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ABSTRACT 
 
Rotavirus infection causing gastroenteritis is one of the major health concerns throughout the 
world. Millions of children are affected by the disease. Studying molecular mechanism and 
pathophysiology of the disease is important to understand and interpret possible therapeutical 
targets. Studies suggest that rotavirus infection alters phosphorylation of p70S6K, mitogen 
activated kinase (MAPK/ERK) and myosin light chain; induced inflammatory agents such as 
prostaglandin E2 and nitric oxide levels; and enhanced corticosterone levels to damage villi 
enterocytes in the small intestine. These changes lead to malabsorption, abnormal motility and 
diarrhea. Although Rotarix and RotaTeq vaccines are available, proposals are emerged to 
produce new candidate vaccines. 
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INTRODUCTION 
 

Rotaviruses belong to the family Reo-
viridae, which are non-enveloped viruses 
with an 11-segment double-stranded RNA 
genome (Velazquez et al., 1996; Franco et 
al., 2006; Bass et al., 2007). The name rota-
virus comes from the characteristic wheel-
like appearance of the virus when viewed 
by electron microscopy (the name rotavirus 
is derived from the Latin rota, meaning 
"wheel"). Rotavirus infection is highly con-
tagious. Group A viruses are the major 
cause of rotavirus diarrhea in the U.S. and 
groups B and C can cause gastroenteritis in 
adults. Rotaviruses cause approximately 
111 million episodes of gastroenteritis per 
year including 25 million clinic visits, 
2 million hospitalizations and numerous 
rotavirus-related deaths in children younger 
than 5 years of age worldwide (Parashar et 
al., 2003, 2006). Children between the ages 
of 6 and 24 months are at greatest risk for 

developing severe disease from rotavirus 
infection. 

Rotavirus infection in the bowel is the 
most common cause of severe diarrhea and 
causes the death of about 600,000 children 
worldwide annually. Children acquire im-
munity to rotavirus after several infections 
with different strains of the virus. In the 
United States rotavirus related hospitaliza-
tion is 4–5 %, and between 1 in 67 and 1 in 
85 children will be hospitalized with rotavi-
rus-mediated gastroenteritis by 5 years of 
age (Malek et al., 2006). This rate has not 
declined between 1993 and 2002 (Charles 
et al., 2006). In adults rotavirus infection 
effect is usually mild. Rotavirus is 
transmitted by the fecal-oral route, via 
contact with contaminated hands, surfaces 
and objects. Studying molecular and patho-
physiological changes in diseases are useful 
to understand and interpret possible thera-
peutical targets (Surendran, 2005; Suren-
dran and Kumaresan 2007; Surendran et al., 
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2007). Therefore the present study was 
aimed to understand molecular and patho-
physiological changes during rotavirus in-
fection. 

 
GENOME, PROTEOME AND 

CLASSIFICATION OF ROTAVIRUS 
 
The genome of rotavirus consists of 

11 double helix molecules of RNA 
containing 18,555 base pairs. Each helix is 
a gene, numbered 1 to 11 by decreasing 
size. Each gene codes for one protein, 
except genes 9 and 11 code for two. The 
RNA is surrounded by a three-layered 
icosahedral protein capsid. Viral particles 
are up to 76.5 nm in diameter and are not 
enveloped.  

The viral proteins VP1, VP2, VP3, VP4, 
VP6 and VP7 are structural proteins, can 
form the virus particle (virion). The 
nonstructural proteins, that are only 
produced in cells infected by rotavirus are 
NSP1, NSP2, NSP3, NSP4, NSP5 and 
NSP6.  

VP1 is an RNA polymerase enzyme, 
located in the core of the virus particle. VP2 
forms the core layer of the virion and binds 
the RNA genome. VP3 is an enzyme 
guanylyl transferase that catalyses the 
formation of the 5' cap in the post-
transcriptional modification of mRNA. VP4 
binds to molecules on the surface of cells 
called receptors and drives the entry of the 
virus into the cell. VP6 is highly antigenic 
and can be used to identify rotavirus 
species. VP7 is a glycoprotein that is 
involved in immunity to infection. 

NSP3 is bound to viral mRNAs in 
infected cells and it is responsible for the 
shutdown of cellular protein synthesis. 
NSP4 is a viral enterotoxin to induce 
diarrhea. NSP5 is encoded by genome 
segment 11 of rotavirus A and in virus-
infected cells NSP5 accumulates in the 
viroplasm.  

Due to the antigenic and genomic diver-
sity, rotavirus has been classified into 7 
groups (A, B, C, D, E, F and G) and 4 sub-
groups within group A. Although species A 
is the main cause of disease in human, Band 

C also infects human beings. All the 
7 groups cause disease in animals. The 
group A was further classified using the 
glycoprotein VP7 defining G types, and the 
protease-sensitive protein VP4 defining P 
types. The P-type is indicated by a number 
for the P-serotype and by a number in 
square brackets for the corresponding P-
genotype. G-serotypes are similarly num-
bered but the G-genotype number is the 
same as the G-serotype. Approximately 
14 G types and 20 P types have been re-
ported, of which approximately 10 G types 
and 11 P types are identified in humans. 
Rotaviruses of different G and P types co-
circulate and the main types found are 
G1P1A[8], G2P1B[4], G3P1A[8], 
G4P1A[8]. Naturally circulating rotaviruses 
undergo point mutations which can be used 
to classify lineages and sub lineages within 
types. 

 
GEOGRAPHICAL DISTRIBUTION OF 

ROTAVIRUS 
 
Rotavirus infection has been reported 

throughout the world. Studies between 
1986 and 2006 showed that more than 51 
rotavirus genotypes were found in Brazil. 
Approximately 43  of genotype was that of 
P[8]G1, followed by P[8]G9 (22 ) and 
P[4]G2 (7 ) (Gurgel et al., 2008). 

In Kenya, the genotype G1 was mainly 
observed up to the year 2002. Then G9 has 
emerged as the most predominant genotype 
and followed by a less frequent genotype 
G8 (Kiulia et al., 2008). Genotype P[8]G9 
was mainly found throughout Latin Amer-
ica (Araujo et al., 2001). In the United 
States, the G9 genotype was detected in a 
1995–1996 outbreak (Ramachandran et al., 
1998). In Australia, the overall G9 detec-
tion rate increased up to 29 % in 2001 
(Kirkwood et al., 2003). In Japan, G9 was 
mainly reported in 1998–1999 (Zhou et al., 
2000).  

In India, G9 strains were detected and 
were usually found in combination with the 
P[11] or P[6] genotypes at a detection rate 
of about 20 % (Das et al., 1994). While 
genotypes G1P8, G2P4, G3P8, and G4P8 
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were also seen among Indian children 
(33 %), strains of P6 (G1P6, G2P6, G3P6, 
G4P6, and G9P6), which primarily infect 
asymptomatic newborns but are rare in 
children with diarrhea were common in In-
dia (43 %) (Ramachandran et al., 1996). 
The P[8]G9 was found in New Delhi in late 
1998 (Jain et al., 2001).  

In Europe G1–G4 and G9 were the most 
prevalent genotypes identified: Genotype 
G1 was identified in Spain, Sweden, and 
the United Kingdom; G9 in Italy, France, 
and Belgium; and genotype G4 in Ger-
many. Only the G4 and G9 genotypes were 
identified in all areas (Banyai et al., 2004; 
Damme et al., 2007). 

 
SYMPTOMS OF THE DISEASE 

 
The symptoms of rotavirus infection 

usually arise within 48 hrs period. Mild fe-
ver, vomiting, watery diarrhea and abdomi-
nal pain are the symptoms of the disease. 
Watery diarrhea occurs several times a day. 
Rotavirus infection occasionally leads to 
severe dehydration in infants and children. 
Symptoms of dehydration include lethargy, 
dry, cool skin, absence of tears when cry-
ing, dry mouth, sunken eye and extreme 
thirst. 

 
DIAGNOSIS OF THE DISEASE 

 
Rotavirus is shed in high concentration 

in the stool (~1012 viruses/G) of children 
with gastroenteritis. Therefore measurement 
of rotavirus antigen in the stool has been 
used to identify rotavirus infected patients. 
Enzyme immunoassay (EIA) directed at an 
antigen common to all group A rotaviruses 
has been widely used to determine the virus 
antigen presence in the stool. Latex aggluti-
nation method is also used and this tech-
nique may be less sensitive than EIA. Elec-
tron microscopy and polyacrylamide gel 
electrophoresis are also used to determine 
the virus (Beards, 1988). Reverse 
transcription-polymerase chain reaction can 
detect all species and serotypes of rotavirus 
(Nishimura et al., 1993; Fischer and 
Gentsch, 2004). Enzyme immunoassay for 

rotavirus serum immunoglobulin G (IgG) 
and immunoglobulin A (IgA) antibodies are 
the serologic methods used to determine 
rotavirus infections (Zijlstra et al., 1999; 
Zhang et al., 2000; Fischer et al., 2005).  

 
MOLECULAR AND 

PATHOPHYSIOLOGICAL CHANGES 
 

Rotavirus group A level decreases in the 
rat stomach by 72 hour post infection (hpi) 
and in the intestine between 4 and 9 days 
(Ciarlet et al., 2002; Crawford et al., 2006). 
5 day old rat pups gavaged with rotavirus 
showed virus particles in the ileum even 
after 3 day period of infection. Approxi-
mately 30 % rats showed high level of virus 
presence in the ileum at 72 hpi. These stud-
ies suggest that either rotavirus does not 
severely infect all rats or virus level de-
creases with a progress of time period. Il-
eum villi length in the infected rats was de-
creased at 72 hpi.  

Villus enterocytes are mature, non-
proliferating cells covering the villi that 
regulate digestive and absorptive functions. 
The absorptive enterocytes are expressed on 
the apical surface and synthesize a number 
of disaccharidases and peptidases to carry 
out digestive functions. Absorption across 
the enterocyte barrier occurs both by pas-
sive diffusion of solutes along electro-
chemical or osmotic gradients and by active 
transport. Water transport occurs through 
transporters such as the sodium-glucose co-
transporter 1 base (SGLT1) transport water 
along with solute (Loo et al., 2002). The 
crypt epithelium lines the crypts and is the 
progenitor of the villus enterocytes. Crypt 
cells do not have microvilli and absorptive 
functions of the enterocyte and actively se-
crete Cl– ions into the intestinal lumen. In 
the normal animal, the combined activity of 
the enterocytes and crypt cells results in a 
constant bidirectional flux of electrolytes 
and water across the epithelium. We ob-
served that rotavirus infects mainly entero-
cytes of the small intestine. Rotavirus group 
A and B infection causes vacuolation of the 
villi especially enterocytes in the severely 
infected rat ileum (Lane et al., 1993; Cow-
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ley et al., 1994; Reinhard et al., 1994). The 
vacuolation of enterocytes in the villi of 
rotavirus infected small intestine is shown 
in Figure 1. These studies suggest that rota-
virus infects enterocytes of the small intes-
tine and subsequently alters structure and 
function of the epithelium. Rotavirus group 
B infection in the neonatal rat reduced the 
villi height in both jejunum and ileum, and 
this height increased from 4 days on (Salim 
et al., 1995), suggesting auto-recovery of 
the rotavirus infected villi in the rat. Viral 
antigen and infectious virus frequently enter 
the circulation. Approximately 67 % of in-
testinal fluid and electrolyte secretion dur-
ing rotavirus infection was due to the acti-
vation of enteric nervous system. Lundgren 
et al. (2000) suggest that rotavirus infection 
primarily impedes enterocytes development 
and subsequently affects the function of not 
only the epithelium but also the enteric 
nervous system. Neurological disorder ob-
served in children with rotavirus infection 
was concomitant convulsions (Keidan et al., 
1992), as rotavirus has ability to infect the 
central nervous system (Lynch et al., 2001). 

P70S6Kinase (p70S6K) belongs to 
growth factor-regulated serine/threonine 
kinase family. In many cell types phosphor-
rylated p70S6K (pp70S6K) regulates transit 
of cells from G1 to S phase of the cell cycle 
(Lane et al., 1993; de Groot et al., 1994; 
Chou and Blenis, 1995). Thus pp70S6K has 
the capacity to regulate gene expression.  

Recent studies have shown that pp70S6K 
can directly phosphorylate nuclear factor 
cAMP-responsive elements modulator 
(CREM) (de Groot et al., 1994). Activation 
of p70S6K can occur by activation of a 
mTOR-dependent pathway targeting 
Thr389 and an ERK1/2-dependent pathway 
targeting Thr421/Ser424 (Koltin et al., 
1991; Ferrari et al., 1993; Fruman et al., 
1995; Lehman et al., 2003; Wing et al., 
2005). Mitogen-activated protein kinase 
(MAPK) has been shown to play a role in 
transducing extracellular signals into a cel-
lular response. The p42/44 MAPK is also 
known as extracellular signal-regulated 
kinase (ERK), which regulates cell growth 
and differentiation (Cowley et al., 1994; 
Hill and Treisman, 1995). 

Phosphorylation of p70S6K (THR421/ 
SER424) and mitogen activated protein 
kinase (MAPK/ERK) were found to be de-
creased in the rotavirus severely infected 
ileum. Since pp70S6K (Chou and Blenis, 
1995; Surendran and Kondapaka, 2005; 
Surendran et al., 2005) and p42/44 MAPK 
(Cowley et al., 1994; Hill and Treisman, 
1995) regulates cell growth, down regula-
tion of these molecules and vacuolation of 
the ileum villi in the rotavirus infected rats 
suggest that these proteins likely to contri-
bute to vacuolation of the villi seen in the 
infected rats. Destruction of villi entero-
cytes by the virus likely to affect structural 
and functional integrity of the epithelium 
and thus contribute to malabsorption.  

Figure 1: Immunohisto-
chemical staining of rat 
small intestine at 72 hour 
post infection. Rat small 
intestine stained with he-
matoxylin and eosin 
showed severe vacuola-
tion in the rotavirus in-
fected villi enterocytes 
(magnification 20x). 
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Corticosterone is a glucocorticoid pro-
duced by the adrenal cortex, and is a pre-
cursor to aldosterone. Changes in the me-
tabolism of glucocorticoids within periph-
eral lymphatic organs and in immune cells 
could modulate not only the suppression of 
cell activation by pro-inflammatory cyto-
kines but also other immunomodulatory 
processes (Elenkov and Chrousos, 1999; 
McKay and Cidlowski, 1999). Corticoster-
one upregulation has been reported during 
inflammation in IBD patients and colitis 
(Hanauer, 2004; Ghia et al., 2007). In rats, 
high-dose of glucocorticoid acutely inhibits 
protein synthesis, decreases the phosphory-
lation of both 4E-BP1 and p70S6K (Shah et 
al., 2000). Rotavirus infected rat showing 
high level of plasma corticosterone suggests 
that corticosterone likely downregulates 
pp70S6K. 

Elevated levels of prostaglandin E2 pro-
duction was observed in the rotavirus in-
fected intestine (Zijlstra et al., 1999). 
Upregulation of prostaglandin E2 can in-
duce cell death including epithelial cell 
death (Surendran, 2001). The viral protein 
NSP4 was found to have toxin-like activity 
(Zhang et al., 2000) and induced nitric ox-
ide synthase (Borghan et al., 2007). 
Upregulation of nitric oxide synthase result-
ing elevated levels of nitric oxide leads to 
peroxynitrite production, to inhibit cell mi-
gration and cell growth (Surendran, 2008), 
and functional deficit in the severely in-
fected intestine, as enteric neuron contact 
with smooth muscle is important for normal 
contraction and relaxation of the gastro-
intestine (Surendran, 2008). Meanwhile 
normal levels of nitric oxide contribute to 
cell migration and cell growth. Thus nitric 
oxide induces cell growth or cell death in a 
time and dose dependent manner.  

Normal phosphorylation of myosin light 
chain (pMLC) is important for normal 
smooth muscle contractility (Patil et al., 
2004). Decreased pMLC in the rotavirus 
infected rat ileum suggests that contraction 
of smooth muscle is likely suppressed in the 
rotavirus infected ileum.  

 

TREATMENT OF THE DISEASE 
 

Intake of fluid is important to avoid oral 
dehydration. In healthy subjects the disease 
lasts only a few days because of immune 
system. Antibiotics are administered intra-
venously. Electrolyte solution is adminis-
tered into the vein of dehydrated patients. 
The rhesus rotavirus reassortant vaccine 
(Rotashield) was withdrawn from the mar-
ket after the discovery of a rare association 
with intussusception. Vaccines to prevent 
rotavirus infection are available: the penta-
valent bovine-human reassortant vaccine, 
Rotarix by GlaxoSmithKline and the 
monovalent human rotavirus vaccine, 
RotaTeq by Merck (Dennehy, 2008). Both 
are taken orally and contain disabled live 
virus. Both vaccines are safe and effective 
in western industrialized countries and in 
Latin America. Proposal is underway to de-
velop new candidate vaccines with most 
safe, effective and economically affordable 
for the children of Third World nations 
(Ward et al., 2008). 

 
CONCLUSION 

 
Rotavirus severe infection decreased 

pp70S6K, pMAPK and pMAPK levels and 
increased prostaglandin E2 and nitric oxide 
toxicity to impede normal development of 
villi enterocytes of the small intestine and 
the consequent change in structure and 
function of the epithelium. These changes 
are likely to lead malabsorption and abnor-
mal motility of the gastrointestine during 
rotavirus infection.  
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