganizing the interdependencies within and between communities is one of the ongoing challenges
of mankind. Once organizations are formed, companies run their businesses, and a legal system is

in place, there is an urgent need for procedures to perform legally binding transactions. This in turn
brings up the need for unforgeable documents or tokens of legitimation. Traditional examples are let-
ters and cheques with handwritten signatures or seals, hard-to-counterfeit bills, drivers licences and
passports with hardly removable pictures imprinted, etc. The implementations of legitimations change
as the technological paradigms change, but the need for legitimations persists. In information societies,
many of the traditional implementations are obsolete because they are no longer efficient and often too
costly. In addition, information technology often provides better approximations to the ideal proper-
ties of legitimations, e.g. unforgeability. Electronic commerce is one if not the pioneering area where
the new implementations of legitimations are developed, tested and put into everyday’s practice.
Examples are electronic wallets, phone cards, e-cash, e-tickets, etc.

While an amount of money can be regarded as a legitimation to consume a corresponding portion
of the national gross product, there are also other kinds of legitimations. This work starts by categoriz-
ing them and identifying important examples in real life. Namely, we distinguish personal and coin
legitimations. The former cannot be transferred between holders and the latter cannot be used more
often than a pre-specified limit. Orthogonal to these categories then are privacy requirements. This is
where electronic implementations are really superior to traditional implementations: Not only are they
more efficient, but they can achieve more privacy for holders of legitimations than the conventional
paper based implementations can. Such electronic implementations have been introduced in 1985 by
Chaum [60] as credentials. Holders can get a credential from an issuer and later show it to a verifier
without letting the issuer and verifiers recognize that they have issued and verified a credential of the
same holder (unlinkability). Although several cryptographic mechanisms for credentials have been sug-
gested since, formal definitions have been given only for the special case of electronic cash. We propose
a formal modular framework to define the different categories of credentials sketched above (including
electronic cash). Furthermore, we suggest the first mechanism for personal credentials that can be
shown many times in an unlinkable way. In order to achieve non-transferability, we suggest the use of
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biometric verification of holders without releasing any biometric data to more or less centralized data-
bases where they could be aggregated, analyzed and re-used in unintended ways.

In addition to privacy of holders, we also consider privacy of issuers of credentials (against verifi-
ers). This turns out to be useful in more complex applications. The final section presents the detailed
design of how compulsory health insurances can be billed without the health insurers even learning
which physician is treating which patient, let alone which patient gets which therapy or medicament.
This way, the trust relationship between patients and physicians can be protected optimally, and it is
nevertheless possible to identify falsely claiming physicians after the fact. 
vi



      
Kurzfassung
ine ständige Herausforderung jeder Gesellschaft ist es, einen verläßlichen Rahmen für die Bezie-
hungen ihrer Mitglieder (Individuen und Gruppen) herzustellen und aufrechtzuerhalten. Sobald

Organisationen gegründet sind, Firmen ihre Geschäfte betreiben und ein Rechtssystem installiert ist,
werden Verfahren zur rechtsverbindlichen Interaktion benötigt. Dies wiederum erfordert
fälschungssichere Dokumente oder Ausweise. Traditionelle Beispiele sind gesiegelte oder unterschrie-
bene Briefe, unterschriebene Schecks, schwer fälschbare Geldscheine, Führerscheine oder Reisepässe
mit aufgedruckten Passbildern. Die Form der Legitimationen mag sich entsprechend der technologi-
schen Paradigmen einer Gesellschaft verändern und weiterentwickeln, aber die grundsätzliche Notwen-
digkeit von Legitimationen bleibt bestehen. In einer Informationsgesellschaft sind viele der
herkömmlichen, d.h. papiergestützten Formen überholt, weil sie zu ineffizient und oft auch zu teuer
sind. Überdies erlaubt Informationstechnologie häufig bessere Annäherungen an die idealen Eigen-
schaften von Legitimationen, z.B. Unfälschbarkeit. E-Commerce, ist eines wenn nicht sogar das füh-
rende Gebiet, auf dem die zukünftigen Formen von Legitimationen entwickelt, erprobt, und
wahrscheinlich auch flächendeckend eingesetzt werden. Beispiele sind elektronische Brieftaschen, Geld-
karten, e-cash, e-tickets, etc.

Es gibt neben Geld weitere Sorten von Legitimationen2, und die vorliegenden Arbeit beginnt mit
ihrer Klassifizierung illustriert durch praktische Beispiele. Im wesentlichen unterscheiden wir zwischen
persönlichen und Münz-Legitimationen. Erstere können unter Besitzern nicht weitergegeben werden,
während letztere nur begrenzt oft benutzt werden können. Orthogonal zu dieser Unterscheidung
betrachten wir Anonymitätsanforderungen—oder stärker Unverkettbarkeitsanforderungen der Besitzer
von Legitimationen. Auf diesem Gebiet bieten digitale Implementierungen von Legitimationen qualita-
tive Vorteile gegenüber herkömmlichen: Sie sind nicht nur effizienter herzustellen, zu speichern und zu
prüfen, sondern können tatsächlich Unverkettbarkeit der Transaktionen desselben Besitzers erzielen.
Kryptographische Implementierungen sind erstmals 1985 von Chaum [60] untersucht und unter dem

2) Volkswirtschaftlich kann Geld als Legitimation oder Anspruch auf einen entsprechenden Teil des Bruttosozialprodukts
angesehen werden.

E

vii



    
Begriff Credentials eingeführt worden. Hier kann ein Besitzer sein Credential von einem Anbieter
bekommen und es später einem Dritten (Prüfer) zeigen, ohne daß Anbieter und Prüfer hinterher
erkennen könnten, daß sie mit demselben Besitzer zu tun hatten. Obwohl seitdem mehrere Verfahren
für Credentials vorgeschlagen worden sind, gibt es formale Definitionen bisher nur für den Spezialfall
Münz-Credentials. Wir geben eine formale modulare Definition für alle oben beschriebenen Arten von
Credentials. Weiterhin geben wir die erste Konstruktion für persönliche Credentials, die mehrfach
unverkettbar gezeigt werden können. Um Weitergabe der Credentials zu verhindern, untersuchen wir
den Einsatz biometrischer Erkennungsverfahren, wobei die biometrischen Daten der Credentialbesitzer
nicht in zentrale Datenbanken gelangen können, in denen sie gesammelt, analysiert und in
unerwünschter Weise weiterverwendet werden könnten. 

Über die Unverkettbarkeitsforderungen von Besitzern hinaus betrachten wir hier erstmals auch
Anonymitätsforderungen der Anbieter gegen Prüfer von Credentials. Dies kann in komplexeren
Anwendungsgebieten wünschenswert oder nötig sein. Im letzten Kapitel entwerfen wir detailliert, wie
mit gesetzlichen Krankenversicherungen so abgerechnet werden kann, daß die Versicherer nicht einmal
erfahren, welcher Arzt welchen Versicherten behandelt, geschweige denn welcher Patient welche
Behandlung und welches Medikament bekommt. Auf diese Weise wird das Vertrauensverhältnis zwi-
schen Arzt und Patient optimal geschützt, und dennoch können Ärzte nachträglich identifiziert und
zur Verantwortung gezogen werden, wenn sie nicht erbrachte Leistungen abrechnen oder überhöhte
Gebühren in Rechnung stellen.
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Introduction
ore and more interactions within and between the sectors of our information societies rely upon
electronic services and media. The work flows in business, industry, healthcare, administration,

insurance, press and TV are getting more mediated by computer networks and they provide more and
more digital services to each other and to consumers; for example, electronic commerce, electronic
cash, credit cards, Pay-TV, insurance cards, etc. In general, service consumers request access to cer-
tain services that are provided by service providers. Usually, access to a service shall or must be con-
ditioned by a legitimation of the provider (to offer the service) and by a legitimation of the consumer
(to obtain the service). Furthermore, providers and consumers may have an interest in protecting their
privacy—against each other, or against third parties. In particular, legitimation systems need to
ensure:

INTEGRITY REQUIREMENTS

(i) Provider Legitimation: Only1 licensed providers shall provide a service.

(ii) Consumer Legitimation: Only authorized consumers shall access a service.

(iii)Unforgeability: Legitimations of providers and consumers cannot be forged.

CONFIDENTIALITY REQUIREMENTS

(iv)Privacy Protection: Service consumers and service providers shall not be unnecessarily observable.
The most interesting options are to protect the consumers’ privacy against the providers and third
parties and the providers’ privacy against third parties who might verify legitimations later on.

Legitimations to access a service can be much more sophisticated than just by a provider and a con-
sumer legitimation. In general, legitimations can additionally depend on the time or the order of access

1) Alternatively, we could have required the stronger “iff” instead of an “if only”. This would imply an availability require-
ment, namely that every provider who is licenced also provides the respective service. As usual, such availability require-
ments cannot be enforced by digital means, and not even by legal proceedings. Putting a service to action relies completely
on the provider. 
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1 INTRODUCTION
requests, the number of consumers participating in one access request (dual control), etc. All these
extensions are not considered explicitly in the following, but the solutions presented can be extended
to reflect some of them as well.

Digital legitimation systems are to create, control, manage or delete the legitimations to use ser-
vices in a legally effective way. From now on, we consider the legitimations themselves as services,
which can be provided and obtained. The following work outlines a modular framework for legitima-
tion systems that satisfy the above security requirements (i)-(iv). Two optional kinds of consumer
legitimation are distinguished: Physical identity of the consumer and consumability of legitimations.
Combinations of these properties result in the following four categories of legitimations.

Free Legitimations  are not personalized and are not consumed when being used. They can be
freely copied and transferred among holders.

Personal Legitimations  are personalized to human holders but are not consumed when being
used. Holders can make copies of their personal legitimations but cannot transfer them among each
other (e.g., driver’s licences).

Coin Legitimations  are not personalized but are consumed when being used. Holders cannot make
copies of their coin legitimations but can transfer them among each other (e.g., electronic coins, e-
cash).

Bond Legitimations  are personalized and are consumed when being used. They can neither be cop-
ied nor transferred among holders.

More complex legitimations can be constructed by combining legitimations of the basic categories
(e.g., driver’s licence AND e-cash, etc.). Furthermore, hierarchies of legitimations are common, e.g.
regional authorities provide licences to schools to provide reports. The reports in turn serve to the
graduates as licences to attend a college, etc. Surely more work is needed to cover other features, like
effective service availability, i.e., fault tolerance, delegation, etc. All these extensions are not covered
in the sequel. 

We consider  legitimation systems of each of the four basic categories, give semi-formal security
definitions with respect to requirements (i)-(iv) above and propose efficient cryptographic implementa-
tions, i.e. without using cut-and-choose techniques. Since there is considerable work on coin legitima-
tions (e.g., electronic coin systems, payment systems, etc.), we focus upon the other categories and,
orthogonally, upon service provider privacy. Finally, we present a complete solution to reimburse
expenses for medical treatment and medicaments by compulsory health insurances, which is applied to
the German health care system as an example.

We follow the pioneering work of David Chaum [58,60,65] who has introduced the term creden-
tials for legitimations that achieve strong privacy for holders by allowing them to use different pseud-
onyms in their various relationships with issuers and verifiers.

1.1 Contributions to Cryptography

This work introduces notations both for defining cryptographic schemes and for constructing particu-
lar instances (Section 3 on p.13). The definitory part uses ideas of the theory on abstract data types.
2



1.2 CONTRIBUTIONS TO MEDICAL INFORMATICS
The constructive part uses a kind of declarative programming language that includes calls of local or
multi-party sub-protocols. The notation captures security parameters, pre-computed constants of a
scheme, generation of keys and other local or multi-party operations as well as integrity and confiden-
tiality properties, be they formulated probabilistically, algebraically or asymptotically.

Extended proof-of-knowledge schemes are introduced in Section 4.1 on p.34. They are a generaliza-
tion of diverted proofs of knowledge first defined by Okamoto, Ohta [173]. 

A personal credential scheme is defined and an efficient construction is presented in Section 5.4 on
p.90. Personal cryptographic modules of each holder bind their credentials to their respective biomet-
ric identities. Such credentials cannot be transferred among holders unless they break their personal
cryptographic modules. However, the cryptographic modules cannot accumulate information of past
interactions nor can they release (bits of) the biometric identities of their holders. Moreover the issuing
and showing of such credentials is unlinkable even against collaborating issuers and verifiers.

A new restrictive blind group signature is presented in Section 6.4 on p.129. It can replace the
restrictive blind signature scheme in the construction of coin credentials in Section 5.5 on p.110 in
order to obtain a coin group credential scheme. This is described in Section 7.2 on p.143.

1.2 Contributions to Medical Informatics

Computerizing the health care sector is a necessity and a substantial threat at the same time [19]. It is
necessary in order to increase efficiency and to keep cost under control, and it introduces the threat of
exposing highly sensitive and personal data to unintended persons. The threat is substantial for two
reasons: 

• Computerized medical and billing records will, once they are established, almost certainly be
accessible also by unintended insiders, i.e. personnel of hospitals or general practices, or outsiders,
i.e., adversary attorneys or corporations like health insurers or employers of a patient. 

• An increasing number of health care providers is involved in the modern caring processes (shared
care). The more practises, specialists, pharmacists, etc. are involved in each case, the more diffi-
cult it becomes to keep the door closed against unintended outflow of patient data.

It is a major challenge to design medical and billing records that reflect the diversity of health care
processes; and it is an even bigger challenge to properly respect the legitimate privacy interests of the
patients and the physicians. It is by far not enough to simply plug in a secure database or a secure
payment system. This can be seen also from the various standardizing activities CEN TC 251 [231],
OMG-CORBAmed [240] and others. A recent overview by Grimson, Grimson and Hasselbring is found
in [137].

A particular problem arises in the case where cost for medical treatment and medicaments are
reimbursed by a compulsory health insurer. Compulsory health insurers charge their policy holders
according to the income, not the state of health of the policy holders. In Germany, for example, com-
pulsory health insurers turn over about half of all cost in health care. In contrast to private health
insurers who want to know which policy holder incurs which cost, compulsory health insurers do not
generally need to know this correspondence. In this case, credential schemes and group credential
3



1 INTRODUCTION
schemes can be applied in order to achieve sufficient privacy for the patient-doctor relationships
against health insurers (Section 8 on p.145).

1.3 Organization of the Work

An informal introduction to legitimations and their typical integrity and confidentiality requirements
is given in Section 2 on p.5. Different integrity requirements naturally induce the categorization into
free, personal, coin and bond legitimation systems suggested earlier. The notation and cryptographic
assumptions for sections 4 through 7 are summarized in Section 3 on p.13. The fundamental crypto-
graphic primitives (proofs of knowledge and restrictive blind signatures) are introduced in Section 4 on
p.33. Section 5 on p.59 presents the definitions of the four categories of credential primitives. In
Section 6 on p.123 we give a definition of blind group signatures and suggest efficient implementations
for one-time blind group signatures. In Section 7 on p.141, we define group credential primitives.
Finally, we show in Section 8 on p.145 how compulsory health insurances can be charged in a privacy
protecting but yet unforgeable way in order to reimburse expenses for medical treatment and medica-
tions. All the primitives introduced have proved to be useful for this challenging task in one way or
another.

1.4 System Complexity and the Rigidness of Security Arguments

The cryptographic mechanisms presented in this work span from relatively simple and well known
mechanisms to highly complex interactive protocols using the simpler mechanisms as building blocks
and involving several participants. We are going to present proofs of security for simpler cryptographic
mechanisms and gradually decrease the rigidness of security arguments when we proceed to more com-
plex cryptographic systems. We make this approach explicit by stating the security claims of simpler
mechanisms as propositions, while stating the security claims of more complex cryptographic mecha-
nisms as “security suggestions”. The security arguments following “security suggestions” are termed
“security considerations”, which indicates less rigidness than a mathematical proof and allows some
degree of heuristic reasoning. We recognize that some of the security considerations have a potential of
being formalized more deeply and using less heuristic reasoning. Quite possibly the cryptographic
mechanisms themselves may have a potential to be modified so as to allow more rigid security consid-
erations. This may be subject to further research.
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AGuided Tour to Legitimations
“The issues that divide or unite people in society are settled
not only in the institutions and practices of politics proper,

but also, and less obviously, in tangible arrangements of steel and concrete,
wires and semiconductors, nuts and bolts.”

— Langdon Winner [226]

legitimation is any means to authorize and possibly also to control access to resources. Those
who issue and/or verify legitimations are called issuers and verifiers, respectively; or simply pro-

viders if we do not distinguish them. Note that “provider” is a rather broad term here that includes
any kind of verifier—even, for example, courts. Those who receive legitimations are called owners. In
general, each party, i.e., natural person or legal entity, can take one or more of the above roles.

In the following, we will regard legitimations as permissions or privileges of their owners. In princi-
ple, legitimations can as well represent obligations, prohibitions, or compulsions of their owner. We
shortly come back to these in Section 2.5 on p.11. Legitimations are useful for providers to co-ordinate
many parties’ demands for certain resources, which in turn might be legitimations themselves. There
are countless examples for legitimations for more or less specified services in all societal, business or
healthcare affairs: identity cards, membership cards, drivers’ licenses, insurance policies, school
reports, cash, medical prescriptions, voting permits, etc. Sometimes, owners keep their legitimations
by means of personal physical tokens such as plastic-, magnetic-, inductive-, or smart cards, or certi-
fied paper document. Alternatively, owners may delegate to manage their legitimations to some agent.

We are interested in designing legitimation systems, i.e., computer systems to manage legitima-
tions. Since many kinds of legitimations are considered personal privileges, their owners will seek for
personal control over these legitimations. As the growing popularity of organizers and other mobile
user devices (MUD) [185] shows, owners are willing to put significant trust into equipment under their
own control and we therefore consider mobile user devices a promising approach for owners to keep
and manage their legitimations. A mobile user device is a piece of autonomous hardware with its own
power supply, computing, storing, input/output facilities, and equipped with proper software. For
instance think of a personal digital assistant, organizer, palmtop computer or programmable cell

A
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2 AGUIDED TOUR TO LEGITIMATIONS
phone. Providers often use more powerful stationary provider machines like POS-terminals or ATMs.
We are particularly interested in off-line legitimation systems, which allow holders to connect their
mobile user devices to each other or to stationary provider machines and which do not require
(remote) third parties being on-line in order to process transactions. Connections can be made either
by point-to-point connection (serial, infrared, direct plugging) or via some network (wired or wireless).

2.1 Basic Legitimation Systems

Basic legitimations have so simple access structures that ownership is a meaningful concept, i.e., we
assume by default that basic legitimations are issued to an individual, the owner. (We consider more
complex legitimations like medical records in Section 2.5 on p.11.) Basic legitimations are character-
ized by four quantities

Issuer party who has issued or provided the basic legitimation.
Content specifies a right or privilege, e.g., in the real world, 
Owner party to whom the basic legitimation has been issued,
Holders one or more parties who actually hold a digital instance (copy) of a basic legitimation.

Such an instance is called a certificate1.

The issuer creates a basic legitimation by assigning some privilege (content) to an individual (owner).
By issuing a respective certificate, the issuer creates an instance of the basic legitimation. Typically,
the issuer provides the certificate to its owner, but may as well provide it to a third party who receives
it in behalf of the owner. Anyone who holds an instance (certificate) of a basic legitimation is called a
holder of it. In general, different holders can hold certificates, of the same basic legitimation. Two cer-
tificates of the same basic legitimation can be different or exact copies of one another.

2.2 Effectiveness and Security Requirements

It is common to distinguish effectiveness (in case of no attacks) and availability, integrity, confidenti-
ality (in case of attacks). Effectiveness (Section 2.2.1 on p.7) is a general requirement on each system.
Availability is not considered here, because it cannot be enforced by digital means alone. On basic
legitimation systems there are three integrity requirements, namely legitimation of issuers
(Section 2.2.2 on p.7) and authorization of holders (Section 2.2.3 on p.7) and certification of certifi-
cates (Section 2.2.4 on p.7). The integrity requirements serve the issuers’ interests in the first place.
The specific confidentiality requirements of basic legitimation systems are consumer privacy and issuer
privacy. The interesting part of consumer privacy is to keep holders anonymous against verifiers and,
as far as possible, also against issuers. (The owner of a basic legitimation can be anonymized by using
a pseudonym identifier in the respective certificates.) We consider holder privacy in Section 2.2.5 on
p.7. The interesting part of issuer privacy is keeping issuers anonymous against verifiers. We consider

1) Note that the terminology about “certificates” is far from consistent throughout the literature and the evolving variety of
computer products, particularly authentication systems [176].
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2.3 REAL-LIFE EXAMPLES
issuer privacy in Section 2.2.6 on p.7. Clearly, holder and issuer privacy serve the interests of holders
and issuers, respectively. 

2.2.1 Effectiveness

If a licensed issuer provides a basic legitimation, each of its instances (certificates) is acceptable to any
verifier.

2.2.2 Issuer Legitimation

Based on a directory of issuers and any instance (certificate) of a given basic legitimation, a verifier
can check if the issuer was legitimated to issue the basic legitimation (issuer legitimation).

2.2.3 Holder Authorization

Based on any instance (certificate) of a given basic legitimation, a verifier can check if the actual
holder uses the certificate in a legitimate way (holder authorization). Some types of basic legitimations
can be used by any holder. Other types of basic legitimations can be used by their owner only. Still
other types can be used according to how often they have been used before or when or where they are
used.

A basic legitimation may change in certain ways when it is used, and thereby its holder authoriza-
tion may change accordingly. For some types of basic legitimations once they are issued their content
and owner cannot be changed anymore. Other types of basic legitimations automatically change their
owner when they are used. For example, the previous owner loses them like a physical token that is
given away, and the one to whom they are presented becomes the new owner.

2.2.4 Certification

Based on any instance (certificate) of a given basic legitimation, a verifier can check if the content and
owner are properly certified.

2.2.5 Holder Privacy

Certificates of a basic legitimation shall not reveal the identity of their holders to any verifier. Even
stronger, if an issuer issues two certificates to holders who later present them to a verifier, then the
verifier shall be unable to tell, even if he collaborates with the issuer, which issuing and which showing
refers to the same holder.

2.2.6 Issuer Privacy

Certificates of a basic legitimation shall not reveal the identity of their issuers to any verifier. Since
issuers shall be kept responsible for the basic legitimations they issue, there needs to be a mechanism
to later deanonymize issuers. Therefore, we will only consider the case that issuers are anonymized
within a group of equally legitimated issuers. Deanonymizing an issuer shall be possible only by the
help of her managing group.

2.3 Real-Life Examples

Before we are going to categorize basic legitimations, consider the following real life examples: 
7



2 AGUIDED TOUR TO LEGITIMATIONS
EEEExxxxaaaammmmpppplllleeee    ((((iiii))))    (Certified Document) An organization, company, or institute can certify documents
such that recipients of those documents can prove to third parties the validity of the content of that
document (for example contracts). Holders of a certified document can show it as often as they like,
regardless who they are or who the owner of that document is. By showing a certified document to a
third party, the actual holder may or may not reveal her identity.

EEEExxxxaaaammmmpppplllleeee    ((((iiiiiiii))))    (School Reports) Schools2 can issue school reports to students who have passed their
exams. Graduates can show their reports, e.g., to companies or universities in order to apply for jobs
or university courses. Verifiers accept school reports if they are valid and the issuing school is properly
accredited. School reports are not consumed after being shown, but their content and owner cannot be
changed. The typical stages of using a school report are depicted in Figure 2–1 on p.8.

EEEExxxxaaaammmmpppplllleeee    ((((iiiiiiiiiiii))))    (Drivers’s Licenses) After passing some theoretical and a driving test, one is issued a
driver’s license. For example, on the occasion of a vehicle spot check, these licenses have to be shown
to a police patrol. A driver’s licence allows the police patrol to check whether the individual actually
driving, i.e. the holder, is in fact the individual shown on the portrait of the driver’s licence, i.e., the
owner. Like school reports, drivers’ licenses can be shown over and over again during their validity
period, and neither their content nor owner can be changed. 

EEEExxxxaaaammmmpppplllleeee    ((((iiiivvvv))))    (Electronic Coins) Customers can withdraw electronic coins from their bank
accounts on certain conditions (account not overdrawn, good credit rating, etc.) and they can freely
pay their electronic coins to other individuals. A payee accepts electronic coins if the coins are valid
and the respective bank of issue holds a proper licence. By a successful payment, the owner of the elec-
tronic coin, if we regard it as a basic legitimation, changes from the payer to the payee. Payees can
later deposit the received coin at the bank of issue (or any of its agents). After a successful deposit, the
owner changes again from the intermediate payee to the bank finally receiving the coin. The typical
stages of using electronic coins are depicted in Figure 2–2 on p.9. In some electronic payment schemes,
coins can be paid several times from individual payer to individual payee before they are deposited
back into a bank. This is indicated by the dotted part of Figure 2–2 on p.9.

2) This example is most realistic if one thinks of “virtual” schools or colleges providing correspondence courses.

Figure 2–1 School Reports
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2.4 CATEGORIZATION OF BASIC LEGITIMATION SYSTEMS
EEEExxxxaaaammmmpppplllleeee    ((((vvvv))))    (Phonecards) Prepaid phonecards can be regarded as multi-show electronic coins, each
show representing a partial payment. They are consumed after a fixed number of payments. If the
bound is , we call these coins k-show.

EEEExxxxaaaammmmpppplllleeee    ((((vvvviiii))))    (Bonds, Stocks) Customers can buy or sell securities, mortgage bonds, bonds or stocks
by their banks or brokers. Regarded as basic legitimations, these examples are similar to electronic
coins because their owner changes upon successful buying or selling, respectively. Unlike electronic
coins however, they can be sold by their owner only (Figure 2–3 on p.9).

Example (vii) (Airfare Tickets) Customers can get airfare tickets issued, but only the owner of
an airfare ticket can use it and after it has been used, it is cancelled. In terms of a basic legitimation,
the owner of an airfare ticket is de-assigned at the moment he passes the gate at the departure termi-
nal.

2.4 Categorization of Basic Legitimation Systems

Motivated by the examples of the previous section, we now derive four categories of basic legitimation
systems according to their sort of holder authorization. We first give a short description of each cate-
gory and then characterize them in terms of the simple model introduced in Section 2.1 on p.6.

Free Certificates  represent basic legitimations that can be shown by their holders as often as they
like, and their content never changes. See Section 2.3 on p.7, Example (i) ((Certified Document)).

Figure 2–2 Electronic Coins

Figure 2–3 Bonds, Stocks
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2 AGUIDED TOUR TO LEGITIMATIONS
Personal Certificates  represent basic legitimations whose content and owner cannot be changed.
Personal certificates can be shown only by their owner. See Section 2.3 on p.7, Example (ii) ((School
Reports)) and Example (iii) ((Drivers’s Licenses)).

Coin Certificates  represent basic legitimations whose owner changes when any of its instances is
transferred. The previous owner (payer) is then replaced by the recipient (payee). See Section 2.3 on
p.7, Example (iv) ((Electronic Coins)) and Example (v) ((Phonecards)).

Bond Certificates  represent basic legitimations that can be transferred by their owner only and
where the owner changes when any of its instances is transferred. The previous owner is then replaced
by the recipient. See Section 2.3 on p.7, Example (vi) ((Bonds, Stocks)) and Example (vii) ((Air-
fare Tickets)).

Next we ask for each basic legitimation system how its holder authorizations can be enforced. A
straightforward implementation is to keep and manage the legitimations of all participants in a central
database system similar to an account management system. This is in fact what governments, corpo-
rations, insurers, and other businesses do today. One of the major problems with centralized imple-
mentations is that customers and clients can never be certain who has or can obtain what personal
information about them. Probably the only practical way to alleviate this problem is to make sure
that the numerous institutions that keep and manage legitimations have a sound privacy policy in
place and are monitored by independent organizations to make sure they adhere to these policies. In
steadily globalized businesses around the world, however, the above privacy problem tends to over-
whelm any sound privacy policies and privacy monitoring organizations. The driving forces are merg-
ers and acquisitions of companies across business sectors (banks and insurers, telecoms and media
industries), deregulation and privatization of former government institutions (telecoms and postal
authorities) and ever more refined tracking methods such as genetic fingerprints and biometric data.
Personal information about customers is becoming an ever more valuable resource in itself. 

In the following, we are interested in decentralized implementations of legitimation systems, which
have the potential of really solving the privacy problem because they give customers back the control
over their personal legitimations and in particular to use them in a privacy oriented way. We will
shortly investigate for each type of basic legitimation, which problems must be solved by any decen-
tralized implementation managing this type of basic legitimation.

Free legitimation systems require no holder authorization at all and can be implemented by digital
certificates that can be shown by any holder.

For personal legitimation systems there need to be measures in place enforcing that they are
indeed shown by their owner. In case of human owners and holders, the holder authorization problem
can be solved only by biometric recognition means.

For coin legitimation systems there need to be measures in place that enforce the change of owner-
ship after being shown a specified number of times. There is a pro-active and a retro-active approach
to solve this problem. The pro-active approach is to prevent holders from successfully showing coin
certificates that they have already shown before. The retro-active approach is to automatically reveal
the identity of holders who show coin certificates that they have already shown before. The difficulty
of enforcing change of ownership is that either holders must be prevented from proliferating copies of
10
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their coin certificates in an uncontrolled fashion, or there must be a powerful verification infrastruc-
ture that can monitor the showing of each single copy of coin certificates in a timely manner. 

For bond legitimation systems the holder authorization problems of both personal and coin legiti-
mation systems have to be solved.

2.5 More Complex Legitimation Systems

This section gives a short outlook on more complex legitimation systems. Since they are not analyzed
further we only present them as illustrating examples.

Holders of personal, coin or bond certificates sometimes need to make copies of their certificates in
order to enable delegates to show these certificates to third parties in behalf of their holders. For
example, a graduate student Alice can make a copy of her degree certificate and give it to a friend Bob
so he may prove to someone else that Alice owns the degree, while Alice herself stays home sick. This
works only if the verifier does not require Alice to show up and verify her biometric identity because
he knows her. Likewise, Alice may wish to make a copy that only Bob can use to prove her degree.
Such requirements raise the issue of derived certificates. For example, from a personal certificate one
can derive a free certificate whose content is the complete original personal certificate including its
owner and holder. 

In general, any action of a legitimation system can be guarded by legitimations of another content
type. For instance, in Example (ii) on p.8 only accredited schools may issue school reports. In Example
(iv) ((Electronic Coins)), only banks of issue (and their agents) are legitimated to mint cash or
cheques. The guarding legitimations are usually regarded as superior legitimations and act as licenses.
In general, this leads to a hierarchy of legitimation types, where legitimations of a parent type guard
actions on legitimations of the child types. In practice, these type hierarchies have only a few levels,
e.g., school reports, school accreditations, federal or state law. 

If a content type represents disadvantages for the respective owners of certificates, and if therefore
owners have a natural interest in holding them back, the certificates are called negative [65]. In paper-
based implementations, negative certificates are usually not stored and managed by their owners
alone. For instance, the prosecution authorities create and run criminal records of individuals. For
negative certificates, correctness, unforgeability and privacy requirements carry over from above, but
integrity requirements are imposed by the “other side”. For example, it is the providers who require
certificates being consumed after payment if the certificates represent credit. But if they represent
debit it is the owners who require them being consumed after being “paid”. This switch of interest has
severe implications on how to enforce the integrity requirements. See for example [65].
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3

Notations and Assumptions
he general notation is summarized in Section 3.1 on p.13, protocols and operations are intro-
duced in Section 3.2 on p.15 and Section 3.3 on p.22. In Section 3.4 on p.27 and 3.7 the com-

plexity theoretic and other assumptions relevant to this work are stated. Commonly used symbols are
listed and explained in Index A.

3.1 General Notation

3.1.1 Probabilities

Let be a sample space of simple, alternative events, and call any subset  an event of S. We
will only consider discrete sample spaces1. A probability distribution  on a sample space S is a
mapping from events of S to real numbers such that the following probability axioms are satisfied:

1) For each event : . .

2) . .

3) For two disjunct events :. .

The set of samples with positive probability is denoted . If S is finite and every simple event
 is assigned the same probability , then we have the uniform probability dis-

tribution on S. The probability of an event  is , where  and  denote the number
of simple events contained in E and S.

Taking a simple, alternative event from S and assigning it to a variable x is denoted by . If
an event is taken from S according to the uniform distribution and assigned to x, then we say that it
is chosen from S “uniformly at random” or simply “at random” and we denote this by . A (dis-
crete) random variable X is any function from a sample space S to the set  of binary strings2.

1) Sample spaces are usually subsets of the reals. However, as usual in complexity theory, the following sample spaces are all
subsets of the binary strings .

2) Only discrete random variables are considered that range over subsets of binary strings.
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3 NOTATIONS AND ASSUMPTIONS
For a random variable X and a string , we define the event  to be the set
; thus

. (3.1)

In the following work, important examples of random variables are the outputs of probabilistic algo-
rithms and protocols. Therefore, the elementary notation (3.1) will be suitably extended in
Section 3.2.1 on p.16.

3.1.2 Algebraics

A family of objects is a function from an index set I to some object set Z. It is denoted  indi-
cating that index  is mapped to element . A family of random variables is called an
ensemble.

If  defines a function from set A to set B, it can be naturally extended to a set function 
from any subset  to subsets of B as follows

. 

For convenience, we will also write  instead of  because the two different uses of f are suffi-
ciently distinguished by its argument.

If  is an injective function from A to B, then  denotes the function that assigns to each
element  its pre-image. If  is not injective, then  denotes the set-valued function
that assigns to each element  its set of pre-images.

The length of a bitstring is denoted .3 The binary length of a number  is the length of
the binary representation of that number, denoted as .

An element of a vectorspace V of finite dimension  over a field F is usually written , and
the i-th component of  ( ) is denoted .

If we rewrite expressions or equations in several steps, we usually display each step in a separate
line. To help the reader understand the rewriting from line (a) to the next line (b), we give hints in a
smaller font on the right hand side of line (b).

3.1.3 Asymptotics

The phrase “for all k sufficiently large” means . Consider three functions ,  and
 whose image is included in the real interval .

•  is said to vanish faster than every polynomial iff for all  and sufficiently large inputs k:
. Sequences behaving like  are said to be negligible. 

•  is said to approach 1 faster than every polynomial iff for all  and sufficiently large
inputs k: . Sequences behaving like  are called overwhelming. 

•  is said to vanish slower than some polynomial iff there is a  such that for sufficiently
large inputs k: . Sequences behaving like  are called non-negligible. 

3) The index distinguishes the symbol  from the symbol , which returns the absolute value of its argument.
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3.2 PROTOCOLS, SEMANTICS, INTERFACES AND OPERATIONS
Note, that non-negligible is NOT the negation of negligible, but rather a very strong negation of it.
There are sequences in between, which are neither negligible nor non-negligible. Here is an example:

 

A function  is said to be big-O of , denoted , if there is a constant 
such that for all sufficiently large : .

3.2 Protocols, Semantics, Interfaces and Operations

For protocols, we use the computational model of interactive Turing machines (ITM) introduced by
Goldwasser, Micali, and Rackoff [123].

Definition 3.1 Interactive Turing Machine (ITM)

An interactive Turing machine (ITM) is a probabilistic Turing machine T equipped with a read-only
input tape I, a work tape W, a random tape, the same number  of read-only communication
tapes  ( ) and write-only communication tapes , and a write-only output tape O. In
order to model additional access to external information, ITMs can optionally be equipped with a
read-write composition tape Q. This tape serves to provide input to an ITM that is inconvenient to
feed through its input tape. It may model a-priori knowledge that an ITM has prior to a computation.
Or, if ITMs are sequentially composed such that one takes some or all of the output of the other as
input, the composition tape is used to model persistent memory accessible by both machines. 

Before an interactive Turing machine is executed, the input tape contains the strings to be taken
as input. The communication tapes and output tapes are empty. The random tape contains an infinite
sequence of random bits, and can be scanned only from left to right. We say that an interactive Turing
machine flips a coin if it reads the next bit from its random tape. For specific ITMs, it is more conve-
nient to talk about choosing elements uniformly at random from a specified set R than just about flip-
ping coins. We say that an interactive Turing machine chooses an element  from R if it repeatedly
flips k coins until it finds some . We call this procedure the pick-and-test algorithm (PAT). The
elements  are called internal choices. Throughout this work, the bits on the random tape of an inter-
active Turing machine are presumed uniformly distributed. The way how ITMs choose elements from
a domain R ensures that the chosen elements are uniformly distributed, too. 

For all but the random tape, we re-use the tape identifiers also for the variables taking the respec-
tive strings as values, and we call the values of I, ,  and O, and Q: inputs, read-messages,
write-messages, outputs, compositional inputs and compositional outputs of T, respectively. 

The computation time of an ITM is the number of its computation steps. An ITM is called polyno-
mial-time if its computation time is bounded above by a polynomial in the length of its input. An ITM
is called efficient if its computation time is bounded above by a polynomial of degree  in the
length of the input to the ITM. Unless otherwise mentioned, ITMs are probabilistic polynomial-time
(PPT). If its computation time is not limited, the ITM is called computationally unlimited. ◆
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3 NOTATIONS AND ASSUMPTIONS
Remark:  Interactive Turing machines exchange data in untyped form, which is clear from the fact
that the tapes of an interactive Turing machine do not provide any information about how messages
are to be interpreted. The interpretation of messages is totally up to the ITMs reading the messages.

Definition 3.2 n-Party Protocol

An n-party protocol  is an n-tuple of ITMs  such that: 

• each pair of ITMs either share a pair of communication tapes (one in each direction) or none. If 
and  ( ) share a pair of communication tapes, they are said to be directly connected
and in this case the read messages of  are the write-messages of  and vice versa: 
and . In this case we use only the symbols  and  for write-only communica-
tion tapes.

• the graph  is connected, where  is an edge iff  and 
are directly connected. It is called the communication topology of pr.

Each ITM  ( ) of a protocol is called a party or participant. A protocol is called an algo-
rithm if it consists of only one participant, i.e., , otherwise it is called an interactive protocol. A
protocol  is starlike with center  if its communication topology is a star with center

: . 
The time model underlying interactive protocols in this work is synchronous linear time. Interac-

tive protocols can therefore be regarded as a sequence of consecutive rounds. Before the first round,
each machine reads its respective input tape. In each round  of the protocol, each
machine (i) reads a read-message from each of its read-only communication tapes and its optional
composition tape, (ii) performs some steps (i.e., local computations) using its work tape and random
tape and (iii) writes a write-message or special abort symbol to each of its write-only communication
tapes and optional strings to its output tape and composition tape. In the following round, each par-
ticipant’s read-only communication tape contains the write-messages provided by other ITMs in the
preceding round. Whenever a participant reads an abort symbol on any of its read-only communica-
tion tapes, it writes an abort symbol to all of its write-only communication tapes and then terminates. 

The computation time of a protocol pr on input  of respective participants  is
the sum of the computation times of all its participants. (A notation for the computation time of a
protocol will be introduced in Definition 3.10 on p.20.) A protocol is polynomial-time (sometimes
called computational) if its computation time is bounded above by a polynomial in the length of the
protocol’s input, i.e., the sum of the lengths of the inputs of all participants. A protocol is called effi-
cient if its computation time is bounded above by a polynomial of degree  in the length of the pro-
tocol’s input. A protocol is called computationally unlimited if there is no limit on its computation
time. ◆

3.2.1 Execution Functions

The behavior of an interactive Turing machine, i.e., its write-messages and outputs, is completely
determined by its inputs, random coins and read-messages. This leads to the definition of execution
functions as a probabilistic description of ITMs (see Beaver [9,10,11]).
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3.2 PROTOCOLS, SEMANTICS, INTERFACES AND OPERATIONS
Definition 3.3 ITM Execution Function 

Consider an ITM T and the sample space of all internal choices it can make. We call the simple events
of this sample space the (possible) executions of T. 

Formally, the probabilistic execution function of the ITM T is an ensemble, namely the family
 of random variables4 indexed by the tuple  of an input I, a sequence of

read-messages  and an optional message  from the composition tape of T. Each random variable
takes an input from the sample space of internal choices of T and returns a tuple  of
outputs, write-messages and an optional message written back to the composition tape of T. For each
particular input tuple , the probability assigned to each returned tuple 
is determined by the ITM T. Note that the probability distribution of the random choices made by T,
i.e. the bits written on the random tape, is presumed uniform. Taking a sample according to a random
variable  and assigning it to the output parameter tuple  is denoted:

. (3.2)

To keep the notation intuitive, we name the probabilistic execution function after the ITM (T) that
defines the probability distribution of the return values. And we write the index tuple 
of the family of random variables like an input to the ensemble. 

The deterministic execution function of T is defined as follows: On input I, some read-messages
 and internal choices , the output O, write-messages  and optional messages to the compo-

sition tape are returned. This function is denoted

. � (3.3)

Since all read-messages of participants of a protocol are the write-messages of other participants, the
behavior of a protocol, i.e., all write-messages and output messages are determined by the input mes-
sages and random coins of all participating ITMs. A particular behavior of a protocol is sometimes
called an execution, run or instance of the protocol. An execution is said to be aborted if any machine
writes an abort symbol during the execution, otherwise it is said to be successful. This leads to the def-
inition of the execution function of a protocol.

Definition 3.4 Protocol Execution Function

The probabilistic execution function of a protocol ,  is an ensemble, namely
the family of the following random variables indexed by the tuple  of inputs  and
optional composition messages  of all participants  ( ) of pr. Each random variable
takes an input from the sample space of n-tuples of internal choices of each participant and returns
the n-tuples , , , , , of outputs,
internal choices, read-messages and write-messages and optional composition messages of all partici-
pants. The probability distribution is over the sample space of n-tuples of internal choices of all partic-
ipants. Taking a sample according to this distribution, is denoted

4) Curly brackets indicate optional parameters. 

T
I C← Q{ }, ,

I C← Q{ }, ,( )
C← Q

O C→ Q'{ }, ,( )

I C← Q{ }, ,( ) O C→ Q'{ }, ,( )

T
I C← Q{ }, ,

O C→ Q'{ }, ,( )

O C→ Q'{ }, ,( ) T I C← Q{ }, ,( )←

I C← Q{ }, ,( )

C← ρ C→

O C→ Q'{ }, ,( ) Tρ I C← Q{ }, ,( )←

pr T1 … Tn, ,( )= n Ñ∈
I1 … In, ,( ) Ij

Qj Tj j 1 … n, ,∈

O1 … On, ,( ) ρ1 … ρn, ,( ) C1
← … Cn

←, ,( ) C1
→ … Cn

→, ,( ) Q1' … Qn', ,( )
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3 NOTATIONS AND ASSUMPTIONS
. (3.4)

The square brackets indicate to which participant a parameter belongs. 
The probabilistic execution function of a participant  is the projection of the probabilistic exe-

cution function of pr (where the n connected ITMs define one single ITM) to ’s outputs, internal
choices, read-messages and write-messages. More precisely, the probabilistic execution function of a
participant  is the ensemble of random variables (of the probabilistic execution function of pr) each
projected to the sample space times the output domain of respective participant .

The deterministic execution function of pr is defined as follows: For each , input ,
read-messages  and internal choices , it returns the output , internal choices , read-mes-
sages  and write-messages :

. (3.5)

Definition 3.5 Equivalence of ITMs
�

Two ITMs  and  are equivalent iff their probabilistic execution functions are equal. �

Definition 3.6 General Composition of ITMs

A general composition of  ITMs, denoted , is any set of n ITMs 
together with an effective description whether each two ITMs  for  share:

(a) their input tapes,
(b) their output tapes,
(c) ’s output tape with ’s input tape, 
(d) one of ’s read-only communication tapes with one of ’s write-only communication tapes,
(e) their (optional) composition tapes, or
(f) no tapes.

The ITMs  are called member ITMs of the composition . �

Observation 3.7

We can think of a general composition  as a schedule of computation that can be repre-
sented by one interactive Turing machine, but in general such an ITM is NOT uniquely determined.
In principle, a general composition  defines a partial order ‘<’ of all elementary steps of
all its member ITMs as follows. The direct predecessors of an elementary step s of  ( ) are
all elementary steps that are either a direct predecessor of s in  or an elementary step of some other
member ITM  ( ) that writes a message to a shared tape that is read by  in step s. A step r
is a predecessor of step s ( ) iff it r is in the transitive closure of the direct predecessors of s. We
say that an ITM T represents a given general composition  iff the total order of elemen-
tary steps of T can be embedded into the partial order ‘<’ of all elementary steps of 
and T reads all its inputs from one input tape, writes all outputs to one output tape, and uses only one
work tape, one random tape and one (optional) composition tape. In other words, any two ITMs rep-
resenting a general composition  can differ only in the order of elementary steps that
are independent of each other. 
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3.2 PROTOCOLS, SEMANTICS, INTERFACES AND OPERATIONS
All ITMs representing a general composition  have the same probabilistic execution
function, because they all produce their messages, which they write to their tapes, according to the
same probability distribution. This probabilistic execution function is uniquely defined by

. By writing  we mean the composition of ITMs or just any ITM repre-
senting it. Which meaning is intended will always be clear from the context.

3.2.2 Internal and External Interfaces

It is useful now to distinguish the input and output behavior of a protocol from its communication
behavior. We distinguish external interfaces, by which different protocols interoperate; and internal
interfaces, by which the participants of the same protocol interoperate. The definitions are given in
this and the following subsection.

Definition 3.8 Output Functions and External Interface

The probabilistic output function of pr is the projection of the probabilistic execution function of pr to
the product of the domain of its inputs times the domain of n-tuples of outputs of each participant.
Taking a sample according to this distribution is denoted

, (3.6)

where  ( ) denotes the input (output) of . The distribution of these random variables out is
defined naturally as follows:

= (3.7)

The projection of the output function to a particular participant  is denoted as

. (3.8)

The external interface  of pr is the list, as denoted in (3.6), of the input and output parameters
of each participant of pr. The external interface of a participant  of pr is the list of the input and
output parameters of participant .

If we mean the output function and it is clear from the context that we do not mean the execution
function, then—in order to enhance readability—we omit the identifier “out”.

If , …,  are m algorithms with matching external interfaces, and p is a predicate of arity
, then the following expression denotes the probability that

 holds after the result of running  on input
 has been assigned to , for  in this order:

�
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… Ôn ρn Cn
← Cn

→ Q̂n'{ }, , ,,[ ]
Tn

, ,( ) pr I1 Q1{ },[ ]
T1 … In Qn{ },[ ]

Tn, ,( )←

\

Ti

Oj[ ]
Tj outTj

pr I1 Q1{ },[ ]
T1 … In Qn{ },[ ]

Tn, ,( )( )←

EFpr
Tj

Tj

pr1 prm
3m 1+
p I0 Q0{ } O1 Q1{ } … Im 1– Om Qm{ }, , , , , , ,( ) prj
Ij 1– Qj 1–{ }, Oj Qj{ },( ) j 1 2 … m, , ,=

Prob p I0 Q0{ } O1 Q1{ } … Im 1– Om Qm{ }, , , , , , ,( ) O1 Q1{ },( ) pr1 I0 Q0{ },( )←
O2 Q2{ },( ) pr2 I1 Q1{ },( )←

…
;

Om Qm{ },( ) prm Im 1– Qm 1–{ },( )←

;

;

\[

]

19



3 NOTATIONS AND ASSUMPTIONS
Definition 3.9 Equivalence of Protocols
�

Two protocols  and  are equivalent iff their probabilistic execution functions are equal. �

Remark:  Note that two protocols can only be equivalent if their external interfaces have exactly the
same input and output parameters. A protocol instance is a protocol where all formal input parame-
ters are assigned actual values. In other words, a protocol instance is a protocol with no formal input
parameters. Thus, Definition 3.9 on p.20 applies also to protocol instances.

Definition 3.10 Acceptors, Expected Computation Time, Shared Input/Output

If an ITM is intended to accept or reject executions of a protocol (acceptor), then we use the special
symbols TRUE and FALSE for its return values. If an ITM aborts the execution of a protocol, we use
the special symbol  (bottom) as its return value. 

The computation-time of a protocol pr (see Definition 3.2 on p.16) whose participants 
take respective inputs , make internal choices  and deliver outputs 
that satisfy a given n-ary predicate  is denoted as follows:

. (3.9)

The expected computation-time of pr whose participants  take respective inputs 
and deliver outputs  that satisfy a given n-ary predicate  on inputs  is
defined as follows:

 .

Note that this expression is well defined also if an internal choice  ranges over an infinite domain.
This occurs, for example, in protocols that make a random choice within a loop that terminates upon
a condition depending on the outcome of the internal choice. (For more details see the remark follow-
ing Definition 3.15 on p.23.)

Next consider a protocol with two participants S, T which both share an input (output) parameter
a (b). Then we call a (b) a shared input (output) parameter and its values shared inputs (outputs),
respectively. Parameters that are not shared are called private. If all participants of a protocol share
an input (output) parameter, then this is called a common input (output) parameter. It is convenient
to denote the common parameters only once in the external interface. We allow to write common
parameter(s) in additional unlabeled square brackets. For example, consider a protocol

, (3.10)

where participants S and T take a common input x and respective private inputs a and b and return a
common output y and respective private outputs c and d. Often we use the equivalent and more con-
venient form:

. ◆
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3.2 PROTOCOLS, SEMANTICS, INTERFACES AND OPERATIONS
Definition 3.11 View Functions and Internal Interface

The probabilistic view function of pr is defined as the projection of the probabilistic execution function
to the internal choices, read-messages and write-messages. Taking a sample of pr on inputs  and
outputs  according to this distribution is denoted as follows:

(3.11)

where ,  and  denote the internal choice, read-messages and write-messages of . The
internal interface  of pr is the list of input and output parameters of all participants of the prob-
abilistic view function of pr as denoted in (3.11). The internal interface of participant  is the list of
input and output parameters of participant  of the probabilistic view function of pr.

Let protocol pr have participants  such that each  is directly connected to S. Let
 denote ’s read-messages from , and  denote ’s write-messages to . Then the selec-

tive view function of  on S

(3.12)

is defined as the distribution of the internal choices of  and their read-messages from S and
write-messages to S. The probabilities are over the random coins of all participants. Each sample
taken is called a view of T on S. A view of T on S is valid, if neither participant aborts the execution.
The deterministic view function and deterministic selective view function are defined as the respective
projections of the deterministic execution function. ◆

3.2.3 Protocol Composition and Decomposition

Next, we define compositions of protocols. Compared to the definition given by Feige and Shamir
[107], our definition is more general in the sense that the composed protocols may have more than 2
participants, and it is more special in the sense that the number of composed protocols is independent
of the input to the composition.

Definition 3.12 Composition of Protocols

A general composition of the protocols  is any protocol  defined by an effective descrip-
tion about:

(a) which value each input parameter of the protocols  takes either from an input
parameter of pr or from an output parameter of another protocol of  as long as no
cyclic dependencies arise, 

(b) which participants of  share their composition tapes, and 
(c) which value each output parameter of pr takes either from an input parameter of pr or from an

output parameter of one of the protocols . 
The protocols  are called member protocols, of .

A general composition is sequential if the member protocols are executed one after another, i.e. each
but the first member protocol starts execution only after the previous member protocol has stopped its
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3 NOTATIONS AND ASSUMPTIONS
execution and  ( ) may take as input values only inputs or outputs of the protocols
. ◆

Observation 3.13 Polynomial Composition

A general composition  of  is polynomial-time, if all member protocols are polynomial-
time (Definition 3.2 on p.16). This basically follows from the fact that if  is the security parameter of
the scheme containing ,  represents the number of protocols in the composition pr,
and  represents the number of steps of the most complex of protocols , then the
number of steps of the composition pr is bounded above by , which is itself polynomial in .

The opposite process of protocol composition is protocol decomposition. We only consider the special
case of decomposition at participant level. For example, we want to write an n-party protocol pr as an

 party protocol by regarding two or more of its participants as one ‘composed participant’. 

Definition 3.14 Protocol Refinement and Composed Participants

Let  be a protocol of  participants  (with unique parameter identifiers over all
square brackets) and let  be a partition of  into m (pairwise disjoint)
subsets such that 

 for all . 

Note that  denotes the number of participants of subset  and therefore . Fur-
thermore let  be the composition of the interactive Turing machines  that
are connected as defined by pr. More precisely,  and  share an input tape (output tape, mutual
communication tapes) iff they do so in pr. Let  be an ITM representing the composition

 (observationObservation 3.7 on p.18). We denote by  the -party protocol con-
sisting of the participants  and call it a sub-protocol of the original protocol . 

A participant  of  is also called a participant of  if  and a composed participant of
pr if . We indicate composed participants by nested square brackets. For example, consider a 3-
party protocol . If we need to refer to the sub-protocol of pr between the com-
posed participant  and C, then we write 

. ◆

3.3 Cryptographic Schemes and Mechanisms

Cryptographic solutions for problems related to legitimation systems require more than one protocol.
Thus we need a framework in which we can consider a collection of protocols which together satisfy
certain requirements. Furthermore, we want to formalize these requirements within the framework, in
particular specify categories of basic legitimation systems according to Section 2.4 on p.9. In order to
formalize complexity theoretic (sometimes called computational) requirements, the envisioned frame-
work must organize the various protocols, their participants and parameter domains all under one
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3.3 CRYPTOGRAPHIC SCHEMES AND MECHANISMS
security parameter k. The role of k is roughly to uniformly determine lower bounds on the amount of
computation time certain attackers need to break the respective complexity theoretic requirements.

In this section, we introduce cryptographic schemes as a generic framework to specify crypto-
graphic solutions involving several protocols. We call any instance of a cryptographic scheme a crypto-
graphic mechanism or construction, i.e., a cryptographic solution that satisfies all the requirements
specified by the cryptographic scheme.

An important element of a cryptographic scheme is its prekey. It defines how messages are to be
interpreted, but only to such an extent necessary to formulate all requirements of the cryptographic
scheme. For example, a prekey of a cryptographic scheme can define a family f of member function
identifiers, and a security requirement can formulate that f is one-way. The cryptographic scheme will
not specify the domains or images of the member functions of f, because one-wayness is defined for a
general family f. It is the realm of mechanisms to assign particular member functions to the member
function identifiers of the cryptographic scheme such that the requirement of one-wayness is satisfied. 

Definition 3.15 Cryptographic Scheme 

A cryptographic scheme  with security parameter  consists
of the following:

• an external interface  of an algorithm called prekey generator that on input
a security parameter  outputs a string , called prekey. The prekey serves as a common
input to all participants of a cryptographic scheme. 

• A finite set  of families  of
domains ( ).

• A finite set  ( ) of operations, i.e., external protocol interfaces
(Section 3.2.2 on p.19) defined on the domains in Dom. The prekey is a common input to each of
these external interfaces by default. It will not be displayed explicitly.

• A finite set Req of requirements, i.e. algebraic and probabilistic expressions over genPrekey, mem-
ber operations of Op and member domains of Dom. Computational security requirements of a
cryptographic scheme typically contain phrases like “polynomial size” parameters, negligible prob-
ability, etc. All these polynomials are in the security parameter k of the cryptographic scheme. �

3.3.1 Notational Conventions

SECURITY PARAMETER

The only input to algorithm genPrekey is the security parameter k. By convention, k is written to the
input tape of genPrekey in unary representation, which is usually denoted as 

.

The reason for using unary representation for this input k is that otherwise genPrekey cannot be a
probabilistic polynomial-time algorithm, i.e., polynomial in the size of its input. Having mentioned this
technicality once, we will henceforth use more relaxed notation and simply write 
instead of .

H genPrekey Dom Op Req, , ,( )= k Ñ∈

prek genPrekey k( )←
k prek

Dom D1 D2 … Dm, , ,{ }= Di Di prek,{ }prek genPrekey k( )[ ]∈=
m Ñ∈

Op O1 … Ol, ,{ }= l Ñ∈

1k 11…1
k-times

=

  

genPrekey k( )
genPrekey 1k

( )
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3 NOTATIONS AND ASSUMPTIONS
PREKEYS

Since the prekey is an input given to each participant in each operation of a cryptographic scheme, we
relax the input parameter lists of all protocols by omitting the prekey.

Each family  of domains has the prekey as its index. Most often, we need to refer to
family members , not to the family  as a whole. Whenever we mean the family D, we always
use the word “family” in front of D. This allows us to omit the index from domain family members
where appropriate.

RESOLVING NAME CLASHES ACROSS CRYPTOGRAPHIC SCHEMES

If one cryptographic mechanism is defined in terms of another and both contain structures with the
same names (polymorphic identifiers), then we may qualify the names by an upper index in brackets.
For example, if cryptographic mechanism A provides a protocol confuse, which is implemented by
using a protocol confuse of cryptographic mechanism B, then we write the latter as .

3.3.2 Security Requirements and Attackers

Typically, a cryptographic scheme has some security requirements set out in Req. A security require-
ment req describes what shall or shall not happen even if some of the participants in some protocols
deviate from these protocols. In general, a security requirement is not only concerned with how an
attacker can attack one operation of the cryptographic scheme, but rather how an attacker can control
several participants in several of the scheme’s operations in order to reach his goals. Thus, a security
requirement is expressed by 4 elements:
1. The attacking schedule describes which participants are honest, which are under control of the 

attacker, and how the attacking participants can interact with the honest participants. For exam-
ple, consider three participants, a recipient A, a sender B, and an eavesdropper E. Honest partici-
pant A generates an encryption key pair and publishes the encryption key of it, then honest 
participant B encrypts a set of plaintexts using the encryption key, and sends them to A. Finally 
the attacking eavesdropper  may read all the ciphertexts sent by B (ciphertext-only-attack).

2. The attacker model describes the computing resources of the attacking participants. Formally, the
attacker model is a set S of ITMs, and the security requirement must be met by all ITMs of S
when in place of the attacking participant(s). The larger one chooses the set S, the stronger
attacker is considered, and thus the stronger security requirement is formulated. It is common to
call an attacking participant
• computational if all ITMs of S are probabilistic polynomial-time. 
• computationally unlimited, if all ITMs of S are so. 
• passive, if all ITMs of S share the same external interface and same probabilistic execution

function as the attacking participant they replace, and active otherwise. If we write an attack-
ing schedule with an active attacker , the private input and output parameters of  at the
external interface may depend upon  and are therefore left untyped. We use a composition
tape Q to denote the attacker’s private input (initial content) and private output. If the active
attacker is polynomial-time, then the initial content should be limited to polynomial-size, i.e.,
the number of bits contained on Q before the attack starts is bounded above by a polynomial
in the scheme’s security parameter.

D Dom∈
Dprek D

confuse B( )

E

Ã Ã
Ã
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3.3 CRYPTOGRAPHIC SCHEMES AND MECHANISMS
3. The success condition describes the goal of the attacking schedule, e.g., to figure the private
decryption key or a plaintext corresponding to any of the ciphertexts.

4. The success measure describes how hard it is for the attacker, i.e., the coalition of all attacking
participants, to meet the success condition. In principle, an attacker has at least a small chance of
meeting any success condition, simply by guessing correctly. Hence, the success measure is usually
formulated by a lower or upper bound of the probability that the attacker meets the success con-
dition. The lower or upper bound may or may not depend on the size of the inputs of the partici-
pants under the attacker’s control. The former case relates to probabilistic polynomial-time
attacking participants, the latter to computationally unlimited attacking participants. The result-
ing security requirement is called computational or unconditional (sometimes also called perfect),
respectively.

Notational Convention:  If an attacking schedule identifies a participant X as attacking (X typi-
cally a capital letter), then formally, X is replaced by a number of ITMs ranging over a subset of inter-
active Turing machines that depends on the specified attacker model. Each of the replacing ITMs is
usually denoted  (read X crooked). Sometimes, the attacking schedule is described in natural lan-
guage, sometimes it is specified by using the protocol notation. In the latter case we call the attacking
schedule an attacking protocol and we denote it by the letter A.

Definition 3.16 Cryptographic Mechanisms

A mechanism, implementation, or instance C with security parameter k of a cryptographic scheme
 is any 3-tuple consisting of: 

(i) an algorithm with external interface  or a corresponding multi-party com-
putation;

(ii) a set of families  of domains , i.e., basic structures
such as sets, groups, vector spaces, relations, functions, etc., such that the elements of all domains
of family  ( ) are represented by  bits, where  is some polynomial
in k.

(iii)a set of l efficiently computable protocols  with respective external interfaces
, where each input and output parameter takes values of one of the domains

,

such that, after assigning the domain family variables  for , all the require-
ments in Req are satisfied. �

3.3.3 Generating Prekeys

Throughout this work, prekeys are always presumed to be chosen correctly. In particular, we do not
consider attacks on generating prekeys. We always presume that the inputs of the prekey generator
are somehow negotiated in advance and are then fed to a trusted machine that runs the prekey gener-
ator and broadcasts the resulting prekey consistently to all participants of this instance of the crypto-
graphic scheme. 

If no trusted process is available to generate a prekey, but at least a majority of all participants is
honest, the prekey can always be generated by a multi-party computation [10].

X̃

H genPrekey Dom Op Req, , ,( )=

prek genPrekey k( )←

d1 d2 … dm, , , d1 prek, d2 prek, … dm prek,, , ,

di i 1 … m, ,= polyi k( ) polyi k( )

pr1 … prl, ,
O1 … Ol, ,
d1 prek, d2 prek, … dm prek,, , ,

Di di prek,← i 1 m,[ ]∈
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3 NOTATIONS AND ASSUMPTIONS
3.3.4 Encoding Domain Elements

We assume for all cryptographic mechanisms that the elements of all domains from which elements
need to be chosen at random are encoded densely enough such that random choices can be made in
polynomial time using the simple pick-and-test algorithm of Definition 3.1 on p.15.

For example, if k is the security parameter of a cryptographic mechanism, prek be prekey gener-
ated on input k, and  is a domain containing  elements, then each such element shall be
encoded as -bit integers, where  is some integer constant, typically depending on the word
size of the computer to be used. In each round, the simple pick-and-test algorithm then chooses a

-bit integer and the probability that it actually is a modulo p residue is .
Thus, the pick-and-test algorithm succeeds after expected  rounds, which is polynomial in k.

3.3.5 Participant Identifiers

The protocols of a cryptographic mechanism (list number (iii) of Definition 3.16 on p.25) are specified
by their external interfaces according to Definition 3.8 on p.19. The protocol identifiers of this list
must be pairwise different. The identifiers of the input and output parameters and the participant
identifiers used to label the square brackets that contain the input and output parameters are formal
parameters in the external protocol interfaces in which they occur. Thus within each external interface
the same identifier always carries the same value, but an identifier occurring in two different external
interfaces, usually takes different values in each external interface.

In the requirements section though, the input parameters, output parameters and participant iden-
tifiers of all external interfaces are actual parameters, and therefore the same parameter denotes the
same value throughout the entire definition of each requirement. For better readability, we will usu-
ally use unique actual identifiers not only throughout each separate requirement definition, but across
all requirement definitions of a cryptographic mechanism.

3.3.6 Typed Parameters

The prekey generator of a cryptographic mechanism defines the domain families of the cryptographic
scheme. Thus it is more useful to denote the messages read and written by ITMs as typed parameters,
not as “flat” binary strings. For example, if a cryptographic mechanism implements the input  of
participant  of a protocol pr by a tuple  of parameters from the domains , …, ,
then we write in the external interface of T in pr  instead of .

3.3.7 Notation of Protocols

Our protocols are denoted as tables. The header of the table gives the external interface of the proto-
col except the types of the parameters, which are given in the accompanying verbal description of the
protocol. Each row of the table represents a round and each column represents an ITM of the protocol.
For convenience, rounds may be subdivided into single steps of local computations of one or more
ITMs. Steps are numbered globally throughout a protocol. This enables concise and unambiguous ref-
erences. We use a declarative mathematical syntax to describe each step. A step consists of either of
the following actions:
1. Choosing a value  from a sample space uniformly at random. To enhance readability, this 

kind of action is always displayed in the first step of a protocol.

dprek 2k

k ν+( ) ν

k ν+( ) 2k 2k ν+⁄ 2 ν–
=

ν

I
T a1 … al, ,( ) A1 Al

a1 … al, ,[ ]T I[ ]T

x X∈R
26



3.4 DISCRETE LOG FRAMEWORKS AND SETTINGS
2. Evaluating an expression expr and assigning the result to a variable x: . The expression
may be arithmetic, it may be the call of an algorithm, or that of another protocol. The latter case
is indicated by an arrow sitting below the assignment and pointing to the main recipient5 of the
protocol.

3. Proceeding the execution if and only if a condition c holds is denoted by the phrase “proceed iff c”.
After each step, there are optional communication actions in which each participant can send the con-
tent of one or more variables to one or more other participants. If, for example, after step (5) of a pro-
tocol, Alice sends variables  and  to Bob, then we write in or after the row describing step
(5) a horizontal arrow pointing from Alice’s to Bob’s column and label it . Implied in this notation
is a verification at the recipient’s end whether the received values  and  are in fact elements of the
expected domains A and B. More generally, any communication arrow in our protocol notation implies
that the recipient verifies that all received values are elements of their respective domains. Otherwise
the recipient would abort the protocol execution immediately.

Two consecutive actions are separated by a semicolon. If the two actions are in different steps and
are therefore displayed on separate lines, the semicolon between them may be omitted.

Some of these conventions are illustrated in Figure 3–1 on p.27 by example of Diffie-Hellman key
agreement [94]. Alice and Bob take a common input g and Alice takes private input x from a suitable

domain Z, which is part of the protocol definition, but is omitted here. Bob chooses uniformly at ran-
dom a value y from Z. After exchanging the intermediate values a and b, they output the same private
value .

To improve readability of protocols, we insert comments in curly brackets where appropriate. A
comment may explain a statement or indicate a post condition according to Hoare [132] (see the exam-
ple after step (3) in Figure 3–1 on p.27). Comments sit in the same step as the statement they explain.
Algorithms are denoted as one-party protocols.

3.4 Discrete Log Frameworks and Settings

Throughout this work, we model polynomial-time attackers by probabilistic polynomial-time Turing
machines. It has been argued that this may be too weak an attacker model and therefore non-uniform

5) The notion of a main recipient is informal, but in every particular case, it will be clear who the main recipient is.

Alice Bob
(1)

(2)  ←  ← 

(3)  ←  ← { }

FIGURE 3–1 Diffie-Hellman Key Agreement

x expr←

a A∈ b B∈
a b,

a' b'

a'[ ]A b'[ ]B,( ) DH g[ ] x[ ]A [ ]B, ,( )←
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b
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3 NOTATIONS AND ASSUMPTIONS
models, e.g., polynomial-size circuits, have been proposed by Goldwasser, Micali, Rackoff [123] and
others. Nevertheless, it has remained somewhat controversial whether uniform or non-uniform attacker
models are more adequate. Moreover, as Pfitzmann [180] and Goldreich [117] have pointed out, the
uniform model is technically superior in the following sense. Typically, one is interested in reducing an
attack on a particular cryptographic mechanism to some complexity theoretic assumption. If these
assumptions are stated uniformly and one can find uniform reductions, then the same proof of security
carries over to the non-uniform framework, while the converse is not always true. In this work, we rely
completely on the uniform framework because wherever we have found reductions, we could find a uni-
form one.

Throughout the following sections, p denotes a large prime. If all prime factors of  are small,
the discrete logarithm modulo p can be computed in time  [190]. (For recent achievements in
computing discrete logs see [124,153,145].) We will therefore always require that  has at least
one large prime factor, denoted as .

Definition 3.17 Discrete Log Framework and Settings

Let the discrete log framework  be the family  of sets

of discrete log settings. Each discrete log setting is a pair  of different primes, where q divides
, The prime p is k bit long. The prime  is at least  bit long, where the function  is

depends on the state of the art of algorithms that compute discrete logarithms. A discussion of choos-
ing k and  is given in the remark following Assumption 3.20 on p.29.

Given a prime p, and , the smallest non-negative integer e, such that 
is denoted  and is called the discrete logarithm of y with respect to x. If such an integer does not
exist,  is undefined. ◆

RRRReeeemmmmaaaarrrrkkkkssss::::     With a discrete log setting , we associate four algebraic structures, namely, the finite
field  of residues modulo p, the unique cyclic subgroup  of order  in , and the
finite field . Of these algebraic structures, we will use three kinds of arithmetic, namely multiplica-
tion in , i.e., modulo p, and addition and multiplication in , i.e., modulo q. Throughout the fol-
lowing work, the calculations mod  are more frequent. To make reading easier but keep notation
simple, we will sometimes omit “mod ”, but always display “mod ”.

Observation 3.18 Generators in Discrete Log Settings

Given a discrete log setting , the group  is cyclic because it is a subgroup of the cyclic
group . Because  is prime, it is efficient to test membership in  and to generate members of

 uniformly at random based on the following facts:

Test membership: ,

Generate members: .

p 1–
O p 2

2
( )

p 1–
q

DLF dlsk{ }k Ñ∈

dlsk p q,( ) q p 1– λ k( ) q 2 p 2 k=<≤;{ }=

p q,( )
p 1– q λ k( ) λ k( )

λ k( )
x y, ¸p∗∈ xe y= p(mod  )

logxy
logxy

p q,( )
¸p Gq q ¸p∗ ¸p 0{ }\=
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Gq ¸q

p
p q

p q,( ) dlsk∈ Gq
¸p∗ q Gq

Gq

x ¸p∗∈∀ x Gq∈ xq 1= p(mod  )⇔:

x ¸p∗∈∀ x p 1–( ) q⁄ Gq∈:
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3.5 DOUBLE DISCRETE LOG FRAMEWORKS AND SETTINGS
Generators g of  can be chosen uniformly at random by choosing an element  uni-
formly at random and computing . If , then it is a generator, otherwise
repeat the process with a different x. 

These facts have been shown by Pfitzmann [183] in Construction 8.22.

3.5 Double Discrete Log Frameworks and Settings

We will also make use of pairs of discrete log settings that are connected in a special way. We will call
such pairs double discrete log setting. The underlying idea was used by Stadler to construct publicly
verifiable encryption schemes [216] and later by Camenisch and Stadler to construct group signature
schemes [51]. 

Definition 3.19 Double Discrete Log Framework and Settings

Let the double discrete log framework  be the family  of sets

of double discrete log settings, i.e., pairs of discrete log settings such that the second prime of the first
discrete log setting equals the first prime of the second discrete log setting. ◆

3.6 Complexity Theoretic Assumptions

We will state a couple of complexity theoretic assumptions that we shall use throughout this work.
They are formulated in terms of probabilities negligible in a security parameter. Since these assump-
tions will be used to prove that particular cryptographic mechanisms satisfy certain security require-
ments of cryptographic schemes, we shall present the assumptions themselves within the framework of
cryptographic schemes.

3.6.1 Subgroup Discrete Log Assumption

Assumption 3.20 Subgroup Discrete Log Assumption (SDLA)

For all probabilistic polynomial-time Turing machines  and for each positive constant c, all suffi-
ciently large k, the probability that, after choosing a discrete log setting , two elements

 and ,  takes input  and finds the discrete logarithm of y with
respect to x is bounded above by  (cf. [157]). More precisely:

:

. ◆

RRRReeeemmmmaaaarrrrkkkkssss::::     The assumption that it is hard to compute discrete logarithms modulo p has been widely
used in cryptology during the last 20 years [94,29,99,15,208,42,91,71,183]. As in Schnorr [208,209], we
use a slightly modified assumption, namely that it is still hard to compute discrete logarithms of
primes p where a large prime factor of  is known. However, this seems to be no stronger than the
usual assumption, as it is generally believed that such primes p are among the hardest for computing
discrete logarithms [177].

Gq x ¸p∗ 1{ }\∈
g x p 1–( ) q⁄ pmod= g 1≠

DDLF ddlsk l,{ }k l, Ñ∈

ddlsk l, P p,( ) p q,( ),( ) P p,( ) dlsk∈ p q,( ) dlsl∈;{ }=

Ã
p q,( ) dlsk∈R

x Gq 1{ }\∈R y Gq∈R Ã k p q x y, , , ,( )
k c–

PPT Ã∀ c 0>∀ k0∃ k k0>∀

Prob e logxy=( ) p q,( ) dlsk∈R x Gq 1{ }\∈R y Gq∈R e Ã k p q x y, , , ,( )←; ; ;\[ ] k c–<
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3 NOTATIONS AND ASSUMPTIONS
Given current cryptographic practices, p shall be of binary length  bit. In general, the
acceptable minimum length of q is a function of the length of p and is determined by the trade-off
between logarithm finding algorithms whose complexity is dominated by q and those whose complexity
is dominated by p. In the early 1990’s during the discussion of the digital signature standard DSS
[165], Hellman [130] and Rivest [202] considered 160-bit a suitable length for q if p is about 1024 bit
long. Recent guidance has been given by the Computer Security Resource Center (CSRC) of NIST
[166,239] and by Lenstra and Verheul [146]. 

3.6.2 Subgroup Representation Assumption

We will also need the following closely related assumption about computing representations of a given
element of  with respect to a tuple of generators of this group.

Assumption 3.21 Subgroup Representation Assumption (SRA)

For every fixed n, every probabilistic polynomial-time attacker , each positive constant c and suffi-
ciently large k, the probability that, after choosing a discrete log setting , a tuple

 of generators of , and an element ,  takes input 
and finds a representation  of y with respect to , i.e.

,

is bounded above by  (cf. [157]). More formally: 

. ◆

Observation 3.22 Equivalence of SRA and SDLA

In the DLF, the subgroup representation assumption is equivalent to the SDLA. As Chaum, van
Heijst and Pfitzmann have shown in [71] (Lemma 2), the discrete log assumption implies collision
resistance of tuple exponentiation, i.e. finding two different representations for one element in groups
of prime order in infeasible. This further implies one-wayness of tuple exponentiation and thus the rep-
resentation assumption. The other direction is easy and is shown for example by Brands [34] (Proposi-
tion 7). ❏

3.6.3 Subgroup Diffie-Hellman Assumption

Assumption 3.23 Subgroup Diffie-Hellman Assumption (SDHA)

For all probabilistic polynomial-time Turing machines  and all positive constants c, all sufficiently
large k, the probability that after choosing a subgroup discrete log setting , a generator

, two elements  and an element ,  takes input 
 and returns TRUE if  and FALSE otherwise is bounded

above by  (cf. [157] Section 3.7). More formally:
:
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3.7 RANDOM ORACLE MODEL
 . ◆

In the DLF, the Subgroup Diffie-Hellman Assumption implies the Subgroup Discrete Log Assumption.
That is, an attacker who can break the SDL Assumption 3.20 on p.29 and is given a Diffie Hellman
input  can easily compute the two discrete logs a and b and thus also
the power . Also see [157] Section 3. The converse is not known to hold. ❏

3.7 Random Oracle Model

We follow Bellare’s overview of the random oracle model [12], which was introduced by Bellare and
Rogaway [14] as a “bridge between theory and practice”. The idea is a simple one: namely provide all
parties of a protocol—good and bad alike—with access to a (public) function h; prove correct the pro-
tocol assuming h maps each input to a truly random output, i.e., a random oracle; later, in practice,
set h to some specific function derived in some way from a standard cryptographic hash function like
SHA-1 [165] or RIPEMD-160 [96]. 

The random oracle model buys efficiency, and as Rogaway claims, security guarantees, which
although not at the same level as those of the standard provable security approach, are arguably supe-
rior to those provided by totally ad hoc protocol design. 

The overly skeptical might say a security proof in the random oracle model gains nothing because
the function h that we actually use in the final protocol is not random. Here is another way to look at
it. In practice, attacks on schemes involving a SHA-1 derived h and number theory will often them-
selves treat h as random. Bellare and Rogaway call such attacks generic. In other words, cryptanalysis
of these “mixed” protocols is usually done by assuming h is random. But then proofs in the random
oracle model apply, and indeed show that such generic attacks will fail unless the underlying number-
theoretic problems are easy. In other words, the analysis at least provably excludes a certain common
class of attacks, namely generic ones.

It is important to choose carefully the instantiating function h. The intuition stated by Bellare and
Rogaway in [14] is that the resulting protocol is secure as long as the protocol and the hash function
are sufficiently “independent”, meaning the protocol does not itself refer to the hash function in some
way. This is a fuzzy guideline that needs more work in the future.

An important step in our understanding of the random oracle model was taken by Canetti, Gold-
reich, and Halevi [56]. They show there exist protocols secure in the random oracle model but insecure
under any instantiations in which we substitute a function from a small family of efficiently comput-
able functions. Their examples however are somewhat contrived, and this kind of situation does not
arise with any of the “real” cryptographic mechanism in the literature and the following work.

In comparison with totally ad hoc design, a proof in the random oracle model has the benefit of
viewing the protocol with regard to its meeting a strong and formal notion of security, even if this is
assuming some underlying primitive is very strong. This is better than not formally modeling the secu-
rity of the protocol in any way. This explains why the random oracle model is viewed as a “bridge
between theory and practice” [14].

Prob z gab pmod=( ) p q,( ) dlsk g Gq 1{ }\∈R a b, ¸q∈R
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4
Cryptographic Tools

“Only those defenses are good, certain and durable,
which depend on yourself alone and your own ability.”

The Prince [150] — Niccolò Machiavelli

mong the many classes of cryptographic primitives, there are two of particular importance for
the implementation of credential schemes in Section 5 on p.59: interactive proofs of knowledge

(Section 4.1 on p.34) and blind signatures (Section 4.2 on p.51). Interactive proofs of knowledge are a
well-known concept in cryptography and we can mainly rely on existing material. However, we need to
extend the concept of proofs of knowledge (see Bellare and Goldreich [13]) from two to three parties. 

In contrast to conventional signatures (see Goldwasser, Micali, Rivest [122] and well-known practi-
cal examples like RSA [201], Fiat-Shamir [110], Schnorr [209], or Guillou-Quisquater [125]), blind sig-
nature schemes output blinded messages and corresponding signatures directly to the recipient and
hide them from the signers. They were introduced by Chaum [58,59] as practical tools to design pay-
ment and credential schemes (see Section 5.1 on p.60). For offline electronic cash, however, blind sig-
nature schemes in general are too liberal, because they allow recipients to obtain signatures for more
coins than the signer provides. Therefore, double spending is a notorious threat to these schemes. Inde-
pendently, Brands [34,35] and Franklin and Yung [113] have introduced the same sort of specialized
blind signatures, which they called restrictive blind signatures and oblivious signatures, respectively.
Both their cryptographic mechanisms and all later proposals are one-time restrictive blind signatures
in the sense that from each execution of the signing protocol, the recipient can draw a signature for
only one message. This exactly is needed for offline electronic cash. We recap the restrictive blind sig-
nature scheme by Chaum and Pedersen, which was later used by Brands, in Section 4.2.2 on p.55.

Personal certificate schemes (Section 2.4 on p.9) are another application area of blind signature
schemes, where holders can show their own certificates arbitrarily often, but cannot show certificates
of other holders. To achieve an efficient personal certificate mechanism, we will use a special kind of
ElGamal encryption mechanism and again the restrictive blind signature scheme of Chaum and Peder-
sen (Section 5.4 on p.90). 

A
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4 CRYPTOGRAPHIC TOOLS

4.1 Proof-of-Knowledge Schemes

A proof of knowledge is a (usually) interactive protocol between a prover and a verifier who are given
a priori a set  of candidates, a set of witnesses  and a binary relation . Before the
protocol starts, the prover suggests a candidate  to the verifier, and then tries to convince the
verifier of “knowing” a witness  for . A proof of knowledge protocol is secure if “whenever”
the verifier is “convinced” on input , then at least one satisfying witness exists and the prover indeed
“knows” at least one satisfying witness  such that . The clue to a formalization of
“proofs of knowledge” is an appropriate interpretation of the phrases “whenever” and “knows” which
appear in the condition. As usual, the phrase “convinced” means to enter a specified accepting state in
the computation.

Suppose for simplicity a good prover, i.e., one that always convinces the verifier on a given candi-
date . Saying that the prover “knows” a satisfying witness for the given candidate  means that the
prover “can be modified” so that it outputs a witness w such that . The notion of “possible
modifications of the prover ITM” is captured by efficient algorithms that use the prover ITM as an
oracle. Hence, saying that a prover knows a witness will be formalized as the feasibility to compute a
witness by using the prover as an oracle. Namely, there exists an efficient and uniform algorithm—
called the knowledge extractor—, that on input a candidate and given oracle access to a good prover is
able to output a satisfying witness.

Bellare and Goldreich [13] have elaborated this program and came up with a widely accepted defi-
nition of proofs of knowledge. We are going to present their definition within the framework of a cryp-
tographic scheme. Previous and less robust definitions of interactive proofs of knowledge were given by
Feige, Fiat, Shamir [106,107], Brassard, Chaum, Crépeau [40], and Tompa, Woll [222]. 

Note that we will not deal with proofs of membership, a concept that was originally introduced by
Goldwasser, Micali, Rackoff [123] as interactive proof systems and was further developed by Goldreich
[234]. The goal of the prover in a proof of membership is to convince the verifier that a given candi-
date is a member of a given set or language. More precisely, the verifier is given a candidate  and a
language L. The prover’s task is to prove to the verifier that . If an honest prover always suc-
ceeds to convince the verifier with overwhelming probability in case , the system is said to be
complete. If a cheating prover can convince the verifier with only negligible probability in case ,
the system is said to be sound. 

4.1.1 Definition of Proof-of-Knowledge Schemes

In a proof-of-knowledge system the prover suggests a candidate  to the verifier, and the prover’s task
during the following protocol is to prove to the verifier that the prover ‘knows’ a witness  such that

. If an honest prover convinces the verifier with high probability if only he ‘knows’ a wit-
ness matching , then the system is called complete or non-trivial (Bellare and Goldreich in [13]). If
whenever a cheating prover convinces the verifier, a witness can feasibly be extracted from the prover,
then the system is called valid. This will be covered by Definition 4.1 on p.35. 

The definition as such is too weak to be useful, because it can be trivially satisfied; for example, by
a prover who simply passes a satisfying witness to the verifier. The prover’s whole point to engage in
an interactive protocol is to NOT REVEAL the witness to the verifier. Such a confidentiality require-
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ment must be stated in addition to Definition 4.1 on p.35. Basically three different confidentiality
requirements on witnesses have been proposed in the literature: Zero-knowledge, witness hiding, and
witness indistinguishability. They will be addressed in Section 4.1.3 on p.37. Each of them defines
what it means to keep the prover‘s witness confidential from the verifier during the interactive proto-
col following the input of a candidate. None of these three confidentiality requirements cares about
how much information about a witness of a given candidate  is leaked to the verifier by the relation
R itself. Apparently, for each candidate , the relation  should release virtually no information
about a witness of  to the verifier. Otherwise it would be pointless to keep a witness confidential dur-
ing the interactive protocol. In fact, all concrete proof-of-knowledge protocols in the literatur that the
author is aware of, and all proof-of-knowledge protocols in this work use one-way functions [157] Def-
inition 1.12.  in place of relation R. Thus, we will define proof-of-knowledge schemes over
functions only, and we label these functions as ‘make’ instead of the more general relation identifier
‘R’. We shall require the one-way property of functions make only in the definition of confidentiality
requirements in Section 4.1.3 on p.37.

Definition 4.1 Proof-of-Knowledge Scheme

A proof-of-knowledge scheme with security parameter k consists of the following prekey generator,
domains, operations and requirements:

GENERATE PREKEY

A probabilistic operation that takes as input a security parameter  and outputs a prekey prek. 

DOMAINS

A proof-of-knowledge-scheme has a set  of 3 domain families whose respective mem-
bers are: 

• the candidate domains .

• the witness domains .

• the making functions or partial functions . If , then
we say that witness w makes candidate z.

In order to ease notation, we do not display the domain index prek in the following.

OPERATIONS

A proof-of-knowledge scheme has a set  of one operation satisfying 2 requirements: complete-
ness and validity.

Prove

A probabilistic operation where the prover P and the verifier V take as common input a candidate
, and the prover takes as private input a witness . The verifier returns a Boolean output.

If the output is , we say that the prover convinces the verifier of z.

This is a proof-of-knowledge scheme iff each implementation is a proof of knowledge [13] over make:

z
z R

z

R w za:

prek genPrekey k( )←

k Ñ∈

Z W make, ,{ }

Zprek
Wprek

makeprek Wprek Zprek→: z makeprek w( )=

prove{ }

accept[ ]V prove z[ ] w[ ]P,( )←

z Z∈ w W∈
accept TRUE=
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COMPLETENESS

Let a candidate z be given to the prover and the verifier. If the prover follows protocol prove honestly
and takes a making witness of z as input, then the verifier is always convinced (with zero error proba-
bility). More precisely: For all security parameters k, for all prekeys , a prover
P knowing a witness  of z such that  always convinces the verifier V, i.e.

: .

VALIDITY

Consider any attacking ITM  in place of the prover, and let  take a candidate z and any addi-
tional input, which may or may not be a making witness of z. Then, the more likely  is to convince
the verifier, the faster can a witness be extracted from . More formally according to Bellare and Gol-
dreich [13]: There exists a constant  and a PPT E called knowledge extractor [107] such that for
all polynomial-time attacking provers , for all sufficiently large security parameters k, for all prekeys

, all candidates  such that  and all polynomial-size initial con-
tents Q of , the expected computation time of E (Definition 3.10 on p.20) to extract a witness 
from  such that  is bounded above by , where  is the probability1 that

 convinces the verifier on common input , i.e.

:

if  then ,

where , in the parameter list of E, denotes that E has oracle access to  on input . ◆

Remark 1:  Differences to the definition given by Bellare and Goldreich [13].
(i) We use interactive Turing machines instead of interactive functions in [13] as our model of compu-
tation. They are equivalent models of computation according to Church’s thesis.
(ii) A proof-of-knowledge scheme comprises a specific prover and a matching verifier. Bellare and Gol-
dreich have defined a “knowledge verifier” by requiring that a prover exists for it such that they both
together form a proof-of-knowledge system. Our definition of proof-of-knowledge scheme makes
explicit both, the prover and the verifier, which is in a sense more constructive.
(iii) Bellare and Goldreich give a slightly more general definition that allows the dishonest prover  a
small error probability (knowledge error function) of convincing the verifier although  does not know
a witness. This kind of error probability does not occur in any of the proof-of-knowledge in this work. 

Remark 2:  Having oracle access to the ITM  one can do two things with : One can run
 on any candidate z and observe the messages  sends during the emerging execution. Moreover,

after ’s execution has stopped, one can rewind  back into any state visible from the outside,
namely any state where  is waiting for a message to be received from its environment. In other
words, one can branch out any execution of  at certain “branch points” and reveal ’s behavior in

1) taken over the random choices of the prover  and the verifier.

prek genPrekey k( )[ ]∈
w z make w( )=

k Ñ∈ prek genPrekey k( )[ ]∈ w W∈ z, make w( )=, ,∀ prove z[ ] w[ ]P,( ) TRUE[ ]V
=

P̃ P̃
P̃

P̃
c 0>

P̃
prek genPrekey k( )[ ]∈ z Z∈ p z( ) 0>

P̃ w
P̃ z make w( )= kc p z( )⁄ p z( )

P̃

P̃ z

c 0> PPT E,∃ ITM P̃∀ k0∃ k k0> prek genPrekey k( )[ ]∈ z Z∈ Q kc<, , ,∀

p z( ) 0> ExpTime z make w( )=( ) w E z P̃ z Q,( ),( )←\[ ] kc

p z( )
---------<

P̃ z Q,( ) P̃ z Q,

P̃
P̃

P̃ z Q,( ) P̃
P̃ P̃

P̃ P̃
P̃

P̃ P̃
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all branches. Executing  (regardless from which state) counts as one computation step, and rewind-
ing  does not count as computation time.

Remark 3:  Bellare and Goldreich [13] have suggested soundness as an optional security requirement
for proof-of-knowledge schemes. Informally, soundness is the assurance that for candidates that have
no witness the prover can convince the verifier of knowing a witness only with negligible probability.
We do not consider soundness further because in all our implementations of proof-of-knowledge
schemes, all candidates have at least one witness, and therefore soundness is an obsolete requirement
anyway.

4.1.2 Proving Linear Relations of Witness Components

If the witness domains are n-dimensional vector spaces , the verifier might ask the prover not only
to prove mere knowledge of a witness  for a given candidate z, but also that the
components of the witness satisfy certain linear relations. Stefan Brands [38] has proposed efficient
protocols for proving knowledge of witnesses that satisfy any Boolean formula over one or more arbi-
trary linear relations. We will make use of a special case of his nice and general result (see Mechanism
4.5 on p.46).

4.1.3 Zero-Knowledge, Witness Indistinguishability, and Witness Hiding

Additional security requirements of proofs of knowledge are zero-knowledge according to Fiat and
Shamir [106], witness indistinguishability and witness hiding introduced by Feige and Shamir in [107]. 

Zero-knowledge is the strongest of the three as it requires that during the proof protocol the veri-
fier learns no more information than what the verifier had before the proof. Witness indistinguishabil-
ity requires that the verifier, even if he knows all possible witnesses matching the prover’s candidate,
cannot distinguish which of those witnesses the prover actually uses in the proof. Witness hiding
requires that, during the proof, the verifier learns no more witnesses matching the prover’s candidate
than those the verifier knew before the proof. 

We will use interactive proofs of knowledge for identification purposes and to construct digital sig-
nature schemes. We also need to repeat interactive proof protocols polynomially many times without
losing security of identification or digital signatures. The security requirement most appropriate for
these purposes is witness hiding for a number of reasons.

Digital signatures can be derived from interactive proofs of knowledge by proving knowledge of the
signing key. The full or partial transcript of the proof then serves as a digital signature. It has been
argued that such interactive proofs of knowledge must not be zero-knowledge for otherwise recipients
of signatures were in no better position to show a valid signature to a third party verifier than non-
recipients. Obviously, zero-knowledge is too strong a requirement. Witness hiding on the other hand
appears necessary for the resulting signature scheme to be secure against a total or universal break
(see Section 4.2 on p.51), but probably not sufficient because it does not rule out selective and existen-
tial forgery (see Section 4.2 on p.51). 

Feige and Shamir [107] have shown that zero-knowledge is not preserved under polynomial compo-
sition of interactive proofs of knowledge ([107] Theorem 3.2), while witness indistinguishability is
([107] Theorem 3.1). Furthermore, they have shown that a proof of knowledge scheme that is witness

P̃
P̃

W
w1 w2 … wn, , ,( ) W∈
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indistinguishable and whose candidates each have more than one witness, is also witness hiding ([107]
Theorem 4.2).

Thus, we will employ interactive proofs of knowledge that are not zero-knowledge, but witness
indistinguishable and have more than one witness for each candidate. Following Remark 2 of Feige
and Shamir [107] we can argue that even polynomial compositions of these proof protocols are witness
indistinguishable and therefore also witness hiding. This is currently one of the most appropriate foun-
dations of interactive proofs of knowledge for the intended applications (identification and digital sig-
nature) although this foundation alone will be no sufficient argument for their security.

Definition 4.2 (Perfect) Witness Indistinguishability

Let  be a cryptographic scheme with the following domains and
operations:

•  are two respective families  of input domains and a family  of
one-way functions such that for all prekeys prek: .

•  is a two-party operation in Op, with a common input . P
takes private input , and V outputs a Boolean result .

A protocol prove of an implementation of H is called witness indistinguishable for P over  iff for
all , all PPT judges J, all polynomial-time attacking verifiers , for all sufficiently large security
parameters k, for all prekeys , all common inputs , each two private
inputs  such that , all polynomial size initial content Q of ,
the views of  on P using  and  are indistinguishable by the judge J2:

.

A protocol pr is perfectly witness indistinguishable for P over , if the two views resulting from
any two witnesses  and  are equally distributed, i.e.,

:

. (4.1)

The operation prove of H is (perfectly) witness indistinguishable for P over  iff each protocol
implementing prove is so. ◆

Remark:  Note that we require the family make of functions to be one-way, such that, under suitable
complexity theoretic assumptions, a computational verifier could not figure a witness from a given
candidate. This is one way to avoid pathological cases where candidates easily reveal their witnesses.

2) Non-uniform definitions have been proposed by Yao [227] and were later used by Goldwasser and Micali [121] and by Gold-
wasser, Micali, Rackoff [123]. Their definition used a non-uniform judge, i.e., polynomial-size families of circuits. We follow
Goldreich [117] in using a uniform definition where the judge is a probabilistic polynomial-time Turing machine.

H genPrekey Dom Op Req, , ,{ }=

Z W make, , Dom∈ Z W, make
make W Z→:

acc[ ]V( ) prove z[ ] w[ ]P,( )← z Z∈
w W∈ acc BOOL∈

make
c 0> Ṽ

prek genPrekey k( )[ ]∈ z Z∈
w1 w2, z make w1( ) make w2( )= = Ṽ

Ṽ w1 w2

c 0> ITM J Ṽ,,∀ k0∃ k k0> prek genPrekey k( )[ ]∈ z Z∈ z make w1( ) make w2( )= = Q kc<, , , ,∀

Prob J z w1 w2 Q viewP
Ṽ, , , , prove z[ ] w1[ ]P Q[ ]Ṽ, ,( )( )( ) True=[ ]

Prob J z w1 w2 Q viewP
Ṽ, , , , prove z[ ] w2[ ]P Q[ ]Ṽ, ,( )( )( ) True=[ ]– k c–≤

make
w1 w2

ITM Ṽ prek genPrekey Ñ( )[ ]∈ z Z∈ z make w1( ) make w2( )= = Q, , , ,∀

viewP
Ṽ prove z[ ] w1[ ]P Q[ ]Ṽ, ,( )( ) viewP

Ṽ prove z[ ] w2[ ]P Q[ ]Ṽ, ,( )( )=

make
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For example consider the proof of knowledge protocol where each candidate  is its own witness,
the protocol prove contains no communication between the prover and verifier, and the verifier always
outputs TRUE at the end of the protocol. This proof-of-knowledge protocol satisfies the requirements
of completeness and validity, and it is also witness indistinguishable, witness hiding and zero-knowl-
edge. Thus our extra requirement on the family make of functions.

Theorem 4.1 Witness Indistinguishability under Polynomial Composition

Let  be a cryptographic scheme where 

• for all ,  are two families  of input domains, and a family
 of functions such that for all prekeys prek: .

• for all ,  are two-party operations in  each of a
prover  and a verifier .

For all  let  be a protocol implementing  such that  is witness indistin-
guishable for  over . Then every polynomial composition pr of the protocols 
(Definition 3.12 on p.21) is witness indistinguishable for the prover  (see Observation
3.7 on p.18) of pr over the family of functions

 

such that  where  for all .◆

Reference of Proof  See Feige and Shamir [107] Theorem 3.1.

4.1.4 Extended Proof-of-Knowledge Schemes

Consider a (2-party) proof-of-knowledge protocol prove according to Definition 4.1 on p.35. Next, we
want to extend the protocol prove by inserting a co-prover between the prover and the verifier such
that the power to prove knowledge of a witness is shared by the prover P and the co-prover. Each one
of them shall hold a share of the witness and they together can convince the verifier that prover and
co-prover together know a witness for a given candidate. 

For such a protocol prove, we consider 3-party protocols of a prover P, a co-prover  and a veri-
fier V as shown in (Figure 4–1 on p.40). P takes a witness w as private input, P and  take a candi-
date  as shared input,  takes a co-witness v as private input, and  and V take a candidate  as
shared input. We call such a 3-party protocol proveExt an extended proof-of-knowledge protocol if the
following requirements are met:

(1) The communication messages between the prover P and co-prover “look and feel” to each of
them like they were running the 2-party protocol prove. Likewise, the communication messages
between the co-prover  and the verifier V “look and feel” to each of them like they were running
protocol prove as well (possibly on different inputs as the protocol instance prove before). More
precisely, the sub-protocol of proveExt between P and  and the sub-protocol of proveExt
between  and V each resembles the proof-of-knowledge protocol prove on respective inputs.
This will be formalized by drawing an equivalence between each of the subprotocol instances of
proveExt and a corresponding instance of the original 2-party protocol prove.

z w=

H genPrekey Dom Op Req, , ,{ }=

i 1…l= Zi Wi makei, , Dom∈ Zi Wi,
makei makei Wi Zi→:

i 1…l= acc[ ]
Vi( ) provei z[ ] w[ ]

Pi,( )← Op
Pi Vi

i 1 … l, ,= pri provei pri
Pi makei pr1 … prl, ,

P1 … Pl||| |||

make Wii 1=

l
∏ Zii 1=

l
∏→:

make w1 … wl, ,( )( ) z1 … zl, ,( )= zi makei wi( )= i 1 … l, ,=

P '
P '

z P ' P ' z'

P'

P'

P ' V|||
P P '|||
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(2) Consider an attacking prover , an attacking verifier  and an honest co-prover . Assume a
number  of parallel executions of proveExt, i.e., if in proveExt the prover (verifier) sends a
message m to the co-prover , then in the parallel execution, the prover  (verifier ) sends n
messages  to the co-prover . The same holds for messages received by the co-prover

. In a permuted parallel execution, first a permutation  is chosen uniformly at random. Dur-
ing the parallel execution, the n messages in each batch sent by the co-prover  to the verifier 
or received by the co-prover from the verifier is -permuted. In effect, the verifer  “sees” a -
permuted order of n executions compared to the prover . The protocol proveExt is called co-
unlinkable if each two attacking prover  and verifier  who execute the permuted parallel execu-
tion have no better chance of figuring out the permutation  than by pure guessing.

Roughly, this security property could be formalized using the following approach: If we execute
proveExt between  n times while collecting the resulting views  of  on the
co-prover and the views  of  on the co-prover, then we require that for any pair
of views , which may have resulted from two different executions , there are
equally many internal choices of the co-prover that would produce the given pair of views in an
execution of proveExt. This is required to hold for all .

The concept of unlinkability is of wider applicability. It has been introduced by Chaum and Pedersen
[73] for blind signatures (see Definition 4.7 on p.53), where it captures the notion of blindness, and
recurs also with credentials schemes (see Definition 5.6 on p.87). 

Much of the literature on 3-party proof-of-knowledge protocols is about divertible proofs of knowl-
edge, i.e., the special case of extended proofs of knowledge where the sub-protocol between  and
V is equivalent to that between P and  in the sense of Definition 3.9 on p.20. The special case
where P,  and V take the same shared input  was introduced by Desmedt, Goutier and Ben-
gio [92], and it was later defined formally by Okamoto and Ohta [173]. Chen [74] has considered the
more generalized case where the candidates  are taken from the same domain, but may be differ-
ent. She calls them divertible proof-of-knowledge protocols with different input. 

In the following, we consider a more general case of the latter where the witness domains and the
co-witness domains may be different. We call them extended proof-of-knowledge schemes.

FIGURE 4–1 Communication Topology of a 2-Prover Proof of Knowledge
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Definition 4.3 Extended Proof-of-Knowledge Scheme

An extended proof-of-knowledge scheme with security parameter k consists of the following prekey
generator, domains, operations and requirements:

GENERATE PREKEY

A probabilistic operation that takes as input a security parameter  and outputs a prekey prek. 

DOMAINS

An extended proof-of-knowledge-scheme has a set  of 6 domain families
whose respective members are: 

• the candidate domains .

• the witness domains .

• the making function or partial function . If , then
we say that witness w makes candidate z.

• the co-witness domains .3

• the witness addition functions  that map pairs  of wit-
nesses and co-witnesses to witnesses in .

• the co-making function or partial function . 
If  , then we say that the co-witness v matches the candidates .

• The making and co-making functions are connected in the following way: For each witness
, each co-witness , and all candidates : 

If  then . (4.2)

In order to ease notation, we do not display the domain index prek in the following.

OPERATIONS

An extended proof-of-knowledge-scheme has a set  of 2 operations such that
 is a proof-of-knowledge scheme

and the following extendedness requirement holds.

Prove

See operation prove in Definition 4.1 on p.35. 

ProveExt

A probabilistic operation of a prover P, a co-prover  and a verifier V, where the prover P and the
co-prover  share as input the candidate , and the prover takes as private input the witness

. Likewise, the co-prover and verifier share as input the candidate , and the co-prover
takes as private input the witness . If the verifier outputs , we say that P and

 together convince V of candidate .

3) Note that V denotes the family of co-witness domains, a particular co-witness domain (if the index prek is omitted) or a
verifier. In each case, the meaning of V will be clear from the context.

prek genPrekey k( )←

k Ñ∈

Z W + V make make', , , , ,{ }

Zprek
Wprek

makeprek Wprek Zprek→: z makeprek w( )=

Vprek
w v,( ) w v+a w v,( ) Wprek Vprek×∈

Wprek
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w Wprek∈ v Vprek∈ z z', Zprek∈
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genPrekey W Z make, ,{ } prove{ } completeness, validity{ }, , ,( )
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EXTENDEDNESS

For all prekeys , all inputs ,  and candidates  such that
 the following protocol equivalences hold: 

 is equivalent to . (4.3)

is equivalent to . (4.4)

Actually, these are equivalences of protocol instances (see the remark after Definition 3.9 on p.20).

CO-UNLINKABILITY

An extended proof-of-knowledge scheme (with operation proveExt) is co-unlinkable, if there is a con-
stant , which may depend on the prekey of the scheme, such that the following holds for each
two attackers  and  in place of the prover and verifier of proveExt and for all candidates 
and co-witnesses  such that .

If  is a valid view of the prover  originating from an execution of proveExt on
inputs , and  is a valid view of the verifier  originating from another execution
of proveExt on inputs , then for each co-witness v such that  there are
exactly  internal choices  ( ) of the co-prover such that  and  obtain respective
views  and  in the same execution of proveExt on inputs  and where the co-
prover uses any of the internal choices . Compare to motivation (2) on p.40. ◆

Remark:  Note that this definition of unlinkability accepts the possibility of an attacking prover or
attacking verifier to abort executions of proveExt according to certain patterns they have agreed on in
advance. This way, they can transfer one bit of information in either direction per execution. For-
mally, the definition ignores this problem, because as soon as either  or  aborts the protocol, the
resulting view is invalid by Definition 3.11 on p.21, but only pairs of valid views on proveExt are con-
sidered. We justify this definition because any such protocol abortion can be detected by the honest
co-prover, who can then suspend any further interaction with such suspicious prover or verifier.

4.1.5 Related Work on Proofs-of-Knowledge

We shortly review diverted proofs of knowledge as defined by Okamoto and Ohta in [173]. Their start-
ing question was which class of 2-party proofs-of-knowledge can be diverted by a co-prover such that
neither the prover nor the verifier can distinguish talking to each other from talking to the co-prover
diverting each other’s messages. If the indistinguishability holds for polynomial-time provers and veri-
fiers only, the divertibility is called computational, otherwise perfect. A practical sufficiency criterion
for perfect divertibility was given by Blaze, Bleumer, Strauss [22,20].

In terms of Definition 4.3 on p.41, the set of co-witnesses of divertible proof-of-knowledge schemes
is empty and, therefore, the candidate z shared by the prover and the co-prover is always equal to the
candidate  shared by the co-prover and the verifier ( ). Co-unlinkability for extended proof-of-
knowledge protocols is analogous to perfect divertibility of diverted proof-of-knowledge protocols.

prek genPrekey k( )[ ]∈ w W∈ v V∈ z z',
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proveExt z w,[ ]P z z' v, ,[ ]P ' z'[ ]V,[ ],( ) prove z[ ]P∗ V∗, w[ ]P∗,( )

proveExt z w,[ ]P z z' v, ,[ ]P ',[ ] z'[ ]V,( ) prove z'[ ]P∗ V∗, w v+[ ]P∗,( )

κ Ñ∈
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4.1.6 Chaum-Pedersen-Van De Graaf Proof-of-Knowledge Mechanism

We recall a proof of knowledge protocol by Chaum, Evertse, van de Graaf [68]. In the simplest version,
the witness domain is  and the candidate domain is , where  is a discrete log setting.
The making function is , where g is some generator of . We propose an
extended proof protocol that uses the witness domain  ( ), the co-witness domain

 and the following addition of witnesses and co-witnesses (note that the plus sign on the
right hand side denotes tuple addition in ): 

.

The special case where  is fixed was proposed by Brands [35] building on ideas of Okamoto,
Ohta [172]. We name the scheme after the original inventors.

Mechanism 4.4 CEG(l) Mechanism

Consider the discrete log framework (Definition 3.17 on p.28) and let  be some (usually small)
integer constant. The domains and operations of the CEG(l) Mechanism are as follows.

GENERATE PREKEY

Pick a discrete log setting  uniformly at random from  (Definition 3.17 on p.28). Then pick
a tuple  of  generators of  (Observation 3.18 on p.28).

DOMAINS

The candidate domains are , and the witness domains are . The making
function is defined as follows:

.

Note that the witnesses  of a candidate  are precisely its representations with respect to .

OPERATIONS

Prove

 

pppprrrroooovvvveeee Prover Verifier 

(1) Choose Choose 

(2)  ← 

(3)

(4)  ← 

(5)  ← 

FIGURE 4–2 Chaum-Evertse-Van De Graaf Proof of Knowledge: prove
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The prover chooses uniformly at random a witness  from W (step (1)), computes the corresponding
candidate a and sends the result to the verifier (step (2)). The verifier chooses uniformly at random a
challenge c from  (step (1)) and returns it to the prover (step (3)). Finally the prover forms the lin-
ear combination  and sends it to the verifier (step (4)). The verifier accepts the
proof iff  (step (5)). ◆

Lemma 4.1 Homomorphy of Making Function

For all  and all prekeys , the function :  of
 is a (vector space) epimorphism. For all witnesses  and  the following

equation holds:

.
Proof

This is immediate from the construction of make:

. ❑

Proposition 4.1 CEG(l)
Under the SR-Assumption, CEG(l) is a proof-of-knowledge scheme for all . ◆

Proof

COMPLETENESS

The verifier is convinced whenever . This follows from basic rewritings: 

= by step (1) and presumption

 = by Lemma 4.1 on p.44

 = by step (4).

VALIDITY

Now we need to consider an arbitrary prover  and all candidates  on which  is expected to
convince the verifier with probability . We construct a universal knowledge extractor

 as follows.  runs the prover  through the protocol prove (Figure 4–2 on p.43) so
many times until the prover has convinced  by a proper response  in step (5). Let a denote

’s message after step (2) and  denote the challenge sent to  after step (3). Afterwards, 
rewinds  back into step (3), thereby re-using the message a, and runs  down to the end of prove.

 continues rewinding and running  until  delivers a second convincing response  in
step (5). Let  denote the challenge corresponding to . The extractor will make sure to use a dif-
ferent challenge after each rewinding, to make sure that . The extractor finds the fol-
lowing two conditions satisfied:

and .
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Then follows  and so a witness of z is found: . (4.5)

Thus,  needs expected  tries to get a first convincing response  in step (5). After
each rewinding, the prover  starts execution of prove in step (3), and therefore the probability 
to convince the verifier is the probability  to convince the verifier in a complete execution of prove
under the condition that  sends message a after step (2). In general, we have no information about
the probability  that  sends a after step (2) but the trivial bounds . Thus we
can put a lower bound on , which means  needs expected

 tries to get a second convincing response  in step (5). Altogether,  is
expected to find two successful responses, and thereby a witness, after challenging the prover  after

 

executions of prove and finally computing the quotient (4.5). Each execution of prove costs the univer-
sal knowledge extractor mainly  modular exponentiations (step (5)), each computable in 
elementary steps. This is a very generous upper bound because modular multiplication of k-bit factors
is faster than  and the exponents  occurring in step (5) are in , i.e., of length
around 160 bit, which is less than a fifth of k. We thus expect the universal knowledge extractor to
find a witness in expected  elementary steps:

:

if  then .

Obviously, this bound satisfies Definition 4.1 on p.35 (validity) for . ❏

Proposition 4.2 CEG(l)
Protocol prove of CEG(l) is perfectly witness indistinguishable for all . ◆

Proof

The functions  for  are a family (with index prek) of one-way functions because they
are hard to invert according to the SR-Assumption 3.21 on p.30.

We show that for each common input  protocol prove produces verifier views  with
the same probability distribution regardless which witness of  the prover uses (see Definition 4.2 on
p.38). Because , we find that for each candidate  there are  witnesses

 ( ) such that . We consider any one of these witnesses
 and any one valid view  of the verifier in prove, i.e., one that satisfies the verifier’s

accepting condition in protocol prove step (5):

. (4.6)

We find that there is exactly one internal choice  for the prover in protocol prove that produces the
given view  if the prover takes as input the witness  and the candidate :
The prover’s internal choice  is determined by a system of linear equations according
to protocol prove step (4), namely:
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 = for all . (4.7)

Next we need to see, if this uniquely determined internal choice  also matches with how the internal
choice  is determined by protocol prove step (2): We evaluate the expression 

,

by using from left to right: the assertion (4.7), the homomorphy of make (Lemma 4.1 on p.44), the
fact that  and finally the assertion (4.6). This matches with protocol prove step (2). In
other words, no valid view of a verifier gives any information about which witness the prover uses. ❏

4.1.7 Brands Proof-of-Knowledge Mechanism

Next we recall a proof-of-knowledge mechanism by Brands [38] by which a verifier can verify that the
prover knows a CEG(l) witness of a candidate and that the witness satisfies a particular linear rela-
tion, namely that the witness component  referring to the first generator does not disappear. For
example for , Brands Mechanism can be used to verify that the prover knows a representation

 of a candidate  with . Hence, the verifier is convinced, that the
prover does not know the discrete log of z with respect to  (whereas the prover may know the dis-
crete log of z with respect to . Brands has proposed efficient protocols for the general case of prov-
ing that the witness satisfies any Boolean formula of linear relations over the witness components. 

Mechanism 4.5 Brands(l) Mechanism

The Brands(l) Mechanism for some (usually small) integer constant  is defined by the same
prekey generating algorithm and the same domains as the CEG(l) Mechanism except that the making
function is partial because it is defined only for arguments  such that :

.

The protocol proveWitRel is redefined as follows:

ProveWitRel

Prover and verifier take a candidate  as common input, where  is the
prover’s private input such that . The prover chooses uniformly at random a witness  from
W (step (1)), computes the corresponding candidate a and sends the result to the verifier (step (2)).
The verifier chooses uniformly at random a challenge c from  (step (1)) and returns it to the prover
(step (3)). The prover computes the components  according to (step (4)). Note that the
expression  is defined because . The verifier accepts in the proof step (5) iff

, which can be re-written as

 . ◆
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Proposition 4.3 Brands(l)
Under the SR-Assumption, Brands(l) is a proof-of-knowledge scheme for all . That is, whenever
the verifier is convinced on common input a candidate z, then the prover knows a witness  with

 that makes the candidate z. Protocol proveWitRel of Brands(l) is perfectly witness indistin-
guishable for all . ◆

A proof is given by Brands in [38].

4.1.8 Extended Chaum-Pedersen-Van De Graaf Proof-of-Knowledge Mechanism

We present an extended proof-of-knowledge Mechanism based on the CEG(l) Mechanism 4.4 on p.43.

Mechanism 4.6 Extended CEG(l) Mechanism (ECEG(l))
The Extended CEG(l) Mechanism (ECEG(l)) employs the same prekey generating algorithm and all
the domains of the CEG(l) Mechanism and the following additional domains and operations: 

DOMAINS

• The co-witness domains are .

• The addition of witnesses and co-witnesses is defined as .

• The co-making homomorphisms are .

OPERATIONS

ProveExt

The prover chooses a temporary witness  uniformly at random (step (1)), makes the corresponding
temporary candidate  and sends it to the co-prover (step (2)). The co-prover  also chooses a chal-
lenge  and a temporary witness  uniformly at random (step (1)), constructs the correspond-
ing temporary candidate  (step (2)). The co-prover sends  to the verifier V (step (3)). V chooses
the challenges  uniformly at random (step (1)), and returns it to the co-prover (step (4)). The co-
prover forms a new challenge  and passes it to the prover (step (5)). The prover forms the linear

pppprrrroooovvvveeeeWWWWiiiittttRRRReeeellll Prover Verifier 

(1) Choose Choose 

(2)  ← 

(3)

(4)  ← 

 ←  for 

 ← 

(5)  ← 

FIGURE 4–3 Brands Proof of Knowledge: proveWitRel
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combination  (step (6)) and sends it to the co-prover. If the co-prover finds the condition
in step (7) satisfied, then he constructs his final message  and sends it to the ver-
ifier (step (8)). 

 

V

 

 accepts if the condition in step (9) is satisfied.

 

◆

 

Lemma 4.2 Properties of the Co-Making Function

 

For all , all prekeys  of , all witnesses , all
co-witnesses , all  and all  the following assertions hold:

1.)  = ,

2.)  = .

 

◆

 Proof  
Both assertions follow from basic rewritings:

.

 

❑

 

Security Suggestion 4.4 ECEG(

 

l
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Under the SDL-Assumption,  is an extended proof-of-knowledge scheme. 
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Security Consideration

We check condition (4.2) first. Let  be such that the premise (*)
 in (4.2) is satisfied, then we have to show that 

. 

⇒: If  is such that  then we get:

 = by Lemma 4.1 on p.44

= by way how  is given

= . by premise (*) about 

⇐: If  is such that  then we get:

 = expand expression

= by Lemma 4.1 on p.44

= by way how  is given

= by premise (*) about 

= . collapse expression

Next, we verify the two requirements on an extended proof-of-knowledge mechanism according to Def-
inition 4.3 on p.41.

EXTENDEDNESS

We argue that for all prekeys , all inputs ,  and candidates 
such that  the subprotocol instance

 (4.8)

of proveExt (Figure 4–4 on p.48) between the prover P on the one hand and the composed verifier
 on the other hand is equivalent (Definition 3.9 on p.20) to the protocol instance

 (Figure 4–2 on p.43). In order to conclude this equivalence we show that on
respective inputs the two provers are equivalent, and the two verifiers are equivalent, too:

(i) The provers P and  are equivalent because they are equal ITMs.

(ii) The composed verifier  and the verifier  in both protocols are equivalent because they
both send a randomly chosen challenge  in step (3) of prove and step (4) of proveExt,
respectively, and they both accept at the end of the respective protocol if and only if they find the
condition (**)  satisfied. For the verifier  in protocol prove, its condi-
tion in step (5) of Figure 4–2 on p.43 literally matches condition (**). For the composed verifier

 of proveExt, its condition in step (9) of Figure 4–4 on p.48 can be rewritten into condition
(**) as follows: 
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By presumption, the input to  is (‡): . Thus:

 =

⇒  = step (3), step (8)

⇒  =  Lemma 4.1 on p.44

⇒  =  cancel , presumption (‡) for 

⇒  = step (5)

⇒  = cancel , Lemma 4.1 on p.44

⇒  = .

Thus, the composed verifier  on input  is equivalent to the ITM  on input . 
Likewise, we show that for all prekeys , all inputs ,  and

candidates  such that  the subprotocol instance

 (4.9)

of proveExt (Figure 4–4 on p.48) between the composed prover  on the one hand and verifier
 on the other hand is equivalent (Definition 3.9 on p.20) to the protocol instance

 (Figure 4–2 on p.43). We show on respective inputs that the two provers
are equivalent, and the two verifiers are equivalent, too:

(i) First consider the composed prover  on input , where , and inter-
nal choices  (see step (1) of Figure 4–4 on p.48). The same messages that this composed
prover sends are also produced by the prover  on input  and internal choice

 (see step (1) of Figure 4–2 on p.43). We show this for the two messages  (step (3) of
Figure 4–4 on p.48) and  (step (8)) in turn:

 =  by step (3) of proveExt

= by step (2) of proveExt

= . by Lemma 4.1 on p.44

 =  by step (8) of proveExt

= by step (6) of proveExt

= by step (5) of proveExt

= . by definition of witness addition

For each given input , the composed prover  chooses  uniformly at ran-
dom from their respective domains. Hence, the random variable  is uniformly distributed,
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just like the random choice of the prover . Thus, the composed prover  on input
 is equivalent to the ITM  on input .

(ii) The verifiers V and  are equivalent because they are equal ITMs.

CO-UNLINKABILITY

For each , consider any two valid views  of  on  and 
 of  on  resulting from two executions of proveExt on the same shared inputs 

and two arbitrary private inputs ,  such that 
.4 So the co-prover is presumed not to abort in step (7), i.e., , and

it always sends  after step (8) such that . 
We show that for each given co-witness  such that , there is exactly

one internal choice  of the co-prover such that the co-prover matches both views  and
 when it executes proveExt on common input , private input  and uses the internal

choice .
“≤1”: From step (5) follows that there is one unique choice  because the chal-

lenges  are part of the given views  and . Then follows from step (8) that there is
one unique choice .

“≥1”: We are left to show that if the co-prover uses its co-witness  and the internal choice
 determined above, then he will also meet the remaining messages  of the given views
 and , respectively. We verify the co-prover’s computation in step (3) as follows:

 = insert  for  by presumption

= insert  for 

= insert  for 

= re-arrange terms using homomorphy of make

= insert  for  by presumption

= . insert  for . ❏

4.2 Blind Signature Schemes

In this section we recall blind signatures as introduced by Chaum [58,59] and some important special
cases which are of particular interest for privacy-oriented legitimation schemes. A blind signature
scheme has a signing and a verifying operation (among others). The signing operation takes as input a
signing key and a message from the signer Alice and returns a blinded message and corresponding sig-
nature to the recipient Bob. The key feature is that Bob alone obtains the signed message, not Alice.

A well-known formal framework for ordinary digital signatures is the GMR-Definition by Gold-
wasser, Micali and Rivest [122]. It is of limited use for blind signatures, because their notions of

4) The component  of  and  of  denote respective internal choices of the attackers  and .
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unforgeability do not apply to blind signatures. According to the GMR-Definition there is only one
way of producing valid signatures, namely, an algorithm that takes as input a signing key and a mes-
sage and returns a signature for that message. Therefore, any message whose signature is not forged is
learned by the signer. The GMR-Definition identifies 4 types of forgery against active and passive
attackers. Ordered by decreasing severity, the types of forgery are (i) to figure out the signing key
(total break), or (ii) any equivalent key, which also produces valid signatures (universal break), or (iii)
to find a signature for any given message (selective forgery) or (iv) for any message whatsoever (exis-
tential forgery). An attacker may be restricted to access the verifying key and a number of signed mes-
sages (passive attack), or he may also be allowed to ask the signer for signatures on messages of his
choice (active attack). The strongest signature scheme is secure against the weakest type of forgery
under the strongest attacker model, i.e., existential forgery against active attackers. A general frame-
work for such signature schemes, including fail-stop signatures, has been presented by Pfitzmann [183].

In contrast, blind signature schemes allow recipients to obtain signatures for messages that the
signer never learns. The notions of total break and universal break apply here as well. However the
notions of selective and existential forgery are pointless for active attacks, because they intentionally
let the recipient obtain a signature for a new message that the signer has not seen before. For blind
signatures one is interested in other notions of unforgeability, namely one-timeness and restrictiveness.
We will see that one-timeness implies security against existential forgery under passive attacks (see
the remark following Definition 4.7 on p.53). One-time blind signatures have attracted attention since
Chaum, Fiat, Naor [69] and Chaum [63] used them to build practical offline and online untraceable
electronic cash schemes. Most if not all electronic cash schemes employ one-time blind signatures,
where Bob can obtain only one signed message from each interaction with Alice. This helps to avoid
the problem of counterfeiting electronic coins [48,43,49,217,52]. The more fundamental problem inher-
ent in any electronic coin system is to avoid multiple undetected copies of an issued coin. This replay
problem is usually solved by tracking the unique serial number of each coin spent, where the serial
number is contained in the blinded message. Propelled by the popularity of untraceable electronic
cash, formal definitions of one-time blind signatures have been proposed by Franklin, Yung [113] and
by Pointcheval, Stern [191,192,193].

For offline untraceable electronic cash, double spending of coins should be detectable after the fact.
So double spenders should be identifiable if they use a coin more than once. Chaum, Pedersen [73],
Brands [34], Ferguson [108,109], Frankel et al. [112] and Radu et al. [197,198] addressed this problem
by using restrictive one-time blind signatures. A formal definition of a special type of restrictive blind
signatures has been given by Pfitzmann and Sadeghi [186]. We present a more general formal defini-
tion of restrictive blind signatures in Section 4.2.1 on p.52. This is joint work with Birgit Pfitzmann. It
is left as an open problem to make this definition even more general and applicable. See the last para-
graphs of Section 5.7 on p.121.

4.2.1 Definition of Blind Signature Schemes

We now give a definition of one-time and restrictive blind signature schemes.
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Definition 4.7 Blind Signature Scheme

A one-time restrictive blind signature scheme with security parameter k consists of the following
prekey generator, domains, operations and requirements: (genPrekey, genKey, sign, verify) satisfying
the effectiveness and security requirements given afterwards. 

GENERATE PREKEY

is a probabilistic polynomial-time algorithm that on input the security parameter  outputs a
prekey prek. 

DOMAINS

A one-time restrictive blind signature scheme has a set  of 8
domain families whose respective members are: 

• the private and a public key domains , ,
• the message domains , 

• the blinder domains , 

• the signature domains ,

• the witness domains ,

• the making functions  that are efficient to evaluate. If
, then we say that witness w makes message m.

• the witness equivalence relations  that is efficient to test. If two witnesses
 and  are equivalent according to the relation , then we simply write . Wit-

ness equivalence is used to formalize restrictiveness.
In order to ease notation, we do not display the domain index prek in the following.

OPERATIONS

A one-time restrictive blind signature scheme has a set {genPrekey, genKey, signBlind, verify} of 4
operations satisfying 4 requirements: effectiveness, one-timeness, restrictiveness and blindness.

Generate Key

A probabilistic operation that takes as input a prekey  and returns a pair of
corresponding private signing and public verifying keys .

SignBlind

A probabilistic operation of a signer Alice and a recipient Bob. Common input is a verifying key
 and a message . In addition, Alice takes a signing key , while Bob takes

an optional private input  and a blinder . Bob returns a message  and a so-
called blind signature5 .

Verify

5) The term “blind signature” is rather intuitive and (probably therefore) well-established, but nevertheless misleading.
“Blind signatures” as such are ordinary visible signatures. It is the message which is blinded and the signer who is “blind”
during and after the signing operation.

prek genPrekey k( )←

k Ñ∈

RK PK M Ω Σ W make E, , , , , , ,{ }

RKprek PKprek
Mprek
Ωprek
Σprek

Wprek
makeprek Wprek Mprek→:

m make w( )=

Eprek Wprek Wprek×⊆
w1 w2 Eprek w1 w2≡

rk pk,( ) genKey prek( )←

prek genPrekey k( )[ ]∈
rk pk,( ) RK PK×∈

m' σ',[ ]B signBlind pk m,[ ] rk[ ]A m∗{ } ω,[ ]B
, ,( )←

pk PK∈ m M∈ rk RK∈
m∗ M∈ ω Ω∈ m' M∈

σ' Σ∈

accept verify pk m m∗{ } σ, , ,( )←
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A deterministic operation that takes a public key , a message , an optional message
 and a signature  as input. It returns a Boolean output. If it is , then

we call σ valid for m with respect to public key pk, otherwise invalid. Pairs  are
called valid with respect to  iff  is valid for  with respect to .

EFFECTIVENESS

For each correctly generated prekey , each correctly generated key pair
, each message , and each blinder : signing m interactively,

, yields a message  and a signature  valid
for  with respect to .

ONE-TIMENESS

The notion of one-timeness was suggested by Pointcheval and Stern [192]. A blind signature scheme is
one-time, i.e., secure against one-more forgeries, if for all integers  a polynomial-time attacker who
has access to the verifying key of the signer can, after  execution of signBlind with the signer, find
signatures for at most  messages with non-negligible probability.

RESTRICTIVENESS

We follow ideas of Brands [34,35], Franklin, Yung [113] and Pfitzmann and Sadeghi [186]. A blind sig-
nature scheme is restrictive if a polynomial-time attacking recipient  has only a negligible chance to
succeed in the following attack A. After the signer has chosen a key pair 
for some correctly generated prekey , the attacker performs the following
three steps  times for n bounded above by a polynomial in k:

(1) for adaptively chosen messages  request from honest signer A respective blind signa-
tures valid with respect to ,6

(2) output n witnesses , and if  an additional witness , and

(3) output a pair  of a message and a signature to the verifier.

The attack is successful if 

(i) the signature  is valid for  and if  then the following two conditions also hold

(ii) for all ,  and , and

(iii)the witness  is not equivalent to any of the witnesses  ( ). 

BLINDNESS

A signature scheme is blind, if for each public key  there is a , which may depend on the
prekey and on , such that the following holds for a computationally unlimited attacking signer 
in signBlind: 

Let  be a valid view (Definition 3.11 on
p.21) of the attacking signer  in an execution of signBlind on common input pk, private input 

6) The term ‘adaptively chosen’, we mean that the attacker may choose each message depending on any previously chosen
messages and signatures received.

pk PK∈ m M∈
m∗ M∈ σ Σ∈ accept TRUE=

m σ,( ) M Σ×∈
pk σ m pk

prek genPrekey k( )[ ]∈
rk pk,( ) genKey prek( )[ ]∈ m M∈ ω Ω∈
m' σ',[ ]B signBlind pk m,[ ] rk[ ]A m∗{ } ω,[ ]B

, ,( )← m' σ'
m' pk

l
l

l

B̃
rk pk,( ) genKey prek( )[ ]∈R

prek genPrekey k( )[ ]∈
n Ñ0∈

m1 … mn, ,
pk

w1 … wn, , W∈ n 0> w' W∈

m' σ',( )

σ' m' n 0>

i 1…n= make wi( ) mi= make w'( ) m'=

w' wi i 1…n=

pk κ Ñ∈
pk Ã

viewÃ viewB
Ã signBlind pk m,[ ] rk[ ]Ã ω[ ]B, ,( )( )[ ]∈

Ã rk



4.2 BLIND SIGNATURE SCHEMES

55

of  and private input  of honest recipient B. In addition, let  be an arbitrary valid pair
with respect to pk. Then there are exactly  tuples  ( ) of blinders and internal
choices for the recipient in signBlind such that the recipient outputs  whenever  gets the
view  and the recipient takes input  and makes the internal choice .

OPTIONAL PRIVATE INPUT OF THE RECIPIENT

For each pair  of message  and signature  valid with respect to a pub-
lic key , a polynomial-time ITM has only negligible chance of finding two different optional
messages ,  such that

. ◆

Remark:  An immediate consequence of one-timeness is that passive attackers, who are allowed no
interactions with the signer, cannot obtain signatures for any new messages. In other words, one-time
blind signature schemes are secure against existential forgery under passive attacks.

Also a restrictive blind signature scheme is secure against universal forgery under an active attack.
Would an active attacker with better than negligible probability figure a signing key by which it can
produce valid signatures for any message, regardless how the messages are represented, then he had
broken the restrictiveness property.

4.2.2 Chaum-Pedersen Signature Mechanism

We revisit the one-time restrictive blind signature scheme introduced by Chaum and Pedersen in [73],
who built on ideas of Schnorr [208,209]. Due to its inventors we refer to it as the Chaum-Pedersen Sig-
nature Mechanism. It will be used as a black box in the constructions of credential mechanisms in
Section 5.4 on p.90 and Section 5.5 on p.110. It will also be the basis of the construction of blind group
signature mechanisms in Section 6.4 on p.129.

Mechanism 4.8 Chaum-Pedersen(l) Signature Mechanism

The domains and operations of the Chaum-Pedersen(l) Signature Mechanism are as follows.

GENERATE PREKEY

Pick a discrete log setting  uniformly at random from  (Definition 3.17 on p.28). Then pick
 generators  (Observation 3.18 on p.28). Furthermore, choose a hash function

 that takes binary strings and returns elements of . Typically, we use tuples
 of numbers as input, and we then simply write . The only assumption here is

that a certain one-to-one conversion between the representations of tuples and binary strings is used.
For example, for each security parameter k, the numbers can be represented as binary strings of fixed
length, which in turn can be concatenated into larger strings suitable as input to hash. Alternatively,
the numbers can be represented as binary strings of variable length by encoding each number in three
fields: length of number | appropriate padding | number.

DOMAINS

The private and public key domains are  and , respectively. The message and
signature domains are  and , i.e., triples of components from , ,

Ã ω m' σ',( )
κ ωi ρi,( ) i 1 κ,[ ]∈

m' σ',( ) Ã
viewÃ ωi ρi

m σ,( ) M Σ×∈ m M∈ σ Σ∈
pk PK∈

m1∗ m2∗

verify pk m m1∗{ } σ, , ,( ) verify pk m m2∗{ } σ, , ,( ) TRUE= =

p q g g1 … gl hash, , , , , ,( ) genPrekey k( )←
p q,( ) dlsk

l 1+ g g1 … gl, , , Gq∈R

hash 0 1,{ }∗ ¸q∗→: ¸q∗

a b c, ,( ) hash a b c, ,( )

RK ¸q= PK Gq=
M Gq= Σ Gq Gq

2× ¸q×= Gq Gq
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and , respectively. The blinder domains are . The witness domains are
, the making functions are defined such that:

, (4.10)

and the witness equivalences are defined such that 

. (4.11)

OPERATIONS

Generate Key

Pick the private key  uniformly at random and compute the public key .

SignBlind

Bob may take the message  as an optional private input. Alice chooses  uniformly at
random and Bob chooses  and  (step (1)). Alice computes the three values

 and  (step (2)), where g is the generator contained
in the prekey. She sends the three values to Bob. Bob forms his new message  and blind signature
components  in step (3) and (4). He then applies the hash function hash to the results

 (step (5)), prepares his challenge in step (6) and sends it to Alice. Alice com-
putes a corresponding response r (step (7)) and returns it to Bob. If the signature  is valid
for message m (step (8)), Bob finally computes the missing blind signature component  (step (9))
and outputs the new message and signature .

The signing protocol allows Bob to have an optional message  (enclosed in braces) signed
directly. If the optional message is used, we refer to signBlind as the extended signing protocol of the
Chaum-Pedersen(l) Signature Mechanism. It is used in Section 5.5 on p.110 and Section 7.3 on p.143. 

signBlind Alice Bob 
(1) Choose Choose ,

(2)  ← 

 ← 

(3)  ← 

(4)  ← 
(5)  ← 

(6)  ← 

(7)  ← 

(8) proceed iff 
(9)  ← 

FIGURE 4–5 Producing a Chaum-Pedersen Signature
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Verify

A message , optional message  and signature  are verified by
the following algorithm.

where . ◆ (4.12)

Proposition 4.5 Witness Equivalence

For each prime q, is an equivalence relation on the domain . ◆

Proof

The witness equivalence is obviously reflexive and symmetric. In order to check transitivity, consider
three witnesses  that satisfy 

and (4.13)

.  (4.14)

By multiplying equations (4.13) and (4.14) we obtain the following equation

.  (4.15)

If all , the latter equation (4.15) simplifies to the desired result:

.  (4.16)

We are left to show that equation (4.16) holds also if any of the  disappears. For those index
pairs  where both , the respective  cancel out on both sides of equa-
tion (4.15), and thus equation (4.16) holds for these index pairs . For each  where

, equation (4.13) implies that  or , and equation (4.14)
implies that  or . Since the witness  is not in the
domain on which the relation is defined, we are left with the condition , which satisfies
equation (4.16) for all index pairs , , …, . Thus, equation (4.16) is satisfied. ❏

Security Suggestion 4.6

For all  the Chaum-Pedersen(l) Signature Mechanism 4.8 on p.55 is a blind signature
scheme according to Definition 4.7 on p.53. It is conjectured by Brands [34] and others [192] to be one-
time and restrictive in the random oracle model under the SDL Assumption 3.20 on p.29, the SDH
Assumption 3.23 on p.30 and possibly further assumptions that have not been made explicit in the
open literature. ◆

Security Considerations  

EFFECTIVENESS

We show that the output of signBlind satisfies the algorithm verify:

m' M∈ m∗ M∈ σ' z' a' b' r', , ,( )= Σ∈
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 = ,

by steps (8), (7), (6), (2), (4) in turn and using . Analogously:

 = ,
by steps (3) and (8), (7), (6), (2), (3) and (4) in turn.

BLINDNESS

This has been shown by Chaum, Pedersen in [73] using the fact that signing is a proof of knowledge of
the signing key.

ONE-TIMENESS AND RESTRICTIVENESS

Brands has conjectured in [34] Section 9 and [35] that the Chaum-Pedersen(l) Signature Mechanism is
one-time and restrictive. He uses reasonable heuristics to argue for both, but no formal proofs have
been given yet. Pointcheval and Stern have proved a close variant of the Chaum-Pedersen(l) Signa-
ture Mechanism to be one-time in the random oracle model [192]. The problem with their result was
that the reduction is not polynomial in the number  of interactions between signer and attacking
recipient. So it does not cover all polynomial-time active attacks. A polynomial-time reduction has
later been revealed by Pointcheval in [193].

Let an arbitrary pair  be given such that  and  is a valid sig-
nature for m with respect to some public key . In order to find two different optional mes-
sages ,  such that  TRUE an
attacker had to find ,  such that

, 

which is infeasible in the random oracle model. ❏

RRRReeeemmmmaaaarrrrkkkkssss:::: Brands has conjectured in [34] Section 11 that the Chaum-Pedersen(l) Signature Mechanism
is as secure for  as for , which is plausible, because the signing protocol is independent of
the parameter l. In fact Brands has published his off-line e-cash mechanism in [35] using the Chaum-
Pedersen(1) Signature Mechanism. The definition of restrictiveness, however, does not cover the case
of  because then the witness relation collapses to mere identity leaving no room for blinding sig-
natures any more. It is an interesting open question, how to define restrictiveness in a more general
way than above.

It has been shown for the Chaum-Pedersen(l) Signature Mechanism that signBlind is a proof of
knowledge of the signing key. In particular, it is a variant of CEG(2), with candidate  and wit-
ness . (Compare the signer Alice in Figure 4–5 on p.56 with the prover in Figure 4–2 on p.43.)
The blind signature protocol in Figure 4–5 on p.56 can then be interpreted as a diverted proof of
knowledge where the recipient plays the roles of both the co-prover (steps (3), (4), (6), (8)) and the
verifier (step (5)). For more details see Bleumer [22] and Blaze, Bleumer, Strauss [20].
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Credential Schemes
“The decision we make about communication security today
will determine the kind of society we live in tomorrow.”

— Whitfield Diffie [93]

n the following sections, we develop advanced cryptographic implementations of certificates that
are unforgeable, non-repudiable, protect holder privacy and optionally have any of the other secu-

rity requirements introduced in Section 2.2 on p.6. We do not consider repudiable certificates, which
are based on symmetric authentication mechanisms. For example, the Kerberos tickets [142] are this
type of certificates. Non-repudiable certificates without privacy are easily implemented by means of
ordinary digital signatures [94]. Typical examples are public key certificates according to X.509
[138,155], which employ RSA [201], DSA [164] or ECDSA. The first conceptual proposal for non-repu-
diable certificates protecting the privacy of holders, even against coalitions of computationally unlim-
ited certifiers and verifiers, was introduced by Chaum [58,59]. He also coined the term “credential” for
this type of certificates. An overview of these and other practically relevant credentials has been given
by Jones et al [141]. As credentials are a special case of certificates, the terminology introduced for cer-
tificates in Section 2 on p.5 carries over to credentials.

We introduce the new concept of credentials with anonymous certifiers who may be re-identified in
case of dispute later on. Since a certifier is anonymous relative to a certain group of potential certifiers,
we call this new concept group credentials. This section and the following lay down the basic building
blocks in order to prepare the cryptographic mechanism presented in Section 7 on p.141.

Section 5.1 on p.60 presents an overview of the existing literature on credentials, in particular off-
line credentials, and the topology of the most advanced decentralized systems implementing them
(wallets with observers). In Section 5.2 on p.71 and Section 5.3 on p.81 we layout a formal framework
for offline credentials and their security requirements. We propose in Section 5.4 on p.90 a new crypto-
graphic mechanism for personal credentials. To prepare more advanced cryptographic mechanisms in
Section 7 on p.141, we revisit Brands’ proposal for coin credentials [34,35] in Section 5.5 on p.110.
Bond credential schemes combine the integrity requirements of personal and coin credentials
(Section 5.6 on p.121). Showing personal AND coin credentials is discussed in Section 5.7 on p.121.

I
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5 CREDENTIAL SCHEMES
5.1 Overview

Chaum’s pioneering work [58,59] was the starting point for numerous papers dedicated to privacy of
digital certificates from both a practical and a theoretical point of view. We will now give a structured
survey over the last 15 years of (public) literature on credential schemes and closely related topics
such as untraceable payment schemes. This might be of particular help to the novel reader because
credential schemes are among the small and delicate topics of current cryptographic research. Early
credential schemes were covered by Brassard et al in their tutorial on “modern cryptology” [41] (about
3.7% of the pages). Recent monographs and books on cryptography cover credential schemes poorly,
e.g. Simmons [215], Stinson [218], Salomaa [204], Menezes, van Oorschot, Vanstone [157], Schneier
[206], and Goldreich [120]. Only Simmons and Schneier mention credentials in the above sense; 3 out
of 13 chapters in Simmons’ book cite Chaum’s work, and Schneier dedicates about 1.2% of his pages to
a special kind of credential scheme: electronic cash (under the heading “esoteric protocols”).

In principle, certificates threaten the holders’ privacy if certifiers and verifiers together can link
different actions on the same or related credentials. They could use such data to compile for example
profiles of certain holders’ behaviors or they could trace credentials from holder to holder (traceabil-
ity). The basic idea to prevent such collusions of certifiers and verifiers is to let holders use randomly
chosen one-time pseudonyms for their interaction with certifiers and verifiers [58,59]. 

Unlinkability is an important holder privacy requirement (Section 2.2.5 on p.7) of all credential
schemes. Consider a typical activity of a holder: He first obtains a credential from an issuer and after-
wards shows it one or more times to a verifier1. 

• If the issuer and the verifier together cannot link all “shows” of one credential to the corresponding
“issue”, we call the credential scheme issue-wise unlinkable.

• If, furthermore, they cannot link any two “shows” (of one credential), we call the credential
scheme show-wise unlinkable.

Pseudonyms seen by issuers or verifiers are called source pseudonyms and target pseudonyms, respec-
tively. For example, if credentials can be shown more than once but only for the same target pseud-
onym, then the credential scheme can be issue-wise unlinkable but not show-wise. If credentials can be
shown only once, then issue-wise unlinkability and show-wise unlinkability are no different.

If basic legitimations are implemented by unlinkable credentials using random one-time pseud-
onyms then the holder authorization problem (Section 2.2.3 on p.7) and the certification problem
(Section 2.2.4 on p.7) can be rephrased as follows:

• HHHHoooollllddddeeeerrrr    aaaauuuutttthhhhoooorrrriiiizzzzaaaattttiiiioooonnnn    pppprrrroooobbbblllleeeemmmm: The verifier must check whether the actual holder is legitimated to
use the credential at hand.

• CCCCeeeerrrrttttiiiiffffiiiiccccaaaattttiiiioooonnnn    pppprrrroooobbbblllleeeemmmm: The verifier must check that the credential content is certified for the target
pseudonym (although the issuer knows the holder only by the source pseudonym).

1) In fact, the holder may show his credential to several verifiers. However, if we talk about holder privacy, we consider them
all as one big collusion V.
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5.1 OVERVIEW
The hhhhoooollllddddeeeerrrr    aaaauuuutttthhhhoooorrrriiiizzzzaaaattttiiiioooonnnn problem is solved by implementing a set of rules that characterize the
intended credentials. In this work, we deal only with two very basic kinds of holder authorizations:
Whether a credential is acceptable to a verifier can depend on the biometric identity of the holder or
on how often it has been used before. If  is the limit of how often a credential may be used, we
call it a K-show credential, or a nonce-credential if . A typical example are electronic coins. In
general, K-show credentials ( ) can be simulated by K separate nonce-credentials.

The classical approach to solving the holder authorization problem is by online control where some
control center oversees all credential shows, and denies them if necessary. See work of Miller [158],
Davida, Frankel, Matt [86], Davida, Frankel [87] and Jain, Hong, Pankanti [140]. For example, holders
can simply be asked to store all their credentials in a safe database accessible only by the control cen-
ter. Such a centralized online solution, though, is unacceptable for many kinds of credentials. Even if
the control center is distributed, it poses a severe threat to the availability of credentials and the pri-
vacy of holders, and thus must be carefully designed. A good example are the online solutions for pri-
vacy protecting cash checks proposed by Chaum in [63]. We are going to take the requirements of
availability and privacy seriously and therefore confine ourselves primarily to off-line solutions of the
legitimation problems. That is 

• holders shall keep their credentials locally, and

• holders shall be able to obtain and show their credentials without depending on remote third par-
ties being online. See Bleumer [23,24].

Efficient solutions to the cccceeeerrrrttttiiiiffffiiiiccccaaaattttiiiioooonnnn    pppprrrroooobbbblllleeeemmmm can be obtained by some kind of digital signature,
thereby providing holders and verifiers with a proof of origin of certification. The meaning of such a
signature, i.e., the intended content of a credential, could be associated to the secret key used to pro-
duce the signature [60].2 For simplicity, we assume in this overview that there is only one possible con-
tent.3 The question left is how a digital signature received for a source pseudonym can be shown (a)
without revealing that source pseudonym or any other identifier that is easily linkable to the source
pseudonym and (b) in a way that the verifier is provided with a proof of the holder’s certification that
convinces not only the verifier but third parties as well. The second condition reflects the fact that for
most applications such proofs are strongly desirable as legal evidence. Conceptually, two solutions
have been proposed in the literature to solve both problems at the same time.

(i) The signature received for the source pseudonym is somehow converted into a signature for the
target pseudonym. Signature schemes with this conversion property have been introduced by
Chaum as blind signatures [58,59,60,61,64]. The first complete credential scheme was based on an
RSA signature scheme using the fact that RSA is an automorphism on , where n is the public
(composite) modulus [60]. Assume  is the public verifying key (public modulus and expo-

2) The reason for this perhaps slightly surprising suggestion is that the content of a credential needs to be carefully separated
from its owner, i.e., the source pseudonym certified. The former shall not be subject to any change by the owner, whereas
the latter is intended to be so. If the content is associated to the secret key of the certifier, then changing the content of a
credential is equivalent to forging the whole credential, which is presumed to be infeasible.

3) This assumption is without any restriction unless, given a certain security parameter, the number of potential contents
exceeds the number of possible secret keys. In fact, the most interesting case in practice is a limited (finite) number of
potential contents, because the average unlinkability holders can achieve is reciprocal in the number of potential contents.

K Ñ∈
K 1=

K 1>

¸n
*

n e,( )
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5 CREDENTIAL SCHEMES
nent for verification) of some issuer and  the corresponding private key (the two prime
factors of n and the corresponding exponent for signing such that d is the multiplicative inverse of
e in , where   is Euler’s totient function). If some customer wants to
get issued a credential, he chooses a blinding factor  and a target pseudonym 
under which he wants to show the credential later on. Then he asks the issuer to issue a credential
for the source pseudonym . The issuer issues the credential , and
the customer computes the desired credential  for his target pseudonym. This
credential satisfies the verification predicate . Alternatively, the customer
might start with a given source pseudonym  and end up with a new target pseudonym  from
the protocol. In fact, the source and target pseudonym are unconditionally unlinkable by any pro-
vider who might see them. Since that proposal, blind versions have been constructed for many dig-
ital signature schemes; by Chaum, Pedersen [73] and Brands [36] for Schnorr signatures [209], by
Camenisch, Piveteau, Stadler [49] for Nyberg-Rueppel signatures [168,169] and for a variant of
DSA [164], by Horster, Michels and Petersen [135] for ElGamal signatures [99], and by Pointcheval
and Stern [192] for certain adaptations of Schnorr and Guillou-Quisquater signatures. This is not
surprising because most digital signature schemes are built around a homomorphic one-way func-
tion [25], which is also useful for blinding purposes.

(ii) An alternative approach is based on zero-knowledge proofs of knowledge [123]. The certifier uses
an ordinary digital signature for certification and the holder proves to the verifier in zero-knowl-
edge that he knows a signature for one of his pseudonyms [83,187]. A proof of the holder’s certifi-
cation can be obtained by using non-interactive zero-knowledge proofs of knowledge [205]. The
security of this type of scheme can be proven under general cryptographic assumptions. However,
the message complexity and encryption complexity of existing solutions are prohibitively large,
e.g., the length of a proof of holding a certification (i.e., valid signature) depends on the complex-
ity of the signing function itself [113]. Although no lower bound is proven yet, we will not pursue
this approach further. However, we will employ interactive proof-of-knowledge protocols in a dif-
ferent way.

5.1.1 Core Credential Schemes

In the following, we consider four core credential schemes. If a credential scheme solves the certifica-
tion problem, it is called a free credential scheme. If a free credential scheme solves the holder authori-
zation problem by checking the biometric identity of holders, it is called a personal credential scheme.
If a free credential scheme solves the holder authorization problem by checking that a credential has
not been shown more than a predetermined number of times, it is called a coin credential scheme. If a
free credential scheme solves the holder authorization problem by checking both conditions it is called
a bond credential scheme. The relations are depicted in Figure 5–1 on p.63 with the more special
schemes depicted closer to the bottom. Existing cryptographic implementations for each of these core
credential schemes are discussed now in more detail.

Free Credentials  By definition, there is no holder authorization problem in free credentials because
free credentials are valid regardless how often they are shown or by whom. Free credentials without
holder unlinkability are well-known. They only require a digital signature to bind the certificate con-
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5.1 OVERVIEW
tent to the issuer. We will not consider them further. The first proposal of a free credential scheme
with holder unlinkability is due to Chaum [60]. We have reviewed it in the previous subsection. That
paper caused some confusion because the motivating examples suggested that it is a personal creden-
tial scheme, which it is not. It does not address the transfer prevention problem against active attack-
ers (see the paragraph after the next one).

Credential schemes that allow to show credentials more than once in an unlinkable way have been
proposed by Damgård [83] and Chaum [60,64]. Damgård’s construction is mainly of theoretical inter-
est because it is based on unconditionally secure bit commitment schemes and general 2-party compu-
tations. While the protocols are highly impractical, Damgård achieves a provably secure construction
with minimal complexity theoretic assumptions. On the other hand, Chaum’s solution [64] is based on
blind RSA signatures and is quite efficient. Reconsider the setup of the blind signature scheme
sketched under “certification problem (i)” above. Here, pseudonyms are products of a unique person
identifier u and a randomly chosen blinding factor b. Let Bob’s pseudonyms for provider Alice and
Charlie be  and , respectively. Alice gives a credential

 for pseudonym  to Bob. Bob, knowing his blinding factors  and
, re-blinds his credential into  and shows this for pseudonym
 to Charlie. Finally, Charlie verifies that . 
Chaum suggests that some globally trusted initialization center shall overlook the generation of

person identifiers u, to link them to the legitimate holders, and to guarantee pseudonyms to be formed
correctly. The protocols employ quite expensive cut-and-choose methods in order to reduce the trust
that holders have to put into the initialization center. 

These cut-and-choose methods ensure that pseudonyms are well-formed although they cannot be
inspected and checked directly. The idea is that during the initial step, customers are asked to produce
and submit more pseudonyms than they really need and then have to open a certain fraction q of them
for spot checking. If those pseudonyms opened are found to be formed correctly, the remaining (pri-
vate) pseudonyms are expected to be correct with error probability . These basic cut-and-choose
methods are inefficient in the sense that the overhead of producing and checking pseudonyms is
inverse in the error probability achieved. More importantly, this initialization center can of course not
prevent holders from simply giving away or exchanging their pseudonyms and even their identifiers.

Personal Credentials  Credentials that are not transferable between human owners defined by a
biometric identity are called personal. An imposter seeking a personal credential of Alice cannot be
distinguished from Alice, unless he is verified biometrically. Likewise, an imposter showing a personal
credential of Alice, the owner, cannot be detected unless the verifier refers to the biometric identity of

FIGURE 5–1 Relations of the Core Credential Schemes
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5 CREDENTIAL SCHEMES
the imposter. Since in both cases the owner and the masquerading holder are digitally indistinguish-
able, proper holder authorization can be enforced only by biometric identification of the recipient
(holder) before issuing (showing) a credential [83,181].

Chaum has mentioned the idea of biometric verification in an earlier article [61] published in 1985,
in order to solve the problem of restricting individuals to use only one pseudonym with each organiza-
tion such that each organization could link all its correspondence with each individual whereas differ-
ent organizations were prevented from linking their views on any individual. Chaum’s idea was to
setup a central organization whose sole purpose was to issue special “is-a-person” credentials after
identifying persons biometrically. Once, a person is issued an “is a person” credential, the person will
never receive a second one. An organization can then require to see an “is a person” credential before
issuing its own credential. The approach worked, if only for one organization, but the biometrics was
not suggested to prevent individuals from transferring their credentials among one another.

When Chaum published his paper [64] in 1990, he was probably aware of the fact that only by bio-
metric recognition individuals can be prevented from sharing or transferring their credentials. This
insight is sketched in his patent [62], which was filed in 1988. Damgård [83] was probably the first to
mention it in the open literature.

Yet, Chaum’s tutorial paper [65] published in 1992 did not mention that personal credentials need
some sort of biometric recognition. As late as 1996, Chen still suggested another all-digital personal
credential scheme [76,74] based on the SDL-Assumption. Chaum and Pedersen [73] proposed that
users hold their personal databases in personal devices (see Section 5.1.3 on p.67), which need to be
equipped with so-called observers. These are tamper resistant security modules (see Section 5.1.4 on
p.68) that authorize transactions of their host devices. Although not mentioned by Chaum and Peder-
sen in [73], their solution could be turned into a personal credential scheme by adding a biometric sen-
sor to the observer. Unless observers are broken holders cannot show each other’s credentials, not even
if they lend away their MUDs and observers. If attackers break their observers, though, they can also
forge new types of credentials, which they have never got issued before. Chaum and Pedersen’s pro-
posal also requires an initialization center that is needed to certify millions of one-time public keys in
advance, which are needed by the observers each time they authorize their host devices to show a cre-
dential. Once an observer has exhausted its supply of certified public keys, it needs to go back to the
initialization center in order to reload certified one-time public keys. This is computationally ineffi-
cient and inconvenient from a user’s perspective.

An approximating approach to non-transferable credentials has been proposed by Lysyanskaya,
Rivest, Sahai and Wolf in [147]. They tie personal credentials to the private master keys of individuals
in such a way that individuals can share their credentials only by sharing their full digital identity.
The approach approximates non-transferability in the sense that the more personal signing and
decryption capabilities are associated with an individual’s master key, the less incentive there is to
transfer or share credentials. This approximating approach has been proposed earlier by Dwork,
Lotspiech and Naor for protecting digital content [98] and later by Goldreich, Pfitzmann and Rivest
for controlled self-delegation [103]. Lysyanskaya et al propose two constructions, an impractical mech-
anism based solely on one-way functions, which is an extension of Damgård’s result [83] mentioned
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5.1 OVERVIEW
under “Free Credentials”, and an efficient mechanism for one-time credentials, which is very similar to
Chen’s result [76,74] mentioned above.

Coin Credentials  Coin credentials do not require biometric means. By digital means alone, a
holder showing a K-show credential K+1 times (overshowing) can at least be detected. Note, that in
case of overshowing there is an additional transaction (i.e., the st show), that can be used to
distinguish authorized from unauthorized use, and in particular identify the cheater. In their seminal
paper [69], Chaum, Fiat and Naor presented the first construction based on RSA signatures. This
inspired plenty of variations and improvements [67,174,128, 175,3,131]. All these schemes are feasible
but no proofs of security have been given that rely on the standard RSA assumption. Franklin and
Yung made the holder authorization problem of coin credentials more explicit. They identified pure
blind signature primitives as too liberal and introduced the more appropriate primitive of oblivious
authentication [113] (not to be confused with oblivious signatures [75]). The additional constraint is to
prevent holders from choosing their messages directly and thereby letting them encode no or false
identities into their coins. All constructions of offline payment schemes proposed up to and including
[113] enforce this correct encoding of holders’ identities by a cut-and-choose method [196]. Oblivious
authentication that is free of cut-and-choose has been proposed by Ferguson and Brands. Their
approach is to have the holders choose preimages of their messages under a previously agreed one-way
function (instead of choosing their messages directly). Ferguson started from work with Chaum and
van Antwerpen [66,3] and came up with a randomized blind signature scheme [108,109] based on non-
standard RSA assumptions. Building on the signature schemes of Schnorr [209] and Chaum et al [39],
Brands came up with a restrictive blind signature scheme [34,35] based on the SDL-Assumption. Radu
et al presented another restrictive blind signature scheme [197] based on the same assumption that is
derived from Okamoto’s identification scheme type I [172]. Randomized blind signatures and restric-
tive blind signatures considered as abstract cryptographic primitives appear rather similar if not
equivalent. However, since they have been introduced as concrete cryptographic mechanisms, we do
not analyze their functional relationship in more detail. With respect to computation and communica-
tion complexity, Brands scheme is superior. More recent work has based the above primitives upon
other well-established signature schemes [36,37]. Security against holder framing, i.e., falsely accusing
the holder of double spending, has been considered by Ferguson [108] and Brands [34,35].

Since electronic cash is in fashion, most privacy protecting credential schemes proposed in the
open literature deal with some kind of electronic coin that can be spent once. These schemes require to
fix a target pseudonym at issuing time. Each credential can be shown only for this pseudonym and
thus credentials can be shown essentially to only one verifier. If they were shown to two different ver-
ifiers, these could immediately link their views. Discrete log based credential schemes giving show-wise
unlinkability have been posed as an open problem by Chen [76,74].

Overspending detection is a weak countermeasure as actual damage tends to be detected too late
to be limited effectively. Building on work of Chaum et al [39,73] on tamper resistant observers, Fer-
guson and Brands extended their schemes [34,35] in order to prevent holders from overspending as a
first line of defense and still provide overspending detection in case that first line is broken (see
Section 5.1.4 on p.68).

K 1+( )
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5 CREDENTIAL SCHEMES
Naccache and van Solms pointed out that coin credential schemes with unconditional unlinkability
probably encourage money laundry, perfect blackmailing and related crimes [160]. This problem is
probably the bigger the larger amounts of money can be moved with a coin credential scheme. Several
solutions have been suggested to strive a better balance between customer privacy and law enforce-
ment. Several solutions and improvements have been suggested by Stadler, Piveteau and Camenisch
[50,52], Brickell, Gemmell, Kravitz [43], Camenisch, Maurer, Stadler [53,54], Frankel, Tsiounis, Yung
[85,112]. They all use an additional trusted center that can de-anonymize the suspects of big money
transactions. However, the proposals differ in requiring or not the trustee to be on-line for each with-
drawal, efficiency of identifying the customer and various other efficiency measures.

There are additional features possible for coin credentials, namely transferability and dividability
(also called divisibility). Transferable credentials4 can be re-spent by the payee, and dividable creden-
tials can be split by their holders into “smaller” coin credentials with their sum matching the original
credential. Okamoto and Ohta [175] considered the ideal payment scheme to be an offline transferable
dividable coin credential scheme that prevents overspending and called it universal cash. A fundamen-
tal theorem by Chaum and Pedersen [72] however, reveals that transferable coins must grow linearly
in the size of the number of transfers if they shall keep identifying a double spender. A weaker form of
dividable credentials has been introduced earlier as pre-paid offline checks [31,67,35]. From such a
check, only one “smaller” credential can be extracted whereas the rest of the original check is not pay-
able, but can only be refunded by the bank. (Post-paid offline checks cannot protect the privacy of
holders in the strong sense that we aim at, because they have to carry information about their account
holders.) Pedersen introduced micro payment schemes [178] (also called phone ticks) that offer
improved efficiency if small amounts are successively paid to the same payee so rapidly that it makes
little sense to keep these payments unlinkable.

In order to focus on the new extensions (Section 5.1.2 on p.66), we disregard such additional fea-
tures like dividability, transferability, checks and micro payments. All of them are interesting addi-
tions to our refinements and it remains a challenge to combine them with our new ideas.

Bond Credentials  According to their specification as personal and coin credentials (Section 2 on
p.5) they can be implemented by combining the techniques used to achieve these requirements sepa-
rately. Such combinations have not been studied in the literature yet.

5.1.2 Issuer Groups and Issuer Anonymity

All previous concepts and constructions of credential mechanisms (including payment systems)
assumed that issuers of credentials are identified parties, known by the holders as well as by the veri-
fiers. We introduce the concept of relative anonymity for issuers (Section 2.2.6 on p.7); it can be
applied to all the four core credential schemes. Relative anonymity was first introduced by Chaum and
van Heijst [70] for digital signature schemes. The idea is to form groups of signers and to publish pub-
lic keys of each group rather than each individual signer. A signer of a group produces signatures that
can be publicly verified to originate from the signer’s group—but not from which member. In case of
dispute later on, the group is able to identify the signer by his signature. The group can identify each

4) Typically, they are called “coins” in the literature.
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5.1 OVERVIEW
of its members, because members have to deposit a partial private key before they are admitted to join
the group. 

We translate the concept of relative anonymity to credential schemes by constructing group ori-
ented blind signature schemes. We will also compare our new constructions to alternative solutions by
Lysyanskaya and Ramzan [149]. The resulting credential schemes allow the issuers to remain anony-
mous against verifiers of their credentials. We have shown how this new concept can be applied, e.g.,
to a healthcare system funded by compulsory health insurances [26,27] in order to obtain strong pri-
vacy of the patient-doctor relation against health insurers (see Section 8 on p.145).

5.1.3 Mobile User Devices

For reasons set out in Section 5.1 on p.60 (holder authorization), we are interested in legitimation sys-
tems where users employ offline devices that can store credentials for their users and support receiving
and showing credentials without relying on any other device, e.g., smart card reader, or online service,
e.g., authentication server.

Clearly, such user devices must have at least a power supply, a CPU, RAM and non-volatile mem-
ory, a user interface (input/output facilities) and communication facilities in order to interact with
other pieces of hardware. If users want these devices to perform legally relevant actions in behalf of
them, they will want to have these devices under their exclusive control. Preferably, such devices are
small and lightweight enough so that users find it easy to carry their devices by them. (Any kind of
stationary computer is difficult to protect from being shared by several users.) We call such hardware
mobile user devices (MUD) according to [185]. Practical examples of mobile user devices are computer
cards, palmtops, organizers, personal digital assistants, or cell phones. Practical examples of communi-
cation facilities are direct plugging, serial or infrared connection, local area network or radio wave. 

Even, Goldreich and Yacobi [101,102,100] were one of the first who considered electronic wallets
as an application-specific mobile user device. Such an electronic wallet allows its user to inspect the
current amount of money actually stored, to pay and to receive money without having to ask a bank
or other third party for assistance. Chaum also discussed multi-purpose mobile user devices [65].

In order to be acceptable as user agents in legitimation systems, mobile user devices have to justify
personal agent trust (i.e., as long as a user holds his MUD in his hands it should be credible to func-
tion correctly) and captured agent trust (i.e. as soon as a user loses control over his MUD, it should
block and stop to deliver any service). The former is usually achieved by proper quality control and
diversity during the design process whereas the latter is achieved by sufficient tamper-resistance and
passphrase protection of all security critical transactions and the local memory itself. Whenever we
apply mobile user devices in the following, we presuppose that they justify personal agent trust and
captured agent trust. A fair source how this can practically be achieved is [185].

Typically, providers offer their services to holders by means of stationary provider machines
(SPM) that are capable to interact with mobile user devices and are usually more powerful than
MUDs. Typical examples are automatic teller machines (ATM) or point-of-sale terminals (POS).

5.1.4 Embedded Security Modules

In the context of legitimation schemes, it is the providers’ and the verifiers’ interest to enforce holder
authorization. For instance, in the case of personal credential schemes it is usually the providers and
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5 CREDENTIAL SCHEMES
the verifiers who want to prevent credentials from being transferred between owners. In case of coin
credential schemes it is the banks’ and the merchants’ interest to prevent holders from double spend-
ing. In principle, holder authorization can be enforced either by a provider or by an agent that is
trusted by the provider(s) and verifier(s) and is involved in all critical transactions, i.e., transactions
where holder authorization could be breached. In an offline credential scheme such a trusted agent can
only be distributed over a number of security modules [185] that are embedded into the mobile user
devices themselves and each security module participates in its host’s critical transactions.

In order to be acceptable to providers and verifiers of legitimation systems, such security modules
have to justify undercover agent trust, i.e., providers and verifiers need to be sufficiently assured that
these security modules function correctly even though they are embedded in hostile environments.
This is typically achieved by proper tamper-resistance.

Figure 5–2 on p.68 (a)-(d)) depicts the simple configuration of a stationary provider machine

(SPM) and a MUD (a) and three possible configurations of how a security module S acting as a pro-
vider agent could be embedded into the MUD (b-d). The configurations (b-d) could be extended to
several security modules (per MUD) trusted by different providers that possibly distrust each other. 

In (a) there is a single communication line between the SPM and the MUD. The stationary pro-
vider machine has no control over the MUD and thus cannot trust in the MUD at all.

In the following configurations, the providers trust in the security modules (S) that are embedded
into the MUDs.

In (b) all communication between SPM and MUD is mediated by the security module S, whereas
in (c) each two of the three participants have a direct connection. The latter has an advantage if the
communication bandwidth between SPM and MUD is larger than that between SPM and S. More
importantly, both configurations leave the MUD highly vulnerable of getting profiled. As long as the
MUD maintains it’s connection to the SPM, it cannot prevent the security module from sending pro-
filing data to the SPM.

In (d) all communication between SPM and MUD is by direct connection, with the security mod-
ule sitting in the back of the MUD. This enables the MUD to shield the security module against in-
band inflow and in-band outflow, i.e., the MUD can mediate all communication from the SPM to S
and back. At the same time the SPM can require a co-operation of the security module in critical
transactions in order, for example, to enforce correct holder authorization. Since the MUD shields its
security modules against inflow and outflow it makes sense to consider MUDs using different security

FIGURE 5–2 Configuring an SPM, a MUD and a Security Module S
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5.1 OVERVIEW
modules in the same transaction or one after another in different transactions. This configuration (d)
was first considered by Brands, Chaum, Cramer, Ferguson, and Pedersen [39,73,65] who called it wal-
let with observer. Cramer and Pedersen [80] aimed at privacy even in the (realistic) case that some
observers should once be captured or returned to the providers, thereby causing out-of-band outflow.
In this case, protection against inflow is particularly crucial. Like outflow, inflow can occur in-band
and out-of-band. Out of band inflow can be surprisingly subtle; for example by internal high precision
clocks that are initially synchronized with an outside attacker clock, or by internal radio micro-receiv-
ers that pick up broadcast signals from satellites (GPS) or cell phone networks, which can also be
received by the providers.

In the following, we will only consider the wallet-with-observer configuration depicted in Figure 5–
2 on p.68 (d). Hence, we call the security module an observer. We assume observers to be properly
manufactured and not equipped with any hidden means to synchronize with their environment.
Brands [34,35] proposed a coin credential scheme for this configuration. An improved version of his
proposal underlies the concept of the EU funded project CAFE (Conditional Access For Europe) [30]. 

5.1.5 Biometric Sensors

Implementing personal and bond credential schemes requires biometric sensors. The strictest and also
most intrusive option is to prevent a holder to get rid of his personal mobile user device by attaching
it to or implanting it into the physical body of its holder in some irremovable way. For example, this
method has been adopted to trace arrested criminals [136]. Obviously, the approach raises severe ethi-
cal questions and, in the following, we assume that mobile user devices are normal devices like pocket
calculators or watches that holders can store, carry, replace, sell or destroy as they wish.

For positive credentials, it suffices to detect whether a device belongs to the holder who presents
it. Biometric sensors that can verify this kind of holder authorization are called biometers in the
sequel. Conceptually, biometers can be regarded as security modules (Figure 5–3 on p.69) that 

• work as provider agents when embedded into MUDs (d-1) or 

• as provider and holder agents when embedded into SPMs (d-2). 

In (d-1) the biometer is physically embedded into the observer, so we call it a biometric observer. The
eyes represent a biometric sensor. Biometer and observer(s) co-operate in behalf of the provider. If
each holder has her own personal MUD, the biometers only need to biometrically verify their respec-
tive holders, they do not need to biometrically recognize different identities. (The latter is more diffi-
cult and expensive to achieve.) So personal devices allow their holders to perform their transactions

FIGURE 5–3 Embedding a Biometer
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5 CREDENTIAL SCHEMES
remotely and without any need to present themselves physically to the respective providers. Further-
more, the biometric data accumulated by the biometer can be shielded by the MUD against outflow
(see discussion of Figure 5–2 on p.68 (d)). 

In (d-2), the biometer is physically embedded into the SPM. Again the eyes represent a biometric
sensor such as a video camera sitting in an ATM. Any more or less centralized biometric identification
mechanism has to recognize different holders and, therefore, aggregates a lot of personal information
over time. Analogous to Figure 5–2 on p.68 (d), each SPM could host several identifying mechanisms
each trusted by different holders or groups of holders who possibly distrust each other. In contrast to
(d-1), holders cannot be recognized remotely; they have to present themselves physically to the SPM.
The accumulated biometric data is protected against inspection by the SPM only by the tamper resis-
tance of the biometers. More analysis of the approaches (d-1) and (d-2) and more overview of existing
literature is found in [24].

In practice, some trust in tamper-resistance against providers might be justified, but in general,
this is a much stronger assumption than tamper resistance against holders, because an average pro-
vider is economically — and therefore technologically — much more powerful than an average holder.
Moreover, providers can afford to install second biometric recognition mechanisms that they can fully
control. Therefore, configuration (d-2) is regarded to pose a significantly higher risk on holders’ legiti-
mate privacy than (d-1). If sufficient biometric enhancements of MUDs are not available, (d-2) might
be the only option affordable, but we do not consider it further. We propose offline personal and bond
credential schemes based on biometric observers in Sections 5.4 on p.90 and 5.6 on p.121.

Off-the-shelf biometric products sense fingerprints, faceprints, face thermograms, voiceprints, sig-
nature verification, retina patterns. Refer to [88,89,158] for a thorough overview and to [16] for latest
results in audio- and video-based methods. The reliability of biometric identification is commonly mea-
sured in statistical terms of false rejection rate (FRR) and false acceptance rate (FAR). In practice, a
reasonable trade-off between efficiency and reliability is achieved by fingerprinting, and latest devices
(about the size of a cigar box) are reported to achieve a single scan in less than half a second with

 and  [233]. Face recognition is still less reliable [134,237]. The next gener-
ation of smart cards, so called “computer cards” are expected to have a biometric fingerprint sensor
built in by default. One chip fingerprint sensors are already available [229]. 

5.1.6 Summary and New Achievements

We summarize in Table 5-1 on p.71 the security requirements for offline credential schemes as intro-
duced in Section 2.2 on p.6. They will be made precise in Section 5.3 on p.81. The two kinds of inter-
est groups relevant to credential schemes are providers and holders of credentials. The security
requirements of providers are proper holder authorization and certification. Proper holder authoriza-
tion means transfer prevention in the case of personal credentials, overshowing detection and/or pre-
vention in the case of coin credentials and both in case of bond credentials. Proper certification
requires that the content of a credential cannot be forged (type unforgeability). Issuers may require
issuer anonymity. Holders require credentials to be available and working (effectiveness). Holders
require unlinkability. In case a credential scheme allows overshow detection, holders also require
holder framing prevention, i.e., they require protection against being falsely accused of having over-
shown.

FAR 10 6–< FRR 10 2–<
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5.2 DEFINITION OF CREDENTIAL SCHEMES
A systematic excerpt of the pioneering references about credentials and our new results is presented in
Table 5-2 on p.71. Previous proposals by Chaum and Pedersen [73] can be used to implement personal

credentials if observers are equipped with biometers. In that case, both type unforgeability and trans-
fer prevention rely on the tamper resistance of observers. (Also see the paragraph on personal creden-
tials of Section 5.1.1 on p.62.) We propose a personal credential scheme in Section 5.4 on p.90 that 

(i) relies on tamper resistance of observers only with respect to transfer prevention,

(ii) requires very little precomputation for each MUD and observer, and 

(iii)produces credentials that can be efficiently AND combined with each other and with coin creden-
tials according to Brands (see Section 5.7 on p.121).

5.2 Definition of Credential Schemes

We propose a uniform framework for the core credential schemes introduced in Section 5.1.1 on p.62.
As a preparation of the formal definition, we make some initial assumptions about the keys, pseud-
onyms and operations being used (Section 5.2.1 on p.72). The general definition of credential schemes
follows in Section 5.2.2 on p.74. The security definitions are given in Section 5.3 on p.81.

Interest 
Group Free Personal Coin Bond

Providers

—
Transfer 

prevention
Overshow preven-

tion/detection
Transfer prev. and 
overshow prev./det.

Type Unforgeability

Issuer Privacy

Holders

Effectiveness

Unlinkability

— — holder framing prevention

TABLE 5-1 Summary of Security Requirements

Category of 
Credential

Without/with 
Observer

Issuer Privacy

no yes

Free
without [60,61,64,74] Section 7.2 on p.143

with not necessary not necessary

Personal
without impossible impossible

with [65], Section 5.4 on p.90 open problem

Coin
without [69,67,175,108,34,35] Section 7.2 on p.143

with
[65,73,109,34,35,30]
Section 5.5 on p.110

Section 7.2 on p.143

Bond
without impossible impossible

with Section 5.6 on p.121 Section 7.2 on p.143

TABLE 5-2 Overview of References about Offline Credential Schemes
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5.2.1 Preparation

In order to make unlinkability a reasonable requirement, the contents of credentials should be stan-
dardized in such a way that only a limited number of different contents occur at all. Otherwise, there
are probably many credential contents that are issued to only one or very few recipients such that
issuing to and showing by these holders is easily linkable. Moreover, holders should not add any infor-
mation to the credential content they are issued. Rao and Rohatgi [199] have explained by several
famous examples how even short amounts of prose text can be used to identify the originating author. 

Hence in the following, each such content defines a separate type of credential. For each type of
credential, we assume that issuers use specific issuing key(s). As outlined for the certification problem
in Section 5.1 on p.60, the idea is to certify a credential of type t by signing a holder’s source pseud-
onym with a signing key that has previously been registered to establish a type t credential. So for
every type t that an issuer may provide credentials for, he has to have a corresponding issuing key. If
more than one issuer may issue credentials of the same type, then they can register different issuing
keys for this type or—less advisable—they can share issuing keys. Conceptually, pseudonyms are used
as follows. 

(1) During intro, a MUD interacts with an issuer and with its observer. The new source pseudonym
established between issuer and MUD is denoted . The pseudonym used for the interaction with
the observer is called intro pseudonym . As part of this step, the issuer identifies the holder by
means of a photo ID or by other biometric means, in order to link the digital pseudonym  to a
legal identity of the holder. The observer needs to be involved in choosing the pseudonym  to
guarantee it cannot be used by MUDs using different observers.

(2) During issue, the issuer issues a credential to a source pseudonym , which should only be suc-
cessful if the MUD is supported by the same observer that was involved in introducing pseudonym

. The term “should” indicates that the issuer trusts in the observer during this transaction. The
MUD ends up with an intermediate pseudonym  that it may use for its own book keeping. The
intermediate pseudonym may or may not be learnt by the observer. 

(3) During show, the verifier verifies a credential for some target pseudonym , which should only be
successful if the MUD is supported by an observer that was involved earlier in getting a type 
credential issued. The term “should” indicates that the verifier trusts in the observer during this
transaction. Observers enforce that holders comply to the holder authorization rules. In personal
credential schemes for example, observers enforce that a certain type of credential can only be
shown if the same human holder identifies to the observer as before when that observer was
involved in getting issued a credential of the same type. In order to show its credential, the MUD
uses its intermediate pseudonym.

Figure 5–4 on p.73 summarizes the pseudonyms involved.
Before providers will accept an observer within one of their customer’s MUDs as a provider’s agent

safeguarding certain transactions within the MUD, the providers need to convince themselves that a
customer, who may connect online to their provider infrastructure in fact employs an observer of the
right kind. All the following is based on the idea that observers come from their manufacturer(s) with
verified software installed, tamper detection mechanisms activated, and with one or more native sign-
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5.2 DEFINITION OF CREDENTIAL SCHEMES
ing key(s) built-in, which can later be used to strongly authenticate an observer. Before observers
leave the manufacturer, their native verifying keys are certified and posted to public key directories.
We discuss important aspects of this approach:

HHHHoooowwww    ccccaaaannnn    iiiissssssssuuuueeeerrrrssss    aaaauuuutttthhhheeeennnnttttiiiiccccaaaatttteeee    oooobbbbsssseeeerrrrvvvveeeerrrrssss????  In addition to the operations of issuing and showing a cre-
dential, a third operation (intro) is needed by which an issuer verifies an observer at the time of first
contact. The observer uses its native signing key in order to authorize the MUD’s request to introduce
a pseudonym. The issuer verifies the response by looking up the respective native verifying key from
the public key directory of the manufacturer. If the verification is successful, the issuer establishes the
proposed source pseudonym for the MUD. The holder can later apply for a credential for this source
pseudonym.

WWWWhhhhyyyy    oooobbbbsssseeeerrrrvvvveeeerrrrssss    sssshhhhoooouuuulllldddd    uuuusssseeee    iiiinnnnddddiiiivvvviiiidddduuuuaaaallll    nnnnaaaattttiiiivvvveeee    kkkkeeeeyyyyssss????     An observer’s native key is a means to prove to an
issuer that the observer is properly manufactured, runs the right software version and has its tamper
resistance in place. Breaking an observer means to compromise its key and thus to compromise all
observers that share the same key. If observers use individual native keys then their keys can also be
revoked individually in case they are compromised. If some or all observers would share a native key,
then all of them had to switch to a new native key in case any of them were broken. 

WWWWhhhhoooo    ggggeeeennnneeeerrrraaaatttteeeessss    nnnnaaaattttiiiivvvveeee    kkkkeeeeyyyyssss????     Naturally, each observer generates its own private native key(s) after it
is fully manufactured and its tamper resistance is in place. This is certainly the most reliable way of
not releasing information about private keys. If justified by sufficient competition among manufactur-
ers, then native keys could be pre-generated and downloaded into the observers during the manufac-
turing process. In either case, manufacturers have the information which public native keys belong to
which of their observers. However, customers can always resort to using several observers and only one
native key of each. As we will see in the final remark below, it is probably necessary for each MUD to
have different observers available anyway. The generation of issuing and native keys is summarized in
Figure 5–5 on p.74:

WWWWhhhhoooo    cccceeeerrrrttttiiiiffffiiiieeeessss    nnnnaaaattttiiiivvvveeee    kkkkeeeeyyyyssss????  It must be some authority trusted by the intended issuer(s). Since these
issuers have to trust in the proper generation of the native keys themselves, which in turn implies

FIGURE 5–4 Overview of Pseudonyms
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5 CREDENTIAL SCHEMES
some trust in the manufacturers, the manufacturers are the natural candidates for certifying the native
keys of their observers. If the issuers so require, second certifiers can be licensed.

HHHHoooowwww    ttttoooo    mmmmaaaaiiiinnnnttttaaaaiiiinnnn    pppprrrriiiivvvvaaaaccccyyyy    ddddeeeessssppppiiiitttteeee    iiiinnnnddddiiiivvvviiiidddduuuuaaaallll    nnnnaaaattttiiiivvvveeee    kkkkeeeeyyyyssss????     If observers endorse introduction requests
by individual native keys (explicit introduction), then all introduction requests of one MUD can be
linked by the respective issuers. So the number of such introductions should be kept to a minimum.
Alternatively, pseudonyms can be introduced implicitly (see Definition 5.1 on p.76 operation show) by
re-using a target pseudonym as the next source pseudonym. This is what happens in practice most of
the time. Usually, source pseudonyms need to be introduced explicitly to different issuers only if the
issuers distrust each other. Otherwise, a credential of one of them can be used to implicitly introduce
a pseudonym to the other. From a privacy point of view, mutually distrusting issuers are unlikely to
link their information, and so explicit introductions are relatively safe. An alternative is to find a third
party in which the mutually distrusting issuers both trust, and to obtain a credential from the third
party in order to implicitly introduce pseudonyms to each of the mutually distrusting issuers.

5.2.2 General Definition

We give a definition for credential schemes in general and then identify each of the core schemes as a
special case. This approach is motivated by the many commonalities of the core schemes. However,
there are also significant differences between the core schemes. For example, personal credential
schemes and coin credential schemes need specific additional operations compared to free credential
schemes. Personal credential schemes require an operation to personalize the biometer of an observer
with some initial biometric identity (usually called a biometric template), whereas coin credential
schemes require instead an operation to identify an overshowing participant after the fact. Likewise,
the core schemes require specific additional parameters in the external interfaces of the common oper-
ations; and the additional parameters cannot naturally be regarded as specializations of the existing
parameters.

Essential in the following definition are the integrity and privacy requirements according to
Section 2.2 on p.6. They will be formalized by the Definitions 5.2-5.6. We will state both kinds of
requirements in the framework of cryptographic schemes as we have done for interactive proof-of-
knowledge schemes (Section 4.1 on p.34) and blind signature schemes (Section 4.2 on p.51) before. We
will see that this approach works, but we will also see that this approach somehow misses to define
credential schemes at the highest level of abstraction reasonable. For proof-of-knowledge schemes it is
natural that the definition talks about candidates and witnesses because they are essential quantities
of proofs of knowledge. Without them, the security requirements of proof-of-knowledge schemes could
simply not be stated. Our definition of credential schemes will contain pseudonyms and witnesses for
pseudonyms as well. We simply have not found another way of expressing the privacy requirements of

Issuer Observer (Manufacturer)

For all types t that this issuer is authorized for :
(1)

(2) Certify and broadcast . Certify and broadcast .

FIGURE 5–5 Setup of Issuer and Observer Keys

rkt pkt,( ) genKey prek t,( )← rkO pkO,( ) genKey prek( )←

pkt pkO
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5.2 DEFINITION OF CREDENTIAL SCHEMES
credential schemes. Nevertheless, we feel that pseudonyms are more an auxiliary technical detail of
some implementations of credential schemes, rather than an essential quantity that every credential
scheme must have. This holds even more for pseudonym witnesses. In other words, we admit there
may be implementations of credential schemes in the future that make no use of pseudonyms, let alone
of witnesses for pseudonyms. Clearly, our definition will not capture such implementations. The prob-
lem is that we try to define integrity and confidentiality or privacy requirements at the same time.

Integrity requirements alone can be expressed quite adequately in temporal logics or process alge-
bras (for example see Manna and Pnueli [151,152]). There is a rich theory of formally verifying imple-
mentations against integrity requirements. Very roughly, integrity requirements and implementations
are represented as sets of event sequences. All of the event sequences representing the integrity
requirement satisfy a certain integrity predicate. A general theorem says that any subset (of event
sequences) of a security requirement is a secure implementation, simply because any event sequence of
the subset also satisfies the integrity predicate mentioned above. In the area of cryptographic systems,
Pfitzmann has applied a similar approach to specify various categories of digital signature systems
[182,183], Pfitzmann and Waidner [189] have specified cryptographic payment systems, and Schunter
[211] has developed specifications of fair exchange systems.

Far less is known about how to express confidentiality and privacy requirements at this level of
abstraction because confidentiality and privacy requirements do not behave in a monotonous way as
sketched above (see McLean [154]). In fact, confidentiality and privacy requirements are typically
expressed by predicates that put an upper bound on the probability of some event, where the probabil-
ity is taken over the random choices of all participants. If we translate this back to the level of
abstraction of event sequences, it becomes clear that a confidentiality or privacy predicate does not
apply to single event sequences, but rather to a large set of event sequences that evolve from partici-
pants making different internal choices. 

One remarkable example of expressing integrity and confidentiality (or privacy) requirements at
the same high level of abstraction has been given by Beaver [9,11] for the class of multi-party compu-
tations of functions. Unfortunately, it is not obvious if his technique of using a “trusted host” to
express integrity and confidentiality (or privacy) requirements carries over to reactive systems, which
have no beginning and end like a function computation.

In order not to entirely give up on a formal definition of credential schemes, we will resort to a def-
inition at a lower level of abstraction, where pseudonyms (and pseudonym witnesses) remain visible.
This unsatisfactory approach is also taken by Lysyanskaya, Rivest, Sahai and Wolf in [147]. We
strongly encourage to seek for a more abstract way of defining credential schemes in particular and
complex cryptographic systems in general. 

Definition 5.1 Credential Scheme

A credential scheme with security parameter k, credential types 5 and recognition
characteristic  consists of the following prekey generator, domains, operations
and requirements:

5) The set T of credential types is a finite set of labels specifying the contents of credentials, e.g., driver’s licences, passports,
etc.

T t1 … tm, ,{ }=
0 FAR FRR, 1≤≤( )
75



5 CREDENTIAL SCHEMES
GENERATE PREKEY

is a polynomial-time algorithm that on input the security parameter k outputs a prekey prek. The
parameter k determines the issuers’ security against forgery of credentials (usually under a complexity
theoretic assumption).

DOMAINS

A credential scheme has a set  of 8 domain families and 2
optional domain families  whose respective members are: 

• The private key domains .

• The public key domains .

• The pseudonym domains .

• The pseudonym witness domains , and the pseudonym co-witness domains .

• The making functions . A witness  is said to make a pseud-
onym  iff .

• The co-making functions . A co-witness  is said to co-
make a pseudonym  with respect to a pseudonym  iff .

• The credential domains .

• The transcript domains , whose elements represent digital transcripts that verifiers receive
in coin credential schemes every time a holder pays a coin to them.

• The biometric identity domains  whose elements represent biometric identities of human
holders, such as thumbprints, irisprints, voiceprints, etc. (cf. Section 5.1.5 on p.69). These ele-
ments are written illustratively as . Different faces just mean different variables.
There is no hidden meaning implied by different expressions of the faces. 

OPERATIONS:

A credential scheme has a set {genKey, intro, issue, show, show*, verify, persObs, recog, extract} of
5 operations genKey, intro, issue, show, verify and 4 optional operations show*, persObs, recog,
extract satisfying the following requirements: effectiveness, type unforgeability, and weak unlinkabil-
ity.

The following operations are introduced by using the characteristic roles of credential schemes:
manufacturers (M), issuers (I), mobile user devices (D), observers (O), and verifiers (V). Since the
index prek is omitted as usual in the sequel, the identifier V denotes a verifier and the domain of
pseudonym co-witnesses. Nevertheless, it is always clear from the context what V means.

Generate Key

A probabilistic operation that takes a prekey and a credential type  and outputs a key pair con-
sisting of a private key  and a public key . The public key  is going to be cer-
tified by a legitimated organization and is afterwards published as a verifying key of type t credentials.
As discussed in Section 5.2.1 on p.72, it can be convenient in practice to have more than one key pair
for the same credential type t. Without loss of generality and to keep notation simpler, we assume in

prek genPrekey k( )←

RK PK Ψ W V make make' C, , , , , , ,{ }
TR Ë,{ }

RKprek
PKprek
Ψprek

Wprek Vprek
makeprek Wprek Ψprek→: w W∈

ψ Ψ∈ ψ make w( )=

make'prek Ψprek Vprek× Ψprek→: v V∈
φ Ψ∈ ψ Ψ∈ φ make ψ v,( )=

Cprek
TRprek

Ëprek

. ☺ / …, , ,

rkt pkt,( ) genKey prek t,( )←

t T∈
rkt RK∈ pkt PK∈ pkt
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5.2 DEFINITION OF CREDENTIAL SCHEMES
the following there is only one key pair generated for each type t, and it is this key pair we denote as
. 

Introduce Pseudonym Explicitly

←

A 3-party operation of issuer I, MUD D and observer O. Common input is the observer’s (public)
native key . In addition, O takes its private native key , and, if it is a biometric observer, a
holder identity  as input. I and D output the shared pseudonym , and D and O output
the shared pseudonym . Moreover, D outputs a co-witness , and O outputs a witness

.
We say that D explicitly introduces pseudonym  (to I). On successful execution, I is convinced

that the holder is using an authorized MUD. The issuer learns (one of) the public native keys  of
the observer. The MUD and the observer will later need their respective co-witness v and witness w in
order to use  in further operations.

Issue ←

A 3-party operation of an issuer I, a MUD D and an observer O. Common input is an issuer’s public
keys  of credential type t. In addition, I takes a private key  and a source pseud-
onym  shared with D. D and O take the shared pseudonym , D takes a pseudonym co-
witness , and O takes a pseudonym witness . On successful execution, D outputs a cre-
dential  for pseudonym  and a pseudonym co-witness  for . O outputs an inter-
mediate witness . We say that I issues  for the source pseudonym .

Show For New Target Pseudonym

←

A 3-party operation of a MUD D, an observer O and a verifier V. Common input is an issuer’s public
key  of credential type t. In addition, D takes a pseudonym , a pseudonym 
shared with O, a credential , and a pseudonym co-witness . O takes a pseudonym wit-
ness  and, if it is a biometric observer, a holder identity . On successful execution, the
verifier outputs a target pseudonym , a credential  and an optional transcript .
D outputs the same target pseudonym φ and a pseudonym co-witness . We say that D implicitly
introduces target pseudonym  (to V) and shows credential  for .

Verify

A deterministic operation that on input a public key  of type , a pseudonym 
and a credential  returns TRUE or FALSE. If it returns TRUE, we say that χ is a type t cre-
dential valid for pseudonym ψ.

OPTIONAL OPERATIONS

Show For Re-used Target Pseudonym

A MUD can use this operation in order to show a credential for a pseudonym that it has introduced

rkt pkt,( )

ψ[ ]I ψ ψO v, ,[ ]D ψO w,[ ]O, ,( ) intro pkO[ ] [ ]I [ ]D rkO .{ },[ ]O, , ,( )

pkO rkO
. Ë∈ ψ Ψ∈

ψO Ψ∈ v V∈
w W∈

ψ
pkO

ψ

ψ' χ' v', ,[ ]D w'[ ]O,( ) issue pkt[ ] rkt ψ,[ ]I ψ ψO v, ,[ ]D ψO w,[ ]O, , ,( )

pkt PK∈ rkt RK∈
ψ Ψ∈ ψO Ψ∈
v V∈ w W∈
χ' C∈ ψ' Ψ∈ v' V∈ ψ'

w' W∈ χ' ψ'

φ χ'' τ{ }, ,[ ]V
φ v'',[ ]D,( ) show pkt[ ] ψ' ψO χ' v', , ,[ ]D

ψO w' .{ }, ,[ ]O, ,( )

pkt PK∈ ψ' Ψ∈ ψO Ψ∈
χ' C∈ v' V∈

w' W∈ . Ë∈
φ Ψ∈ χ'' C∈ τ TR∈

v''
φ χ'' φ

acc verify pkt ψ χ, ,( )←

pkt PK∈ t T∈ ψ Ψ∈
χ C∈
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5 CREDENTIAL SCHEMES
before, either explicitly (using intro) or implicitly (using show). The MUD can show the credential for
any target pseudonym that has been introduced by using the same shared input .

←

A 3-party operation of a MUD D, an observer O and a verifier V. Common input is an issuer’s public
key  of credential type t. In addition, D takes a pseudonym , a pseudonym 
shared with O, a credential , and two pseudonym co-witnesses . O takes a pseud-
onym witness  and, if it is a biometric observer, a holder identity . On successful execu-
tion, the verifier outputs a target pseudonym , a credential  and an optional transcript

. D outputs the same target pseudonym φ. We say that D shows credential  for the re-used
target pseudonym , i.e., a pseudonym that D has introduced to I before.

Personalize Observer

A probabilistic operation provided only by observers. The observer takes a prekey, and if the observer
is biometric, it also takes a biometric template  as input. The observer outputs a native key
pair consisting of a private native key  and a public native key . (Native keys
were first introduced by Cramer and Pedersen [80]). In addition, the observer writes the biometric
template  onto its composition tape for further reference (see operation recog below). Each
observer performs this operation at most once. Thus no observer can be re-personalized to use a sec-
ond native key or use a second biometric template. Note that this operation combines all necessary ini-
tialization steps of an observer. In real life, observers will generate their native key pairs right after
manufacturing, whereas their biometric templates can only be implanted after the observer has been
embedded into its mobile user device and is distributed to a customer. By using the above operation
persObs, we will consider an idealized initialization without such intermediate states.

Recognize

This operation is provided by biometric observers only. Each biometric observer is assumed to physi-
cally host exactly one biometer (see Section 5.1.5 on p.69). Therefore, operations provided by biome-
ters are only available to the respective observers, not to issuers, verifiers or mobile user devices.
Because of the one-to-one correspondence between observers and biometers, we will use O as a role
identifier both for observers and their respective biometers. 

The biometer takes an actual identity , compares it to the unique biometric template it was
personalized for and returns a Boolean result.6 If it returns TRUE, we say that O recognizes .

Extract

Operation extract is used in coin and bond credential schemes only. It allows to detect if a MUD has
shown a credential more often than it is entitled to.

6) We model the recognition characteristic of practical biometric recognition systems, i.e., false acceptance rate (FAR) and
false rejection rate (FRR), by a probabilistic algorithm.

ψO

φ χ'' τ{ }, ,[ ]V
φ[ ]D,( ) show∗ pkt[ ] ψ' ψO χ' v' v'', , , ,[ ]D

ψO w' .{ }, ,[ ]O, ,( )

pkt PK∈ ψ' Ψ∈ ψO Ψ∈
χ' C∈ v' v'', V∈

w' W∈ . Ë∈
φ Ψ∈ χ'' C∈

τ TR∈ χ''
φ

rkO pkO,( ) persObs prek ☺{ },( )←

☺ Ë∈
rkO RK∈ pkO PK∈

☺ Ë∈

acc[ ]O recog .[ ]O
( )←

. Ë∈
.
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5.2 DEFINITION OF CREDENTIAL SCHEMES
A deterministic operation that on input a finite set  of transcripts (as output by show),
returns a pseudonym witness  or the undefined output . For typical applications like K-show
coin credentials, the arguments are sets of  transcripts. The output  indicates that the argu-
ment reveals no witness and therefore does not identify any holder. This operation allows verifiers or
their delegates to identify holders who have shown their credentials too often. The witness can then be
used to recover the source pseudonym of the overshower (see Definition 5.5 on p.84). Linking that
source pseudonym to a “real” identity is outside the scope of this definition.

These nine operations satisfy the following effectiveness requirements.

EFFECTIVENESS

For each instance of a credential scheme with all honest participants, each of the 5 protocols and 4
optional protocols are executed successfully. 

For all correctly generated prekeys , consider a correctly executed key
setup. Let  be the native key pair of observer O, and if O is biometric, let it be personal-
ized to the biometric template . Let  ( ) be an issuer’s key pair of credential type t.
Then the following assertions (1)-(5) hold:

(1) If a MUD D with observer O introduces a source pseudonym explicitly to an issuer I

← ,

then the witness w of O makes the intro pseudonym , and the co-witness v of D
co-makes the source pseudonym  with respect to the intro pseudonym .

(2) If an issuer I issues a credential  successfully to D, then D can show  successfully to any ver-
ifier V. More precisely:

Let D have either introduced a source pseudonym  to I explicitly,

← , (5.1)

or introduced a pseudonym  implicitly by operation show:

← .

(Note that we use output parameter names  instead of  and  instead of  in order to meet
the names of the analogous parameters above in external interface (5.1) on p.79. In addition, we
suppress parameters that are not relevant in this context by the symbol ‘•’.) 

Then if I issues a credential to D (and O) as follows

← , (5.2)

then the co-witness  output by D co-makes the intermediate pseudonym 
with respect to the intro pseudonym . 

(3) If D (with help of O) uses its output from issue to show a new type t credential to V as follows 

w extract τ( )←

τ TR⊆
w W∈ ⊥

K 1+ ⊥

prek genPrekey Ñ( )[ ]∈
rkO pkO,( )

☺ rkt pkt,( ) t T∈

ψ[ ]I ψ ψO v, ,[ ]D ψO w,[ ]O, ,( ) intro pkO[ ] [ ]I [ ]D rkO .{ },[ ]O, , ,( )

ψO make w( )=
ψ make' ψO v,( )= ψO
χ' χ'

ψ

ψ[ ]I ψ ψO v, ,[ ]D ψO w,[ ]O, ,( ) intro pkO[ ] [ ]D rkO ☺{ },[ ]O, ,( )

φ

ψ • •{ }, ,[ ]V ψ v,[ ]D,( ) show •[ ] • ψO • •, , ,[ ]D ψO w' •{ }, ,[ ]O, ,( )

ψ φ v v''

ψ' χ' v', ,[ ]D w'[ ]O,( ) issue pkt[ ] rkt ψ,[ ]I ψ ψO v, ,[ ]D ψO w,[ ]O, , ,( )

v' ψ' make' ψO v',( )=
ψO
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5 CREDENTIAL SCHEMES
← ,

then V accepts, i.e., V does not abort the protocol, the co-witness  output by D co-makes the
target pseudonym  with respect to the intro pseudonym , and  is a
type t credential valid for pseudonym , i.e., .

OPTIONAL EFFECTIVENESS

(4) (Applies only if a protocol  is defined) Likewise, if D (with help of O) uses its output from
issue to show a new type t credential to V for a target pseudonym used earlier as follows 

←

then the co-witness  output by D co-makes the target pseudonym  with
respect to the intro pseudonym , and  is a type t credential valid for pseudonym , i.e.,

.

(5) (Applies only in case of biometric observers) Unless a biometric observer O is personalized, it does
not recognize any holder’s identity, i.e., for all 

As soon as an observer O is personalized ( ) to some holder identity , it
recognizes this identity according to the following specification, where  are
constants:

,

.

For example, we can describe a credential scheme that perfectly recognizes biometric identities by
a recognition characteristic of . Another special case is a credential scheme
that ignores biometric identities altogether. This is characterized by . ◆

RRRReeeemmmmaaaarrrrkkkkssss::::     Why is the observer not checking the biometric identity of its holder in issue (note the
missing face in the list of input parameters)? In general, issuers will issue credentials only for pseud-
onyms that have been introduced to them before. A pseudonym can be introduced explicitly by using
intro, or implicitly by using show. In the latter case, the target pseudonym of the show operation
becomes the source pseudonym in the following issue operation. In each case, the introduction of a
pseudonym  includes a check of the biometric identity of the holder. Therefore, no second biometric
check is required before issuing a credential for .

What information is kept on the composition tapes of MUDs and observers? MUD (D) and
observer (O) return a shared pseudonym , a corresponding co-witness v and a witness w after an
explicit introduction. The MUD writes  and v to its composition tape, and the observer writes 
and w to its own composition tape. These values are needed every time the MUD needs to issue or
show a credential for a pseudonym that evolved from this initial explicit introduction. In Mechanism
5.10 on p.111, the observer generates an auxiliary witness  for an auxiliary intro pseudonym ,

φ χ'' τ{ }, ,[ ]V
φ v'',[ ]D,( ) show pkt[ ] ψ' ψO χ' v', , ,[ ]D

ψO w' ☺{ }, ,[ ]O, ,( )

v''
φ make' ψO v'',( )= ψO χ''

φ verify pkt φ χ'', ,( ) TRUE=

show∗

φ χ'' τ{ }, ,[ ]V
φ[ ]D,( ) show∗ pkt[ ] ψ' ψO χ' v' v'', , , ,[ ]D

ψO w' .{ }, ,[ ]O, ,( )

v'' φ make' ψO v'',( )=
ψO χ'' φ

verify pkt φ χ'', ,( ) TRUE=

. Ë∈

recog .[ ]O
( ) FALSE=

persObs prek ☺,( ) ☺ Ë∈
FAR FRR, 0 1,[ ]∈

Prob recog .[ ]O
( ) TRUE= . ☺≠[ ] FAR≤

Prob recog .[ ]O
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5.3 SECURITY DEFINITIONS OF CREDENTIAL SCHEMES
in step (1) of intro, which are both written to the observer’s and the MUD’s composition tape, respec-
tively.

Why is an extra operation verify needed? This operation allows a third party to check the validity
of credentials offline. For example, credentials can be verified by a judge in order to achieve non-repu-
diation of origin.

5.3 Security Definitions of Credential Schemes

Our next goal is to define the characteristic security requirements of each category of credential
schemes. 

5.3.1 Overview of Security Requirements

Type Unforgeability: Even after verifying a polynomial number of credentials of type , it is
infeasible for an attacking verifier to obtain a type t credential himself (Definition 5.2 on p.83).

Transfer Prevention: Whenever an attacking MUD successfully shows a type t credential after all
type t credentials so far have been issued by using intact observers personalized to respective biometric
identities , then the attacking MUD must have available some biometric identity

 (Definition 5.3 on p.83).

Overshow Prevention: After obtaining  K-show type t credentials, an attacking MUD with
an intact observer cannot successfully show type t credentials more than  times, i.e., holders can-
not overshow (Definition 5.4 on p.84).

Overshow Detection: If the attacking MUDs, which host broken observers, have obtained 
K-show type t credentials and later show type t credentials more than  times, then at least one of
the attacking MUDs will be identified by means of operation extract (Definition 5.5 on p.84).

Schemes that allow overshow detection may have an optional operation by which holders can
defend themselves against false accusations of having overshown (holder framing). This requirement is
not formalized further, but the coin credential construction given in Section 5.5 on p.110 has it. For
more detail see Brands [34,35] and Pfitzmann, Waidner [189].

Holder Privacy: If an attacking issuer issues  credentials and an attacking verifier verifies
 credentials, then the collaborating issuer and verifier cannot tell with better chance of success

than pure guessing which of the  verifications correspond to which of the  issues. Further refine-
ments of this informal notion of unlinkability are made in Definition 5.6 on p.87.

5.3.2 Overview of Attacker Models

The attacker model for all integrity requirements (see Table 5-3 on p.82) is polynomial-time
(Section 3.3.2 on p.24); that for holder privacy is computationally unlimited (Section 3.3.2 on p.24). If
issuers, verifiers and MUDs are dishonest, they are considered active attackers. For observers we dis-
tinguish four different attacker models:

(i) Intact Observer Assumption: Intact observers honestly follow their protocols and resist any
attempts to compromise or to modify their internally stored information until their internal infor-
mation is destructed. If observers are equipped with biometers, the biometers also follow their pro-

t T∈

☺1 ☺2 …, ,
☺ ☺1 ☺2 …, ,{ }∈

k Ñ∈
kK

k Ñ∈
kK

nI Ñ∈
nV Ñ∈

nV nI
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5 CREDENTIAL SCHEMES
tocols honestly and resist any attempts of compromising or modifying the biometric templates
they have stored internally.

(ii) Broken Observer Assumption: All observers are properly personalized by honestly generating a
native key pair. If the observers are equipped with biometers, they are properly personalized to a
biometric template. After being personalized, the attacker may break one or more observers at any
time and afterwards control them completely including to extract the private native key and/or
the biometric template. Such observers are called broken. 

(iii)Shielded Observer Assumption: All observers are shielded by their hosts against out-of-band inflow
and out-of-band outflow. They have only one communication channel, namely to their respective
hosts. This is modeled by the read-only and write-only communication tape shared with their
respective hosts.

(iv)Leaking Observer Assumption: All observers are shielded by their hosts against out-of-band inflow,
but may leak information to issuers and verifiers, for example, after they are lost or stolen or
returned by the holder. Thus, in addition to the communication channels with their hosts, observ-
ers have additional unidirectional communication channels to the issuers and verifiers.

Assumptions (i) to (ii) are used for integrity requirements. Assumptions (iii) and (iv) are used for
holder privacy requirements. Every combination of the former two and the latter two assumptions is
meaningful, except the assumption that an observer is broken and still leaking. If a holder has broken
its observer, he can effectively cut off any communication channel of his observer, by importing the
observer’s data into itself and using it as appropriate. We finally summarize in Table 5-3 on p.82
which security requirements make which assumptions about issuers/verifiers, MUDs, and observers.

5.3.3 Definitions of Integrity Requirements

Next we give informal definitions of the four important integrity requirements introduced in
Section 5.3.1 on p.81. The participants under consideration are one issuer I, one verifier V, one MUD
D, which may use a number of different observers  where . In each of the four defi-
nitions, the issuer is honest, whereas the MUD is an active attacker. Thus in the following, we denote
the MUD as  (read D crooked) and give it an untyped interface (see Section 3.3.2 on p.24: Active
Attacker). The attacker models of the verifier and the one or more observers depend on the integrity

Security Requirements
Assumption about …

Issuer/Verifier MUD Observer 

Integrity
Requirements

Type Unforgeability honest/activea

a. “active” is short for active attacker.

active broken

Transfer Prevention honest/noneb

b. “none” is short for no assumption, i.e., can be active, passive or honest

active intact

Overshow Prevention honest/none active intact

Overshow Detection honest/none active broken

Holder Privacy 
Requirements

Unlinkability active/active honest shielded, active

Fail-Safe Unlinkability active/active honest leaking, active

TABLE 5-3 Overview of Attacker Models for given Security Requirements

O1 … OL, , L Ñ∈

D̃
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5.3 SECURITY DEFINITIONS OF CREDENTIAL SCHEMES
requirement according to Table 5-3 on p.82. In those definitions where the verifier or the observers are
considered attackers, they are denoted as  or , respectively. The privacy requirements will be
defined in more detail in Section 5.3.4 on p.84.

We summarize the presumptions about the setup of any credential scheme, which hold regardless
of which integrity requirement is defined and which participants are considered to be attackers.
According to Section 3.3.3 on p.25, the prekey is always chosen honestly. For each credential type

 there is one unique issuing key pair . The public key  is certified to be used for
verifying type t credentials. Each observer is honestly personalized, i.e., each observer 
( ) has generated a native key pair

 

and, if they are biometric, their biometers have been personalized with a unique biometric template.
(Note that this is in line with both the intact observer assumption (i) and the broken observer assump-
tion (ii) in Section 5.3.2 on p.82.) The manufacturer of the observers has published the respective pub-
lic native keys through an authentic channel, for example by means of a public key infrastructure.
Afterwards, observers may or may not be broken depending on the attacker model under consider-
ation. 

Definition 5.2 Type Unforgeability

Informally, a credential scheme is type-unforgeable if an attacker coalition of a MUD , a number of
observers  ( ) under the broken observer assumption and a verifier  who are given the
verifying key  and who may verify type t credentials, but have never issued one, cannot forge a
valid type t credential on their own. Other MUDs that host honest observers may have been issued
type t credentials, but the attacker coalition has no access to these honest observers. ◆

The following definition applies to personal and bond credential schemes.

Definition 5.3 Transfer Prevention

Informally, a credential scheme is transfer preventing if the following holds for any polynomial-time
attacking MUD and any number  of observers , which have been personalized
to respective biometric identities  under the intact observer assumption. After creden-
tials of type t were issued by using exactly the observers , and afterwards the attack-
ing MUD has successfully shown a type t credential, then the attacking MUD has used at least one of
the biometric identities  while showing a type t credential.

Nothing is required about type t credentials that have been issued to observers that are broken
before or after the issuing. Thus we allow attacking MUDs, for example, to pool or transfer credentials
of type t they have received by using observers that were broken before or after the issuing. 

In the following, we assume biometers with perfect recognition characteristics, i.e.,
. This way, we keep the definition focused on the cryptographic aspects,

rather than complicating it with modelling statistical errors of the recognition mechanism. ◆

The following definitions apply to coin and bond credential schemes: If observers are assumed to be
intact, we can expect to prevent overshowing because each observer can keep track of the number of

Ṽ Õ

t T∈ rkt pkt,( ) pkt
Ol

l 1 L,[ ]∈

rkOl
pkOl

,( ) persObs prek ☺{ },[ ]
Ol( )←

D̃
Õl l 1 L,[ ]∈ Ṽ

pkt

L Ñ∈ O1 O2 … OL, , ,
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5 CREDENTIAL SCHEMES
shows for each credential of its host MUD. We require this also for credentials that can be shown K
times under different pseudonyms in an unlinkable way (Definition 5.4 on p.84). Also see the frame-
work of definitions by Pfitzmann and Waidner [189].

Definition 5.4 K-Overshow Prevention

Informally, a credential scheme prevents K-overshowing ( ) if, under the intact observer
assumption,  type t credentials cannot be shown more than  times. ◆

If observers are broken, we can still expect to identify holders after they have overshown. In our
framework of unlinkable credentials, holders can be identified only by their source pseudonyms
because this is the only quantity that is specific to a holder and visible to the honest issuer. Even
though broken observers have a unique biometric template or native key, these characteristics are
never visible to the honest issuer. An immediate implication is the following. If there are several bro-
ken observers, we cannot define to identify the “right” overshower, because the honest participants of
the scheme cannot distinguish individual attacking holders at all. A first definition has been given by
Franklin and Yung [113] and later by Pfitzmann and Waidner [189].

Definition 5.5 K-Overshow Detection

Informally, a credential scheme detects K-overshowing ( ) if, under the broken observer
assumption,  type t credentials cannot be shown more than  times without revealing a
source pseudonym of at least one of the attacking MUDs. ◆

5.3.4 Definitions of Holder Privacy

Before getting a credential issued, the holder needs to provide one of his pseudonyms to the issuer.
This pseudonym may either by introduced explicitly by operation intro, or implicitly by the holder
showing an enabling credential whose target pseudonym is then used as a source pseudonym for the
credential to be issued. In the latter case, the issuer of the new credential acts only upon permission by
the verifier of the enabling credential. Hence, an explicitly introduced pseudonym may develop into a
tree-like composition of alternating instances of issue and show (Figure 5–6 on p.85). This tree-like

composition consists of

FIGURE 5–6 Tree of credentials evolving from an explicitly introduced root pseudonym

K Ñ∈
k Ñ0∈ kK

K Ñ∈
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5.3 SECURITY DEFINITIONS OF CREDENTIAL SCHEMES
(i) a root protocol intro (indicated by a rectangular box in Figure 5–6 on p.85) that enables a holder
to explicitly introduce a new source pseudonym to some issuer, and 

(ii) a node protocol (indicated by a triangular box in Figure 5–6 on p.85), which is a sequential compo-
sition of issue followed by a general composition of a finitely many executions of show. 

We distinguish two types of unlinkability of credentials. If the issuer and a verifier of a credential can-
not distinguish whether they talk to the same MUD or to different MUDs that have been issued the
same credential, then we call the credential scheme issue-wise unlinkable. A credential scheme where a
MUD can be used to show a credential several times is called show-wise unlinkable if the issuer and
each separate verifier of a credential cannot distinguish whether they talk to the same MUD or to dif-
ferent MUDs that have been issued the same credential.

Apparently, the distinction of issue-wise and show-wise unlinkability is orthogonal to that of fail-
safe or not unlinkability as introduced in Section 5.3.1 on p.81 and Table 5-3 on p.82. The following
Table 5-4 on p.85 summarizes the attacker model underlying each type of unlinkability. (‘+’ indicates
attackers in addition to that in the upper left cell.)

Our goal is to formalize the idea of unlinkability for each tree of credentials evolving from an explicitly
introduced pseudonym as illustrated in Figure 5–6 on p.85. The basic idea is to recursively ‘separate’
the views of the issuers from the views of the verifiers. By ‘separate’ views we mean views that behave
like those of the co-prover and the verifier of co-unlinkable extended proof-of-knowledge schemes (Def-
inition 4.3 on p.41) or those of signer and verifier in blind signature schemes (Definition 4.7 on p.53). 

In order to make these types of unlinkability more precise we define an initial node protocol
 and an extended node protocol  for each .  is the following sequential com-

position of intro followed by issue, followed by a general composition of n executions of protocol
show.

=  ←

  ←

( ←

 ←

M  

Unlinkability issue-wise show-wise

non fail-safe
against collaborating
issuers and verifiers

and shielded observers
+ against individual verifiers

fail-safe + against leaking observers
+ against individual verifiers
+ against leaking observers

TABLE 5-4 Types of Unlinkability and underlying attacker coalitions

Lifen lifen n Ñ∈ Lifen

Lifen pkt[ ] pkÕ rkt,[ ]Ĩ [ ]D pkÕ rkÕ .{ }, ,[ ]Õ [ ]
Ṽ1 [ ]

Ṽ2 … [ ]
Vn, , , , ,, ,( )

ψ[ ]Ĩ ψ ψÕ v, ,[ ]D ψÕ w,[ ]Õ, , 
  intro pkÕ[ ] [ ]D rkÕ .{ },[ ]Õ, ,( )

  ; ψ' χ' v', ,[ ]D w'[ ]Õ,( ) issue pkt[ ] rkt ψ,[ ]I ψ ψÕ v, ,[ ]D ψÕ w,[ ]Õ,, ,( )

  ; φ1 χ1'' τ1{ }, ,[ ]
Ṽ1 φ1 v1'',[ ]D, 

  show pkt[ ] ψ' ψÕ χ' v', , ,[ ]D
ψÕ w' .{ }, ,[ ]Õ,,( )

  ||| φ2 χ2'' τ2{ }, ,[ ]
Ṽ2 φ2 v2'',[ ]D, 

  show pkt[ ] ψ' ψÕ χ' v', , ,[ ]D
ψÕ w' .{ }, ,[ ]Õ,,( )
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← ) (5.3)

Likewise,  is the following sequential composition of show, followed by issue, followed by a gen-
eral composition of n executions of protocol show.

=   ←

  ←

( ←

 ←

M  

← ) (5.4)

Neither of the protocols  and  returns an output because we will only be interested in the
views of certain participants in these protocols.

In each member protocol of , i.e., intro, issue and show, the honest MUD D uses the same
attacking observer , which is personalized to a native key pair . If the observer  con-
tains a biometer, it is personalized to a biometric template  and has a perfect recognition character-
istic, i.e., . The attacking observer  is assumed to be either shielded or
leaking, depending on which definition uses the protocol . The same holds for the protocol

 and its member protocols.
We are going to define two types of unlinkability in more detail. Issue-wise fail-safe unlinkability is

achieved if  blocks any in-band outflow from the observer. Show-wise fail-safe unlinkability is
achieved if  also blocks in-band inflow to the observer, which, under the leaking observer
assumption, could be revealed afterwards to the issuer and verifiers through an out-of-band communi-
cation channel (out-of-band outflow) and may thus help them to link their views. We define both
types of unlinkability against computationally unlimited attacking issuers and verifiers and computa-
tional observers.

After presenting the definitions, we will discuss why it is appropriate not to deal with out-of-band
inflow in the definitions themselves, but rather keep it outside of the definition by using the shielded
and leaking observer assumptions.

Definition 5.6 Unlinkability

SHOW-WISE FAIL-SAFE UNLINKABILITY

A credential scheme is show-wise fail-safe unlinkable if the following two conditions hold:
(1) For all , the honest MUD of  as well as that of  blocks any in-band inflow

to the observer, i.e, any information transmitted to the observer during intro, issue, show or 

  ||| φn χn'' τn{ }, ,[ ]
Ṽn φn vn'',[ ]D, 

  show pkt[ ] ψ' ψÕ χ' v', , ,[ ]D
ψÕ w' .{ }, ,[ ]Õ,,( )

lifen

lifen pkt[ ] rkt[ ]Ĩ ψ0 ψÕ χ0 v0, , ,[ ]D ψÕ w .{ }, ,[ ]Õ [ ]
Ṽ1 [ ]

Ṽ2 … [ ]
Vn, , , , ,, ,( )

ψ χ τ, ,[ ]Ĩ ψ v,[ ]D,( ) show pkt[ ] ψ0 ψÕ χ0 v0, , ,[ ]D ψÕ w .{ }, ,[ ]Õ,,( )

  ; ψ' χ' v', ,[ ]D w'[ ]Õ,( ) issue pkt[ ] rkt ψ,[ ]I ψ ψÕ v, ,[ ]D ψÕ w,[ ]Õ,, ,( )

  ; φ1 χ1'' τ1{ }, ,[ ]
Ṽ1 φ1 v1'',[ ]D, 

  show pkt[ ] ψ' ψÕ χ' v', , ,[ ]D
ψÕ w' .{ }, ,[ ]Õ,,( )

  ||| φ2 χ2'' τ2{ }, ,[ ]
Ṽ2 φ2 v2'',[ ]D, 

  show pkt[ ] ψ' ψÕ χ' v', , ,[ ]D
ψÕ w' .{ }, ,[ ]Õ,,( )

  ||| φn χn'' τn{ }, ,[ ]
Ṽn φn vn'',[ ]D, 

  show pkt[ ] ψ' ψÕ χ' v', , ,[ ]D
ψÕ w' .{ }, ,[ ]Õ,,( )

Lifen lifen

Lifen
Õ pkÕ rkÕ,( ) Õ

.
FAR FRR,( ) 0 0,( )= Õ

Lifen
lifen

lifen
lifen

n Ñ∈ Lifen lifen
show∗
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beyond the fact that some pseudonym is introduced and/or some type t credential is being issued or
shown.

(2) For all , the honest MUD of  as well as that of  blocks any in-band outflow
from the observer show-wisely, i.e., for each prekey  and each type 
there are constants , which may depend on the prekey prek and the type t, such that
for each 7 the following two statements hold:

(2a) Statement for LLLLiiiiffffeeeennnn:  For each

• attacking issuer  of , 

• -tuple of not necessarily distinct attacking verifiers ,

• -tuple of not necessarily distinct attacking observers  under the leaking
observer assumption,

• issuing key pair ,

• -tuple of native key pairs  where 
 for all ,

• -tuple  of successful executions of , where  is an execution of 

, (5.5)

and the respective views of ,  and  on D are denoted as in Table 5-5 on
p.87.

There are exactly  internal choices  for the MUD D in  with inputs accord-
ing to external interface (5.5) on p.87 such that the attacking participants  and 
each obtain the respective given views on D

 (5.6)

7) This index n may be subject to further restrictions due to certain properties of the credential mechanism. For example, a k-
overshow detecting or preventing coin credential mechanism is shown by an honest MUD no more often than k times.
Hence, we need to consider  and  only for .

Attacker LLLL

Issuer LLLL

Verifier LLLL

MMMM MMMM MMMM OOOO MMMM

Verifier LLLL

Observers LLLL

TABLE 5-5 Views on MUD D resulting from  executions of 

n Ñ∈ Lifen lifen
prek genPrekey Ñ( )( )∈ t T∈

κLife κlife, Ñ∈
n Ñ∈

Lifen lifen n k≤

Ĩ Lifen
n Ṽ1 … Ṽn, ,

n 1+( ) Õ0 Õ1 … Õn, , ,

rkt pkt,( ) genKey prek t,( )[ ]∈

n 1+( ) rkÕ0
pkÕ0

,( ) … rkÕn
pkÕn

,( ), , rkÕi
pkÕi

,( ) ∈
persObs prek ☺i{ },( )[ ] i 0 n,[ ]∈

n 1+( ) E0 E1 … En, , ,( ) Lifen Ei

Lifen pkt[ ] pkÕi
rkt,[ ]Ĩ [ ]D pkÕi

rkÕi
.i{ }, ,[ ]Õ [ ]Ṽ1 [ ]Ṽ2 … [ ]Ṽn, , , , ,, ,( )

Ĩ Ṽ1 … Ṽn, , Õ0 … Õn, ,

E0 E1 En

Ĩ View0
Ĩ View1

Ĩ Viewn
Ĩ

Ṽ1 View0
Ṽ1 View1

Ṽ1 Viewn
Ṽ1

Ṽn View0
Ṽn View1

Ṽn Viewn
Ṽn

Õ0 … Õn, , View0
Õ0 View1

Õ1 Viewn
Õn

n Lifen

κLife ρ1 … ρκLife
, , Lifen

Ĩ Õ0||| Ṽ1 Ṽ2 … Ṽn, , ,

View0
Ĩ View0

Õ, View1
Ṽ1 View2

Ṽ2 … Viewn
Ṽn, , , ,( )
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if the MUD uses any  as its internal choice.

(2b) Statement for lllliiiiffffeeeennnn:  For each

• attacking issuer  of , 

• -tuple of not necessarily distinct attacking verifiers ,

• -tuple of not necessarily distinct observers  under the leaking observer
assumption,

• issuing key pair ,

• input  of MUD D and input  of observer  in  (for
) such that 

(i) the intro pseudonym  is made by witness ,

(ii) the intro pseudonym , the intermediate pseudonym  and the witness  are related as
follows: ,

(iii)the signature  is valid for the intermediate pseudonym  with respect to ,

• -tuple  of successful executions of , where  is an execution of 

, (5.7)

and the respective views of ,  and  on D are listed in Table 5-6 on p.88.

There are exactly  internal choices  for the MUD D in  with inputs according
to (5.7) on p.88 such that the attacking participants  and  each obtain the
respective given views on D

 (5.8)

if D uses any  as its internal choice. ◆

RRRReeeemmmmaaaarrrrkkkkssss::::     Issue-wise unlinkability can be defined in a similar fashion. Since the views of different ver-
ifiers are not required to be unlinkable, only two executions of  and  have to be consid-
ered, and the tuples of views (5.6) on p.88 and (5.8) on p.88 had to be replaced respectively by

Attacker LLLL

Issuer LLLL

Verifier LLLL

MMMM MMMM MMMM OOOO MMMM

Verifier LLLL

Observers LLLL

TABLE 5-6 Views on MUD D resulting from  executions of 

ρ ρ1 … ρκLife
, ,{ }∈

Ĩ lifen
n Ṽ1 … Ṽn, ,

n 1+( ) Õ0 Õ1 … Õn, , ,

rkt pkt,( ) genKey prek t,( )[ ]∈

ψ0 ψÕi
χ0 v0, , ,( ) ψÕi
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i 0 …n,=

ψÕi
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ψÕi
ψ0 v0

ψ0 make' ψÕi
v0,( )=

χ0 ψ0 pkt
n 1+( ) e0 e1 … en, , ,( ) lifen ei

lifen pkt[ ] rkt[ ]Ĩ ψ0 ψÕi
χ0 v0, , ,[ ]D ψÕi

w .i{ }, ,[ ]Õi [ ]Ṽ1 [ ]Ṽ2 … [ ]Ṽn, , , , ,, ,( )
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Ĩ viewn
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Ṽ1
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Ṽn viewn
Ṽn

Õ0 … Õn, , view0
Õ0 view1

Õ1 viewn
Õn

n lifen
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view0
Ĩ view0

Õ, view1
Ṽ1 view2

Ṽ2 … viewn
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 and .

A complete definition also needs to address protocol , but is omitted here.
We shortly reflect the subtleties of defining fail-safe unlinkability (leaking observer assumption)

and non-fail-safe unlinkability (shielded observer assumption).
Under the leaking observer assumption (fail-safe unlinkability), observers could be equipped for

example with (undocumented) radio receivers in order to time stamp each transaction and keep a log
file about them (out-of-band inflow). The radio receivers might pick up broadcast signals from satel-
lites or cell phone networks, etc., which the issuers and verifiers can receive as well. After releasing the
log file to the issuers and verifiers, most of their views on the host of the leaking observer could be
linked pretty accurately by corresponding time-stamps. 

Since out-of-band inflow works independently of the actual issue and show protocols, it cannot be
ruled out by a definition about issue and show anyway. Therefore, allowing the chance of out-of-band
inflow cannot be regarded as a flaw of the above definition. In practice, additional countermeasures
need to be taken against out-of-band inflow, for example, MUDs could shield their observers from elec-
tromagnetic radiation and the processes of designing, manufacturing, and retiring of observers could
be reviewed by independent security test laboratories.

Under the shielded observer assumption (non-fail-safe unlinkability), out-of-band inflow may
occur, but out-of-band outflow is precluded. Still, in practice, there is a chance of in-band outflow
because observers could use individual abortion characteristics in order to leak information to issuers
and verifiers. Consider a scenario where a MUD needs its observer in each execution of issue and
show. Some devious observer might refuse each request coming in from its host MUD the first time,
but respond correctly to each repeated request. Thus the MUD must always abort the first attempt of
getting a credential issued, and so must it abort every first attempt of showing a credential. Certainly
an annoying observer from the holder’s perspective. The issuer and verifier, however, might detect this
characteristic protocol abortion and conclude that they have interacted with the same observer and
therefore with the same MUD and holder. Other observers might run different abortion characteris-
tics. A credential scheme that allows this class of attacks may well satisfy the proposed notion of
unlinkability, because these attacks make use of invalid views, i.e., views on protocols that are aborted
prematurely, which are ignored by the definition. This appears justified because any abortion of the
observer (whether systematic or not) is detectable by the MUD. Thus the holder may decide at any
time that an observer is no longer trustworthy and shall be replaced.

5.3.5 Interrelations between Integrity and Privacy Definitions

The integrity requirements (Definition 5.2 on p.83 through 5.5) and privacy requirements (Definition
5.6 on p.87) are orthogonal to a large extent. An open question is whether a K overshower of a show-
wise unlinkable scheme can be identified, when . This appears difficult to achieve because
unlinkability requires that MUDs can show each credential K times under different target pseud-
onyms, which makes all shows, i.e., the authorized and the unauthorized, “indistinguishable” to the
verifiers, so that no verifier (coalition) can keep track of the number of shows.

View0
Ĩ View0

Õ, View1
Ṽ1 View1

Ṽ2 … View1
Ṽn, , , ,( ) view0

Ĩ view0
Õ, view1

Ṽ1 view1
Ṽ2 … view1

Ṽn, , , ,( )

show∗
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5 CREDENTIAL SCHEMES
If such schemes exist at all, the complexity of brute-force identifying a K overshower of a show-
wise unlinkable scheme is exponential in K. Since all shows belonging to the same coin credential are
unlinkable by the verifier, he can run extract on every ( )-subset out of the whole pool of, say, n
transcripts obtained, and see whether they reveal a witness or not. This amounts to

(5.9)

checks on average. This is probably prohibitively expensive even for small values of K. However, there
may be show-wise unlinkable credential schemes that have a smarter procedure of identifying the
attacker than exhaustive search.

In contrast, identifying a K overshower in an issue-wise unlinkable scheme can be quite efficient,
for example, if all shows of one credential are for the same target pseudonym. Then it takes only one
application of extract in addition to finding the  linked transcripts. For example, the coin cre-
dential scheme by Brands [34,35] uses this approach.

5.4 Personal Credential Schemes

First, a definition is given that singles out a special case of credential schemes (Section 5.2.2 on p.74)
as personal credential schemes. The following efficient cryptographic mechanism is joint work with
Birgit Pfitzmann. It builds on the Chaum-Pedersen(3) Signature Mechanism (Section 4.2.2 on p.55)
and ElGamal encryption [99].

5.4.1 Definition

Definition 5.7 Personal Credential Scheme

A personal credential scheme with security parameter k and credential types T is a type-unforgeable,
transfer preventing and show-wise fail-safe unlinkable credential scheme with credential types T and
recognition characteristic .8 The domain of transcripts and the operation
extract are not defined for a personal credential scheme. ◆

5.4.2 The Cryptographic Mechanism in a Nutshell

In the following Mechanism 5.8 on p.92, mobile user devices are equipped with biometric observers
(Section 5.1.5 on p.69). The main idea is simple: In order to issue a credential of type t to a MUD, the
issuer passes it an encrypted signing key , which can be decrypted only by the observer of that
MUD. The encryption mechanism is based on standard ElGamal encryption [99] and is done such that
during the issue operation: 

• the MUD can make sure that the issuer encrypts nothing but the private signing key , but

• the MUD does not get any information about the private issuing key other than its type.

By using its observer, the MUD can then show credentials of type t many times. Before a show opera-
tion, the MUD can choose a target pseudonym , and its observer provides a blind signature for  if

8) Weaker personal credential schemes can be defined by allowing FAR and FRR positive values. 

K 1+

n
K 1+ 

  2⁄ O nK
( )=

K 1+

FAR FRR,( ) 0 0,( )=

rkt

rkt

φ φ
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5.4 PERSONAL CREDENTIAL SCHEMES
it recognizes the biometric identity of its holder successfully. Then the MUD passes  and the signa-
ture to the verifier. 

Each target pseudonym  of a MUD serves in turn as a new encryption key, and the correspond-
ing signature  serves as a public key certificate for  in the traditional sense. Hence, showing a cre-
dential provides the verifier with a certified encryption key  that the verifier can use for issuing a
new credential to the MUD. Target pseudonyms are chosen jointly by a MUD and its observer in such
a way that 

• the MUD can get credentials only for properly chosen target pseudonyms, and 

• the verifiers do not get any information about the respective observers’ contributions to these tar-
get pseudonyms.

We are going to use an extended ElGamal encryption mechanism for issuing credentials. Consider a
discrete log setting  and two generators  of . The verifier chooses a decryption
key  and computes the corresponding public encryption key . A
sender encrypts a message  by choosing an exponent  and computing the ciphertext
as follows:

 ← 

 ← . (5.10)

After sending the ciphertext  to the recipient, the plaintext is recovered by the following
calculation

 = . (5.11)

Standard ElGamal uses only a single value decryption key ( ), a single generator ( ), and a cipher-
text of only two components, such as . The extended ElGamal encryption mechanism above
allows the sender to use a public encryption key  that is represented with respect to two generators,
namely . This is important in the following Personal Credential Mechanism, because the public
encryption keys will be pseudonyms that are represented with respect to two generators such that they
can also serve as messages to be signed by the Chaum-Pedersen(3) Signature Mechanism 4.8 on p.55. 

5.4.3 Use of Pseudonyms, Signatures, Witnesses and Co-Witnesses

Throughout the life cycle of a MUD with its observer, a sequence of pseudonyms and corresponding
witnesses and co-witnesses unfolds. The MUD keeps the co-witnesses, while the observer keeps the wit-
nesses. During operation intro, the observer generates a witness  and the MUD generates a co-wit-
ness  (see Definition 5.1 on p.76). Together, they compute the source pseudonym  matching 
and . During operation issue, this source pseudonym and its witness and co-witness are used for sec-
ond purposes, namely encryption and decryption, as explained in the following Table 5-7 on p.92 
After a credential has been successfully issued to a MUD for target pseudonym , the MUD can
derive a fresh pseudonym  by using a new co-witness , while its observer re-uses the witness  it

φ
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5 CREDENTIAL SCHEMES
has generated for the initial source pseudonym . The MUD and its observer use their respective co-
witness and witness in the same way as during operation intro (see Table 5-8 on p.92).

By showing a credential for target pseudonym , the MUD has implicitly introduced a new source
pseudonym to the verifier. Now, the verifier can turn around and become an issuer. The verifier can
re-use the target pseudonym  as new source pseudonym, and issue a credential of some other type 
to the MUD upon request. In doing so, the issuer now uses  as an El-Gamal encryption key
according to Table 5-7 on p.92 and the observer still uses the same witness  as its decryption key to
recover the new signing key .

5.4.4 Personal Credential Mechanism

Mechanism 5.8 Personal Credential Mechanism (PC)

Let (genPrekey(CP), genKey(CP), signBlind, verify) be the Chaum-Pedersen(3) Signature Mechanism
of Section 4.2.2 on p.55. The PC Mechanism for credential types  is as follows.

Operation Parameter Purpose and use

iiiinnnnttttrrrroooo

Source pseudonym Fresh source pseudonym for the MUD.

Signature  for Will serve as a public key certificate for  in issue.
MUD’s co-witness  for source pseudonym 

 and  serve as secrets to identify the MUD with 
its observer against the issuer during intro. Observer’s witness  for intro pseudonym  

and for source pseudonym  at the same time.

iiiissssssssuuuueeee

Source pseudonym 
used by the issuer as El-Gamal encryption key to 
encrypt signing key .

MUD’s co-witness  for source pseudonym 
used by the MUD to transform ciphertext of the 
issuer into ciphertext for its observer.

Observer’s witness  for source pseudonym 
used by the observer as El-Gamal decryption key to 
recover .

MUD’s intermediate pseudonym  matches 
MUD’s co-witness  and observer’s witness 

used by the MUD towards its observer.

Observer’s output witness contains the decrypted signing key .

TABLE 5-7 Use of Pseudonyms and Witnesses During Intro and Issue

Operation Parameter Purpose and use

sssshhhhoooowwww

Intermediate pseudonym used by the MUD toward its observer.

Fresh target pseudonym used by the MUD toward the verifier.

Signature  for serves as a public key certificate for .

MUD’s co-witness  for target pseudonym 
 and  serve as secrets to identify the MUD with 

its observer against the issuer during intro.Observer’s witness  for intro pseudonym  
and for target pseudonym .

Observer’s input witness 
used by observer to produce blind signature for tar-
get pseudonym .

TABLE 5-8 Use of Pseudonyms and Witnesses During Show
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5.4 PERSONAL CREDENTIAL SCHEMES
GENERATE PREKEY

Pick a double discrete log setting  (Definition 3.19 on p.29) uniformly at ran-
dom from  for some appropriate . Choose three generators  of  as well as a
generator  of .

DOMAINS

• The signing key domains are  and the verifying key domains are
. When a public key is certified by an issuer to represent some type ,

then we write the respective keys as  and , respectively. Issuers neither certify different
public keys nor different private keys to represent the same type of credential.

• The pseudonym domains are . They are at the same time the message
domains of the Chaum-Pedersen(3) Signature Mechanism.

• The pseudonym witness domains are , the blinder domains are
 and the co-witness domains are . We write co-witnesses as

.

• The making functions are inherited from : .

• The co-making functions are inherited from : .

• The credential domains are . They are also the signature domains of the Chaum-
Pedersen(3) Signature Mechanism.

• The optional transcript domains:  are not defined.

OPERATIONS

Generate Key

For easier reference, the first and second component of  are denoted , respectively.

Verify

This algorithm is inherited from the Chaum-Pedersen(3) Signature Mechanism in Section 4.2.2 on
p.55.

PersObs

The observer generates its native key pair and, if it is biometric, it writes the biometric template 
provided as input to its composition tape.

ggggeeeennnnKKKKeeeeyyyy Issuer
(1) Choose ,

(2)  {x will not be needed afterwards} ,

(3) .

FIGURE 5–7 Generating an Issuer Key Pair
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5 CREDENTIAL SCHEMES
Introduce Pseudonym Explicitly

The observer takes its native signing key  and the biometric identity  of the actual user as
input. Common input is the observer’s native verifying key . The MUD D chooses
a co-witness  uniformly at random, and the observer chooses a witness 
uniformly at random (step (1)). The MUD makes its partial pseudonym  from the co-witness

, and the observer O makes its partial pseudonym  from the witness w (step (2)). D sends
its partial pseudonym  to O. If O can recognize the actual biometric identity  through its bio-
metric sensor, then it returns its partial pseudonym  to the MUD in step (3). If the MUD finds the
observer’s intro pseudonym  to live in  (step (4)), then the MUD executes member protocol
signBlind with the observer in order to obtain a blind signature  from the observer for the source
pseudonym  in step (5). If the MUD has received a valid signature (step (6)) it sends the source
pseudonym together with the signature  to the issuer. In step (7), the MUD and the observer con-

ppppeeeerrrrssssOOOObbbbssss Observer
(1) Choose ,

(2)  ,

(3) if a biometric identity  is input, then store it to the composition tape

FIGURE 5–8 Personalizing an Observer

iiiinnnnttttrrrroooo Issuer MUD Observer (Biometer)
(1) Choose Choose 

(2)  ←  ← 

(3) Proceed iff 

(4) Proceed iff 

(5)

(6) Proceed iff 

{ }

(7)  

(8) Proceed iff 

FIGURE 5–9 Introducing a Pseudonym
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5.4 PERSONAL CREDENTIAL SCHEMES
vince the issuer by an extended proof of knowledge that they together know a witness for the source
pseudonym . Finally the issuer verifies the signature against the native verifying key  in
step (8).

After the protocol is successfully terminated, the observer writes the pair  into a local list
to be used later to run the protocols issue and show. In protocol issue, the observer’s witness w will
serve as a decryption key, and the partial pseudonym  as the corresponding encryption key.  is
blinded by the MUD so to become , and the signature  serves as a public key certificate for .

Issue Credential

If a MUD D wants to get a type t credential issued, then D looks up a pseudonym  that it has
used before in order to introduce a pseudonym . D tells the issuer to use pseudonym  and its
observer to use . In addition, D tells the issuer and its observer which type t of credential it
requests. The observer looks up from its own local lists the witness  it has used when the intro
pseudonym  was introduced. The issuer checks if the source pseudonym  has been introduced to
the issuer before; either explicitly by intro or implicitly by show. 

The issuer and the MUD each make a respective random choice  and , in step (1). In addition,
the MUD chooses a blinder  in order to prepare its intermediate pseudonym . The
issuer computes in step (2) three values  and  similar to standard ElGamal encryption. The
MUD transforms  into  and sends it to the observer in step (3). Then the MUD trans-
forms  into , while the observer computes a response  in step (4) and returns it to the MUD. In
step (5), the MUD verifies if the issuer has indeed encrypted the discrete logarithm  of  with
respect to h in step (2). Only if this verification succeeds, the issuer sends  to the observer. Now, the

iiiissssssssuuuueeee Issuer MUD Observer (Biometer)

(1) Choose Choose 

(2)  ←  

 ← 

(3)  ← 

(4)  ←  ← 

 

(5) proceed iff 

 = 

(6)  ←  ←

{ = } accept iff 

FIGURE 5–10 Issuing a Personal Credential
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5 CREDENTIAL SCHEMES
observer can recover the encrypted signing key  and verify if it is the discrete logarithm of
 with respect to g. Note that the encrypted signing key  is returned as a witness , and there-

fore it must be wrapped into a pair such as  (step (6)). The MUD sets its interim pseud-
onym  and respective co-witness  by using the blinder  chosen in step (1). The MUD sets
the output credential  to 1, which will no longer used in the following.

After the protocol has successfully terminated, the observer writes the private key  into its
local list of private signing keys. If the observer has a different private key on file for the announced
type t, then it overwrites the previous private key by the new one.

Show Credential For New Target Pseudonym

If a MUD wants to show a type t credential received earlier, then D looks up the pseudonym  that
it has used when the credential was issued and tells its observer to use  as well and which type t of
credential to show. The observer looks up from its own local lists the witness  it has used when the
intro pseudonym  was introduced and the private signing key  of type t. (The witness  is
uniquely determined by  and is not included in the list of inputs of the observer.)

The MUD chooses a blinder  uniformly at random and the observer O proceeds only if it
recognizes the actual biometric identity  in step (1). The MUD sends its intermediate pseudonym

 to the observer in step (2) and convinces the observer in step (3) that the
MUD knows a representation, namely , of  such that  by using the protocol

 of the Brands(2) Mechanism 4.5 on p.46, with respect to the 3 generators .
In step (4) the observer aborts if it is not convinced by the MUD in step (3). Otherwise, the observer
signs  in step (5) using signBlind of the Chaum-Pedersen(3) Signature Mechanism 4.8 on p.55 such
that the MUD ends up with a blind signature  for the target pseudonym . Next,

sssshhhhoooowwww Verifier MUD Observer (Biometer)

(1) Choose Proceed iff 

(2)

(3)

(4) proceed iff 

(5)

{where }

(6)  ← look up the witness w
proceed iff  that makes 

(7)  

(8) Proceed iff . {  = }

FIGURE 5–11 Showing a Personal Credential for a new Target Pseudonym
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the MUD computes the co-witness  that co-makes  with respect to  in step (6) and
sends the target pseudonym  and the signature  to the verifier. Preparing the next step, the
observer looks up the witness  that makes pseudonym . In step (7), the MUD and the observer
convince the issuer by an extended proof of knowledge that they together know a witness for the tar-
get pseudonym . Finally, the verifier checks the signature  for  with respect to  in step (8).

Show Credential for Re-used Target Pseudonym

If a MUD wants to show a credential for a target pseudonym  that has been introduced before, then
D looks up the pseudonym  that it has used to introduce  and to get the credential issued in the
first place, and tells its observer to use  as well.

The protocol  differs from protocol  only in step (1) of the MUD:

• In step (1) of , the MUD computes the blinder  from the given co-witnesses  and 
rather than choosing  at random as in step (1) of . 

Consequently, step (6) of  can be omitted because the co-witness  is already given
as an input and is related to co-witness  and  as after step (6) of .

Recognize

Before an observer is personalized, it does not recognize any biometric identity, i.e.,  returns
FALSE. After an observer has been personalized (persObs) to a biometric identity , the observer
recognizes this biometric identity without error, i.e., . In other words., when-
ever  is called it returns TRUE if and only if the actual biometric identity  sensed and the
biometric template  in its memory originate from the same human individual. ◆

RRRReeeemmmmaaaarrrrkkkkssss::::     (1) Note that after running protocol issue, the observer ends up with a signing key compo-
nent  such that . Neither the MUD nor its observer have a need to re-use the
resulting credential  later on. Thus the output parameter  is set to 1 just to be defined. (In con-
trast, the coin credential scheme of Section 5.5 on p.110 will make use of the resulting credential ,
but not of the resulting output  of the observer.) Observe that the effectiveness requirement (2)
equation (5.2) on p.80 of Definition 5.1 on p.76 does not care about the credential  that the MUD
outputs after protocol show. It only requires that the intermediate pseudonym satisfies

. This intermediate pseudonym and its partial witnesses  and w can
be taken over from a past execution of issue, or they can be chosen from scratch. This will give us

sssshhhhoooowwww Verifier MUD Observer (Biometer)

(1) Proceed iff 

(2) M M M

(3) {all further steps of all participants as in protocol show}

FIGURE 5–12 Showing a Personal Credential for a re-used Target Pseudonym
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5 CREDENTIAL SCHEMES
enough flexibility to combine the personal and coin credentials via equal pseudonyms. See Section 5.7
on p.121 and later Section 8 on p.145.

(2) This construction essentially solves an open problem posed by Chen [76,74]. She has asked for
a personal certificate scheme based upon the SDL-Assumption (Assumption 3.21 on p.30) or the SR-
Assumption (Assumption 3.21 on p.30).

(3) Issuing a credential in the PC Mechanism is essentially to encrypt a secret pre-image of a pub-
licly known one-way function. Hence, the MUD can make sure that the issuer sends nothing else but
the uniquely determined pre-image. This is similar—but not identical—to another cryptographic prim-
itive called publicly verifiable encryption introduced by Asokan, Shoup and Waidner [5] Section 4. In
publicly verifiable encryption, there is an operation V by which anyone can verify whether the
encrypted message satisfies a given publicly known predicate. In issue, only the MUD hosting the
receiving observer can verify whether an encrypted message satisfies the given predicate because only
this MUD obtains the additional message  from the receiving observer in step (4) of issue. Since this
primitive blends properties of publicly verifiable encryption and proxy encryption according to Blaze,
Bleumer, and Strauss [20], it could be named verifiable proxy encryption. We will not single out a for-
mal definition of verifiable proxy encryption in this work.

(4) Interesting variations of the PC Mechanism are obtained if the observer’s biometric sensor is
replaced or accompanied by other types of sensors. For example, locally restricted credentials can be
obtained if the observer has a GPS receiver and compares the location where a credential is shown
with the location where it was issued. Home-bound or out-bound credentials are achieved if the
observer enforces a certain upper bound or lower bound on the distance between both locations. Other
modifications or extensions are possible.

Security Suggestion 5.1 PC Mechanism

In the random oracle model, the PC Mechanism is a personal credential scheme:

(i) Type unforgeability holds under the SR Assumption 3.21 on p.30.

(ii) Transfer prevention holds under the SR Assumption 3.21 on p.30 and some reasonable assump-
tions about the El-Gamal encryption scheme and the double discrete log setting.

(iii)Show-wise fail-safe unlinkability holds under some reasonable heuristic assumptions. �

Security Considerations

EFFECTIVENESS

We check the conditions of Definition 5.1 on p.76 (Effectiveness) in turn. Let 
 be a correctly generated prekey. Let the observer O be personalized for the holder

, and  be the native key pair of O. Let  ( ) be an issuer’s key pair of cre-
dential type t. 
(1) Let the issuer, MUD and observer run protocol 

.

It is obvious from step (2) in Figure 5–9 on p.94 that the observer’s witness w makes the pseud-
onym . Furthermore, the source pseudonym returned by protocol signBlind in

d'

prek ∈
genPrekey Ñ( )[ ]
☺ rkO pkO,( ) rkt pkt,( ) t T∈

ψ[ ]I ψ ψO ω u,( ), ,[ ]D ψO w,[ ]O, ,( ) intro pkO[ ] [ ]I [ ]D rkO .,[ ]O, , ,( )←

ψO make w( )=
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step (5) in Figure 5–9 on p.94 is  according to step (3) of Figure 4–5 on
p.56. Since  according to step (2) in Figure 5–9 on p.94, we get the equation

. (5.12)

For the first rewriting we have used the definition of  according to step (2) and step (4) of Fig-
ure 5–9 on p.94. The third rewriting uses the homomorphic property of make (Lemma 4.1 on
p.44), and the last rewriting uses the definition of the co-making function . Thus, the
MUD’s co-witness makes the source pseudonym  with respect to the intro pseudonym . Note
that the co-witness  chosen in step (1) of intro (Figure 5–9 on p.94) is an element of

.

(2) Let the above issuer, the MUD and the observer run protocol

, 

where each participant uses its output from intro as input. 

Firstly, the intermediate pseudonym  has a respective co-witness  such that 

and (5.13)

because the co-witness  is computed to be  for some  in step (6) of
protocol issue (Figure 5–10 on p.95).

Secondly, the co-witness  co-makes the intermediate pseudonym  with respect to ,
which can be seen as follows:

. (5.14)

For the first and last rewriting we have used the definition of  and  according to step (6)
of Figure 5–10 on p.95. The second rewriting follows from the pre-condition Figure 5–11 on p.96,
and the third rewriting uses Lemma 4.2 on p.48. 

Furthermore, the observer ends up with the signing key  of type t:

 = step (3), step (4) of issue

= step (2) of issue, step (2) of intro

= simplify and apply def. of make,

=  = . def. of make‘, pre-condition .

ψ ψDψO( )ω pmod=
ψD make u ω⁄( )=

ψ make u ω⁄( )ψO( )ω make u ω⁄( )
ωψO

ω make u( )ψO
ω make' ψO ω u,( ),( )= = = =

ψ

make'
ψ ψO

ω u,( )
Wprek ¸q∗( )2=

ψ' χ' ω' u',( ), ,[ ]D w'[ ]O,( ) issue pkt[ ] rkt ψ,[ ]I ψ ψO ω u,( ), ,[ ]D ψO w,[ ]O, , ,( )←

ψ' ω' u',( )

ω'
ω
---- u'

u----= qmod ω' u',( ) Wprek∈

ω' u',( ) ω1ω ω1u,( ) ω1 ¸q∗∈

ω' u',( ) ψ' ψO

ψ' ψ
ω1 make' ψO ω u,( ),( )( )

ω1 make' ψO ω1ω ω1u,( ),( ) make' ψO ω' u',( ),( )= = = =

ψ' ω' u',( )

rkt
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α
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α rkt p(mod  ) ψ make' ψO ω u,( ),( )=
99



5 CREDENTIAL SCHEMES
Hence, it follows that  according to algorithm
genKey (Figure 5–7 on p.93). Next, the verifying step (5) of issue is checked by inserting for 
the value computed and transferred by the observer in step (4) of issue:

.

(3) Let the above MUD and its observer run protocol show with a verifier V as follows:

.

Firstly, the target pseudonym  has a respective co-witness  such that 

and (5.15)

because the co-witness  is computed to be  for some  in step (5) of
protocol show (Figure 5–11 on p.96). From (5.13) on p.99 in paragraph (2) on p.99 and (5.15) on
p.100 in paragraph (3) on p.100 above follows by induction over repeated executions of issues and
show that whenever the MUD introduces a pseudonym  implicitly by using protocol show,
where the MUD takes shared input , the respective co-witness  satisfies:

.

Secondly, the co-witness  co-makes the target pseudonym with respect to pseudonym :

.

For the first and last rewriting we have used the definition of  and  according to
step (5) of Figure 5–11 on p.96. The second rewriting follows from the precondition (5.14) on p.99,
and the third rewriting follows from Lemma 4.2 on p.48. This also ascertains that the extended
proof of knowledge in step (7) of Figure 5–11 on p.96 convinces the verifier V. 

Thirdly, the observer uses the type t issuing key  it has received according to paragraph
(2) on p.99 above in order to produce the resulting credential . It is a valid blind signature of
the Chaum-Pedersen(3) Signature Mechanism for the target pseudonym  with respect to  (Se-
curity Suggestion 4.6 on p.57) according to step (5) of Figure 5–11 on p.96. Hence, the verifier’s
check in step (8) of Figure 5–11 on p.96 holds. 

(4) The arguments from (3) on p.100 above apply to protocol  in place of protocol show
because the target pseudonym  is defined in the same way and so is the co-witness 

. Since in step (1) of ,  is computed to be  in (Figure 5–12 on
p.97), it follows from (5.15) on p.100 in paragraph (3) on p.100 above that 
and thus .

(5) By definition of the algorithm recog, observers recognize no biometric identities before they are
personalized to a biometric template. Afterwards they recognize biometric identities without error.

w' c1'
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TYPE UNFORGEABILITY

Consider an attacker coalition of polynomial-time Turing machines, i.e., a MUD ,  observers
 under the broken observer assumption and a verifier , that has never been issued a type

 credential, but may have verified a number of type  credentials in a gathering stage before the
actual attack. In order to show a type t credential, the attacker coalition must provide the following to
an honest verifier:

(i) a target pseudonym , and a Chaum-Pedersen(3) signature  valid for  with respect to 
(after step (6) of show in Figure 5–11 on p.96 or  in Figure 5–12 on p.97) and 

(ii) an interactive proof-of-knowledge of a witness of  (in step (7) of show in Figure 5–11 on p.96 or
 in Figure 5–12 on p.97).

Since the attacker coalition is presumed to have not been issued a type t credential in the past and to
have no access to an honest observer that has been used to get a type t credential issued, the attacker
coalition has neither access to the private issuing key  itself nor to an honest observer that
keeps  inside.

Assume the attacker coalition achieves (i) on p.101, then the target pseudonym  must be one of
those that the attacker  has received during the gathering stage. Were  not one of those target
pseudonyms, then the attacker coalition had come up with a Chaum-Pedersen(3) signature  valid
for a new message  with respect to  although the attacker coalition neither had access to the
respective signing key  itself nor to a signer who had access to . This is a contra-
diction to the restrictiveness of the Chaum-Pedersen(3) signature scheme (Security Suggestion 4.6 on
p.57), where we need to look at the case of the recipient obtaining signatures for  messages
before he must come up with a message and valid signature of its own (see Definition 4.7 on p.53).

Assume next that the attacker coalition achieves (ii) on p.101. Here in step (7) of protocol 
or , the attacker coalition proves knowledge of a witness of the target pseudonym  to an hon-
est verifier by using protocol proveExt of the  Mechanism 4.6 on p.47. Because all observers

 are assumed to be broken and controlled by , we may focus only on the subprotocol of
proveExt that is visible to the honest verifier, i.e., the subprotocol between the verifier and the co-
prover. Each subprotocol instance of proveExt is equivalent to the respective protocol instance of
prove of the  Mechanism 4.4 on p.43 according to the extendedness property (Security Sug-
gestion 4.4 on p.48) of . The validity property of this protocol prove of  (Proposi-
tion 4.1 on p.44) implies that the attacker coalition “knew” a witness of the target pseudonym 
under the one-way function make before the attacker coalition entered into step (7). The only time in
the past where the attacker coalition may have learned information about a witness of  was during
the gathering stage, where an honest MUD showed a credential of type t for the target pseudonym .
More particularly, in step (7) of an execution of protocol  or , where  acted as the ver-
ifier. That in turn is a contradiction to the witness indistinguishability of protocol prove of 
according to (Proposition 4.2 on p.45).

TRANSFER PREVENTION

Consider any polynomial-time attacking MUD  and any number  of observers
 under the intact observer assumption. The observers have been personalized to

D̃ L Ñ∈
Õ1 … ÕL, , Ṽ
t t
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show∗

φ
show∗

rkt qmod
rkt qmod

φ
Ṽ φ

χ''
φ pkt
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show∗ φ

ECEG 2( )
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CEG 2( )
ECEG 2( ) CEG 2( )

φ

φ
φ

show show∗ Ṽ
CEG 2( )

D̃ L Ñ∈
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respective biometric identities , and each of these and only these observers have been
used by some MUDs including  to acquire a credential of type t. Afterwards, the attacking MUD 
is given access to all the intact observers , but not to their respective biometric identi-
ties . In order to show a type t credential,  must provide to an honest verifier: 

(i) a target pseudonym , and a Chaum-Pedersen(3) signature  valid for  with respect to 
(after step (6) of show in Figure 5–11 on p.96 or  in Figure 5–12 on p.97) and 

(ii) an interactive proof-of-knowledge of a witness of  (in step (7) of show in Figure 5–11 on p.96 or
 in Figure 5–12 on p.97).

In doing so,  may use 

(1) one or more of the intact observers , or

(2) one or more other observers that have not been used in order get a credential of type t issued, or

(3) no observer at all.

Using one or more of the intact observers  according to approach (1) on p.102 would
not help  because each of them would abort the protocol show in Figure 5–11 on p.96 or  in
Figure 5–12 on p.97 already in step (1) because each of them has a perfect recognition characteristic
and  has no access to their respective biometric identities.

Approach (2) on p.102 would not gain  any more information about credentials of type t than
approach (3) on p.102 because none of the observers in approach (2) on p.102 has been involved in get-
ting credentials of type t issued. These other observers might store issuing keys of types other than ,
but since these issuing keys have been chosen independently of , they release no information about

. Hence, the probability that  learns any information about  is no better than pure guessing
and therefore negligible.

Observe that  without having the proper biometric identities available, cannot coerce the intact
observers to execute any other protocol than issue because it is the only protocol where the observer
does not ask for its correct biometric identity in one of the first steps before sending any information
to . Thus the strongest attacking scenario for  is (A) to use one or more of the intact observers

 in order to get type t credentials issued, (B) to wait until one or more of the autho-
rized persons use  with the respective intact observer(s) in order to show credentials of type t and
then (C) to use the information learned during executions of (A) and (B) in order (C) to show a type
t-credential to an honest verifier without using any observer (approach (3) on p.102). We denote this
final successful execution of show or  as .

(A)  When an issuer issues a type t credential, the issuer encrypts a signing key  of type t
in step (2) of issue using the extended ElGamal encryption explained in equation (5.10) on p.91. Note
that  can attack this extended ElGamal encryption only passively, because  can only select plain-
texts from a collection of different unknown plaintexts, e.g., , by requesting credentials of
various types . However,  would not know the selected plaintext, let alone be able to compose
a plaintext on its own. Extracting any information about the plaintext from an extended ElGamal
encrypted ciphertext by a passive attack is considered to be infeasible under some reasonable assump-
tions. (See Tsiounis and Yung [224] Theorem 1.) However,  learns more during issue than just an
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show∗ show!

rkt qmod
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ElGamal encrypted plaintext  because the observer in step (4) of issue is willing to evalu-
ate the function

, for arguments  chosen by , (5.16)

where the primes p, P, and the generator h of  are publicly known parts of the prekey, and
 is the secret witness of the observer involved in the issuing. Learning the exponent 

 would be sufficient for  to efficiently compute the private signing key 
 because  is also known to . 

Although we cannot reduce this problem to a known complexity theoretic assumption, we have not
found a way in which the attacker could infer substantial information about  by requesting
the observer to evaluate the function  (equation (5.16) on p.103) for chosen arguments

 polynomially many times. It appears neither possible for  to learn information about the
observer’s witness  itself, nor to combine two or more responses by the observer into a new
response for a known argument because the function  has no obvious homomorphic
properties. For example, the following equation holds for no obvious operation that is independent
of  and computable in polynomial time:

.

(B)  In step (5) of protocol show or , the observer uses the signing key  only in
order to provide a Chaum-Pedersen(3) signature to . Since the Chaum-Pedersen(3) Signature Mech-
anism 4.8 on p.55 is restrictive (Security Suggestion 4.6 on p.57), the recipient  (in step (5) of pro-
tocol show or ) has only a negligible chance of figuring out the signing key . See the
remark following Definition 4.7 on p.53.

It appears plausible that the overall probability that  figures out the issuing key 
throughout a polynomial composition of steps (A) and (B) is bounded above by the sum of the proba-
bilities of figuring it out in every single step (A) or (B). Since the probability in each single step is neg-
ligible and the number of steps is bounded above by a polynomial in k, the overall probability that 
figures out the issuing key is still negligible.

(C)  We are left to consider an attacker  that executes  without an observer and without
knowing an issuing key  but succeeds to convince the honest verifier by providing:

(i) a target pseudonym , and a Chaum-Pedersen(3) signature  valid for  with respect to 
(after step (6) of  in Figure 5–11 on p.96) and 

(ii) an interactive proof-of-knowledge of a witness of  (in step (7) of  in Figure 5–11 on p.96).

Assume that  achieves (i) on p.102, then the target pseudonym  must be one of those that  has
sent to the honest verifier during an execution of step (A) above. Were  not one of those target
pseudonyms then  had come up with a Chaum-Pedersen(3) signature  valid for at least one more
message  with respect to  than the respective intact observer had provided itself. This would vio-
late the one-timeness of the Chaum-Pedersen(3) Signature Mechanism 4.8 on p.55 (Security Sugges-
tion 4.6 on p.57).

rkt qmod

dw1 w2, c'1 c'2,( ) h
c'1

w1c'2
w2 pmod

Pmod= c'1 c'2,( ) Gq
2∈ D̃

Gp
w1 w2,( ) c'1

w1c'2
w2

pmod D̃ rkt =
c'1

w1c'2
w2c'3 pmod( ) qmod c'3 D̃

rkt qmod
dw1 w2, c'1 c'2,( )

c'1 c'2,( ) D̃
w1 w2,( )

dw1 w2, c'1 c'2,( )
o

w1 w2,( )

dw1 w2, α1 α2,( )dw1 w2, β1 β2,( ) dw1 w2, α1 β1o α2 β2o,( )=

show∗ rkt qmod
D̃

D̃
show∗ rkt qmod

D̃ rkt qmod

D̃

D̃ show!

rkt qmod

φ χ'' φ pkt
show!

φ show!

D̃ φ D̃
φ

D̃ χ''
φ pkt
103



5 CREDENTIAL SCHEMES
Assume next that  achieves (ii) on p.102. Here in step (7) of ,  proves knowledge of a
witness of the target pseudonym  to an honest verifier by using protocol proveExt of the 
Mechanism 4.6 on p.47. Because  works without an observer, we need to focus on the subprotocol of
proveExt that is visible to the honest verifier, i.e., the subprotocol between the verifier and the co-
prover of proveExt in Figure 4–4 on p.48. Each subprotocol instance of proveExt is equivalent to the
respective protocol instance of prove of the  Mechanism 4.4 on p.43 according to the extend-
edness property (Security Suggestion 4.4 on p.48) of . The validity property of protocol
prove of  (Proposition 4.1 on p.44) implies that  “knew” a witness of the target pseudonym

 under the one-way function make before  entered into step (7) of . The only time in the
past where  may have learned a witness of  was during executions of step (B) above, where 
used an intact observer O to show a credential of type t for the target pseudonym  (Figure 5–11 on
p.96). 

(C1)  Assume the witness of  that  had learned in that step (B) with respect to  was
. 

(C2)  In that step (B),  proved to the intact observer O in protocol proveWitRel of step (3) of
protocol  or  (Figure 5–11 on p.96) that  knows a witness  with respect
to , where  (see Proposition 4.3 on p.47).

(C3)  Later on in that step (B),  proved to the honest verifier in protocol proveExt of step (7) of
protocol  or  (Figure 5–11 on p.96) that  knows a witness  such that 

.

(See Security Suggestion 4.4 on p.48 for ).

(C4)  In that step (B),  provided to the honest verifier in step (5) of protocol  or 
(Figure 5–11 on p.96) a Chaum-Pedersen(3) signature  for  with respect to . From the
restrictiveness property of Chaum-Pedersen(3) follows that some  exists that relates the witnesses
of (C2) and (C3) as follows . Furthermore,  because
otherwise the condition  of step (6) of protocol  or  were violated.

We conclude that  can compute  because it can be derived from the wit-
nesses that  has proved to know in (C2) and (C3). Note that  according to (C2).

From here,  can compute a witness of  with respect to  as follows. From the assump-
tion (C1) and the presumption (C3),  gets two representations of the target pseudonym :

.

The second equality is rewritten as follows:

,

where  because neither  nor  disappear according to (C4) and (C2), respectively.
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That  can compute a witness of  is a contradiction to the fact that  has been chosen uni-
formly at random by the intact observer O during protocol intro and that the intact observer O has
used its witness  of  only in its communication with  during protocol proveExt of

 in protocols intro,  and , and in its response to  in step (4) of protocol
issue. The subprotocol instance of proveExt between the intact observer O and  is equivalent to the
respective protocol instance of prove of the  Mechanism 4.4 on p.43 according to the extend-
edness property (Security Suggestion 4.4 on p.48) of . Therefore, protocol proveExt releases
no information about the witness  of O to  because protocol prove is witness indistinguish-
able. Furthermore, we have argued earlier in step (A) that the intact observer’s response to  in step
(4) of protocol issue would only leave  a negligible chance of figuring out the witness .

SHOW-WISE FAIL-SAFE UNLINKABILITY

We show that for all , the honest MUD in both  and  blocks any in-band inflow to
the observer and any in-band outflow from the observer. Consider  participants of protocol

 for any  (see Section 5.3.4 on p.84), namely an attacking issuer  of type t credentials,
an honest MUD D,  attacking observers  and n attacking credential verifiers

. Consider  successful executions  of , where each execution 
( ) is run by , D,  and . Now consider the resulting views9 of all attacking
participants on the honest MUD D according to Table 5-5 on p.87 of Definition 5.6 on p.87.

The issuer participates in execution  of  during intro and issue. Thus the issuer’s view
 contains an output of signBlind (step (5) of intro), a verifier’s view of proveExt (step (7) of

intro) and an issuer’s view of issue (step (2) of issue). This is summarized in the first two rows of the
following Table 5-9 on p.105. The views of attackers  and  are listed in the following
rows. The last column lists all internal choices of the MUD in respective member protocols of .

9) Of the views of ,  and  on D we are only interested in the messages exchanged with D, not in the internal choices
of  and  (see Definition 3.11 on p.21). So in order to relax the view notation, we do not display the internal choices of

,  and  in the remaining argument.

Attacker
Member 

prot. of 
Attacker’s view (including 
shared inputs) contains Internal Choice of MUD

issuer 

( )

intro
(Figure 5–9)

observer’s native verifying key ,
output  of signBlind (step (5)),
verifier’s view of proveExt (step (7))

(see below under intro for observers)

issue
(Figure 5–10)

issuer’s view in issue (step (2)) (see below under issue for observers)
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“≤ q”: We show that any such -tuple of valid views 
originating from  executions of  according to Definition 5.6 on p.87 matches with at most
q values of the internal choice of the MUD in . D’s internal choice is detailed in the last column
of Table 5-9 on p.105.

(i) The issuer’s view in intro contains the respective observer’s native verifying key , which
uniquely determines a particular native signing key  of some observer , .

The issuer’s and the observer’s views in intro together determine the MUD’s co-witness 
up to q possible values as follows:  (from step (5)) and  (from
step (2)). They also determine a unique internal choice of the MUD in member protocol signBlind
with signing key  (step (5)), and, for each possible co-witness , they determine a
unique internal choice of the MUD in member protocol proveExt (step (7)). This follows from
blindness of signBlind (Security Suggestion 4.6 on p.57) and from co-unlinkability of proveExt
(Security Suggestion 4.4 on p.48), respectively.

(ii) The issuer’s and the observer’s views in issue uniquely determine the choices  of the MUD in
step (1) of issue as follows:  (from step (3)) and  (from
step (6)). 

(iii)For each possible co-witness  of the MUD, the verifier’s view and the observer’s view in
each instance of show uniquely determine the internal choice  of the MUD in member
protocol proveWitRel. Note that for each co-witness , the given challenge  and the
MUD’s response messages  in proveWitRel in Figure 4–3 on p.47 establish 3 linear equa-
tions, one for each of the three variables  according to step (4) of protocol proveWitRel.
Thus, for each co-witness  of the MUD, there is exactly one internal choice

 of the MUD in step (1) of proveWitRel (Figure 4–3 on p.47) such that the MUD
produces the given views to the verifier and observer.

Furthermore in member protocol signBlind in step (5) of show, the verifier’s view and the
observer’s view determine unique blinders  for  (which are chosen in

observer 

( )

intro 
(Figure 5–9)

 (step (2) and (3)), 
signer’s view of signBlind (step (5)),
prover’s view of proveExt (step (7))

in signBlind (one execution)
in proveExt (one execution)

issue
(Figure 5–10)

source pseudonym , 
observer’s view in issue (step (3), 
(4),(5))

show
(Figure 5–11)

intermediate pseudonym 
verifier’s view of proveWitRel (step (3)),

, (step (4)),
signer’s view of signBlind (step (5)),
prover’s view of proveExt (step (7))

 
in proveWitRel 
in signBlind 
in proveExt 

verifier 

( )

show
(Figure 5–11)

type t verifying key ,
output  of signBlind (step (5)),
verifier’s view of proveExt (step (7))

(see above under show for observers)

Attacker
Member 

prot. of 
Attacker’s view (including 
shared inputs) contains Internal Choice of MUD

TABLE 5-9 Attackers and their views on the MUD in Lifen
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Ṽ1 … Ṽn, ,
Viewi

Ṽi
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5.4 PERSONAL CREDENTIAL SCHEMES
step (1) of show), and a unique internal choice of the MUD in signBlind (Security Suggestion 4.6
on p.57: blindness). In member protocol proveExt in step (7) of show, for each possible co-witness

 of the MUD, the verifier’s view and the observer’s view determine a unique internal choice
of the MUD (Security Suggestion 4.4 on p.48: co-unlinkability).

“≥ q”: We are left to show that each of the q internal choices identified above in fact results in the
( )-tuple of given views. The only messages of the MUD that have not yet been taken into
account are  of respective step (3) and step (4) of member protocol issue of .
We need to consider any two valid views  of an issuer on the MUD and  of
an observer on the MUD. We first identify the valid views by using two heuristic arguments:

• For the issuer’s and the observer’s views to be valid, the observer must be able to recover the
secret  from the output messages  that the issuer has encrypted into the input
messages . Otherwise, the observer would not be able to help the MUD later on to
show a credential of type t, and hence, a protocol show would be unsuccessful. In other words,
decrypting the output  must yield the same result as decrypting the input

:

. (5.17)

• Secondly, we assume that the issuer’s view  must satisfy the condition

 (5.18)

in order for the observer being able to decrypt the plaintext . Note that an attacking issuer
and an attacking observer could initially agree on any encryption mechanism and any encryption/
decryption key pair of which the MUD may have no idea. However, the way in which the MUD
transforms the issuer’s messages  into the observer’s messages  during proto-
col issue appears as if only the extended ElGamal like encryption mechanism makes sense to use,
because otherwise the observer will not be able to decrypt the plaintext from messages .
Thus, we also assume that the observer must receive an extended ElGamal ciphertext, and there-
fore a valid view  of the observer satisfies the condition

. (5.19)

• Thirdly, it is clear that  is uniquely determined by  according to step (5) of member pro-
tocol issue of , namely: . Any other  would not contribute to a
valid view of an observer on the MUD.

Thus, the remaining messages  and  must be chosen exactly as prescribed by respective step (3)
and step (4) of member protocol issue: In order to address message , we rewrite the expression

 by expressing it as a power of :

 = let 

 = 

ω u,( )

2n 2+
c2 c2' c3 c3' d', , , , Lifen
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5 CREDENTIAL SCHEMES
From step (3) of issue we have , which is  because of condition (5.18) on
p.107. From condition (5.19) on p.107 we find that the above expression  can be rewritten as

= . (5.20)

In order to address message , we rewrite the expression  for each of the identified
pairs  as follows:

 = expand expression

 = by condition (5.17) on p.107

= insert  from step (3) of issue

= 

=  . (5.21)

We find that each ( )-tuple of views of an issuer,  observers and n credential verifiers of
 allows the MUD exactly q different values for the MUD’s internal choice in . 

Next, consider  participants of protocol  for any  (see Section 5.3.4 on p.84),
namely an attacking issuer  of type t credentials, an honest MUD D,  attacking observers

 and n attacking credential verifiers . Consider  successful executions
 of , where each execution  ( ) is run by , D,  and . Now

consider the resulting views9 of all attacking participants on the honest MUD D according to Table 5-
6 on p.88 of Definition 5.6 on p.87. 

The only difference between the protocols  and  is that in  the MUD introduces
the source pseudonym implicitly by having the issuer verify some credential. Thus, the issuer’s view
and the observer’s view in member protocol intro of  must be replaced by their respective views
in the first instance of member protocol show in . The resulting views of the attackers on the
honest MUD are summarized in Table 5-10 on p.108. The fourth column lists the internal choice of the
MUD in each member protocol of .

Attacker
member prot. 

of 
Attacker’s view (including 
shared inputs) contains Internal Choice of MUD

issuer 

( )

show
(Figure 5–11)

type  a verifying key ,
output  of signBlind (step (5)),
verifier’s view of proveExt (step (7))

(see below under show for observers)

issue
(Figure 5–10)

issuer’s view in issue (step (2)) (see below under issue for observers)

TABLE 5-10 Attackers and their views on the MUD in lifen
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5.4 PERSONAL CREDENTIAL SCHEMES
“≤ 1”: We show that any such -tuple of valid views 
originating from  executions of  according to Definition 5.6 on p.87 matches with at most
one internal choice of the MUD in , which is detailed in the last column of Table 5-10 on p.108.

(i) The issuer’s and the observer’s views in show together uniquely determine the MUD’s internal
choice  in proveWitRel (see the argument for protocol  and a unique value

. They also determine a unique internal choice of the MUD in member protocol
signBlind (step (5) of show), and they determine a unique internal choice of the MUD in member
protocol proveExt (step (7)). This follows from blindness of signBlind (Security Suggestion 4.6 on
p.57) and from co-unlinkability of proveExt (Security Suggestion 4.4 on p.48), respectively.

(ii) The issuer’s and the observer’s views in issue uniquely determine the choices  of the MUD in
step (1) of issue as follows:  (from step (3)) and  (from
step (6)). 

(iii)The verifier’s view and the observer’s view in each instance of show uniquely determine the inter-
nal choice of the MUD in member protocol proveWitRel. Furthermore in member protocol sign-
Blind in step (5) of show, the verifier’s view and the observer’s view determine a unique value

 (from step (5)), and, for each possible co-witness , they determine a
unique internal choice of the MUD in member protocol proveExt (step (7)). This follows again
from blindness of signBlind (Security Suggestion 4.6 on p.57) and from co-unlinkability (Security
Suggestion 4.4 on p.48), respectively.

observer 

( )

show
(Figure 5–11)

intermediate pseudonym  (step (2)), 
verifier’s view of proveWitRel (step (3)),

 (step (4)),
signer’s view of signBlind (step (5)),
prover’s view of proveExt (step (7))

 (one value of 
in proveWitRel (one execution)
in signBlind (one execution)
in proveExt (one execution)

issue
(Figure 5–10)

source pseudonym , b

observer’s view in issue (step (3),(4),(5))

show
(Figure 5–11)

intermediate pseudonym  (step (2))
verifier’s view of proveWitRel (step (3)),

 (step (4)),
signer’s view of signBlind (step (5)),
prover’s view of proveExt (step (7))

 (n values of 
in proveWitRel (n executions)
in signBlind (n executions)
in proveExt (n executions)

verifier 

( )

show
(Figure 5–11)

type t verifying key ,
output  of signBlind (step (5)),
verifier’s view of proveExt (step (7))

(see above under show for observers)

a. Since there are multiple instances of protocol show in protocol , we will use an index zero for the parameters of the 
first instance of show, which precedes protocol issue, and a respective index  for the parameters of each 
instance of show following protocol issue.

b. Since the target pseudonym introduced by the first instance of show also serves as a source pseudonym during the follow-
ing instance of issue, the two pseudonyms are equal: .

Attacker
member prot. 

of 
Attacker’s view (including 
shared inputs) contains Internal Choice of MUD

TABLE 5-10 Attackers and their views on the MUD in lifen
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Õ0
View0

Õ0
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Ṽn, , , ,( )
n 1+ Lifen

lifen

s s1 s2 s3, ,( )= Lifen
ω2 0, logψ0'

φ0=

β ω1,
β logg1

c1'c1
ω– pmod( )= ω1 logψψ'=

ω2 i,  logψ'φi= ω u,( )
109



5 CREDENTIAL SCHEMES
“≥ 1”: We are left to show that the q internal choices identified above in fact result in the ( )-
tuple of given views. The only messages of the MUD that have not yet been taken into account are

 of protocol issue. The uniquely determined internal choice for  of  that
was identified above makes the MUD produce  and  as well because the rewritings (5.20) on
p.108 and (5.21) on p.108 apply to this case as well. ❏

5.5 Coin Credential Schemes

First, we give a definition of coin credential schemes as a special case of credential schemes
(Section 5.2.2 on p.74) and afterwards present a construction based on an e-cash mechanism by
Brands [34]. This construction is compatible with the personal credential mechanism of Mechanism 5.8
on p.92 in the sense that source pseudonyms are taken from the same domain and are represented in
the same way.

5.5.1 Definition

Definition 5.9 Coin Credential Scheme

A coin credential scheme with credential types T is a type-unforgeable, K-overshow detecting and/or
preventing and show-wise or issue-wise fail-safe unlinkable credential scheme with credential types T
and recognition characteristic .10 The domain of biometric identities and the
operation persObs are not defined for a coin credential scheme. ◆

The operations issue and show of coin schemes are sometimes called “withdraw” and “pay” in the lit-
erature. The former is motivated by the fact that it is usually the customers who actively withdraw
money from their accounts at a bank, and not the banks who “push” money into a customer’s elec-
tronic wallet. The term “pay” refers to the fact that coin credentials are consumed by showing them.
Nevertheless, we avoid distractions by renaming operations and keep to the names introduced in Defi-
nition 5.1 on p.76.

5.5.2 Coin Credential Mechanism

In the following coin credential Mechanism 5.10 on p.111, mobile user devices are equipped with non-
biometric observers, so as to prevent overshowing. An efficient coin credential mechanism is presented
where the MUD and observer represent source pseudonyms in the same way as in the PC Mechanism
5.8 on p.92 as follows

,

where  is a discrete log setting (Definition 3.17 on p.28),  are constant generators of ,
the MUD holds the co-witness  and its observer holds the witness

. This is a generalization of Brands’ original proposal [34,35] where all co-witnesses
have a constant component . The following coin credential mechanism enables the MUD to
obtain a coin credential

10) A recognition characteristic of (1,0) means that all biometric identities are accepted, or in other words, biometric identities
are completely ignored.

2n 2+

c2 c2' c3 c3' d', , , , β ω1,( ) lifen
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FAR FRR,( ) 1 0,( )=

ψ g1
u1 ωw1+
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w w1 w2,( )=
ω 1=
110



5.5 COIN CREDENTIAL SCHEMES
• for the same source pseudonym for which the MUD is issued a personal credential of the PC Mech-
anism 5.8 on p.92, or 

• for the same target pseudonym for which the MUD has shown a personal credential before.

The dual case of showing a coin credential for a target pseudonym for which the MUD has shown a
personal credential before will be considered in Section 5.7 on p.121.

The main reason for essentially repeating Brands proposal here is to prepare the construction of
coin group credentials in Section 7.2 on p.143, which is a major extension to Brands proposal.

Mechanism 5.10 Coin Credential Mechanism (CC)

Let (genPrekey(CP), genKey, signBlind, verify) be the operations of the Chaum-Pedersen(3) Signa-
ture Mechanism and (genPrekey(ECEG(3)), make, proveExt) be the extended proof-of-knowledge
scheme ECEG(3), whose families of candidates, witnesses, and making functions equal the families of
messages, witnesses and making functions of the Chaum-Pedersen(3) Signature Mechanism. Then, the
Coin Credential Mechanism for credential types  is constructed as follows.

GENERATE PREKEY

Pick a discrete log setting  uniformly at random from  (Definition 3.17 on p.28). Then pick
uniformly at random four generators  and select a hash function that maps binary
strings to elements in . The generators  and the hash function are also used for the
Chaum-Pedersen(3) Signature Mechanism 4.8 on p.55.

DOMAINS

• The signing key domains are , and the verifying key domains are 
, which contain signing and verifying keys of the Chaum-Pedersen(3) Signature Mecha-

nism, respectively (Mechanism 4.8 on p.55). 

• The pseudonym domains are . Source pseudonyms and intro pseud-
onyms are taken from , whereas target pseudonyms are taken from .

• The pseudonym witness domains are . The subset of witnesses with third
component zero, i.e., , is denoted as . The blinder domains are

.

• The co-witness domains are . The subset of co-wit-

nesses  with  is denoted as .

• The making functions are inherited from CEG(3): .

• The co-making functions are from ECEG(3): .

• The credential domains are . They are also the signature domains of the Chaum-
Pedersen(3) Signature Mechanism.

• The transcript domains are , i.e., the product of respective wit-
ness and blinder domains of the Chaum-Pedersen(3) Signature Mechanism.

• The optional domains  of biometric identities are undefined.
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5 CREDENTIAL SCHEMES
OPERATIONS

The operations genKey and verify are inherited from the Chaum-Pedersen(3) Signature Mechanism
with the convention that . The remaining four operations
(intro, issue, show, and extract) are defined below. 

Introduce Pseudonym

This protocol is essentially the same as for the PC Mechanism (Figure 5–9 on p.94) except that no bio-
metric verification is performed, and the observer chooses an auxiliary witness 

 uniformly at random. The auxiliary witness  makes the auxiliary pseudonym 
(step (2)). After successful execution of the protocol, the MUD writes the auxiliary intro pseudonym

 to its composition tape, and the observer writes the corresponding auxiliary witness  to its
composition tape. 

Issue Credential

The MUD chooses three blinders  uniformly at random (step (1)) and computes the values
 and  by taking its observers auxiliary pseudonym into account (step (2)). Afterwards, D blinds

the factor  (step (3)) and prepares the intermediate pseudonym component  (step (4)). Now, D
receives from I a blind signature for the intermediate pseudonym component . D also authenticates
the intermediate pseudonym component  using the extended protocol signBlind in step (5) (see
Section 4.2.2 on p.55). The MUD accepts if the signature returned is valid for both intermediate
pseudonym components  and  (step (6)). Then D defines its intermediate pseudonym  as the

iiiinnnnttttrrrroooo Issuer MUD Observer (Biometer)

(1) Choose Choose 

(2)  ←  ← 

(3)  ← 

(4) Proceed iff 

(5)

(6) Proceed iff 

{  = }

(7)  

(8) Proceed iff .

FIGURE 5–13 Introducing a Pseudonym
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5.5 COIN CREDENTIAL SCHEMES
pair . Finally, D and O update their respective co-witnesses and witnesses, and D writes the
three blinders  to its composition tape (step (8)).

Show Credential

D passes the credential  for the pseudonym  to the verifier in step (1), and V verifies it using the
extended verification of Figure 4–5 on p.56 in step (2). After successful verification, V chooses a chal-
lenge c at random (step (3)) and sends it to D. D looks up the values  from its composition
tape and transforms c into another challenge  according to step (4). Then D forwards the challenge

 to O. O makes sure that this is the first time it helps its host D to show a coin credential by using
witness . Then O responds by looking up the auxiliary witness  from its composition tape and
evaluating two linear polynomials  and  at  according to step (5).
Note that the third components are zero, i.e., . D returns the resulting triple  back
to D. D looks up the auxiliary intro pseudonym  from its composition tape and checks, if the
response  is correct (step (6)). Then D evaluates two linear polynomials  and  at  and  and
adds a proper control value , which depends on the yet unused value  on D’s composition tape
(step (7)). Next, D returns the result t back to V. If V can successfully verify t (step (8)), it sets the
target pseudonym  and credential  and returns the transcript τ consisting of the challenge c and
D’s response  (step (9)).

Extract

On input two different transcripts for the same pseudonym , extract returns a witness w for . ◆

Showing a coin credential according to Figure 5–15 on p.114 differs from showing a personal credential
according to Figure 5–11 on p.96 in a number of ways. However, both protocols have a similar struc-

←

iiiissssssssuuuueeee Issuer MUD Observer

(1) Choose 

(2)  ← 

 ← 

(3)  ←  ← { }

(4)  ← 

(5)

(6) Proceed iff 

(7)  ← 

(8)  ←  ← 

{  = }

FIGURE 5–14 Issuing a Coin Credential
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5 CREDENTIAL SCHEMES
ture. In order to prevent replay, they both provide a proof of knowledge to the verifier that the MUD
and its observer know a witness of the target pseudonym (or one its components). In protocol show of
the PC Mechanism 5.8 on p.92, the MUD and its observer use an extended proof of knowledge accord-
ing to the ECEG(2) Mechanism, while in protocol show of the CC Mechanism 5.10 on p.111 the proof
of knowledge is integrated into the interactive protocol that guarantees the double spender detection.

RRRReeeemmmmaaaarrrrkkkkssss::::     It is worth noting that the CC Mechanism 5.10 on p.111 is secure against holder framing
by computationally unlimited verifiers. If a verifier claims that a coin credential has been spent twice,
although in fact it is spent for the first time, a court would ask the verifier to submit the witness he
has found for the holder’s source pseudonym. A computationally unlimited attacker can come up with
a witness for any given source pseudonym, because he can compute representations of pseudonyms.

sssshhhhoooowwww Verifier MUD Observer
(1)

(2) Proceed iff 

(3)

(4) proceed iff 

 ← 

(5) If  and  not yet used:
 ← 

(6) proceed iff 

(7)  ← 

(8) Proceed iff 

(9)  ← 
 ←  ← 

FIGURE 5–15 Showing a Coin Credential

eeeexxxxttttrrrraaaacccctttt
(1) Let  and  be two different transcripts in the argument set 

 that have originated from two shows for the same target pseudonym. If the argument contains 

no two such transcript, then return  and stop. Otherwise,

(2) return .

FIGURE 5–16 Extracting a Witness
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w extract τ1 τ2 …, ,{ }( )←
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⊥

w w1 w2,( )
s1 c 1–( ) t1 b 1–( )–

s3 c 1–( ) t3 b 1–( )–
-------------------------------------------------

s2 c 1–( ) t2 b 1–( )–

s3 c 1–( ) t3 b 1–( )–
-------------------------------------------------, 

 
 
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5.5 COIN CREDENTIAL SCHEMES
However, since there are  possible witnesses for each pseudonym (l the number of generators),
even a computationally unlimited attacker has only but negligible chance of submitting exactly the
holder’s witness. So the court can detect this kind of attacker by comparing the true witness of the
accused holder with the alleged witness submitted by the attacker (see [34] p.43).

A more efficient approach is obtained by following a remark of Brands [34] Section 11: He has con-
jectured that his original offline e-cash scheme also works with simpler witnesses from  such that
source pseudonyms have witnesses  and intermediate and target pseudonyms have witnesses

. See also the second remark following Security Suggestion 4.6 on p.57. A drawback of
Brands e-cash with such simpler witnesses is that it is only computationally secure against holder
framing by the bank.

Brands has proposed a number of interesting extensions to his scheme, which are worth to men-
tion. It is straightforward to encode different coin values or different currencies into the types of cre-
dentials. Assuming a binary encoding, i.e., different types for powers of 2 (1, 2, 4, …), and coin values
from 1 to 2k, the average value requires k/2 coins. Brands has shown, that the scheme can be extended
so as to require only one single coin for each value between 0 and 2k [34] p42.

Brands has also shown how the CC Mechanism 5.10 on p.111 can be extended to give an issue-wise
unlinkable K-overshow detecting (and preventing) coin scheme. The idea is to split the target pseud-
onym’s witness into  parts and to share these among  instead of two responses during the
show protocol. This can be achieved by using polynomials of degree K (instead of 1) in the verifier’s
challenge c. For more details see Brands [34] p.43.

Security Suggestion 5.2 CC Mechanism

In the random oracle model, the CC Mechanism is a 1-overshow preventing and detecting coin creden-
tial scheme under the following assumptions:

(i) Type unforgeability holds under Security Suggestion 4.6 on p.57 that the Blind Chaum-Peder-
sen(3) Signature Mechanism 4.8 on p.55 is restrictive and further heuristic arguments by Brands in
[34] Proposition 12.

(ii) 1-overshow prevention holds under the intact observer assumption using a perfect biometric recog-
nition characteristic and under the SR-Assumption 3.21 on p.30.

(iii)1-overshow detection holds under the SDL Assumption 3.20 on p.29, the SDH Assumption 3.23 on
p.30 and further heuristic arguments of Brands for his e-cash scheme [34,35].

(iv)Show-wise fail-safe unlinkability holds under some heuristic argument of Brands [34,35]. ◆

Security Considerations  
Mechanism 5.10 on p.111 differs slightly from the original proposal of Brands in two points: the proto-
col intro for introducing new source pseudonyms explicitly and the way how a MUD and its observer
split their joint witness of a source pseudonym into a co-witnesses and a witness. Where Brands pro-
posal uses equal witness and co-witness domains, i.e.,  with vector addition modulo ,
we use the domains and addition of ECEG(3).

ql 1–

¸q
2

w1 0,( )
w1' w2',( )

K 1+ K 1+

W V ¸q
3

= = q
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5 CREDENTIAL SCHEMES
EFFECTIVENESS

Effectiveness condition (1) on p.79 of Definition 5.1 on p.76 can be shown similarly as for the PC
Mechanism 5.8 on p.92 because protocol  differs from protocol  only by not
involving biometric recognition and using an auxiliary witness component  and a corresponding
auxiliary intro pseudonyms component , which are chosen and kept by the observer. 

Effectiveness condition (2) on p.79 of Definition 5.1 on p.76 is immediate from effectiveness of the
Chaum-Pedersen(3) Signature Mechanism because the MUD outputs exactly the pseudonym and sig-
nature that was produced by signBlind. This also guarantees that the verifier proceeds in step (2) of
show. 

Effectiveness condition (3) on p.80 of Definition 5.1 on p.76 is also satisfied: We first verify that
protocol show runs successfully by checking the conditions in step (2), step (6) and step (8). V’s con-
dition in step (2) is satisfied because the credential  has been computed as a Chaum-Pedersen(3)
signature for the target pseudonym  using the signing key  of type t. D’s condition in
step (6) of show is verified as follows:

.

V’s condition in step (8) of show is verified as follows:

=  issue step (4), (5), (3)

=   step (2)

=  simplify

=  show step (4), (7)

=  issue step (8)

=  simplify

=  show step (5)

=  .  show step (7)

The only extra condition to settle is that the co-witness  co-makes the intermediate pseud-
onym  with respect to the intro pseudonym :

.

The optional effectiveness conditions (4) on p.80 and (5) on p.80 do not apply to the CC Mechanism
5.10 on p.111.

TYPE UNFORGEABILITY

Consider an attacker coalition  that has never been issued a type  credential, but
may have verified a number of type  credentials. 

Step A  In order to show a type t credential, the attacker coalition must provide to an honest verifier 

intro CC( ) intro PC( )

w∗
ψ∗

χ''
ψ' ψ' ψ',( )= rkt

make t'( ) make w' c'w∗+( ) make w( ) make c'w∗( )⋅ ψO ψO∗
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⋅= = =
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c

⋅ ϕ
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ω1c⋅

ψ
ω1ψO∗

ω2 g
ω3⋅ ψO∗
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g3
ω1c ω3c–

⋅

ψ
ω1ψO∗

ω2 1 c–( )
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ω3 c ω1 ω3–( )+

⋅

make ω1 ωw u+( )( )make ω'c'w∗( ) g3
ω3 c ω1 ω3–( )+

⋅

make ω'w' u'+( )make ω'c'w∗( ) g3
ω3 c ω1 ω3–( )+

⋅

make ω' w' c'w∗+( ) u'+ 0 0 ω3 c ω1 ω3–( )+, ,( )+( )

make ω't' u'+ 0 0 ω3 c ω1 ω3–( )+, ,( )+( )

make t( ) p(mod  )

ω' u',( )
ψ' ψO

make' ψO ω' u',( ),( ) make' ψO ωω1 uω1,( ),( ) make' ψO ω u,( ),( )( )
ω1 ϕ

ω1 ψ'= = = =

D̃ Õ1 … ÕL Ṽ, , , , t
t
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5.5 COIN CREDENTIAL SCHEMES
(i) a target pseudonym , and a Chaum-Pedersen(3) signature  valid for  with respect to 
after step (1) of show in Figure 5–15 on p.114 and 

(ii) and a valid witness t of  in step (4) through step (8) of show in Figure 5–15 on p.114.

Since the attacker coalition is presumed to have not been issued a type t credential in the past and to
have no access to an honest observer that has been used to get a type t credential issued in the past,
the attacker coalition can achieve (i) and (ii) above either by 

(B) choosing a target pseudonym  such that it knows a witness for it in order to succeed in (ii) and
forging a Chaum-Pedersen(3) signature for  in order to succeed in (i), or 

(C) replaying a target pseudonym  and a valid signature  in order to succeed in (i) and somehow
try to succeed (ii) afterwards.

We consider each alternative in turn:

Step B  The attacker coalition aims to construct the target pseudonym  such that it
knows witnesses for both  and , each with respect to generators , and to construct a
valid Chaum-Pedersen(3) signature for  with respect to . Since the generators 
and  are all chosen uniformly at random and independently of each other, Brands [34] Proposition
12, 2. applies, saying that there really is no way for a computational attacker (even if he had access to
the honest signer) to construct a signature for a message , while the attacker knows a
witness of  with respect to .

Step C  The attacker coalition has only a negligible chance of convincing an honest verifier that it
knows a witness of the target pseudonym  that has been captured and replayed from an
honest MUD with an honest observer. Assume to the contrary that the attacker has sent the target
pseudonym  to the verifier in step (1) of Figure 5–15 on p.114 and afterwards were capa-
ble to respond convincing witnesses  and  for two respective chal-
lenges , , which satisfy the condition in step (8), i.e.

and . (5.22)

Take the first equation to the power of , the second equation to the power of  and consider
the product of the resulting equations:

.

We take the -th root of this equation and use the homomorphic properties of function make
according to Lemma 4.1 on p.44 to find a witness of the intermediate pseudonym component :

.

Obviously, the witness  is well-defined and can be computed by an
attacker in polynomial time. This contradicts the Subgroup Representation Assumption 3.21 on p.30.

φ χ'' φ pkt

φ

φ
φ
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φ ψ' ψ',( )=
ψ' ψ' g1 g2 g3, ,
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rkt= g1 g2 g3, ,

g
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ψ' g1 g2 g3, ,
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5 CREDENTIAL SCHEMES
1-OVERSHOW PREVENTION

Brands has shown in [35] Proposition 16 that, under the intact observer assumption, an attacking
MUD  can show a coin only by asking its observer to use its respective witness shares  in
step (5) of Figure 5–15 on p.114. Could  come up with  itself, it had found a representation
of  in intro (Figure 5–13 on p.112), which contradicts the SR-Assumption 3.21 on p.30. The honest
observer hosted by  therefore prevents  from showing any coin more than once by refusing to use
any of its witness shares in more than one execution of show (see the condition “  not yet used” in
step (5) of Figure 5–15 on p.114). 

1-OVERSHOW DETECTION

Brands has shown in [35] Proposition 18 that, under the broken observer assumption, an attacking
MUD  will be identified by its co-witness  and the witness w of its observer if it shows any of
its coin credentials more than once. The same arguments carry over to the CC Mechanism 5.10 on
p.111 above because it differs from Brands original proposal only in the way how the witness of a
source or target pseudonym is split up between the MUD and its observer. Under the broken observer
assumption, however, a MUD and its observer are essentially one participant, such that the MUD
knows the complete witnesses of all its source and target pseudonyms anyway, which leaves the partic-
ular splitting into witnesses and co-witnesses irrelevant.

SHOW-WISE FAIL-SAFE UNLINKABILITY

Brands has argued in [35] that his e-cash mechanism is 1-show-wise fail-safe unlinkable (in our termi-
nology). We show the same property holds for the CC Mechanism 5.10 on p.111. Since the CC Mech-
anism 5.10 on p.111 uses essentially different witnesses for target pseudonyms than for source
pseudonyms, it is not possible to re-use target pseudonyms as source pseudonyms and therefore, only
protocol  is defined according to Definition 5.6 on p.87, whereas protocol  is not. Since
each coin is to be shown only once, we need to consider protocol  only.

We show that the honest MUD in  blocks any in-band inflow to the observer and any in-
band outflow from the observer. Consider  participants of protocol  (see Section 5.3.4 on
p.84), namely an attacking issuer  of type t credentials, an honest MUD D,  attacking observers

 and one attacking credential verifiers . Consider 2 successful executions  of ,
where each execution  ( ) is run by , D,  and . Now consider the resulting views11

of all attacking participants on the honest MUD D according to Table 5-5 on p.87 of Definition 5.6 on
p.87.

The issuer participates in execution  of  during intro and issue. Thus the issuer’s view
 contains an output of signBlind (step (5) of intro), a verifier’s view of proveExt (step (7) of

intro) and the signer’s view of signBlind (step (5) of issue). This is summarized in the first two rows
of the following Table 5-11 on p.119. The views of attackers  and  are listed in the following
rows. The last column lists all internal choices of the MUD in respective member protocols of .

11) Of the views of ,  and  on D we are only interested in the messages exchanged with D, not in the internal choices
of  and  (see Definition 3.11 on p.21). So in order to relax the view notation, we do not display the internal choices of

,  and  in the remaining argument.
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Ĩ 2
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5.5 COIN CREDENTIAL SCHEMES
“≤ 1”: We show that any such 3-tuple of valid views  originating from 2 exe-
cutions of  according to Definition 5.6 on p.87 matches with at most one value of the internal
choice of the MUD in , which is detailed in the last column of Table 5-11 on p.119.

(i) The issuer’s and the observer’s views in intro together determine the MUD’s co-witness  up
to q possible values as follows:  (from step (5)) and  (from
step (2)). They also determine a unique internal choice of the MUD in member protocol signBlind
(step (5)), and, for each possible co-witness , they determine a unique internal choice of the
MUD in member protocol proveExt (step (7)). This follows from blindness of signBlind (Security
Suggestion 4.6 on p.57) and from co-unlinkability of proveExt (Security Suggestion 4.4 on p.48),
respectively.

(ii) For each possible co-witness , the issuer’s view in issue and the verifier’s view in show
uniquely determine the internal choices  of the MUD in step (1) of issue as
follows: 

•  is determined uniquely according to protocol issue step (5) by the issuer’s view
of issue. For each possible co-witness  of the source pseudonym ,  determines the
MUD’s co-witness  of the intermediate pseudonym 
according to protocol issue step (8).

• The value  ( ) is determined uniquely according to protocol show step (4)
by the views of the verifier and the observer in protocol show.

• The value  is determined uniquely according to protocol
show step (7) by the views of verifier and observer in protocol show. 

(iii)Finally, the component  of the MUD’s co-witness  of the intermediate pseudonym
 is uniquely determined as  according to protocol show step (7). This deter-

mines the component  of the MUD’s co-witness

Attacker
member prot. 

of 
Attacker’s view (including 
shared inputs) contains Internal Choice of MUD

issuer 

( )

intro 
(Figure 5–13)

observer’s native verifying key ,
output  of signBlind (step (5)),
verifier’s view of proveExt (step (7))

(see below under intro for observers)

issue 
(Figure 5–14) signer’s view in signBlind (step (5)) (see below under issue for observers)

observer 

( )

intro 
(Figure 5–13)

 (step (2) and (3)), 
signer’s view of signBlind (step (5)),
prover’s view of proveExt (step (7))

in signBlind (step (5))
in proveExt (step (7))

issue 
(Figure 5–14) —

in signBlind (step (5))

show 
(Figure 5–15)

 (step (4) 
 (step (8))

none

verifier 

( )
show 

(Figure 5–15)

verifying key ,
 (step (1)), 

 (step (3)) and  (step (7))
(see above under show for observers)
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5 CREDENTIAL SCHEMES
  of the source pseudonym  according to protocol issue step (8). If this value  is
such that  (see step (2) of issue), then we have determined exactly one choice of
the MUD, otherwise none.

“≥ 1”: We are left to show that in fact:  according to (iii) above.
We start by expanding the components  of u. For  we find:

 = rewrite  (issue step (8))

= rewrite  (show step (7))

=  rewrite  (issue step (8))

= rewrite  (show step (5)) (5.23)

We follow a heuristic argument of Brands [34] that the observer must have chosen  and  in
protocol show step (5) such that they are respective witnesses of  and . Otherwise, the
honest MUD D would not be convinced in protocol show step (8), therefore would abort the pro-
tocol, and thus produce an invalid observer’s view. We continue rewriting (5.23):

= rewrite  (show step (4)) 

= . rewrite  again (5.24)

Next, we rewrite the expression :

 = according to show step (8)

 = 

= 

= .  simplify. (5.25)

Finally, we evaluate the expression :

 = use result (5.24) on p.120

 = Lemma 4.1 on p.44

= 

=  simplify
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5.6 BOND CREDENTIAL SCHEMES
= cancel out 

= . intro step (5)

5.6 Bond Credential Schemes

Bond credential schemes can be defined as credential schemes that combine the holder authorization
rules of personal and coin credential schemes. 

5.6.1 Definition

Definition 5.11 Bond Credential Scheme

A bond credential scheme with credential types T is a type-unforgeable, transfer preventing, K-over-
show preventing or K-overshow detecting and show-wise unlinkable credential scheme with credential
types T and recognition characteristic . ◆

5.6.2 Cryptographic Mechanism

A 1-overshow preventing bond credential scheme is easily constructed by modifying the CC Mecha-
nism 5.10 on p.111 slightly. Just insert the biometric recognition operations of the PC Mechanism into
the observer’s part of the protocols intro and show. 

5.7 Conjunctions of Personal and Coin Credentials

Real life is full of examples where individuals need to show 2 or more different types of legitimations in
order to obtain another legitimation. For example, to get on an international flight one must present
an air ticket and an ID document. Such AND combinations of different credentials are easily imple-
mented if holders can be asked to present their MUDs physically at the verifier’s site. The verifier uses
physical and organizational means to ensure he is shown credentials by the same MUD and observer.

However, if a holder wants to combine 2 or more of her credentials remotely, the verifier needs to
verify each credential separately, and he must be convinced that the credentials are shown by the
same holder. The latter can be achieved for personal credentials and overshow preventing coin creden-
tials by showing them for the same target pseudonym. This convinces a verifier because personal cre-
dentials and transfer preventing coin credential mechanisms both require an observer and this
observer keeps the witness of an intro pseudonym that is required to show either type of credential.

In order to prepare certain applications in Section 8 on p.145, we only consider how to show the
particular credentials of the PC Mechanism and of the CC Mechanism for equal target pseudonyms.
We first observe that the PC Mechanism 5.8 on p.92 and the CC Mechanism 5.10 on p.111 observe the
same domain families for their source pseudonyms, which are both represented with respect to two
generators  and , respectively. In contrast, the domain families of target
pseudonyms of the CC Mechanism are pairs , where each component is represented with respect
to three generators. CC target pseudonyms are more complex than PC target pseudonyms in order to
achieve the capability of double spending detection. Since both components of a CC target pseudonym

ψψO
ω–

ψO∗
ω2 ω1⁄( ) 1 c–( )–

ψD
ω

FAR FRR,( ) 1 0,( )=

g1
PC( ) g2

PC( ), g1
CC( ) g2
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5 CREDENTIAL SCHEMES
can be verified to belong together (see the verifying operation of Mechanism 5.10 on p.111), it suffices
to consider a modified PC Mechanism 

• with target pseudonyms taken from the same domains as either component of a CC target pseud-
onym and 

• that allows to represent its target pseudonyms with respect to 3 generators. 

The price of this approach is that there is no obvious way to re-use these target pseudonyms as source
pseudonyms of either the PC Mechanism or the CC Mechanism, but we will not need that feature in
the following.

Next, we show how to modify the PC Mechanism such that the protocol  (Figure 5–12 on
p.97) allows to show PC credentials for the leading component  of a CC target pseudonym 
introduced implicitly via a previous execution of protocol  (Figure 5–15 on p.114). The lead-
ing component  can be represented by the MUD D with respect to the intro pseudonym  and
three generators  as follows:

. (5.26)

The modified PC Mechanism is set up by sharing the three generators  and the respective
discrete log setting with the CC Mechanism, instead of using two independent generators

 of an independent discrete log setting. In addition, the following modifications are made
to Definition 5.7 on p.90:

• The Chaum-Pedersen(3) Signature Mechanism is used in place of the Chaum-Pedersen(2) Signa-
ture Mechanism.

• The ECEG(3) Mechanism is used in place of the ECEG(2) Mechanism.

The MUD D in protocol  in Figure 5–12 on p.97 takes the input co-witness
 for a given CC target pseudonym  such that 

  . (5.27)

Accordingly, the proof of knowledge (proveWitRel) in step (3) of  is taken from Brands(4)
(see Mechanism 4.5 on p.46) and uses the 4 generators . The extended proof of knowl-
edge (proveExt) in step (7) of  is taken from ECEG(3) (see Mechanism 4.6 on p.47) and uses
the 3 generators .
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g1
PC( ) g2

PC( ),

show∗
v'' ωω1 ω1u1 ω1u2 ω1, , ,( )= φ φ,( )

φ ψO
ωω1g1

ω1u1g2
ω1u2g3

ω1 g1
ω1 u1 ωw1+( )

g2
ω1 u2 ωw2+( )

g3
ω1== p(mod  )

show∗
ψO g1 g2 g3, , ,

show∗
g1 g2 g3, ,
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6

Group Signature Schemes
n this section, a modular refinement of blind signature schemes (Section 4 on p.33) is provided and
thereby a modular refinement of all credential schemes of Section 5 on p.59 is prepared. A group

oriented signature scheme or group signatures scheme allows each member of a group to sign messages
in behalf of the group without revealing one’s identity. However, in case of a dispute later on, the
manager or center of the group has enough evidence to identify and prove who has produced the dis-
puted signature.

Our program is as follows. In Section 6.1 on p.123, we review the existing work on group oriented
signatures. In Section 6.2 on p.125, the new achievements are summarized. In Section 6.3 on p.126 for-
mal definitions are given for blind group signature schemes. In Section 6.4 on p.129 a practical blind
group signature mechanism is presented.

6.1 Overview of Existing Literature

Since Boyd [33] presented a first paper on the subject in 1986, group-oriented digital signing has
attracted increasing interest. We distinguish two basic classes of group-oriented signatures, tabulate
their important requirements and give a short overview of the existing literature.

6.1.1 Options and Features

Threshold Signatures  allow signers to form signing groups and sign in co-operation, so as to
enforce some dual control over what can be signed. The special case where all signers of a group must
co-operate was first introduced by Boyd [33] as multisignatures. 

Group Signatures  allow signers to stay anonymous within an anonymizing group of potential sign-
ers. An additional option is if, in case of disputes, the signer can later be re-identified, and if so,
whether re-identification requires interaction with the signer or not. An important security require-
ment arising for re-identifiable group signatures is unframeability, i.e., security of group members
against being falsely accused of having signed a message. Typical degrees of unframeability are compu-
tational, i.e., it is hard to compute a signature for which a non-signer is held responsible, and uncondi-

I
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6 GROUP SIGNATURE SCHEMES
tional, i.e., up to a negligible probability of guessing, it is impossible even for a computationally
unlimited attacker to produce a signature for which a non-signer is held responsible.

The security requirements specific to threshold and group signatures are as follows: 

Anonymity of Signer(s)  can be either computational or unconditional depending on whether sign-
ers remain anonymous against polynomial-time attackers or even against computationally unlimited
attackers (possibly with a small error probability). In the following, we focus on computational signer
anonymity, which appears to have efficient implementations and is thus more relevant in practice as
long as certain complexity theoretic assumptions hold. In threshold signature schemes, it is an option
to keep the actual subset of signers anonymous to the verifiers. In group signature schemes the signers
are kept anonymous to the verifiers by definition. 

Management of Group of Signers  
Centralized/Decentralized: A group signature scheme is called centralized, if joining, revoking

and—if available—re-identifying group members, i.e., group management, is done by some group cen-
ter, which registers each group member in advance. If no group managing center exists, the group sig-
nature scheme is called decentralized. 

Static/Dynamic: A group signature scheme is called static if the public group key, which is needed
in order to verify signatures of any member of the group, needs to be rebuilt every time a new member
joins the group or a former member leaves the group. Otherwise, a group signature scheme is called
dynamic.

Granularity of Access Structure: The set of authorized signing groups can be specified for example
by group size, or by enumeration of all members of all signing groups1.

6.1.2 Existing Work

Threshold-signatures were first proposed by Boyd and were further developed by Desmedt and
Frankel [91,111], Croft and Harris [81] and by Ohta, Okamoto [170,171]. There seems to be growing
consensus to call this class “threshold signatures”. For example, see Desmedt’s overview [90]. More
work on combinations of threshold and anonymity requirements is found in the work of Cramer,
Damgård and Schoenmakers [79]. 

The concept and the first four constructions of static group signatures are due to Chaum and van
Heijst [70]. Three of those constructions give computational anonymity and the fourth gives uncondi-
tional anonymity to the signer. Decentralized group management is not considered in their paper.
Chen and Pedersen [77] proposed two static group signature schemes with centralized or decentralized
group management; one with computational, the other with unconditional anonymity and both with
computational unframeability. In their constructions, the group center can be replaced by a threshold
primitive so that any k out of n members of the signer’s group can identify a signer. Their basic idea
to achieve re-identification is to have the signer choose two private keys, one of which she keeps by
herself, whereas the other is submitted to her group center. Group members then sign messages by
producing two signatures, one with respect to each of their two private keys. If some part of the signa-

1) This is actually a generalization of threshold signature schemes.
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6.2 NEW ACHIEVEMENTS
ture is deterministic, then the group center, who holds one private key of each signer, can later re-sign
messages of any disputed signature with the submitted private keys of each group member and see
which one fits (the deterministic component of) the disputed signature. For obvious reasons, this tech-
nique is called double signing.

Camenisch later proposed a group signature with centralized or decentralized group management,
computational anonymity and unconditional unframeability [47]. Recently, Camenisch and Stadler
[51] have proposed the first practical dynamic group signature scheme with public group keys and sig-
natures of constant size (relative to the group size). A blind version for their scheme was presented by
Lysyanskaya and Ramzan in [149] and another by Nguyen, Mu and Varadharajan [167]. Ateniese and
Tsudik [6,7] have proposed two group signature schemes of similar efficiency, but Traoré [223] has
shown that both of them are vulnerable to attacker coalitions who produce group signatures for which
no-one in the coalition is held responsible. Traoré [223] himself has proposed an even more efficient
group signature scheme, which is based on different but more ad-hoc complexity-theoretic assump-
tions. Apparently, there is room left for new group signature schemes with better trade-offs between
(provable) security and efficiency.

6.2 New Achievements

A formal definition of blind group signatures with static group management is given. A blind group
signature mechanism is presented that is based on a group signature scheme by Chen and Pedersen
([77] Section 4) and follows Bleumer [21]. The new mechanism is as efficient as the original by Chen
and Pedersen in terms of signer effort and communication. The basic idea of Chen and Pedersen to
make signers identifiable is to require two signatures for each message with respect to different keys
(double signing). This leads to a protocol where almost all operations are executed twice on different
data. We carry out this “double signing” by only one execution of the original protocol instead of two.
This improvement also applies to the blind group signature mechanism to be presented.

The original CPGS Mechanism ([77] Section 4) uses public group keys and signatures of size linear
in the size of the anonymizing group. Likewise, the computation effort is linear in the size of the anon-
ymizing group. In contrast, the group signature scheme by Camenisch and Stadler [51] uses public
keys and signatures of significant but constant size (relative to the size of the anonymizing group).
The break even point between CPGS and Camenisch-Stadler, below which CPGS is more efficient, is
an anonymizing group size of about 100 members. It is about 200 members for the improved CPGS
version. This appears to be sufficient for many practical purposes.

The CPGS Mechanism allows only static group management, i.e., every time a member joins or
leaves the group, the public (and private) group key needs to be updated. Another promising approach
is the blind group signature mechanism with dynamic group management proposed by Lysyanskaya
and Ramzan in [149], which is based on work of Camenisch, Stadler [51]. Moreover, the length of their
public keys and signatures is independent of the group size. However, its security rests on more non-
standard complexity theoretic assumptions than the one given here and it has not been analyzed with
respect to one-timeness and restrictiveness yet. 
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6 GROUP SIGNATURE SCHEMES
6.3 Blind Static Group Signature Schemes

In order to refine blind signature schemes into blind static group signature schemes, we basically split
the key generating operation and add an operation by which signers can be identified. Key generation
is split into an operation that generates individual keys of a group member and one that takes individ-
ual keys and generates the group keys. The former is used by group members, whereas the latter is
used by group centers. In case a group signature is disputed, the group center can identify the origina-
tor by the operation identify. The splitting of key generation serves the sole purpose of explicitly dis-
tinguishing between attacking group members and attacking group centers. The definition abstracts
from the problem of updating group keys when new members join the group or previous members
leave it. More work is needed to take these practically important features into account.

The presence of an operation identify introduces two new threats, namely framing by attacking
group centers and truly anonymous signatures of attacking group members. Framing is the false accu-
sation by a collusion of attacking group members and the group center that another group member
has produced a certain signature. Truly anonymous signatures occur if one or more group members
manufacture a signature for which none of them is later identified. The case where another group
member is identified falls under framing, but it can also happen that no group member at all is identi-
fied.

Definition 6.1 Blind Static Group Signature Schemes

A one-time restrictive blind group signature scheme of group size n is a one-time restrictive blind sig-
nature scheme (Definition 4.7 on p.53) with the following additions.

DOMAINS:

In addition to the domain families set out in Definition 4.7 on p.53, a one-time restrictive blind static
group signature scheme has the following 2 additional domain families  whose respective mem-
bers are: 

• The public individual key domains  and

• the private group key domains .

The private keys of a (blind) static group signature scheme are those generated and held by individual
group members, while the public keys are those by which anyone can verify all signatures of all signers
of a particular group. Public keys will be referred to more specifically as public group keys.
In order to ease notation, we do not display the domain index prek in the following.

OPERATIONS:

In addition to the operations set out in Definition 4.7 on p.53, a one-time restrictive blind group signa-
ture scheme has a set {genIKey, genGKey, identify, verifyId} of 4 additional operations satisfying 4
additional requirements: group effectiveness, signer anonymity, unframeability and coalition resis-
tance.

To enhance readability, we call the signing operation of a group signature scheme gSignBlind
instead of signBlind.

PI RG,

PIprek
RGprek
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6.3 BLIND STATIC GROUP SIGNATURE SCHEMES
Generate Individual Keys

 , where 

A probabilistic operation that takes a prekey  and returns a pair  of a private individ-
ual key and a corresponding public individual key, respectively.

Generate Group Keys

A probabilistic operation that takes a prekey prek and an n-tuple of public individual keys
, and outputs a pair  of a private group key rg and a public

group key pk, which we also call the public key (of the group of individuals who have contributed their
public individual keys to genGKey).

The operation genKey of a one-time restrictive blind signature scheme is then defined as follows:

, where and 

 and for : .

Identify

A deterministic operation that takes a pair  of a private group key and a public
key, a message  and a signature . The result is a public individual key  or it is
undefined, denoted .

Verify Identity

A deterministic operation that takes a public individual and a public key , a mes-
sage , an optional message  and a signature  and returns a Boolean result. If
the result is TRUE then we say that the group member with public individual key pi is held responsi-
ble for group signature σ (on message m).

In addition to effectiveness, one-timeness, restrictiveness and blindness according to Definition 4.7 on
p.53, a static blind one-time restrictive group signature scheme satisfies the following additional
requirements.

GROUP EFFECTIVENESS

(i) If Alice is registered by her public individual key  and later produces a signature σ for message
m, then she will be identified by  as the originator of m.

More precisely: Let  be a prekey,  be
Alice’s individual key pair, i some index in the range ,  be arbitrary individual
keys for , and  be the
corresponding group key pair. If Alice produces a signature for message(s)  while
Bob uses some blinder :

,

and if the signature is later disputed, then Alice is identified as the signer of :

rki pii,( ) genIKey prek( )← i 1 n,[ ]∈

prek rki pii,( )

rg pk,( ) genGKey prek pi1 … pin, ,( ),( )←

pi1 … pin, , PI∈ rg pk,( ) RG PK×=

rk pk,( ) genKey prek( )← rk rk1 … rkn, ,( )=

rg pk,( ) genGKey prek pi1 … pin, ,( ),( )← i 1…n= rki pii,( ) genIKey prek( )←

pi identify rg pk,( ) m σ, ,( )←

rg pk,( ) RG PK×∈
m M∈ σ Σ∈ pi PI∈

⊥

accept verifyId pi pk,( ) m m∗{ } σ, , ,( )←

pi pk,( ) PI PK×∈
m M∈ m∗ M∈ σ Σ∈

pii
pii

prek genPrekey k( )[ ]∈ rki pii,( ) genKey prek( )[ ]∈
1 n,[ ] pij PI∈

j 1 … i 1– i 1+ … n, , , , ,= rg pk,( ) genGKey prek pi1 … pin, ,( ),( )[ ]←
m m∗{ }, M∈

ω Ω∈

m' σ',[ ]B gSignBlind pk m,[ ] rki[ ]A m∗{ } ω,[ ]B
, ,( )←

m m∗{ },
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6 GROUP SIGNATURE SCHEMES
and .

SIGNER ANONYMITY (COMPUTATIONAL)

The following definition roughly follows ideas of Chen and Pedersen [77] Section 5. 
For all , all probabilistic polynomial-time Turing machines  and each positive constant

, all sufficiently large k, the probability of the following event is . After choosing a
prekey  and n individual key pairs  for

, and a corresponding group key pair , the
attacker  takes as input the values  and the public (group) key pk, and repeats the fol-
lowing two steps a number of times that is bounded above by a polynomial in k:

(i)  chooses a message , an optional second message , a group member index ,
and requests a group signature for  from group member .

(ii) Group member  engages in protocol gSignBlind with the attacker  on respective inputs:
. Since  is considered an active attacker

in this protocol, his private input and output is at his own discretion.

Finally,  is given a pair or triple  that is chosen uniformly at random from the set of
all pairs or triples that are valid with respect to the public group key . The attacker outputs a
group member index  such that

.

Remarks:  The above definition of anonymity allows the attacker to take on the role of Bob in the
blind signature protocol gSignBlind and execute it with different signers Alice of his choice. Obvi-
ously, if in each execution the participant Bob were honest and the attacker would only get to see the
blinded signatures from respective honest Bob after each execution, then he would have no better
probability of success than . Otherwise, the attacker in the definition could simply use hon-
est Bob’s in order to increase his probability of success beyond the limit of .

UNFRAMEABILITY

A polynomial-time attacker who knows the public individual keys of all group members and the pri-
vate individual keys of all members but Alice cannot produce a signature for which Alice is held
responsible.

Let  be a prekey,  be Alice’s pair of a pri-
vate key and a public individual key. The polynomial-time attacker takes Alice’s public individual key

 and then computes some public key . After obtaining a polynomial size set  of mes-
sages (or pairs of messages and optional messages) and corresponding signatures from executions of
gSignBlind with honest Alice using her private key , the attacker has only a negligible chance of
producing a signature  for a new message (or pair of message and optional message)

 for which Alice is held responsible, i.e., 

.

pii identify rg pk,( ) m σ, ,( )← verifyId pii pk,( ) m m∗{ } σ, , ,( ) TRUE=

n Ñ∈ B̃
c 0> 1

n--- c k–
+<

prek genPrekey k( )← rki pii,( ) genIKey prek( )←
i 1 n,[ ]∈ rg pk,( ) genGKey prek pi1 … pin, ,( ),( )←

B̃ n k prek, ,

B̃ mj M∈ mj∗ M∈ ij
m m∗{ },( ) Aij

Aij B̃
• •,[ ]B̃ gSignBlind pk mj,[ ] rkij[ ]A •{ } •,[ ]B̃, ,( )← B̃

B̃ m m∗{ } σ, ,( )
pk

i

verifyId pii pk,( ) m m∗{ } σ, , ,( ) TRUE=

1 n⁄ c k–
+

1 n⁄ c k–
+

prek genPrekey k( )[ ]∈ rki pii,( ) genIKey prek( )←

pii pk PK∈ M0

rki
σ

m m∗{ },( ) M0∉

verifyId pii pk,( ) m m∗{ } σ, , ,( ) TRUE=
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6.4 CRYPTOGRAPHIC MECHANISM
COALITION RESISTANCE

Any (polynomial-size) coalition of polynomial-time attackers cannot produce signatures for which not
at least one of them is held responsible.

Let  be a prekey,  be an anonymizing group size, and  be
the size of an attacker coalition. The attacker coalition submits any l public individual keys 
for . The remaining individual keys for  are chosen by honest group members,
and the private group key and public key are computed accordingly: 

. The attacker coalition then has only a negligible chance of pro-
ducing a message  and a signature  valid for m with respect to pk such that the attacker coalition
is not held responsible for m, i.e., 

and

for all : . ◆

RRRReeeemmmmaaaarrrrkkkkssss::::     In practice, the generation of private group keys and public keys can be done by a trusted
group center or by a multi-party computation of the group members. In order to prevent framing,
group members need to sign their public individual keys when they submit them. In case the group
center identifies a group member later on, it can prove so only by providing the individual key of the
identified member, the signature for this individual key, the public key of the group, the message and
the signature that has lead to identification.

The above definition could be generalized from 1-out-of-n group blind signature schemes to (t-out-
of-n) group blind signature schemes. These schemes assure that at least t-out-of-n members of a group
have co-operated in order to produce a signature. In this case, signing is a (t+1)-party operation. More
work on combinations of threshold and anonymity requirements was done by Cramer, Damgård and
Schoenmakers [79].

6.4 Cryptographic Mechanism

We motivate the following construction by revisiting an interactive proof-of-knowledge protocol by
Berry Schoenmakers that allows to prove knowledge of one-out-of-n witnesses without revealing which
[210]. Consider  a discrete log setting, g a generator of . The candidate is an n tuple

 of values in  and the corresponding witnesses are . Schoenmakers’
protocol allows a prover who knows at least one of the witnesses  to prove exactly that, but not
which , the prover knows. See Figure 6–1 on p.130. It has been proven by Schoenmakers et al in
[210,79] that this establishes a witness indistinguishable proof of knowledge of  satisfying

 for some . The key design idea is as follows: After the prover has sent his
 components in step (2), he must provide matching components  for all j, i.e., components that

satisfy the verifier’s condition in step (6). Since only the sum of all ’s is fixed by the random chal-
lenge c (step (6)), he may choose the ’s for all but one j before he gets to know the challenge c in
step (3). By choosing  in advance, it is possible to form  in such a way (step (2)) that the prover
need not know  in order to find a matching  (step (5)).

prek genPrekey k( )[ ]∈ n Ñ∈ l 0 n,[ ]∈
pij PI∈

j 1…l= j l 1…n+=
rg pk,( ) ∈

genGKey prek pi1 … pin, ,{ },( )[ ]
m σ

identify rg pk,( ) m σ, ,( ) pi1 … pil, ,{ }∉

j 1 l,[ ]∈ verifyId pij pk,( ) m m∗{ } σ, , ,( ) FALSE=

¸p Gq,( ) Gq
h1 h2 … hn, , ,( ) Gq xi logghi=

xi
xi

xi
hi g

xi pmod= i 1 n,[ ]∈
aj rj

dj
dj

dj aj
xj rj
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6 GROUP SIGNATURE SCHEMES
Chen and Pedersen [77] have proposed a group signature protocol based on Schoenmakers’ proto-
col above. They require signers to sign each message twice with two different private signing keys. one
is kept private and guarantees unforgeability, the other is disclosed to the group center such that the
group center can later identify the originator of any given group signature. The following mechanism
turns the group signature protocol of Chen and Pedersen into a blind one. The techniques are similar
to those used for the Blind Chaum-Pedersen(l) Signature Mechanism 4.8 on p.55.

Mechanism 6.2 Blind Chen-Pedersen Group Signature(l,n) Mechanism (Blind 
CPGS(l,n))

The parameter l determines the number of generators with respect to which witnesses represent mes-
sages, and the parameter n determines the size of the group to be managed.

Generate Prekey

Pick a discrete log setting  uniformly at random from  (Definition 3.17 (Discrete Log
Framework and Settings)). Then pick  generators  of  (Observation 3.18 (Gener-
ators in Discrete Log Settings)). Furthermore,  is a hash function that returns
elements of .

DOMAINS

• The domains of private keys and public individual keys are  and
, respectively.

• The domains of private group keys and public (group) keys are , and
, respectively. 

• The message and signature domains are

Prover Verifier

(1) Choose  for , 

and  for 

(2)  ← 

(3) Choose 

(4)  ← 

(5)  ← 

(6) accept iff  and 

for all j: 

FIGURE 6–1 Proving Knowledge of one-out-of-n Witnesses

accept[ ]V prove h1 h2 … hn, , ,[ ] xi[ ]P,( )←

tj ¸q∈R j 1 n,[ ]∈

dj ¸q∗∈R j i≠

aj
g
tj pmod for j i=

g
tjhj

d– j pmod for j i≠

 a

c c ¸q∈R

di c djj i≠
∑– qmod

rj
djxj tj+ qmod for j i=

tj for j i≠

 d r,

dj∑ c= q(mod  )

g
rj hj

djaj= p(mod  )

p q g g1 … gl hash, , , , , ,( ) genPrekey k( )←

¸p Gq, dlsk
l 1+ g g1 … gl, , , Gq

hash 0 1,{ }∗ ¸q∗→:
¸q∗

RKprek ¸q
2

=
PIprek Gq ¸q×=

RGprek ¸q
n

=
PKprek Gq

n
=
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6.4 CRYPTOGRAPHIC MECHANISM
 and , 

i.e., 5-tuples whose first component is in  and the other 4 components are n-dimensional vec-
tors with components in , ,  and , respectively. For example, we denote a message

 and a signature as . 

• The blinder domains are , and the witness domains are , each
equal to those of the Blind Chaum-Pedersen(l) Signature Mechanism 4.8 on p.55. Likewise, the
making functions are as defined in equation (4.10) on p.56, i.e.,

.

• The witness equivalence relations are defined as in equation (4.11) on p.56, i.e.,

.

OPERATIONS

Generate Individual Keys

Each group member  generates a private individual key  uniformly
at random. Only someone who has both private key components, can later produce a valid group sig-
nature. A group member Alice keeps the first component  private such that no other group mem-
ber, nor the group center nor any outsider can fabricate group signatures for which Alice will be held
responsible. The second component  will be released to the group center, so that the group center
can later identify the group member for any given group signature. Each group member computes its
public individual key  and sends it to the group center to get
registered.

Generate Group Keys

.

The private group key is the n-tuple . The public (group) key
is the n-tuple , where

for  .

The group center publishes the public group key and the index  of each group member.
When group member Bob receives the public group key and its group index i, Bob verifies if the public
group key component  matches the individual public key that Bob has submitted to the group cen-
ter in the first place. Otherwise, the group key generation must be repeated. In practice, the group
center will also certify the published group key and the indices of all group members. These are stan-
dardized techniques and will not be considered in the following.

Mprek Gq= Σprek Gq
2 Gq

2n Gq
2n× ¸q

n ¸q
2n×××=

Gq
2

Gq
2 Gq

2 ¸q ¸q
2

m σ z a b d r, , , ,( )=

Ω ¸q∗= W ¸q
l 0 … 0, ,( ){ }\=

make w( ) gi
wi

i 1=

l
∏ p(mod  )= M∈

v w≡( ) λ µ, 1 l,[ ]∈∀ vλwµ vµwλ= q(mod  ):( )⇔

rki pi,( ) genIKey p q g hash, , ,( )←

i 1 n,[ ]∈ rki xi1 xi2,( ) ¸q
2∈=

xi1

xi2

pii pii1 pii2,( ) g
xi1 pmod xi2,( )= =

rg pk,( ) genGKey p q g hash, , ,( ) pi1 … pin, ,( ),( )←

rg pi12 … pin2, ,( ) x12 … xn2, ,( )= =
pk pk1 … pkn, ,( )=

pki pki1 pki2,( ) pii1 g
xi2 pmod,( ) g

xi1 pmod g
xi2 pmod,( )= = = i 1…n=

i 1…n=

pki
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gSignBlind 

Alice takes as input her private key . Basically, Alice executes two Chen-Pedersen
signing protocols in parallel, one using  as her private signing key, the other using . The values

 corresponding to the former, whereas  corresponding to the latter.
Observe that both member protocols take the same challenge c from Bob in step (7), so the values

 are shared by both sub-protocols. Bob makes internal random choices in step (1) in
order to blind Alice’s messages  obtained in step (3). He then takes the hash value of the
blinded results  (step (6)), and prepares his challenge in step (7). After step (9) Bob
checks if Alice has produced a valid signature for m with respect to pk (see predicate verify below),
where the challenge c in the verification equation is the one computed in step (7). In step (10) and

gSignBlind Alice Bob

(1) Choose  for , Choose ,  for 

and  for 

(2)  ← 

(3)  ← 

 ← 

(4)  ← 

(5)  ←  for 

 ← 

(6)  ← 

(7)  ← 

(8)  ← 

(9)  ← 

(10)  ←  for all j
(11)  ← 

 ← 

FIGURE 6–2 Producing a Chen-Pedersen Group Signature

m' σ',[ ]B gSignBlind pk m,[ ] rki[ ]A m∗{ } ω,[ ]B
, ,( )←

tj ¸q
2∈R j 1 n,[ ]∈ vj ¸q∗∈R wj ¸q

2∈R j 1 n,[ ]∈

dj ¸q∗∈R j 1 n,[ ] i{ }\∈

z m
xi1 m

xi2,( )

aj
g
tj1 g

tj2,( ) for j i=

g
tj1pkj1

d– j g
tj2pkj2

d– j,( ) for j i≠



bj
m

tj1 m
tj2,( ) for j i=

m
tj1z1

d– j m
tj2z2

d– j,( ) for j i≠



z a b, ,

m' z',( ) mω z1
ω z2

ω,( ),( )

aj' aj1
vj g

wj1 aj2
vj g

wj2,( ) j 1 n,[ ]∈

bj' bj1
ωvjm

ωwj1 bj2
ωvjm

ωwj2,( )

c' hash m' m∗{ } z' a' b', , , ,( )

c c c' vj
1–

j 1=
n∏⋅ qmod

di c dj
1–

j i≠∏⋅ qmod

rj
dj rki⋅ tj+ for j i=

tj for j i≠
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where the c in verify is as in step (7)
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6.4 CRYPTOGRAPHIC MECHANISM
step (11), Bob finally blinds Alice’s responses  in order to compute the missing signature component
. 

If the optional input message  is used, we call this protocol the extended signing protocol (cf.
Mechanism 4.8 on p.55) of the Blind CPGS(l,n) Mechanism 6.2 on p.130.

Verify

Bob verifies Alice’s signature  for message m as follows:

where . (6.1)

Identify

A group center on input a private group key , corresponding public key , a
message  and a signature  acceptable for m identifies the originator of σ (step (1)) and out-
puts a public individual key , if a match is found (step (2)).

Verify Identity

. (6.3)

Verifies the predicate (6.2) on p.133. ◆

Security Suggestion 6.1 Blind CPGS(l,n) Mechanism

For all ,  the Blind CPGS(l,n) Signature Mechanism 6.2 on p.130 is a blind static
group signature scheme according to Definition 6.1 on p.126 under the following assumptions:

(i) One-timeness and restrictiveness hold if they hold for the Blind Chaum-Pedersen(l) Signature
Mechanism 6.2 on p.130 (Security Suggestion 4.6 on p.57).

(ii) Computational signer anonymity holds under some heuristic arguments made by Chen and Peder-
sen in [77] Section 5.

(iii)Blindness, unframeability and coalition resistance hold under the SDL Assumption 3.20 on p.29.◆

identify Group Center
(1) Check for which  the following equation holds

 (6.2)

(2) If such an index i is found return , otherwise return .

FIGURE 6–3 Identifying the Signer
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Security Considerations

 

Chen and Pedersen have suggested a special case of this scheme, which does not lead to a blind, but to
an ordinary group signature scheme (see section 4 in [77]). They suggest the recipient always chooses

 and , for all , and they split the challenge 

 

c

 

 into summands  instead of
into factors.

 

2

 

 In their special case, the recipient’s part reduces to computing the hash value , which
equals 

 

c

 

 because the product in step (7) collapses to 1.

 

E

 

FFECTIVENESS

 

 

 

AND
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ROUP

 

 E

 

FFECTIVENESS

 We have to check that Bob’s output message and signature satisfy the verification predicate. It is
immediate from step (7), step (8), and step (10) that the first equation holds:

Next we look at the four remaining equations. Since protocol 

 

gSignBlind

 

 is essentially two parallel
executions of Schoenmakers’ (Figure 6–1 on p.130), we only check the first equation and the third
equation because the second and fourth are verified similarly. It is helpful to check these equations
separately for  and for : 

For :  = 

 

def. of , step (5)

 

 = 

 

step (3), step (10)

 

 = 

 = 

 

step (9)

 

 = .

 

step (11)

 

For :  = 

 

def. of , step (5)

 = step (3), step (10)

 = 

 = step (9)

 = . step (11)

2) They require that the choices  for  and the challenge c be taken from , so they in fact use the same domains
as in gSignBlind.
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For :  = step (4), step (5)

 = step (10), step (2)

 = 

 = step (9)

 = . step (4), step (11)

For :  = step (4), step (5)

 = step (10), step (3)

 = 

 = step (9)

 = . step (4), step (11)

ONE-TIMENESS AND RESTRICTIVENESS

We first consider the signer’s messages indexed , where i is the member index of the signer in his
group. Were the challenges  given to the signer after he has computed the values  after
step (3) of gSignBlind, then the signer had only a negligible chance of computing the values ,

 such that the verifying condition  is satisfied. Otherwise he had
broken the validity of the CEG(1) Mechanism 4.4 on p.43. Thus Schoenmakers has argued that for
each , the signer needs to choose the value  before he sends the values  to the verifier. 

Once the signer has sent all values  to the
verifier, he is therefore committed to the corresponding values  as well.
When the verifier sends the challenge  after step (7), the signer is then also committed to the
value . Since the signer knows the private individual key , he is not committed
to  any sooner than after receiving the challenge c from the verifier. Since the signer has no informa-
tion about c by the time he is committed to the values , the value  is
determined by the verifier uniformly at random (by means of the random choices ).

Next we consider the signer’s messages indexed . We have seen above, that the signer is
forced to provide exactly two signatures of the Blind Chaum-Pedersen(l) Signature Mechanism 4.8 on
p.55 for the same challenge , one of them valid for  with respect to the public key , the
other valid for  with respect to the public key .

Thus, if for any , , the Blind CPGS(l,n) Mechanism 6.2 on p.130 were not
restrictive or not one-time, then the respective attack yields a CPGS(l,n) signature  for
some message m, and thus—again by counting only messages indexed i—two signatures of the Blind
Chen-Pedersen(l) Signature Mechanism 4.8 on p.55 for message m.
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BLINDNESS

We show that for each output  of Bob valid with respect to  and each valid
view  of a computationally unlimited attacking signer  on Bob
obtained by a successful execution of gSignBlind on common input , there is exactly one choice

 for Bob such that he returns this output on the given input and view3. Throughout this
proof all steps refer to protocol gSignBlind (Figure 6–2 on p.132).

: There is at most one such choice because the assignment of  in step (4) uniquely deter-
mines , and steps (10) and (11) uniquely determine values , respectively. Namely,

,  for all , and . 
: We are left to show that the one choice  determined above matches the given compo-

nents not yet taken into account above, namely  and : Schoenmakers [210] and Chen,
Pedersen [77] have argued by using the usual Fiat-Shamir heuristics that if the public group key ,
a message m and a signature  are given (to the verifier up front), then the remaining
messages of the signer in gSignBlind constitute a proof of knowledge of some private individual key

 over the function: 

for some . (6.4)

While the verifier receives this proof of knowledge from the signer, the verifier itself provides (by com-
puting the output signature ) a proof of knowledge of some private key 
such that

. (6.5)

Because Bob himself knows none of the private keys and he has oracle access only to group member
Alice, under the SDL Assumption he can prove knowledge of at most Alice’s private key. Thus

. Then follows for :

. (6.6)

This matches the way how  is computed in step (4). We further need to show that the one choice
 determined above also leads to expressions for ,  and  that match step (5) and

step (6), respectively. We begin with , which turns out as follows:

 =  valid for  wrt. 

 = step (11), step (10)

3) The component  of  denotes an internal choice of the attacker . It of cause needs not be taken from the domain
of internal choices of the honest signer in gSignBlind. 
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6.4 CRYPTOGRAPHIC MECHANISM
 = re-ordering

 = . Bob’s verify in step (9) (6.7)

Analogous rewritings show that the following equations modulo p hold as well:

and and .

Since only valid views  on Bob are considered, we know about c that it satisfies the verification
equation of Bob’s check after step (9), in particular . Otherwise, Bob would abort the
protocol, and thus  were invalid. This assertion together with Bob’s steps (7) and (10) implies
that  can be expressed as follows:

.

Finally, step (6) assures that . Hence, Bob’s output  is valid
with respect to . 

SIGNER ANONYMITY

Signer anonymity is a security property that refers to the signer of protocol gSignBlind. Formally,
this is clear from the Definition 6.1 on p.126 (computational signer anonymity), because the verifier
Bob is assumed to be an attacker. The signer in protocol  is similar to the signer
in another group signature protocol, which we will call CP, presented by Chen and Pedersen in [77],
Section 5, Fig.2. In fact, the signer of protocol  computes two signatures of the
signer in  in parallel with different signing keys  for the same message m,
while using the same challenge  for both signatures.

Without going into details it is clear that if an attacker A on  could be suc-
cessful, then it would also be successful against . We just need to take only every
second signature into account (of those that are produced on request of the attacker and of the two
signatures that are given to the attacker at the end).

COMPUTATIONAL UNFRAMEABILITY

Chen and Pedersen have argued that under the SDL-Assumption 3.20 on p.29 their scheme gives com-
putational unframeability. Consider a collusion of some group members and a group center (who has
access to all public individual keys). This collusion tries to frame an honest group member i with pri-
vate key  of their group. Assume they can come up with a pair  such that protocol identify
on input the respective private group key, public key and  returns index i. This contradicts the
SDL-Assumption 3.20 on p.29 because the attacker collusion would find a representation of the honest
victim’s public individual key component , which is assumed to be chosen uniformly at random by
the honest victim.
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COALITION RESISTANCE

Under the SDL-Assumption, the Blind CPGS(l,n) Mechanism 6.2 on p.130 also gives coalition resis-
tance. Polynomial-time attacking group members can produce a valid signature with non-negligible
probability only if they can prove knowledge of at least one private key. So a later identification by
the group center will always succeed. ❏

6.4.1 Efficiency Comparison

Finally we compare the Blind CPGS(l,n) Mechanism 6.2 on p.130 (A) to the proposal (B) of Lysyan-
skaya and Ramzan [149]. Since the computation and communication cost of (B) is constant in the size
of the group, we are interested in the trade-off group size below which (A) is more efficient than (B).
In both cases, the by far most expensive computations are modular exponentiations. 

(A) and (B) use modular exponentiations modulo a prime p of size bit, where k is the
security parameter. All exponents of (A) are of size about bit (see the remark following
Assumption 3.20 on p.29). The exponents of (B) fall into two categories; those of size bit
and those of full size k. We count the modular exponentiations to k-bit exponents as 6 modular expo-
nentiations to -bit exponents. This is a conservative estimate because given exponents of average
Hamming weight the computation time of a modular exponentiation increases linearly in the length of
the exponent. 

As before, the parameter n denotes the size of the group. (B) uses an additional security parameter
, which has not received much discussion, neither by Camenisch and Stadler [51] nor by Lysyanskaya

and Ramzan [149]. It appears that  should increase with , but a deeper analysis is outstanding. As
an example, Camenisch and Stadler have instantiated  and . Since proposal (B) uses

 for the length of an RSA module, a choice of  as suggested in the beginning is recom-
mended. It is probably also recommended to use a value of . 

The following Table 6-1 on p.138 approximates the computational and communication effort of
signer and recipient in the signing protocol and the computational effort of verifying a signature. The
group size in the Blind CPGS(l,n) Mechanism 6.2 on p.130 is denoted  as before. 

The bit lengths of public keys and signatures are approximated in the following Table 6-2 on p.138:

A rough comparison shows:

Modular Exponentiations Number of bits sent

(A) (B) (A) (B)

gSignBlind
signer  

recipient

verify — — —

TABLE 6-1 Computational and Communication Effort

Length [bit]
Public Key Signature

(A) (B) (A) (B)

TABLE 6-2 Bit Lengths of Public Keys and Signatures
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6.4 CRYPTOGRAPHIC MECHANISM
(i) In terms of performance, the Blind CPGS(l,n) Mechanism 6.2 on p.130 (A) is more efficient than
(B) for group sizes up to about , which is about 200. As the security parameter k needs to
be increased over time, the trade-off group size increases as well.

(ii) In terms of communication complexity and signature size, the Blind CPGS(l,n) Mechanism 6.2 on
p.130 (A) is more efficient than (B) for group sizes up to about , which is about 100.

(iii)In terms of the public key size, the Blind CPGS(l,n) Mechanism 6.2 on p.130 (A) is superior only
for the trivial group size of 1. 

At the bottom line it appears safe to say that today the Blind CPGS(l,n) Mechanism 6.2 on p.130 (A)
is not less efficient in most respects than Lysyanskaya and Ramzan’s proposal (B) for group sizes 100
and 200 members depending on which criteria are given priority.

n 2l=

n l=
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7

Group Credential Schemes
n this section, a modular refinement of all credential schemes of Section 5 on p.59 is provided. Our
goal is to achieve privacy for issuers of credentials against verifiers as sketched in Section 5.1.2 on

p.66. In many cases, this also enhances the privacy of recipients. A credential that is silent about its
issuer reveals less information about its holder than one that discloses its issuer. On the other hand,
issuers should not be allowed to stay anonymous while issuing wrong credentials or to illegitimate
holders. In case a credential is disputed, its issuer should be identifiable. These requirements are pretty
similar to those of group signature schemes, and so it is natural to interrelate the concepts of creden-
tials (Section 5 on p.59) and group signatures (Section 6 on p.123). The idea of building an e-cash
scheme around a group oriented blind signature scheme has also been proposed by Lysyanskaya and
Ramzan [149] and by Traoré [223]. The group signature scheme underlying the proposal of Traoré is
more efficient than that of Camenisch and Stadler [51] in particular for signing, but Traoré uses more
ad-hoc complexity theoretic assumptions. We introduce the more general concept of group credentials.

7.1 Definition of Group Credential Schemes

A formal definition of group credential schemes can be obtained by refining credential schemes (Defi-
nition 5.1 on p.75) in a similar fashion as blind signature schemes are refined into blind group signa-
ture schemes in Definition 6.1 on p.126. The following definition does not present the requirements of
group credential schemes in full detail because all of them appear either in one of the credential defini-
tions 5.7, 5.9, 5.11, or are straight forward adaptations of requirements of the group signature defini-
tion (Definition 6.1 on p.126).

Definition 7.1 Static Group Credential Scheme (Sketch)

A static group credential scheme with group size n, security parameter k, credential types
 and recognition characteristic  is a credential scheme with

the same credential types T and recognition characteristic  and the following refine-
ments. 

I

T t1 … tm, ,{ }= 0 FAR FRR, 1≤≤( )
FAR FRR,( )
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7 GROUP CREDENTIAL SCHEMES
DOMAINS:

In addition to the domain families set out in Definition 5.1 on p.75, a group credential scheme has the
following 2 additional domain families  whose respective members are: 

• A public individual key domain  and

• a private group key domain .

The private keys of a static group credential scheme are those generated and held by individual group
members, while the public keys are those by which anyone can verify all signatures of all signers of the
respective group. Public keys will be referred to more specifically as public group keys.

OPERATIONS:

In addition to the operations set out in Definition 4.7 on p.53, a static group credential scheme has a
set {genIKey, genGKey, identify, verifyId} of 4 additional operations. To enhance readability, we call
the issuing operation of a group credential scheme gIssue. The key generating operation genKey is
refined into the following two operations:

Generate Individual Keys

A probabilistic operation that takes a prekey  and returns an individual key pair  of
type .  and  are called the respective private and public individual key of group mem-
ber indexed i.

Generate Group Keys

A probabilistic operation that takes a prekey and an n-tuple of public individual keys
 of type t. It outputs a group key pair  of type t. 

and  are called a private and public group key.

The operation genKey of a static group credential scheme is then defined as follows:

, where and 

 and for : .

Furthermore there are two additional operations:

Identify

A deterministic operation that takes a private and a public group key  of type
t, a pseudonym  and a credential . The result is a public individual key 
of type t or it is undefined, denoted .

Verify Identity

A deterministic operation that takes a public individual and a public group key 
 of type t, a pseudonym  and a credential  and returns a Boolean result. If the

result is TRUE then we say that the group member with public individual key pi is held responsible
for group credential χ (on pseudonym ).

PI RG,

PIprek
RGprek

rkt i, pit i,,( ) genIKey prek t,( )←

prek rkt i, pit i,,( )
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PI PK× ψ Ψ∈ χ C∈
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7.2 NEW CRYPTOGRAPHIC MECHANISMS
In addition to the credential requirements given in Definitions 5.7, 5.9, and 5.11, these operations sat-
isfy the additional requirements of group effectiveness, signer anonymity, unframeability and coalition
resistance. They are analogous to those in Definition 6.1 on p.126 if messages are replaced by pseud-
onyms and signatures by credentials. ◆

7.2 New Cryptographic Mechanisms

Constructions for all four categories of group credential schemes can be obtained in a modular fashion.
We describe a coin group credential mechanism, which will be used in Section 8 on p.145. 

7.2.1 Coin Group Credential Scheme

We can turn the CC Mechanism 5.10 on p.111 into a coin static group credential(n) mechanism
(CGC(n) Mechanism) if we replace in step (5) of protocol issue (Figure 5–14 on p.113) the member
protocol signBlind of the Chaum-Pedersen(l) Signature Mechanism 4.8 on p.55 by the protocol
gSignBlind of the Blind CPGS(l,n) Mechanism 6.2 on p.130. 

Since gSignBlind is one-time, restrictive and blind just as signBlind, the proofs of effectiveness,
type unforgeability, transfer prevention, and issue-wise fail-safe unlinkability carry over from the CC
Mechanism to the CGC(n) Mechanism.

7.3 Conjunctions of Personal and Coin Credentials with Static 
Group Credentials

The Group Coin Credential Mechanism constructed above uses the same families of source and target
pseudonym domains as the respective Personal Credential Mechanism 5.8 on p.92 and the Coin Cre-
dential Mechanism 5.10 on p.111. Hence, we can form analogous conjunctions of credentials as
described in Section 5.7 on p.121, where a static group coin credential may replace a coin credential.
Note that this includes conjunctions of a personal credential and a static group coin credential, which
will be used in Section 8.4 on p.151 and 8.5 on p.159.
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8

Mobile Patient Assistants
“Laws are no substitute for engineering …
It’s no longer good enough to install security patches in response to attacks …

Today’s systems must anticipate future attacks.”
— Bruce Schneier [207]

n interesting field of application for group credentials is where holders and issuers have a com-
mon privacy interest against verifiers. We consider the example of compulsory health insurers,

whose insurance fees are related to the income of their policy holders rather than their state of health.
Hence at least up to a certain limit, no direct link between the fees paid by a policy holder and the
cost incurred need to be observable by a compulsory health insurer. As an example for this application
we consider the German health care system. This is joint work with Matthias Schunter [26,27,28].

8.1 Introduction

In most western democracies the increasing diversification of healthcare providers and competition
between them provides pressure for lean administration, charging and clearing. As more and more
computers become networked, we can expect the integration of almost all healthcare related processes
between physicians, hospitals, online medical databases, pharmacies, health insurers, and so on. How-
ever, the legitimate privacy interests of patients and physicians are likely to be ignored if today’s
paper-based procedures are naively simulated by networked computer systems. We show electronic
solutions for charging and clearing expenses which allow insurers to enforce an annual limit on total
expenditure while maintaining the privacy of patients and physicians. 

Former and current paper-based procedures have relied heavily on identifiable patient data in
order to ensure data integrity and accuracy. Although in many countries data protection laws apply to
such information, the most effective protection against privacy breaches still is the cost of collecting,
transferring, storing and analyzing large volumes of paper files. Patients usually accept that they will
have little if any privacy against healthcare professionals directly involved in their treatment, but wish
to protect their privacy against outsiders like healthcare insurers, attorneys, employers and landlords. 

A
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8 MOBILE PATIENT ASSISTANTS
The transition from a paper-based healthcare environment to one based on networked computers
is unlikely to respect the distinction between medical and non-medical parties. Firstly, the interaction
of clinical and non-clinical participants in the treatment process will be rationalized by computers in
just the same way as the interaction between the clinical participants. Secondly, both integration pro-
cesses are driven by the same medium: the Internet. Finally, some non-medical parties have legitimate
and illegitimate interests in identifiable patient data. So the easier it is to access, transfer, store and
analyze large amounts of data, the more we must protect identifiable patient data; and if these protec-
tion measures are to be effective, they will have to be built into the technical infrastructure. 

On the one hand, the new technologies support new potential abuses of medical data for surveil-
lance, control and marketing purposes [194,242]. On the other hand they also facilitate a new level of
privacy, by building systems that avoid the storage of large amounts of identifiable patient data in
central repositories. One particular solution is to equip patients with mobile patient assistants, e.g.,
palm pilots, personal digital assistants or other mobile user devices [201]. Mobile patient assistants can
help to develop telemedicine in a way that respects the privacy of patients and physicians alike. They
can also help patients to avoid prescription errors [219,220] and to better manage chronic diseases like
diabetes [232] or cancer. 

Healthcare providers are about to invest millions in new communication and computing infrastruc-
tures [242,105]. The market for chip-cards for both patients and physicians is expected to grow rapidly
in the future. However, such investments will only pay if the fielded technologies meet legal require-
ments such as data protection, and are acceptable by all participants, i.e., patients, physicians and
health insurers. The G7 and some national initiatives [45] have stimulated such technologies, the topic
has been suggested for further research to the Commission of the European Communities [17,18] and
specific solutions for the US market are under development [148]. To derive an acceptable solution we
will state the duties and goals of each participant and then answer the key question:

Who needs what data in order to fulfill their duties and meet their goals?

We will then discuss suitable technical measures for implementing the charging and clearing process in
a privacy oriented way. Our analysis indicates that chip-cards are too restricted to really protect the
privacy of patients and physicians. Shorter precursors of this paper appeared in [26,27].

8.2 Contractual Framework

We will now describe the participants and transaction flows of the German healthcare system
[4,46,44,127] with respect to billing and payment for medical services. We will then deduce the secu-
rity interests of the various participants.

The German healthcare system1 consists of five supply sectors [4,46]. Medical outpatient treat-
ment includes registered physicians and specialists, e.g., dentists, who have their own independent
practices. Paramedical outpatient treatment includes members of professions allied to medicine like
physio-therapists and speech therapists. inpatient treatment consists of all hospitals for acute cases

1) A German-English and English-German glossary about the German healthcare system is found in [4].
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8.2 CONTRACTUAL FRAMEWORK
and special hospitals. Public health services are provided by state and local public health departments
and by the laboratories. The pharmaceutical supply is provided by pharmacies.

Health insurers are the clearing houses of the healthcare system. In practice they delegate the
clearing tasks to several client-specific organizations (actual clearing houses). There are compulsory
and private health insurers, each with about half the market in healthcare payments. Roughly speak-
ing, contributions to the former are income related, whereas those to the latter are risk-related. There
is a level of income below which compulsory health insurance is mandatory. The privacy interests of
patients (and physicians) inherently conflict with the screening interests of private health insurers to
such an extent that we suggest our solution for compulsory health insurers only.

Throughout this paper we distinguish four kinds of healthcare providers (Figure 8–1) and sketch

their business relationships. 

1) Registered physicians are outpatient general physicians or specialists who are registered by com-
pulsory health insurers. They may provide medical treatment, write letters of referral and issue
prescriptions for medication or paramedical treatment. They do not claim directly to the health
insurers, but to the local associations of registered physicians: Kassenärztliche Vereinigungen
(KV). They also serve as clearing houses: Each KV gets a lump sum from the compulsory health
insurers and pays the invoices of registered physicians. The registration is done by a joint registra-
tion committee of the health insurances and the KVs. KVs are explained in more detail in the fol-
lowing Section 8.3.

FIGURE 8–1 Contractual Framework
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8 MOBILE PATIENT ASSISTANTS
2) Pharmacies and paramedical providers serve patients more or less according to prescriptions. The
may neither issue prescriptions nor write letters of referral. Their actual clearing houses are the
health insurers.

3) Hospital physicians are physicians who are registered by compulsory health insurers and who are
employed by a hospital. Like registered physicians, they may provide medical treatment, write let-
ters of referral and issue prescriptions for medication or paramedical treatment. They do not claim
directly from the health insurers either, but from their hospitals which serve as their first-line
clearing houses.

4) Specialists are all those outpatient and hospital physicians who provide medical treatment accord-
ing to letters of referral. Specialists running their own practices are not depicted in Figure 8–1. In
the following they can be treated in the same way as hospital physicians except that they invoice
to their KV rather than to a hospital.

8.3 Paper-based Charging and Clearing

We will now describe in more detail how the costs of medical treatment and supplies are claimed in
the German system. Interactions between two participants consist of “real” actions and of “paper”
actions. For example, a physician treats a patient, sends an invoice for the treatment and is finally
reimbursed. We regard the first and last of these actions as “real” and the second as a paper action.
Our focus is on electronic transactions substituting the paper actions, particularly those containing
identifying patient data (Figure 8–2). 

Consider a typical treatment process: A patient requests treatment from her GP by presenting a
valid health insurance card (“Krankenversichertenkarte”), which contains the data necessary for
charging medical treatment. The GP may provide some treatment on his own and in addition:

1) prescribe some medication, and

2) refer the patient to a specialist or hospital. 

During the process of healthcare, these steps can be iterated with various medical professionals taking
responsibility for the patient and delegating it further. In each of the three cases, the GP produces a
medical record that contains accounting data and possibly diagnostic, therapeutic or prognostic infor-
mation about the patient. Usually, the patient passes a relevant excerpt of this record to the next
healthcare provider, who then continues the process of treatment. Each healthcare provider copies the
relevant part of the patient’s record and forwards it to the appropriate clearing house with his invoice.

8.3.1 Analysis

Since 1992 the compulsory health insurers have equipped their policy holders with personal health
insurance cards (“Krankenversichertenkarten”). These are memory chip cards containing the same
administrative data that had previously been held on a paper-based health insurance record card
(“Krankenschein”). If a patient requests a medical service from a healthcare provider, she has to iden-
tify herself by her health insurance card. This is basically a way to enforce the identification of
patients—the primary requirement of health insurers. The patients’ privacy requirements, however,
have simply been ignored.
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8.3 PAPER-BASED CHARGING AND CLEARING
The paper-based refund system implements a kind of post-paid system. Health insurance cards can
be regarded as a special kind of credit cards. Showing them authorizes a patient to receive medical
treatment. The patient’s health insurer pays lump sums to the various clearing houses which reim-
burse expenses that are properly supported with receipts endorsed by the KVs and hospitals.

Alternatively, healthcare providers could also claim directly to the patients, as most private insur-
ers do (such as private health or car insurers). In this case, policy holders get to know the detailed cost
of their treatment and could, if suitably motivated, help to control costs by asking their healthcare
providers for less expensive services and checking all invoices carefully. They might also occasionally
decide not to use their health insurer but to pay some items themselves. 

Usually, receipts for everyday’s commercial transactions do not contain much personal information
about the payer; but receipts in healthcare are different. In paper-based systems the invoices of the
healthcare providers and thus the receipts received by the clearing houses contain a tremendous
amount of highly personal and sensitive information about both patients and physicians. For example,
every participant involved gets to know each patient’s prescription, and with private insurers, all doc-
uments referring to a patient are linked from the treating physician through to the insurer. The mere
existence of such information tempts people to use it for secondary purposes. 

8.3.2 Participants and Their Specific Security Requirements

We now ask which participants really need to have which information in order to fulfill their tasks.
We will analyze the services to be provided by each participant and then consider additional con-
straints posed by the specific confidentiality and privacy needs of the various participants.

FIGURE 8–2 Flow of Billing Related Information
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8 MOBILE PATIENT ASSISTANTS
AVAILABILITY AND INTEGRITY REQUIREMENTS

Physician: Each patient shall receive no more treatment and medication than is prescribed. In partic-
ular, each prescribed treatment shall be provided at most the specified number of times. (This is
all the more important if drugs are dispensed by vending machines [221].) 

Policy holder: If she presents a valid enrollment in a suitable health insurance plan and, if applicable,
a letter of referral or prescription to a healthcare provider of her choice, then the provider shall
indeed offer the requested service or perform the treatment prescribed.

Physicians, Pharmacies, Paramedical providers: Any of their expenses should be reimbursed by the
health insurers if the healthcare provider is registered and if the claims are properly supported by
a respective proof of treatment, letter of referral, etc. 

Health insurers: Only registered physicians should be able to issue prescriptions. Each policy holder
should be able to use prescriptions at most once or according to a therapy plan, respectively. Each
health insurer should reimburse expenses only once and only if they have been spent for its own
policy holders. Health insurers should be able to cap the total reimbursement per year (“Decke-
lungsprinzip”).

Healthcare providers usually need some administrative details about their patients, but much less per-
sonal data needs to be communicated between providers. Patients need non-repudiable prescriptions
from their physicians. Providers need to verify the prescriptions before giving treatment or medication.
They also need to obtain receipts. In paper-based practice, the medical prescription serves for both
purposes. But although insurers need to know their policy holders, and physicians usually know their
patients well, their views need not be linkable. A patient pseudonym is usually quite sufficient for
charging. We will see a few exceptions when we discuss particular implementations of the charging and
clearing process in Section 8.4 on p.151.

CONFIDENTIALITY AND PRIVACY REQUIREMENTS

Physician and Patient: Medical treatment requires a relationship based on trust between patient and
physician. The privacy of their relationship should be protected comprehensively against third par-
ties’ interests; diagnoses and therapies should be strictly confidential. This specific rule should
override, for example, any obligations to escrow cryptographic keys [161].

Physician: Health insurers should not in general be able to monitor physicians’ prescription and treat-
ment habits. The cost control interest of health insurers does not justify more detailed control
than can be exercised using statistical mechanisms, such as spot-checking a small sample of treat-
ments.

Policy holder: The policy holder’s right to ask a healthcare provider of her choice for second opinions
implies that different healthcare providers should not monitor policy holders by exchanging views
on them. In certain situations, patients might seek a stronger form of privacy, which we will call
untraceability: even where a patient is referred from one provider to another, they cannot collude
to link their views afterwards and find out which records belong to the same patient.
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8.4 IMPLEMENTATION OPTIONS
Obviously, the above requirements can be met by legal regulations, but technical means are more
effective—especially if they can be enforced by the policy holders themselves. Therefore, we introduce
pseudonyms for policy holders as well as for physicians and we propose to employ them consistently in
all interactions [194,195]. 

8.3.3 Exceptions

Exceptional cases must be supported because the physician in charge of a patient is ultimately liable
for how the patient is treated and may require flexibility. For example, one should be able to deal with
emergencies in which the patient is not able to confirm or consent to anything, and cases where a phy-
sician decides not to tell the whole story to his patient.

8.4 Implementation Options

We now discuss the most important implementation options of the charging and clearing process of a
healthcare system. We basically consider compulsory health insurers who provide broad coverage of
medical expenses. So it is realistic to assume that individuals are enrolled in at most one insurer’s
health insurance plan. The case of enrollment in multiple insurance plans will be considered below in
Section 8.4.8 on p.158. 

Healthcare insurance is based on a sensible separation of duty. Physicians decide about therapies
and prescriptions, whereas insurers finance the corresponding treatments and medications. Since the
physicians’ decisions may incur significant cost, physicians need to be legitimated by health insurers
before they may charge for medical treatment. Similarly, pharmacies and paramedical providers are
legitimated by insurers. Both types of provider legitimation are called registration.

There are three types of legitimation contents, namely a patient’s proof of enrollment in a health-
insurance plan, a referral to a specialist, and a prescription, which we will describe in detail in
Section 8.4.1 on p.151. In principle, these patient legitimations should be non-repudiable and unforge-
able. These requirements suggest that we implement all legitimations by cryptographic primitives
based on digital signatures [94]. (For additional privacy-protecting requirements see Section 8.4.2 on
p.153.) An implication of using digital-signature-based mechanisms is that healthcare providers need
not trust in the health insurers, because, if need be, providers can prove all their claims to an arbiter
such as a court.

Given that patients are mobile, we assume a system architecture in which each policy holder is
equipped with a mobile patient assistant, i.e., a mobile user device [188,143] able to manage patient
legitimations and in particular to produce and verify digital signatures. We further assume that each
healthcare provider has equipment to communicate with mobile patient assistants. Good candidates
for mobile patient assistants are palm pilots and palmtop computers (Section 5.1.3 on p.67). They are
more appropriate than smartcards because they have a user interface and power supply, more comput-
ing power and more storage capacity.

8.4.1 Enrollments, Referrals and Prescriptions

The patient legitimations are characterized as follows (see Figure 8–3):
Patients’ enrollments (E) prove that they are policy holders enrolled in a health insurance plan.

Different health insurance plans may vary in coverage, deductions, fees, and so on; and while individ-
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8 MOBILE PATIENT ASSISTANTS
uals are not supposed to give away or sell their enrollments as such, they should have enough power of
delegation to ask a friend or relative to go and get a prescribed medication for them. Furthermore, the
patients’ privacy should be maintained as much as possible even if the health insurer and the physi-
cian collude.2 To provide the strongest protection, patients will use pseudonyms in order to enroll at
their insurers.

Patient’s prescriptions (P) prove that a certain medication or service has been prescribed. In order
to get medications or services, patients need to use an enrollment and a prescription, or send a dele-
gate.

Patient’s referrals (R) prove that patients have been referred to a hospital or a specialist. In order
to receive specialist treatment, patients need to use an enrollment and a prescription.

Since enrollments, referrals and prescriptions can be issued by different parties, it appears most natu-
ral to implement them separately by enrollment certificates, prescription certificates and referral cer-
tificates, respectively; mobile patient assistants can store and manage any combination of them as
required for each healthcare encounter. This raises issues of pseudonym management but can also
allow patients some freedom to negotiate their purchase with the pharmacy or other provider. For
example, they might negotiate for drugs similar to those prescribed3.

FIGURE 8–3 Use of Patient Legitimations.

2) Note that we do not assume that the patient as a person is anonymous but rather that the clearing and billing is anony-
mous, and that no publicly readable data identifies a patient. We do not want to stop physicians from storing their
patients’ personal data in local files.

3) What “similar” means has to be specified between health insurers, pharmacies and paramedical providers beforehand. Any
medication or service not similar to the prescribed one is not reimbursed.
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8.4 IMPLEMENTATION OPTIONS
8.4.2 Anonymity Options

Our goal is to implement all legitimations of health care providers and patients and the charging of
medical expenses in a way that maintains the privacy of patients and of physicians against the insurer.
Individuals act as policy holders to the insurer and as patients to the healthcare providers. In neither
of these capacities they decide directly about the cost to be incurred, so they may use different unlink-
able pseudonyms with each health insurer and healthcare provider. In addition, patients who are
referred from one physician to another can be untraceable by these physicians. Similarly, patients who
receive and fulfill prescriptions can be untraceable by the providers involved. We suggest implementa-
tions for additional untraceability in Section 8.4.4 on p.153. 

Physicians are different in that they decide for which patient they charge what amount of reim-
bursement from the respective health insurer. So we want physicians to remain anonymous as long as
they act honestly, but be identifiable at least after the fact if they fake bills or charge for overly expen-
sive treatment. This affects the way how physicians are registered, charge for medical treatment, issue
prescriptions and issue referrals. An effective way of achieving recoverable anonymity is to form
groups of physicians and to enable each member of a group to sign in behalf of the group without
revealing their individual identity. In case of a dispute later on, the group should be able to re-identify
any members by their signatures. In principle, physicians’ groups can be managed by the KVs since
the health insurers usually pay lump sums to the KVs, which then redistribute the payments to indi-
vidual physicians. 

In order to provide sufficient anonymity for physicians and patients alike, the physicians’ groups
should contain a mix of different specialists and general practitioners and not only a few of each. For
example, one could group the practitioners of a geographical region, or the physicians of one or more
hospitals, etc. The appropriate size of these groups depends on the level of anonymity required, the
efficiency of the underlying mechanisms, and additional constraints of the KVs. In the following, we
assume a group size of up to 100 physicians.

Keeping pharmacies and other providers anonymous is of little use because they do not reveal
much more information about patients than what health insurers learn from prescriptions anyway.

8.4.3 Cryptographic Extensions

Policy holders will use source pseudonyms with their health insurers and are then free to use other
pseudonyms with each physician, pharmacy and paramedical provider they visit. Signature schemes
and credential schemes can be used to implement enrollments, prescriptions and referrals. A particular
extension of coin credentials is helpful in the following applications.

A special case of coin credentials are check credentials. At issuing time, a maximum “value” is
fixed, and the holder is free to use it later for any amount not exceeding the initial value. Efficient
implementations have been given by Brands in [34,35], but will not be considered further in this work.

8.4.4 Implementing the Legitimations

Physicians’ registrations are usually obtained on a long-term basis, i.e., physicians can exercise them
as often as they like (limited only perhaps by their age). So the following implementation appears nat-
ural: Physicians choose their personal signing keys and have them certified by the health insurers
directly or by an association of health insurers that takes care of certifying healthcare providers.
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Finally the KVs admit physicians who provide certified signing keys to certain groups. Furthermore,
physicians authorize their invoices for medical treatment and the prescriptions to their patients by a
group signature, which the KV can use later to endorse its next aggregated invoices to the respective
health insurers. 

Policy holders’ enrollments can be implemented by personal credentials. This appears most natural
because enrollments shall be exercisable arbitrarily often, but shall not be transferable between own-
ers. The pure implementation in Section 5.4 on p.90 achieves this, but needs extensions in order to let
friends or relatives of patients exercise enrollments for them (see the first example of Section 2.5 on
p.11). Alternatively, enrollments can be implemented by coin credentials. When enrolling in a health
insurance plan, a policy holder could obtain a batch of coin credentials and could later give away one
of them together with a prescription to a friend or relative, which they can use through their own
mobile patient assistant. A convenient shortcut in either case is to configure one’s mobile assistant to
support only the intended shows and then lend one’s own mobile patient assistant to the friend or rel-
ative. If health insurers want to distinguish different types of enrollments (e.g., medical treatment,
dental treatment, etc.), then for each type the most appropriate implementation can be chosen. 

Referrals and prescriptions need to maintain the issuing physicians’ privacy in a way so that the
receiving healthcare provider can endorse its invoice properly without revealing the identity of the
issuing physician. Hence referrals and prescriptions could be implemented by group signatures or by
coin group credentials. Both implementations reveal to the health insurer only the group to which the
issuing physician belongs, but not his identity. In case of a dispute, his identity can be recovered by
help of the group. The groups for writing referrals and issuing prescriptions can be the same as those
for registration because they serve the same purpose, i.e., maintaining the physicians’ privacy against
insurers. 

Coin group credentials differ from group signatures by an additional level of privacy for the policy
holders. If referrals or prescriptions are implemented by coin group credentials, then even if all health
care providers collaborate, they could not determine whose referrals or prescriptions are used where.
Otherwise, the health care providers could link all their views on the patients. If the health insurer
could get hold of data collected at the providers, then it could correlate patients’ addresses with the
locations of their hospitals, physicians and other providers. In order to protect the patient-physician
relationship, this additional level of privacy is recommended for referrals. It seems however less impor-
tant for prescriptions, because pharmacies and paramedical providers are not anonymous to health
insurers anyway. 

8.4.5 Charging for Medical Treatment

If physicians want to charge for treatment, they first need to see an enrollment from their patients, so
as to learn which insurance plan to bill to. In the current paper-based system there is little control
over what treatment a physician actually provides and what he later charges for. In particular, the
compulsory insured patients do not learn what expenses their physicians claim. This can be imple-
mented as follows: Physicians sign their invoices with a group signature, endorse them with a proof
that the patient is properly enrolled and send them to their KV. The KV archives the invoices by
member physician, aggregates them into, e.g., monthly or quarterly invoices and sends them to the
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respective health insurers on a regular basis. When the health insurer reimburses a lump sum, the KV
refunds the respective member physicians. 

If health insurers want more control, they could ask their policy holders to consent to each medical
treatment as a condition of reimbursement. Here are two implementations, the first more patient pri-
vacy protecting than the second: 

• Patients provide a proof of enrollment that is customized to the treatment they consent to. The
customized proof can be obtained by implementing enrollments by check credentials that can be
filled in by the patients before use. 

• Patients consent by signing their treatment with an ordinary digital signature. The physicians
keep the signed reports with the patient’s record. If a health insurer detects that some budget is
exceeded, it may ask for patients’ signed consent. In addition, the KVs may spot-check physicians,
i.e., ask for the consent of randomly selected patients.

Exception handling is necessary if patients cannot or will not consent to treatments.

8.4.6 Charging for Paramedical or Specialist Treatment and Medications

When visiting a pharmacy or a paramedical provider a patient must show an enrollment and a pre-
scription. Similarly, when visiting a specialist, a patient must show an enrollment and a referral. In
each case, both legitimations will be accepted only if they are shown for the same target pseudonym.
(See Section 5.7 on p.121 and Section 7.3 on p.143 for implementations). The idea of matching pseud-
onyms is sketched in Figure 8–4. An enrollment E is issued to a policy holder for a source pseudonym

. Later a physician issues a referral or prescription R/P to this policy holder for source pseudonym

. Finally, the patient shows both legitimations for the same target pseudonym .

In principle, enrollments can be implemented by personal or coin credentials, whereas prescriptions
and referrals can be implemented by group signatures or coin group credentials. Double showing of
referrals and prescriptions can be prevented online by checking the health insurer’s database of all
referrals or prescriptions ever shown. Alternatively, double showing can be prevented offline by the
observer inside a mobile patient assistant. In this case, overshow prevention relies only on the tamper
resistance of observers. Since tamper resistance is not as trustworthy as cryptographic measures, dou-
ble showing should still be detectable after the fact. As referrals and prescriptions need to be shown for

FIGURE 8–4 Showing an Enrollment and a Referral for one Target Pseudonym
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8 MOBILE PATIENT ASSISTANTS
the same target pseudonyms as the accompanying enrollments, the policy holders’ identities must be
encoded into the source pseudonyms of these credentials by the insurer, who is ultimately liable.

Checking overshowing of legitimations online requires the health insurer’s database to be highly
available and also gives the insurer timing information about when patient legitimations are shown.
We therefore want to avoid any need for online access to the health insurer during patient visits to a
physician. We consider only enrollments that can be shown offline, and consider the implementation
options for referrals and prescriptions orthogonally (Table 8-1 on p.156).

ENROLLMENTS IMPLEMENTED BY PERSONAL CREDENTIALS

If referrals or prescriptions are implemented by group signatures, then the content of a referral or pre-
scription can simply be signed just as a normal message.4 This is efficient, but leaves referrals or pre-
scriptions traceable by collaborating physicians and hospitals or by physicians and non-medical
providers, respectively.5 Note that they can link any issuing and showing of these referrals and pre-
scriptions. In most cases, this appears to be a minor issue. Double showing can easily be detected if the
physicians are required to include a target pseudonym in their referrals or prescriptions. This can be
checked online when the prescription is shown.

If referrals or prescriptions are implemented by coin group credentials, then the only known way of
enclosing different contents of referrals or prescriptions is by using a different group signing key for
each issuing physician and each prescription. However, the prescriptions must be kept separate from
the issuing physician’s identity, because the former shall remain visible while the latter shall be kept
anonymous. Therefore we suggest to form referral groups and prescription groups, i.e., one group of
physicians for each possible referral or prescription content. The group signature for a referral or pre-
scription is then to be verified with the respective group’s public verifying key. Coin credentials add an
extra layer of privacy for the patients, because even if the health insurer and all healthcare providers
collaborate, they cannot determine which referrals or prescriptions are shown by the same patient(s). 

4) We assume that signatures are randomized, i.e., that any two signatures for the same prescription are different.

5) Powerful health insurers who may try to bribe or blackmail health care providers.

Important Advantages (+) 
and Disadvantages (–)

Referrals or Prescriptions

Group Signatures Coin Group Credentials

offline online offline online

Enrollments

Personal 
Credential

relies totally on 
tamper resis-

tance

+ efficient
– online

– traceablea

a. collaborating health care providers can trace referrals or prescriptions

+ offline
+ untraceable
– many keys

+ untraceable
– online

– many keys

Coin Credential
+ efficient
– traceable

– transferableb

b. without non-digital measures, enrollments are easy to transfer between individuals

less 
interestingc

c. like option to the left, but enrollments can be shown online only

+ offline
+ untraceable
– transferable
– many keys

less
interestingc

TABLE 8-1 Combinations of Implementations and their Characteristics
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This solution may or may not be appropriate for an entire national health system. For example, on
the German pharmaceutical market there are about 80,000 medications6 that are available only on
prescription or at a pharmacy. Combinations, dosages and other treatments mean that there are at
least several hundred thousand possible prescription contents. The situation is probably similar for
referral contents. Maintaining a referral or prescription group for each content is probably practical for
smaller subsets of contents, but it is unclear how this solution scales. 

If coin group credentials are shown offline, then the observer inside the patient’s mobile assistant is
supposed to prevent the patient from using a referral or prescription twice. If the observer is broken,
the health insurer should still be capable of detecting double showing after the fact. Hence, enroll-
ments are implemented by bond credentials, which bear a patient’s identity in their source and target
pseudonyms just like coin credentials.

If double show detection of coin group credentials is done online, then the recipient simply checks
with the healthcare provider if the coin group credential at hand is still unused.

ENROLLMENTS IMPLEMENTED BY COIN CREDENTIALS

If enrollments are implemented by coin credentials, then overshow prevention of referrals or prescrip-
tions can be enforced offline. Online solutions can be derived by replacing the role of the observer
inside the patients’ personal devices by an online request to the insurer. This appears to be less inter-
esting because it requires all non-medical providers to be online and tends to reduce service availabil-
ity of the system. 

If referrals or prescriptions are implemented by group signatures, then double showing can be pre-
vented by requiring physicians to include the patients’ target pseudonyms into the referral or prescrip-
tion content. If we assume that patients can never show two coin credentials for the same pseudonym,
then they cannot double show any prescription while going undetected. This assumption holds for
most existing coin credential schemes [35,73]. If referrals or prescriptions are implemented by coin
group credentials, then double showing of a prescription reveals the policy holder’s identity because
the prescriptions must be shown for the same target pseudonym as the accompanying enrollment coin
credential. Note that overshow detection of the coin group credential scheme is not needed since it is
already provided by the coin credentials implementing the enrollments. This solution has been pre-
sented in earlier versions of this work [26,27]. 

DELEGATING PURCHASE OF MEDICATIONS

Next we consider the case of patients who want friends or relatives to go and buy medications for
them. If enrollments are implemented by personal credentials, delegation to buy medications can be
done by giving away one’s mobile assistant to the delegate. In order to prevent misuse of the mobile
patient assistant, either the patients could block their assistants for anything but the intended pur-
chase, or the patients could have pre-established pseudonyms with their pharmacies, so that the dele-
gates can later reuse the established pseudonyms without being asked for a second biometric
verification. The latter solution presumes more trust in the delegate because there might be other pre-
established pseudonyms, which the delegate might use as well. The other way to delegate buying med-

6) Not counting homeopathic medications.
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8 MOBILE PATIENT ASSISTANTS
ications is by transferring a copy of the enrollment and of the prescription from the patient’s mobile
assistant into the delegate’s mobile patient assistant. The delegate must then be able to show both for
the same pseudonym without biometric verification. This extension of certificates has been introduced
in the second paragraph of Section 2.5 on p.11.

If enrollments are implemented by coin credentials or coin group credentials, then a patient needs
to transfer one of these coins and the prescription into the delegate’s mobile patient assistant. For the
coin credential, a transfer protocol is needed that moves the coin directly from the patient’s mobile
assistant into the delegate’s. If prescriptions are implemented by group signatures, they can simply be
copied.

8.4.7 Capping the Total Annual Reimbursement

The simplest method of enforcing cost control with this system is for the insurer to track the budget of
each physicians’ group. If any group exceeds its budget, it is asked to re-cover the submitters of the
highest invoices in order to find out who caused the trouble. 

Another way of enforcing, for example, a yearly cap of ¤L is to let physicians claim their expenses
in a virtual currency. At the end of the year the exchange rate of the virtual currency is calculated as
the quotient of ¤L over the sum of all claims. Each physician then gets reimbursed according to this
exchange rate. This is how German compulsory health insurers operate today. Of course, shorter inter-
vals of reimbursement are possible. 

8.4.8 Discussion

If compulsory health insurers provide specialized health insurance plans so that policy holders may
enroll in the plans of several insurers at the same time, then a common clearing center can be used to
cap the overall cost. As well as consenting to treatment, patients must also decide which insurer to bill
for a treatment. We are then concerned about whether the common clearing center needs to be online,
e.g. to check prescriptions for double showing. What are the most suitable implementation options?

For enrollments, personal credentials appear to be the most suitable implementation. They cannot
be transferred between individuals, yet it is easy to delegate personal credentials to a friend or relative.
Besides, only one personal credential needs to be issued to each policy holder for each insurance plan.
This solution is presented in more detail in Section 8.5 on p.159. An open question of an implementa-
tion by personal credentials is how to patients can be enabled to consent to their medical treatments.
The main advantages of coin credentials are that health insurers keep more control over the number of
enrollments for each policy holder. Extending them to check credentials enables patients to consent to
their medical treatments in a privacy protecting way. Their main disadvantage is transferability
between individuals (at least by lending or sharing personal devices).

For prescriptions, group signatures appear most appropriate. Their double showing can be strictly
prevented regardless of whether enrollments are implemented by personal or coin credentials, and they
do not make delegation any more difficult. 

For referrals, offline coin group credentials are promising. They provide an additional level of
untraceability, do not require the health insurer to be online every time a specialist is visited, and
their double showing must probably not be strictly prevented. In such a combination, the ideal imple-
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8.5 IMPLEMENTATION OF THE CLEARING PROCESS
mentation of enrollments are offline personal credentials. In this case, coin group credentials could
achieve full privacy and untraceability. This solution is also presented in Section 8.5 on p.159.

8.5 Implementation of the Clearing Process

The discussion of implementation options in Section 8.4.8 on p.158 has identified a practical solution
that yields strong privacy for patients and physicians. The enrollments are implemented by personal
credentials (Section 5.7 on p.90), referrals by coin group credentials (Section 7.1 on p.141), and pre-
scriptions by group signatures. In order to sign their invoices, registered physicians and hospital physi-
cians use group signatures, whereas pharmacies and paramedical providers use ordinary digital
signatures. Ordinary digital signatures [122,201] and group signatures [77,70,77] have been intensely
discussed and efficient implementations are proposed in the literature. Analogous to the definition of
blind signatures and blind group signatures, we use the operations genKey, sign, verify for the former
and genIKey, genGKey, gSign, verify, identify for the latter. In the following description of the
charging and clearing process we use the following simplified syntax of protocol calls in order to focus
on the essentials and keep the notation readable. Pseudonyms are denoted by small symbols as in
Section 8.4.6 on p.155. Observers are not included as participants in protocol calls. Neither are the
pseudonyms shared by mobile patient assistants and their respective observers, pseudonym witnesses,
co-witnesses nor biometric identities because they are all handled exactly as described in Section 5 on
p.59.

8.5.1 Initialization

First of all, security parameters and prekeys  are chosen for an ordi-
nary signature scheme (e.g., DSA [164], RSA [201]), the Blind CPGS(l,n) Mechanism 6.2 on p.130, the
CGC(n) Mechanism (Section 7.2 on p.143) and the PC Mechanism (Section 5.4 on p.90), respectively.

The health insurer H generates issuing keys for a personal credential scheme, usually one key for
each type of health insurance plan. Policy holders and health care providers are initialized as follows
(Figure 8–5).

INITIALIZATION OF POLICY HOLDERS

(i) Initially, the health insurer equips every policy holder with a tamper resistant observer that fits
into their mobile patient assistant. The policy holders personalize their observers with their bio-
metric identities. To save cost, the health insurer could team up with other authorities that have
already fielded some kinds of observers to individuals. In this case, the health insurer provides only
the necessary health insurance application software, which is then co-existing with other kinds of
application software within their policy holders’ observers. 

INITIALIZATION OF REGISTERED AND HOSPITAL PHYSICIANS

Physicians get organized in groups, managed by the KVs and hospitals, which charge for medical
treatment and issue referrals. To keep things simple, we consider only one group  of physicians who
charge for similar types of treatment and one group  of physicians who issue letters of similar refer-
rals. 

prekS prekG prekCG prekPC, , ,

G
G'
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8 MOBILE PATIENT ASSISTANTS
(ii) Each registered physician D and hospital physician E generates an individual key pair for a group
signature scheme (left hand equations of (8.1) on p.160). This will enable her to sign invoices for
medical treatment. In addition, each physician who is licensed to write letters of referral generates
an individual key pair of a coin group credential scheme (right equations of (8.1) on p.160). We
show this only for one referral content and therefore write only a bullet for the type index in the
right hand equations of (8.1) on p.160.

,

, . (8.1)

The KV generates group key pairs from appropriate public individual keys of the physicians they
have registered, and so do the hospitals for the physicians they employ:

, ,

Whether these groups may contain registered physicians and hospital physicians is subject to
negotiation. Finally, the health insurer registers each group by certifying its public key.

INITIALIZATION OF PHARMACIES AND PARAMEDICAL PROVIDERS

(iii)Each pharmacy and paramedical provider F generates a key pair for an ordinary digital signature
scheme and publishes the public key .

FIGURE 8–5 Initialization Phase
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8.5 IMPLEMENTATION OF THE CLEARING PROCESS
.

The health insurer registers each pharmacy and paramedical provider F by certifying their public
keys. Alternatively, some or all health insurers could form an association that organizes the certifi-
cation of pharmacies and paramedical providers in a centralized fashion.

8.5.2 Policy Holders’ Views

We are going to walk through a complete charging and clearing example including one health insurer
H, one of its policy holders P, a physician D, a specialist E and a pharmacy or paramedical provider
F. This subsection contains all actions in which the policy holder participates, and the following sub-
section explains how registered physicians charge their expenses to health insurers. An overview is
given in Figure 8–6. The final subsection shows how the health insurer can cap the total cost.

GETTING AN ENROLLMENT

(1) To get enrolled in a health insurance plan, a policy holder P introduces a pseudonym  to the
insurer H (operation intro) and obtains a personal credential EC for intermediate pseudonym 
in return:

.

FIGURE 8–6 Charging and Clearing of Referrals and Prescriptions
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8 MOBILE PATIENT ASSISTANTS
GETTING A REFERRAL OR PRESCRIPTION

(2) When patient P visits a registered physician D, then P first proves to be enrolled in a suitable
health insurance plan by using the personal credential EC for her intermediate pseudonym .
The physician D in turn gets to know P by his target pseudonym  and matching credential

. 

. 

If during the course of treatment, D wants to write a letter of referral he issues a coin group cre-
dential  to the patient P for the target pseudonym , which is now re-used as a source
pseudonym. The patient receives the coin group credential  for another intermediate pseud-
onym . The actual referral content determines the group  whose issuing key D must use:

.

If D wants to write a prescription he first asks P for a pharmacy target pseudonym , and then
signs the prescription content and the target pseudonym  using a group signature (in Figure 8–6
this signed prescription is denoted by a circle labeled by ):

.

If the patient visits a specialist E, then the specialist is supposed to run the same transactions
while using his own keys instead of D’s.

SHOWING A REFERRAL

(3) In order to obtain specialist treatment, patient P shows both her enrollment and referral for a joint
target pseudonym  to a specialist E:

ò  

ò  .

If the target pseudonym  has been shown before, then the patient’s observer refuses to assist in
using it again. If the observer’s tamper resistance is defeated, the health insurer can still identify
the policy holder by means of the transcript . E accepts only if both operations succeed and
reveal the same target pseudonym .

SHOWING A PRESCRIPTION

(4) In order to obtain her medications, patient P shows her enrollment at the pharmacy or paramedi-
cal provider F and lets F verify her prescription:

ò  

=  .





EC'

 EC ',[ ]D
[ ]P,( ) show pkH[ ]  EC,[ ]P,( )←

RC ' 

RC '
 G'

 RC ',[ ]P gIssue pkG'[ ] rkD' ,[ ]D
[ ]P, ,( )←

~
~
~

PC gSign pkG riD prescription ~,( ), ,( )←

{

{ EC '',[ ]E
{[ ]P,( ) show pkH[ ]  EC,[ ]P,( )

{ RC ' τR, ,[ ]E gShow pkG'[ ]  RC ',[ ]P,( )

{

τR
{

~ EC ''',[ ]E
~[ ]E,( ) show pkH[ ]  EC,[ ]P,( )

gVerify pkG PC prescription ~,( ), ,( ) TRUE
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8.5 IMPLEMENTATION OF THE CLEARING PROCESS
This is accepted only if both operations succeed for the same target pseudonym  and this pre-
scription has not been shown before endorsed by . The latter is checked online by contacting
the health insurer’s database. F obtains the signed prescription for charging purposes. The same
protocol is used by paramedical providers.

8.5.3 Healthcare Providers’ Views

CHARGING FOR MEDICAL TREATMENT (Figure 8–7)

(5) The physician D claims expenses for medical treatment anonymously. D uses a group signature to
sign his invoice, and the pseudonym and credential of his patient. This data and the group signa-
ture are sent to KV:

.

The credential  for pseudonym  tells the KV that a patient has seen one of the member
physicians of group G, which is managed by the KV. 

. (8.2)

In order not to allow physicians to simply re-use transcripts, the health insurer will check if the
target pseudonym  has been used before. Since the enrollment credentials ( ) point at their
issuing health insurers, physicians cannot re-use the same enrollment credential to bill the same
medical treatment to different health insurers. 

It might be even more desirable if the transcripts also carried some kind of patient’s consent to
the treatment to be reimbursed (cf. Section 8.4.5 on p.154). 

The KV archives all signed invoices by member physician and aggregates the details into
monthly or quarterly invoices to respective health insurers. These invoices itemize the medical
treatments and respective expenses during the billing period, are endorsed by the corresponding
anonymized invoices of member physicians’ and claim the total expenses from the respective
health insurers. The monthly or quarterly invoices are signed by the KV.

(6) The KV obtains lump sum reimbursements from the health insurers and refund the claiming phy-
sicians accordingly: 

The charging and clearing of medical treatment is summarized in Figure 8–7.

CHARGING FOR SPECIALIST TREATMENT (Figure 8–6)

(7) The specialist E claims expenses in much the same way as physician D, but in addition E attaches
to his invoice the transcript  of the patient’s referral:

.

In addition to the verification in step (6) above, the health insurer can check for double showing
by looking up the target pseudonym  in its database. If it is found, then the previous transcript

 will re-identify the cheater:

.

~
EC '''

σ gSign pkG rkD invoice  EC ', ,( ), ,( )=

EC' 

gVerify pkG invoice  EC ', ,( ) σ, ,( ) TRUE=

 EC'

τR
σ gSign pkG rkE invoice { EC '', τR, ,( ), ,( )←

{
τR'

pi make extract τR τR',{ }( )( )=
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8 MOBILE PATIENT ASSISTANTS
During reimbursement, the hospital takes the role of the KV in step (6).

CHARGING FOR MEDICATION AND PARAMEDICAL TREATMENT

(8) The pharmacy or paramedical provider F claims expenses in much the same way as a specialist.
Only the invoice contains a group signature for the prescription and an ordinary digital signature
by the pharmacy or paramedical provider and the insurer reimburses them directly rather than via
a hospital as in step (7).

8.5.4 Limiting the Total Cost

The above concept of charging and clearing enables the health insurers to limit the overall cost of the
system. Each health insurer can monitor the expenses for medical treatment, referrals and prescrip-
tions given or issued by each group of physicians. If certain groups exceed their budgets, the respective
KV or hospital can be asked to re-negotiate the reimbursements for their group members, or re-iden-
tify those physicians who have claimed expenses significantly above average:

.

In addition, the KVs could also recommend practices for subsequent spot-checking and a small per-
centage of policy holders can be asked to participate in cross-section studies. 

In addition, the health insurers can monitor pharmacies and paramedical providers individually.

8.6 Security

A security analysis of such a system in real life is beyond the scope of this work. This section shall only
summarize the evidence that the cryptographic kernel of the proposed implementation would satisfy a
more rigorous proof.

8.6.1 Availability and Integrity Requirements

Physician: Each patient shall receive only the treatment and medication prescribed and exactly as
often as prescribed. 

FIGURE 8–7 Charging and Clearing of Medical Treatment
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8.6 SECURITY
Referrals and prescriptions are implemented by coin group credentials and group signatures, respec-
tively. Double showing of referrals and prescriptions is prevented by each patient’s observer or
detected by the health insurer after the fact. Double showing of group signatures can also be detected
because pharmacies and paramedical providers check the health insurer’s pseudonym database online. 

Policy holder: If she presents a valid insurance certificate, letter of referral or prescription to a health-
care provider of her choice, the provider shall offer the requested product or service.

Again, effectiveness of enrollments, referrals and prescriptions follow from the respective credential
schemes. Availability of medical or paramedical services is a contractual rather than a technical mat-
ter. 

Pharmacies and Paramedical providers: Their bills get paid by the insurers if they are properly sup-
ported by proofs of treatment or purchase of medication.

Healthcare providers use transcripts of referral or prescriptions to prove referral; proofs that the prod-
uct or service was covered by the patient’s health insurance plan is embedded in the prescription or
transcript of enrollment. These transcripts also reveal their issuers’ group and so insurers can verify
physicians’ registrations. 

Health insurers: Only registered physicians should be able to issue prescriptions. Each policy holder
should be able to use prescriptions at most once (or according to a therapy plan). Each health
insurer should reimburse expenses only once and only if they have been spent for its own policy
holders. Health insurers should be able to cap the total reimbursement per year (“Deckelungsprin-
zip”).

Health insurers accept only invoices from registered groups of physicians, pharmacies etc. because
these providers have to submit their public keys during initialization. Unforgeability and overshow
prevention of enrollments, referrals and prescriptions have been discussed above. 

As personal credentials can only be used with the same observer present at the time of issue, and
as the observer is personalized to exactly one biometric identity, it is infeasible to use someone else’s
enrollments unless the tamper-resistance of observers is broken. And as the defeat of an observer only
allows the abuse of the credentials issued to its holder, such a defeat does not allow widespread fraud.
It is also to be expected that insurers may limit the lifetime of enrollments by issuing new keys period-
ically. The total reimbursement per year can be controlled by monitoring and budgeting the groups of
physicians. 

8.6.2 Privacy Requirements

Physician and Patient: Medical treatment requires trust between patient and physician. This relation-
ship must be protected against third parties’ interests; diagnoses, therapies and prognoses should
be strictly private. This rule should override, for example, a general obligation to escrow crypto-
graphic keys. In general, health insurers do not need to know and thus should not know which
physicians their policy holders visit.

Physicians achieve their privacy by charging and prescribing anonymously in one or more groups, and
patients enforce their privacy by using different pseudonyms for different health care providers. This
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8 MOBILE PATIENT ASSISTANTS
combination guarantees that no participant other than the patient and the physician can link any two
of their visits. 

Physician: At least by default, health insurers should not be able to monitor the physicians’ prescrip-
tion and other treatment habits. The interest of health insurers in cost control only justifies aggre-
gate and spot checks.

In our proposal, the health insurers can profile only groups of physicians, not individual physicians.

Policy holder: The policy holder’s right to ask a for second opinions implies that different healthcare
providers should not monitor policy holders by exchanging views on them.

Since a policy holder can use different pseudonyms for each visit to a provider, no two visits or pur-
chases can be linked from the data she provides. This feature is supported by the personal user devices
being indistinguishable on the network, e.g., no machine readable serial numbers must be present. 
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9

Conclusions and Open Questions
our basic categories of credentials have been defined according to their characteristic holder
authorizations. Credentials that can be shown only by those who have received them in the first

place are called personal credentials. They can serve as electronic substitutes, e.g., for anonymous non-
transferable membership cards. Credentials that are consumed when being shown are called coin cre-
dentials. They can serve as electronic substitutes for anonymous cash, coupons, electronic tickets and
specialized or customized currencies. Credentials that are transferable and do not get consumed are
called free credentials and those which are not transferable and get consumed are called bond creden-
tials. Bond credentials might help to implement, e.g., ballots in a voting scheme. 

A typical privacy requirement of credentials is unlinkability for holders. An efficient implementa-
tion of show-wise unlinkable personal credentials is given. It relies on tamper resistant hardware to the
least possible extent, namely to prevent holders from transferring their credentials by enforcing bio-
metric recognition. The new solution relies less on tamper resistant hardware and is more efficient
than previous proposals. Efficient implementations of unlinkable coin credentials have been proposed
before. The proposal by Brands is shown to be easily turned into an unlinkable bond credential
scheme. The concept of issuer anonymity (group credentials) is introduced for the four basic categories
of credentials. Issuer anonymity holds relative to a group and can be removed in case of disputes later
on. A practical implementation of coin group credentials is given, which is more efficient than previous
solutions for group sizes up to about 100 members.

As an application of several categories of privacy oriented credentials, we have considered a com-
pulsory health insurance system, where patients and physicians seek strong privacy protection from
health insurers and other, possibly illegitimate, 3rd party interests. If patients are willing to use some
kind of mobile user device such as a palmtop and health insurers are willing to rely on some tamper
resistant security modules implanted into the mobile patient assistants, then patients can receive med-
ical and paramedical treatment without revealing to their health insurers what treatment they receive,
nor from which physician. A complete electronic solution is described for charging and clearing medi-
cal and paramedical expenses in a way that protects the legitimate security and privacy interests of all
participants and, particularly, the patient-physician relationship. For example, the original proposal of

F
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a health insurance card in Germany 1992 suggested the card as a medium to communicate administra-
tive and medical data between physicians, pharmacies and other health care providers. Patients and
patient advocates appreciated the increased reliability of chip-card technology, but harshly criticized
the patients’ lack of control over what is stored or communicated by their cards. So patients rightfully
see little added value in any smart card solution. Our proposals suggest a technological leap towards
mobile patient assistants, which can give patients appropriate control over both administrative and
medical data.

Three interesting questions remain open for further cryptographic research: (1) Find a more gen-
eral definition of restrictive blind signature schemes, which captures at least the signature schemes
suggested by Chaum, Pedersen [73] and Brands [34]. (2) Construct group oriented personal creden-
tials. (3) Construct any Boolean combination of credentials of possibly different categories.

The design of new protocols and algorithms will remain a creative process, and finding new or
improved solutions needs a lot of experience. Therefore, one of the real challenges of cryptology is to
provide the measure sticks, theoretical foundations and heuristics to facilitate rigorous quality control
of new inventions. The golden goal, of course, is to make the definitory frameworks general enough so
that not every new invention requires a modified definition but yet applicable enough so that using the
theorems is more efficient than proving from scratch.
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big O notation
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least  s.t. Order of a group element a.

least  s.t. Order (or exponent) of a group G.

the subgroup of  of order q,  a divisor of 

the subset of generators of ,  a divisor of . The size 
of  is  (see below).

Euler’s totient function, where the factorization of n into prime fac-
tors is .

residue of x modulo n relative to a given representation of 

: multiplicative inverse of x modulo n (defined only for )

evaluate the right hand side and assign the result to the left hand 
side

equivalence of two witnesses

general composition of protocols  and  (Section 3.2.3 on 
p.21)

sequential composition of protocols  and  (Section 3.2.3 on 
p.21)
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