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Ṽj,t MODWT coefficient constituted on the jth step of the pyramid algorithm

Vj,t coefficient constituted on the jth step of the pyramid algorithm

W matrix defining the DWT

wT
j• (j + 1)th row of the matrix W1 of the pyramid algorithm

W
(HH)
j jth level high-pass filtered matrix of a two-dimensional wavelet decompo-

sition

W
(HL)
j jth level high/low-pass filtered matrix of a two-dimensional wavelet de-

composition



xiv List of Symbols

W
(LH)
j jth level low/high-pass filtered matrix of a two-dimensional wavelet de-

composition

W
(LL)
j jth level low-pass filtered matrix of a two-dimensional wavelet decomposi-

tion

Wj submatrix of W corresponding to scale τj

wj subvector of w corresponding to scale τj

W̃
(HH)

j jth level high-pass filtered matrix of a two-dimensional MODWT decom-

position

W̃
(HL)

j jth level high/low-pass filtered matrix of a two-dimensional MODWT de-

composition

W̃
(LH)

j jth level low/high-pass filtered matrix of a two-dimensional MODWT de-

composition

W̃
(LL)

j jth level low-pass filtered matrix of a two-dimensional MODWT decom-

position

W̃j submatrix of the MODWT matrix W̃ corresponding to scale τj

w̃j subvector of the MODWT vector w̃ corresponding to scale τj

W̃
(HH)
j,t1,t2

wavelet coefficient of a two-dimensional MODWT of scale j at time com-

bination t1, t2 in W̃
(HH)

j

W̃
(HL)
j,t1,t2

wavelet coefficient of a two-dimensional MODWT of scale j at time com-

bination t1, t2 in W̃
(HL)

j

W̃
(LH)
j,t1,t2

wavelet coefficient of a two-dimensional MODWT of scale j at time com-

bination t1, t2 in W̃
(LH)

j

W̃
(LL)
j,t1,t2

wavelet coefficient of a two-dimensional MODWT of scale j at time com-

bination t1, t2 in W̃
(LL)

j

W̃j,t MODWT wavelet coefficient at time t constituted on the jth step of the

pyramid algorithm

W (λ, t) wavelet coefficient of scale λ at time t

W
(HH)
j,t1,t2

wavelet coefficient of a two-dimensional wavelet transform of scale j at

time combination t1, t2 in W
(HH)
j

W
(HL)
j,t1,t2

wavelet coefficient of a two-dimensional wavelet transform of scale j at

time combination t1, t2 in W
(HL)
j

W
(LH)
j,t1,t2

wavelet coefficient of a two-dimensional wavelet transform of scale j at

time combination t1, t2 in W
(LH)
j



List of Symbols xv

W
(LL)
j,t1,t2

wavelet coefficient of a two-dimensional wavelet transform of scale j at

time combination t1, t2 in W
(LL)
j

Wn nth wavelet coefficient of the DWT

Wj,t wavelet coefficient at time t constituted on the jth step of the pyramid

algorithm

Statistical methods

α significance level of a statistical test

αk multiple significance level for k tests

a vector for the definition of a linear decision rule

a(ωn) average distance between ωn and all other objects of the same cluster

aj discriminant coefficient corresponding to the jth variable

a∗j standardised discriminant coefficient corresponding to the jth variable

B(C) matrix of variances between the clusters of the partition C

b(ωn) average distance between ωn and all objects in the neighbour cluster
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Chapter 1

Introduction

Spectrometric methods offer a high variety of potential applications, not only in highly

specialised laboratories, but also in everyday medical practices, airports, and even space

shuttles. Coupled to other analytical methods to achieve more accurate separation results,

they generate a high amount of complex data which is hard to analyse manually without

automated algorithms. The central goal of this thesis is, therefore, to develop efficient

processing methods for three-dimensional spectrometric data.

1.1 Motivation and objectives

”Sex, beer, and lung cancer” – this phrase, sounding like the vita of a rock’n’roll star,

was actually part of a headline published to promote a new screening instrument for

the monitoring of human breath.1 Using ion mobility spectrometry, this device allows the

detection of volatile organic compounds (VOCs) in exhaled air to give various information,

for example about the sexual activity of men by the presence of pentane. While the same

instrumentation can also be used for monitoring the fermentation processes of beer, it

was now colocated in a lung hospital to analyse the composition of metabolites in human

breath in correlation with different lung diseases.

In a collaboration with the ISAS - Institute for Analytical Sciences, Dortmund, and the

lung hospital Hemer, the exhaled air of patients suffering from different lung diseases

was studied to screen for characteristic patterns allowing an early diagnosis of bronchial

maladies. After a pilot study comparing the analytic measurements of patients with lung

1Original German title ”Künstliche Nasen riechen Sex, Bier und Lungenkrebs”, published in

”Stuttgarter Zeitung” on 14/11/2006.

3
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cancer and those of healthy control persons yielded initial promising results presented in

this work, the study period was extended for a further four years. Although more diseases

were observed over the duration of this survey, this thesis concentrates on lung cancer –

firstly comparing with a control group, and later with the aim to discriminate between

different forms of tumors.

Ion mobility spectrometers (IMS) are especially suitable for this application as they can

be used at ambient pressure, with air as the carrier gas, and offer short analysis times and

low costs. By coupling the spectrometer with a multi-capillary column (MCC), the sample

humidity can be separated at the very beginning of the analysis. The measurements of this

two-dimensional separation, however, consist of a high amount of complex data, making

it hard to extract the relevant information.

The objectives of this work, therefore, were the provision of data analysis methods al-

lowing the efficient characterisation of MCC/IMS measurements via peak detection and

quantification, as well as the development of a sufficient preprocessing strategy. Addition-

ally, discriminating between different groups of patients and control persons, involved the

preparation of the obtained measurement characterisations for further statistical evalua-

tions.

1.2 Methodology

The methodology for peak detection and quantification can be best described with the

aid of the following diagram:
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Figure 1.1: Scheme of current peak detection methodology.
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The illustration shows how the research arrived at the focus area investigated in this thesis.

Peak detection is already well researched in single spectra, although even for this field no

reliable method exists. A promising new approach, however, was published by Randolph

and Yasui (2006), based on multi resolution analysis by means of wavelets, allowing the

detection of shoulder peaks that do not possess independent maxima. Methods for three-

dimensional spectra series rarely exist, and the few that have been introduced only connect

the results of algorithms developed for single spectra in an additional step to adapt for

two-dimensional separations.

On the other hand, the idea of the peak detection method developed in this work, aims to

directly grasp peaks in the three-dimensional data structure of devices, for example, cou-

pled with chromatographic methods to benefit from the newly gained separation of signal

peaks. This was realised by an enhancement of the wavelet-based method in the applica-

tion with two-dimensional wavelet transforms to create a new, powerful peak detection

method allowing the detection of peaks hidden in the depth of noisy data structures, or

those which are poorly separated or covered by other peaks.

1.3 Achievements and contributions

The achievements accomplished in this work can be subdivided into two main sections: the

preprocessing of raw spectra series for better processability, and the actual peak detection,

which was linked closely to the application of the introduced methods in continuative

analyses.

The following four main issues in the area of preprocessing were investigated:

• A better comparability of spectra in the IMS dimension was achieved by the devel-

opment of a reproducible version of the (inverse) reduced mobility. The method is

now used as a standard at the ISAS - Institute for Analytical Sciences, Dortmund.

• An improvement of the alignment of spectra series in the MCC dimension could be

reached by the correction of retention time with respect to the value of the column

temperature.

• An efficient data reduction and an increased signal-to-noise ratio was accomplished

by a combined application of smoothing and denoising by the means of wavelets.

This strategy was presented in an oral contribution at the Workshop ”Recent
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Progress in Wavelet Analysis and Frame Theory” (Bremen, Germany, January

2006).

• A detailing function was developed to adjust for the influence of a characteristic

feature in the breath measurements, which was interfering with peak detection. This

fitting of a modified lognormal function with a specially created penalty term was

published together with the combined wavelet strategy for smoothing and denoising

by Bader et al. (accepted in 2008).

The peak detection and further analyses comprised of the following items:

• The approach of ’merged peak cluster localisation’ was initially developed. Together

with the concurrent generation of general peak areas it provided a first method for

peak characterisation and a continuative analysis, which was published in Bader

et al. (2005) and Bader et al. (2006).

The application of this procedure in the comparison of lung cancer patients with a

healthy control group yielded a perfect discrimination between the groups, which

was the subject of an analytical and a medical article (Baumbach et al., submitted in

2007; Westhoff et al., submitted in 2008) and was awarded with the Science Award

of the German Association of Pneumology in 2006.

• The enhancement of this method to the ’growing interval merging’ algorithm allowed

a higher sensitivity in peak detection and a more sophisticated characterisation of

peaks by ellipses. This method was presented together with the developed pre-

processing strategy in two invited talks at the University of Barcelona (Barcelona,

Spain, September 2007) and the 2006 Colloquium Series at the Department of Chem-

istry and Biochemistry, Ohio University (Athens, USA, November 2006), as well as

in an oral contribution at the conference Compstat 2006 (Rome, Italy, August 2006).

A first application of this algorithm was the analysis of data generated by pyrolysis-

gaschromatography/differential mobility spectrometry (py-GC/DMS) of bacteria

cultures during a research stay at the New Mexico State University, USA. Results

from this project were presented in a joint poster contribution at the ASMS Confer-

ence on Mass Spectrometry (Indianapolis, USA, June 2007) and published in Prasad

et al. (2007).

• Lastly, a wavelet-based peak detection method was developed allowing the detection

of shoulder peaks without independent maxima, which was applied for the compari-

son of different forms of lung tumors. The approach is planned to be published from

both the chemometric and medical point of view.
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All calculations, the construction of figures, as well as the implementation of algorithms

was performed in the statistical software package R (R Development Core Team, 2007).

1.4 Outline

This thesis is organised in 9 chapters, structured in 5 parts. In addition to the preliminary

introduction, methods for the processing of spectra and the further analysis as well as the

required theory are described and concluding remarks and proposals for potential future

work are given.

Theory

Chapter 2 comprises of details concerning the IMS method, giving an idea of the

physical background, the resulting data, and the connected problems.

Chapter 3 describes wavelet methods for one- and two-dimensional transforms as well

as the multi resolution analysis.

Chapter 4 outlines the methods of cluster analysis, group comparisons, and discrimi-

nant analysis, which are later used for the processing of spectra series and subsequent

analyses.

Spectra processing

Chapter 5 provides details on the preprocessing steps for three-dimensional data cre-

ated during this thesis.

Chapter 6 introduces the developed peak detection methods and illustrates its bene-

ficial outcome.

Data analysis

Chapter 7 enhances the processing of spectra series data for the analysis of entire

studies by the creation of general peak areas and proves the applicability of the methods

evolved from this work in two different applications.

Chapter 8 transfers the introduced methods to another spectrometric method, used

in the analysis of bacterial measurements by py-GC/DMS.

Concluding remarks

Chapter 9 gives ideas for future work and summarises the main conclusions of this

work that enabled the extraction of essential information from complex spectra se-

ries and allows the use of promising spectrometric data for various process analytical

applications.
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Chapter 2

Ion mobility spectrometry

Ion mobility spectrometry is a rapid, highly sensitive analytical method for the charac-

terisation of gaseous samples with low detection limits. Whilst not generally applied for

the identification of unknown compounds, it can be used in the quantification of analytes

known to be involved in specific processes. Furthermore, instrumentation miniaturisation

and the development of portable hand-held devices yielded a highly flexible applicability

at a relatively low cost. Advantageous characteristics of this method include the operat-

ing at ambient pressure without the need for a vacuum, and the use of air as a potential

carrier gas.

Originally developed for the detection of trace compounds such as gaseous pollutants in

air, more than 70,000 IMS units are now in use worldwide, mostly applied to detect chem-

ical warfare agents, explosives, or drugs, e.g. at international airports. Additionally, the

use of IMS has advanced in the area of process analysis for applications such as monitor-

ing of contamination in water, odoration of natural gas, human breath composition, and

metabolites of bacteria (Baumbach, 2006).

The functioning of an IMS is based on the ionisation of gaseous analytes and the sub-

sequent detection of the characteristic drift time of ion swarms through an electric field

(Section 2.1). For complex biological samples, overlaps of signal peaks in the IMS spec-

tra can constitute the coupling of an IMS with a gaschromatographic column to achieve

an increase of separation. In this case complicated three-dimensional spectra series arise

(Section 2.2) making the extraction of the essential information difficult (Section 2.3).

11
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2.1 Instrumentation

The measurements from this investigation were generated with an ISAS custom-designed

device (Fig. 2.1), coupling an IMS (Subsection 2.1.1) with a gaschromatographic column

(Subsection 2.1.2).

Figure 2.1: ISAS custom-made multi-capillary column/ion mobility spectrometer device:
(a) exterior view with (1) temperature control for column heating, (2) drift gas inlet, (3)
outlet for drift and sample gas, (4) pump switch, (5) control for shutter grid opening time,
(6) measuring board connection, (7) sample inlet for use without column, (8) sample inlet
into sample loop, (9) carrier gas inlet for column, (10) drift voltage control, (11) voltage
switch, and (12) power switch; (b) interior view showing the multi-capillary column (MCC)
and the ion mobility spectrometer (IMS)

2.1.1 Functionality of an ion mobility spectrometer

An IMS can be subdivided into two main parts: the ionisation and reaction region, where

gaseous analytes are ionised; and the drift region, where their characteristic drift times

are detected (Fig. 2.2, left).

A sample gas is introduced through the gas inlet into the ionisation and reaction region of

the IMS, using synthetic air as carrier gas. With radioactive nickel (63Ni) as the ionisation

source, electrons in the form of beta rays are emitted with a maximum energy of 67 keV,

therefore, no external power supply is required. This source allows measurements either

in the negative or the positive mode, where only the latter will be regarded here. After

ionisation, the ion swarms are released to the drift region by opening an ion shutter

periodically, meanwhile, the continuous gas flow can leak across the gas outlet.
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In the drift tube of length lD, an electric field of strength E = UD

lD
with drift voltage UD is

established using drift rings for stabilisation. Collisions of the sample gas molecules with

those of a drift gas such as air, flowing from the Faraday plate at the end of the drift

tube towards the ion shutter, yield a constant drift velocity vD. At the Faraday plate, ion

swarms moving through the upstreamed aperture grid are converted into a voltage, whose

intensity is measured at equidistant points in time.

Measuring the drift time x, required to pass through the drift tube, allows conclusions

about the analytes to be made, as the characteristic drift velocity vD = lD
x

of an ion swarm

is otherwise only dependent on the known drift length lD. The velocity vD is proportional

to the electric field strength E with

vD = KE,

where K can be formed as

lD
x

= K
UD

lD
⇔ K =

l2D
UDx

. (2.1)

At constant measurement conditions the coefficient K, describing the mobility of ion

swarms, is characteristic for the underlying analytes, explaining the terminology of ion

mobility spectrometry.

Collisions of the high-energy electrons with carrier gas molecules yield so-called reactant

ions. Using air as the carrier gas in the positive mode, mainly H+(H2O)n ions with

n ∈ {1, . . . 7} are formed. These result in the characteristic signal of the reactant ion peak

(RIP) in the generated spectra. The overall loading of the reactant ions is dependent on

the strength of the ionisation source and gives an upper limit for the number of molecules

that can be ionised.

Figure 2.2: Scheme of an ion mobility spectrometer (left) and picture of a multi-capillary
column (right), which allow an improved analyte peak separation in a combined set-up.
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The standard reaction for molecule ionisation,

M +H+(H2O)n →MH+(H2O)n →MH+(H2O)n−m +mH2O,

where n ∈ {1, . . . 7} and m ∈ {0, 1}, can be divided into three main stages for simplifica-

tion.

Firstly, the initial reaction of molecules, M , with the reactant ions takes place, resulting

in the formation of an intermediate product, MH+(H2O)n, which can be further broken

down into a monomer product, MH+(H2O)n−m, and water molecules, H2O. Importantly,

the reaction can only proceed if a number of criteria are met, e.g. that the molecules M

possess a higher proton affinity than the reactant ions.

If the concentration of M is high, the monomer product ions, MH+(H2O)n−m, can react

with one another and produce proton bounded dimers, M2H
+(H2O)n−m, following the

reaction equation

MH+(H2O)n +M →M2H
+(H2O)n−m +mH2O.

The presence of monomers and dimers results in additional peaks in the ion mobility

spectra, and in the ideal situation, a total separation of different analytes can be obtained

when each takes a different time to pass the drift tube (Eiceman and Karpas, 2005).

2.1.2 Preseparation

For complex biological samples, an overlap of different analyte peaks can hinder the

identification and quantification of sample constituents with an IMS. Coupling with a

gaschromatographic column can, therefore, increase separation and, comparatively, a

multi-capillary column (MCC) approved to be especially suitable for the investigation

of human breath, as it separates sample humidity at the very beginning of the analysis

(Ruzsanyi et al., 2005). In this, the number of interfering peaks, caused when high relative

humidity of the carrier gas leads to the formation of ion clusters with water molecules, is

diminished and the analysis of exhaled air, possessing a relative humidity of 100 %, can

be improved.

Consisting of a single glass tube with 1000 parallel 40 µm capillaries (Fig. 2.2, right),

an MCC provides short retention times with a high degree of separation and resolution.

Additionally, it retains a high efficiency over a wide range of organic compounds, can work

with any reasonable sample size, and appears to be particularly promising in the analysis

of trace amounts of compounds. Thus, it substantially increases sensitivity and reduces

analysis time.
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2.2 Data

The data resulting from an IMS are spectra s of the form

s = (z1, . . . , znD
)T ,

where the values zi are the signal intensities of ions arriving at the end of the IMS drift

region at equidistant drift times xi, i = 1, . . . , nD (Fig. 2.3 a). Each spectrum is generated

by averaging several scans resulting in a higher signal-to-noise ratio.

When coupling an MCC to the IMS, the additional dimension of retention time when

analytes pass from the column to the IMS is obtained, whose values are denoted by yj,

j = 1, . . . , nR. Then series of spectra are generated that can be represented in a matrix

S = (s1, . . . , snR
) = (zij)i=1,...,nD; j=1,...,nR

,

consisting of intensity values zij. The resulting data can be displayed in a heatmap, where

the axes define a grid of equidistant drift and retention times, and the signal intensity for

each position is encoded by a colour scheme (Fig. 2.3 b).

The interesting features inherent in those data are signal peaks appearing as oval spots

in the heatmap. The high peak apparent in the single spectra, but also in the heatmap of

a spectra series as a bar across all retention times at a drift time of about 17 ms, is the

afore-mentioned RIP. It can be seen as the reservoir of ions, as its height varies inversely to

Figure 2.3: Graph of (a) a single spectrum and (b) a spectra series in a heatmap: local
elevations and oval spots represent analyte peaks, respectively.
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Table 2.1: Relevant measurement parameters of the ISAS custom-made MCC/IMS device

IMS Preseparation

Ionisation source 63Ni (radioactive) Column type MCC, OV5

Polarity positive Column length 20 cm

Drift voltage 4 kV Column temperature 30 ◦C

Drift tube length 12 cm Carrier gas synthetic air

Field strength 326 V/cm Carrier gas flow 150 mL/min

Grid opening time 0.3 ms Carrier gas humidity 0

Grid delay 100 ms Environment

Drift gas synthetic air Temperature ambient

Drift gas flow 100 mL/min Pressure ambient

Drift gas humidity 0 Software

Preamplifier 1010 V/A Average 10

Sampling Number of samples 2000

Sampling pump Frequency 40000

Sampling duration 10 s Gain 1

Sample flow 350 mL/min Data file suffices 0 to 500

the appearance of other peaks in the spectra. The information based on sample analytes,

however, lies in the small peaks in the spectra part behind the RIP. This measurement

part also contains the tailing of the RIP, which is responsible for the slow decrease of the

signal intensity back to the baseline, causing varying heights for peaks in different parts

of the drift time axis. The observed peak tailing is due to variations in the ion velocity

from scan to scan which are caused by random ion-molecule reactions occurring in the

drift tube and further compounded by the signal averaging process, as the contributions

from each individual scan are recorded in the final spectrum.

The parameters of the instrumentation and the software, used in this work (Table 2.1),

were kept as constant as possible, aiming the comparability of different measurements.

2.3 Problem

Measurements generated with an MCC/IMS result in large spectra series, which for the

monitoring of human breath consist of more than one million data points. As most mea-

surement parts consist of pure noise and even the interesting analyte peaks contain dozens
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of data points, the high dimensionality involves an undesirable degree of redundancy. In

addition, the data variation in all directions of its three-dimensional structure is prob-

lematic, as the height as well as the drift and retention time position of appearing peaks

underlies limited reproducibility. The question is, therefore, not only what the essential

information inherent in these data is, but also what the variables comparable between the

measurements are.

Since peaks correspond to sample analytes, they are the relevant information, making

an effective peak identification and characterisation necessary to give a base for further

processing yielding potential results from the generated data. A reasonable peak detec-

tion procedure reduces data efficiently to meaningful peak characteristics ensuring little

information loss, and is indispensable if questions with large sample sizes are investigated,

as a manual analysis is time-consuming and to a certain amount subjective.

Although several peak detection algorithms exist, most are optimised for finding sharp

peaks in mass spectrometry data, and even amongst these no method yields truely reliable

results. Currently, few algorithms have been implemented for three-dimensional spectra

series and those that have simply connect the results for single spectra in an additional

step to adapt to two-dimensional separations. The idea of the peak detection method

developed in this work on the other hand, aims to directly grasp the three-dimensional

structure of the data to benefit from the newly gained separation of signal peaks.

Besides the general challenges common to peak detection methods for all three-

dimensional spectra series, there are some additional problems to deal with for IMS data.

Due to a small signal-to-noise ratio, peaks can sometimes not be distinguished from noise

via signal intensity alone and despite preseparation, can still lie very close together re-

sulting in shoulder peaks without a maximum; or for more severe overlaps, small peaks

are even covered by larger ones. Another interfering feature of IMS data is the tailing of

the RIP, making a simple threshold for separation between noise and peak areas difficult.

These circumstances have to be respected to allow for an efficient IMS data preprocessing

and peak identification.





Chapter 3

Wavelet transform

The wavelet transform is a tool for signal decomposition, allowing to locate features of a

signal in frequency and time simultaneously. Therefore, it can be seen as an enhancement

of the well-established Fourier transform.

The Fourier transform gives global frequency information without any localisation prop-

erties, since the underlying functions are big waves swinging from infinity to infinity (Fig.

3.1, top). To overcome this limitation, the windowed Fourier transform was developed,

''big waves'': sine and cosine

Gaussian window function

''small waves'': wavelets

Figure 3.1: Scheme of the relationship of Fourier (top), windowed Fourier (middle), and
wavelet transform (bottom): with the enhancement to wavelet transform the localisation
properties are improved, while all frequencies can be considered accurately.

19
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using a window function such as the Gaussian function to achieve localisation informa-

tion in the decomposition (Fig. 3.1, middle). While the window size is fixed, the number

of oscillations of a sine or cosine function is varied. This leads to the trade-off between

precise localisation information, available only for high frequencies when a small window

size is chosen, and a higher variety of considerable frequencies with, therefore, only vague

localisation for larger windows. Keeping the number of oscillations fixed and varying the

window size, the wavelet transform circumvents this problem and screens for details with

high frequencies in small windows and the trend consisting of low frequencies in large

windows (Fig. 3.1, bottom).

The functions used for these decompositions move essentially in a limited time interval,

and can thus be described as small waves, leading to the denomination wavelets (Sec-

tion 3.1). They are the base of various methods with different properties such as the

discrete wavelet transform (DWT) (Section 3.2), the maximum-overlap discrete wavelet

transform (MODWT) (Section 3.3), and the multi resolution analysis (MRA) (Section

3.4). The findings and the structure of the description of these methods are based on

the presentation in Percival and Walden (2000); the notation, however, was conformed

to the overall format of this work. In addition, the methodology can be extended to a

two-dimensional variant of the wavelet transform, which is discussed here with particular

respect to the MODWT and the MRA (Section 3.5).

3.1 Fundamentals

To introduce the wavelet transform, it is important to define the properties of the under-

lying wavelet functions as well as the resulting wavelet bases and coefficients.

A wavelet function ψ( ) is assumed to be a real-valued function defined over the real axis

(−∞,∞) with an integral of zero,∫ ∞

−∞
ψ(u)du = 0,

and the square of ψ( ) integrating to unity,∫ ∞

−∞
ψ2(u)du = 1.

These requirements mean the function ψ( ) must possess some nonzero activity, limited

to a relatively small interval, and balanced between negative and positive contributions.
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Figure 3.2: Four wavelet functions of the Daubechies family: wavelet functions are often
irregular and asymmetric.

In contrast to the sine and cosine functions used for the Fourier transform, wavelet func-

tions are often irregular and asymmetric (Fig. 3.2). There are also complex wavelet func-

tions such as the Morlet wavelet, and depending on definition ones without compact

support, but these are not considered here.

Coming from a mother wavelet function ψ( ), which fulfills the afore-mentioned conditions,

a wavelet base can be formed by scaling and translating ψ( ) to

ψλ,t(u) ≡
1√
λ
ψ

(
u− t

λ

)
with λ > 0 and −∞ < t <∞.

signal
wavelet
product

Figure 3.3: Scheme of the calculation of a coefficient of the continuous wavelet transform:
The integral of the product of a signal with one of the functions of the wavelet base yields
one coefficient of the resulting decomposition.
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Figure 3.4: Plot of (a) a single spectrum and (b) the corresponding CWT decomposition:
the coefficients are shown on a grid of time and scale with their height encoded by colour –
high values are displayed in yellow and white, medium and low values in orange and red.

The integral of the product of a signal s and each of the members of the constructed

wavelet base yields a collection of variables {W (λ, t) : λ > 0,−∞ < t <∞} with

W (λ, t) ≡
∫ ∞

−∞
ψλ,t(u)s(u)du,

defining the wavelet coefficients of the continuous wavelet transform (CWT). The coeffi-

cient W (λ, t) can be interpreted as being proportional to a difference of adjacent weighted

averages of scale λ around time t (Fig. 3.3).

As the wavelet base, used for the calculation of the coefficients, was created by scaling

and translating, the CWT decomposition of a single spectrum results in a two-dimensional

structure of coefficients, dependent on time and scale (Fig. 3.4). The position and height

of a coefficient thus allows conclusions to be drawn considering changes at a particular

location of the signal that are of the frequency corresponding to a specific scale.

The CWT of a signal preserves all information, also allowing for its recovery, however,

because of its two-dimensional nature an image processing problem occurs as a lot of

redundancy is included in the resulting decomposition of the signal.

3.2 Discrete wavelet transform

To obtain a representation containing no redundancy, the CWT coefficients W (λ, t) can

be downsampled by the dyadic factor 2. This yields the method of DWT, whose sparse
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Figure 3.5: Plot of (a) a single spectrum and (b) the corresponding DWT decomposition:
the coefficients are shown on a grid of time and scale, where – starting from a virtual zero
line for each resolution level – each coefficient is given by a black line, indicating if a high
or low, negative or positive contribution was determined.

nature qualifies it for fast algorithms, which can be amplified using a pyramid algorithm

(Subsection 3.2.1), and optionally by limiting the calculations to a partial decomposition

(Subsection 3.2.2).

As time and scale are not scanned continuously any longer, the subset of scales λ and the

corresponding time values have to be specified. Assuming the signal s has length N = 2J ,

the scales λ of the downsampled transform are chosen as τj ≡ 2j−1, j = 1, . . . , J , resulting

in Nj ≡ N/(2τj) DWT coefficients associated with changes on scale τj. Within a dyadic

scale, the times t corresponding to these coefficients are separated by multiples of 2j and

set to (2n+ 1)2j−1 − 1
2
, n = 0, 1, . . . , Nj − 1. Additionally, there is one scaling coefficient

linked to an average of all the data.

The decomposition resulting from a DWT of a single spectrum (Fig. 3.5 a) can be illus-

trated as shown in Fig. 3.5 b: the lowest line displays the resolution level of the highest

frequency and shows the finest details of the original signal; the topmost line corresponds

to the lowest frequency and illustrates tendencies over a broad range of the spectrum. This

representation is not only less redundant in the dimension of scales, but also contains a

decreasing amount of coefficients on the higher scales.

Representing the DWT coefficients by {Wn : n = 0, . . . , N − 1} for formalisation of the

method, the transform can be written as

w = Ws,
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where w is a vector of length N = 2J whose nth element is the nth DWT coefficient Wn,

and W is an N ×N matrix defining the DWT and satisfying WTW = IN .

The matrix W can be constructed by any wavelet base satisfying the properties of summa-

tion to zero and orthonormality, where the orthogonality allows the calculation of wavelet

coefficients by an inner product and ensures a representation without redundancy. As

the orthonormality condition does not yield a unique wavelet base, additional conditions

such as ’extremal phase’ or ’least asymmetric’ must be demanded to obtain uniqueness

(Daubechies, 1992).

The rows of the matrix W can be grouped into J + 1 submatrices, each corresponding to

a scale τj, which results in a partitioning of the vector w of DWT coefficients:

Ws =



W1

W2

...

WJ

VJ


s =



W1s

W2s
...

WJs

VJs


=



w1

w2

...

wJ

vJ


= w,

where Wj has dimension Nj×N ; VJ is 1×N ; wj is a vector of length Nj; and vJ contains

the last element of w. Within the matrix Wj producing the wavelet coefficients for the
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Figure 3.6: Row vectors WT
n• of the discrete wavelet transform matrix W based on the

Haar wavelet for N = 16 with n = 0 to 7 (left) and n = 8 to 15 (right).
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particular scale τj, the rows are circularly shifted versions of each other with the amount

of the shift between adjacent rows being 2τj = 2j.

Fig. 3.6 shows the row vectors of the matrix W for the Haar wavelet with N = 16, as

its simple structure allows an easy understanding of the underlying scheme, how wavelet

coefficients Wn are associated with particular scales and sets of times. The row vectors 0

to 7, 8 to 11, 12 to 13, and 14 constitute the matrices W1, W2, W3, and W4 respectively,

while the row vector 15 provides V4.

Coming from such a wavelet decomposition the original signal s can be perfectly recon-

structed without an error by

s = WTw =
J∑

j=1

WT
j wj + VT

J vJ .

3.2.1 Pyramid algorithm

In practice the DWT matrix W is not formed explicitly, but rather w is computed using

a pyramid algorithm that makes use of a wavelet filter and a scaling filter. Requiring only

O(N) multiplications, this algorithm is actually faster than the fast Fourier transform

algorithm, calculated in O(N log2N) steps, that led to a widespread use of the discrete

Fourier transform.

The first stage of the pyramid algorithm decomposes the signal s = {zt : t = 0, . . . , N−1}
into two new series: {W1,t : t = 0, . . . , N

2
− 1} constituting the first half of the vector of

wavelet coefficients w; and {V1,t : t = 0, . . . , N
2
− 1} providing a basis for obtaining the

remaining wavelet coefficients at successive stages of the pyramid algorithm.

Wavelet filter

To describe this algorithm, linear filtering operations will be discussed here, beginning

with a real-valued wavelet filter {hl : l = 0, . . . , L − 1} with L giving an even length for

the filter, meaning h0 6= 0, hL−1 6= 0, and hl = 0 for l < 0 and l ≥ L. A wavelet filter

is, therefore, an infinite sequence with at most L nonzero values, required to satisfy the

following three basic properties

L−1∑
l=0

hl = 0,
L−1∑
l=0

h2
l = 1, and

L−1∑
l=0

hlhl+2n =
∞∑
−∞

hlhl+2n = 0

for all nonzero integers n.
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To obtain the N/2 wavelet coefficients for unit scale, the signal s = {zt} is circularly

filtered with {hl}:

√
2W̃1,t ≡

L−1∑
l=0

hlzt−l mod N , t = 0, . . . , N − 1,

where N = 2J for some positive integer J .1 The sequence {
√

2W̃1,t} is then downsampled

to the N/2 values with odd indices to define the wavelet coefficients

W1,t ≡
√

2W̃1,2t+1, t = 0, . . . ,
N

2
− 1.

The first of the two subscripts on W1,t and W̃1,t states the scale τj = 2j−1 associated with

the N/2 wavelet coefficients, with j = 1 as the index for the unit scale here. The square

root of two is included to preserve energy following downsampling.

To connect the definition of {W1,t} to the matrix formulation, the coefficients can be

derived directly as

W1,t =
L−1∑
l=0

hlz2t+1−l mod N =
N−1∑
l=0

h◦l z2t+1−l mod N , t = 0, . . . ,
N

2
− 1, (3.1)

where {h◦l } is {hl} periodised to length N . These coefficients constitute the first N/2

coefficients of w = Ws, i.e., the elements of the subvector w1 = W1s, where W1 is the
N
2
×N matrix containing the first N/2 rows of W. The first row of W1 is given by

wT
0• =

[
h◦1, h

◦
0, h

◦
N−1, h

◦
N−2, . . . , h

◦
2

]
,

while the remaining N
2
− 1 rows can be expressed as versions of wT

0• circularly shifted by

the amount of 2.

Scaling filter

In preparation for forming the last N/2 rows of W via the pyramid algorithm, a second

filter is required to construct the N
2
× N matrix V1. Given the wavelet filter {hl}, this

so-called scaling filter is defined as

gl ≡ (−1)l+1hL−1−l,

1The modulo function mod is defined by

j mod N ≡

{
j , if 0 ≤ j ≤ N − 1

j + nN with 0 ≤ j + nN ≤ N − 1 , else
,

and was used to ensure indices lying in the defined range. For terms such as 2t+1− l mod N , the function

refers to the whole expression 2t + 1− l.
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fulfilling the properties

L−1∑
l=0

gl =
√

2,
L−1∑
l=0

g2
l = 1,

∞∑
l=−∞

glgl+2n = 0, and
∞∑

l=−∞

glhl+2n′ = 0

for all nonzero integers n and all integers n′. The first condition can also be substituted

by
∑L−1

l=0 gl = −
√

2, but the convention chosen here simplifies the interpretation of scaling

coefficients as being localised weighted averages.

As it is possible for the wavelet coefficients W1,t, the N/2 first level scaling coefficients

V1,t can also be calculated directly as

V1,t =
L−1∑
l=0

glz2t+1−l mod N =
N−1∑
l=0

g◦l z2t+1−l mod N , t = 0, . . . ,
N

2
− 1,

where {g◦l } is {gl} periodised to length N . These coefficients form v1 = V1s, where V1 is

the N
2
×N matrix whose rows are given by circularly shifted versions of

vT
0• =

[
g◦1, g

◦
0, g

◦
N−1, g

◦
N−2, . . . , g

◦
2

]
by the amount of 2.

As the rows of the matrix V1 constitute a set of orthonormal vectors, and because the

scaling filter is orthogonal to the wavelet filter and all its even shifts, V1 and W1 are

orthogonal. Thus the N ×N matrix

P1 ≡

[
W1

V1

]

is orthonormal, allowing for synthesis of the signal s by

s = PT
1

[
w1

v1

]
= WT

1 w1 + VT
1 v1.

Iterative stages of the pyramid algorithm

In general, the rows of V1 and the last N/2 rows of W are not identical, but V1 can be

manipulated on the J − 1 subsequent stages of the pyramid algorithm to obtain these

rows.

For j = 2, . . . , J , the jth stage transforms the vector vj−1 of length N/2j−1 into the

vectors wj and vj, each of length N/2j. Thereby vj−1 is treated in exactly the same way

as the signal s on the first stage: the elements are filtered separately with {hl} and {gl},
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and the filter outputs are downsampled to form the vectors wj of wavelet coefficients and

vj of scaling coefficients for level j respectively. At the end of the Jth stage, the DWT

coefficient vector w can be formed by joining the J + 1 vectors w1, . . . ,wJ and vJ .

More precisely, these stages are defined by Wj = BjVj−1 and Vj = AjVj−1 using the

Nj × Nj−1 matrices Bj and Aj containing the wavelet and scaling filters {hl} and {gl}
periodised to length Nj−1 and circularly shifted by the amount of 2, with V0 = IN and

thus B1 = W1 and A1 = V1.

Based on the Nj−1 ×Nj−1 matrix

Pj ≡

[
Bj

Aj

]
,

the vector vj−1 can be recovered by

vj−1 = PT
j

[
wj

vj

]
= [BT

j AT
j ]

[
wj

vj

]
= BT

j wj + AT
j vj. (3.2)

Recursive application yields the back-transform of the original signal by

s = BT
1 w1 + AT

1 BT
2 w2 + · · ·+ AT

1 · · ·AT
j−1B

T
j wj + AT

1 · · ·AT
j−1A

T
j vj

on each of the j = 1, . . . , J stages of the algorithm.

3.2.2 Partial discrete wavelet transform

Stopping the pyramid algorithm after J0 < J repetitions leads to a level J0 partial DWT

of s, whose coefficients are given by

w1

w2

...

wj

...

wJ0

vJ0


=



W1

W2

...

Wj

...

WJ0

VJ0


s =



B1

B2A1

...

BjAj−1 · · ·A1

...

BJ0AJ0−1 · · ·A1

AJ0AJ0−1 · · ·A1


s,

where wj, j = 1, . . . , J0, are subvectors of the DWT coefficient vector w. The final subvec-

tor vJ0 of N/2J0 scaling coefficients replaces the last N/2J0 coefficients of w, representing

averages over the scale 2J0 and comprising the large scale components in s.
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The partial DWT thus offers the flexibility to specify a scale beyond which a wavelet

analysis into individual large scales is not of interest. In addition, the restriction of a

dyadic signal length N = 2J can be eased to the condition of N being an integer multiple

of 2J0 .

3.3 Maximum overlap discrete wavelet transform

The result of the DWT can be strongly dependent on the starting point of the analysis,

as a little shift in a spectrum can produce very different coefficients. This behaviour is

not favourable, especially as spectra data are sometimes rarely aligned.

The modified method of MODWT, however, yields the property of translation invariance

and possesses the additional advantage of being well defined for any sample size N . It also

decomposes the signal on dyadic scales, but in contrast to the DWT it is not downsampled

in time.

The (partial) MODWT of level J0 is a highly redundant nonorthogonal transform defined

by the N × N submatrices W̃j and ṼJ0 yielding w̃j = W̃js and ṽJ0 = ṼJ0s, j =

1, . . . , J0. The resulting column vectors w̃1, w̃2, . . . , w̃J0 and ṽJ0 , each of dimension N and

based on {W (λ, t) : λ = 2j−1, j = 1, . . . , J0;−∞ < t <∞}, contain the MODWT wavelet

coefficients associated with changes in the signal s on a scale of τj = 2j−1, and the

MODWT scaling coefficients representing averages at scales 2J0 and higher respectively.

Practical considerations

The coefficients of a MODWT are continuous over time and can, therefore, be easily

compared with the underlying spectrum. Since the noise contributions of the original

signal are filtered out on the highest frequency levels of the decomposition, the other

levels can give indications about hidden peaks, such as e.g. in Fig. 3.7 for level 5, where

the coefficients show an additional potential peak in the end part of the RIP, whose

position, however, varies between the considered scales.

Furthermore, an increasing shift of the different levels makes the location of features

even harder. Although in this work the results of the MODWT were considered after

back-transform of before manipulated coefficients to the time domain, it should, there-

fore, be remarked that an alignment with the original signal is necessary for compar-

ison otherwise. As each of the coefficient vectors w̃j and ṽJ0 , however, has the same
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Figure 3.7: Plot of (a) a single spectrum and (b) the corresponding MODWT decomposition
without (dark blue) and with (light blue) alignment to original signal: for each dyadic scale,
the coefficients are illustrated by a continuous line over time, that was furthermore aligned
with the original spectrum for simplified interpretation of peak indications, such as here the
small hint for a potential hidden peak in the later part of the RIP e.g. on level 5.

number of elements as the spectrum s, the coefficient vector can be easily aligned by

advancing it, i.e., circularly shifting it to the left by absolute values ν
(H)
j and ν

(G)
J0

(Percival and Walden, 2000, p. 179 f).

Pyramid algorithm

In practice the MODWT coefficient vectors are generated via an efficient pyramid al-

gorithm analogous to the DWT, using the wavelet filter {h̃l} and the scaling filter {g̃l}
defined by h̃l ≡ hl/

√
2 and g̃l ≡ gl/

√
2.

The MODWT wavelet and scaling coefficients of the first level are then given by

W̃1,t ≡
L−1∑
l=0

h̃lzt−l mod N and Ṽ1,t ≡
L−1∑
l=0

g̃lzt−l mod N

with t = 0, . . . , N − 1. Equivalently, {W̃1,t} and {Ṽ1,t} can be regarded as the result

of circularly filtering {zt} with {h̃◦l } and {g̃◦l }, which are versions of the wavelet and

the scaling filter periodised to length N . These filters also give the rows of the N × N

matrix W̃1 and Ṽ1 in the matrix notation, if shifted circularly by the amount of 1.

On the subsequent stages, the vector ṽj−1 is treated as the signal s on the first stage,
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where in contrast to the DWT the resulting vectors w̃j and ṽj are all of length N for

j = 1, . . . , J0 ≤ J .

The original signal can be reconstructed from its MODWT via

s =

J0∑
j=1

W̃
T

j w̃j + Ṽ
T

J0
ṽJ0

= B̃
T

1 w̃1 + Ã
T

1 B̃
T

2 w̃2 + · · ·+ Ã
T

1 · · · Ã
T

j−1B̃
T

j w̃j + Ã
T

1 · · · Ã
T

j−1Ã
T

j ṽj,

on each of the stages j = 1, . . . , J0 ≤ J of the (partial) MODWT. The N × N matrices

B̃j and Ãj consist of circularly shifted versions of {h̃l} and {g̃l} by the amount of one,

periodised to length N after upsampling to width 2j−1(L − 1) + 1 by inserting 2j−1 + 1

zeros between each of the L values of the original wavelet and scaling filter, respectively.

Due to the existent redundancy the MODWT leads to a higher computational cost than

the DWT, but using the pyramid algorithm it can be computed with the same complexity

as the fast Fourier transform algorithm.

3.4 Multi resolution analysis

To analyse the different frequency contributions existent in a signal s, the wavelet coeffi-

cients of each scale can be reconstructed separably. This proceeding is called an MRA: it

results in different detailsDj and a smooth function Sj and is defined by s =
∑J0

j=1Dj+SJ0 .

The jth level wavelet detail Dj is defined as

Dj ≡ WT
j wj = AT

1 · · ·AT
j−1B

T
j wj,

which is a vector of length N whose elements are associated with changes in s at scale

τj = 2j−1 for j = 1, . . . , J0.

For 0 ≤ j ≤ J0 − 1, the jth level wavelet smooth Sj is defined as

Sj ≡
J0∑

k=j+1

Dk + SJ0 = AT
1 · · ·AT

j−1A
T
j vj,

where SJ0 ≡ VT
J0

vJ0 represents averages of the scale λJ0 = 2J0 . Sj is a smoothed version

of s, since the difference with the original signal, s − Sj =
∑j

k=1Dk for j ≥ 1, contains

only details at the high frequency scales, τj = 2j−1 and smaller. The wavelet smooth at

the highest level J is a constant vector with all elements equal to the signal mean s̄.
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Figure 3.8: Plot of (a) the MODWT decomposition of a single spectrum without (dark
blue) and with (light blue) alignment to original signal and (b) the corresponding MRA
decomposition based on the MODWT coefficients: the details, illustrated by a continuous
line over time for each dyadic scale, show peak shapes more similar to IMS spectra, and
little peaks around the main peak appear to be higher and expressed more clearly compared
to the underlying MODWT decomposition.

As true for the DWT, the MODWT can be used to form an MRA analogously. In contrast

to the usual DWT, the details D̃j and the smooth S̃J0 of this MRA are such that circularly

shifting the time series by any amount will circularly shift each detail and smooth by

a corresponding amount. An alignment with the original signal as mentioned for the

MODWT coefficients is not necessary for the details D̃j and the smooth S̃J0 .

Because the details D̃j and the smooth S̃J0 are continuous over time, the result of an MRA

can be compared easily with the original signal, but also with the underlying wavelet

coefficients, if an MODWT was used as the base for the formation of the MRA (Fig.

3.8). After separate back-transform for the different levels, peak shapes are more similar

to those in the original IMS spectrum than for the underlying MODWT coefficients. In

addition, the peak indications around the main peak appear to be higher and expressed

more clearly than in the MODWT decomposition.

3.5 Separable two-dimensional wavelet transform

To investigate the three-dimensional structure in spectra series data, a two-dimensional

wavelet transform such as the separable two-dimensional DWT can be useful, which ap-
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plies a common one-dimensional DWT first to all rows, and subsequently to all columns.

The proceeding and notations can be transferred from the one-dimensional case, but have

to take respect of matrix operations instead of vectors now.

Furthermore, filtering the data matrix S by the wavelet and the scaling filter in each

consecutive combination, a decomposition into four matrices W
(HH)
1 , W

(HL)
1 , W

(LH)
1 , and

W
(LL)
1 is achieved, where H indicates high-pass and L low-pass filtering with the wavelet

and the scaling filter respectively.

Like in the one-dimensional case, further iterations on the next levels are applied only to

the low-pass part W
(LL)
1 . This proceeding results in a matrix system of 3J0 + 1 matrices

for a partial decomposition of level J0.

Two-dimensional discrete wavelet transform

For the two-dimensional DWT, assuming the dimensions n1 and n2 of the data matrix S

are dyadic, the wavelet coefficients of the two-dimensional decomposition are given by

W
(HH)
j,t1,t2

=

n1
2j−1−1∑
l1=0

n2
2j−1−1∑
l2=0

(
h
◦

1h
◦

2

T
)

l1,l2
W

(LL)

j−1,2t1+1−l1mod
n1

2j−1 ,2t2+1−l2mod
n2

2j−1
,

W
(HL)
j,t1,t2

=

n1
2j−1−1∑
l1=0

n2
2j−1−1∑
l2=0

(
h
◦

1g
◦

2

T
)

l1,l2
W

(LL)

j−1,2t1+1−l1mod
n1

2j−1 ,2t2+1−l2mod
n2

2j−1
,

W
(LH)
j,t1,t2

=

n1
2j−1−1∑
l1=0

n2
2j−1−1∑
l2=0

(
g
◦

1h
◦

2

T
)

l1,l2
W

(LL)

j−1,2t1+1−l1mod
n1

2j−1 ,2t2+1−l2mod
n2

2j−1
,

W
(LL)
j,t1,t2

=

n1
2j−1−1∑
l1=0

n2
2j−1−1∑
l2=0

(
g
◦

1g
◦

2

T
)

l1,l2
W

(LL)

j−1,2t1+1−l1mod
n1

2j−1 ,2t2+1−l2mod
n2

2j−1
,

for j = 1, . . . , J with J = log2(min(n1, n2)) and W
(LL)
0 =

(
W

(LL)
0,t1,t2

)
t1=1,...,n1;t2=1,...,n2

= S.

This formulation is closely related to the calculation of the coefficients of the one-

dimensional DWT (Equ. 3.1, p. 26). Equivalently, the sequences
{
h
◦
i

}
and

{
g
◦
i

}
are {h}

and {g} periodised to length ni/2
j−1, i = 1, 2, and applied to filter the low-pass contribu-

tion of the level before.

The n1

2j × n2

2j wavelet coefficient matrices W
(HH)
j , W

(HL)
j , and W

(LH)
j describe respectively

the bi-directional, horizontal, and vertical edge information inherent to the data on scale

τj = 2j−1, whereas W
(LL)
j contains the low-frequency contributions.
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The matrix W
(LL)
j−1 can be reconstructed analogously to the one-dimensional case (Equ.

3.2, page 28) by

W
(LL)
j−1 = BT

j,1W
(HH)
j Bj,2 + BT

j,1W
(HL)
j Aj,2 + AT

j,1W
(LH)
j Bj,2 + AT

j,1W
(LL)
j Aj,2,

where Aj,i and Bj,i are the ni

2j × ni

2j−1 matrices containing circularly shifted versions of the

wavelet and scaling filters {h} and {g} by the amount of 2, and periodised to length ni

2j−1 ,

i = 1, 2, respectively. Recursive application allows the back-transform to the original data

matrix S.

Two-dimensional maximum overlap discrete wavelet transform

To achieve the advantageous properties of the applicability of the two-dimensional wavelet

transform to signal matrices S of arbitrary dimensions, and translation invariance of the

resulting coefficients, the method can also be applied on the base of the MODWT. Then

the coefficients are derived by

W̃
(HH)
j,t1,t2

=

n1−1∑
l1=0

n2−1∑
l2=0

(
h̃
◦

1h̃
◦

2
T
)

l1,l2
W̃

(LL)
j−1,t1−l1mod n1,t2−l2mod n2

,

W̃
(HL)
j,t1,t2

=

n1−1∑
l1=0

n2−1∑
l2=0

(
h̃
◦

1g̃
◦

2
T
)

l1,l2
W̃

(LL)
j−1,t1−l1mod n1,t2−l2mod n2

,

W̃
(LH)
j,t1,t2

=

n1−1∑
l1=0

n2−1∑
l2=0

(
g̃
◦

1 h̃
◦

2
T
)

l1,l2
W̃

(LL)
j−1,t1−l1mod n1,t2−l2mod n2

,

W̃
(LL)
j,t1,t2

=

n1−1∑
l1=0

n2−1∑
l2=0

(
g̃
◦

1 g̃
◦

2
T
)

l1,l2
W̃

(LL)
j−1,t1−l1mod n1,t2−l2mod n2

,

where
{
h̃
◦
i

}
and

{
g̃
◦
i

}
are {h} and {g} periodised to length ni, i = 1, 2, respectively, after

upsampling to the width 2j−1(L− 1) + 1 by inserting 2j−1 + 1 zeros between each of the

L values of the original wavelet and scaling filter.

The resulting wavelet coefficient matrices W̃
(HH)

j , W̃
(HL)

j , W̃
(LH)

j , and W̃
(LL)

j are of di-

mension n1 × n2, and can be used for the recovery of the same-sized matrix W̃
(LL)

j−1 ,

proceeding equivalently to the two-dimensional inverse DWT, using the ni × ni matrices

Ãj,i, B̃j,i composed of circularly shifted versions of the filters
{
h̃
◦
i

}
and

{
g̃
◦
i

}
, i = 1, 2, by

the amount of 1.

In Fig. 3.9 a, a partial two-dimensional MODWT decomposition of level 5 is illustrated

in a system of heatmaps, where the MODWT coefficient matrices are arranged in a way

that the upper left matrix is iteratively decomposed in the range of the transform.
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Figure 3.9: Plot of the levels 3, 4, and 5 of (a) the partial 2D-MODWT decomposition of level
5 of a spectra series and (b) the corresponding 2D-MRA decomposition: for both methods
the matrices are arranged in a way that the upper left matrix is iteratively decomposed in
the range of the transforms. In opposite to the 2D-MODWT, no alignment of the matrices
with the original data matrix is necessary for the 2D-MRA, and although peaks appear less
high, their shape is more similar to the original data for this method.
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In addition to the different frequency levels, the original signal matrix was furthermore di-

vided into matrices W̃
(HH)

j , W̃
(HL)

j , and W̃
(LH)

j for each level, describing the bi-directional,

horizontal, and vertical edge information inherent to the data on scale τj = 2j−1, re-

spectively. While the HH matrices are more or less uninformative, the HL matrices are

disguised by a stretching effect in the dimension of the retention time. The LH matrices

on the other hand hold the main part of the peak information inherent in the original

spectra series. The matrix W
(LL)
5 contains the low-frequency contributions of this partial

decomposition.

Two-dimensional multi resolution analysis

If the signal contributions of specific scales are of interest, an MRA can be computed for

the three-dimensional data S resulting in a matrix convolution according to that of the

two-dimensional wavelet transform.

The MRA, therefore, results in three wavelet details on the jth level defined as

D(HH)
j ≡ AT

1,1 · · ·AT
j−1,1B

T
j,1W

(HH)
j Bj,2Aj−1,2 · · ·A1,2,

D(HL)
j ≡ AT

1,1 · · ·AT
j−1,1B

T
j,1W

(HL)
j Aj,2Aj−1,2 · · ·A1,2,

D(LH)
j ≡ AT

1,1 · · ·AT
j−1,1A

T
j,1W

(LH)
j Bj,2Aj−1,2 · · ·A1,2,

which are n1 × n2 dimensional matrices whose elements are associated with changes in S

at a scale τj = 2j−1 for j = 1, . . . , J .

The jth level wavelet smooth is defined as

S(LL)
j ≡ AT

1,1 · · ·AT
j−1,1A

T
j,1W

(LL)
j Aj,2Aj−1,2 · · ·A1,2,

for 0 ≤ j ≤ J − 1, representing averages of the scale λj = 2j.

The signal reconstruction can then be formulated as

S =
J∑

j=1

(
D(HH)

j +D(HL)
j +D(LH)

j

)
+ S(LL)

J .

The MRA can also be achieved using the (partial) MODWT analogously, leading to

translation-invariant results for an arbitrary sized matrix S.

Fig. 3.9 b displays a two-dimensional MRA based on the coefficient matrices of a MODWT

(Fig. 3.9 a) – again for the case of a partial decomposition of level 5. The matrices are
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arranged as introduced before, and the findings for the MODWT can mostly be transferred

for the MRA result as well, but in opposite to the 2D-MODWT, no alignment of the

matrices with the original data matrix is necessary now. In addition, it can be observed

that although peaks appear less high for the MRA, their shape is more similar to the

original data than for the MODWT coefficients.





Chapter 4

Statistical methods

In the practical application of spectrometric devices, the detection of analytic peaks is

usually inevitable, but often this preparatory step only gives the basis for a subsequent

statistical analysis, such as in the comparison of groups of measurements (Section 4.2) or

classification tasks (Section 4.3).

Before these methods can be applied, the performance of an additional general variable

creation step by the means of cluster analysis (Section 4.1) was found to be useful, thus

enabling further analysis on the basis of a common set of problem-related peak variables.

4.1 Cluster analysis

The multivariate method of cluster analysis has the main aim of joining a set of classifica-

tion objects to homogeneous groups. The basic idea of a homogeneous group is determined

by internal cohesion (homogeneity within a cluster) and external isolation (heterogeneity

between the clusters).

The field of assignment principles in this work was limited to deterministic methods that

result in an explicit assignment with a probability of 1, which can be divided into the

two groups of hierarchical (Subsection 4.1.3) and partition (Subsection 4.1.4) clustering

methods. Furthermore, the presentation was restricted to object-oriented cluster analysis

especially for quantitative variables, in contrast to a variable-oriented analysis where

groups of variables are clustered.

Before the actual cluster analysis can be performed, a measure for the distance of objects

is required (Subsection 4.1.2), and the standardisation of the classification variables can

39
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be useful to allow for comparability (Subsection 4.1.1). To judge the quality of a cluster

solution, certain figures of merits can be considered (Subsection 4.1.5) that also allow

decisions on the optimal number of clusters (Kaufman and Rousseeuw, 1990).

4.1.1 Standardisation

The variables xi, i = 1, . . . , p, involved in a deterministic cluster analysis of classification

objects ωn with observed variable vectors xn, n = 1, . . . , N , have to be formally compa-

rable, which is not fulfilled, for example, if variables are given in different units or possess

values showing a different order of magnitude or variability. Then a transformation of

variables can ensure equal influence on the resulting cluster formation.

Commonly used data transformations are the theoretical and empirical standardisation

x̃
(t)
ni =

xni − µi

σi

and x̃
(e)
ni =

xni − x̄i

si

for n = 1, . . . , N, i = 1, . . . , p, (4.1)

respectively, where x̃ni gives the standardised value of object ωn in the standardised

variable X̃i; xni is the value of object ωn for variable Xi before standardisation with

theoretical mean µi and standard deviation σi; x̄i and si are the empirical pendants of

these moments.

While the parameters of the distribution of the variables have to be defined for the the-

oretical transformation, an empirical standardisation can always be applied, achieving

equal weight for all variables, as only the part of the variable domain that is actually

represented in the data is included. If all variables contribute to the separation of classes

this effect is positive.

4.1.2 Distance measures

In a cluster analysis, homogeneous groups are characterised by the similarity or dissimi-

larity of classification objects within or between clusters, requiring a measure of similarity

or dissimilarity that respects the data and the aim of the analysis. As object-oriented

cluster analysis is usually based on distance measures, only these were considered here:

Definition 4.1 Let I = {ω1, ..., ωN} be a set of N objects. A function d : I × I → R is

called distance measure, if

d(ωn, ωn) = 0, d(ωn, ωm) ≥ 0, and d(ωn, ωm) = d(ωm, ωn), n,m = 1, . . . , N.

The symmetrical N ×N matrix D = (d(ωn, ωm)) is called distance matrix.



4.1. Cluster analysis 41

Measures fulfilling the triangle inequality

d(ωn, ωm) ≤ d(ωn, ωl) + d(ωm, ωl) for n,m, l = 1, ..., N,

possess the advantageous property of being metric, and are preferable as they are con-

sistent with our spatial sense. For quantitative data, such distance measures are often

derived from the generalised Minkowski metric,

dq;r(ωn, ωm) =

(
n∑

i=1

|xni − xmi|r
) 1

q

, q, r ≥ 1, n,m = 1, . . . , N,

to keep the reduction of information inherent to every calculation of distances from a data

matrix low. Using the generalised Minkowski metric, the parameter r causes a weighting

of the differences in the single variables with increasing r, resulting in a higher influence

of big differences in a few variables, compared to small differences in many variables. The

parameter q, on the other hand, effects a back standardisation to the original scale unit

if r = q, yielding the special case of Lq distances or Minkowski q-metrics:

dq(ωn, ωm) =

(
n∑

i=1

|xni − xmi|q
) 1

q

, q ≥ 1, n,m = 1, . . . , N.

In addition to translation invariance, implying the independence of distances from the

choice of origin, Minkowski q-metrics possess the property of being metric.

(Generalised) Minkowski metrics are, however, not scale invariant, so that distances are

dependent from the unit of variables. The standardisation of variables before calculation

of the distance matrix D is, therefore, recommended to adjust for a different amount of

influence. In this context, the empirical standardisation given in Equ. 4.1 is commonly

used, substituting the empirical standard deviation si by

s
(q;r)
i =

(
1

N

N∑
i=1

|xni − x̄i|r
) 1

q

, q, r ≥ 1, n = 1, . . . , N. (4.2)

A commonly used special case of the Minkowski q-metric is, in particular, the Euclidean

distance (L2 distance):

d2(ωn, ωm) = ((xn − xm)′(xn − xm))
1
2

= ‖xn − xm‖
, n,m = 1, . . . , N. (4.3)

A crucial advantage of the Euclidean distance is the invariance property regarding or-

thogonal transforms: the distance d2(ωn, ωm) remains unchanged when xn and xm are
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substituted by Cxn and Cxm, if C is an orthogonal matrix. In essence this property

means that the Euclidean distance neglects rotations and mirroring of the coordinate sys-

tem. Additionally, for the Euclidean distance the value s
(q,r)
i in Equ. 4.2 coincides with

the empirical standard deviation si, and the recommended standardisation for Minkowski

metrics, therefore, conforms with the empirical standardisation (Subsection 4.1.1).

The squared Euclidean distance

(d2(ωn, ωm))2 = (xn − xm)′(xn − xm) = ‖xn − xm‖2 , n,m = 1, . . . , N,

which is often used because of its arithmetical simplicity, is not a Minkowski q-metric as

r=2 6= q=1, and, therefore, no metric distance measure.

4.1.3 Hierarchical cluster methods

Hierarchical cluster methods result in a sequence of partitions of the set of classification

objects I = {ω1, ..., ωN}, where each object belongs to exactly one of k clusters C1, ..., Ck.

For each partition C = {C1, ..., Ck} it is essential that

k⋃
g=1

Cg = I, Cg ∩ Ch = ∅, g 6= h, h = 1, . . . , k;

one such partition is generated for each possible cluster quantity 1 ≤ k ≤ N . For this,

the clusters are constructed in a way that the distances between the objects within one

cluster are possibly low, while the distances between the objects of different clusters on

the other hand are to be possibly high, which is quantified by the means of a distance

measure (Subsection 4.1.2).

Hierarchical cluster methods can proceed in two opposite directions: agglomerative meth-

ods successively merge those clusters which show the smallest distance, resulting in a

decreasing number of clusters; divisive methods vice versa execute a stepwise decomposi-

tion into subclusters and, therefore, yield an increasing number of clusters in the course

of the procedure. The relation between single cluster solutions is hierarchical, as once a

merging (agglomerative) or division (divisive) of clusters has taken place, it can not be

reversed in a subsequent step.

Amongst the divisive methods, monothetic and polythetic methods are differentiated.

Monothetic methods only consider one variable per step for the division of clusters, so

that the result of the classification is undesirably dependent on the order of the respected

variables. Polythetic methods, on the other hand, search for the partition, dividing one
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of the established clusters in two smaller clusters in a way that the difference between

the variance in the subdivided cluster and the sum of the variances in the two evolving

clusters is maximal, using the variance as an indicator for homogeneity. As there are

2|Ck|−1 − 1 possibilities to divide a cluster Ck with |Ck| objects into two clusters, the

polythetic methods have the disadvantage of a high computational cost. For this reason

only agglomerative methods are further discussed.

Different agglomerative methods differ only in the measure D(Cg, Ch) of the distance

between the subsets of objects. As the measure D is furthermore based on the distance

measure d(ωn, ωm) quantifying the distance between two objects, the obtained cluster

solution is dependent on the cluster method as well as the chosen distance measure.

The construction of a sequence of partitions is carried out according to the following

scheme:

(1) In the original partition C0 = {{ω1}, ..., {ωN}} every classification object constitutes

an independent cluster.

The cluster number k corresponds with the number of classification objects N .

(2) Every following partition Cj (j ≥ 1) is derived by merging the two clusters in Cj−1,

that minimise the measure D implied by the specified cluster procedure.

The cluster number k amounts to N − j.

(3) Step 2 is iterated till Cj = CN−1 = {I} contains all classification objects.

The cluster number k is then 1.

On each hierarchical step the so-called fusion level

Dj = min
g 6=h

D(Cg, Ch) , j = 1, . . . , N − 1, g, h = 1, . . . , k,

is determined, allowing conclusions to be drawn on the homogeneity of the cluster formed

in the jth hierarchical step. These values Dj can be used to decide how many classes are

underlying the considered data (Subsection 4.1.5).

The most common agglomerative cluster methods are presented on the following pages,

starting with the two oldest and simplest procedures constituted by the single and the

complete linkage, which are also denominated as basis models.
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Single linkage

For the single linkage the distance between two clusters Cg and Ch is set to the smallest

distance between an object from Cg and an object belonging to Ch:

D(Cg, Ch) = min
ωn∈Cg,
ωm∈Ch

{d(ωn, ωm)} , g, h = 1, . . . , k.

This method has the property of being able to detect clusters of diverse shape, and is,

therefore, especially capable for non-spherical, e.g. long stretched clusters, if the clusters

underlying the data are externally isolated, but not internally coherent. If the data, how-

ever, contains clusters that are not clearly isolated, a disadvantageous linkage effect can

be observed, causing the fusion of clusters that are generally well-separated if only a few

objects fill the space between the clusters. The reason for this contraction of the classifi-

cation space are the low constraints of the method considering the homogeneity within a

cluster.

Complete linkage

For the complete linkage the distance of two clusters Cg and Ch is chosen as the greatest

distance of an object in Cg and and object in Ch:

D(Cg, Ch) = max
ωn∈Cg,
ωm∈Ch

{d(ωn, ωm)} , g, h = 1, . . . , k.

A disadvantage of the complete linkage is the so-called dilatation effect, as originally long

stretched clusters are covered by a string of small spherical clusters, generally yielding too

many clusters by reason of the strong constraints for the homogeneity within the clusters.

Both complete and single linkage are qualified only for small sets of classification objects,

as they require the entire distance matrix to be kept in memory. Furthermore they are

especially sensitive considering sources of errors as outliers (Punj and Stewart, 1983).

For this reason some modifications of the two basis models are now introduced, which

compensate their disadvantageous effects.

Average linkage

The average linkage calculates the distance D of two clusters Cg and Ch as the average

of all distances between objects in Cg and Ch,

D(Cg, Ch) =
1

ngnh

∑
ωn∈Cg

∑
ωm∈Ch

d(ωn, ωm), ni = |Ci|, g, h, i = 1, . . . , k,
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with nk giving the number of objects belonging to cluster Ck. For the fusion of two clusters

it is, therefore, sufficient, if the objects of both clusters are satisfactorily, on average,

similar, so that the dissimilarity of objects which lie further apart can be balanced by

small distances of particularly closely located objects. In this, the linkage and dilatation

effect of the two base models are avoided.

Weighted average linkage

The weighted average linkage is another modification of the single and the complete

linkage, developed to balance the disadvantageous effects of these two base models. In

comparison to the average linkage method, however, it is harder to interpret.

Assuming that the cluster Cg was composed after cluster Ch and additionally that Cg1

and Cg2 are the two clusters which were merged to cluster Cg, the distance of the clusters

Cg and Ch is determined as the mean of the distances between Ch and Cgi
for i = 1, 2:

D(Cg, Ch) =
1

2

2∑
i=1

D(Cgi
, Ch) , g, h = 1, . . . , k.

The distance measure d(ωm, ωn), which is chosen independently of the applied cluster

method, influences the calculations only if two singletons are merged. The fusion level

Dj here equals the smallest average pairwise dissimilarities between two clusters Cv and

Cw, if the clusters in the preceding fusion step are considered as being of equal size and,

therefore, possessing no direct relation to the empirical distances.

As the term of weighted averages can either refer to the distances between clusters or

to the distances of objects of the merged clusters, the two average methods hold a wide

variety of different names in literature, where they are sometimes even denominated vice

versa.

Ward’s method

In opposite to the cluster methods previously introduced allowing a free choice of the

distance measure d(ωn, ωm), Ward’s method implies the usage of the Euclidean distance

for the determination of distances between classification objects. The criterion for the two

clusters that are to be merged on a step of the cluster procedure on the other hand is

dependent on the loss of homogeneity observed if two clusters Cg and Ch are merged,
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where the homogeneity of a cluster solution H(Cj−1) is measured by the sum of variances

within the clusters:

H(Cj−1) =
k∑

g=1

∑
ωn∈Cg

‖xn − x̄g‖2.

If the partition Cj is obtained by the fusion of the clusters Cv and Cw, the homogeneity

of the cluster solution of this step of the procedure is calculated as

H(Cj) =
∑

g 6=v,w

∑
ωn∈Cg

‖xn − x̄g‖2 +
∑

ωn∈C

‖xn − x̄C‖2, with C = Cv ∪ Cw ,

g, v, w = 1, . . . , k.

The difference of the homogeneitiesH(Cj)−H(Cj−1) is then closely related to the measure,

which Ward’s method uses for the determination of distances between clusters, where the

actual value of D(Cg, Ch) is given by the square root of this difference:

D(Cg, Ch) =

√
2ngnh

ng + nh

‖x̄g − x̄h‖2 , g, h = 1, . . . , k. (4.4)

The factor 2 in Equ. 4.4 was inserted to ensure for the special case of two singletons Cg

and Ch that D(Cg, Ch) coincides with the original Euclidean distance between the objects

(Kaufman and Rousseeuw, 1990).

4.1.4 Partition cluster methods

For partition cluster methods, previously established partitions of classification objects are

not irrevocable – objects can change into a different cluster on each consecutive iteration

step. The number of clusters constituting the resulting partition, however, has to be stated

before the start of the performance. Coming from a set of starting values, the stepwise

optimisation of a specified objective function is then aimed, until a partition results that

can not be further improved by shifting any classification objects to another cluster.

The principle of the iterative proceeding can be described as follows:

(1) After the calculation or the input of starting values, an initial partition C0 is estab-

lished.

(2) For each classification object in partition Cj it is checked if the value of the objective

function can be improved by shifting it to another cluster.
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(3) Depending on the procedure, either all objects that cause an improvement or just the

object causing the most improvement are shifted to the according cluster, resulting

in the new partition Cj+1.

(4) Steps 2 and 3 are iterated till no change is effected any longer.

The result of partition cluster methods is not necessarily the partition that optimises the

given objective function – in many cases the shifting procedure stops at a suboptimal

solution. For the identification of the global maximum, the entirety of possible partitions

would have to be formed to choose the one with the optimal value of the performance

index. There is, however, no exact method that solves this optimisation task with reason-

able computational costs, as the number of potential partitions 1
k!

k∑
g=0

(−1)g
(

k
g

)
(k−g)N gets

extremely high already for rather small numbers of classification objects N and cluster

numbers k. For the example of N = 100 objects, there are 2.756 · 1093 possible partitions

that divide these into k = 10 not empty disjunct cluster sets. In most applications a

complete enumeration is, therefore, not possible.

The common way of overcoming this problem are heuristic methods, which yield a locally

optimised solution based on a set of starting values, so that better solutions can only be

found for different starting values. A consequence of this procedure is the dependency of

the cluster solution from the starting values, which are often chosen randomly. To counter

the sensitivity of the methods against the choice of different starting values, it can be

useful to calculate the partition method for different initial partitions and choose the best

arising cluster solution. Another less arbitrary alternative is the use of the result from a

hierarchical cluster method to create an initial partition C0.

The most common partition cluster procedure is the k-means method, which will now be

introduced and compared with the method of k-medoids.

k-means method

The k-means method is the most common and frequently used partition cluster method.

It is based on the objective function of the variance within the clusters, which should

be small for clusters with similar objects. For the distance measure d(ωn, ωm), the use of

the (squared) Euclidean distance is implied. An efficient version of the k-means cluster

algorithm is described in Hartigan and Wong (1979).
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The variance criterion can be formulated as

trW(C) =
k∑

g=1

∑
ωn∈Cg

‖xn − x̄g‖2

=
k∑

g=1

1

2ng

∑
ωn∈Cg

∑
ωm∈Cg

‖xn − xm‖2 → min
C∈Γ

,

where W(C) =
k∑

g=1

∑
ωn∈Cg

(xn − x̄g)(xn − x̄g)
T gives the matrix of variances within the

clusters of the partition C, and Γ is the set of all possible partitions C = {C1, ..., Ck} of N

objects in k clusters. The sum of variances within the clusters can be interpreted as the

amount of variance that is not explained by the cluster solution.

This figure of merit of the k-means method offers the important minimal distance prop-

erty: in an optimal partition Ĉ = {Ĉ1, ..., Ĉk} according to the variance criterion it is

‖xn − ˆ̄xg‖2 ≤ ‖xn − ˆ̄xh‖2, for ωn ∈ Ĉg, g, h = 1, ..., k.

In essence this means that the squared Euclidean distance to the center ˆ̄xg of the cluster

Ĉg that an object belongs to is smaller than, or equal to, the squared Euclidean distance

of this object to the other cluster centers.

k-medoids method

An alternative partition method is the k-mediods method, which considers objects in-

stead of mean values as cluster centers. Kaufman and Rousseeuw (1990) call these centers

medoids and the method accordingly k-medoids. This robust method is superior to the k-

means method in some special applications, though for the examination of large amounts

of data the k-medoids method involves high computational cost. Furthermore, the ex-

istence of quantitative data in a data matrix generally implies the use of the k-means

method, for which reason the k-medoids method is not closer elucidated here.

4.1.5 Performance indices

In cluster analysis the true class memberships of classification objects is unknown. A

cluster solution can, therefore, not be categorised as right or wrong, but only as more

or less useful. Two performance indices that allow to evaluate the usability of cluster

solutions for both hierarchical and partition cluster methods are, therefore, presented.
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Calinski and Harabasz (1974) approach the choice of cluster solutions in terms of the

multivariate analysis of variances and introduce the variance ratio criterion (VRC) as an

index that is based on the variance matrices,

B(C) =
k∑

g=1

ng(x̄g − x̄)(x̄g − x̄)T and W(C) =
k∑

g=1

∑
ωn∈Cg

(xn − x̄g)(xn − x̄g)
T ,

between and within the clusters of a partition C = {C1, ..., Ck} respectively. Number ng

and mean x̄g correspond to the objects of cluster Cg, while x̄ is the mean of all classification

objects. The index of Calinski and Harabasz is than derived as

VRC =
tr(B(C))

tr(W(C))

N − k

k − 1
. (4.5)

Comparing different cluster solutions, a high value of the VRC indicates the solution that

is most appropriate to describe the examined data.

In the comparison of 30 methods for the identification of good cluster solutions by Milli-

gan and Cooper (1985), the VRC was the index that performed best. This examination,

however, only included hierarchical methods for the determination of the evaluated par-

titions.

An alternative criterion for the goodness of a cluster solution is proposed by Rousseeuw

(1987) as the average silhouette width s̄, which is based on the term of the silhouette,

originally used for displaying cluster solutions of arbitrary methods. For its calculation a

value s(ωn), evaluating the goodness of classification is assigned to each object ωn. This

requires the determination of the measure a(ωn), quantifying the average dissimilarity

between xn and all other variable vectors of objects of the cluster that object ωn belongs

to. Furthermore, the average distance d(ωn, C) between xn and all objects in an other

cluster C is calculated for all other clusters. The smallest value of these distances d(ωn, C)

is then denominated as b(ωn) = min
C
d(ωn, C) and can be interpreted as the average

distance between xn and the variable vectors of the objects of its neighbour cluster. The

distances that are necessitated for computing the measures a(ωn) and b(ωn) are determined

according to the distance measure which was used for the construction of the evaluated

cluster partition. The silhouette width s(ωn) is then defined as:

s(n) =
b(ωn)− a(ωn)

max{a(ωn), b(ωn)}
, n = 1, . . . , N.

If object ωn is well-classified, s(ωn) has a value near 1, while small values of |s(ωn)|
near zero indicate a location of the object between two clusters. Classification objects

possessing a negative s(ωn) value are likely to be assigned to the wrong cluster.
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A measure for the goodness of a cluster solution can be derived by considering all silhouette

widths simultaneously in the average silhouette width of all classification objects:

s̄ =
N∑

i=1

s(ωi). (4.6)

Comparing cluster solutions with a different amount of clusters or resulting from different

cluster methods, the solution with the highest value of this criterion is preferable.

While hierarchical methods directly produce a sequence of partitions, the iterative pro-

cedure of partition cluster methods has to be applied for each considered cluster number

k separately, if an evaluation of the best cluster number is aspired to. Kaufman and

Rousseeuw (1990) define the silhouette coefficient SC for this purpose, which is based on

the average silhouette width and is determined as

SC = max
k
s̄(ωk) , k = 1, . . . , N.

At the same time, this coefficient can be seen as an indicator for the existence of an

underlying cluster structure.

4.2 Group comparison

The comparison of two sets of samples is a common problem in practical applications,

where the same variable is usually measured for different conditions or populations, and

the expected value is subject of a location comparison. The most popular test for the

described situation is the t-test, assuming a normal distribution of the variables. If this

assumption is not fulfilled, its also common non-parametric equivalent, the Wilcoxon test,

is often a reasonable choice.

For the data examined in this work the Wilcoxon test could not be applied, as the neces-

sary assumption of equal shape of distributions in both sample sets could not be verified.

For this reason and because of the sufficiently high sample size implying an approximate

validity of the t-test, the application of this parametric test was preferred (Subsection

4.2.1).

As a high number of comparisons for different variables between the same populations

was involved in this work, the problem of multiple testing is furthermore introduced and

respected by means of the Bonferroni-Holm method (Subsection 4.2.2).
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4.2.1 t-test

The t-test introduced here is a parametric test for the comparison of two independent

samples with unknown parameters of the underlying distributions. Both expectation and

variance, therefore, have to be estimated from the data. While the equality of the expected

values is the actual issue of the test, the unknown variances were supposed to be unequal.

It is presumed that the data of the two variables X1 and X2 are independent realisations

X11, . . . , Xn11 and X12, . . . , Xn22 and identically distributed as X1 and X2 respectively.

Furthermore, it is assumed that the entire sample set X11, . . . , Xn11, X12, . . . , Xn22, is

independent, and the two variables X1 and X2 follow the normal distributions X1 ∼
N(µ1, σ

2
1 ) and X2 ∼ N(µ2, σ

2
2 ).

In the following, a two-sided t-test also denominated as Student’s t-test is described,

checking the hypotheses

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

For the evaluation of these hypotheses the mean values X̄1=
1
n1

n1∑
i=1

Xi1 and X̄2=
1
n2

n2∑
j=1

Xj2

are considered, as they give an unbiased estimation of the expected values µ1 and µ2. The

difference of these means X̄1−X̄2 can be seen as an indicator for the equality or inequality

of the location parameters of interest, it is, however, not qualified as a test statistic, as the

meaning of the absolute differences between the two means is dependent on the variances.

A standardisation with the variance of the considered difference,

Var(X̄1 − X̄2) = Var(X̄1) + Var(X̄2) =
σ2

1

n1

+
σ2

2

n2

,

as Cov(X̄1, X̄2) = 0 because of the claimed independence, is, therefore, reasonable and

necessary.

If the variances are unknown, σ2
1 and σ2

2 are estimated and substituted by the empirical

variances S2
1 and S2

2 :

S2
1 =

1

n1 − 1

n1∑
i=1

(Xi1 − X̄1)
2 and S2

2 =
1

n2 − 1

n2∑
j=1

(Xj2 − X̄2)
2.

The test statistic T resulting after standardisation of the difference: X̄1− X̄2 is, therefore,

T =
X̄1 − X̄2√

S2
1

n1
+

S2
1

n2

,
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which is not normally distributed by reason of the approximative standardisation, but

can be proved to follow a t-distribution assuming the null hypothesis of equal means for

both variables. For this, the fraction in the test statistic is expanded by 1

/√
σ2
1

n1
+

σ2
2

n2
,

which yields a numerator that is N(0, 1)-distributed. Furthermore, the denominator is

now closely related with a χ2-distribution with ν degrees of freedom, where the Welch-

Satterthwaite approximation implies

ν =

(
S2

1

n1
+

S2
2

n2

)2

1
n1−1

(
S2

1

n1

)2

+ 1
n2−1

(
S2

2

n2

)2 .

As T can be expressed as a ratio of a normally distributed random variable and the square

of a χ2-distributed random variable divided by the corresponding degrees of freedom, it

possesses a t-distribution.

Consequently, the null hypothesis of the test is rejected if |T | > t1−α(ν) with t1−α(ν) giving

the (1 − α) quantile of the t-distribution with ν degrees of freedom.1 For large sample

sets (n1, n2 > 30) the test statistic T is approximately standard normal distributed; the

quantiles of the introduced decision rule can then be substituted by the corresponding

quantiles of the N(0, 1)-distribution.

4.2.2 Multiple testing

If more than one test problem is examined simultaneously on the basis of the same data

set, the problem of multiple testing arises, as the probability of a wrong decision for

the alternative hypothesis is no longer controlled. A multiple test problem appears for

example, if the same hypothesis is tested in several non-overlapping groups (independent

tests), or if more than one variable is compared for the same samples (dependent tests).

For a single test problem, the probability to reject the null hypothesis wrongly is limited

by the chosen significance level α, ensuring that a decision for the alternative hypothesis

is true with a high probability 1− α. If, however, k pairs of hypothesis are tested simul-

taneously for stochastic independent tests with level α, the probability to reject at least

one of the null hypotheses wrongly if all null hypotheses are assumed to be true is only

limited by αk = 1 − (1 − α)k. For α = 0.05 and k = 100, the probability for at least

one falsely significant result is, therefore, αk = 0.994. Accordingly, a simple correction for

multiple testing can be arranged for independent tests with the Šidák method, ensuring

1The number of degrees of freedom ν has to be rounded down to ensure a valid value input.
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the control of the multiple significance level by examining the k single tests each with the

level 1− (1− α)1/k.

For dependent tests the calculation of the error probability αk is more complicated and no

general equation for αk can be formulated. Several methods, however, exist to constrain the

level αk by an upper limit to avoid exceeding the specified error probabilities. Importantly,

the corrected procedure should be not too conservative to retain a possibly high power of

the tests.

The easiest way to controll the significance level of simultaneous tests is, in the case of

stochastic dependency, the Bonferroni correction, which indicates the execution of each

test to the level α/k. This method ensures that the multiple level α is not exceeded, but

the rough estimation of αk reduces the power of the test considerably, because of the

strong decrease of the level for the single tests.

An alternative method yielding a less conservative test procedure is the Bonferroni-Holm

method (Holm, 1979). The application of this methods involves the ordering of the k

elementary null hypotheses H1
0 , . . . , H

k
0 after the calculation of the p-values p1, . . . , pk for

the single test problems by the ordered p-values p(1), . . . , p(k) to H (1)
0 , . . . , H (k)

0 . Then a

stepwise rejection of hypotheses H (i)
0 is executed till the inequality

p(i) ≤
α

k − (i− 1)
, i = 1, . . . , k, (4.7)

is not fulfilled in the (i + 1)th step. In this case, the hypothesis H (i+1)
0 and all following

null hypotheses are retained and the procedure is stopped. If the inequality 4.7 is valid

for all p-values p(1), . . . , p(k), all null hypotheses can be rejected.

Both introduced multiple test procedures for the case of dependent tests are very flexible,

as they have no demands on the executed tests. The Bonferroni-Holm method possesses

the advantage that the probability to reject a sequence of (false) null hypotheses is higher

than for the easier Bonferroni correction. The amount of gained power by the application

of the procedure proposed by Holm (1979) is dependent on the number of false null

hypotheses.

4.3 Discriminant analysis

The discriminant analysis is a method for pattern recognition and separation of data. It

is, therefore, a versatile tool, offering both the possibility for descriptive characterisation

of group differences and the classification of objects with unknown group membership.
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The supervised method differs fundamentally from the cluster analysis, as the division

into classes is given a priori, whereas the cluster analysis has the aim of creating classes.

One way of introducing the discriminant analysis is the decision theoretical, probabilistic

approach that tries to assign objects according to the expected density of considered

variables, commonly assuming a normal distribution. An alternative entry is the classic

approach of Fisher that claims little assumptions and is based on the linear combination of

data that allows the best separation between the groups respecting its variance-covariance

structure. Under certain, later specified conditions the results of both approaches are

equivalent.

The following description concentrates on the case of the linear discriminant analysis

(LDA) for the existence of two classes, first introducing the general assumptions (Subsec-

tion 4.3.1) and giving an overview over different decision rules (Subsection 4.3.2) for the

decision theoretic problem (Subsection 4.3.3). After the following presentation of Fisher’s

approach (Subsection 4.3.4), some concluding remarks to error rate estimations (Subsec-

tion 4.3.5) and stepwise selection (Subsection 4.3.6) are given, which are important for

the establishment of efficient and reasonably interpretable classification rules.

4.3.1 Assumptions

Concentrating on the description of the discriminant analysis for two classes, the consid-

ered population Ω is divided into k = 2 disjoint classes and accordingly subpopulations

Ω1 and Ω2. Each classification object ω is assigned not only the value of a p-dimensional

variable vector x, but also the true class membership g, where ω ∈ Ωg, g=1,2.

Requirement for the applicability of the discriminant function is the demand for a suffi-

ciently high sample size N of the training set, that has to exceed the number of variables

p, which in turn has to be higher than the number of classes g. For the case of the LDA

the different classes are furthermore assumed to possess equal covariance matrices, as

quadratic discriminant functions are indicated otherwise.

The aim of the discriminant analysis is the explicit assignment of an object ω ∈ Ω with

unknown class index g to one of the groups Ωg, g=1,2, on the basis of the observed

variable vector x. For this, a decision rule e is searched that assigns an estimated class

index ĝ ∈ {1, 2} to each x in the sample space S ∈ Rp:

e : S → {1, 2},

x 7→ ĝ = e(x).
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The number of wrong decisions of the rule e(x), meaning ĝ 6= g, should be small for the

optimal decision rule, where three different kinds of error rates can be considered. The

individual error rate,

εg,ĝ(e) = P
(
e(x) = ĝ|g

)
, g 6= ĝ, g, ĝ = 1, 2,

is also denominated as a confusion probability and gives the conditional probability that

an object belonging to class g is assigned to class ĝ 6= g. The conditional error rate,

ε(e|x) = P
(
g 6= e(x)|x

)
, g = 1, 2, (4.8)

coincides with the conditional probability of a wrong decision, if the variable vector x was

observed. Lastly, the (total) error rate,

ε(e) = P
(
e(x) 6= g

)
=

2∑
g=1

2∑
ĝ=1
ĝ 6=g

εgĝ(e)πg =

∫
S

ε(e|x)f(x)dx, (4.9)

corresponds to the unconditional probability of obtaining a wrong decision based on the

decision rule e.2

The foundation for the establishment of this rule is the characterisation of x and g by

the a priori probability πg that ω ∈ Ωg and the class distribution f(x|g) of x in Ωg,

when x and g are interpreted as random variables. The mixed distribution of the a priori

probability and the conditional distribution of x for given g results in the unconditional

distribution of x on Ω:

f(x) =
2∑

g=1

πgf(x|g).

Based on the a priori probability, the class distribution, and this unconditional distribu-

tion, the probability that an object with observed x belongs to class g can be determined.

It is denominated as the a posteriori probability which is of special interest for classifica-

tion problems and can be calculated after Bayes’s theorem as

p(g|x) =
πgf(x|g)
f(x)

, g = 1, 2.

4.3.2 Decision rules

On the basis of the introduced probabilities and distributions, several decision rules can

be introduced that are optimal in different respects.

2For discrete distributions f(x) the integral in the right part of Equ. 4.9 has to be substituted by a

sigma sign.
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Firstly, the intuitive Bayes decision rule is presented, which makes a decision on the

assignment of an object for the class ĝ for which the probability of the class membership

is maximal for given x:

Definition 4.2 According to the Bayes decision rule, e(x) = ĝ assigns an object with

variable value x to class ĝ if

p(ĝ|x) ≥ p(g̃|x) respectively πĝf(x|ĝ) ≥ πg̃f(x|g̃) for ĝ, g̃ = 1, 2.

An object is, therefore, assigned to the class possessing the highest a posteriori probability

for the observed vector x. For the comparison with other decision rules that are introduced

later on, the consideration of the transformation

f(x|ĝ)
f(x|g̃)

≥ πg̃

πĝ

, ĝ, g̃ = 1, 2,

of the Bayes decision rule is beneficial.

The Bayes rule offers the smallest total error rate amongst all decision rules and is optimal

on this note. This fact can be shown by examination of the conditional error rate ε(e|x)
in Equ. 4.8, which is now expressed by the a posteriori probabilities:

ε(e|x) = 1− P
(
g = e(x)|x

)
= 1− p

(
e(x)|x

)
, g = 1, 2.

As the conditional error rate of the Bayes rule for given x is never greater than that of

another rule, the integral of the conditional error rates weighted by f(x), which coincides

with the total error rate, is also minimal.3

For the deduction of another decision rule, the class membership g is not seen as a ran-

dom variable, but as an unknown parameter which characterises the distribution of x.

Furthermore, the distribution attributing the highest probability to the observed value x

is searched according to the maximum likelihood principle of parameter estimation:

Definition 4.3 According to the maximum likelihood decision rule, e(x) = ĝ assigns an

object with variable value x to class ĝ, if

f(x|ĝ) ≥ f(x|g̃) respectively
f(x|ĝ)
f(x|g̃)

≥ 1 for ĝ, g̃ = 1, 2.

3For discrete distributions f(x) the integral has to be substituted by the weighted sum.
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A decision is, therefore, made in favour of the class Ωĝ, ĝ = 1, 2, that possesses the highest

value of the likelihood function L(ĝ;x) ≡ f(x|ĝ) for the observed variable vector x. This

decision rule can be seen as a special case of the Bayes rule, occurring if equal a priori

probabilities π1=π2 are assumed, and is, therefore, optimal in this case. For this reason it

also seems to be a reasonable choice if no information on πg, g = 1, 2, is available.

While the two introduced decision rules are optimal in the sense of the minimisation of

the error rate judging misclassification, independent of the group an object belongs or is

assigned to, the cost of a misclassification often differs between the groups in practical

applications. For example, it is usually a more substantial error if a medical diagnosis for

severe diseases judges a patient as healthy so that the disease will not be treated, as if a

healthy person is classified as ill and gets a needless therapy. This differential evaluation

of misclassifications can be incorporated by the enhancement of decision rules by a cost

function:

Definition 4.4 Let C(g, ĝ) be the costs incurring if g is the true class index of object ω

and the decision ĝ is made. According to the cost optimal decision rule, e(x) = ĝ assigns

an object with variable value x to class ĝ, if

πĝC(g, g̃)f(x|ĝ) ≥ πg̃C(g, ĝ)f(x|g̃) respectively
f(x|ĝ)
f(x|g̃)

≥ πg̃C(g, ĝ)

πĝC(g, g̃)
, g, ĝ, g̃ = 1, 2.

An object is thus assigned to the class for which minimal costs incur with observed variable

vector x.

Two important special cases of the cost function are the simple symmetric cost function

and the inversely proportional cost function. The simple symmetric cost function,

Cs(g, ĝ) =

{
0 for g = ĝ

C > 0 for g 6= ĝ
, g, ĝ = 1, 2,

evaluates each misclassification with the same cost. The according cost optimal decision

rule is the Bayes rule. The inversely proportional cost function,

Cp(g, ĝ) =

{
0 for g = ĝ

C/πg for g 6= ĝ
, g, ĝ = 1, 2, (4.10)

strongly increases the cost for a wrong assignment of objects belonging to classes with

small a priori probabilities. As the a priori probabilities usually express differences in the

size of the considered populations, the cost function Cp(g, ĝ) appears to be reasonable,

for example in medical diagnoses for rare, but severe diseases. The cost optimal decision

rule for the inversely proportional cost function is the maximum likelihood rule. Under
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certain conditions, both the Bayes and the maximum likelihood decision rule, therefore,

also possess the property of cost optimality.

The different decision rules correspond with specific discriminant functions:

dg(x) := πgf(x|g) results in the Bayes rule,

dg(x) := f(x|g) in the maximum likelihood rule, and

dg(x) := −C(g|x) in the cost optimal rule for arbitrary cost functions,

g = 1, 2.

For the assignment of an object ω with observed variable vector x to a class Ωĝ, the values

d1 and d2 of the discriminant functions d1, d2 : S → R are determined and ĝ = e(x) is

chosen so that

dĝ(x) ≥ dg̃(x) , ĝ, g̃ = 1, 2.

As the classification rules are invariant concerning transformations with strictly mono-

tonic increasing functions, adequately chosen transformations of the original discriminant

functions d1(x) and d2(x) can yield considerable simplifications without an influence on

the classification result. Furthermore, for the case of two classes a switch to a single

discriminant function d is possible with

d(x) = d1(x)− d2(x),

where objects with the variable vectors x ∈ S with d(x) ≥ 0 are assigned to class Ω1, all

others to class Ω2.

The following descriptions are based on the use of the maximum likelihood rule, as this

proved to be superior for the problems addressed in this work, especially under the aspect

of cost optimisation.

4.3.3 Discriminant analysis for normal distribution

For classification problems based on quantitative data, the discriminant analysis is in

many cases applied with the assumption of an underlying normal distribution, which is

often justified because of the central limit theorem and the flexible statistical properties

of the normal distribution. The class distribution of the variable vector x is then

f(x|g) =
1

(2π)p/2(detΣg)1/2
exp

{
−1

2
(x− µg)

TΣ−1
g (x− µg)

}
, g = 1, 2,
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where µg and Σg denote the class specific expected values and covariance matrices.

Utilising the invariance concerning strictly monotonic increasing transformations, the

maximum likelihood rule can be simplified to

dg(x) = −1

2
(x− µg)

TΣ−1
g (x− µg)−

1

2
ln(detΣg), g = 1, 2, (4.11)

by taking the natural logarithm and neglecting the common additive term −p
2
ln(2π). If

classwise identical covariance matrices are assumed, the discriminant function 4.11 can

be further simplified, as detΣg and the term −1
2
x′Σ−1x which are independent from g

can be omitted, yielding the linear discriminant functions

dg(x) = µT
k Σ−1x− 1

2
µT

k Σ−1µk , g = 1, 2.

For the special case of two classes the linear discriminant function is, therefore,

d(x) = d1(x)− d2(x) =

[
x− 1

2
(µ1 − µ2)

]T

Σ−1(µ1 − µ2),

resulting in the assignment of an object ω with the observed variable vector x to class Ω1

if d(x) ≥ 0, and its categorisation as member of class Ω2 if d(x) < 0.

If the underlying normal distributions of the data are unknown, the corresponding pa-

rameters have to be estimated on the base of a training set for which both variable vector

and true class memberships are available. For this, the common unbiased estimators of

arithmetic mean µ̂g = x̄g and empirical covariance Σ̂g = S2
g for observations from class Ωg,

g=1,2, can be used. For the case of classwise identical covariance matrices, an unbiased

estimator for the interclass parameter Σ is the pooled covariance matrix,

S2
P =

1

N − 2

2∑
g=1

ng∑
n=1

(xgn − x̄g)(xgn − x̄g)
T , (4.12)

where xgn, n = 1, ..., ng, denominates the observations in class g.

The linear decision rule can, therefore, be defined by the assignment of an object ω with

variable vector x to class Ω1, if and only if{
x− 1

2
(x̄1 − x̄2)

}T

a ≥ 0 with a = S2
P

−1

(x̄1 − x̄2). (4.13)

4.3.4 Fisher’s linear discriminant analysis

The decision theoretical considerations introduced in the previous subsection are based

on the assumption of a normal distribution. The prior approach of Fisher (1936) goes

without this assumption and concerns the case of unknown parameters.
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Coming from the classwise data matrices,

XT
1 = (x11, . . . ,x1n1) and XT

2 = (x21, . . . ,x2n2),

containing the variable vectors of a training set, it is aimed to find a linear combination

y = a′x , a = (a1, . . . , ap)
T ,

of the observations of the variable vector x that reflects the group structure in one di-

mension. For this, the vector a that maximises the variation between the groups and

minimises the variation within the groups is investigated.

These requirements result in the ratio

R(a) =
(ȳ1 − ȳ2)

2

s2
1 + s2

2

, (4.14)

which is maximal for the required a. The difference of the classwise arithmetic y means

ȳg = aT x̄g, g=1,2, can be seen as the distance between the groups, while the variation

within the groups is composed of the sum of squared deviations s2
g =

ng∑
n=1

(ygn − ȳg)
2, g=1,2,

in both classes.

The ratio R(a) can be rearranged as

R(a) =
(ȳ1 − ȳ2)

2

aTWa
with W = (n1 + n2 − 2)S2 =

2∑
g=1

ng∑
n=1

(xgn − x̄g)
2,

as it is

s2
1 + s2

2 =
2∑

g=1

ng∑
n=1

(ygn − ȳg)
2 =

2∑
g=1

ng∑
n=1

(aTxgn − aT x̄g)
2

= aT

(
2∑

g=1

ng∑
n=1

(xgn − x̄g)(xgn − x̄g)
T

)
a .

For the maximisation of R(a), a is differentiated, yielding the necessary condition

∂R(a)

∂a
=

2(x̄1 − x̄2)a
TWa− 2Wa(aT x̄1 − aT x̄2)

(aTWa)2
= 0, (4.15)

for the extreme value which can be transformed to

x̄1 − x̄2 = Wa

(
aT x̄1 − aT x̄2

aTWa

)
.

It is, therefore,

a = W−1(x̄1 − x̄2),
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if the factor of proportionality aT x̄1−aT x̄2

aT Wa
, which is constant for given a and does, therefore,

not influence the direction of a, is neglected. This vector a from Fisher’s LDA y = aTx

is hence equal to the vector a in inequality 4.13 except for a multiplicative factor, since

W = (n1 + n2 − 2)S2.

The classification of object ω with observed variable vector x and unknown class index is

performed by examining the distance of y = a′x to the two class means ȳ1 and ȳ2, where

the object is assigned to class Ω1 if

|y − ȳ1| < |y − ȳ2| ⇔ y >
1

2
(ȳ1 − ȳ2).

This results in the decision rule that assigns an object ω with the observed variable vector

x to class Ω1, if and only if{
x− 1

2
(x̄1 − x̄2)

}T

a ≥ 0.

Comparing Fishers linear discriminant function with inequality 4.13, shows that the same

classification result is obtained as for the maximum likelihood rule that was introduced

in subsection 4.3.3. While the latter, however, requires classwise normal distribution with

equal covariance matrices, Fisher’s approach offers the same rule on the basis of a rea-

sonable distributionless criterion. This indicates a relatively robust behaviour of the LDA

against violations of its assumptions and a capability in a broad range of situations.

4.3.5 Error rate estimation

For the evaluation of the quality of a discriminant function, the error rate can be consid-

ered which usually has to be estimated on the basis of the data.

The easiest method to estimate the error rate is the determination of the resubstitution

error rate, conforming with the ratio of falsely classified training objects. As this estima-

tion considers the same data for the determination of the error rate that were used for the

establishment of the decision rule, the resubstitution error rate underestimates the true

error rate in most cases.

To circumvent this negative effect, the sample set is often divided into training and test

samples. The objects of the test sample are then classified on the basis of the decision

rule that was created with the training sample and the amount of misclassification is

determined, giving an estimation of the total error rate. This method is, however, only
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recommended if large sample sets are available, as the training sample is otherwise to

small to generate a meaningful decision rule.

An alternative that can also be used if smaller sample sets are considered is the leave-

one-out method (Lachenbruch and Mickey, 1968), constituting a special case of the cross

validation. The cross validation departs the complete sample set repeatedly into training

and test sets to avoid a bias of the estimation by a single division, and averages the

obtained error rates. For the leave-one-out method, which is also denominated as the

jackknife method, only one object is put into the test set at a time. On the basis of the

remaining N − 1 objects, a classification rule is then determined, which is used for the

assignment of the excluded object to one of the classes Ω1 and Ω2. This is done for all

elements before the error rate is estimated by the ratio of misclassified objects, yielding

a robust, and in contrast to the resubstitution error rate, nearly unbiased estimator of

the expected actual error rate. Furthermore, it is beneficial that the leave-one-out method

can be applied for the LDA without complete recalculation for each object (Ripley, 1996).

For small N the estimator of the leave-one-out method, however, yields possibly high

variances.

4.3.6 Stepwise variable selection

For several reasons it is advantageous not to include all available variables in the con-

struction of a classification rule. On the one hand it is desirable to exclude unimportant

variables in the establishment of a decision rule to ensure that only really necessary vari-

ables have to be observed for the future assignment of objects, while at the same time a

representation based on only the most relevant variables allows an easier interpretation of

the decision rule. On the other hand, also methodical reasons speak for the explanation

of the characteristic structure of the underlying classes with preferably few variables, as

then a smaller number of parameters have to be estimated, yielding a higher quality of

the estimation.

The variable selection is furthermore motivated by a special behaviour of the (expected)

actual error rate: in contrast to the optimal error rate of the Bayes rules with known

parameters, it can occur that the actual error rate increases when another variable is added

to the model, although the theoretical error rate improves if this variable can actually

contribute to the class separation. This behaviour is caused by the raised complexity

of the model, as the number of parameters that have to be estimated increases. If the

additional variable contains too little discriminatory information, the class separation,
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therefore, gets worse. For estimated decision rules the error rate usually decreases in the

beginning when variables are added successively, but rises again after a certain number

of variables. This phenomenon is denominated as the bath tub effect.

To find the optimal linear discriminant function concerning the error rate, a complete

model search should be ideally performed, which is, however, very demanding for high

numbers of variables. It is alternatively possible to arrange a stepwise choice by succes-

sively adding or discarding variables in a forward or backward procedure.

In the case of a stepwise backward elimination, starting with the discriminant function

which is based on all available variables, the error rate can be used as the optimisation

criterion for variable selection. For each step the error rates of all discriminant functions

that occur if one of the variables is excluded are estimated. If the discriminant function

obtained without one of the examined variables offers a lower error rate as the best

function of the previous step, the corresponding variable is eliminated. If the error rate

decreases for more than one of the constructed discriminant function, the variable with

the lowest error rate is chosen. If the minimal observed error rate of a new step increases,

the procedure is stopped. In many cases, however, it is recommended to perform one more

step to check this tendency. The error rate of the described proceeding can, for example,

be estimated by the leave-one-out method.

It is possible that more than one variable shows the same maximum improvement of the

error rate when excluded from the model, which makes it unclear as to which variable

should be eliminated. Instead of making a random choice, the standardised discriminant

coefficients a∗j can be determined, standardising the original discriminant coefficients with

the pooled standard deviation sP

1
2
jj of the corresponding variable xj:

a∗j = aj sP

1
2
jj
, j = 1, . . . , p. (4.16)

In this way, the influences of potentially different magnitudes or units of the variables

on the height of the discriminant coefficients are eliminated. The weight of the different

variables on the separation of classes and the classification is, therefore, directly apparent,

and in the case of doubt when the same value of the minimal estimated error rate appears

for more than one variable, the one with the lowest influence on the separation of classes

corresponding to the lowest standardised discriminant coefficient can be excluded.
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Chapter 5

Preprocessing of ion mobility spectra

Instrumental and environmental factors, which can influence both drift and retention

time, and an occuring baseline shift hinder the comparability of different measurements.

In addition, strong RIP tailing and high levels of noise corrupt general peak clarity, which

makes an efficient preprocessing strategy for MCC/IMS data necessary. Consequently the

development of specific axes transformations allows a better alignment in the different

measurement dimensions (Section 5.1). Fitting a lognormal function to the strong tailing

of the RIP (Section 5.2) and using the discrete wavelet transform for data compression

and denoising (Section 5.3) yields the successful elimination of the RIP tailing, a data

reduction to a quarter or less, and a significant increase in the signal-to-noise ratio. In

conclusion, the developed preprocessing strategy offers the desired outcome of smooth

peaks lying on a common base level.

5.1 Comparability of measurements

Varying environmental and instrumental factors such as ambient pressure, temperature,

or electric field strength, can affect the characteristic drift time of analyte peaks and,

therefore, complicate the comparison of measurements. Due to deviations of the column

temperature from the standard value of 30 ◦C a similar effect occurs, influencing the

retention time of peak positions; and a baseline shift distorts the comparability in the

dimension of signal intensity.

A better alignment of different measurements was therefore sort, using different kinds of

transformations for each axis of the three-dimensional data structure. For the drift time,

an enhanced version of the common reduced mobility was found to yield reproducible

67
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results (Subsection 5.1.1), while a quadratic function was chosen to balance deviations in

the retention time (Subsection 5.1.2), and a baseline correction, ensuring the variation of

intensity values around zero in noise areas, was executed (Subsection 5.1.3).

5.1.1 Reproducible inverse reduced mobility

Differing measurement conditions, such as ambient pressure and temperature, can be

compensated by the transformation of the drift time values to the reduced mobility K0. At

the same time, this term adjusts parameter values of the instrumentation, such as electric

field strength and the drift tube length, allowing the comparability of measurements from

instruments with a different setup.

Before transforming to reduced mobility, the drift times xi, i = 1, . . . , nD, had to be

shifted by the half opening time tgrid of the shutter grid to obtain peaks varying around

the actual drift time x∗ = x− tgrid

2
of an analyte. The ion mobility K was then calculated

by the equation

K =
ld

x∗ E
· 1000,

where ld denotes the length of the drift tube (cm) and E is the electric field strength

(V/cm). 1
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Figure 5.1: Drift time values in relation to reduced mobility (a) without and (b) with
inversion: the linear relationship of the inversed values allows for an easier processing and
interpretation.

1The factor 1000 is necessary to convert the unit of drift time from ms to s.
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Adjusting for ambient pressure p (hPa) and temperature T (K), the reduced mobility K0

is following determined by

K0 = K · p
p0

· T0

T
,

where the standard pressure p0 = 1013.25 hPa and temperature T0 = 273.15 K are

included for normalisation.

The consideration of the inverse reduced mobility

1

K0

= x∗ · E

1000 ld
· p0 T

p T0

instead of K0, was found to be even more beneficial, as it yielded a linear relationship

with the drift time, making values easier to process and interpret (Fig. 5.1).

As a large amount of variation in IMS peak positions persisted even after calculation of the

inverse reduced mobility in the current investigations (Fig. 5.2), a reproducible version of

the inverse reduced mobility 1/Kr
0 was developed, leading to a better alignment of spectra.

For this, the RIP was used as a basing point in the drift dimension, since it appeared in
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Figure 5.2: Spectra alignment, shown for instance IMS breath spectra with different mea-
surement conditions, for (a) original drift time, (b) inverse reduced mobility, and (c) re-
producible inverse reduced mobility: the reproducible inverse reduced mobility shows a
considerable better alignment than the two other transformations.
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all the IMS spectra with high intensities, and was thus easy to identify. Due to the linear

relationship, the reproducible inverse reduced mobility could be determined by a factor of

the actual drift times determined by the fraction of the ”true” inverse reduced mobility

of the RIP (0.49 Vs/cm2) and the position x∗RIP of the RIP maximum in the drift time:

1

Kr
0

=
0.49

x∗RIP

x∗.

This term resulted in a more precise alignment of IMS spectra compared to original drift

times or the common (inverse) reduced mobility (Fig. 5.2).

The benefit of this method can be explained by the absence of measurement errors and

possibly the indirect inclusion of unknown influencing variables, as all the factors affecting

the drift time of sample analytes should be inherent in the position of the RIP and can

thus be transferred to the rest of the spectra by the determined factor.

In addition to the advantages of the improved alignment using the reproducible inverse

reduced mobility, time and effort in daily laboratory work could be reduced, since the

detailed reporting of measurement conditions is now no longer necessary. Therefore, the

reproducible inverse reduced mobility is used now as a standard at the laboratories at

ISAS - Institute for Analytical Sciences, Dortmund.

In the following, the notation x will be used to denote the vector of the reproducible

inverse reduced mobilities for easier notation and clarity.

5.1.2 Corrected retention time

The retention time of an analyte is influenced by the temperature of the MCC. This

temperature was kept constant at 30 ◦C for most measurements considered in this work;

in some cases, however, this optimal condition could not be established.

With increased column temperatures, sample analytes pass faster through the MCC,

reaching the IMS earlier, and peaks thus appear at lower retention times compared to

standard conditions. To eliminate this influence and allow for a better comparability

of measurements in the retention time dimension, these peaks were artificially shifted

backwards.

Since there is no basing point, such as the RIP maximum position in drift time, for

the dimension of retention time, a general formula adjusting deviations from the optimal

column temperature of the standard value of 30 ◦C was determined on the basis of analyte

measurements for four substances, at three different column temperatures.
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Figure 5.3: Effect of changing column temperature on the retention time (a) before and
(b) after adjustment: the corrected retention time shows more constant values for all four
characteristic analyte peak maxima at three different column temperatures, especially in
the relevant retention time range of up to 600 s.

As the deviation between measured retention time y and expected standard retention time

y30 grows not only with increasing temperature, but also with increasing characteristic

position of an analyte, the behaviour of the position shift of a peak for growing column

temperature could not be described in a linear way. Instead, a quadratic function of

retention time y was chosen to correct this quantity in dependency of the deviation in

column temperature ∆T from 30 ◦C described by the equation

y30 = ∆T kq y
2 + (1 + kT ∆T ) y.

By minimising the absolute deviations between corrected and expected retention time

at standard column temperature (30 ◦C), the optimal solution was found for the factors

kT = 0.02 and kq = 10−4.

The optimised transformation yielded improvements for all analytes and temperatures

(Fig. 5.3), especially for the two analytes in the retention time range of up to 600 s

considered in the current investigations. This result encouraged the application of the

determined transformation in all subsequent analyses, where the notation y will refer to

the vector of corrected retention times.

5.1.3 Baseline correction

In the third dimension of MCC/IMS measurements, the signal intensity values of mea-

surement parts containing no analyte peaks but pure noise should vary around zero. This
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is, however, not the case for the majority of IMS measurements; instead IMS spectra series

are mainly shifted in total by a varying constant in the dimension of signal intensity.

This baseline shift had to be adjusted to allow comparisons of peak heights between

different measurements, and was estimated by a constant aBSL, calculated as the mean

intensity in a measurement part of pure noise as

aBSL =

i2∑
i=i1

j2∑
j=j1

zij

(i2 − i1 + 1) (j2 − j1 + 1)
. (5.1)

For the dimension of the inverse reduced mobility, the two indices defining the noise

part were chosen as i1 = b0.1iRIP + 0.5c and i2 = b0.8iRIP + 0.5c with xiRIP
= 0.49,

as no peaks were observed in this area. In the retention time dimension, only the first

few spectra were excluded, as these were defective in many cases, resulting in the indices

j1 = 10 and j2 = nR.

The baseline correction was then performed by subtracting the absolute value aBSL from

the total data matrix of each measurement to yield the corrected matrix S∗ as

S∗ = S− aBSL InD,nR
,

where InD,nR
is the nD × nR matrix with all elements equal to 1.

Although the constant aBSL was determined only in the initial part of the spectra, this

absolute baseline correction worked well in all parts of the measurements (Fig. 5.4) and

was, therefore, subsequently applied as a standard, where the notations s and S will be

used to denote the baseline corrected spectra and spectra series, respectively.
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Figure 5.4: Effect of baseline correction for a single spectrum: although the baseline shift
was estimated based only on the initial measurement part, the correction achieves variation
around zero in noise areas for the whole spectrum.
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5.2 Adjustment of the reactant ion peak tailing

Variations in the ion velocity, due to random ion-molecule reactions occurring in the

drift tube, cause a strong tailing of the RIP and varying heights for peaks in different

parts of the drift time axis (Section 2.2). This results in the need for clarification of IMS

measurements by fitting a detailing function which describes the tailing (Subsection 5.2.1)

and is subsequently subtracted from each spectrum of the entire spectra series (Subsection

5.2.2).

5.2.1 Detailing function

The detailing function, fitted to the tailing of a considered IMS spectrum s, was chosen

as a modified lognormal function of the form

L(xi) =
ad

(xi − θ) σd

√
2π

· exp

[
−
[
log
(

xi−θ
m

)]2
2σ2

d

]
,

where xi, i = 1, . . . , nD, denotes the elements of the vector x of reproducible inverse re-

duced mobility values. The lognormal function met well the general assumption of Gaus-

sian peaks as well as the right-screwed shape of the RIP tailing and is often used to

describe physical processes that are limited in one direction. The variables θ, σd, and m

are parameters of location, shape, and scale, respectively, whereas the factor ad induces

a shrinkage to the actual intensity magnitude.

As a reasonable side condition it was claimed that the maximum positions xmax of the

spectrum and xlog
max of the detailing function L(x) should coincide. Since the maximum

position of a lognormal function is known to be xlog
max = θ+ m

exp(σ2
d)

, the position parameter

θ could be determined by

xmax
!
= θ +

m

exp(σ2
d)

⇔ θ
!
= xmax −

m

exp(σ2
d)
.

Accordingly, only the three parameters of shape σd, scale m, and shrinkage ad had to be

optimised, achieved by the minimisation of the developed penalty term P ,

P =

nD∑
i=1

[
I[∆i<−rp]pabs + I[∆i>rp] min(∆i, bp)

]
,

for ∆i = si − L(xi). Whilst the scalar rp, dependent on the standard deviation in noise

areas, allows for little variation of the adjusted function around the considered spectrum,

the constant pabs assigns an absolute penalty for parts of the detailing function lying
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over the spectrum s, to yield the detailing function nestling to the data from below, irre-

spective of occurring peaks. Downwards deviation was penalised by the actual deviation,

constrained by the threshold bp giving a cut-off point for diminishing the influence of the

RIP height in so much as deviations greater than this value were punished only by bp.

For minimisation of this penalty term, yielding the optimal parameter set, a limited-

memory modification of a quasi-Newton method was used, allowing the choice of box

constraints for each variable (Byrd et al., 1995).

5.2.2 Application of the detailing function

To ensure the comparability between spectra of the same measurement after detailing,

and to reduce the computational cost by the performance of only a single fitting step, the

adjustment of the detailing function was performed for a representative spectrum. The

median spectrum smed with

smed = (med(s1.),med(s2.), . . . ,med(snD.))
T ,

Figure 5.5: Effect of the RIP detailing for (a) the characteristic median spectrum with log-
normal function and optimised parameters before and (c) after subtracting of the detailing
function, and (b) spectra series with median spectrum before and (d) after subtracting of
the detailing function: After RIP detailing the peaks grow from a common base level for
the characteristic median spectrum as well as for the whole spectra series.
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where si. designates the ith row vector of the data matrix S, was found to meet the

requirements of characteristic feature conservation for the whole spectra series, a low

variance around zero in noise areas, and high robustness very well, and was, therefore,

chosen as suitable candidate for the adjustment of the detailing function.

By fitting the lognormal detailing function to the representative median spectrum of a

measurement, and using the developed penalty term P for parameter optimisation, the

RIP tailing was described and set down by subtraction of the resulting curve. The accurate

detailing result after subtraction of the lognormal function from the median spectrum is

shown in Fig. 5.5 a and c, which also gives the optimised parameters of the adjusted

function. This beneficial effect could be transferred to the entire spectra series smoothly

(Fig. 5.5 b, d).

5.3 Data reduction and signal-to-noise ratio increase

After the introduced preprocessing steps, IMS data still consists of a large number of

data points with high levels of noise and redundancy, which interferes with most data

analytical methods. To solve this problem, the methods of smoothing (Subsection 5.3.1)

and denoising (Subsection 5.3.2) by means of wavelets (Chapter 3) were linked to combine

the beneficial effects of both reduced dimensionality and a higher signal-to-noise ratio.

Although wavelets have been applied for smoothing or denoising of IMS data before

(Urbas and Harrington, 2001; Cai and Harrington, 1998), the two methods have not been

used in a joint manner for this application before.

Applying the RIP detailing prior to smoothing and denoising by the wavelet transform,

peaks were shown to share a common base level afterwards, while the advantageous effects

of the wavelet operations were retained (Subsection 5.3.3).

5.3.1 Wavelet smoothing

To diminish the amount of redundancy as well as the computational cost, the next aim of

the spectra preprocessing strategy was data compression. By the exclusion of whole levels

of the wavelet decomposition before back-transforming, the wavelet transform was used

for data smoothing, removing high-frequency components of the signal regardless of their

amplitude. The achieved compression rate depended on the number of excepted scales.
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To apply this method to the analysed spectra series, the data matrices had to be extended

to new dimensions of dyadic length, n∗D = 2dlog2 nDe and n∗R = 2dlog2 nRe, which was achieved

by concatenating the series with a reflection, thus a reverse ordering of itself.

Executing a one-dimensional wavelet smoothing with a single compression level, initially

for all single spectra of the extended data matrix, then for each point of the original drift

time dimension across the spectra, a reduction to one quarter of the data points was

achieved. The resulting data still contained the relevant information, while peak heights

increased and the noise variation remained unchanged, leading to an improved signal-to-

noise ratio (Table 5.1, Fig. 5.6 c, d).

After reduction of the data, the resulting matrix was truncated to new dimensions related

to those of the original matrix, but with respect to the performed compression, which

were determined by

nc
D =

⌊
n∗D

cD + 1
− n∗D − nD

2log2(n∗D)−cD
+ 0.5

⌋
, nc

R =

⌊
n∗R

cR + 1
− n∗R − nR

2log2(n∗R)−cR
+ 0.5

⌋
,

where the scalars cD and cR denominate the compression level in drift and retention

dimension respectively.

Figure 5.6: Heatmaps of (a) raw and (b) smoothed data show the achieved information
conservation concurrently with the reduction to a quarter of data points, while the spectra
series in a sideview of (c) raw and (d) smoothed data illustrate an improved signal-to-noise
ratio, but also a not desired amplification of the RIP tailing.
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Table 5.1: Quantification of height and signal-to-noise ratio (SNR) after different processing
steps for the three instance peaks with the drift, retention time position pairs of (20.175
ms, 429 s) for peak A, (22.15 ms, 49 s) for peak B, and (30.05 ms, 225 s) for peak C.

Peak A Peak B Peak C

Height SNR Height SNR Height SNR

axes transformed 0.062 59 0.069 65 0.114 108

& detailed 0.040 38 0.057 54 0.113 107

& smoothed 0.128 82 0.245 157 0.246 157

& denoised – soft 0.059 193 0.142 665 0.224 733

– hard 0.074 252 0.204 696 0.254 866

Besides the beneficial effect of data compression and improved signal-to-noise ratio, the

data, however, became more grainy and peaks were covered up to some degree by the

now even amplified RIP tailing (Fig. 5.6 a, b), which strengthened the need for additional

preprocessing steps.

5.3.2 Wavelet denoising

To yield spectra with an even smoother, less noisy appearance, the wavelet transform was

furthermore used for the denoising of signals by removing small-amplitude components

via thresholding of the wavelet coefficients of a two-dimensional MODWT regardless of

frequency. Therefore, wavelet coefficients under a specified threshold were set to zero

before back-transforming.

It can be differentiated between hard and soft thresholding (Cai and Harrington, 1998).

While hard thresholding retains the original coefficients W̃j,t1 ,t2
above the threshold λ

unchanged, leading to the new coefficients W̃ h
j,t1 ,t2

with

W̃ h
j,t1 ,t2

=

 0 if
∣∣∣W̃j,t1 ,t2

∣∣∣ ≤ λ

W̃j,t1 ,t2
if
∣∣∣W̃j,t1 ,t2

∣∣∣ > λ,

the value of the threshold is subtracted from the coefficients W̃j,t1 ,t2
> λ for soft thresh-

olding, described by

W̃ s
j,t1 ,t2

=

 0 if
∣∣∣W̃j,t1 ,t2

∣∣∣ ≤ λ

sign(W̃j,t1 ,t2
)(|xi| − λ) if

∣∣∣W̃j,t1 ,t2

∣∣∣ > λ.
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Figure 5.7: Heatmaps of (a) hard and (b) soft denoised data show the sharp peak shapes
resulting from denoising via hard thresholding compared to broader peaks after usage of the
method of soft thresholding, while the spectra series in a sideview of (c) hard and (d) soft
denoised data illustrate the appearance of spiky artefacts for the result of hard thresholding,
which were not obtained with soft thresholding.

With both strategies, a significant improvement of the signal-to-noise ratio could be

achieved by denoising using a two-dimensional wavelet transform and Donoho’s universal

threshold λ = σ
√

2 logN , where σ signifies the standard deviation in noise parts and N

the total number of data points (Donoho and Johnstone, 1995).

Although both methods yielded an improvement (Table 5.1), their results, however, dif-

fered considerably: hard thresholding lead to sharp peak shapes (Fig. 5.7 a), with a number

of spiky artefacts inserted (Fig. 5.7 c). Resulting spectra were smoother in soft threshold-

ing on the other hand (Fig. 5.7 d), but peaks tended to be relatively broad (Fig. 5.7 b). The

optimal choice of the thresholding strategy is, therefore, dependent on the application.

5.3.3 Combined application with the detailing function

By applying the wavelet transform for smoothing and denoising of the spectra series,

unfortunately, a severe amplification of the influence of the RIP tailing appeared con-

currently with the beneficial effect of data compression and noise reduction (Fig. 5.8 a).

This effect could be circumvented by using of the RIP detailing prior to the introduced
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Figure 5.8: Heatmaps of smoothed and denoised data (a) without and (b) with detailing:
peaks in the spectra part after the RIP appeared more clear when the RIP detailing was
applied, while the beneficial effects of the wavelet operations were retained.

combination of smoothing and denoising by means of the wavelet transform (Bader et al.,

accepted in 2008). In doing so, peaks became clearer in the spectra parts after the RIP,

while the advantageous effects of the wavelet operations were retained (Fig. 5.8 b). The

varying impact of detailing on peaks in the different spectra parts can be quantified by
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Figure 5.9: Histogram of intensity values of the entire data matrix after wavelet smoothing
and denoising (a) without and (b) with detailing: whilst without detailing the data contained
several hills, indicating different intensity categories according to peaks lying on different
levels of the RIP tailing, only a single hill was left with denoising, as all peaks were set to
the same level.
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comparing their peak heights before and after transformation, showing only little influence

on peaks in the latter spectra parts (Table 5.1).

After RIP detailing all peaks share a common base level, which can be pointed out con-

sidering histograms of all intensities values in the entire data matrix. The histogram for

smoothed and denoised raw data contained several hills, possibly indicating different in-

tensity categories according to peaks lying on different levels of the RIP tailing (Fig. 5.9

a). In the histogram of the intensity values after subtracting the adjusted lognormal func-

tion and performing the combined wavelet procedure, only one hill was left aside from the

big noise part around zero, as all peaks were set to the same level by the method of RIP

detailing (cp. Fig. 5.9 b).

Recapitulatory, combining the different axis transformations with the developed detailing

function and the usage of wavelet transforms for smoothing and denoising, a powerful

preprocessing was achieved.



Chapter 6

Peak detection in ion mobility

spectra

Ion mobility spectrometry can offer short analysing times, however, the interpretation of

the resulting data is often complex and time-consuming. This work aims, therefore, the

automatised identification of characteristic IMS features by a peak detection procedure

developed in several consecutive steps.

Firstly, a method based on a single threshold defined in a k-means clustering is developed

(Section 6.1), which is then enhanced to a stagewise procedure, allowing for the identi-

fication of multiple peaks (Section 6.2). This algorithm consequently provides the basis

for the more powerful, wavelet-based method developed in a last step, which even enables

the detection of peaks without independent maxima (Section 6.3).

6.1 Merged peak cluster localisation

The first approach for peak detection sets an intensity threshold to group the measurement

data into two sets of peak and non-peak points in an initial step. After the discrimination

of different peaks, their locations are calculated to characterise measurements.

This method of merged peak cluster localisation (MPCL) works on the basis of only par-

tially preprocessed data (Subsection 6.1.1); the main part of the algorithm is based on a

k-means clustering to discriminate noise from peak areas and a merging region algorithm

used for the discrimination of different peaks (Subsection 6.1.2). Although some limita-

tions remain inherent in the method (Subsection 6.1.3), it has yielded some promising

initial results.

81
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6.1.1 Limited preprocessing

Only a confined preprocessing procedure was necessary using MPCL, since the method was

constructed for the exposure to noisy data. Instead of the baseline correction introduced

in subsection 5.1.3, page 71, a LOWESS algorithm (Cleveland, 1979) was used to shift

data parts of noise down to zero and concurrently circumvent the aggravation of the RIP

tailing. LOWESS is a robust locally weighted regression method which is implemented in

the software package R (R Development Core Team, 2007). The effect of this step can be

seen in Fig. 6.1 a: while peaks in all measurements areas were retained, the RIP tailing was

corrected towards zero. Additionally, drift time values were converted to reduced mobility

(Subsection 5.1.1, page 68), and retention times corrected with respect to the temperature

of the column, increasing the comparability of the measurements (Subsection 5.1.2, page

70). Wavelet smoothing and denoising methods were not applied here.

In contrast to the preprocessing strategy introduced in Chapter 5, the spectra were trun-

cated after the RIP in an additional step, as all other present peaks seemed negligible

compared to the height of this special peak. This data cut-off was possible because no

important differences were observed before the end of the RIP area. To define the end of

the RIP area, the standard deviation in a pure noise area,

σnoise =

√√√√ 1

(i2 − i1 + 1) (j2 − j1 + 1)

i2∑
i=i1

j2∑
j=j1

z2
ij,

was used as a reference value to determine the intensity threshold tRIP = 2σnoise with i1,

i2, j1, and j2 defined as for formula 5.1 on page 72. The first position xt after the RIP
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Figure 6.1: Illustration of the preprocessing steps for the merged peak cluster localisation
showing (a) the baseline correction with LOWESS for a single spectrum, resulting in the
desired effect of variation of intensity values around zero in noise areas as well as an adjust-
ment of the RIP tailing, and (b) the choice of the RIP end cut-off point as the first position
after the RIP maximum, where the median spectrum falls below a noise-defined threshold.



6.1. Merged peak cluster localisation 83

maximum smax
med , where the median spectrum smed falls below this value tRIP was chosen

as a cut-off point for the data matrix in the dimension of inverse reduced mobility (Fig.

6.1 b), defined by

xt = xi with i = min
{
j|xj > smed

max, s
med
j < tRIP

}
, j = 1, . . . , nD.

The resulting data gave the basis for proceeding further (Fig. 6.2 a).

6.1.2 Functionality of merged peak cluster localisation

Initiating the peak detection algorithm after the described preprocessing procedure, the

values of the truncated data matrix were converted to a binary data set, separating data

points belonging to peak structures and areas of noise. The function begins by splitting

the measured signal intensities into two clusters – peak and non-peak – by the partition

cluster method k-means, choosing the number of clusters equaling k = 2. Furthermore,

starting values for the cluster means could be given as an input, allowing the integration

of the side condition that the mean of the noise cluster should be zero. In addition, this

Figure 6.2: Steps of the merged peak cluster localisation for an instance breath measurement
showing the result of (a) the truncation of the data after the RIP, (b) the splitting of data
into peak and non-peak, (c) the deletion of noise artefacts, and (d) the separation of peaks
via the merging regions algorithm along with the defined peak positions.
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procedure was advantageous because different measurements are not treated by a uniform

threshold, but by a flexible allocation into high and low values (Fig. 6.2 b).

Since this clustering step also assigned extreme values of noise to the peak cluster, a subse-

quent noise artefact deletion step was required. A point xij belonging to the peak cluster

was, therefore, shifted to the noise cluster, if at least one of its eight-point-neighbours

xpq, p ∈ {i− 1, i, i+ 1}, q ∈ {j − 1, j, j + 1}, belonged to this cluster. In doing so, bor-

der areas of real peaks were switched to the noise cluster, which was acceptable, because

peaks were subsequently reduced to single points and the expansion of the detected peak

areas was not the decisive factor of this algorithm. After this step peak areas were clearly

separated from noise (Fig. 6.2 c) and data well prepared for further calculations.

Merging regions algorithm

Although it was feasible to separate noise and peak areas, it was still not possible to decide

to which peak a single peak point belonged from its value. The next step, therefore, was

to divide the data values in the peak cluster in a way that distinguishes between different

peaks. For this, a merging region algorithm was reimplemented following the procedure of

Bruce et al. (2000), constructed for image segmentation for football-playing AIBO1 robots,

which was found to be suitable for peak separation during the course of this research.

The basic functionality of the algorithm is described schematically in Fig. 6.3: starting

from the original image of binary data points (Fig. 6.3 a), each row is divided into segments

of identical values via run length encoding (Fig. 6.3 b), while starting and end points are

stored. Next, adjacent segments containing identical values are merged into multi-row

regions (Fig. 6.3 c).

Since the second step is decisive for this algorithm, it was more detailedly illustrated in

Fig. 6.4: coming from a fully disjoint forest of segments (Fig. 6.4 a), adjacent lines were

a b c

Figure 6.3: Scheme of the merging region algorithm: (a) Original image data points are
divided into (b) segments of identical values and lastly merged into (c) multi-row regions.

1AIBO = Artificial Intelligence roBOt, homonymous with ”companion” in Japanese.
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a b c d

Figure 6.4: Detailed illustration of the merging region step: (a) Fully disjoint segments are
(b) merged if neighbours contain the same values, where (c) new assignments are made to
the furthest parent, and (d) the latter parent is updated for occuring overlaps.

compared and neighbour segments containing the same values merged (Fig. 6.4 b). New

assignments were made to the furthest parent (Fig. 6.4 c) and if an overlap with more

than one segment occured, the latter parent was updated (Fig. 6.4 d).

Afterwards data were not only divided into non-peak and peak any longer, but into peak

A, B, C, ..., where the assignment of points to one of the peaks was now not only based

on the intensity, but also on its position (Fig. 6.2 d).

Peak characterisation

Having identified the points belonging to the different peaks, the next step was the char-

acterisation of peak regions by their peak center locations by computing the mode of the

coordinates of all points belonging to the same peak region as

xA
M = xi∗ , with i∗ = max

i
{#xij ∈ si•|xij ∈ A} , and

yA
M = yj∗ , with j∗ = max

j
{#xij ∈ s•j|xij ∈ A} ,

where A is the set of points belonging to the region constituting peak A. The resulting

peak position corresponded with the spot, where the peak possessed maximum width and

length (Fig. 6.2 d).

6.1.3 Results and limitations of merged peak cluster localisation

The MPCL method yielded a data reduction from a million data point matrix to two

vectors of peak coordinates with its length corresponding to the number of peaks detected

in a measurement. Additionally the height at each peak position was stored as an index

of peak intensity. In this, the MPCL allowed an efficient reduction of the dimensionality

of the data, resulting in a reasonable peak representation (Fig. 6.5 a).
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Figure 6.5: Result of the merged peak cluster localisation for (a) the whole relevant part of
a measurement in a heatmap with detected peak positions, and (b) a small measurement
part, marked in a, considered in a heatmap and two side-views, showing limitations of the
method for shoulder peaks and peaks that are not baseline separated.

Nevertheless, some limitations were inherent in this procedure, as it was not possible to

distinguish peaks that are not baseline-separated, if their connection lies over the thresh-

old determined in the k-means clustering procedure. Overlapping peaks were, therefore,

detected as a single peak, leading to partially inaccurate results (Fig. 6.5 b). Furthermore,

the characterisation of peaks was insufficient, since it was only performed on the base of

the position and optionally the peak height. It would be more meaningful to additionally

give an idea of the peak magnitude for better characterisation purposes.

Still, the method of MPCL could be successfully used for the analysis of IMS data in a

way that would not have been previously possible (Section 7.1).

6.2 Growing interval merging

To overcome the limitations of the MPCL method, another approach for peak detection

was established, also allowing for the detection of multiple peaks and giving a better

characterisation of peak shape and size.

The underlying idea of this peak detection algorithm is to create an intuitive, natural

approach proceeding in a similar way as the human visual perception of peaks: view-

ing an IMS measurement from the topview perspective, outstanding intensity points are
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identified with respect to their surrounding area. When transferred to an algorithm, this

results in the developed method of growing interval merging (GIM) working in a stage-

wise manner, starting from the top of the intensity range. The basis of this algorithm is

the IMS data preprocessing procedure, previously described in Chapter 5.

The program flow of the GIM algorithm can be broken down into three main parts: Firstly,

a sequence of intensity thresholds is defined, corresponding to growing intensity intervals

used at the different stages of the algorithm (Subsection 6.2.1). Secondly, peak detection is

processed at each stage in a manner closely related to the method of MPCL, and peaks are

described by the adjustment of ellipses (Subsection 6.2.2). The last and most decisive step

of the algorithm is the connection of the stages (Subsection 6.2.3), allowing the resolution

of twin- and multiple peaks, thus solving one of the largest challenges in peak detection

problems.

After the presentation of some final steps for the refinement of peak characterisation, the

results of GIM are illustrated and the remaining limitations of this peak detection method

are discussed (Subsection 6.2.4).

6.2.1 Sequence of intervals

The initial step of the GIM method was to define a sequence of thresholds characterising

the growing intensity intervals, giving a foundation for the stages of the GIM algorithm.

Firstly, the lowest intensity threshold, dividing the noise from peak areas, was deter-

mined to set an end point for the algorithm, based on a histogram of all the intensity

values, irrespective of their position in the data matrix. As the histogram of data only

baseline-corrected was non-informative because of the large extent of noise (Fig. 6.6 a), a

comparable histogram was considered for the fully preprocessed data (Fig. 6.6 b), contain-

ing indications for different intensity categories, which could be nominated as (I) noise,

(II) peak and (III) RIP intensity values. It was, therefore, possible to define a noise thresh-

old at the position of the local minimum between noise and peak intensity marks. The

three-fold noise threshold was chosen to be the minimum level, tn, for peak detection.

Next, the remaining thresholds defining the sequence of intervals corresponding to the

stages of the algorithm were constructed in a way that each interval, Ik, included the one

from the previous stage,

Ik = [ik,max(zij)] ⊂ [ik+1,max(zij)] = Ik+1, ∀ k ∈ [1, . . . , ns − 1],

where ns denominates the number of stages.
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Figure 6.6: Histogram of intensities for (a) raw data and (b) fully preprocessed data: while
the histogram of the raw data is non-informative due to the high level of noise, the prepro-
cessed data show indications for different intensity categories, nominated as (I) noise, (II)
peak, and (III) RIP, which allows the definition of a noise threshold.

The initial idea was to construct a sequence with a constant growth of the interval range

from half RIP height i1 = max(zij/2) down to the minimum level tn. This yielded equidis-

tant lower interval boundaries ik with

∆i = ik+1 − ik =
i1 − tn
ns − 1

∀ k ∈ [1, . . . , ns − 1].

This sequence, however, was not well adapted to the data, as the upper intensity area,

represented only by the RIP, was considered in the same way as the lower range, containing

all other peaks.
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Figure 6.7: Thresholds defining the sequence of intervals in the lower section of the intensity
range: signal intensity areas containing the majority of the peaks are scanned more detailed
than the upper parts represented basically by the RIP.
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For this reason, an alternative strategy was developed, choosing the sequence of intervals

in a way that the interval occupancy Nk was growing constantly by ∆N defined as

∆N = Nk+1−Nk = # {zij| zij ∈ Ik+1}−# {zij| zij ∈ Ik} , ∀ k ∈ [1, . . . , ns− 1].

To ensure the total number of data points between the first and last threshold allowed the

division into ns intervals containing the same number of data points, the first threshold

i1 was not chosen as the exact RIP half, but as

i1 = z(p+q),

p =

#
{
zij| zij ∈

[
tn,

max(zij)

2

]}
ns − 1

+ 0.5

 (ns − 1) ,

q = # {zij| zij < tn} .

This resulted in a much better adaption to the data, since areas with high peak density

were scanned more detailedly than parts only represented by the RIP (Fig. 6.7).

6.2.2 Stagewise procedure

Having defined the intervals corresponding to the different stages of the GIM algorithm, a

peak detection procedure closely related to the MPCL method was applied at each stage.

The only difference was the criteria for splitting data into peak and non-peak, which was

no longer based on a k-means clustering, but determined by the interval corresponding

to the current stage.

For this, the points of the data matrix S were nominated as peak where zij ∈ Ik, and as

non-peak where zij /∈ Ik, resulting in a matrix of ones and zeros. It was still not possible to

tell to which peak a point in the binary data matrix belonged (Fig. 6.8 a), thus, the next

step of the procedure separated peaks from one another by the merging region algorithm

introduced for the MPCL method (Subsection 6.1.2, page 84). Afterwards, data could

not only be divided into peak and non-peak, but different peaks regions could also be

distinguished (Fig. 6.8 b).

Due to the applied preprocessing procedures, the shape of the resulting peak areas was

less irregular than in the MPCL method. To allow for the storage of peak information

sparsely, the defined peak regions had to be characterised adequately with few parameters.

This was achieved by the adjustment of ellipses to respect the typical oval peak shape,
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Figure 6.8: Spectra series of an instance measurement (a) after division into peak and
non-peak and (b) after distinguishing peaks via the merging regions algorithm: the step of
merging regions allows to decide not only whether a data point belongs to a peak or the
noise area, but also to which peak it belongs.

claiming the side condition of ellipse axes being parallel to the coordinate axes, which can

be expressed as

(x− x0)
2

a2
+

(y − y0)
2

b2
= 1

with the four parameters x0, y0 for position and a, b for extent (Fig. 6.9).

The position (x0, y0) of a peak was specified as the point with the maximum intensity

value in the peak region, and could be defined by

x0 = xi′ , i′ = max
i
{zij| zij ∈ A}

y0 = yj′ , j′ = max
j
{zij| zij ∈ A} ,

where A is the set of data points belonging to an instance peak A.

To determine the extent a, the first and last points of peak A were matched in the

dimension of inverse reduced mobility as

a1 = xi′ , i′ = min (i | ∃ zij ∈ A) ,

a2 = xi′′ , i′′ = max (i | ∃ zij ∈ A) ,

and the minimum deviation between both points and the position x0 was set to a:

a = min(x0 − a1, a2 − x0).
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Figure 6.9: Illustration of the ellipse adjustment showing the parameters of position (x0,
y0) and extent (a, b) for an instance peak.

For the specification of the extent b, the first spectrum in retention time, containing a

point belonging to the peak region was searched and its deviation to the peak position y0

chosen as b by

b = y0 − yj′ , with j′ = min (j | ∃ zij ∈ A) .

The extent in the other direction was not incorporated for the determination of b, as it

was influenced by peak tailing, while the main interest focused on the cores of the peaks.

In addition to the ellipse parameters, the maximum height was stored giving a further

indication of peak intensity, resulting in a peak list, PK , constituted by five values per

peak on each stage.

6.2.3 Connection of stages

To enable the detection of twin and multiple peaks, the GIM algorithm was structured in

a stagewise manner, where the connection of stages is the decisive step of the method.

A measurement part containing multiple peaks was used as an example to illustrate the

challenge of multiple peak detection (Fig. 6.10 a): the higher peaks could not be sepa-

rated using the highest threshold allowing to find both of the lower peaks (Fig. 6.10 b).

Conversely, the lowest peak was not detected at all using the lowest threshold discrim-

inating between the two higher peaks. A single threshold was, therefore, not capable to

yield a correct characterisation of this measurement part. To circumvent this problem, a
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Figure 6.10: Heatmaps of (a) a twin-peak example, where simple thresholds will either
detect (b) the two higher peak as one, or (c) will miss at least one of the others at all.

stagewise procedure was applied in the GIM algorithm, connecting the different stages by

a comparison of the resulting peak list, Pk, of each stage with the peak list, Pk−1, of the

previous stage.

A multiple peak was indicated if one of the peak regions of the current stage contained

more than one peak position (xk−1
0 , yk−1

0 ) from the previous stage. Subsequently, lines in

Pk belonging to the new peak region found to contain several peak positions of the stage

before were rejected and substituted by the corresponding lines of Pk−1. Peak regions of

the current stage containing no or only one peak position of the previous stage, were kept

unchanged. Consequently, the peak list of the last stage always had to be independently

retained, but the procedure was very effective for the desired detection of multiple peaks.

As an additional refinement in peak characterisation, some final steps were included in the

GIM algorithm to calculate the ellipse area A
◦

= πab as an additional measure for peak

intensity. Furthermore, the peak heights were recalculated by matching the detected peak

positions in data that were only axes-transformed and denoised, since the data processed

Table 6.1: 5 point summary with mean after different preprocessing steps

Mode of data Min. 1. Quart. Median Mean 3. Quart. Max.

axes transformed -0.094 -0.00862 0.00457 0.029 0.0197 3.26

+ denoising -0.023 -0.00037 0.00089 0.029 0.0042 3.19

+ RIP clearing -0.024 -0.00048 0.00064 0.024 0.0027 3.13

+ smoothing -0.074 -0.00073 0.00116 0.048 0.0051 6.35
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Figure 6.11: Ellipse adaption for (a) raw, (b) denoised, and (c) fully preprocessed data: the
height of the the denoised data gives the most appropriate value of the true peak height in
the raw data, where the height is biased by noise, while the fully preprocessed data results
in an overestimation of the intensity.

in this way was the most similar to the raw data, whilst peak heights were not biased by

noise.

This was apparent from the 5 point summaries of the intensity values after the different

preprocessing steps, especially for the mean and the maximum values, since the other

quartiles were mainly influenced by the noise area (Table 6.1). Although the properties of

the fully preprocessed data (Fig. 6.11 c), such as data compression and signal-to-noise ratio

increase were useful in other algorithm parts, the denoised data (Fig. 6.11 b) were more

appropriate for stating the actual peak height (Fig. 6.11 a), and were thus a reasonable

choice for its refinement.

After these final steps, an appropriate peak characterisation was achieved, giving an end

point for the algorithm.

6.2.4 Results and limitations of growing interval merging

The result of the GIM algorithm was a data reduction to only six values per peak, instead

of one million data points, characterising the measurement data sparsely but with little

information loss.

Besides the peak area and height, giving an idea of the peak intensity, the six values

contained ellipse parameters allowing for a visualisation of the data in an ellipse represen-

tation, enabling a direct comparison of the peak detection results with the original spectra



94 6 Peak detection in ion mobility spectra

Figure 6.12: Result of the growing interval merging for (a) the entire relevant part of a
measurement in a heatmap with detected peak ellipses, and (b) a small measurement part,
marked in a, considered in a heatmap and two side-views, showing the limitation of the
method for the detection of shoulder peaks.

series, and showing that the aim of an efficient peak detection method was achieved, ne-

glecting tailings and impurities (Fig. 6.12 a).

In conclusion, the GIM method enabled the reduction of spectrometric data to reason-

able peak variables by a stagewise pattern recognition and feature extraction, and could

resolve multiple peaks by an appropriate strategy for the connection of stages. In doing

so, it conserves the essential information and gives a valuable starting point for arbitrary

continuative analyses.

A comparison with the MPCL algorithm (Section 6.1) indicates the advantage of an

improved resolution of multiple peaks and the enhanced characterisation of peaks by

ellipse parameters. Limitations of the GIM peak detection approach, however, include the

detection of shoulder peaks, i.e. peaks that do not possess independent maxima can not

be found using this algorithm (Fig. 6.12 b).

6.3 Wavelet-based multiscale peak detection

The limitations of the GIM algorithm motivated the development of a more powerful

wavelet-based peak detection method, allowing the recovery of peaks disguised by other

peaks in their surrounding area and thus not possessing independent maxima.
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Enhancing the approach of Randolph and Yasui (2006) for the multiscale processing of

single spectra (Subsection 6.3.1) to the use with three-dimensional spectra series (Sub-

section 6.3.3) and connecting several resolution levels (Subsection 6.3.4), the benefits of

a better quantification with less preprocessing could be provided concurrently with an

improved peak detection sensitivity. Besides the introduction of the work flow of the de-

veloped method, challenges in the transfer to the application to spectra series (Subsection

6.3.2) and the resulting outcomes (Subsection 6.3.5) are described.

6.3.1 Multiscale processing of single spectra

The multiscale processing of single spectra, introduced by Randolph and Yasui (2006), is

based on an MRA by means of the MODWT, as this wavelet-based method is translation-

invariant and applicable to data of arbitrary dimensions (Chapter 3).

After decomposition of a spectrum into a series of details Dj, the appropriate level con-

taining the relevant frequency information is selected and used as the basis for peak

detection. Starting from the identified detail, a MODWT is applied, using a wavelet with

one, and then two vanishing moments, such as the Haar and Daubechies D(4) wavelet.

The two sets of coefficients of the same level as previously selected in the MRA are then

used as a substitute for the first and second derivative to detect peaks as local maxima in
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Figure 6.13: Plots of (a) the MRA details and smooth of a single spectrum and the MODWT
decomposition of the MRA detail 4 based on (b) the Haar and (c) the D(4) wavelet after
alignment with the original spectrum: the wavelet transforms allow to detect the potential
hidden peak covered by the right side of the RIP.
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the MRA detail of choice. To allow for proper interpretation of the MODWT coefficients,

it is important to align them with the underlying details (Section 3.3). This concept is

shortly illustrated for a single spectrum. Fig. 6.13 a shows the original spectrum in the

top and five details as well as the smooth below. As detail 4 seems to be most promising

in grasping the information content inherent to the considered spectrum, this detail was

analysed using a MODWT on the basis of the Haar and the D(4) wavelet. The two re-

sulting sets of coefficients are plotted in Fig. 6.13 b and c after the necessary alignment

with the underlying detail. The determined coefficients coincide with peak positions of

the original spectrum, and even the shoulder on the right side of the RIP can be identified

as a potential feature here.

6.3.2 Challenges in the enhancement to three-dimensional data

The positive performance of the multiscale processing for single spectra encouraged the

enhancement of this method to the application to three-dimensional spectra series. In

doing this, however, a couple of challenges appeared, due to the fact that an MRA now

yields a complex system of three matrices per level instead of a sequence of singular detail

vectors (Section 3.5, Fig. 3.9, p. 35).

The first question, therefore, was if it was possible to base the algorithm on just one

matrix of the optimal level of the MRA instead of working with the HH, LH and HL

matrices as a combination, and which of the matrices would be the optimal choice for this

procedure.

For the data in question, the LH matrices of the MRA yielded optimal results, containing

the main part of the information required for peak localisation aspects. The reason for

this was the symmetrical and sharp peak shape in the original drift time dimension, which

allowed a satisfying resolution even with the wavelet smooth in this direction, while the

broad peaks with tailing effects in the retention time dimension required to be narrowed

by the determination of the wavelet detail (Fig. 6.14 c). The HL matrices on the other

hand, did not show the same beneficial outcome, as peaks were additionally stretched

in the dimension of retention time and, therefore, only a slight benefit was gained by

the more precise localisation in the drift dimension (Fig. 6.14 b). Furthermore, the HH

matrices, originally favoured due to the fact that the single spectra method is based on the

details, contained interfering artefacts, which could be explained by a similar behaviour

as for also complex to interpret two-dimensional derivations (Fig. 6.14 d).
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Figure 6.14: Heatmaps of the (a) LL4, (b) HL4, (c) LH4, and (d) HH4 matrices of a two-
dimensional MRA decomposition of a spectra series using the MODWT method: the LH4
matrix offers the best representation of the original data for peak detection aspects, as peak
positions appear most clearly and the RIP and peak tailings are not the focus of the peak
detection method.

After finding a single matrix per level to be appropriate for proceeding further, the next

problem encountered was a flood of data, produced by the two complex matrix systems

of the Haar and D(4) MODWT decompositions determined for the localisation of local

maxima in the chosen detail matrix. Additionally, even if this challenge could be solved

efficiently, a potential problem arose if the optimal levels differed between the two time

dimensions, as the peak width and thus the relevant scale of peaks in the both directions

was not necessarily the same. In this case a combination of several levels could be relevant

in the MRA, which would even amplify the problem of a massive set of matrices to deal

with.

To solve this problem, the original thought of transferring the method of Randolph and

Yasui (2006) analogously to the case of spectra series was abandoned and the GIM al-

gorithm was used for peak detection in the chosen MRA LH detail matrices instead.

Additional advantages of this procedure besides a reduction in the amount of data to

be processed, included the avoidance of the necessary alignment shifts for the MODWT

matrices, and the fact that the choice of the relevant matrix levels had to be done only

for the MRA.
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Combining the GIM algorithm with the MRA, the method could be used without other

complex preprocessing steps, and consequently better GIM results were enabled as the

MRA clarified measurement features as shoulder peaks.

6.3.3 Wavelet-based peak detection in spectra series

The procedure of the developed wavelet-based peak detection resulted in a reduced prepro-

cessing effort, as only the axes transformations to inverse reduced mobility and corrected

retention time were necessary for alignment aspects. A baseline correction, or a detailing

of the RIP, were not required as the details Dj are based only on local changes, not on

the trend of the original spectra, whilst the effect of denoising was achieved concurrently

with the MRA.

After data preprocessing, two basic choices had to be made for the performance of the

MRA, considering the optimal wavelet function, as well as the most appropriate levels

for further processing. The use of the Haar wavelet was most beneficial, since wavelets of

greater width than this function yielded a less localised MRA and caused overshooting

artefacts, which can be seen best for the spectra series part around the position of the RIP

(0.49 Vs/cm2) in the early retention time range (Fig. 6.15 a-c). Comparing the different

LH matrices of the resulting decomposition that were identified as the sufficient basis for

further processing (Subsection 6.3.2), level 4 was optimal, as it covers the frequency range

most related to that of the peaks, and thus peaks found by visual inspection were present

also in the LH4 matrix for the considered instance data. Level 3, on the other hand, was

blind for broader peaks in the upper retention time region, while level 5 did not resolve

the small peaks, mostly existing in the measurement part with low retention times (Fig.

6.15 d-f).

The LH4 matrix of the Haar wavelet-based MRA was, therefore, the basis of the GIM

algorithm for peak detection, which was used as previously introduced (Section 6.2), but

with 50 stages and a different noise threshold tn, now calculated as the four-fold standard

deviation in a noise area.

The resulting peak list was subject to some optimisation steps to exclude artefact peaks in

the last five spectra, which appeared due to the margin artefacts of the wavelet transform,

and to join the peak positions in the RIP area. The latter was performed by merging all

peaks in the interval (xRIP − 0.005, xRIP + 0.01) around the RIP position xRIP = 0.49 to

a single RIP peak, described by the position xRIP in the drift dimension, the mid position

of all spectra in the retention time direction, and the maximum height observed in the



6.3. Wavelet-based multiscale peak detection 99

Figure 6.15: Heatmaps of the LH matrices of a two-dimensional MRA decomposition of a
spectra series by means of the MODWT method using the different wavelet functions of (a)
Haar, (b) D(4), and (c) D(8) on level 4 (top row), and furthermore comparing the different
decomposition levels (d) 3, (e) 4, and (f) 5 for the usage of the Haar wavelet (bottom row):
best performance for peak detection aspects is obtained using the Haar wavelet, since it does
not cause as many overshooting artefacts as other functions, which is especially obvious in
the early retention time range around the position of the RIP (0.49Vs/cm2); in addition,
the combination with the consideration of level 4, which covers the frequency range most
related to that of the peaks, a good representation of the spectra series is reached.

whole measurement, while the ellipse extents were chosen as a = 0.01 and b as the half

maximum retention time.

As the values of the MRA matrices were not comparable with the original signal inten-

sities, the matrix had to be normalised by a height factor fMRA
h to allow for a proper

quantification of peak heights. All peaks with an inverse reduced mobility position be-

yond 0.7 Vs/cm2 were used when determining this factor, since no influence by the RIP

tailing was expected in the original data for their height. For each of these peaks, a 64×64

matrix around the according peak position was considered in the data matrix that was

base of the MRA; for peaks at the margins of the measurement space, the matrix was

chosen smaller where the margins were reached. This matrix was then denoised to obtain

a realistic value for the original peak height and the resulting values were divided by the

intensity observed for the according peak in the MRA matrix. The third quartile of all
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Figure 6.16: Detected peak ellipses in a heatmap of (a) the MODWT MRA LH4 matrix
using the Haar wavelet after height transform and adjustment of overshooting artefacts, and
(b) the raw data, showing a good agreement of the resulting peak list with the apparent
peaks.

these ratios was chosen as the factor fMRA
h and the MRA matrix as well as the heights in

the peak list were updated by the multiplication with this value.

After this transformation, the MRA matrices could be plotted with the same choice of axis

ranges as the original data along with the detected peak positions, where setting negative

values in the MRA matrices to zero furthermore avoided a confusion about overshooting

artefacts (Fig. 6.16).

6.3.4 Combination of multiple resolution levels

Depending on the measurement conditions influencing the peak width in the two time

dimensions, a single level of the MRA sometimes did not contain all relevant information

of a spectra series. While the higher level details of an MRA containing the low frequency

information were insensitive to small peaks at the beginning of the retention time range,

the lower level details were blind for larger peaks. It was, therefore, reasonable to consider

a combination of several LH matrices and their result of the GIM algorithm to achieve a

more sufficient overall peak list (Fig. 6.17).

To achieve a peak detection result based on the GIM outcome for several MRA details,

starting from the lowest frequency level containing information about the broadest peaks,
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Figure 6.17: Heatmaps of the raw data with the peak ellipses detected in the MODWT
MRA LH matrix of level (a) 3, (b) 4, and (c) 5 respectively, and (d) showing the peak
ellipses resulting from the combined list of all three levels: while level 3 is blind for larger
peaks, level 4 and 5 miss to detect some of the smaller peaks in the beginning of the
retention time range – the combination, however, gives a sufficient characterisation of the
entire measurement.

the peak list of every level was compared with the one for the subsequent level. The

comparison

(xL
0 − xH

0 )2

(
√
πaL)2

+
(yL

0 − yH
0 )2

(
√
πbL)2

< 1

was, therefore, used to identify, which peak positions, (xH
0 , y

H
0 ), of a higher frequency level

fall into the ellipses of the previous stage, defined by the ellipse parameters (xL
0 , y

L
0 , a

L, bL).

The ellipse extents aL and bL were extended by the factor
√
π to respect minor variations

of peak positions between the MRA matrices.

Connecting the different peak lists, ellipses of the lower frequency level containing no

new positions were unchanged in the updated peak list. If an ellipse contained one peak

position from the peak list of the next level, the old ellipse was substituted if the new

ellipse corresponding to the included peak position constituted a larger area. In the case

that one ellipse contained more than one peak position of the comparative peak list, its

row in the peak list was substituted by all the rows of the new peak list corresponding to
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these peak positions. Peak positions of the higher frequency level that were not located

in any of the ellipses from the level before were joined with the updated peak list.

In this way, a new peak list containing the peak information of several frequency levels

was created, yielding a better detection of peaks, if the peak width varied considerably

within a spectra series.

6.3.5 Results

The combination of an MRA and the GIM method, applied to raw data after transfor-

mation of the two time axes for alignment aspects, yielded improved results compared to

an application of the GIM algorithm to data that were preprocessed with a combination

of axis transformations, RIP detailing, as well as wavelet smoothing and denoising. In

contrast to the procedure previously introduced (Section 6.2), shoulder peaks without

independent maxima can now be detected.

Figure 6.18: Comparison of the peak detection results of the three methods of (a) merged
peak cluster localisation, (b) growing interval merging, and (c) the wavelet-based peak
detection based on multiple resolution levels: while the first method provides no information
about the expanse of a peak and is not able to resolve peaks that are not baseline-separated,
the second approach gives a better peak characterisation by ellipse parameters and also
allows for a more sensitive peak detection, but still does not recognise shoulder peaks,
which is achieved by the third method giving a sufficient peak detection result for the entire
measurement.
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Comparing the peak detection results of the three methods of MPCL (Section 6.1), GIM

(Section 6.2), and the wavelet-based peak detection based on multiple resolution levels,

the first noticeable benefit of the two latter methods compared to the MPCL procedure

is the better characterisation of detected peaks, which was enhanced from two position

and an optional height parameter, providing no information about the expanse of a peak,

to the additional values of ellipse extents and area (Fig. 6.18). In addition, the MPCL

algorithm could not resolve peaks that are not baseline-separated (Fig. 6.18 a), whilst

the GIM approach allowed for a more sensitive peak detection, although still not for

the recognition of shoulder peaks (Fig. 6.18 b) which was achieved by the wavelet-based

method giving a sufficient peak detection result for the entire measurement, especially if

several frequency levels are combined (Fig. 6.18 c).

In conclusion, the developed peak detection approach lead to the generation of competent

results. As a high sensitivity was seen as the most important factor for the considered

applications, the appearance of some false positive peaks lowering the specificity of the

method was acceptable. Additional artefact peaks were filtered out in continuative analy-

ses by the clustering of peak positions to general peak areas, and screening for peak areas

that were differentially expressed between groups (Chapter 7).
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Chapter 7

Determination of general peak areas

and further analyses

The introduced peak detection methods sufficiently characterise single measurements by

peak positions and ellipses, respectively, however, the peak positions of the same analyte

vary between measurements, as well as the set of peaks appearing in different measure-

ments is changing. This complicates the comparison of different measurements and re-

quires the definition of general peak areas allowing to generate a set of application-related

peak variables for further analyses.

This goal is achieved by joining the entirety of peak characterisations by means of cluster

analysis. A first approach is based on the peak positions resulting from the MPCL method,

which are clustered and summarised to rectangular general peak areas (Section 7.1). This

procedure is then enhanced to a method that yields ellipsoid peak areas on the basis of

the ellipse parameters obtained by the GIM algorithm (Section 7.2).

Both methods can be used to construct new peak variables, calculated as the mean inten-

sity values in the determined general peak areas. These variables were input for further

analyses in two instance applications.

7.1 Peak regions based on peak position clusters

The MPCL algorithm (Section 6.1) characterises single spectra series by a list of peak

positions and heights, but a set of variables comparable between the measurements of a

study is required to use these values in a continuative analysis. This goal was achieved by

clustering the entirety of peak positions belonging to the measurements of an investigation,

107
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in this example data from a breath analysis study constituted of measurements of exhaled

air from lung cancer patients and healthy control subjects (Subsection 7.1.1). The resulting

clusters gave the basis for the constitution of general peak areas, which were used to define

a set of peak variables, allowing for the discriminative analysis of the data (Subsection

7.1.2).

7.1.1 Procedure

To create a raster of general peak areas, the entirety of peak positions detected in all

measurements of the study was examined simultaneously in a cluster analysis (Bader

et al., 2006). Because the position values in the dimensions of inverse reduced mobility and

retention time possessed considerably different magnitudes, an empirical standardisation

was executed, ensuring the equal influence of both variables on the constituted cluster

solution (Equ. 4.1, page 40). Furthermore, several choices had to be made to find an

appropriate distance measure and clustering method for this application, as well as the

optimal cluster number.

The distance measure, required for the comparison of classification objects which coincided

with the detected peak positions, was chosen as the Euclidean distance (Equ. 4.3, page 41),

as this metric measure offers the advantages of translation invariance, independence from

the choice of origin, and invariance considering orthogonal transforms. Furthermore, this

decision allowed the direct comparison of all clustering methods previously introduced, as

its use is implied for the k -means and Ward’s method.

Subsequently, a cluster procedure had to be chosen, defining the distance measure be-

tween the clusters (Subsection 4.1.3 and 4.1.4, page 42 and 46). Several techniques were

compared, since it was not obvious which method performed best. The method of choice

had to be appropriate for the specific data which consisted of 90 breath measurements

from lung cancer patients and control subjects, yielding a total of 3341 peak positions,

and thus constituting a large set of classification objects.

The k -means procedure is generally recommended for large data sets in an object-oriented

analysis on the basis of a data matrix. Amongst the partition cluster techniques, it is more

appropriately used with quantitative data than the k -mediods method, which is more

robust, but results in a considerably higher computational cost (Kaufman and Rousseeuw,

1990). One problem arising in the partition cluster method, was the dependency on the

starting values of the algorithm, as the resulting cluster structure notably varied according

to the initial partition, which is often randomly chosen from the range of cluster objects.
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To circumvent this inconsistency the k -means procedure was combined with the results of

hierarchical clustering methods, giving an input for the starting values by the calculation

of the mean position of each of the created clusters on the stage corresponding to the

cluster number k. For the hierarchical cluster procedures, the average, weighted average,

and Ward’s method were potential choices for this specific problem, as they are more

robust against outliers than, for example, the complete and single linkage methods, which

are only appropriate for small sets of classification objects (Punj and Stewart, 1983).

The three hierarchical methods of average linkage, weighted average linkage and Ward’s

method, as well as the partition clustering method k -means combined with the average

linkage and Ward’s method were included in the method comparison. As quality criteria,

allowing for a decision on the best performing method, the variance ratio criteria and the

average silhouette width (Subsection 4.1.5) were computed for cluster solutions consisting

of up to 500 clusters. Concurrently, these figures of merit served as a measure for finding

the optimal number of clusters in the resulting partition (Fig. 7.1).

Comparing the different methods, the weighted average linkage scored worst for both

criteria, which was the cause for not taking its results as initial values for the k -means

algorithm. The combined procedures of k -means with average linkage and Ward’s method

respectively outperformed the use of the sole application of the hierarchical methods and
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Figure 7.1: Plot of the values of (a) the variance ratio criterion (VRC) and (b) the average
silhouette width s̄ for solutions consisting of up to 500 clusters using five different cluster
procedures: the combined methods of the k -means procedure with the average linkage and
Ward’s method show the best results; while a similar optimal performance (marked by
dotted lines) for these two procedures is obtained for s̄, the VRC clearly evaluates the
combination with Ward’s method best.
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were, therefore, closer examined. For the variance ratio criteria the combined application

of k -means and Ward’s method was clearly better than the combination with the average

linkage; a conclusion concerning the optimal number of clusters, however, was harder to

draw on the base of this index (Fig. 7.1 a). The average silhouette width, on the other

hand, yielded the best values for the first few cluster solutions for all methods, but as

these were poor in adapting the data structure for the considered problem, and because

of extremely low values of the variance ratio criteria, these clusterings were excluded.

Factoring out the beginning of the range of cluster numbers, the maxima found were

s̄a = 0.454212 for the method with initial values from the average linkage with k = 89,

and s̄w = 0.454197 for the combination with Ward’s method and k = 106 (Fig. 7.1 b).

Since the optima of the two joined methods were almost equal, the k -means procedure

with starting values of Ward’s method and k = 106 clusters was chosen to be optimal due

to better performance regarding the variance ratio criteria (Fig. 7.2 a).

According to this optimal cluster solution, rectangular areas were composed containing all

restandardised peak positions belonging to a cluster, to construct general peak variables

that are comparable between different measurements. For the determination of the limits

of these areas the minima and maxima of all peak positions in a cluster were considered for

Figure 7.2: Scatter plots of all peak positions showing (a) the optimal cluster solution using
the outcome of Ward’s method as initial values for the k -means method with k = 106,
where points belonging to the same cluster are drawn in the same colour and surrounded
by an ellipsoid hull, and (b) the raster of general peak areas adjusted to the optimal cluster
solution, where areas in the lower inverse reduced mobility range that were excluded during
the descriptive analysis are marked in blue and those that correspond to peak variables that
are differentially expressed between the groups are drawn in magenta.
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the two dimensions. A marginal widening was applied to ensure that peaks belonging to

positions at the border of a cluster were almost completely covered by the related general

peak area, although the clustered peak positions were determined as peak centroids before.

Respecting the different scales of both dimensions, a margin of 0.04 Vs/cm2 was, therefore,

added for the inverse reduced mobility, and the limits of the retention time were enhanced

by 6 s. The resulting raster of general peak areas shows overlaps of different rectangulars,

which was accepted, since these also appeared among real peaks, building the basis of this

clustering (Fig. 7.2 b).

After the raster of rectangular peak areas was obtained, general peak variables could be

computed as the mean intensity values in the defined limits of each peak area. Further-

more, the mean intensity for all measurement parts not belonging to any of the peak areas

was calculated, yielding an additional variable. Doing this for each measurement, a base

for further analyses was given by a vector of length k + 1 = 107 that was comparable for

the entire study.

7.1.2 Discrimination of lung cancer patients and control persons

The newly created general peak variables served as an input for the analysis of the human

breath study on lung cancer patients and control persons by means of a linear discriminant

analysis (Bader et al., 2005; Baumbach et al., submitted in 2007; Westhoff et al., submitted

in 2008). As the sample size of n = 90 measurements was smaller than the number of

k + 1 = 107 peak variables, a variable selection was necessary, achieved by a descriptive

analysis of the data concentrating on the appearance of missing values, and a multiple

test procedure screening those variables which showed a significant difference between the

breath measurements of the two groups. Subsequently, a concluding discriminant analysis

could be arranged on the basis of the differentially expressed variables.

In the descriptive analysis of the data, 1417 missing values were found, obtained if the

limits of a peak area were lying outside the observed measurement range. The two reasons

causing this effect were firstly the varying cut-off point after the RIP, yielding different

starting points of the inverse reduced mobility axis of the data matrix after preprocessing,

and secondly the varying duration of the generation of 501 spectra for different measure-

ments by unknown reasons influencing the end of the retention time range. In the area

after the RIP, missing values appeared mainly in the control group, while altogether only

20% belonged to the lung cancer samples. Exploring the reasons behind this, the 5 point

summary of the extreme values of the RIP (Table 7.1) showed that the peak tended to
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Table 7.1: 5 point summary of the extreme values of the reactant ion peak considered
for the group of lung cancer patients and control persons, as well as the room air at the
two measuring places: the RIP height tended to be generally higher for the measurements
generated in Dortmund than for those taken in Hemer.

Minimum 1. Quartile Median 3. Quartile Maximum

Control group (Dortmund) 2.71 2.93 3.01 3.07 3.38

Lung cancer (Hemer) 2.01 2.65 2.7 2.91 3.02

Room air (Dortmund) 2.9 2.94 3.03 3.14 3.21

Room air (Hemer) 1.76 2.11 2.77 2.83 3.15

be higher in the control group than for the lung cancer samples, causing higher values

of the cut-off point after the RIP.1 As the same observation was made comparing the

room air measurements at the ISAS in Dortmund, where the control measurements were

generated, with those taken at the lung hospital Hemer, a correlation with lung cancer

was disregarded for this systematical difference between the measurements. Although the

inclusion of the entire measurement range for the calculation of the peak variables could

have avoided the appearance of these missing values, the procedure was not adjusted to

this issue, because a result not influenced by the RIP was aspired. In the area of late

retention times, on the other hand, where two peak variables were found to contain a

high amount of missing values, no compensation was possible, as the data after the last

spectra were not available.

Excluding 25 variables in the area after the RIP and in the latter retention time dimension

(marked by blue corresponding rectangulars in Fig. 7.2 b), no missing values were left for

the control group, and only 61 remained for the lung cancer samples, which were spread

over just three measurements. Two of these measurements were interrupted after 401 and

430 spectra, leading to the appearance of 8 and 2 missing values respectively. The third

measurement contained an extreme shift of the RIP to the right, causing 62% of the peak

variables to be missing; for this reason this measurement was excluded from the rest of

the analysis.

After the descriptive analysis, the data consisted of 82 peak variables observed in 54

control and 35 lung cancer subjects. This data was subsequently analysed in a multiple

test procedure to identify differentially expressed variables between the groups. For the

comparison of two groups, the two most common test methods are the t-test and Wilcoxon

test. Unequal variances were assumed, according to the distribution of the peak variables

1This effect was not found for the remaining areas of the measurements.
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Figure 7.3: Histograms of the observed values for four instance variables (a-d) in the con-
trol group and (e-h) for lung cancer patients: the distributions appear to be not generally
symmetrical and the variances differ considerably between the groups.

in histograms, where a symmetrical behaviour required by the non-parametric Wilcoxon

test was not observed (Fig. 7.3). At the same time, this was in contrast to the postulate of

a normal distribution implied by the t-test, but as the sample size was sufficiently large, an

asymptotic normal distribution could be assumed because of the central limit theorem.

The level α could, therefore, be controlled if the (1 − α) quantile of the t-distribution

was substituted by the one of the standard normal distribution. However, because of the

dependency of the different tests, and the fact that all variables were measured on the

same samples, a multiple test problem had to be considered (Section 4.2.2, page 52).

Using the Bonferroni-Holm method (Holm, 1979) with the multiple test level αk = 0.001,

25 variables were found to be differentially expressed between the groups (Table A.1,

page 147), marked by magenta corresponding rectangulars in Fig. 7.2 b. For these peak

variables only one missing value was observed in one lung cancer patient, whose value was

substituted by the mean value of this variable in his group, to allow a further analysis of

the measurement.

Having enhanced the data reduction from 107 to 25 differentially expressed variables, a

discriminant analysis could be examined. As the two groups had considerably different

a priori probabilities in the underlying population, the Bayes decision rule was applied

which is also optimal regarding the overall error rate (Def. 4.2, page 56). As lung cancer is

a rare and severe disease, it was reasonable to use the inversely proportional cost function
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to increase the cost for a wrong assignment of objects from classes with low a priori prob-

abilities (Equ. 4.10, page 57). Combining the Bayes rule with this cost function, the a

priori probabilities πg, g = 1, 2 as well as the factor C appearing in the cost function

Cp were canceled out, yielding the Bayes rule with equal a priori probabilities, coinciding

with the maximum likelihood rule and, therefore, possessing the property of cost opti-

mality (Def. 4.3, page 56). The resulting decision rule, assuming equal variance for both

groups, coincides with the classification by means of Fisher’s linear discriminant function,

which has much weaker assumptions, for example on variances and distributions, than the

decision theoretical approach. The equivalence of both rules, however, signifies a broad

applicability of the linear discriminant analysis. The assumption of equal variances for

both groups could, therefore, be neglected for the analysis of the considered data. Esti-

mating the parameters of the distributions of the variables, the usual unbiased estimators

of groupwise mean x̄g, g = 1, 2, and the pooled variance S2
p were determined by means of

the method of moments.

Using these estimators with the maximum likelihood decision rule, a discriminant function

was formed on the basis of the 25 selected variables, whereas the application of the leave-

one-out method for the combination of the t-test procedure and the LDA resulted in

an error rate estimation of only 0.011. To further increase the goodness of the LDA

by reducing the complexity of the model, a stepwise variable selection was performed,

evaluating the benefits of excluding the different variables by the resulting leave-one-
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Figure 7.4: Picture of (a) a heatmap highlighting the measurement parts that constitute
the peak variables giving the base for the discriminant analysis, where the three areas
with the highest influence on the decision rules are marked, and (b) a plot of the resulting
discriminant values for the entire study: the two groups of lung cancer patients and control
persons could be distinguished perfectly.
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out error rate estimation and the values of the discriminant coefficients standardised

with the pooled standard deviation, giving an idea of the influence of a variable on the

discrimination. For three of the variables a perfect discrimination between the groups was

observed after just one step of the downwards selection (Table A.2, page 151). As the

variable V103 possessed the highest p-value, giving a univariate check of the discriminative

properties, and furthermore the lowest standardised discriminant coefficient indicating a

low influence of the variable on the resulting classification, this variable was chosen to be

excluded in the final discriminant analysis. Although the estimated error rate of zero was

also observed with a much lower number of variables, the stepwise procedure was stopped,

since as many influencing variables as possible were aimed to be kept in the decision rule,

to allow for later biological interpretation after identification of analytes corresponding to

the relevant measurement parts (Fig. 7.4 a). The final discriminant function (Table A.3,

page 152) resulted in a perfect classification of all persons in the considered data set (Fig.

7.4 b).

The discriminant coefficients were considered to evaluate which variables have the high-

est influence on the determined decision rule. As their magnitude is dependent on scaling

effects, a standardisation by multiplication with the corresponding pooled standard devia-

tion was required. For the considered data, 3 of the standardised discriminant coefficients

were larger than 1 (Table A.2, page 151), and, therefore, had a major influence on the

result of the LDA. The corresponding peak areas were marked by coloured frames in Fig.

7.4 a, where high intensity values for the variable marked in blue (V25) are relevant for

the assignment to the control group, while features in the peak areas marked in red (V65,

V66) are associated with lung cancer.

Comparing these results with the outcome of parallel studies on the emission of bacteria, it

turned out that the peak variables V65 and V66, found to be related with the assignment of

classification objects to the group of lung cancer patients, correspond with areas containing

analytes found in the measurements of Escherichia coli cultures. As the immune system

of cancer patients is weakened significantly, it is more likely that they are affected by

bacteria, which can yield a bias of the result of human breath measurements by the

emission of lung bacteria. A frequent occurrence of bacteria could be expected for the

lung cancer patients especially in the data analysed in this study, as the lung hospital

Hemer treats severe cases of bronchial carcinomas and hospitalisation is often related with

bacterial infection.

The possibility that at least part of the discriminatory information is related to bacterial

infections rather than to the carcinoma itself can, therefore, not be discarded. Indepen-
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dently of this potential restriction of the determined decision rule, the introduced pro-

cessing strategy for spectra series enabled the successful characterisation of differences

between the two groups of samples.

7.2 Peak regions based on ellipse parameters

Although the introduced approach for the definition of general peak areas and correspond-

ing variables already allows continuative analyses of the entirety of determined peak lists

of whole studies, a further enhancement of this method was aspired to. Based on wavelet-

derived MRA details the ellipse representations resulting from the GIM method allowed

the construction of ellipsoid general peak areas, giving a more appropriate characterisation

of typical measurement features.

This new procedure was practically introduced for the breath measurements of patients

of various lung diseases at the lung hospital Hemer to determine a collection of general

peak areas for breath analysis applications, used to create new peak variables as mean

intensity values in these areas (Subsection 7.2.1). The resulting variables were then used to

discriminate between different forms of lung cancer, namely circular focuses, endobronchial

tumors, and other types of lung carcinomas (Subsection 7.2.2).

7.2.1 Procedure enhancement

The construction of general peak areas was initiated by clustering of the entirety of peak

positions equivalently to the introduced method based on the MPCL (Subsection 7.1.1),

but now using the peak lists of an MRA-based application of the GIM algorithm. The

findings for the choice of measures and methods could, therefore, be adapted from this

approach, yielding the use of the k -means procedure with starting values derived from

Ward’s method, and calculating the average silhouette width for the evaluation of the

optimal cluster number.

The input peak positions were still standardised, the standardised retention times now,

however, weighted by the factor 0.5 to adjust for the higher variability in this direction.

Furthermore, peak positions containing less than two points in their surrounding area,

defined by ranges of 0.005 Vs/cm2 for the inverse reduced mobility and 10 s for retention

time around the considered position were excluded before cluster analysis. The optimal

solution resulting from this procedure consisted of 148 clusters.
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The optimal solution was subsequently characterised by ellipses to yield general peak

areas from these clusters (Fig. 7.5). Here, two position parameters xG
0 and yG

0 were chosen

as the mean of the quartiles of all peak point positions belonging to a specific cluster in

the two dimensions, given by

xG
0 =

x00.25 + x00.75

2
and yG

0 =
y00.25 + y00.75

2
.

The extent parameters were determined as the mean deviation of the two position quartiles

from the defined area positions xG
0 and yG

0 , summed with the median ellipse extents for

the peaks belonging to a specific cluster, resulting in

aG =
x00.75 − x00.25

2
+ med(a) and bG =

y00.75 − y00.25

2
+ med(b).

These ellipse parameters defined general peak areas (Table A.4, page 154), giving the

basis for the calculation of peak variables as the mean intensity for the values within each

ellipsoid area, which was for the gth variable computed as

VG = Ē with E =

{
zij

∣∣∣∣∣(i, j) :

(
xi − xG

0

)2
aG2 +

(
yj − yG

0

)2
bG2 < 1

}
.

Continuative analyses were enabled for breath analysis studies after determining these

peak variables for each single measurement.

Figure 7.5: Heatmap of a breath measurement with the determined ellipsoid general peak
areas: the ellipses drawn in black give the basis for continuative analyses, while the areas
marked in blue were excluded in the descriptive analysis because of a large amount of
missing values, or a constantly low response over the samples.
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Figure 7.6: Heatmaps illustrating the peak variable values for all patients in the entire study,
separated by variables and patients that are included in the analysis and those that were
excluded in the descriptive analysis: red values correspond with low responses, higher values
are encoded in either yellow, green, blue, up to purple; white spots indicate missing values.

Before the analysis of specific questions, a descriptive analysis was performed considering

the peak variable intensity values of the data from the entire study. Concentrating on the

identification of variables and patients with high amounts of missing values, 8 peak vari-

ables containing more than 20 missing values, as well as 5 patients whose measurements

contained between 45 and 115 missing values, were excluded from the further analysis.

Afterwards, only 51 out of 1313 missing values were left. Additionally, 35 variables with

constantly low responses, therefore constituting peak areas likely to be based on noise

artefacts, were also excluded from the continuative analysis (Fig. 7.6). These peak vari-

ables were identified by comparing their maximum values with the median of all the peak

variable values, remaining in the study after the exclusion of variables and patients with

many missing values. The remaining set of 105 peak variables gave a basis for the separate

investigation of different questions.

7.2.2 Comparison of different forms of lung cancer

After the separation of lung cancer patients from a control group was previously inves-

tigated, the aim was now to compare the profile of patients with different forms of lung

cancer. The set of measurements in this study was, therefore, constrained to a subset

of three groups, containing 10 patients with circular focuses at an early stage of cancer
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development, 21 patients with endobronchial tumors, and 9 patients with other types of

carcinoma (Fig. 7.7), analysed in a pairwise manner.

Starting with the matrix of the selected peak variables for each pairwise comparison, a

t-test procedure was performed to screen for variables that were differentially expressed

between two of the groups (Table A.4, page 154). As the p-values were considerably

high, a multiple testing correction could not be integrated, since none of the variables

would remain. Using a leave-one-out procedure for the estimation of the error rate, overall

significant variables were, therefore, defined as those who possessed a p-value below 0.05

for each test across the patient range. These peak variables gave the basis for the following

LDA, where patients possessing missing values for any of these variables were excluded

from the analysis.

The LDA applied for the pairwise separation of the different groups was performed using

the same settings as in Subsection 7.1.2, estimating the error rate by the leave-one-out

method and improving the discrimination between groups in a stepwise selection of vari-

ables. Here, at each stage of the procedure the variable yielding the lowest estimated

error rate, when left out of the determination of the discriminant function, was excluded

from the analysis. If the lowest error rate value appeared for more than one variable, the

standardised discriminant coefficients excluded the variable with the lowest value, as this

corresponds with little discriminatory information (Table A.5, page 159). This procedure

Figure 7.7: Heatmaps illustrating the values of peak variables remaining after the descriptive
analysis for the study subset of lung cancer patients: the three groups of circular focuses,
endobronchial tumors, and other carcinomas (’neither nor’) are indicated on the vertical
axis, while relevant variables for this analysis are marked by ticks on the horizontal axis.
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was continued until no further improvement was achieved and the remaining variables

used as the input for the final discriminant functions. Peak variables were illustrated in

density plots comparing the distribution between the two groups, while corresponding

areas were additionally marked in a heatmap as shown in Fig. 7.8 for the variables V 9,

V 25, V 34, and V 72 used to separate patients with circular focuses and endobronchial

tumors.

When comparing the different groups of cancer patients (Table A.7, page 163), the best

differentiation was achieved between patients with circular focuses and those with other

forms of carcinoma exclusive of endobronchial tumors (Fig. 7.9 b), where all patients

were assigned to the correct group on the basis of the final discriminant function with an

estimated error rate of only 5 %. The discrimination between groups suffering of endo-

bronchial tumors, and those suffering from circular focuses and other carcinomas, showed

a similar high estimated error rate of about 20 % (Fig. 7.9 a, c) for both comparisons,

giving the impression that patients with endobronchial tumors were harder to separate

from other groups than the other two sets of patients. This assumption was confirmed in a

comparison between patients with circular focuses and a combined group including those

with endobronchial tumors and all other forms of carcinoma. The differentiation showed

an estimated error rate of 15 % (Fig. 7.9 d), where all four wrongly assigned patients

belonged to the group of endobronchial tumors.
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Figure 7.8: Plots overlaying the density curves for the two groups of patients with circular
focuses and endobronchial tumors for the relevant peak variables of this comparison (a) V 9,
(b) V 25, (c) V 34, and (d) V 72, which are also marked in (e) the heatmap of an instance
breath measurement.
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Figure 7.9: Results of the linear discriminant analysis for the four different comparisons of
(a) circular focuses with endobronchial tumors, (b) circular focuses with other lung carci-
noma exclusive endobronchial tumors, (c) endobronchial tumors with other lung carcinoma
exclusive circular focuses, and (d) circular focuses with other lung carcinoma inclusive en-
dobronchial tumors: the absolute values of falsely assigned patients are given as well as
the observed and estimated error rates and the peak variables forming the basis of the
discriminant function.

It was observed that the LDA for the last comparison was based on the peak variables

V 25, V 41, V 59, 72, and V 84 (Fig. 7.10 b and B.1, page 165), which were also involved

in the decision rules for the discrimination of circular focuses against the two groups of

endobronchial tumors (V 25, V 72) and other carcinoma (V 41, V 59, 72, V 84), separately.

It could, therefore, be seen as an amalgamation of the discriminant functions, combining

the two relevant measurement parts of the pre-RIP, on the left-hand side of the RIP,

and the measurement part behind the RIP in the early retention time range. The first

measurement part contains the basic features, influencing the separation of the patients

with circular focuses and those with other forms of carcinoma besides endobronchial

tumors (Fig. 7.10 a and B.2, page 166); whilst the second measurement part consists

of the peak areas giving the input for the discrimination between circular focuses and

endobronchial tumors (Fig. 7.8). The peaks yielding the separation between endobronchial

tumors and other carcinoma exclusive circular focus on the other hand were all located

in the RIP area (Fig. B.3 and B.4, page 167).

In summary, peak regions corresponding to the variables found to be relevant for the

comparison of the different forms of tumors could be assigned to three main groups: the
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Figure 7.10: Heatmap of an instance breath measurement showing the general peak areas
corresponding to the relevant variables for the comparison of (a) circular focuses with other
carcinoma excluding endobronchial tumors and (b) circular focuses with all other carcinoma
including endobronchial tumors.

group of ellipse areas lying in the pre-RIP, those located in the RIP, and those spread over

the measurement area on the right-hand side of the RIP. The three groups of corresponding

variables influenced three different comparisons respectively, while the fourth decision rule

was based on a mixture of the first and the third group. No similarities were observed

between any of the identified peak areas with those that showed to be most important in

the comparison of lung cancer patients with control persons.

In conclusion, the main part of the peak variables which give the basis for the separation

of groups lies in measurement parts, where relevant features were not expected a priori.

Many variables are located in the pre-RIP or the RIP itself, where it was not directly

apparent why specific positions of these long stretched peaks should contain discrimina-

tory information. It might, however, be possible that the whole peaks were differentially

expressed between the groups, which may influence the result in this way. This hypoth-

esis was strengthened by the fact that more variables lying in the two peaks of RIP and

pre-RIP were included in the original LDA, before the stepwise selection resulted in the

exclusion of some of them to reduce the complexity of the model and thus improve the

actual error rate. As the positive and negative discriminant coefficients, however, were

spread over these variables randomly without an obvious pattern, this assumption could

not be verified. On the other hand, the variables possessing the highest standardised dis-

criminant coefficients and, therefore, giving the main part of discriminatory information,
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were for the comparison of circular focuses with all other carcinoma exclusive (V 1 and

V 72) and inclusive (V 25 and V 72) endobronchial tumors respectively found to be the

two variables that did not lie on the straight line with all the peak areas falling into the

pre-RIP. This might be a reason why patients with different forms of tumors were still

sufficiently separated and only members of the group with endobronchial tumors were

hard to assign to the correct group.

These results gave an interesting insight into differences in human air composition, not

only between control persons and lung cancer patients, but also in different forms of lung

tumors. Without the developed methods for preprocessing, peak detection, and the deter-

mination of general peak areas, specifying the relevant measurement parts for the com-

parison and differentiation of breath monitoring data would have been time-consuming,

subjective, and insufficient, if even at all feasible. The introduced approaches, therefore,

constitute a valuable contribution for the analysis of spectrometric data.





Chapter 8

Transfer to another spectrometric

method

To prove a wider applicability of the developed methods, the introduced algorithms are

transferred for use with another spectrometric method, namely the differential mobility

spectrometry (DMS), which is introduced in Section 8.1. The analysis of the dependency

of two analytical dimensions of a DMS coupling with pyrolysis-GC for measurements

on bacteria cultures was used as an example, containing a high number of peaks within

a dense assembly. For this, the specification of peak positions is required (Section 8.2),

enabled by the application of the GIM algorithm to the three-dimensional spectra data

after a preprocessing based on wavelet transforms is performed.

8.1 Differential mobility spectrometry

Differential mobility spectrometry (DMS) is a method for the characterisation of gaseous

analytes using differences in mobility K (Equ. 2.1, page 13) between two electric fields. In

DMS drift tubes, gaseous ions are formed from a sample through ion chemistry and are

evaluated for the dependence of K between two extremes of electric field strength. The

required drift tubes offer low costs, are insensitive to mechanical influences, and are avail-

able as miniaturised devices. Additionally, DMS offers the simultaneous characterisation

of positive and negative ions using a single analyser (Schmidt et al., 2004).

More specifically, the electric field is in contrast to the IMS applied orthogonal to the ion

flow with a supporting drift gas between two closely spaced electrodes, while alternating

strong and weak electric fields are generated using a high frequency asymmetric field. For

125
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Figure 8.1: Illustration of the size and appearance of the parts of a planar DMS device
(Picture provided by Dr. Gary A. Eiceman, New Mexico State University, USA).

DMS devices with planar drift tubes (Fig. 8.1) the ions are carried between two parallel-

plate electrodes, where a high frequency electric field is applied to one plate and the

other is grounded. Only ions with a certain field dependent mobility pass through the

electrodes; others eventually collide with the electrode walls and are no longer detectable.

The net migration of the ions can be corrected so that ions pass through the analyser to a

detector using a compensation voltage, which is varied over a range of weak dc voltages to

scan a differential mobility spectrum. Ions from a substance have a certain compensation

voltage that is a measure of the magnitude of field dependence of mobility, giving a direct

measure of the difference in ion mobility between the field extremes and is characteristic

for fixed experimental parameters. Ions that pass from the drift tube are collected by two

Faraday plate detectors floated slightly to a negative or positive potential.

Measurements in DMS analysers provide a low resolution, restricted technically by the

aperture dimensions and under certain conditions also by ion-molecule clustering. To

compensate the low resolution, a DMS device can be coupled to a gaschromatographic

column (GC) to obtain a second separation dimension.

In the investigation of bacteria culture measurements considered here, the additional in-

tegration of pyrolysis (py) was beneficial, providing chemical information to detect micro-

organisms by heating in the absence of oxygen or any other reagents and is well-matched

to the instrumentation of GC. The chemical method of py-GC/DMS was, therefore, used

to analyse the mixtures of volatile constituents derived from bacteria samples of different

strains.

The chemical information from a py-GC/DMS analysis constitutes a three-dimensional

data structure of signal intensity, retention time, and compensation voltage from the
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mobility scan. For the analysis of orthogonality of the two separation dimensions of py-GC

and DMS, the generated data were processed similarly as introduced for the IMS breath

measurements before. While axes transformation and RIP detailing were not necessary,

data were smoothed and denoised by means of wavelet transform before they were subject

to the method of GIM for analyte peak detection.

8.2 Orthogonality calculations for bacteria data

In a recent publication by Prasad et al. (2007), four different bacteria strains were analysed

by means of py-GC/DMS. Investigating the influence of different growth temperatures, a

partially limited separation between the clusters of 10 replicates per specific temperature

was found for all the bacteria.

To determine if an improvement of this separation could be reached by instrumentation

modifications, the orthogonality of the dimensions of retention time and compensation

voltage was quantified using an approach of Liu et al. (1995) (Subsection 8.2.1) for the

example of the two bacteria strains Escherichia Coli and Staphylococcus Warneri (Subsec-

tion 8.2.2). These calculations, performed at the Chemistry and Biochemistry Department

at the New Mexico State University, USA, required the specification of peak positions for

the entirety of relevant measurements, derived by the GIM algorithm. As the peaks in the

py-GC/DMS measurements of bacteria data were situated in a very dense constellation

without a general baseline, the beneficial properties of this peak detection method could

be proved in this application.

8.2.1 Analytical orthogonality

Analytical orthogonality is a measure of the degree of dependency of analyte peak po-

sitions in the two dimensions of a two-dimensional separation. If a strong dependency

between the two dimensions is present, such as for the coupling of two identical devices,

its value is near zero; if the two dimensions are orthogonal, i.e. the analyte peaks are

spread randomly over the entire measurement range, its value is near one. The inves-

tigation of analytical orthogonality is of interest for the evaluation of the performance

of two-dimensional separations, as dependency between the two dimensions delimits the

actual peak capacity of a device.
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Figure 8.2: Practical peak area of a nonorthogonal two-dimensional retention space: the
peak spreading angle is denominated as β, while the two areas that do not contain peaks
are indicated by A and C with corresponding angles α and γ.

While the peak capacity is defined as the ratio of the measurement range and the average

peak width for one-dimensional separations, it is generally considered to be the product of

the peak capacities of the two separate dimensions in two-dimensional separations, such

as Crt and Ccv for retention time and compensation voltage of a py-GC/DMS device.

This theoretical peak capacity, CT , however, often overestimates the true peak capacity

of coupled devices, as correlations of the two dimensions can restrict the measurement

range practically containing peaks (Fig. 8.2).

The practical peak capacity, CP , can be derived as the difference of the theoretical peak

capacity, CT , and a constant characterising the amount of correlation between the two

separation dimensions (Liu et al., 1995). The calculation of this constant is based on

the idea of a peak spreading angle, β, (Fig. 8.2) and requires the specification of peak

capacities in the two dimensions as well as a list of peak positions of sample measurements

that span the whole range of analyte peaks that are relevant for a considered application.

The peak spreading angle, β, can be determined as

β = cos−1Ccorr,

where Ccorr gives the sample correlation between the two peak position vectors of the

separation centered and scaled with dimensionwise mean and standard deviation respec-

tively. Quantifying the areas of the measurement space A and C where no peaks appear

as

A = 0.5C2
cv tan(α) and C = 0.5C2

rt tan(γ)
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with α and γ are defined as

α = tan−1(Ccv/Crt)(1− 2β/π) and γ = π/2− α− β,

the practical peak capacity can be calculated as

CP = CT − (A + C).

The discrepancy between practical and theoretical peak capacity, given by A + C, allows

conclusions to be drawn regarding the benefit of coupling different separation techniques.

8.2.2 Analysis of bacteria data

The concept of analytical orthogonality was used to investigate whether class separation

of measurements on bacteria cultures grown at different temperatures (Prasad et al., 2007)

is limited by the dependency between the two dimensions, and can thus be improved by

modifications of the py-GC/DMS instrumentation. For this analysis, besides the peak

capacity of the py-GC and DMS dimension, the positions of peaks spanning the entire

potential measurement range were required. Using the GIM algorithm for the analysis of

Figure 8.3: Illustration of a py-GC/DMS measurement of bacteria for the example of S.
warneri displaying (a) positive and (b) negative mode data in heatmaps along with the
detected peak positions of ten replicate measurements used as input for the orthogonality
calculation.
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Figure 8.4: Illustration of a py-GC/DMS measurement of bacteria for the example of S.
warneri showing a measurement taken in the negative mode in a sideview for the dimensions
of (a) retention time and (b) compensation voltage to give an idea of the average peak width
required as input for the orthogonality calculation.

the py-GC/DMS data of bacteria cultures containing multiple peaks in a dense assem-

bly that do not grow from a general baseline, this application allowed the validation of

the developed algorithm, especially regarding the identification of non-baseline separated

peaks.

Base of the calculations were positive and negative mode data of ten py-GC/DMS mea-

surements of E. Coli and S. Warneri grown at a temperature of 37◦C. After determination

of the peak lists for all replicates, these were linked for both bacteria separately, but also

a joint peak list was established for both positive and negative modes (Fig. 8.3). The

peak capacity in retention time was specified as 50.97 for the positive and 33.71 for the

negative mode; for the compensation voltage it was 4.11 for the positive and 3.75 for the

negative mode (Fig. 8.4).

The results of the orthogonality calculations for this data input (Table 8.1) indicated a

negative correlation between the two dimensions of py-GC and DMS. Furthermore, the

amount of dependency was found to be higher for data in the positive than for negative

mode, when used for this special application for E. coli and S. warneri as well as the

joint examination. This effect was evident as the peak positions for the positive mode

lay on a straight line, while being more scattered over the measurement range for the

negative mode data. In the positive mode, the coupling of the two separation methods

yielded a gain in practical peak capacity of around 3 for the dimension of py-GC and

about 40 for the dimension of DMS, when compared to the solely application of the two

methods. About one quarter of the theoretical peak capacity, however, was lost in the
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Table 8.1: Results of the orthogonality calculations on the base of the GIM peak lists of
E. coli, S. warneri, and the joint peak list, respectively, for both data from positive and
negative mode.

E.coli &

E.coli S.warneri S.warneri

Positive mode

Correlation -0.64 -0.66 -0.65

Theoretical peak capacity 209.30 209.30 209.30

Practical peak capacity 156.42 154.07 155.70

Loss 25.26 26.39 25.61

Negative mode

Correlation -0.23 -0.38 -0.31

Theoretical peak capacity 126.42 126.42 126.42

Practical peak capacity 115.37 108.34 111.79

Loss 8.74 14.30 11.58

two-dimensional separation, indicating that the discrimination of the considered bacteria

sample clusters could be limited by a certain amount by dependencies of the dimensions. If

the orthogonality of the py-GC/DMS instrumentation could be improved, closely related

samples might, therefore, be classified more reliably. For the negative mode around 90

% of the theoretical peak capacity was maintained, implying that modifications of the

instrumentation can here hardly improve the separation of the bacterial samples.

These results could not have been derived without the automated peak detection via

the GIM algorithm, allowing the processing of complex spectra series data despite the

dense arrangement of the peaks. Furthermore, the fact that the peaks were not lying on

a general baseline did not harm the obtained peak detection results, demonstrating the

wide applicability of the developed peak detection method.





Concluding remarks





Chapter 9

Conclusions and outlook

The conclusions made during the course of this work cover the two main areas of the

processing of spectra series (Section 9.1) as well as the subsequent analysis for three

instance applications (Section 9.2). Contributions of new knowledge throughout this thesis

and inferences are discussed, and additionally, ideas for potential future research generated

while working on this project are proposed (Section 9.3).

9.1 Concluding comments on spectra processing

The main problems encountered throughout this work included high amounts of redundant

data generated by spectrometric methods, the limited reproducibility of measurements,

high levels of noise, shoulder and overlapping peaks, as well as the phenomenon of peak

tailing, especially when using the IMS method. The objectives resulting from these chal-

lenges were the development of an efficient preprocessing strategy for data reduction, de-

noising, and an improvement in the comparability of characteristic measurement features

(Subsection 9.1.1), the characterisation of measurements by peak detection and quantifi-

cation (Subsection 9.1.2), as well as the preparation of the resulting data for continuative

analyses (Subsection 9.1.3).

9.1.1 Preprocessing

Before the detection and quantification of spectrometric peaks could be investigated, a

preprocessing strategy was necessary taking into account the complex data structure. As

135
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only inadequate methods were available for the challenges arising in the spectra series,

some existing methods were extended and several new preprocessing steps developed.

The first issue examined in the range of the preprocessing of raw IMS spectra series was

the comparability of measurements (Section 5.1, page 67), achieved by transformations

of the drift time, retention time and signal intensity axes, yielding a better alignment

for different measurements. The beneficial development of a reproducible version of the

(inverse) reduced mobility for the IMS dimension not only yielded reliable results, but

also simplified daily laboratory work, as the detailed reporting of measurement conditions

such as ambient pressure and temperature was no longer required. A considerable amount

of variability, however, remained in the MCC dimension as the adjustment to the column

temperature, modeled by a quadratic function, resulted in an alignment improvement,

but could not explain some parts of the variability. The search for other affecting factors

or the development of a data based alignment method could, therefore, be beneficial.

Furthermore, the influence of the characteristic RIP tailing in the breath measurements

was investigated since it interfered with data visualisation and peak detection, causing

peaks in different parts of the IMS dimension to grow from different heights. By fitting

a lognormal detailing function with a specially created penalty term, the tailing could be

suitably described (Section 5.2, page 73). Computational costs were reduced by applying

the method to a representative spectrum, while the transfer of the resulting function to

the entire spectra series gave satisfying overall results.

The introduced preprocessing strategy was concluded with a combined application of

smoothing and denoising using the wavelet transform (Section 5.3, page 75). Coupling

Daubechies wavelets for smoothing with one compression level in each dimension and

denoising via hard thresholding, an efficient data reduction was accomplished, not only

involving less redundancy but also less computational cost for subsequent computations,

as well as an increased signal-to-noise ratio. Peaks that previously showed a strong overlap

now exhibited a better resolution. Although wavelets have previously been applied in the

smoothing or denoising of IMS data, the two methods have not, to date, been linked for

this application.

In summary, the developed strategy for the preprocessing of spectra series improved the

reproducibility of measurement results by a data alignment using different axes trans-

formations, eliminated a large extent of noise, improved peak clarity, and reduced the

amount of data by the combined application of a new detailing function with smoothing

and denoising using the wavelet transform.



9.1. Concluding comments on spectra processing 137

9.1.2 Peak detection

After the data was prepared for further processing, the actual peak detection, charac-

terisation, and quantification could be investigated. This step could also be seen as an

extended stage of data reduction, as only a matrix consisting of a few values per detected

peak remained, though still sufficiently describing the relevant information. This aim was

achieved by the development of three successively established peak detection algorithms

with increasing sensitivity.

The basic method of MPCL is based on a single threshold distinguishing between noise

and peak measurement points, which were later merged to peak regions. These regions

were subsequently characterised by their centroid positions and the maximum peak height

for quantification (Section 6.1, page 81), allowing an efficient data reduction to only three

values per detected peak. This procedure yielded reasonably well results shown in an in-

stance application for the perfect discrimination between control patients and lung cancer

patients. Nevertheless, the results using this method showed limitations concerning the

resolution of shoulder peaks and peaks that were not baseline-separated, and furthermore

the characterisation of peaks did not give an idea of their size or magnitude.

The peak detection procedure was, therefore, extended by the GIM algorithm, designed

in a stagewise manner to improve sensitivity (Section 6.2, page 86). At each stage of

the method, a peak detection step was applied, closely related to the MPCL algorithm,

which assigned values in growing intervals of the intensity axes to the peak cluster, and

characterised the merged regions by ellipses. The decisive step of this algorithm was the

connection of the peak lists from the different stages, allowing the detection of multiple

non-baseline separated peaks, solving a common challenge in peak detection. The result of

this algorithm was a list of six values per detected peak, characterising each peak by four

ellipse parameters and the determined ellipse area in addition to the peak height. The

method, therefore, achieved improved peak quantification by ellipse extents and area,

thus enabling the visualisation of data in ellipse representations, and showing its wide

applicability by the transfer of the method to the application with DMS instrumentation.

Although the detection of multiple peaks is now possible, limitations can still be found in

the identification of shoulder peaks without independent maxima.

In a final step, this procedure was further improved by the substitution of a number of

introduced preprocessing steps by a wavelet-based MRA, resulting in details that partially

resolved covered peaks, and are now the basis of the GIM algorithm (Section 6.3, page

94). Here, the LH details of level 3 to 5 obtained using the Haar wavelet showed to be
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most beneficial. Combining the results of the GIM algorithm for the three levels enhanced

peak detection, allowing the detection of shoulder peaks without independent maxima, in

addition to the benefits of the two other introduced peak detection methods, while peaks

were still characterised by ellipse parameters and maximum height. The results of this

method could be used to analyse the complex comparison of lung cancer patients with

different forms of tumors.

All three methods focused on a high sensitivity of peak detection rather than on specificity,

as artefact peaks evolving from noise areas, were filtered out in the continuative analyses.

9.1.3 General peak areas

Before the benefit of the three consecutive peak detection methods could be proven in

the application to real questions, general peak areas allowing the direct comparison of

features between different measurements, and thus further statistical evaluations, had to

be created based on the established peak lists (Chapter 7, page 107).

The construction of general peak areas for specific applications was initiated by a cluster

analysis of the entirety of peak positions detected in all measurements of a study. The

cluster procedure of k-means with starting values derived from Ward’s method, yielded

solutions that were most appropriate for this kind of data. The cluster solution with the

cluster number, optimised according to two performance indices, was subsequently used

as the basis for the adjustment of general peak areas.

For peak lists resulting from the MPCL algorithm this was achieved by rectangular areas

containing all peak positions belonging to a cluster respectively, where a marginal widening

in all directions around a cluster was found to be beneficial, also including main parts

of peaks whose position was located at the margins of a cluster (Subsection 7.1.1, page

108). The results of the GIM algorithm, either applied to the data preprocessed in the

original manner or on top of the determination of relevant MRA details, were on the

other side combined to ellipsoid general peak areas giving a more precise characterisation

of important application-related measurement parts (Subsection 7.2.1, page 116).

The proposed general peak areas could subsequently be used in defining general peak

variables, which were computed as the mean intensity value of all points located in a

general peak area for each measurement of interest respectively. These newly established

peak variables constituted a further improved, application-related quantification of peaks

and gave the base for statistical evaluations in continuative analyses.
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9.2 Concluding comments on different applications

To show the practical benefits of the developed processing steps, three separate studies

were examined, each based on the results of one of the three developed peak detection

methods. While the MPCL (Subsection 9.2.2) and the wavelet-based GIM algorithm (Sub-

section 9.2.3) were applied to MCC/IMS breath measurements, constituting the main

topic of this work, the GIM method used with an adjusted version of the proposed pre-

processing strategy was transferred for use with py-GC/DMS spectra series (Subsection

9.2.1).

9.2.1 Orthogonality of bacteria measurements

A wide applicability of the GIM algorithm by the potential transfer to other spectrometric

methods was proven investigating the analytical orthogonality of py-GC/DMS data of

different bacteria cultures (Chapter 8, page 125). After a preprocessing strategy involving

smoothing and denoising by wavelets, the detection of peaks situated in a very dense

constellation without a general baseline, showed the beneficial properties of the GIM

method for data resulting from both positive and negative mode.

The detected peak positions gave the input for the orthogonality calculations, analysing

if dependencies of the two separation dimensions limited the practical peak capacity. For

the negative data 90% of the theoretical peak capacity was maintained, while for the

positive data a correlation of −0.65 between the peak positions in the two measurement

dimensions caused the loss of one quarter of the theoretical peak capacity. Although the

two-dimensional separation still showed a much better peak capacity than observed for the

solely application of py-GC or DMS respectively, this result implied that an improvement

of the orthogonality of the py-GC/DMS instrumentation could yield better classification

results for closely related samples.

9.2.2 Discrimination between lung cancer and control group

By analysing two sets of measurements on lung cancer patients and healthy control persons

using the MPCL method, 106 general peak areas with corresponding peak variables were

generated based on a cluster analysis of the entirety of detected peak positions of all

samples in the study. Based on 25 differentially expressed variables screened in a multiple

t-test procedure after the exclusion of variables with a high amount of missing values
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in a descriptive analysis, an LDA could be applied yielding a perfect separation of the

groups with a leave-one-out error rate estimation of zero after one more variable was

excluded in a stepwise selection. This concurrently meant a further data reduction from

106 general peak variables to a single discriminant value, still allowing the two groups of

measurements in this application to be distinguished from one another (Subsection 7.1.2,

page 111).

In parallel studies on the emission of bacteria, peaks occurring within either one of two

specific general peak areas with the highest influence on the assignment of patients to the

cancer group, corresponded with areas containing analyte peaks detected in measurements

of E. coli cultures. This led to the assumption that part of the discriminatory information

could be related to a bacterial infection which is more likely to appear in lung cancer

patients at the time of a hospitalisation than for healthy control subjects. For an ensured

statement on the influence of this factor, further studies concerning this relationship

between bacterial emission and the outcome of exhaled air measurements by MCC/IMS

would be worthwhile. In any case, the introduced processing strategy around the MPCL

method enabled a successful characterisation of differences between two groups of samples

and showed its potential as an efficient instrument for the analysis of spectrometric data.

9.2.3 Comparison of different forms of tumor

For the more complex comparison of lung cancer patients with different forms of tumors,

the peak detection method of GIM based on wavelet-derived MRA details was applied

(Subsection 7.2.2, page 118). By adjusting ellipsoid general peak areas to the optimal

cluster solution for the entirety of the resulting GIM peak positions, 148 corresponding

mean intensity peak variables were defined, giving the basis for further analysis. After the

exclusion of variables and patients with high amounts of missing values, as well as variables

based on noise artefacts, a pairwise comparison of circular focuses with endobronchial

tumors, other lung carcinoma, and the entirety of all other tumors together, as well

as of the groups of patients with endobronchial tumors with other lung carcinoma was

investigated. For every comparison, differentially expressed variables were screened in a

leave-one-out procedure identifying those variables that showed a significant difference

across the entire patient range.

Analysing these comparisons in an LDA with a stepwise selection based on the estimated

leave-one-out error rate, and the values of the standardised discriminant coefficients, error

rate estimations between 5 and 20% were determined for the different problems. The
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best observed prediction rate was found in the comparison between patients with circular

focuses and those with other carcinoma exclusive endobronchial tumors. Here, all patients

were assigned to the correct group on the basis of the established decision rule. The group

of patients with endobronchial tumors, on the other hand, proved to be the most difficult

to separate from other groups.

The peak regions corresponding with the variables relevant for the specified decision

rules could be assigned to three main groups, located in the pre-RIP, the RIP, and later

spectra parts of the IMS dimension. While three decision rules were influenced by one of

these peak area groups, the fourth comparison was based on a mixture of the pre-RIP

and later spectra parts peak regions. The peak variables containing the main part of

discriminatory information for the comparison of patients with circular focuses and all

other tumors, exclusive of and inclusive of endobronchial tumors respectively, were found

to be those that corresponded with general peak areas not lying on a straight line with

the majority of peak areas in the pre-RIP and the RIP itself. This could explain why

patients with different forms of tumors were separated rather efficiently, while patients

with endobronchial tumors, whose assignment was mainly based on the peaks in the RIP

which was a priori not expected to contain discriminatory information, were hard to assign

to the correct group. A relationship to the relevant peak areas for the comparison of lung

cancer patients with control persons was not apparent.

This application, giving further interesting insights into the differences of human breath

composition for lung cancer patients, showed that the developed processing strategy

around the wavelet MRA based GIM algorithm constitutes a valuable contribution for the

analysis of spectrometric data, avoiding time-consuming, subjective, and likely insufficient

manual characterisation of measurements.

9.3 Future work

The investigations on the characterisation of the metabolite composition in exhaled air of

different groups of patients by means of MCC/IMS can be both broadened and specialised

in different directions.

One potential question of interest could examine the influence of bacterial emission on

the outcome of the breath measurements, verifying the relevance of the determined dis-

criminant function between lung cancer patients and the control group (Subsection 7.1.2).

For this, one possible approach could characterise the measurements from the emissions
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of the most common lung bacteria with a subsequent matching with patients known to

be affected by these bacteria. Additionally, isolated lung cancer cells could be analysed

to identify their emission products and check for coincidence with parts of the profiles

detected in the exhaled air of lung cancer patients.

Another important field is the investigation of other diseases besides lung cancer, enabling

their characterisation and comparison in a similar way as introduced in this work for

different types of lung tumor. Because of the high number of confounding factors such

as smoking, perfume, a recent visit to the swimming pool, freshly brushed teeth and the

consumption of food or drinks in the time period before measurement, an analysis like that

would require a sufficiently high number of samples. Optimally, all these factors would be

surveyed in further studies to allow for the investigation of some main influencing factors

which might be characterised and incorporated into further analyses.

An additional application of the breath monitoring via MCC/IMS could also be the

control of the effect of drugs on metabolism (Baumbach et al., 2005). By taking several

measurements over a specific course of time from patients after the start of treatment

with the drug of interest, such measurements could be handled in a similar way as in this

work, respecting the special structure of the related time series data.

Furthermore, as already shown using the py-GC/DMS, the transfer of the introduced

methods to other two-dimensional separations such as the popular method of GC-MS

is possible, probably involving only minor adjustments of the developed algorithms. In

doing so, a broader field of potential applications would be addressed by the methods

that originated in the range of this work, increasing the achieved benefit for spectrometric

analytics.

Methodologically, there are two main aspects that should be respected in future research

on this topic, both related to specifics of the MCC/IMS instrumentation (Fig. 9.1).

Firstly, a problematic feature of MCC/IMS measurements is the ion absorption by domi-

nating peaks, constricting peaks with a low proton affinity (Fig. 9.1 a). Consequently, the

quantification of the effected peaks is insufficient and can even lead to the detection of

multiple peaks for a single analyte dependent on the existence of specific other peaks and

is therefore also influencing the peak characterisation of measurements. It would, there-

fore, be worthwhile to create a strategy dealing with this characteristic behaviour of the

MCC/IMS instrumentation to further improve peak characterisation and quantification

for these special cases.
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A second problem is the partially unsatisfying alignment of the data in the retention time

direction, even showing some systematic effects, which resulted in alignment-artefact peak

areas with a position in inverse reduced mobility that corresponded with that of the most

common general peak areas, but were shifted backwards in the MCC dimension with

increasing shift for latter original retention time positions of the area (Fig. 9.1 b). As

for some measurements the entirety of peak positions was shifted as indicated for these

regions, this likely had an undesirable effect on the values of the determined general

peak variables influencing the discriminant value of a measurement and, therefore, the

classification result. As different measurements do not contain the same combination of

peaks, this problem can not be solved in a straightforward way, but is currently addressed

in a diploma thesis at the ISAS - Institute for Analytical Sciences and the Faculty of

Statistics at the Technical University Dortmund, in a data based way. Another solution

might be an alignment strategy based on the employment of an internal standard optimally

consisting of around three analytes causing peaks in diverse areas of the measurement

space, added in a defined amount to each measured sample. This proceeding would also

allow for an efficient standardisation of peak heights, which might further improve the

comparability of measurements in addition to the effect of an optimised alignment of

measurements, and thus moreover precise the constitution of general peak areas.

Respecting these additional aspects, a universal method for the analysis of spectrometric

data in two-dimensional separations could be achieved, further strengthening the derived

Figure 9.1: Heatmaps illustrating remaining limitations considering (a) analyte quantifica-
tion by reason of ion absorption by dominating peaks (red horizontal lines) yielding the
constriction of peaks with low proton affinity (blue vertical line), and (b) peak characterisa-
tion, because of systematic alignment distortions in the direction of retention time resulting
in undesired side clusters at the end of three of the red arrows.
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benefits offered by the methods developed in this work. On this basis, future prospects for

the special application of human breath measurements by MCC/IMS might focus on the

comparison of diverse lung diseases, tracing the vision of a new broad screening method

for pneumological aspects.
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Appendix A

Tables

This appendix contains tables whose values are not necessary to follow the general pro-

ceeding in this work, but were included to allow a deeper insight into the data analysis of

the specific applications if desired. All the tables refer to Chapter 7, were the introduced

methods for spectra series processing were used and enhanced to the analysis of entire

studies. For the two instance applications out of the range of human breath monitoring

considering the separation of lung cancer patients and healthy control persons (Section

7.1, Table A.1, A.2, and A.3) as well as the comparison of the profiles of patients with

different kinds of bronchial carcinomas (Section 7.2, Table A.4, A.5), and A.7, the analysis

was broken down to the most important results here.

Table A.1: Limits of the determined rectangular general peak areas for the comparison
of lung cancer patients and a control group (Section 7.1), the number of data points
lying within these limits and values of the corresponding peak variables for an instance
measurement, as well as p-values of the t-tests: Lines in italic font correspond with variables
that were excluded in the descriptive analysis and, therefore, do not contain a p-value;
bold lines belong to variables that were differentially expressed in the t-test. In line 107
no area limits are given, as this variable corresponds with all those measurement parts
that do not belong to any of the other peak areas.

Limits Instance measurement p-values

LK0 UK0 Lt30r
Ut30r

observed value data points of the t-tests

1 0.52 0.55 0 25.04 0.1030 713 0.0017

2 0.59 0.61 2 38 0.0063 990 0.2575

3 0.58 0.61 28 66 0.0035 1517 0.7461

4 0.55 0.58 1 59 0.0269 1728 0.0780

5 0.59 0.61 56.14 106 0.0153 1392 0.2281

6 0.70 0.73 5.95 96 0.0011 2871 0.8838
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Limits Instance measurement p-values

LK0 UK0 Lt30r
Ut30r

observed value data points of the t-tests

7 0.54 0.56 12.42 53 0.0400 1240 0.2050

8 0.52 0.55 69.5 109 0.0409 1292 0.0464

9 0.75 0.78 93.5 117.39 -0.0019 782 3.8 · 10−21

10 0.58 0.61 97 139 0.0156 1353 0.0538

11 0.54 0.56 97 145 0.0155 1692 0.4021

12 0.54 0.56 138 192 0.0085 1716 0.1250

13 0.59 0.61 130 169 0.0203 1140 0.4201

14 0.59 0.61 160 200 0.0202 975 0.0090

15 0.51 0.54 159 204 0.0291 1408 0.8873

16 0.58 0.61 191 233 0.0149 1230 0.4034

17 0.61 0.63 53 118 -0.0073 1827 7.6 · 10−8

18 0.58 0.60 223 271 -0.0097 1363 0.6508

19 0.89 0.91 203.5 262 0.0007 1568 7.5 · 10−6

20 0.61 0.64 248 311 -0.0083 2379 6.5 · 10−20

21 0.77 0.81 235 302.3 3.7 · 10−5 2925 5.6 · 10−13

22 0.59 0.60 265 314.5 0.0072 912 6.5 · 10−11

23 0.61 0.66 307 371 -0.0082 3969 1.1 · 10−7

24 0.54 0.56 303.58 377 0.0046 1988 0.0600

25 0.59 0.61 305.5 356 0.0049 1029 2.4 · 10−13

26 0.59 0.61 350 407 0.0030 1176 7.8 · 10−15

27 0.57 0.61 400.33 464 0.0232 3233 0.7429

28 0.52 0.54 404 448 0.0241 1462 0.0013

29 0.61 0.64 391 469 0.0093 2400 −1.1 · 10−16

30 0.61 0.64 479 581 -0.0083 1462 9.5 · 10−16

31 0.52 0.54 469 507 0.0253 1110 0.0003

32 0.54 0.57 0 23 0.0249 777 0.0337

33 0.57 0.59 0 44 0.0290 1353 0.0198

34 0.61 0.64 0 27 0.0032 1050 −2.8 · 10−17

35 0.52 0.54 13 55.5 0.1120 1344 0.0001

36 0.65 0.68 0 59 -0.0052 2255 0.4991

37 0.52 0.54 39 81.5 0.0785 1230 0.0004

38 0.54 0.57 62 108 0.0207 1620 0.0581

39 0.52 0.55 128 169.5 0.0277 1360 0.4668

40 0.61 0.64 162 232.5 -0.0107 2652 5.7 · 10−19
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Limits Instance measurement p-values

LK0 UK0 Lt30r
Ut30r

observed value data points of the t-tests

41 0.52 0.55 254 295 0.0225 1360 0.1109

42 0.52 0.55 317 358.5 0.0244 1200 0.0273

43 0.52 0.54 347 386 0.0261 1140 0.0046

44 0.52 0.54 436.5 479.17 0.0224 1353 0.0010

45 0.52 0.55 496 533.25 0.0242 891 0.0019

46 0.54 0.56 43.5 85.18 0.0396 1240 0.2379

47 0.52 0.54 98 138.5 0.0362 1209 0.4898

48 0.61 0.64 113 169.5 -0.0156 1890 2.9 · 10−18

49 0.52 0.55 284 326 0.0251 1312 0.0358

50 0.52 0.55 375.5 414 0.0264 1330 0.0156

51 0.52 0.55 190.31 235 0.0243 1462 0.8669

52 0.52 0.54 522.5 560 0.0265 31 –

53 0.52 0.55 549 602 – – –

54 0.52 0.55 224 265 0.0233 1440 0.2814

55 0.57 0.61 473 552.25 0.0093 2107 0.3585

56 0.74 0.76 21 114.5 0.0015 3150 8.1 · 10−10

57 0.54 0.57 202 284 0.0024 2607 0.0416

58 0.68 0.69 1.15 17 -0.0009 247 0.8356

59 0.51 0.53 132 186.71 0.0321 742 –

60 0.56 0.59 214 270.5 0.0083 2160 5.6 · 10−5

61 0.54 0.56 377 457.5 0.0041 2184 0.1997

62 0.67 0.70 43.5 140 0.0017 4185 3.0 · 10−7

63 0.62 0.65 5.5 62 -0.0028 2160 0.2156

64 0.57 0.59 48 112.77 0.0130 1736 1.2 · 10−7

65 0.71 0.74 80.5 129.5 0.0077 1786 9.3 · 10−9

66 0.57 0.59 115 174.5 0.0096 1254 1.7 · 10−12

67 0.64 0.67 100 170 0.0104 1943 0.0614

68 0.87 0.90 133 151 0.0088 684 0.3515

69 0.56 0.59 170.5 224 0.0066 1976 6.1 · 10−10

70 0.85 0.88 207.5 258.65 0.0028 1862 8.1 · 10−9

71 0.51 0.53 232.33 282 0.0311 611 –

72 0.74 0.77 262.5 316 0.0049 2080 2.3 · 10−8

73 0.51 0.53 385 439 0.0337 624 –

74 0.51 0.53 481.5 530 0.0332 440 –
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Limits Instance measurement p-values

LK0 UK0 Lt30r
Ut30r

observed value data points of the t-tests

75 0.51 0.53 88 140 0.0323 612 –

76 0.51 0.53 0 52.12 0.0927 588 –

77 0.49 0.52 123 172 – – –

78 0.51 0.53 183 233 0.0322 392 –

79 0.75 0.77 196 258 -0.0045 1586 0.0330

80 0.50 0.53 435 487 0.0315 450 –

81 0.51 0.53 275 333 0.0341 616 –

82 0.50 0.53 328.33 387 0.0360 684 –

83 0.57 0.59 343.5 410 0.0054 1664 5.7 · 10−9

84 0.49 0.52 162.5 220 – – –

85 0.54 0.56 513 570.29 0.0071 297 0.8692

86 0.56 0.58 270 341 0.0061 1863 6.1 · 10−10

87 0.49 0.52 78.5 132.15 – – –

88 0.49 0.52 262 318.61 – – –

89 0.49 0.52 308.5 364 – – –

90 0.49 0.52 369 420.5 – – –

91 0.49 0.52 411 462 – – –

92 0.49 0.51 459 523 – – –

93 0.50 0.52 514 554 0.0363 50 –

94 0.50 0.52 553 636.5 – – –

95 0.49 0.52 0 29 – – –

96 0.49 0.52 209.5 267.5 – – –

97 0.49 0.52 31.09 89.5 0.0221 110 –

98 0.69 0.71 216 294 -0.0033 1292 0.0564

99 0.54 0.56 464 514.5 0.0050 1519 0.7429

100 0.83 0.87 0 114.31 -0.0041 5832 0.2998

101 0.84 0.87 237 302 -0.0046 2457 0.0132

102 0.84 0.87 121.2 226 -0.0039 3700 0.0597

103 0.70 0.72 128.5 192.52 0.0020 1708 6.3 · 10−7

104 0.84 0.87 335 388.29 -0.0028 1976 0.1226

105 0.84 0.86 396.5 461.83 -0.0027 2232 0.1646

106 0.84 0.87 474.67 564 -0.0025 1739 0.2093

107 – – – – -0.0007 527036 0.8488
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Table A.2: (Standardised) discriminant coefficients of the discriminant function for the
separation of lung cancer patients and control persons (Subsection 7.1.2) based on 25 and
24 variables respectively, as well as the leave-one-out error rate excluding the 25 variables
solely: the variable names are oriented on the nominations in table A.1.

25 variables 24 variables

Variable Discriminant Standardised Error rate Discriminant Standardised
name coefficients coefficients estimation coefficients coefficients

V9 51.9 0.145 0.011 44.2 0.123

V17 -31.4 -0.174 0.011 -22.3 -0.123

V19 -38.1 -0.238 0.011 -36.9 -0.230

V20 -51.8 -0.099 0.011 -68.5 -0.132

V21 52.9 0.082 0.011 54.2 0.084

V22 -18.0 -0.053 0.011 -27.2 -0.081

V23 -514.5 -0.595 0.011 -513.3 -0.593

V25 418.6 1.006 0.011 427.1 1.026

V26 276.2 0.667 0.011 287.5 0.694

V29 228.7 0.516 0.011 246.4 0.556

V30 -155.4 -0.343 0.011 -118.7 -0.262

V34 89.2 0.283 0.011 75.6 0.240

V40 -214.4 -0.507 0.011 -262.8 -0.621

V48 258.6 0.894 0.011 250.2 0.865

V56 178.5 0.235 0.011 144.9 0.191

V62 -209.1 -0.368 0 -208.5 -0.367

V64 -42.9 -0.280 0 -16.9 -0.110

V65 -403.1 -1.032 0.011 -393.1 -1.007

V66 -404.6 -1.504 0.011 -429.0 -1.595

V69 65.5 0.223 0.011 56.9 0.194

V70 -107.0 -0.189 0.011 -84.7 -0.149

V72 -324.4 -0.662 0.011 -296.0 -0.604

V83 196.5 0.641 0.011 187.3 0.611

V86 -205.6 -0.862 0.011 -203.4 -0.853

V103 90.3 0.225 0 excluded in stepwise selection
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Table A.3: Discriminant values for the separation of healthy control persons (koi, i =
1, . . . , 54) and lung cancer patients (bcj , j = 1, . . . , 35) of the considered sample set (Sub-
section 7.1.2) for the discriminant function based on 25 and 24 variables, and using the
entire sample set (overall) and the leave-one-out method (loo), respectively.

25 variables 24 variables 25 variables 24 variables

Person overall loo overall loo Person overall loo overall loo

ko1 7.45 7.32 7.44 7.34 bc1 -8.96 -11.01 -8.75 -10.22

ko2 8.27 8.58 8.29 8.61 bc2 -7.16 -6.75 -7.25 -6.96

ko3 7.93 8.03 7.90 8.01 bc3 -6.42 -5.86 -6.28 -5.73

ko4 7.21 7.12 7.29 7.22 bc4 -7.93 -8.18 -7.75 -7.84

ko5 7.40 7.33 7.33 7.24 bc5 -8.30 -8.77 -8.19 -8.59

ko6 7.20 7.10 7.17 7.08 bc6 -7.02 -4.93 -6.96 -4.78

ko7 7.70 7.70 7.65 7.64 bc7 -6.73 -4.73 -6.70 -4.71

ko8 7.67 7.67 7.65 7.65 bc8 -9.36 -10.57 -9.50 -10.64

ko9 7.62 7.60 7.70 7.70 bc9 -7.62 -7.61 -7.64 -7.65

ko10 7.78 7.78 7.76 7.77 bc10 -6.19 -5.13 -5.98 -5.02

ko11 7.69 7.68 7.63 7.63 bc11 -9.36 -10.88 -9.33 -10.85

ko12 6.85 6.76 6.76 6.67 bc12 -6.37 -3.43 -6.40 -3.64

ko13 7.82 7.83 7.81 7.83 bc13 -8.70 -9.15 -8.62 -9.03

ko14 7.66 7.64 7.60 7.57 bc14 -6.21 -5.46 -6.15 -5.38

ko15 8.44 8.55 8.38 8.49 bc15 -7.00 -6.77 -7.03 -6.82

ko16 7.11 7.04 7.08 7.01 bc16 -6.28 -6.03 -6.30 -6.07

ko17 8.38 8.88 8.34 8.83 bc17 -7.31 -7.18 -7.43 -7.36

ko18 7.21 7.10 7.19 7.08 bc18 -6.72 -5.95 -6.66 -5.86

ko19 7.95 7.99 7.99 8.04 bc19 -6.17 -5.65 -6.23 -5.76

ko20 6.31 6.11 6.25 6.05 bc20 -6.31 -6.00 -6.37 -6.08

ko21 6.93 6.81 6.97 6.86 bc21 -7.11 2.61 -7.18 -1.61

ko22 6.86 6.74 6.86 6.74 bc22 -8.59 -18.27 -8.49 -16.86

ko23 9.30 9.88 9.23 9.77 bc23 -8.30 -8.81 -8.23 -8.69

ko24 7.63 7.61 7.65 7.63 bc24 -8.43 -12.42 -8.54 -12.45

ko25 8.12 8.19 8.08 8.16 bc25 -9.19 -10.93 -9.18 -10.94

ko26 7.91 8.02 7.85 7.95 bc26 -4.58 -3.02 -4.66 -3.27

ko27 7.98 8.01 7.94 7.97 bc27 -8.65 -9.33 -8.76 -9.45

ko28 7.70 7.68 7.71 7.69 bc28 -8.29 -8.56 -8.42 -8.71

ko29 8.11 8.20 8.11 8.22 bc29 -7.30 -6.55 -7.54 -7.49

ko30 7.74 7.84 7.67 7.73 bc30 -8.34 -8.97 -8.04 -8.26
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25 variables 24 variables 25 variables 24 variables

Person overall loo overall loo Person overall loo overall loo

ko31 8.21 9.33 8.16 9.25 bc31 -9.62 -13.62 -9.44 -12.63

ko32 5.79 5.53 5.77 5.51 bc32 -6.97 -6.70 -6.97 -6.70

ko33 6.12 5.86 6.02 5.77 bc33 -4.39 -3.04 -4.20 -3.09

ko34 6.74 6.63 6.78 6.68 bc34 -7.53 -7.46 -7.40 -7.25

ko35 7.82 7.84 7.81 7.84 bc35 -5.83 -5.46 -5.64 -5.36

ko36 7.47 7.42 7.49 7.45

ko37 7.51 7.47 7.55 7.51

ko38 7.63 7.62 7.50 7.45

ko39 5.10 4.89 5.16 4.98

ko40 6.48 6.25 6.41 6.17

ko41 6.80 6.67 6.77 6.64

ko42 6.90 6.60 6.87 6.57

ko43 7.62 7.59 7.61 7.58

ko44 6.79 6.63 6.68 6.52

ko45 7.21 7.15 7.19 7.13

ko46 7.17 7.10 7.11 7.04

ko47 7.61 7.59 7.59 7.57

ko48 6.64 6.48 6.58 6.42

ko49 7.56 7.52 7.42 7.37

ko50 6.86 6.75 6.75 6.65

ko51 8.77 9.50 8.69 9.37

ko52 8.06 8.20 7.89 7.96

ko53 6.18 5.97 6.18 5.98

ko54 7.01 6.89 7.10 7.01
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Table A.4: Parameters of the determined ellipsoid general peak areas for the general com-
parison of breath measurements (Section 7.2) and p-values of the t-tests comparing pa-
tients with different kinds of lung cancer (Subsection 7.2.2): the pairwise comparisons are
indicated by the headings using the nominations CF for circular focuses, EB for endo-
bronchial carcinomas, and NN for other kinds of carcinoma, as well as AO comprising all
tumors exclusive circular focuses. Lines of peak areas that do not contain p-values for the
t-test correspond with peak variables that were excluded in the descriptive analysis.

General Ellipse parameters p-values

peak areas xg
0 yg

0 ag bg CF - EB CF - NN EB - NN CF - AO

1 0.438 26.00 0.004 4.00 0.321 0.025 0.076 0.101

2 0.449 18.00 0.003 3.00 0.421 0.032 0.057 0.138

3 0.452 33.75 0.006 3.00 0.162 0.007 0.044 0.032

4 0.452 58.00 0.007 4.00 0.129 0.006 0.054 0.024

5 0.463 6.77 0.010 7.00 0.201 0.009 0.047 0.034

6 0.479 159.25 0.009 7.00 0.393 0.570 0.008 0.644

7 0.485 261.00 0.010 262.00 0.508 0.579 0.027 0.760

8 0.509 5.00 0.007 5.53 0.212 0.725 0.168 0.453

9 0.537 3.00 0.011 3.00 0.015 0.141 0.744 0.008

10 0.530 16.00 0.007 4.00 0.506 0.426 0.644 0.352

11 0.541 55.25 0.007 3.00 0.529 0.585 0.868 0.436

12 0.553 16.00 0.012 5.00 0.491 0.334 0.664 0.413

13 0.560 31.00 0.007 3.00 0.476 0.442 0.879 0.454

14 0.560 72.00 0.006 4.00 0.197 0.220 0.909 0.193

15 0.571 43.00 0.011 5.00 0.797 0.808 0.636 0.900

16 0.599 90.00 0.007 4.00 0.178 0.201 0.901 0.161

17 0.592 32.00 0.007 3.52 0.270 0.301 0.619 0.276

18 0.592 50.00 0.007 3.00 0.189 0.210 0.816 0.192

19 0.603 16.00 0.009 4.00 0.825 0.846 0.716 0.899

20 0.616 18.00 0.010 4.00 0.686 0.872 0.841 0.730

21 0.629 32.00 0.005 3.00 0.698 0.849 0.880 0.724

22 0.644 49.00 0.013 6.00 0.206 0.220 0.979 0.200

23 0.661 17.00 0.009 4.00 0.620 0.352 0.574 0.390

24 0.680 50.00 0.009 4.00 0.171 0.735 0.432 0.260

25 0.693 69.00 0.014 7.00 0.020 0.069 0.761 0.008

26 0.743 112.00 0.018 7.00 0.463 0.049 0.067 0.228

27 0.738 51.00 0.010 3.00 0.055 0.100 0.562 0.056
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General Ellipse parameters p-values

peak areas xg
0 yg

0 ag bg CF - EB CF - NN EB - NN CF - AO

28 0.772 282.00 0.015 8.00 0.599 0.073 0.110 0.335

29 0.802 31.00 0.011 3.02 0.302 0.332 0.643 0.308

30 0.433 510.00 0.003 7.00 0.167 0.198 0.294 0.081

31 0.485 286.00 0.010 287.00 0.500 0.631 0.036 0.735

32 0.497 7.00 0.005 6.00 0.407 0.097 0.122 0.249

33 0.507 35.00 0.005 3.00 0.070 0.831 0.130 0.190

34 0.581 99.00 0.007 4.00 0.027 0.102 0.916 0.021

35 0.648 19.00 0.010 4.00 0.810 0.203 0.450 0.600

36 0.661 146.00 0.011 6.00 0.277 0.813 0.191 0.512

37 0.686 105.75 0.008 3.00 0.146 0.219 0.627 0.145

38 0.711 46.00 0.009 4.00 0.760 0.116 0.034 0.473

39 0.706 19.00 0.011 4.00 0.057 0.836 0.357 0.250

40 0.450 412.00 0.004 3.00 0.137 0.030 0.101 0.022

41 0.453 124.00 0.007 4.00 0.127 0.006 0.057 0.024

42 0.453 149.00 0.007 4.00 0.109 0.009 0.103 0.022

43 0.452 99.00 0.006 3.00 0.129 0.006 0.058 0.025

44 0.454 5.75 0.004 3.00 0.770 0.201 0.101 0.615

45 0.478 483.75 0.006 4.00 0.324 0.567 0.017 0.594

46 0.506 16.00 0.004 3.00 0.079 0.725 0.261 0.114

47 0.541 17.00 0.011 3.00 0.241 0.844 0.324 0.284

48 0.565 16.00 0.009 4.00 0.516 0.436 0.895 0.465

49 0.580 77.00 0.007 4.00 0.094 0.120 0.707 0.072

50 0.589 448.50 0.011 10.00 0.181 0.190 0.665 0.183

51 0.603 148.25 0.011 6.00 0.605 0.842 0.677 0.587

52 0.639 78.50 0.007 4.00 0.303 0.413 0.846 0.300

53 0.684 7.00 0.007 3.00 0.719 0.575 0.806 0.623

54 0.710 198.00 0.011 5.50 0.071 0.321 0.356 0.099

55 0.720 143.50 0.011 6.00 0.457 0.258 0.107 0.850

56 0.874 235.00 0.015 8.00 0.483 0.319 0.243 0.430

57 0.889 144.00 0.011 5.00 0.272 0.827 0.134 0.413

58 0.575 4.00 0.007 2.00 0.468 0.689 0.338 0.687

59 0.452 263.00 0.006 4.00 0.125 0.009 0.057 0.019

60 0.586 6.00 0.006 4.00 0.824 0.164 0.048 0.534

61 0.825 50.00 0.009 4.00 0.188 0.190 0.885 0.183



156 A Tables

General Ellipse parameters p-values

peak areas xg
0 yg

0 ag bg CF - EB CF - NN EB - NN CF - AO

62 0.836 9.00 0.009 2.00

63 0.848 453.00 0.015 10.00 0.822 0.810 0.124 0.928

64 0.950 511.00 0.012 4.00

65 1.328 514.00 0.010 4.00

66 0.940 7.75 0.008 2.50

67 0.649 189.00 0.011 6.00 0.622 0.580 0.951 0.560

68 0.959 138.00 0.008 3.00 0.391 0.273 0.524 0.258

69 0.435 531.50 0.004 5.00

70 0.272 244.00 0.002 2.00

71 0.840 251.00 0.003 2.00

72 1.065 205.00 0.010 5.00 0.004 0.017 0.853 0.001

73 0.480 323.50 0.010 320.00 0.411 0.637 0.019 0.645

74 0.534 86.00 0.005 2.02 0.372 0.890 0.602 0.589

75 0.564 116.00 0.011 6.00 0.087 0.135 0.935 0.080

76 0.655 223.00 0.012 4.00 0.107 0.396 0.826 0.107

77 0.710 122.00 0.008 4.00 0.250 0.860 0.404 0.478

78 0.730 182.25 0.009 4.50 0.403 0.521 0.090 0.682

79 0.873 288.00 0.014 7.00 0.467 0.292 0.539 0.386

80 0.432 631.00 0.004 11.00

81 0.772 347.00 0.014 9.00 0.704 0.703 0.928 0.680

82 0.803 638.00 0.012 5.00

83 0.433 560.00 0.004 9.00

84 0.454 212.00 0.006 4.00 0.106 0.005 0.049 0.015

85 0.877 71.50 0.012 5.00 0.899 0.145 0.104 0.554

86 0.602 207.25 0.009 5.00 0.206 0.752 0.189 0.318

87 1.276 8.00 0.009 2.00

88 0.532 38.25 0.007 4.00 0.622 0.694 0.893 0.585

89 0.575 245.50 0.010 5.00 0.101 0.138 0.636 0.058

90 1.179 7.00 0.008 2.00

91 0.479 206.25 0.007 7.00 0.380 0.728 0.014 0.593

92 0.513 237.00 0.007 4.00 0.200 0.489 0.851 0.233

93 0.478 384.25 0.006 5.00 0.320 0.561 0.008 0.588

94 0.478 424.00 0.006 5.00 0.367 0.525 0.010 0.642

95 0.659 169.00 0.008 4.00 0.156 0.573 0.157 0.505
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General Ellipse parameters p-values

peak areas xg
0 yg

0 ag bg CF - EB CF - NN EB - NN CF - AO

96 0.723 513.75 0.015 5.00 0.954 0.845 0.738 0.933

97 0.744 135.00 0.019 7.50 0.182 0.551 0.555 0.219

98 0.479 78.50 0.007 7.00 0.535 0.529 0.022 0.788

99 0.608 42.00 0.009 4.00 0.198 0.175 0.759 0.173

100 0.709 228.00 0.012 6.00 0.355 0.551 0.157 0.648

101 0.650 130.00 0.010 6.00 0.100 0.640 0.328 0.519

102 1.148 16.00 0.009 2.50

103 0.453 174.25 0.007 4.50 0.119 0.005 0.054 0.020

104 0.453 299.00 0.005 4.00 0.088 0.010 0.071 0.011

105 0.478 123.50 0.010 9.00 0.477 0.641 0.023 0.703

106 0.624 6.00 0.008 3.00 0.536 0.049 0.131 0.214

107 1.400 5.00 0.007 2.00

108 1.118 7.00 0.008 2.00

109 0.016 509.00 0.016 4.00

110 0.846 512.00 0.011 3.00 0.087 0.517 0.387 0.138

111 0.744 18.00 0.010 3.00 0.323 0.220 0.721 0.166

112 0.774 201.25 0.013 7.50 0.755 0.236 0.397 0.938

113 0.936 109.00 0.008 3.50

114 0.988 280.00 0.009 4.00

115 1.366 1.00 0.010 2.00

116 0.784 128.00 0.006 3.00 0.911 0.539 0.539 0.775

117 0.403 36.00 0.007 3.00

118 0.750 561.00 0.010 7.00

119 1.298 510.00 0.010 4.00

120 0.744 331.25 0.017 11.00 0.413 0.868 0.402 0.514

121 1.442 4.00 0.008 1.00

122 0.649 369.00 0.010 10.00 0.179 0.476 0.358 0.230

123 1.324 5.00 0.004 2.00

124 1.301 4.00 0.007 1.00

125 1.429 512.00 0.004 3.00

126 0.149 7.50 0.036 3.00

127 1.034 8.00 0.009 3.00

128 1.206 5.00 0.004 2.00

129 0.770 18.00 0.010 3.00 0.342 0.866 0.443 0.446
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General Ellipse parameters p-values

peak areas xg
0 yg

0 ag bg CF - EB CF - NN EB - NN CF - AO

130 0.520 118.00 0.004 3.50 0.195 0.776 0.696 0.300

131 0.992 21.00 0.011 2.00

132 0.600 174.25 0.012 5.50 0.138 0.761 0.393 0.198

133 1.076 6.00 0.006 2.00

134 1.183 511.00 0.011 4.00

135 1.238 3.25 0.009 1.50

136 0.852 138.00 0.007 3.00

137 0.600 516.00 0.011 8.00 0.198 0.211 0.891 0.189

138 1.096 510.00 0.021 3.50

139 0.525 435.50 0.006 4.00 0.114 0.773 0.546 0.214

140 0.909 228.50 0.007 3.00 0.515 0.079 0.175 0.285

141 1.053 581.50 0.004 6.00

142 0.354 20.00 0.011 2.00

143 0.675 496.00 0.013 3.00 0.577 0.890 0.532 0.694

144 1.384 185.00 0.001 3.00

145 0.563 499.75 0.004 4.50 0.158 0.210 0.901 0.144

146 0.008 22.00 0.008 2.00

147 0.056 23.00 0.023 3.00

148 0.239 23.00 0.039 2.00
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Table A.5: (Standardised) discriminant coefficients of the discriminant functions for the
considered sample set of lung cancer patients for different comparisons on the different
steps of the stepwise selection (Subsection 7.2.2), and error rates estimated with the leave-
one-out method: the pairwise comparisons are indicated by the headings using the nomi-
nations CF for circular focuses, EB for endobronchial carcinomas, and NN for other kinds
of carcinoma, as well as AO comprising all tumors exclusive circular focuses. The variable
names are oriented on Table A.4; lines in italic font correspond to variables that were
excluded in the range of the stepwise selection, which was based on the error rate and the
standardised discriminant coefficients.

LDA Full model Step 1 Step2

variable Discr. Stand. Error Discr. Stand. Error Discr. Stand. Error

name coeff. coeff. rate coeff. coeff. rate coeff. coeff. rate

CF V9 18 0.5 0.23

vs V25 170 3.3 0.29

EB V34 -429 -8.1 0.29

V72 -2527 -49.2 0.29

LDA Full model Step 1 Step2

variable Discr. Stand. Error Discr. Stand. Error Discr. Stand. Error

name coeff. coeff. rate coeff. coeff. rate coeff. coeff. rate

CF V1 46936 2745.9 0.21 40386 2316.7 0.21 31735 1927.4 0.16

vs V2 -1791 -104.8 0.21 -1573 -90.2 0.21 -1320 -80.2 0.21

NN V3 1498 87.7 0.26 1210 69.4 0.21 963 58.5 0.21

V4 -3047 -178.2 0.21 -2576 -147.7 0.11 -1838 -111.6 0.11

V5 -128 -7.5 0.11

V40 72 3.6 0.16 14 0.6 0.11 120 7.2 0.05

V41 -7967 -468.0 0.47 -7085 -406.7 0.47 -5379 -326.6 0.47

V42 -184 -11.0 0.21 -158 -9.1 0.05

V43 1360 81.0 0.21 1502 86.6 0.05 1242 75.7 0.05

V59 -173 -11.0 0.16 -327 -19.0 0.05 -543 -33.2 0.05

V72 -31231 -1838.2 0.42 -27377 -1573.8 0.32 -20615 -1254.5 0.26

V84 2089 122.5 0.11 1264 72.5 0.11 920 55.9 0.05

V103 9674 566.0 0.42 8430 483.3 0.26 6188 375.1 0.16

V104 -2360 -136.4 0.11 -1605 -91.4 0.05 -1126 -67.9 0.05

Step 3

CF V1 23190 1460.3 0.11

vs V2 -1006 -63.3 0.21

NN V3 711 44.8 0.21
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V4 -1198 -75.4 0.11

V5

V40

V41 -4114 -258.3 0.37

V42

V43 1125 70.6 0.05

V59 -627 -39.4 0.00

V72 -16929 -1066.2 0.26

V84 505 31.9 0.05

V103 4376 274.8 0.11

V104 -403 -25.3 0.00

LDA Full model Step 1 Step2

variable Discr. Stand. Error Discr. Stand. Error Discr. Stand. Error

name coeff. coeff. rate coeff. coeff. rate coeff. coeff. rate

EB V6 -209 -19.7 0.50 -181 -18.2 0.50 -153 -16.2 0.37

vs V7 23 2.2 0.43 13 1.3 0.43 14 1.6 0.37

NN V45 235 22.1 0.47 176 17.5 0.43 144 14.8 0.37

V73 -8 -0.8 0.47 10 1.1 0.40

V91 249 23.4 0.43 198 19.8 0.43 162 16.9 0.40

V93 -528 -49.7 0.50 -396 -39.7 0.43 -327 -33.9 0.43

V94 27 2.5 0.40

V98 42 4.0 0.40 35 3.6 0.40 30 3.3 0.40

V105 77 7.2 0.40 68 6.8 0.40 64 6.6 0.37

Step 3 Step 4

EB V6 -120 -7.9 0.40 -77 -5.6 0.33

vs V7

NN V45 117 7.7 0.43 81 5.8 0.27

V73

V91 122 8.0 0.33 105 7.5 0.37

V93 -259 -17.0 0.40 -190 -13.6 0.33

V94

V98 12 0.8 0.33 37 2.7 0.27

V105 81 5.3 0.20
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LDA Full model Step 1 Step2

variable Discr. Stand. Error Discr. Stand. Error Discr. Stand. Error

name coeff. coeff. rate coeff. coeff. rate coeff. coeff. rate

CF V4 123 6.8 0.37 169 9.7 0.34 148 8.8 0.29

vs V9 -68 -3.8 0.34 -34 -1.9 0.29 -28 -1.6 0.26

AO V25 -961 -53.1 0.42 -940 -53.7 0.42 -843 -49.8 0.42

V34 865 47.8 0.42 743 42.5 0.42 634 37.5 0.32

V40 335 18.5 0.32

V41 428 23.6 0.37 233 13.3 0.32 143 8.5 0.29

V42 42 2.3 0.34 4 0.2 0.29 -9 -0.6 0.24

V43 -190 -10.5 0.39 -85 -4.9 0.34 -140 -8.4 0.24

V59 -616 -33.9 0.37 -116 -6.6 0.29 160 9.4 0.32

V72 8236 455.5 0.34 7480 427.5 0.37 6844 405.2 0.37

V84 -181 -10.1 0.42 -547 -31.2 0.26 -405 -24.0 0.26

V103 65 3.6 0.39 -8 -0.4 0.29 54 3.2 0.24

V104 -72 -3.9 0.37 267 15.3 0.26

Step 3 Step 4 Step 5

CF V4 121 7.5 0.26 102 6.6 0.21 124 8.9 0.18

vs V9 -27 -1.7 0.24 -25 -1.6 0.21

AO V25 -758 -46.8 0.39 -672 -43.4 0.34 -615 -43.6 0.26

V34 553 34.2 0.26 506 32.7 0.26 545 38.8 0.18

V40

V41 119 7.4 0.24 88 5.8 0.21 57 4.1 0.21

V42

V43 -113 -7.1 0.21 -71 -4.7 0.21 -85 -6.1 0.21

V59 141 8.7 0.26 118 7.6 0.21 109 7.7 0.21

V72 6152 380.6 0.34 5463 353.5 0.29 5215 370.9 0.29

V84 -360 -22.3 0.21 -279 -18.1 0.21 -245 -17.4 0.21

V103 47 2.9 0.21

V104

Step 6 Step 7 Step 8

CF V4

vs V9

AO V25 -519 -37.5 0.34 -477 -37.5 0.29 -375 -30.1 0.29

V34 445 32.3 0.16

V40
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V41 81 6.0 0.21 69 5.3 0.21 18 1.5 0.24

V42

V43 -5 -0.5 0.18 -17 -1.3 0.16

V59 85 6.2 0.21 72 5.6 0.21 42 3.4 0.21

V72 4455 323.1 0.26 3863 305.3 0.24 3201 259.3 0.24

V84 -187 -13.7 0.21 -150 -11.7 0.21 -81 -6.6 0.24

V103

V104
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Table A.7: Discriminant values for the considered sample set of lung cancer patients for
different comparisons, using the entire sample set (overall) and the leave-one-out method
(loo), respectively: the pairwise comparisons are indicated by the headings using the nom-
inations CF for circular focuses, EB for endobronchial carcinomas, and NN for other
kinds of carcinoma, as well as AO comprising all tumors exclusive circular focuses. Lines
of patients that do not contain discriminant values were not included in the considered
comparison.

CF vs EB CF vs NN EB vs NN CF vs AO

full loo full loo full loo full loo

Circular focus (CF) 1 -1.40 -1.19 -1.80 -1.54 -0.87 -0.77

2 -0.51 -0.45 -3.97 2.01 -0.31 0.70

3 -0.64 -0.54 -3.13 -2.51 -0.10 0.09

4 -1.65 -1.60 -4.82 -4.91 -2.61 -2.77

5 -0.06 0.18 -5.58 -9.36 -0.38 -0.33

6 -1.43 -1.41 -5.50 -7.94 -1.17 -1.14

7 -1.49 -1.46 -4.30 -4.15 -1.22 -1.13

8 -0.34 -0.09 -4.40 -4.57 -0.67 -0.63

9 -0.21 -0.05 -2.85 -2.21 -0.81 -0.77

10 -1.38 -1.35 -5.51 -8.93 -1.94 -1.99

Endobronchial 1 0.41 0.27 -2.25 -2.39 0.11 0.02

tumor (EB) 2 -0.05 -0.27 -2.03 -2.08 1.08 1.05

3 0.61 0.20 -0.70 -0.48 0.47 0.14

4 1.14 1.11 -2.42 -2.55 0.31 0.25

5 1.13 1.05 -0.70 -0.52 1.54 1.50

6 0.37 0.15 -0.19 -0.02 0.28 0.11

7 1.08 1.05 0.06 0.33 1.42 1.40

8 -0.36 -0.41 -0.28 -0.07 -0.26 -0.31

9 0.84 0.69 -0.34 -0.13 0.11 0.06

10 2.01 2.07 0.25 0.30 2.23 2.31

11 -0.88 -1.50 -0.18 -0.03 -0.73 -1.02

12 2.57 3.44 -0.61 -0.49 1.97 2.01

13 -0.89 -0.99 -1.87 -1.91 -0.54 -0.66

14 1.37 1.36 -1.53 -1.52 1.40 1.38

15 -0.47 -1.09 -1.56 -1.53 0.14 0.03

16 0.59 0.51 0.94 1.31 2.55 2.80

17 0.50 0.40 -1.53 -1.51 -0.32 -0.40
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CF vs EB CF vs NN EB vs NN CF vs AO

full loo full loo full loo full loo

18 2.42 2.75 -0.61 -0.05 0.69 0.33

19 2.29 2.47 -1.38 -1.33 NA NA

20 3.19 5.13 -2.03 -2.07 2.95 4.11

21 1.30 1.25 -1.95 -1.99 0.35 0.26

Neither nor (NN) 1 4.04 2.11 0.19 0.12 1.34 1.33

2 4.28 3.18 0.92 0.76 2.86 3.89

3 3.57 2.89 -0.11 -1.12 2.32 2.41

4 3.80 3.38 3.48 4.69 0.33 0.26

5 4.47 29.41 1.86 0.55 1.75 6.77

6 3.39 1.56 0.73 0.43 1.04 0.97

7 5.21 9.31 1.16 0.89 0.47 0.18

8 4.55 5.17 0.99 -1.35 NA NA

9 4.38 4.20 -0.24 -0.61 2.37 2.56
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Figures

This chapter contains illustrations of relevant variables for comparisons of different tumor

kinds (Section 7.2), presented in density plots for three different comparisons (Fig. B.1,

B.2, and B.3) and marked in the heatmap of an instance measurement for one of the

comparisons (Fig. B.4). To avoid the interruption of the reading flow in the main part

of the thesis, these figures were put into the appendix to still allow a complete overview

about the peak variables giving the base for the determined discriminant functions.
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Figure B.1: Plots overlaying the density curves for the two groups of patients with circu-
lar focuses and all other carcinoma inclusive endobronchial tumors for the relevant peak
variables of this comparison (a) V 25, (b) V 41, (c) V 59, (d) V 72, and (e) V 84.
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Figure B.2: Plots overlaying the density curves for the two groups of patients with circular
focuses and other tumor kinds exclusive endobronchial tumors for the relevant peak variables
of this comparison (a) V 1, (b) V 2, (c) V 3, (d) V 4, (e) V 41, (f) V 43, (g) V 59, (h) V 72, (i)
V 84, (j) V 103, and (k) V 104.
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Figure B.3: Plots overlaying the density curves for the two groups of patients with en-
dobronchial tumors and other carcinoma exclusive circular focuses for the relevant peak
variables of this comparison (a) V 6, (b) V 45, (c) V 91, (d) V 93, and (e) V 98.

Figure B.4: Heatmap of an instance breath measurement showing the general peak areas
corresponding to the relevant variables for the comparison of endobronchial tumors with
other carcinoma excluding circular focuses.
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