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Abstract

The goal of this research is the precise investigations of the processes which are
helpful to test the physics of the Standard Model and beyond it. We concentrate
on the flavor sector of the theory which is still one of the sticking point in high
energy physics. At the same time flavor physics possesses a rich phenomenology
which makes it one of the hot topics in the current theoretical and experimental
investigations.

In this thesis we present the studies of several processes of particle physics taking
place at the energy scale of O (GeV), namely neutrino interactions with nucleons
and semileptonic B meson decays.

For the neutrino scattering on nucleons with neutrino energies of about one GeV,
we determine the form factors of the nucleon-resonance transition with the help of
the recent electroproduction data. We extend the analysis to the second resonance
region, where in addition to the resonance Ps3(1232), also D;3(1520), P;(1440) and
S11(1535) resonances contribute. Using the updated form factor fit we calculate the
differential and total cross sections for the resonance production by neutrinos.

A detailed analysis of angular distributions is done for the exclusive decays B —
K, K*ll. The calculations are performed in the large recoil region using the QCD
factorization formalism. We give the Standard Model predictions for the coefficients
of angular distribution of B — KIl decays, namely F% and Als. The predicted
values are remarkable for their vanishing values in the Standard Model and small
theoretical uncertainties. The sensitivity of these coefficients to New Physics is
studied in a model-independent way.

In the case of the decay B — K*(— K)ll we investigate eight CP asymmetries
in the Standard Model and Beyond. Three of them are T-odd and five T-even CP
asymmetries. In the Standard Model, where the CP violation comes from the CKM
matrix, we predict the values of the CP asymmetries to be of O (1073). We also show
that the current experimental bounds allow the T-odd asymmetries to be of O (1),
whereas the values of the T-even asymmetries can be of @ (0.1) in the presence of

New Physics.






Zusammenfassung

In dieser Arbeit prasentieren wir die Studien einiger ausgewahlter Prozesse der
Teilchenphysik, die an der Energieskala von O (GeV) stattfinden, erstens die Wech-
selwirkung zwischen Neutrinos und Nukleonen und zweitens semileptonische Zerfalle
der B-Mesonen.

Im Falle der Streuung von Neutrinos an Nukleonen im Energiebereich von ca. 1
GeV, bestimmen wir die Formfaktoren der Nukleon-Resonanz-Ubergénge mit Hilfe
neuester Elektron-Nukleon Streuungs-Daten. Unsere Analyse beinhaltet aufler der
P33(1232) Resonanz auch die Dy3(1520), P;1(1440), S11(1535) Resonanzen. Unter
Verwendung dieser aktualisierten Formfaktoren berechnen wir den differentiellen
und gesamten Wirkungsquerschnitt fiir die Erzeugung von Resonanzen in der Neu-
trino-Nukleon Streuung.

Im Falle der semileptonischen B-Mesonzerfalle werden Winkelverteilungen des Spek-
trums fiir die exklusiven Zerfille B — K, K*II detailliert diskutiert. Die Rechnung
beschrankt sich auf kleine invariante Massen des Dileptonsystemes im Rahmen des
Formalismus der QCD Faktorisierung. Wir bestimmen die Standardmodell Vorher-
sage der Koeffizienten der Winkelverteilung FY, und ALy des Zerfalles B — KII.
Diese Observablen zeichnen sich durch ihre verschwindend kleinen Standardmodell-
werte und kleinen Unsicherheiten aus. Desweiteren wird die Sensitivitat dieser Ko-
effizienten auf Signale Neuer Physik in modellunabhéngiger Art und Weise studiert.
Fiir die Zerfille B — K*(— K)Il untersuchen wir acht CP Asymmetrien im Stan-
dardmodell und dartiber hinaus. Drei von ihnen sind T-ungerade und finf T-gerade
CP Asymmetrien. Im Standardmodell ist die Ursache der CP Verletzung die CKM
Matrix und die CP Asymmetrien verschwindend klein im Bereich O (1073). Wir
zeigen auflerdem, dass die gegenwéartigen experimentellen Daten keine wesentlichen
Einschrankungen darstellen und folglich die T-ungeraden Asymmetrien im Falle
Neuer Physik im Bereich O (1) sein kénnen. Die Sensitivitdt der T-geraden Asym-
metrien auf Signale Neuer Physik ist etwas kleiner, diese kénnen im Bereich O (0.1)

liegen.
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Introduction

The developments of the last 50 years in particle physics give the hope that the
description of the nature can be arranged in terms of several fundamental principles.
The Standard Model (SM) [1, 2, 3], the model describing electromagnetic, weak and
strong interactions, is such an attempt. With the help of the quantum field theory
and the principle of local gauge invariance the SM explains successfully the wide
range of particle physics phenomena up to distances of O (107 m), which has been
confirmed by a large number of accelerator experiments.

In spite of its success one believes that the SM is not complete. The reason is a
number of unanswered questions raised in the theory. Namely, there is a number of
parameters in the theory whose values are unnaturally remote from each other, more
than one would expect. For example, there is a large difference, about seventeen
orders of magnitude, between the electroweak scale and the Planck scale. Similarly,
it is unclear why the spectrum of matter particles in the SM is so different. The
mass of the top quark exceeds the mass of one of the neutrinos by eleven orders
of magnitude. This problem is probably correlated with the question: ”Where do
masses of the particles come from?”. We also do not know why there are only three
generations of particles. Although, the direct experimental constraints still do not
rule out an additional fourth generation [4, 5|. The neutrinos are massless in the SM,
whereas the oscillation experiments confirmed that neutrinos have masses. Another
problem is related to the fact that our Universe is observed to have an excess of
matter over antimatter. It would be impossible to achieve it without the existence
of CP violating processes during the evolution of the Universe [6]. Thus, it generates
the need to have CP violation in the theory. Unfortunately, the amount of CP
violation in the SM is not enough to explain quantitatively the asymmetry between
matter and antimatter. Thus, these shortcomings and inconsistencies motivate us
to think about the existence of physics beyond the SM, i.e., New Physics (NP). We
hope that the dedicated experiments at the Large Hadron Collider (LHC) will shed
light on some of these questions.

The most part of this manuscript is devoted to various phenomenological aspects
of flavor physics. In the SM the matter particles (fermions) appear in three gen-
erations. Flavor physics describes the interactions responsible for the transitions

between different generations. There are two sectors of flavor physics: quark and
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lepton flavor physics. These two parts are often discussed separately in spite of
many similarities. However, the belief in the Grand Unified Theories (GUT) unify-
ing quarks and leptons makes us expect that quark and lepton flavor physics have
same origins. Concerning the SM, the following question raises: ”What is the source
of such generation (flavor) changing interactions in the SM?”. The fermions in the
SM take part in the gauge (coupling to gauge boson) and Yukawa interactions (cou-
pling to scalar boson). Yukawa terms are unconstrained in generation space which
leads to flavor violation transitions. In the SM Yukawa couplings are just free pa-
rameters which should be extracted from experiment. Going beyond the SM one
introduces some flavor (family) symmetry which is spontaneously broken by the vac-
uum expectation value of some scalar filed called flavon. Further, by constructing
non-renormalizable theory valid below some scale we can introduce interactions de-
scribing the SM fields plus the flavon in such way that for the low energies they lead

to Yukawa couplings.

Why is flavor physics so interesting to investigate? The processes of flavor physics
have a potential to test the SM and even predict its extensions. There are some
examples from the past when new particles were predicted before their direct ob-
servations in accelerator experiments. One of such examples is the measured value
of Kaon mass difference which led to a successful prediction of charm quark mass
before it was discovered. Therefore, if NP appears at or below the TeV scale, pre-
dicted by some SM extensions, NP particles can contribute either at tree or loop
level, depending on NP flavor structure, to some low energy obsevables. Again, the
discrepancy between experimental and theoretical estimates of those flavor physics
observables can be a signal of the physics beyond the SM.

The other problem related to flavor physics is a need of new sources of CP vio-
lation. In the SM there is only one CP violating phase originated from the quark
flavor mixing, which, as we said above, is not enough to produce matter-antymatter
asymmetry of the Universe. Measuring CP sensitive observables in flavor changing

processes can provide evidence of additional sources of CP violation.

On the other hand lepton flavor physics is also very important. The measurements
of neutrino mass differences and mixing in the oscillation experiments gave the
first experimental result being inconsistent with the SM. In the SM leptons, i.e.,
electron, muon and tau, obtain their masses through the Yukawa terms, whereas
neutrinos stay massless. To construct Yukawa-like terms for neutrinos one adds
heavy right-handed singlets to the theory which leads to Dirac neutrino masses.
Another possibility is to introduce a triplet Higgs scalar coupled only to left-handed
neutrinos. Such terms would generate Majorana neutrino masses (more on neutrino

masses see [7]). In the both cases there is a problem with unnaturally small Yukawa
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couplings needed to tune with the experimental neutrino mass scale of O (0.1eV).
This problem can be solved with a help of seesaw mechanism. In this framework
small neutrino masses are naturally generated by the ratio of two mass scales, i.e.,
square of SM Higgs scalar scale of O (100 GeV) over the scale of heavy right-handed
singlet of order GUT or Placnk scales > O (10 GeV).

This thesis is split into two parts. The first part is dedicated to the process of the
resonance production in neutrino scattering on nucleons. The current and future
experiments on neutrino oscillations, like K2K, MiniBoone, MINOS, JHF, provide
the evidence of non-vanishing neutrino masses. Since the neutrinos are massless in
the SM, the observations of the neutrino masses in oscillation experiments call for an
extension of the SM. For the accurate measurements of the oscillation parameters,
i.e., constrains on NP, one needs precise knowledge of neutrino-nucleon scattering
cross sections. For the low neutrino energies, F, ~ 1 GeV the resonance production
reactions give significant contribution to the total cross section. For this purpose we

study these reactions in detail and present the results in the publication:

e O. Lalakulich, E. A. Paschos, G. Piranishvili, ” Resonance production by neu-
trinos: The Second resonance region.”, Phys.Rev.D74:014009,2006.

Cross section of these processes depend on the nucleon-resonance form factors. The
underlying fundamental theory of such nucleon-resonance transitions is quantum
chromodynamics (QCD). However, in the non-pertubative regime QQCD calculations
are not currently practicable due to their complexity. Therefore one has to inves-
tigate nucleon-resonance transitions with a help of phenomenological approaches
and experimental data. We update the form factors of nucleon-resonance transi-
tion for the P33(1232) resonance and give fits of form factors for higher resonances
Dy5(1520), P11(1440) and S11(1535). The extraction of the vector form factors is
possible due to the new data on electron-nucleon scattering from JLAB and the
Mainz accelerators, whereas for the axial form factors we adopted the concept of
partially conserved azial-vector currents (PCAC). We present these investigations
in Chapter 2, where we show the detailed extraction of the form factors. Using
the newly fitted form factors we calculate differential and total cross sections as
functions of kinematic parameters.

The second part of the thesis is dedicated to quark flavor physics. In the last
decade, experimental investigations done at B-factories put forward our knowledge
on the quark-flavor sector of the SM. The major part of these researches are devoted
to the B-meson system. At SLAC (BaBar detector) and KEK (Belle detector), eTe™
collision experiments are able to produce Y (54) resonances decaying subsequently
in B-mesons, e.g., B*(ub), B~(ub), B°(db) and B°(db). Furthermore , Tevatron
(Fermilab) with the help of detectors CDF and DO gives a possibility to study the




phenomenology of B; and B, mesons. Thanks to the LHCb experiment, further and
more profound investigations concerning B-physics will be performed at the LHC.
The phenomenology of B-physics gives a huge possibility to understand the flavor
structure of the SM better. Due to improved measurements of various observables
one is able to constrain NP being a source of additional flavor and CP violations.
On the other side the theoretical predictions still suffer from large ”hadronic” un-
certainties due to the complex nature of the strong interactions. Therefore, various
strategies are elaborated by constructing observables being free of hadronic uncer-
tainties.

Here we study the semileptonic B — K, K*Il decays. These decays belong to the
flavor changing neutral current (FCNC) processes and appear only at loop level in the
SM, which makes them very sensitive to NP. Since these decays are loop induced and
suppressed in the SM, NP particles contributing either through loops or at tree level
can enhance the magnitudes of the observables. Therefore the goal of the research
is to elaborate such observables of B — K, K*Il decays which would have precise
SM values. Thank to multi-partical final states of B — Kll and B — K*(— K)ll
decays one can investigate normalized angular distributions offering a number of
useful obsevables to study NP.

For the case of B — KIl decays we study several observables which are sensitive
to lepton flavor changing NP. We also give some examples of NP models which
might manifest themselves in B — KII decays. To study additional sources of CP
violation we apply the angular distribution of B — K*(— K)Il having richer final
structure due to the subsequent decay K* — K. It allows to have nine coefficients
in the angular distribution. With the help of these coefficients one can construct
eight CP asymmetries, three T-odd CP-odd and five T-even CP-odd asymmetries
(T is a transformation changing the sign of all particle momenta and spins). All
asymmetries are doubly Cabibbo-suppressed in the SM and are of O (1073) which
makes them very attractive probes of NP sources of CP violation. They can be
additionally suppressed due to the smallness of strong phases generated by quark
loops. In this case the T-odd CP asymmetries are especially remarkable exhibiting
maximal CP violation in the limit when strong phases vanish. In Chapter 3 we

present the investigations of those observables and the results, published in:

e C. Bobeth, G. Hiller, G. Piranishvili, ”Angular distributions of B — KIl
decays”, JHEP 0712:040, 2007.

e C. Bobeth, G. Hiller, G. Piranishvili, ” CP Asymmetries in B — K*(— K)ll
and Untagged By, B, — ¢(— K*TK7)Il Decays at NLO”, JHEP 0807:106,
2008.
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The plan of this thesis is the following. In Chapter 1 we overview flavor and CP
violation in the SM and consider the various symmetries of the quark sector. Here
we also make an introduction into the concept of effective Hamiltonians. Chapter
2 is devoted to the topic of neutrino production of resonances, giving the detailed
analysis of the second resonance region. The analysis of angular distributions of
B — K,K*ll decays is given in Chapter 3 where we discuss various number of
observables in the SM and beyond. Appendices A and B contain formulae and
technical details relevant for the calculations.
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1 Basics

1.1 Flavor in the Standard Model

The SM of particle physics contains in the matter sector three generations of ele-

mentary particles which are split into two parts

Ve v vy
( ) ) ( : ) ) < ) y €Ry MR, TR (11)
e L T
L L L
U c t
) ) y UR, dR7 CR; SR, tR, bR? (12)
d S b
L L L

where the indices L, R stand for the transformation property of the field under

Leptons

and
Quarks

the SU(2), gauge group, i.e., doublet and singlet, respectively. One introduces a
quantum number, i.e.; e, v, u,d..., which distinguishes different particles, and calls
it flavor. Therefore, in the SM we have twelve kinds of flavor. However, in the SM,
flavor is not a conserved quantum number. Due to the gauge group structure, i.e.
SU(2)y, the flavor transitions are allowed within a particular doublet only.

Further flavor transitions are induced after spontaneous symmetry breaking (SSB)
SU2), xU(1l)y — U(1)gep [8, 9, 10]. Due to SSB the quarks and leptons obtain
their masses by the Yukawa interactions with the so-called Higgs field

(ﬁ ) (1.3)

whose neutral component receives a non-vanishing vacuum expectation value. The
neutrinos stay massless due to the absence of right-handed neutrino singlets under
SU(2);, which was based on phenomenological grounds before the discovery of neu-
trino oscillations. Thus, the SM by itself does not predict a mechanism of neutrino
mass generation which requires an extension in this regard. However, in view of
neutrino oscillation experiments neutrinos are massive. The recent oscillation re-
sults and mechanisms of neutrino mass generation are reviewed in [11, 7, 12]. After

SSB the flavor-violating effects manifest themselves in the SM in terms of fermion
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masses. CP-violation appears in the modified structure of the charged-current (CC)

interactions which reads in terms of the mass eigenstates

dr,
ﬁg‘l? = _% ( up ¢ tr ) Y*Vexkm | sp W; + h.c., (1.4)
br,

where g is the gauge coupling corresponding to the SU(2), gauge group and W),
corresponds to the charged W-boson. Vg is the Cabibbo-Kobayashi-Maskawa
(CKM) 3 x 3 matrix [13, 14] presenting the strength of charged-current interactions.
The appearance of such a matrix is due to the fact that after SSB the mass matrices
of quarks and leptons in terms of the gauge eigenstates are in general non-diagonal
in the SM. However, such a matrix does not appear in the CC-interaction of leptons
with neutrinos due to the absence of right-handed neutrino singlets in the SM.
Then the diagonalization of mass matrices leads to the non-diagonal structure in
generation space of Voky in the charged-current interaction.

On the other side, neutral-current interactions (NC), i.e., corresponding to the
photon A and Z—bosons, stay diagonal in generation and flavor space preventing
the theory from the existence of FCNC processes at the tree level. The Lagrangian
for those interactions reads as

Z(zm Lyhir, — Qisin® Owiy",) 2, —eQ,sz Yidu, (1.5)

ﬁNC

int T

cos HW

where i is the flavor index and I3 = +1/2 for neutrinos and up-type quarks and
I3 = —1/2 for charged leptons and down-type quarks. Here ); presents the electric
charges of the fermions ¢; in units of the electron charge. 6y, is the angle corre-
sponding to electoweak mixing. The absence of flavor changing transitions in (1.5)
is a prediction of the SM.

Being the characteristic quantity for flavor physics of the SM, Vg will be con-
sidered closer. Vgoky is a complex unitary (3x3) matrix with 9 real parameters.
However, the freedom of phase redefinitions of the quark fields leaves only four real
parameters in the case of three generations. Voky can be parametrized in different
ways leading to the same physical consequences, i.e., physics is independent of the
particular choice. Particularly, in Euler parametrization those parameters are three
angles and one complex phase, which is the only source of CP-violation in the SM.
A possible Euler parametrization is the so-called ”Standard Parametrization” [15],
defining Ve as

—i5
C12C13 $12C13 S13€” 08
. .
—512C23 — C12523513€"°1%  C1aCo3 — S12523513€"1 523C13 (1.6)
51 51
512523 — C12C23513€""1®  —C12823 — S12C23513€"1®  C23Ci3




1.1 Flavor in the Standard Model

where s;; = sin6;; and ¢;; = cos0;;. The advantage of this parametrization is that
if one of the mixing angles, e.g., 6;;, becomes zero then the corresponding mixing
between the two generations ¢ and j vanishes.

Another useful parametrization of Vg, widely used in phenomenological anal-
ysis, was introduced by L.Wolfenstein [16]. The experimental data shows a strong
hierarchy between non-diagonal matrix elements of Voky, namely, the farther off-
diagonal an element is the more suppressed it is. This hierarchy can be approxi-

mately written as
S12 7 0.22 > 5537 O (1072) > 5132 O (107%).. (1.7)
Applying this to the Standard parametrization we define mixing angles as
S12 =N\, So3 = ANZ  spge7 0 = AN} (p + i), (1.8)

and expand (1.6) in the so-called Cabibbo-angle \. Keeping terms up to O (\°) one

obtains the following expression for the CKM matrix

1—3X2— ) A AX3(p —in)
Vokn= [-A+542X°[1=2(p +in)]  1— 3A2—LiXY(1+4A2) AN? +0 (\9)
AN [1—(p +in)] —AN — AN (p +in)+5 AN 1S AN

(1.9)

where p = p(1 — \?/2) and 7 = n(1 — A\?/2). In spite of its approximative character,
the CKM matrix remains unitary in the Wolfenstein parametrization up to negligible
higher order terms. The useful consequence of this parametrization is that the matrix
element V,;, which contains the CP-violating phase, is exact, i.e., does not receive
power corrections in A. Since the different parametrizations of the CKM matrix are
just different reformulations of the same mechanism, the most convenient version can
be chosen depending on the particular phenomenological or experimental studies.

Thus, this simple framework appears to be very effective in studies of flavor and
CP-violating processes. On the other hand this picture as a whole can be tested
experimentally. For this purpose one uses the so-called Unitarity Triangle (UT). As
we already discussed, the CKM matrix is unitary

VCTKMVCKM = VCKMVCTKM = i, (1-10)

where 1 is the 3 x 3 unit matrix. The matrix equation (1.10) implies 6 orthogonality

relations which can be written explicitly as

S Vi V=0, a,B=dsb a#p (1.11)
i=u,c,t
Z ViaVia = i,j=u,ct, 1F#]. (1.12)
a=d,s,b
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Each of these six relations can be presented as a triangle in the complex (p, 77) plain.
The areas of the triangles are all equal in size and half of the Jarlskog parameter J
[17], which is an invariant and a measure of the strength of CP-violation in the SM.

In the Standard and Wolfenstein parametrizations it reads as
J = 8128138230120230%3 sin 513 = A2)\677, (113)

with the experimental value J*P ~ O (107°). Actually, the smallness of J implies
that CP-violating effects are hard to observe. In spite of the equal areas most
of the triangles have one suppressed side compared to the other two making their
study complicated. Only two triangles have comparable sides. They follow from the

relations
ViaVis + VeaVas + ViaVip = VauaVia + VasVis + Vi Vi = 0, (1.14)
which can be rewritten in terms of Wolfenstein parameters as
AN (p+ i) — AN + AN} (1 — p— i) + O (A7) = 0. (1.15)
Introducing the quantities

Ry=~p*+17°, R=+(1-p)P+i (1.16)

relation (1.15) leads to the triangle shown in the left-hand plot of Figure 1.1 with
unit length base and two sides R, and R;. All parameters of the UT, i.e., sides and
angles are measurable quantities. Particularly, the angle v, coinciding with d;3, is
O (60°) according to the experimental data. It means that CP-violation in the SM
is nearly maximal.

The various measurements do not serve only to measure particular elements of
the CKM matrix but also to verify and overconstrain the complete framework of
flavor and CP violations in the SM. The right-hand plot of Figure 1.1 describes such
attempts done by the CKMfitter collaboration [18]. Several observables indicated by
the bands various bands constrain the position of the UT apex. The global analysis
shows that current data are in good agreement with the SM predictions. But still
there is a big space for improving the data and hopefully finding some inconsistencies
with the SM which helps us to study the physics beyond the SM.

1.2 From Quarks to Hadrons

1.2.1 QCD Lagrangian

After SSB in the SM the unbroken symmetry is SU(3)gcp X U(1)grp, corresponding
to Quantum Chromodynamics(QCD) and Quantum Electrodynamics(QED), respec-
tively. The corresponding degrees of freedom of SU(3)gep X U(1)grp are nine

4



1.2 From Quarks to Hadrons
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Figure 1.1: Draft of Unitarity triangle (left) and current CKMfitter analyses of UT
[18] (right).

massless gauge bosons, i.e., the photon and the eight gluons. Whereas QED is the
theory describing interactions of electrically charged quarks and leptons, QCD ap-
plies only to quarks. Moreover, the non-abelian nature of the QCD leads to the
fact that the only observable form of quarks and gluons at long distances are the
hadrons. In this section we discuss the basics of QCD starting from the Lagrangian

of the theory, which reads as

1 :
Lacp = —7GRG™ + D a(iD" —my)a, (1.17)
q=u,d,s...
where
A
D,=0,—- nggAu’ (1.18)
G, = 0,A, — 0, A7, + gsf“bcAZA,‘j. (1.19)

Here g is the dimensionless coupling of SU(3)gcp and G, 1s the field-strength
tensor corresponding to the gluon field Af%, where a = 1..8. In (1.17) we skip
gauge-fixing and ghost terms which are irrelevant for the current discussions. The
non-abelian nature of QCD manifests in the fact that the gluon fields carry color
charge and the selfinteraction due to the third term in (1.19). In contrast to QED,
the quark can change its color-charge after emission or absorption of a gluon field.

If we assume that g, is small enough for a perturbative treatment, we can calculate

different processes in QCD applying (1.17). Going beyond tree level by considering
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loop corrections will lead to divergences. This happens because the momentum of
virtual particles in the loop is integrated from zero to infinity. Fortunately, similar to
QED, QCD is a renormalizable theory. This means that the ultraviolet divergences,
appearing in Feynman diagrams with loops, can be isolated by the redefinition of
Lagrangian parameters (regularization), i.e., couplings, masses and fields. Thus, the
physically observable quantities are finite to all orders in perturbation theory.

Due to the regularization the renormalization technique introduces an additional
mass dimension parameter p, the renormalization scale. All the parameters of the
Lagrangian are p dependent, i.e., gs = gs(u), my = my(p) etc. The p-scale de-
pendence is governed by the so-called renormalization group equations (RGE). For
example, in QCD the renormalization scale dependence of the gauge coupling and

quark masses can be computed by solving the following RGE

)]
DAll) (i (1.20)

where 3 is the RGE-function of the coupling and ,, is the anomalous dimension of

the mass. They can be calculated in perturbation theory and at two loop order we

have
2 2 2
9s g5
2 2 2
9s 95
Tm(95) = 755 + (—16W2) . (1.22)

In the so-called M S scheme the coefficients read as

P
By =11 — % (1.23)
38
/61 =102 — Enf, (124)
10 =8, (1.25)
404 40n
 _ 404 40ns 1.26

where n; is the number of active flavors. In terms of as (1) = g2(p)/(47) the solutions

of the differential equations (1.20) are

(1) = Bo - f1Inln (M2/A2QCD>
QM I (p2/A2) Boln (12 /A%ep) |
(0)
B as(p) 158 v By au(p) — (o)
mq(#)—mq(uo)[as(uo)] “%‘ 253) - .2
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where Agep is the momentum scale where oy diverges. In the case of five active
flavors, Agep ~ O (200 MeV), being the characteristic scale of the breakdown of the
perturbative expansion. The growth of «ay, predicted in perturbation theory, indi-
cates the necessity to use non-perturbative methods at long distances of O (1/Agep).
This regime of QCD is called confinement. The interaction between quarks and glu-
ons becomes strong, and they are confined into hadronic bound states. Thus, it is
quite natural that the characteristic scale of hadron interactions is of order Agcp.
The limit © — oo leads to a vanishing quark-gluon coupling. This regime reveals
that at short distances the behavior of quarks and gluons in QCD is asymptotically

free.

1.2.2 Quark Model of Hadrons

The large amount of hadrons can be nicely systematized and studied with the help of
the various approximate symmetries in QCD. First we consider the consequences of
the QCD gauge group for the hadron formation. Each quark ¢ carries a color index
and transforms as a triplet, whereas an antiquark ¢ transforms as an antitriplet
under the SU(3)gcp gauge group. Since the hadrons are color-neutral particles, we
need such combinations of ¢ and ¢ which will be singlets under SU(3)gcp. There
are two possibilities to form such color neutral combinations. The first one is the
so-called meson state, which can be built from quark and antiquark by summing

over all color quantum numbers
3
M) =" |g} G.)- (1.28)
i=1

The second possibility is a combination of three quarks (antiquarks) multiplied by

the totally antisymmetric tensor ;5 (£7%)

3
B) = cinldi Ba5). (1.29)
irj, k=1
which are called baryons. Therefore the SU(3)gcp group explains naturally the
absence of such states as ¢q (diquark) or gqqq (four-quark) in the hadronic spectrum,
since these quark combinations are not color-singlets. It also clarifies the existence
of the uuu or sss bound states, i.e., A™" and Q™ respectively, which in the absence
of the color quantum number would violate the Pauli principle for fermions.
The quarks in (1.28), (1.29) are called valence quarks since they define the flavor
type of the hadron. However, the true structure of hadrons is more complicated.
At the distances of O (1/Agep) additional quark-antiquark pairs and gluons are

created and annihilated inside of hadrons due to quantum fluctuations. The reason
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is that the masses of light quarks, i.e., u, d and s, are smaller than Agcp. These
virtualities are color neutral and flavor conserving. We can qualitatively estimate
the importance of these virtual processes for the example of the neutron and the
proton. The proton and neutron are the lightest baryons with the quark structure
wud and udd, respectively. If we take a look at the quark masses in the MS scheme

from the Particle Data Group review [15]

m,(2GeV) =3+ 1MeV, mqe(2GeV) = 6.0 £ 1.5 MeV,
77, (2 GeV) = 103 £ 20 MeV, 71,(77,) = 1.24 £ 0.00 GeV,
71y (771,) = 4.2 + 0.07 GeV, ity (7) = 162.9 £ 1.3GeV,  (1.30)

we can see that u and d quarks are the lightest ones with masses of order several
MeV. It should be noted that these masses are due to the interaction with the
Higgs-field. If we just sum the masses of u and d correspondingly to the valence
quark content of the proton and neutron, we obtain that the nucleon mass should be
of O (10MeV). This contradicts the well known experimental values of the proton
and neutron masses of O (940 MeV) being three orders of magnitude larger then
the naive estimate given above. The transparent example shows the important role
of the long-distance quark-gluon dynamics in non-pertubative QCD for the mass
generation of hadronic matter, which can not be explained by the SSB-mechanism
alone.

1.2.3 Flavor Symmetries: Isospin and SU(3)

Since the discovery of Yang-Mills local gauge theories and their role in particle
physics, group theory helps to understand high energy physics from the first princi-
ples. A physical system having with a symmetry can be studied by group-theoretical
methods, since the symmetry transformations form a group. In QCD, besides
the space-time (Poincare) and color (SU(3)gcp) symmetries the fundamental La-
grangian can be studied using flavor symmetries. One of the well-known examples is
the isospin symmetry introduced by Heisenberg in the 1930’s. If we concentrate on
u and d quarks, we can observe the fact that their masses and the mass difference

are much smaller with respect to Agep
My, Mg, My — Mg K AQC’D- (1.31)

Neglecting the mass difference and introducing a common mass m for up and down
quarks the QCD Lagrangian (1.17) can be written in this limit as

»CQCD = N(ZDM’)/M — m)N + Z Q(ZDMVM - mq)q + ‘Cgluona (132)

q:S7c7b7t
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where we introduce the doublet NV as

N:(Z). (1.33)

The Lagrangian (1.32) has a global symmetry under the following transformations
of the new field N

N — N =" 2 N (1.34)

where the summation over a = 1, 2,3 is understood. The ¢ are the well-known
2 x 2 Pauli matrices, i.e., the generators of the SU(2) group transformations. The
isospin symmetry is not exact. The violation is due to the mass difference m, — my
and the difference of the electric charges of u and d quarks, being effects of O («)
and O (%), respectively.

The isospin symmetry manifests itself in hadrons. The hadrons which differ in the
quark content by the interchange of the u and d quarks, form isodoublets (I = 1/2).
The components of such doublets differ in their mass by order of few MeV as pre-
dicted by the SU(2) symmetry breaking corrections, which is confirmed experimen-
tally. Examples are the proton (uud) and the neutron (udd), K (u8) and K~ (ds),
B7 (ub) and B° (db), etc. The mesons built only from the N doublets can be written

as

_ uti—dd UJ “ i+ dCZ
NeNg= ([ v T ) 4o (1.35)
u _T 5 \/5

with «, 5 = 1,2. The first term in (1.35) corresponds to the isotriplet (I = 1)
whereas the second one is the isosinglet (I = 0). Examples of such triplets are the
pions, 7F, 7° and 7~ and the p mesons, pT, p° and p~. Similarly to the doublet
states, the mass difference within the triplet is of order few MeV, which is nicely
confirmed by experimental observations.

The smallness of the strange quark mass m, with respect to Agep allows us to
extend the isospin SU(2) symmetry to the SU(3) flavor symmetry group. In analogy
with isospin we neglect the mass differences between u, d and s quarks. Introducing

the common mg3 mass for u, d and s, the QCD Lagrangian takes the form

Lacp = V(D" —ms)+ > @Dy — mg)q + Lotuon: (1.36)

q=c,b,t

where 1) is a triplet

v=14d |. (1.37)
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The Lagrangian (1.36) is invariant under transformations of the new field v
)= = N2y, (1.38)

where a = 1...8 and \* are eight Gell-Mann matrices, i.e., the generators of the
SU(3) flavor group. This symmetry was introduced by Gell-Mann, Ne’eman and
Zweig in early 1960’s as an extension of the isotopic spin group SU(2) in order
to classify the large amount of baryons and mesons seen in terms of quarks. At
that time several particles were discovered which besides isospin have an additional
quantum number called strangeness. It can be shown that the charge of a particle
@ is correlated to the strangeness S and the third component of isospin I3 in the

following way
Y
Q:[3+§, Y =B+S, (1.39)

where B is the baryon number B = +1 for baryons and B = —1 for antibaryons.

The corresponding quantum numbers for the quarks u, d and s read as

Quarks ‘ Q 1 I3 Y S B
U 2/3 1/2 1/2 1/3 0 1/3
d -1/3 1/2 -1/2 1/3 0 1/3
s -1/3 0 0o -2/3 -1 1/3

The meson bound states are formed by the 1)) combination. As a result of multiplet

multiplication
33 =168 (1.40)

mesons belong either to the singlet or the octet representations of SU(3). Using

(1.40) one can show that the quark content of the scalar meson octet is

7t~ (du), 70 ~ (tu, dd), 7w ~ (ud),
K" ~ (5u), K" ~ (3d), K ~ (ds), K~ ~ (us),
n° ~ (tu,dd, 5s), (1.41)

being the same as for the vector mesons. The baryons are bound states of three
quarks ¥ and from

3R393=10838® 10 (1.42)

10



1.2 From Quarks to Hadrons

follows that they form octets and decuplets. For the spin 1/2 baryon octet we have

p ~ (udu), n ~ (udd),
¥t~ (suu), Y0 ~ (sud, sdu), ¥ ~ (sdd),
=0 ~ (ssu), =7 ~ (ssd),
A° ~ (suu, sdd, sud) (1.43)

and the quark content for the spin 3/2 baryon decuplet is

AT ~ (uuu), At ~ (uud), A ~ (udd), A~ ~ (ddd),
Y~ (suu), Y0 ~ (sud), ¥~ (sdd),
=0 ~ (ssu), =7 ~ (ssd),
Q7 ~ (ss5). (1.44)

Of course, the SU(3) is not an exact symmetry. The experimental data shows
that the masses of the mesons or baryons differ from component to component in
the multiplet. Thus, the violation of SU(3) is characterized by the mass splitting
within one multiplet, which varies from O (m,, — mq) to O (ms — m), where m is the
common mass of u and d quarks.

Taking into account the spin of the light quarks, SU(3) can be extended to an
SU(6) symmetry group. The fundamental representation of SU(6) is 6, i.e.

(G
dl
_ |8t
q= ul (1.45)
d]

s |

and from the multiplication of representations
6R06®6=56@®70d 70 @ 20 (1.46)

it follows that the baryon bound states transform as 56, 70 and 20 representations.
The SU(6) multiplets can be decomposed into SU(3) ones as

56 = 10* & &2,
0=10®8'® 8@ 1%,
20 =82 @ 1%,

(1.47)

11
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where the superscript denotes (25 + 1) and S is the spin of a baryon in a partic-
ular multiplet. In order to take into account orbitally excited baryons rigorously
one extends SU(6) to the SU(6) x O(3) group ("symmetric” quark model) where
O(3) corresponds to the symmetry transformation of the spatial part of baryon
wave functions. In this model the 56-plet is a "ground state” and contains such
baryons as p, n, A(1232) and P;1(1440). The next ”excited” multiplet is 70 which
includes D;3(1520) and S11(1535). Particularly these resonances will be considered

in Chapter 2 in the context of neutrino scattering on nucleons.

1.2.4 Heavy Quark Symmetry

Here we focus on the heavy quark sector of the QCD Lagrangian, namely on ¢ and b
quarks with m., my > Agep, see (1.30). We do not consider ¢ quark since it is too
heavy to form hadronic bound states before decaying. That leads to the situation

when
Me ~ My ~ Mg — 0. (1.48)

In this limit the Lagrangian (1.17) can be formally rewritten as

EQCD = Q(ZD,L/V# - mQ)Q + Egluon, u,d, sy (149>

Q:(Z). (1.50)

We now rewrite (1.49) such that it does not contain mg explicitly. The momentum

where we introduce a new doublet

of the heavy quark ) can be decomposed in the rest frame of the heavy meson as
po = mqou + k, (1.51)

with v = (1,0) being the 4-velocity of the meson and with the small residual mo-
mentum k ~ Agep < mg. In this limit the heavy quark field can be decomposed

into the large h, and small y, components as
Q=e"""(h, + x,) (1.52)
with

(7é - 1)hv =0, (7é + 1)Xv = 0. (1'53)

12
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Since the x, part is suppressed by k/mq and therefore can be neglected, we rewrite
(1.49) in terms of the h, as

QD —ma)@ = i, = b (L2 )iph,

_ [w D - up(%)] hy = Ryiv - Dhy. (1.54)

In this form the Lagrangian becomes independent of the mg scale. We can generalize

this to the case of N heavy quarks as

N
Lo=> Wiv- Dh{. (1.55)
i=1
One can show that the effective Lagrangian possesses a SU(2N) spin-flavor symme-
try, which in the case of ¢ and b becomes SU(4). The SU(2N) symmetry becomes
broken if one includes O (1/mg) corrections to the Lagrangian.
The consequence of the heavy quark limit is that the mass of a meson M can be

written as
my =mg+A+O(1/mg), (1.56)

where the constant A is of order Ageop and characterizes the energy of the light
quark and gluon "cloud” in the meson M and is independent of mq. In the heavy
meson case such a quark-gluon cloud is purely relativistic with a non-perturbative

long-distance behavior.

1.3 Effective Theory of Electroweak Processes

1.3.1 Idea

Rare B meson decays, governed by FCNC, consist useful probe to investigate NP.
To study FCNC processes one uses a useful technique, called Effective Weak Hamil-
tonian. The effective Hamiltonian notation is nothing but the construction of an
effective theory in the presence of several energy scales in the problem. In the effec-
tive theories one separates low energy (large distances) dynamics from high energy
(small distances) ones by decoupling degrees of freedom which are not actively par-
ticipating in low energy processes. For FCNC processes, these degrees of freedom
correspond to the particles running in loops. Crucially, it is possible to decouple (or
integrate out) the virtual degrees of freedom in such a way that they do not appear

in the low energy Lagrangian anymore.

13
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One of the examples of such a reduction is the well known Fermi theory of the
(-decay. In the SM, on the quark level, the leading contribution to this process
comes from the tree level W-boson exchange. Since the typical energy scale of the
external momentum (in the center of mass frame) in the f-decay is much smaller
than the W-boson mass it is possible to integrate it out from the theory by keeping
only the leading term in the expansion of the W-propagator

2
i ig“”(m—lgv + WZ—%V + ) (1.57)
and omitting higher order terms in ¢?/m3,. Here we denote by ¢* the four momen-
tum transfer and by my, the W-boson mass, where ¢*> < m#, is understood. (A
more elegant formulation can be given with the help of the functional path integral
formalism.) Thus, the 8-decay can be described with high order of accuracy by the

effective theory with the following Hamiltonian

AG ’
Ha = =20V o) (o Pu) + 0 (L), (1.58)
Gr 92
8 = 1.59
S (1.59)

and P, = (1 — v;)/2. Here Gp is the well-known Fermi constant and Vj,,, are the
CKM matrix elements. Note that the information about small distances is not
completely removed from the theory (it is only removed dynamically) but contained
in the G effective constant.

Generalizing this approach, the amplitude in the effective theory can be written

as a projection of the effective Hamiltonian onto external states
Al — F) = (F|Heg|I) ~ GrVexmCi(p)(F1O:i(p)|1), (1.60)

where O; are high dimensional operators sandwiched between I and F', i.e., initial
and final states respectively. The Wilson coefficients can be computed perturbatively
n o

a;

(4W)2Ci(2) (1o) + O () (1.61)

Qs
Ci = O (o) + O (o) +

as a function of the high-energy scale (matching scale) po ~ my, of the order of the
decoupled heavy degrees of freedom. Technically, one calculates the amplitude in
the full theory and in the effective theory, and subsequently determines the Wilson
coefficient by requiring the equality of both. In order to add higher order QCD
corrections and evaluate the Wilson coefficients at the low scale u, where particular

phenomena are observed (for b-decays p ~ my;), one uses the powerful technique of

14
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the RGE. The RGE for the Wilson coefficients has the following general form

dCi(p)
dlnp

= 7% (1) C5 (1), (1.62)

where ;5 is the so-called anomalous dimension matrix

_ 7-19%
* dlnp

i (1) (1.63)
The Z;; are the renormalization constants appearing during the renormalization of
the amplitude (F'|Heg|l). The non-diagonal nature of the Z;; leads to the mixing of
the different operators under the renormalization procedure. 7;; can be expanded in

perturbation theory as

2 3
=L 0 Y ) Y O 1.64

Vij 47r7” +(47T)2%] +(47T)3%] + ... (1.64)
The RGE (1.62) is a system of ordinary coupled differential equations with the
formal solution

Ci(p) = Usi(p, o) Cj (o), (1.65)

expressing the running of the Wilson coefficients from the scale g to the scale p.
The evolution matrix U(u, 1) allows us to calculate the Wilson coefficients at the
low scale.

Let us summarize the important features of the effective Hamiltonian. First, the
Wilson coefficients are process independent quantities, i.e., do not depend on the
type of the external hadronic states. Therefore, once calculated, they can be used
for different processes. This manifests itself by the fact that the Wilson coefficients
depend only on the masses of the particles which we integrated out. Second, the
hadronic matrix elements are process dependent quantities and have to be calcu-
lated using some non-perurbative methods. Third, the physical observables must
not depend on the scale p, which cancels between the short distance (Wilson co-
efficients) and long distance (hadronic matrix elements) dynamics. Unfortunately,
the truncation of the perturbation expansion leaves a remnant ;1 dependence in the
predictions, which introduces an additional uncertainty to the observables and is
usually used as an indication of the size of missing higher order corrections. The

inclusion of higher order terms is supposed to reduce the p1 dependence.

1.3.2 Hadronic Matrix Elements

In order to compute the amplitude (1.60) we should know the Wilson coefficients

and matrix elements of the operators (O;(u)) being sandwiched between the initial
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and final states. The Wilson coefficients are process independent quantities and
can be computed in perturbation theory. The computation of the matrix elements
is a sophisticated task. In the so-called naive factorization approach the matrix
elements of B — K, K*Il exclusive semileptonic decays are assumed to factorize
into the product of a leptonic current and the matrix element of a quark current,

which schematically can be written as
(IIK, K*|O;|B) ~ (K, K*|5T1 b|B) (IT'y1), (1.66)

where I'; 5 corresponds to different Dirac matrix structures. Applying Lorentz-
transformation properties of the matrix element, the hadronic part is parametrized
in terms of the form factors FZ7%*%" of the B — K, K* transitions and can be

(2

formally written as
(K, K*|5T1b|B) ~ EP7HKT, (1.67)

where the form factors are functions of Lorentz-scalars. This picture is incomplete
due to the presence of so-called non-factorizable strong interactions effects which
are not contained in the definition of the form factors of the B — K, K* transitions
[19, 20]. There are two types of such non-factorizable contributions. The first type
corresponds to the photon scattering with the spectator quarks of the B-meson or
Kaon. The corresponding diagrams are (g), (j) and (k) in Figure B.1 of Appendix B.4
which contribute at LO and NLO in a,. The second type of the non-factorizable
contributions come from the diagrams (d), (e) and (f) in Figure B.1 where the
omitted spectator quark is connected to the hard process through soft interactions.

The consistent method which goes beyond the naive factorization and is able to
include non-factorizable contributions is called QCD factorization (QCDF). It was
firstly introduced in [21, 22] for the non-leptonic B-decays and was extended to
semileptonic and radiative decays in [19, 20, 23, 24]. The amplitude of the B —
K, K*ll decays computed in QCDF can be schematically written as

(IKY | Hog|B) = Coy + Pp @ Ty @ O o) (1.68)

where a = P, L, || corresponds to a pseudoscalar K-meson, a transversely or lon-
gitudinally polarized K*, respectively. Here £, are universal heavy-to-light form
factors [25, 26] and @ light cone distribution amplitudes of the B and K mesons.
The factors C, and T, are computed in perturbation theory [19, 20], whose explicit
expressions can be found in Appendix B.4.

The resulting calculations are limited to the dilepton invariant mass range 1 GeV? <
q> < 7GeV?. The lower cut is chosen in order to avoid the contributions from light
resonances. The proper upper limit is determined by the requirements that the mo-
mentum of the Kaon is large px ~ m; and the contributions from charm resonances
are evaded [19, 20].
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2 Resonance Production by
Neutrinos

In this chapter we discuss neutrino scattering on nucleons in the resonance region.
Here we will consider first four dominantly contributing resonances. We present
the updated fit of the form factors of nucleon-resonance transitions. The form fac-
tors are determined from the experimental data on helicity amplitudes and using
theory general principles. Employing the new fit we compute cross sections of the

neutrinoproduction processes.

2.1 Introduction

The neutrino production of the resonances has been studied for a long time. Together
with quasielastic scattering (QE) and deep inelastic scattering (DIS) the resonance
production contributes to the total cross section of the neutrino-nucleon interaction.
Schematically, this process is shown in Figure 2.1. The first attempts concerned the
proton excitation in the delta resonance A which gives the main contribution to the
cross section [27, 28, 29, 30]. These papers determined the p — A transition in terms
of hadronic form factors using general principles such as conserved vector current
(CVCQ), partially conserved axial-vector currents (PCAC), dispersion relations, etc.
In a later article [31], also resonance electroproduction data was used which gives
more precise values for the vector form factors and shows that the form factors fall
faster with increasing ) than the nucleon form factors in the dipole approximation.
The result of the papers [32, 33, 34] are the cross sections depending on several
parameters characterizing form factor fits.

In the latest decade the interest to study resonance production has increased
because of the discovery of neutrino oscillations. For the precise study of neutrino
oscillations the production of resonances by muon- and tau-neutrinos was analyzed
[35, 36, 31, 37, 38]. In the paper [38] calculations have been done taking into account
the mass of the outgoing muon.

The goal of the present work is to extend the previous investigations for isospin-1/2
resonances Pp1(1440), D13(1520), S11(1535) whose contribution to the cross section
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is sufficient besides P33(1232). Recently, electroproduction of resonance data has
become available from the Jefferson Laboratory [39, 40, 41] and Mainz [42] (BATEs
and Bonn). The data is mainly given in terms of helicity amplitudes. Here we
present the approach of determining the vector form factors of nucleon-resonance
transition from the helicity amplitudes of electroproduction data. For the axial form
factors we adopt an effective Lagrangian for the R — N couplings and calculate
the decay widths. For each resonance we assume PCAC which gives us one relation
between axial form factors. Another coupling is determined from the decay width

of each resonance.

Knowing the resonance coupling we will consider different processes of resonance

production by neutrinos and predict cross sections.

Figure 2.1: Single-pion production through a resonance R in neutrino reaction.
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2.2 Formalism of Resonance Production in Neutrino-Nucleon Interactions

2.2 Formalism of Resonance Production in

Neutrino-Nucleon Interactions

2.2.1 Cross Section

In this section we give the parametrization of the cross sections of the neutrino

resonance production, involving the following reaction

V(k) n(p) — 1= (k) R() — 1~ { e (2.1)

nm-

where R = D;3(1520), P33(1232), Py1(1440) and S1:(1535). The calculations of
cross sections are based on the formalism analogous to the one used in deep inelastic
scattering (DIS). The cross section in DIS is given as
do G2 5 F
= O0c— L, W, 2.2
d0de ~ 16m2 % lep bV (22)
where G is Fermi constant, £ and E’ are the corresponding energies of incoming

and outgoing leptons, 6¢ is the Cabibbo angle, i.e., sinfc = V,, (see Section 1.1).
We prefer to work with variables convenient for the resonance production and write

the cross section as

do W do (2.3)
dQ2dW — myEE dQdE" '
where my is the nucleon mass and we use the following standard kinematics
Qz = _q2 = (k - k,)za
W? = p?=(q+p)*=m} +2myg — Q°,
o = E—E. (2.4)
The leptonic tensor L,, has the form
L/u/ = TT[’YM(]- - 75)%’}/,/](/]
= d(kuk;, + kuki, — guk - K — i€ k). (2.5)

The hadronic tensor, which has also to be a Lorentz tensor, can be written in general

in terms of the 4-momenta p and ¢ as

v 1 12
WH = Imn (p|J*(0)| AY(A]JY(0)|p)d(W? — M)
W. . 4%
= —Wig" + —p"p” — " p,qy -y ’
my my
W4 "wov WS "wov o v W6 n s
i el 0 (phg” — grp¥ 2.
+m?qu+m?v(pq+qp)+zm?v(pq q"p”), (2.6)
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where Mp is the mass of the resonance and W; are the functions of Q% and ¢y. In
this expression the sum runs over the R resonance polarization states and implies an
averaging over the spins of the target. The W; are the so-called structure functions
which describe the hadron current. The integration over the phase space of the R was
carried out and gives the one-dimensional d—function. Since the resonance has an
observable width, the —function should be replaced by its resonance representation
Mglg 1

(W2 — M2%)? + M3T%°

The presented formalism in this section is general and holds for various resonances.

S(W? = M2) = (2.7)

The structure functions W; can be expressed through resonance form factors and

the corresponding expressions are summarized in the Appendices A.1 and A.2.

2.2.2 Hadronic Matrix Element

First we consider the resonances Dj3 and Ps3 with spin-3/2. According to the
Rarita-Schwinger formalism, the spin-3/2 particles are described by the so called
Rarita-Schwinger spinor field ¢§ which has two indices, a Lorentz index p and the
spinor index a (later the spinor index will be omitted). The hadronic matrix elements
for D13 and Ps3 resonances consist of 3 vector €Y and 4 axial C#* form factors. For
example, the parametrization of the matrix element for the D3 has the following

form
(D3| [N) = o2 ()l u(p) (2.8)

with the spinor of the target u(p) and the Rarita-Schwinger field w,&D) for the D3
resonance. The structure of di is given in terms of form factors, which generally

are functions of the squared momentum transfer

) oy oY oy
dy = g" { 3¢i+—(pq)+—(pq)+cav]

my
cy cy cy Ees cA
- q" [—7 + 50"+ Zp}Jrg“ [—WH—A;(p’q)}%
cy cf 5 e
- ¢ [ v+ =57 ]75+ [g“ Ci' +q"q —2} s (2.9)
In the square of the matrix element also appears the Rarita-Schwinger projection
operator
W) (05 = 57 (2.10)
=[' + Mgl | —g + i +L(7p/ —p’7)+ip’p’
R 2N 3 N 3M ol )\ o A 3M}2% ot/ \ | -
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2.2 Formalism of Resonance Production in Neutrino-Nucleon Interactions

Another form to write the weak vertex, which will be used later for the determination

of the form factors through the helicity amplitudes, is

7 v v v CA v
(Dus| Syl N) = 7 | TV B + TP P 4 CilyPg™ e, + —97q"q eu] u(p),
N
(2.11)
where
cY cv cY cY cv 5 5 5

DY = gt —aph+ —py, TV = g b —opl, P = g'e” = e,

(2.12)

In these expressions * denotes the polarization vector of either photon or leptonic
vector current. There are right-, left- handed and scalar polarizations of the photon.
In the frame of reference, where the photon moves along the z—axis the polarization

vectors are

en®) = 1(0, -1, —i,0), oi(L) — —55(0,1,-4,0),

-

(2.13)

eh(S) — \/1672((13’070’%),
The parametrization of the hadronic matrix element for the Ps3 resonance is sim-
ilar. The only difference with respect to D;3 is the location of the 5 matrix (in the
case of the P33 resonance it appears in the vector part of the vertex), because these
two resonance have opposite parity.
Thus, with this notation the hadronic tensor takes the form

WH = ———Tr [(d)" Sppd™ (p + mn) | (W? — M) (2.14)

with (d)"* = ~0(d")# 7, and then parametrized according to (2.6). Substituting
the d* in (2.14) we find the dependence of the W; structure functions on the form
factors (see Appendices A.1 and A.2).

For the spin-1/2 resonances the parametrization for the weak vertex of the res-
onance creation is simpler than for the spin-3/2 resonances and similar to the
parametrization for the nucleon. Since the initial nucleon and the outgoing reso-
nance do not enter the same isospin multiplet and have different masses, the term
g/ 7" does not vanish due to CVC, but its contribution is proportional to Q?. There
are also two axial form factors gi* and ¢3!, which are related by PCAC.

The matrix element of the P;; resonance production can be written as follows:

PJVN_7/£2V v g-up_Au_ﬁu
(Pu|JV|N) = u(p) MQ(QV +¢fq)+uw G = 9175 = 3 0" u(p),

(2.15)
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Resonance Production by Neutrinos

where we use the standard notation 0*” = £[”,~7*] and the form factors are nor-
malized to p = my + Mg.
For the S;; the amplitude of resonance production is similar to that for Py, only

now the 5 matrix appears in the vector part of the hadronic current

SJVN_—/£2V v i»yp _Au_ﬁu 2.16
(Sl IN) = a(p) |~ 5 (@07 + 44" )15 + = =0 a5 = gry" = Jred” | ulp). (2.16)

2.3 Determination of Helicity Amplitudes in

Electroproduction

The data on exclusive electroproduction of 7%, 7+ on protons in the first and sec-
ond resonance region obtained at the Jefferson Laboratory [39, 40, 41] and Mainz
[42] (BATEs and Bonn) accelerators, are mainly expressed through the helicity am-
plitudes. The extraction of the vector form factors from the helicity amplitudes
provides more accurate results than the extraction from cross sections. Thus, these
data allow us to obtain more precise information about vector form factors of the
four first resonances. In this section we derive the general expressions for the helicity
amplitudes and in the next one we present the formulae for the particular resonance
case explicitly.

Let us consider unpolarized lepton-nucleon scattering. The cross section of this

process has the standard form, which is used widely in the literature:

do
dBE'dS)

= FT(UT+€UL), (217)

where o7 and o, are the transverse and longitudinal cross sections corresponding to

the virtual photon polarization, and

Ka E' 1

F'r = IR E1—¢ (2.18)
2 2 f1-1
¢ = [1 P Qt N tan? 5] . (2.19)

The virtual photoabsorption cross section is given by

1 : 2
0i(W) = S K [(RI"O T [N)[" R(W, My), (2:20)

B AT
~ 2my(v — Q*/2my)’
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2.4 Calculation of the Amplitudes

where i = R, L or S is the helicity of the photon and the R(W, Mpg) is given by (2.7).
(R|e"®Jem™|N) is the matrix element of the resonance electroproduction, which will
be specified below for each resonance and expressed through the corresponding form
factors. When the invariant mass of the final state equals the mass of a particular

resonance, the cross section has a peak and is expressed as

1
WMRFR‘

1 )
(W = MR)=§K\<R,A|5"<Z>J5W|N>\2 (2.21)

We write the cross section in this form because analyses of electroproduction data
give the cross section as [39, 43, 41, 42]

2mN

or(W = Mg) = Ml (A1/2 + A§/2), (2.22)
In this way we determine the normalization of the amplitudes
1 em _(R) 1
Al/QIAW<R,+§‘J - £ ‘N,—§>,
3 em _(R) 1

1 1
Sip = Aw—E_(R, 5l e®|N, +32),

V@ 2

where Ay = In the next sections we implement these definitions to

TN (W )
extract later the vector couplings CY.

2.4 Calculation of the Amplitudes

Here we present the detailed calculations of the helicity amplitudes for the example
of the D3 resonance. Following the definition of the helicity amplitudes (2.24) we

get the corresponding expressions for spin-3/2 resonances:

3/2—Aw( W(0,3/2)g" T e U(p,+)—%(p’,3/2)€“F£V)QVU(1?,+)>7 (2.25)
ADy = Aw (9,00, 1/2)0' T e ulp, =) = B0, /DT g ulp, -) ). (2.26)

§Ba = B Ay (T, 1/ T ulp, +) — Tl 1/ DT g ulp, +)) (227)

V@

23



Resonance Production by Neutrinos

The vertex factor T'YY) is given in (2.12) for the Dj3 resonance. In the following
we work in the nucleon rest frame with p* = (my,0,0,0) and the virtual photon
moving along the z-axis with four-momentum ¢* = (¢, 0,0, ¢3). For the resonance

we take the Rarita-Scwinger wave function in the representation (see [44])
Vulp!,3/2) = eiulp, +1/2),
Gulp1/2) = 2elPulp, +1/2) + [T u(pl, =1/2)
Gt =1/2) = 2V, ~1/2) + \[efPul, +1/2),

b, —3/2) = e u(p, —1/2),

(2.28)

where

1 1
up, s:) = —F= .G Us, 2.29
o= | 2 o

and the polarization vectors of the resonance Di3 are

eELR) = %(07_17_%0)7 eLL) = %(0717_7;70)7
(2.30)
eLS) - ﬁ (Q?n Oa 07 qo + mN)‘
The normalization of the Dirac spinors we choose as
u(0, s)u(0, s) = 2my, a(p’, su(p',s') =p° + Mg (2.31)

7

where s corresponds to the two spin projections ” +” and ” —” of the nucleon, and

the resonance spin projections s’ = 3/2,1/2, —1/2,—3/2.

Ds3 Di3 D3
2.4.1 AD3, A3 and S0

Let us first consider the amplitude A/, for the Dy3. Here we rewrite the amplitude

using the explicit form of the 1), spinor (2.28)

AR = Aw (- qa(p',3/2)0, (0, 4) = (e - <P)a(p), 3/2)00g"u(0, +) ).
(2.32)

The first term is equal to zero because of e* . ¢ = 0 and only the second term

R)*

contributes since e(®* . ¢(B) = 1. So, after substituting the explicit form for the

spinors and using Dirac matrix properties we obtain:

cY cv v
Dz ./ 3 4 2 5
Ag/z = N<—mN (Mg —my) + m—?v(q()mzv —-Q°) + m—NqO) (2.33)
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2.4 Calculation of the Amplitudes

where dra(pf 4 Mp)
ma(p™ + Mg
N = 7 (2.34)
The matrix element of the AlD/123 is the sum of the four terms:
D 2 S —— (R)v 1 Rx —— (R)v
Ayjy = Aw( 3 (€ - @)u(’, H)Le™ u(0, =) + 4 /5 (e™ - q)ulp’, —)lwe™ u(0, -)
2 (R) v 1 Rx (R)\s( 0/ v
— [P )L, u(0, =) — 5 <P ya(p, - u(0,-)).
(2.35)
The second and the third terms are equal to zero because of
e g =0, u(p’, £)T,q"u(0,F) = 0, (2.36)

and the calculation of the last term is analogous to the one of A?/l; with the addi-

tional factor \/g . For the evaluation of the first term we use:

. m
el q = _VZ%’
= v q3 CV
a(p, )T ®ru(0, —) = \/§p/0 P (2.37)

Finally, substituting (2.37) in (2.35), we get the amplitude

2 CV
D D L3
A1/12(3 - \/;As/lz(3 - 7\/7])/0 + Mg My (2.38)

The same steps should be done for the S /9 amplitude

50, = 20 (205 gy, L0, )

/02
1 * — v
+ g(e(R) q)a(p, =)™ u(0, +)
2 (S)x* (S)\as( 0/ v
- g(e "€ )U(p ) +)Fl/q U(O, +)
Lo (R - v
— \/;(e(R) —eNap’, )Tq u(0, —l—)) (2.39)
The second and last terms are zero due to (2.36). Calculating explicitly the expres-
sions
L) o) _ ’/mN—Q2
Mp\/Q
CV
a(p, H)Toe@u(0,-) = V2——2 2.40
A, (0, -) = VI (2.0
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and substituting them into (2.39) we arrive at

Dz __ my + MR 14 14 \%4
Sy = =2/ WM Q2(p’0+MRC3+C4+C5>
TN i L) (2.41)

2.4.2 Helicity Amplitudes for the P;3(1232) Resonance

Since the Ps3 has positive parity, the FLV) vertex has an additional v5 matrix
cy cy cY
) = (—% ot —Zpﬂ)v (2.42)

Following the same steps as in the previous section we obtain the expressions for the

helicity amplitudes as functions of CY as

” qs Cy cy cY
A?»P/z - VN ( (Mg +my) + m—é(QOmN - Q%)+ m—ivq())>

p'O—I—MR my N
2 Q3CV
Aty = —fiany 2 pacs
1/2 3773/2 \/* Mp,
V 2 2
P — /2] /_qu3( 43 N g3 oV OV>
gl MpQ? \my (p’0+M @) (p’O—I—MR)mN( 1)
vm Q?
+ 2/31\]}7@22 GALS. (2.43)

2.4.3 Helicity Amplitudes for the P;;(1440) Resonance

According to (2.15), the hadronic matrix element for electroproduction of resonance

can be written as

1% 1%
1 — / g v v g - UV
(Pu|JY|N) = a(p) CRESYAE +1 MR)Z(Q27 + ") + P j Tt u(p). (2.44)

Since the Pj; resonance is a spin-1/2 particle, only the two helicity amplitudes

APy = Aw (B + BY), Sl = Aw—=(D{ + D3) (2.45)

qs
V&
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2.4 Calculation of the Amplitudes

exist. Using Dirac matrices, spinor formalism and (2.13), (2.31) we find

BR _ 91 (! 2 /(R) (R) . _
1 (mN + MR)Qu(p7+)<Q ¢ —Fd&f q)U(O, )
v
_ T a2
(my + Mg)? \/(p T Mr)2myQ PO+ Mg’
v
BR _ 92 vp (R)
2 (mN+MR> (p +>ZU 6 qﬁ (O )
%
92 0
= + Mpg)2mnV/2gs, 2.46
(p° + Mp) \/(p R)2myV2q3 ( )
and
v
Df = — I a(p, +)(@Q%F + §= - (0, +)
(mN+MR)2
S - V" + Mp)2myQ®— 2
(mN+MR) IO—I—M
S g;/ 9] 0
p§ = —&# __ v
v
= 2 O+ Mp)2ma /2 2.47
(mN+MR)\/(p - Me)2ma ’0+M (247)

Substituting (2.46) and (2.47) in (2.45) we get the final formulas for the amplitudes

as functions of vector form factors g)

V2g3 97
AP — /N 2 2.48
1/2 plO _I_ MR (mN _I_ M ) Q _I_ g2 ) ( )
2 1% 1%
qs g1 9s
Shu — / - . 2.49
1/2 pr0+MR {mNjLMR mN+M,J (2.49)

2.4.4 Helicity Amplitudes for the S;;(1535) Resonance

The parametrization of the matrix element of S7; resonance production is similar to
Py, except for an additional factor of 45 in the matrix element (2.44) due to parity
1%

\%
(Suld'IN) = 1) | oI (@ o+ T ). (2:50)

Substituting (2.50) into the definitions (2.24) we get the following expressions for
the helicity amplitudes

\%4 \%4 2
an =V [ Ao - B s
Ve {(mN + MR)2Q (my + Mg) (4 PO+ MR) (2:51)




Resonance Production by Neutrinos

v
S11 gl Q3 92

= —_— — . 2.52
Si)a VNg3 o MR)Q(qO )+ (2.52)

2.5 Data Analysis and the Extractions of the Form

Factors

Having expressed all helicity amplitudes in terms of the vector form factors, we can
compare them with the data. In the case of spin-3/2 resonances we have three vector
form factors C}” and three equations for amplitudes, which allows us unambiguously
to extract the form factors. The data in [39, 40, 41], [42] are presented in terms
of amplitudes whose numerical value are given as a function of Q%. We also take
into account numerical values of the helicity amplitudes at Q? = 0 summarized in
the Review of Particles Properties [45], where the helicity amplitudes characterize
the radiative decay of the resonance R — ~N. Fitting form factors at different (?
allows us to determine their Q?-dependence.

To relate electromagnetic to weak form factors we use the isotopic symmetry.
The photon has two isospin components |, I3) = |1,0) and |0,0). The isovector
component belongs to the same isomultiplet as the vector part of the weak current.
Each of the amplitudes Az, A1/2, Si/2 can be further decomposed into three isospin
amplitudes. Let us use a general notation and denote by b the contribution from
the isoscalar photon; similarly a! and a® denote contributions of isovector photon to
resonances with isospin 1/2 and 3/2, respectively. A general helicity amplitude on

a proton (A,) and neutron (A,,) target has the decomposition

Ay = Aw—R")=b— \/gal + \/gag,
0 L 2 3
A, = A (m—R")=b+ 30 + 39 (2.53)

For the weak current we have only an isovector component of the vector current,
therefore the b amplitude never occurs in weak interactions. A second peculiarity
of the charged currents is that Vi + iV, does not have the normalization for the
Clebsch-Gordon coefficients, it must be normalized as (V; #+ iV5)/v/2, which brings
an additional factor of v/2 to each of the charged current in comparison with the
Clebsch—Gordon coefficients:

AW*n — RWT) =

a,

S
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2.5 Data Analysis and the Extractions of the Form Factors

AW*p — RI) = V2d®,

2.54
A(WHn — RO*) = \/ga?, (2.54)
3 )

where R and R®) are the isospin-1/2 and isospin-3/2 resonances, respectively.
Comparing (2.53) with (2.54), one easily sees, that, for the isospin-1/2 resonances,
the weak amplitude satisfies the equality A(W*n — RM+) = A, — A,. Since the
amplitudes are linear functions of the form factors, the weak vector form factors are
related in the same way to electromagnetic form factors for neutrons C* and protons

CP:
I=1/2: ¢/ =0"-C?, (2.55)

with the index ¢ distinguishing the Lorenz structure of the form factors.
For the isospin-3/2 resonances one gets A% (W*n — R®T) = A3(W—p — REO) =
\/2/3a3. The weak form factors, which are conventionally specified for these two

processes, are

[1=3/2: CY =Cr=cCr (2.56)

For the process W*p — R®)** the amplitude is v/3 times bigger: A(W*tp —
R(3)++) — \/gA(WJrn N R(3)+).

2.5.1 Dy3(1520)

Matching the equations (2.33), (2.38), (2.41) on the data of helicity amplitudes
(39, 40, 41, 42, 45] we extract the form factors and fit the Q?-dependence for the

D13 resonance:

o) _ __295/Dy o) _ _—L15/Dy
3 2 2 4 2 2
1+ Q?/8.9M2 14+ Q?/8.9M2
—0.48
Cép) — ,
Dy
(2.57)
C(n) _ _1'13/DV (n) _ 0'46/DV
S 1+Q%/8.9ME Y 14Q%/8.9M2°
o —0.17
C5 - DV )

where Dy, = (1+Q?/M3) denotes the dipole function with the vector mass parameter
My = 0.84 GeV. To give an impression, how good this parametrization is, we plot
in Figure 2.2 the helicity amplitudes, obtained with these form factors (2.57).
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Figure 2.2: The fit of the helicity amplitudes Agf;, A?f; and 53123 on the proton

data [39, 40, 41, 42, 45], leading to the parametrization (2.57) of the
proton form factors.

2.5.2 P33(1232)

Using the same method as for the D3 we match equations (2.43) on the data [42, 45].
It leads us to the following vector form factors

cv _ 2133/Dy
1+ Q2/AMY
ov _ 1505/ Dy
LI+ Q2 /aME
—0.481/D
cy /Dy (2.58)

T 1+ Q2/0.776M2”

which are the same for proton and neutron since Ps3 is an isospin-3/2 particle.
The form factors are in agreement with the generally accepted magnetic dominance
approximation within a 5% accuracy and at the same time correctly describe the
nonzero scalar helicity amplitude. The fit of the helicity amplitudes for the form

factors from (2.58) is shown in Figure 2.3.

2.5.3 Py1(1440)

In the case of spin-1/2 resonances we have two independent vector form factors and

two helicity amplitudes A;/ and S;/2. At nonzero @Q? data on helicity amplitudes
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Figure 2.3: The fit of the helicity amplitudes Ag}’;, Af}’; and Sffs on the data [42, 45],

leading to the parametrization (2.58) of the form factors.

for the Py are available only for the proton. Unlike the case of the other resonances,
the accuracy of the data is low and the measurements provided by different groups
differ significantly [42, 41, 46], as is illustrated in Figure 2.4. In this case we fit only
the recent data from [41, 46]. The uncertainty of the measurements of the helicity
amplitudes of the proton turn out to be bigger than the predicted difference between
proton and neutron. So we neglect the isoscalar contribution to the electromagnetic
current and use Ag% = —Ag’})z, then the isovector form factors become g) = 2¢.

We use for our fit only the recent data [41, 46] and parametrize the proton elec-
tromagnetic form factors as follows:

2.3/Dy
Pi1(1440) : ¢V® =
gy = Z0T0 [1 ~28In (1 9 )} |
2 Dy ‘ 1GeV? )|~

The fit result of the helicity amplitudes together with the experimental data is
plotted in Figure 2.5.

2.5.4 511(1535)

Like the Pj; resonance, we choose here to fit only proton data [41, 46] and neglect

the isoscalar contribution to the electromagnetic current. We get the following form
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Figure 2.4: Helicity amplitudes for the Py;(1440) resonance, calculated with the form
factors from (2.59). For A/, the data are from: [42] (unshaded circles),
[41] (unshaded pentagons), [46] (full circles); for Sy /o: [42] (unshaded up
triangles), [41] (unshaded down triangles), [46] (full triangles)

factors:
S11(1535) - 9
grw - +2QO2//11);M‘2/ {1 +7.2In (1 + %)] ; (2.60)
0 _ % l1 40.111n (1 + (?:W” :

The illustration of this parametrization in terms of the helicity amplitudes is plotted
in Figure 2.5 together with the data.

2.6 Decays of the Resonances and PCAC

One of the properties of the weak current is the existence of the axial part. The

calculation of the divergence of the axial current gives us a nonzero result

(00" Ap 7" (p)) = fzm7 (0167 (0)]7"(p)) (2.61)

where f, denotes the decay constant. It is measured in the leptonic pion decay
7t — [ty m, is the pion mass and ¢*(0) is the pion field. The nonzero divergence
of the axial current is explained by SU(2), x SU(2)r — SU(2)gr flavor symme-

try breaking, according to which the pions get nonzero masses. In the case of an
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Figure 2.5: Helicity amplitudes for the S;;(1535) resonance, calculated with the
form factors from (2.60). For A/, data are from: [42] (unshaded circles),
[41] (unshaded pentagons), [46] (full circles), [47] (unshaded diamond);
for Sijo: [42] (unshaded up triangles), [41] (unshaded down triangles),
[46] (full triangles)

unbroken symmetry we have the conserved axial current
(00" Ag| 7" (p)) = 0, (2.62)

corresponding to m, = 0 as required by the Goldstone theorem.

The generalization of (2.61) leads to an operator relation
a 2 a
PA% = fLm2e"(0), (2.63)

which is known as the partial conserved axial-vector current (PCAC) and can be
used in hadronic matrix elements. Several applications of PCAC have been estab-
lished, particularly the so-called Goldberger-Treiman relation analog which we use
to determine the axial form factors. This application is based on the assumption
that the matrix element of the corresponding pion current is a slowly changing func-
tion in the interval from the point where the pion field is off-shell ¢*> = 0 to point
where it goes on-shell ¢* = m2. Thus, our goal is to calculate the resonance axial
form factors C* and g by using PCAC and by fitting the decay width, the latter
taken from [45].
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2.6.1 P33(1232)

For the P33(1232) the isospin invariance predicts the following phenomenological

Lagrangian of the AN interactions:

- 1
L7eP = ga (A Fpomt + \/;A;;n(?uw*

\/;Agpﬁ T+ \/gA—/jp&ﬂro (2.64)

\/;Agnﬁw + A ndym),

where n, p and 7 are neutron, proton and pion, respectively. The width is calculated

using the standard formula for the decay of the particle in its rest frame

=_ Lol
T = oM (2.65)

where J and Mg stand for the spin and mass of the decaying particle, respectively.

For the Ps3 resonance we obtain

IMPP = > gad’ " u(p) (N D, (Mulp), (2.66)
S EERNTN) = S0+ Ma)(g- o) (2.67)
A

Substituting (2.67) in (2.65) and calculating the trace of the matrix element we get

the following formula for the width of the A resonance decaying into 7N

QA 1
Fa=3 32 (Mg + my)* —m2] |p|*, (2.68)
where the pion momentum is
1
Py = m\/(MQ m3, —m2)? — 4m3%m2. (2.69)

For the experimental value I'a = 0.114 GeV, we obtain ga = 15.3 GeV .
According to the PCAC relation holds
1
(R¥)0,A"(0)|n) = —imZ fr———
q

—m2

s

T(r"n — RY), (2.70)

where T'(m"n — R") denotes the pion mass shell amplitude for the 7n — R*. The
weak vertex for all the resonances includes the charged state of the resonance and
the neutral state of the initial nucleon, so for the weak vertex we should always take

the decay R — nn™.
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2.6 Decays of the Resonances and PCAC

For the P33(1232) the relation (2.70) turns into

— ca 1 m2f
iINFG | CA+ =5 | uy = —iy | ==
wi {5 m?\,q N 3¢*—m2

A—:ggAq“uN, (2.71)

and we obtain in the limit m, — 0 a relation between the two form factors

ca
A 2 5

(2.72)
The denominator of the above formula is usually phenomenologically extended as
¢ — ¢* —m?. Making use of the relation (2.72) for ¢> — 0 one also obtains
C& = gafr/V/3. Thus, we find

o C2(Pss)
Nm2 +Q2.

gafx
CH(Py) = \A/g =12,

The first relation in (2.73) is an analogy to the Goldberger-Treiman relation of the

Céq(Ps?,) =m (2.73)

(-decay, which shows that the vertex constant ga does not vary significantly when
the pion goes on-shell ¢> = m?2 with respect to the ¢*> = 0 value. For the A*T the
mNR vertex is bigger by a factor v/3, so, strictly speaking, C4 is also /3 times
bigger. However, by historical reasons, this /3 is conventionally attributed to the
vertex itself and not to the CZ.

The same method will be used for the other resonances. We will present the brief

calculations of the form factors briefly in the next sections.

2.6.2 Dy3(1520)

For the D3 the isospin-invariant Lagrangian of the D3N interactions reads as

follows:

2— 2— _
LINR = 9pis [\/;DI Y5O, mh — \/%Dﬁvspé‘m (2.74)
1=+ 0 15 0
- gDM ’75]?8#77' + gDM’%?’LQﬂT s
where D,, denotes the D;3 field. The width of the 7N decay is

9%713 1
& 3M,2%

1—‘D13—>7TN = [(MR - mN)2 - m72r} |p7r|3' (2'75)
The total width of the Dj3 resonance is about 0.125 GeV and the elasticity (the
relation of 7NV width to the total width) is about 0.5. With I'p,,_..n = 0.0625 GeV,

we obtain gp,, = 15.5 GeV ™! and the running width of the resonance is again
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Resonance Production by Neutrinos

proportional to the third power of the pion momentum. The PCAC relation turn

mto
D, A4 ' o 25 o
iD,q" | Cs m q VsUN = 3DMQD13Q YsUN, (2.76)
N
which results in
CAD 2
CéA(D13> = m?\/ﬁgz, C?(Dlg) = \/;gl)lgf7T = 21 (277)

2.6.3 Py1(1440)

For the P the isospin-invariant Lagrangian is

2 2
LiNg = 9r, {\/;PJF%WTJF = \/;Povsm‘
1 1—
5P+ [P

where P is the field corresponding to the P;; resonance. The decay width is

2
g
I'p—an = 8%1]3\141]% [(MR — mN)2 —-m ] |p7r| (2.78)

With the experimental value I'p, _.-n = 0.6 - 0.350 GeV we obtain gp,, = 10.9.
The PCAC relation

itp(p') [91 Ty + o q ] Yun(p) =
. 5 (2.79)

at m, — 0 leads to

géq(Pll) = - g1 (Pr1) (2.80)

(here the denominator is phenomenologically extended as usual) and at Q% — 0 the
coupling is

g gP11.f7r

A
Py = 2 dPulr
g (Pir) 3 Mp+ mn

= 0.51. (2.81)

2.6.4 511(1535)

For the Si; the isospin-invariant Lagrangian is

‘Ci}\lfR = Jgsn |: S"'?’Lﬂ‘ \/750}97? \/754_]977 + \/7507171' } 2 82)
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2.7 Cross Sections in the Second Resonance Region

where S denotes the S field. The decay width is

P
951, 2 2
Tonrnn = =50 [(M . - 2.
S11—7N ST [( R+ my) mw} D] (2.83)

With the experimental value I's,, .,y = 0.06 GeV we obtain gg,, = 1.12.
The PCAC relation

A
. g
itg(p) {gf‘v*‘qu + m—iqu] un(p)

(2.84)
20 ooy fxo o
= g(—lmﬂ)muR(p)QSnuN(p)
at m, — 0 leads to
my(Mr —m
g5 (Sn) = — N(z s N)gfl(sll) (2.85)
q = —mz
where we used the physical propagator pole. At Q* — 0 the coupling is
2 ™
G (Sn) = /2Ll _ o1 (2.86)

BMR—mN

2.7 Cross Sections in the Second Resonance Region
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Figure 2.6: The left-hand plot shows the differential cross section do/dW for the
one-pion neutrinoproduction on neutron for the neutrino energy E, =
1,2,3 GeV. The right-hand plot shows the differential cross section
do /dW for the one-pion neutrinoproduction for the BEBC experiment
[48] with the neutrino energy E, = 54 GeV.

In this section we present the cross sections of neutrinoproduction of the reso-
nances for the second resonance region using the isovector form factors. We spe-

cialize to the final states vn — R — p~pn® and vn — R — p~nw", where both
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Resonance Production by Neutrinos

I = 3/2 and I = 1/2 resonances contribute. We use the form factors obtained in
Section 2.5 and plot the differential cross section do/dW in Figure 2.6 for incom-
ing neutrino energies F, = 1,2 and 3 GeV. We note, that the second resonance
peak grows faster than the first one with the neutrino energy and becomes more
pronounced for the higher neutrino energies. For this purpose we show in Figure
2.6 also the theoretical curve together with the experimental data from the BEBC
experiment [48] for E, = 54 GeV. The theoretical curve clearly shows two peaks
with comparable areas under the peaks. The experimental points are of the same
order of magnitude and follow general trends of our curves, but are not accurate
enough to resolve two resonant peaks.

We also present the integrated cross sections for the final states = pn® and p=nr™
as functions of the neutrino energy. Together with the theoretical curves we show
the experimental data taken from the ANL [49, 50|, SKAT [51] and BNL [52] ex-
periments. The experiments use different neutrino energy spectra, however, with
an overlap region for F, < 2.0 GeV where different results can be compared. The
solid curves in Fig. 2.7 show the theoretically calculated cross sections with the cut
W < 2.0 GeV and the dashed ones with the cut W < 1.6 GeV. For pr® the solid
curve goes through most of the experimental points except for those of the BNL

experiment, which are consistently higher than the ones of the other experiments.
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Figure 2.7: Integrated cross section for the p~pm® (left-hand plot) and pu~na™ (right-

hand plot) final states. The solid curves show the theoretically calculated
cross sections with the cut W < 2.0 GeV and the dashed ones with the
cut W < 1.6 GeV. The double dashed curve in the case p~nw™ state
includes a smooth background (see text). The data are taken from ANL
[49] (red full squares) and [50] (green full circles), SKAT [51] (magenta

triangles) and BNL [52] (blue triangles) experiments.

For the nm channel our prediction is a little lower than the data. This means that

there are contributions from higher resonances or axial form factors that cannot be
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fixed using available data. Another possibility is to add a smooth background which
grows with energy. By isospin conservation, the background for the pr® channel is
determined to be half as big as the one for n7™. Including this background, which

may originate from various sources, produces the double-dashed curves in Fig. 2.7.

2.8 Conclusions

The production of resonances in neutrino-nucleon collisions can be uniquely de-
scribed by the form factors of the nucleon-resonance transitions. Thank to the
recent electroproduction data from JLAB and the Mainz accelerators we were able
to determine the vector form factors by fitting the measured helicity amplitudes.
We found, that several of the form factors fall slower than the dipole form factor,
at least for Q% < (2 — 3) GeV? The fit of the form factors is illustrated in Figures
2.2, 2.3, 2.4, 2.5. We obtain values for two axial form factors by applying PCAC
whenever the decay width and elasticity are known. For the spin-3/2 resonances
there is still freedom for two additional axial form factors whose contribution may
be important. This should be tested in the experiments. The impact of the second
resonance region to the cross section is sizable. For the differential cross section it
has a noticeable peak in do/dW (Fig.2.6), which grows as E, increases from 1 to
3 GeV. The integrated cross section for the I = 1/2 channel also grows with the
energy of the beam and requires a stronger contribution from the resonances and a

non-resonant background (Fig.2.7).
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3 Angular Analysis of B — K, K*ll
Decays

In this chapter we present the detailed study of the exclusive B — K, K*Il decays.
We give the precise SM values of observables constructed by angular distributions

of decay rates. The sensitivity of these observables to NP is analyzed.

3.1 Introduction

In the SM due to the absence of tree level FCNC, B — K, K*Il with [ = e, yu occur at
loop level, what makes these processes very rare. The experimental measurements of
the branching ratios confirm the SM predictions within uncertainties, estimating it
in the region of O (1077) [53, 54, 55, 56, 57, 58]. The early theoretical studies [57, 58]
were devoted to phenomenological analyses of different observables in the SM and
beyond, such as integrated rates, dilepton mass spectra, lepton angle distributions
and dimuon to dielectron ratios. Taking into account the subsequent decay K* —
K enlarges the number of obsevables of B — K*[l offering the angular analysis of
the Krll final state [59, 60, 61, 62, 63, 64].

In spite of recent improvements of the theoretical methods, the resulting theory
uncertainties in the rates are still large, making them not so useful to test the SM.
Therefore additional more convenient observables need to be discussed. Particularly,
the source of such observables is the angular distributions of the decay rates with
respect to angles defined by outgoing particles. Normalizing the angular distribution
to the decay rate makes the corresponding observables less sensitive to the various
input uncertainties.

Particularly, in the SM the normalized angular distribution of B — KII with

respect to the the lepton charge asymmetry angle 6 has a simple structure [57, 58]:

dFlSM
dcos 8

oc sin? 6 + O(m}), (3.1)

which is very attractive to test the SM, since any modifications of it can reveal

underling NP. A closer analysis shows that the cos #-dependence of the (normalized)
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Angular Analysis of B — K, K*1l Decays

angular distribution can be parametrized as [55, 57, 58|

T, deosf 1(1_FIl{)(l_Cosze)+§F1lf+AlFBCOS‘97 (3.2)

with a flat term FY,/2 and a linear term in cos 6, the forward-backward asymmetry
ALy, Both are small within the SM, and therefore can signal the presence of NP.

The richer structure of the B — K*(— K)ll decay product gives a possibility to
study eight CP asymmetries, the one in the decay rate plus seven more requiring
angular information. Three of them are T-odd CP-odd and five are T-even CP-odd,
where T-transformation reverses the sign of all particle momenta and spins. The
advantage of T-odd CP asymmetries is a maximal sensitivity to CP violation in
the case of vanishing small strong phases. Denoting by dg and dy, strong and weak
phases, respectively, it can be shown that T-odd CP asymmetries o cosdg sin dyy,
whereas T-even CP asymmetries o sin dg sin dyy .

Here, we compute the observables in the SM using the formalism of QCD fac-
torization (QCDF), which has been applied to B — K, K*Il decays [19, 20] and
is valid in the low ¢? region. Presenting a model-independent analysis of NP, we
give the predictions of the the FY;, ALy and CP asymmetries while implementing
constrains on NP from other rare B-decay observables. The various NP models are

also discussed which can be tested by the observables in (3.2).

3.2 Effective Hamiltonian for b — sli

In this section we focus on the b — sll transition which is the dominant quark level
process contributing to B — Kl and B — K*l semileptonic exclusive decays. The

effective Hamiltonian for the AB = 1 flavor changing processes [65, 20] reads as

_4Gr

He =
' V2

(Atygg + Auﬂgg) + hec., (3.3)

where A, = V/(Vy, and

10
HY = 0,05+ C,05+ > C0;,
=3

HY = €05 — 0% + C,(05 — 0F). (3.4)

The second term in (3.3) is CKM-suppressed and can often be neglected, but we
keep it when we discuss CP asymmetries for B — K*I[ decays since it contains the
CP violating phase of the SM. The O; are dimension six operators and the C; are

Wilson coefficients being both dependent on the renormalization scale . Since the
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3.2 Effective Hamiltonian for b — sll

Figure 3.1: The SM diagrams giving rise to the operators in the effective Hamilto-

nian of AB =1 decays.
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Angular Analysis of B — K, K*Il Decays

characteristic scale of b — sll decays is O (m;) we assume g to be of the same order.

The O; i = 1,2 correspond to the current-current operators

Of = [57,T" Prq][gy"T* Pb], (3.5)
O3 = [57,Prqllgy" Prb) (3.6)
with ¢ = u,c. They originate from the diagrams (a) in Figure 3.1. One should

emphasize that O] does not contribute at leading order (LO) in as. The QCD-

penguin operators O;, i = 3,4,5,6 are shown in diagram (b) in Figure 3.1 and read

as
Os = [57, 0] Y _[av"q, O4 = [57,1°Prb] Y _[qy"T q), (3.7)
q q
Os = [smm 1 Publ Y v yfals Os = [59m,T Pl Y _lan"y"+*T ),
q q

where the sum is over ¢ = u,d, s,c,b. The photon and gluon dipole operators O,
i = 7,8, stem from diagrams (e), and the semileptonic operators ¢ = 9,10, from

diagrams (c) in Figure 3.1, and read as

2

¢ € _
Or = (g ol5" PrblFu, R e Gk
2
S 75, [g MV a a € B _
(98 = (4€T>2mb[80"u' PRT b]GMV7 010 = —(47T>2 [SryuPLb] [l/-yluf,y5l]’ (38)

where Pgr/r, = (1 £ 5)/2 denote chiral projectors, 7% are SU(3)ocp generators and
7y (1) the MS b-quark mass at the scale p. For completeness we also introduce the
chirality-flipped operators

0L = ( 4;>2mb[sa*‘”PLb]FW,
e? _
Oy = W[EVMPRM [Iy*1],
e? _
Oy = w[gVMPRb] (I vsl], (3.9)

though in the SM the corresponding Wilson coefficients are suppressed, namely
C! ~ mg/myC;. They can only compete with Oz 19 in models beyond the SM. This
set of operators suffices to describe b — sll induced processes in the SM, which
are dominated by C7, Cy and (g, whereas Cg enters at higher order in the strong
coupling.

Using NNLO results from [65, 66, 67] we calculate Wilson coefficients in the SM
and show their numerical values in Table 3.1 for the different values of the lower

scale.
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3.2 Effective Hamiltonian for b — sll

mb/2 my 2777;1,
LO NLO NNLO LO NLO NNLO LO NLO NNLO
¢y | —0.754 —0.507 —0.458 | —-0.504 —0.297 —0.265 | —0.340 —0.156  —0.132

Cy 1.053 1.022 1.022 1.025 1.008 1.009 1.012 1.002 1.003

Cs | —0.0107 —0.0112 —0.0124 | —0.0049 —0.0045 —0.0054 | —0.0023 —0.0017 —0.0024

¢, | —0.111  -0.137 —-0.136 | —0.068 —0.082 —0.080 | —0.043 —0.052 —0.051

Cs | 0.0010  0.0008  0.0009 | 0.0005  0.0003  0.0004 | 0.0002 0.0001 0.0002

Cs | 0.0023  0.0025  0.0027 | 0.0010  0.0009  0.0010 | 0.0005  0.0003  0.0003

C7 0 —-0.395  —0.370 0 —-0.342 —-0.330 0 —-0.302  —0.298
Cy 0 —-0.193  —0.207 0 —-0.167  —0.178 0 —0.148  —0.160
Cy 2.234 4.381 4.532 2.015 4.130 4.218 1.671 3.750 3.801

Cio 0 —4.194  —4.092 0 —4.194  —4.092 0 —4.194  —4.092

Table 3.1: Wilson coefficients at the low scale for u = m;/2, m, and 2m,, with
my = 4.6 GeV.

Beyond the SM, NP might contribute in various ways. Assuming that NP man-
ifests itself at and above the electroweak scale, it can be model-independently an-
alyzed in the effective theory framework by allowing for NP contributions to the
Wilson coefficients of the SM operators and by additional operators not present in
the SM. To account also for the latter we include the most general b — s (pseudo-)

scalar and tensor operators with dileptons into our analysis:

O = e 5P ], O = e 50 11,
Ol = any? [5Prb] 1751, Ol = any? [5PLb][1s1],
O = W[Ea,wb] (1o 1], Ok = W[Ea,wb] [l 51, (3.10)

where we made the dependence on the lepton flavor explicit by the superscript (.
Note that there are only two independent tensor operators in four dimensions. At
higher order also 4-quark operators with scalar, pseudoscalar and tensor structure
contribute to rare radiative and semileptonic decays [68, 69]. As these studies show
4-quark operators with scalar and pseudoscalar structure mix under QCD into Oz g .
Here we assume that scalar and pseudoscalar 4-quark operators are not affected by
NP.

The additional NP operators (3.10) mix under QCD only with themselves. Their

(0)

1-loop anomalous dimensions ; = 727, are

7O = _6Cp = 8, i=S,8. PP,
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8
40 = 20, = 5 i=T,T5. (3.11)

In our NP analyses all Wilson coefficients are taken at the low scale .

3.3 Some New Physics Models

In this section we give a short description of several possible extensions of the SM. We
concentrate on the models originating large (pseudo-) scalar and tensor interactions
contributing to b — sl transitions. Particularly, the most promising and interesting

are the models with lepton flavor violation.

3.3.1 MSSM with Large tan (3

One of the NP theories contributing to (pseudo-) scalar operators is a minimal
extension of the SM with N = 1 broken global supersymmetry called Minimal
Supersymmetric Standard Model (MSSM) [70]. In the MSSM one introduces su-
perpartners to the SM matter fields. They are taken to be spin zero scalars and

called squarks and sleptons. For the first generations we have

~ ﬁ ~ g g I]e ~
qr = <~) , UR, dR7 ZL = < ~> , C€R, (312)
d e
L L

where ¢, and [; are the SU (2)1, squark and slepton doublets, whereas g, dg and ég
singlets. In the gauge sector of the SM we have three type of twelve spin one bosons
B, Wﬁ, Afio=1,2,3;a = 1,...,8, corresponding to symmetry groups U(1)y,
SU(2)r, SU(3)c respectively. Their superpartners are spin 1/2 Majorana gauginos
Ao (bino), A (wino), §* (gluino).

The Higgs sector of the MSSM is more complicated. In the SM we have only
one Higgs field h which after electroweak symmetry breaking gives masses to "up”
quarks. The lepton and "down” quark masses are generated by conjugated Higgs
field h¢. In the MSSM such Yukawa interactions are derived from the superpotential
which is a function of chiral superfields (a field which contains particles and their
superpartners). This superpotential has to be an analytic function of superfield,
which forbids the simultaneous appearance of both h and k¢ fields. This restriction
requires the introduction of a second Higgs field in order to give leptons and ”down”
quarks their masses. Thus, in the supersymmetric theory we need to have two Higgs
doublets denoting them as hy ("down” type) and h, ("up” type). The vacuum

expectation values (VEVs) of the neutral components of the Higgs fields are related
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3.3 Some New Physics Models

to the mass of the Z° boson and the electowek gauge couplings

(ho) = vu,  (hq) = va, (3.13)
V2 vk =02 =2m%/(¢* + g% ~ (174GeV)?, (3.14)

where the couplings ¢’ and g couplings correspond to U(1)y and SU(2), respectively.
In the MSSM the ratio of VEV’s is commonly written as

Yu _ tan [, (3.15)
Vd

which is a free parameter of the theory appearing also in processes involving the
fermion mass spectrum. The theoretical estimates, based on the pertubative running
of the top and bottom Yukawa couplings, require that the values of tan 3 lie in the
range 1 < tan § < 65, whereas the experimental data require lower bound tan 5 > 2
[15].

The superpartners of the MSSM Higgs particles are two higgsino doublets. After
electroweak symmetry breaking, the charged higgsinos mix with the charged winos
giving two massive Dirac charginos )Z;t(izl,2). The two neutral higgsinos 713 and
izg mix with the neutral bino Ag and wino A3 giving rise to four Majorana particles
called neutralinos x?(i=1,...,4).

Omitting the SU(2), and generation indices, the superpotential of the MSSM is
given by

Wassm = pHaH, — yeHyLpép — yaHaLodgr — y.QrH,tig, (3.16)

where Lp(Q) and eg(dg,ugr) denote the superfields containing the lepton (quark)
doublet and the charged lepton (down-type quark, up-type quark) singlet, respec-
tively. The H, and H, are Higgs superfields. The ., y4 and y, are Yukawa couplings
presented in terms of 3 x 3 matrices in family space. Thus, (3.16) is just the su-
persymmetric generalization of Yukawa couplings and leads to the standard Yukawa
Lagrangian from (3.16) by applying the following rule

1 0*W (9)
Lyukawa = —5%1%%

where 1); are fermions and ¢; are their scalar superpartners. The first term in

+h.c, (3.17)

the superpotential (3.16), called ”pu-term”, is the supersymmetric version of the
Higgs boson mass term in the SM. The consistent incorporation of spontaneous EW
symmetry breaking requires the p parameter to be of the order of the weak scale.
After brief introduction to the MSSM let us consider the case with large value of
tan (3. Similarly to the SM, the MSSM has Higgs-like interactions and one can expect

the appearance of operators with (pseudo-)scalar structure in the Weak Hamiltonian.
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Figure 3.2 shows MSSM diagrams contributing to b — sll. These diagrams have
been calculated in [58] considering the box, penguin and wave-function counterterm
diagrams. As a result they obtained that for a regime when tan is large the

contributions to C’fg’ p from the box and penguin diagrams are

t 2
ot~ O (M) | (3.18)
My
enguin myny, tan2 ﬁ
Cé:’l;) & ~ O (T) 5 (319)
A

where m 4o is the mass of the CP odd neutral Higgs (pseudoscalar Higgs) A° being
a linear combination of the imaginary components of the neutral h3, h2 Higgs fields.
The counterterms contribute with third power of tan 3 (for the exact formulas, see
[58])

t 3
chmt ~ 0 (77”””*’ an’f ) (3.20)

2
mo

Note that at this order the following relation holds
Cgcount _ _Cégcount. (321>

The chirality-flipped Wilson coefficients C’Q p are also enhanced by tan 3 but sup-
pressed by a factor m,/m; compared to C’l& p, thus, can be neglected. Evidently, the

impact on the electron channel from such interactions is negligible since C'¢ ~ m,.

Figure 3.2: The box and penguin contributions to b — sll in the MSSM.

3.3.2 Models with Broken R-parity

In the previous section we introduced the superpotential (3.16), which is a supersym-

metric version of the Yukawa couplings and the Higgs mass term. The construction
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of this superpotential is dictated by Lorentz invariance and of course invariance un-
der the SM gauge group SU(3)c®@SU(2),®@U(1)y. We did not mention though that
(3.16) has an additional symmetry, called R-parity (R,). This symmetry follows in
the MSSM from the assumption that baryon number B and lepton number L are
conserved as in the SM. Denoting by S the spin of the MSSM particle, IR, can be

written in the form

Rp _ (_1)3(B—L)+2S’ or

Rp — (_1)3B—L+2S — (_1)3B+L+2S. (3'22)

From (3.22) it follows that particles always have positive R-parity whereas their
superpartners (sparticles) have negative R,. This symmetry forbids proton decay
at the renormalizable level and predicts the existence of a stable lightest supersym-
metric particle (LSP).

Once lifting the requirement of R-parity conservation the following additional

terms to (3.16) are allowed by gauge and supersymmetry
Whp, = —€&;L Hy + Niji L LY ey + N Ly Q) dfy + Nl ddb, (3.23)

where 14, j, k are flavor indices and €, A\, X', A" are R-parity violating couplings (e has

the dimension of mass and the \’s are dimensionless). The invariance under SU(2),
ik
J, k, respectively. If L = ) . L; is the sum of lepton type numbers then e, A and X

and SU(3)¢ requires \;j; to be antisymmetric in 4, j and A/, to be antisymmetric in
violate both L and L;, whereas the couplings \” violate baryon number B. If both
A and )\’ are present and unsuppressed, it would lead to extremely rapid proton
decay. Thus, already from the lower bound on the proton lifetime one can strongly
constrain these couplings. We do not discuss this problem in detail and theoretical
solutions (see review [71] and references therein). Here, we just assume for further
consideration that Wy, contains only A and A" couplings. Such models without R-
parity can enhance (pseudo-) scalar interactions. Figure 3.3 shows a diagram which
can contribute to b — sll transitions in rare decays. The corresponding effective

couplings are [72]

Aoz kit
Cl _ _Cl — k23 , 3.24
° " V2Gra, VioVis mzzzk ( )
Cl’ — Cl’ — >\;€32>\le (325>
° V2Gra, VioVis ng/k ’

where my, is the sneutrino mass of the k-th generation. The R, violating models do
not generate effective tensor interactions. The difference with respect to the MSSM
is that now the primed Wilson coefficients C§  are not suppressed by lepton mass

and can be sizeable.
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Figure 3.3: Sneutrino exchange diagram contributing to b — sll in the R-parity
violating MSSM.

3.3.3 Leptoquarks

Here we consider models generating tensor interactions based on the concept of
Leptoquark (LQ). LQs, particles carrying both lepton and baryon numbers, emerge
naturally in some high-energy scale theories, such as GUT, technicolor and compos-
ite models (see [73], [74] and references therein). The low-energy theory of LQs can
be introduced by constructing the most general Lagrangian assuming two generic
principles taken from the SM [74]: i) renormalizability of the theory and ) invari-
ance under the SM gauge group. Thus, the LQ interactions with leptons and quarks
have the following form [74]

Lo q=Xg -uPre- 3+ A5 - @ Ppe - S+ A7, -uPul - S,

+ A(Sfij .dpyl- ST

12t A(s? - Pyl - Sy + )‘quljiz -qPgime - SlL/Tz

+ A @ PLim ST+ e (3.26)
and

Ly g =My - dy"Pre - Vol + A8V -yt Pre - Vi, + A, - dy" Pyl - Vi)

1/2u
(R) e ~T (L) _ Lt (L) — L"‘
+ )\‘71/2 Fuy Pl V1/2u + )‘Vo gy Pl VOM + )‘V1/z - q°y" Pre - V1/2u
A gy P+ B, (3.27)

The LQ field ® can be scalar (S) or vector like (V) under the Lorentz group.
The index i corresponds to the transformation properties under the SU(2), gauge
group and index j shows the chirality of the quarks coupled to LQ (j=L,R). The LQ
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3.3 Some New Physics Models

LQ | SUB)c | SUQ2)L | Y Qem

So 3 1 -2/3 -1/3

So 3 1 -8/3 -4/3

Sip| 3 2 7/3 | (-2/3,-5/3)
Sia| 3 2 -1/3 (1/3,-2/3)
Sy 3 3 2/3 | (2/3,-1/3,-4/3)
Vo 3* 1 -4/3 -2/3

Vo 3* 1 -10/3 -5/3

Vij 3 2 5/3 | (-1/3,-4/3)
Vi 3 2 1/3 (2/3,-1/3)
Vi 3* 3 -4/3 | (1/3,-2/3,-5/3)

Table 3.2: SM gauge group assignments of leptoquarks (Y = 2(Qep — T3)).

J’_

H
interaction with the SM H = ( o ) Higgs doublet is

»CLQ—H = hggHingl/g : S(Z) + hg/igHm@‘?ll;g : ‘/02‘“

+ h51Hi7-2g1 : 511/2 + hlei7'2‘A/1“ : ‘71/2u

V3 (HinsSijo) - (S1,H) + ), (Him Vi) - (V1 H)

4 Y, (Hmsq H) S+ Yy, (Hz'@f/lLH) v
) (H1S 1) -S54 w) (HIVEH) Vil 4 e
- (%Mg - ggm)HTH) ot (3.28)

The general study of the Lagrangian above shows that vector-like LQ)s alone can
not generate an effective tensor interaction. It is easy to see that when integrating
out the vector-like V field and fierzing the effective interactions does not yield tensor

operators, but gives rise to scalar operators:
[§’VHPLZ] [Z_’YHPRZ)] = 2[§PRb] [Z_PLZ], (329)

Considering only scalar LQ interactions with leptons and quarks is also not sufficient
to generate tensor operators because the Lagrangian (3.26) does not provide the

necessary operator structure. Integrating out LQs one has

[GPLI[IPrql,  [GPRI[IPLql, (3.31)
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Angular Analysis of B — K, K*Il Decays

which after "fierzing” lead to the vanishing tensor operators
[qPRUabPLQ] [ZPLO'abPRl] = 0, [qPLUabPRQ] [ZPLO'abPRl] =0. (332)

In order to produce non-vanishing tensor operators one needs initially (before Fierz

transformation) the following form for the effective interaction

[qPLU[IPLq], [qPr)[IPrq) (3.33)

and this structure is provided by the L(Q interaction with the SM Higgs. The sponta-
neous symmetry breaking of SU(2), x U(1)y leads to the non-trivial mixing between
different types of LQ’s according to (3.28). As one possibility we consider the mixing
between the S, /o and ST, /o (Where the relevant terms in Lagrangian (3.26) and (3.28)
have been underlined) which, as we see later, could generate tensor like effective op-
erators in the (5b)(ll) transition. The relevant mass matrix for the LQs with charge
() = —2/3 has the form [74]

2 2
M = MSl/z VY, 0
stl/z Mz,

1/2

(3.34)

where M% = M2+ gs|v|? is the "shifted” diagonal mass and v is the vacuum expec-
tation value (VEV) of the SM Higgs field. This mass matrix can be diagonalized by
an orthogonal transformation and as a result we have in the mass eigenstate basis
two new LQ fields as a mixture of the 51 /2 and SIL/2. The masses of the new LQ
fields S, and S, are

Mgy = —(Mém MG MG M, )28V (3.35)

and the mixing

S, = cos 951/2 + sin HSIL/2, 51/2 = cos S, — sin 65y, (3.36)
Sy = cos QSlL/Q — sin 951/2, Sf/Q = cos 0SSy + sin 0.9,. '
The mixing angle can be written in terms of couplings and masses
4Y5 U2
tan 20 = 2 (3.37)
2 2
(Msl/2 B M51L/2>

Substituting (3.36) in the Lagrangian (3.26) we derive the interaction in terms of

the LQ mass eigenstates and keep only relevant terms one has

L= >\ dPL [cos BS, — sin 6S,] — ZZPLd[cosﬁSg+sinﬁSl]+h.c. (3.38)
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3.4 Form Factors and Large Recoil Limit

where we omitted generation indices. Now, it is easy to see that after integrating

out LQs one gets the necessary structures (3.33)
[dPLI[IPLql, [GPRI[IPrd). (3.39)
Finally one can deduce the tensor Wilson coefficients for the (3b)(Il) transition in

terms of the L(Q Lagrangian parameters

cos 0 sin O( M? — M?)

a

V2Gra Vi Vi M2M?

(A1 D) T )  (3.40)

Crors = S/

From this expressions one can see that we get an additional suppression from the

mixing of order sinf ~ O (v?/M2) where Mg is a general scalar LQ mass.

3.4 Form Factors and Large Recoil Limit

As we see from Section 1.3.2 B — K, K*ll transitions can be partly factorized.
This factorizable parts are described by B — K, K* transition form factors. In this
section we show that in particular regime, i.e., large recoil, the number of the form
factors can be substantially reduced.

In QCD the B — K transition can be defined in terms of three form factors

fi(@®), fold®), fr(q®)

(K (ps = )56l B(ps) = F+(¢)| (25 — 0), - %%}
* %m%, (3.41)
(K (0 = s 8B (o)) = 20 — ? — 0,V — M) L

where the momentum transfer ¢ is in the range 4m? < ¢* < (Mp — Mg)?, but
as we show later in QCDF this range is quite restricted. As a consequence of this
parametrization the relation f;(0) = fo(0) holds.

Since K* is a vector meson, the parametrization of the B — K* transition is more
complicated and needs seven ¢*-dependent QCD form factors V, Ag 12 and Tj23. It

reads as

(K*(pB — @)157.(1 —75)0| B(ps)) =

y
— 26,058 pYg’ ——————— — i (Mp + M)A

Cpvafs quMB+MK* ic, (Mp K+ ) A1

. . A . 2Mge
+i2pn = (e Q) g i )= A = Ad) (3.42)
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(K* (B = @)|50,¢" (1 +75)b| B(pp)) =
— 2i €uapePpq” T1 + [, (Mp — Mi.) — (" q)(2p5 — 0)u] T

q2

+ (e )|t — 5 — Du| T (3.43)
" Mp - M. 8
nd My + M My— M
A _ B K*A B B — K*A 44
’ DM ! IMp- 2 (3.44)

where " denotes the polarization vector of the K* and pf; the four momentum of
the B meson.

Let us assume the case when the outgoing Kaon (K or K*) is energetic (small
q?). We also require that the s quark in the Kaon is created by the b — s transition.
The b quark interacts with the spectator quark only via soft gluon exchange (hard
interactions imply large momenta of the spectator quarks in the B meson which is
highly improbable). The effective theory applied to this case is called heavy quark
effective theory (HQET) [75, 76, 77, 78]. In this theory the heavy quark momentum
pp expanded as (1.51). A similar expression can be written for the energetic s quark.
Introducing a light-like vector n” (n? = 0) parallel to the Kaon momentum we can
write

pt=En" + k", Kk < E, (3.45)
where £’ is a small residual momentum and F is the Kaon energy E = (M3 + M3 —
q?)/(2Mp) ~ Mp/2 for ¢* < M%. The QCD form factors obey symmetry relations
in this limit (Large Recoil) limit and can be expressed at leading order in the 1/F

expansion in terms of universal form factors {p, £, and §j [25, 26] as

Fola) = T2 R) = g () = €, (3.46)
T Aa?) = T ) - T AP = SR - T = ()
M Mp + Mg~ M
V() = T ) = ) = Bl = Gule). (347

Symmetry breaking corrections at order « have been calculated using QCDF in
Ref. [26]. For the case of the B — K transition they can be written in a schematically

simple form

fo _ 28 @ [Aaep

IR 1+O(O‘S>+O<Mg = :

fr Mg+ Mg [ Aqep

TP 14+ 0 (as)+0 ( — || (3.48)
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3.4 Form Factors and Large Recoil Limit

up to higher order QCD, power and mixed corrections. The ag-corrections from the
soft-overlap and hard scattering contributions indicated in (3.48) have been calcu-
lated in QCDF and are given in [26]. The symmetry relation breaking corrections
due to sub-leading orders in the Aqep/E expansion have been considered for the
soft-overlap part using SCET [79]. The corresponding corrections are indicated in
(3.46). Note that the expansion parameter is rather \/Aqcp/E than Aqep/F, and
that for fo/f, an additional suppression of ¢*/M3 appears.

The ¢* dependence of the only form factor f,(¢?) = £p(¢?) is adopted from LCSR
calculations [80]. This parametrization is given in terms of the Gegenbauer moments

of the K-meson LCDA, af, af and af as

F(@) = [2(@®) + af (i) F2(6°) + af (wr) £ (6) + ap (urr) f14(¢7). (3.49)

where
0.0244 0.2590
(%) = 3.50
) = T 51 GevE T 1= /(A1 Gav)T) (3:50)
and f% are fitted by polynomials of 3rd degree
fU=a+bg® +c(q®)’ + d(¢*)*. (3.51)

where the numerical values of {a, b, ¢, d} are {0.310,0.930x1072,0.139x 1072, —0.083 x

1073} respectively. Here we use “set 27 of the fit with m?*'® = 4.8 GeV corresponding

to the infrared factorization scale p;p = /M2 — m?”“* = 2.2 GeV. The running
of the Gegenbauer moments given in Table 3.4 from 1 GeV to 2.2 GeV is accounted

for by the scaling factors {0.793,0.696,0.590} for {aX, af af}. The relative uncer-
tainty of f due to the asymptotic form factor f¢* (which is independent of the a/*)
at ¢*> = 0 is approximately A,/ f:(0) = 10%, see Table 2 of [80]. In order to esti-
mate the form factor uncertainty in the low-¢? region we scan over the Gegenbauer
moments according to the ranges in Table 3.4 translated to pu;r = 2.2 GeV and add
the uncertainty from A, in quadrature. The form factor f,(¢?) = £p(q?) with its
uncertainties with and without A, is shown in Figure 3.4. The total uncertainty is
16% at maximal recoil and reduces to 12% at ¢> = 7 GeV?. The reduction of the
relative form factor uncertainty towards larger values of ¢? stems from the increase

of the form factor in this region while keeping A, from ¢? = 0.

For the ¢* dependence of the form factors £, and & we adopt also the results from
light cone sum rule (LCSR) calculations [81] for the V(¢?), A1(¢?) and As(¢?) form
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Figure 3.4: The form factor £p(¢?) = fi(¢?) in the low-¢? region including un-
certainties from the Gegenbauer moments a* (lighter shaded area) and
from a and A,, with their uncertainties added in quadrature (darker
shaded area), for details see text. In the left-hand plot is shown &p(g?),

and in the right-hand plot the form factor normalized to its central value,

Ep(q°)/E5™ (¢?).
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0.5
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&

Figure 3.5: The universal form factors £, and ¢ in the low-¢* region and their

uncertainty indicated by the bands.
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3.5 Standard Model Analysis

factors. Here the ¢? dependence is parametrized as

(A1 T

2
pr— . 2
Vi) = 1= 2 T Ty (3.52)
2y T2
T T
As(q?) ! 2 (3.54)

— 4 ’
1— qz/m%it (1- q2/m3‘it)2

where the fit parameters 15, m% and m?, are shown in Table 3.3. Also given
in this table are the values of the form factors at ¢> = 0 and the corresponding
parametric uncertainties within the LCSR approach. We give the uncertainties
independent of the Gegenbauer moments ai}@* and the ones due to ai}g* separately.
We use ai}@*(l GeV) = 0.1 +£0.07 [81]. The relative uncertainty of the form factors
V(0), A1(0) and Ay(0) amounts to 8%, 10% and 10% without, and 11%, 12% and
14% after adding the a; g+ induced uncertainty in quadrature, respectively. We use
the total relative uncertainty from maximal recoil as an estimate for the form factor
uncertainties for ¢> > 0. The form factors £, | defined via (3.47) are shown as a
function of ¢* in Figure 3.5. Here the bands indicate the uncertainty in &, and ¢
of 11% and 14%, respectively.

r1 To m% [ GeV?] my; | GeV?] | F(0) AgF(0) A, F(0)
Vv 0.923 —0.511 5.322 49.40 0.411  0.033 0.440,,
Ay 0.290 40.38 0.292  0.028 0.3304,
Ay || —0.084  0.342 52.00 0.259  0.027 0.3164,

Table 3.3: The parameters 15, m% and m3, describing the ¢* dependence of the
form factors V' and A; 5 in the LCSR approach [81]. Also shown are the
corresponding values of the form factors at ¢*> = 0, F(0), their uncer-
tainties independent of the Gegenbauer moment a; g+, AgF(0) and the
uncertainties induced by aj g+ in terms of d,, = (a1 x+(1 GeV) — 0.1),
A, F(0).

3.5 Standard Model Analysis

In this section we concentrate on the SM contributions in B — K, K*Il. We in-
troduce several observables constructed by angular distributions. We give their SM

predictions and dominant uncertainties computed in QCDEF.
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Angular Analysis of B — K, K*Il Decays

as(mz) = 0.1176 £ 0.0020 [15] | fr = (159.8 & 1.4 4 0.44) MeV [15]
ae(myp) = 1/133 IB... = (200 £ 30) MeV
my = 80.403 GeV [15] | fp, = (240 & 30) MeV [82]
mi = (170.9 + 1.8) GeV [83] | Ap+(1.5 GeV) = (0.458 £ 0.115) GeV [20, 84]
my = (4.6 £0.1) GeV [19] | 7+ = (1.638 & 0.011) ps [15]
mpele = (1.4 4 0.2) GeV o = (1.530 & 0.009) ps [15]
B(B — X)) = (10.57 £0.15)% [15] | 75, = (1.425 £ 0.041) ps [15]
fre = (159.8 £ 1.4 £0.44) MeV [15]" | fE"(1 GeV) = (185 & 10) MeV [85]1
a¥(1 GeV) = 0.06 £ 0.03 [86]" | £ = (217 £ 5) MeV [15]
ak(1 GeV) = 0.25 +0.15 [86]" | a . (1 GeV) = 0.1 £0.07 811
a(1 GeV) = —0.015 £ 0.1 [80] a;;‘}*(l GeV) =0.140.1 [81]1t
£p(0) = 0.327 £ 0.053 86, 80]T | A = 0.225870:00:5 (95% C.L.) [18]ft
[Vis| = 0.0409 £ 0.0021 [87]" | |Vip| = 0.0417 £ 0.0013 (95% C.L.) [18]i
|Vis| = 0.0416 + 0.0007 [87]" | 5 =[0.108, 0.243] (95% C.L.) [18]if
7 = [0.288, 0.375] (95% C.L.) [18]if

Table 3.4: The numerical input used in B — K, K*Il analysis. We neglect the

strange quark mass throughout this work. We denote by m,, the PS mass

at the factorization scale iy = 2 GeV. We neglect the strange quark mass

throughout this work unless otherwise stated. The numerical input for the

form factors £, | is given in Section 3.4. T The numerical input relevant

only for B — KIl. T The numerical input relevant only for B — K*II.

3.5.1 Angular Distribution in B — KII

A systematic treatment of the matrix element M[B — KII] is available in the large

recoil region. According to the symmetry relations (3.46) only one soft form factor

£p(q?) appears in the B — K heavy-to-light decay amplitude in the large energy

limit of QCD [25, 26]. Denoting by pg, p, p— and p, the 4-momenta of the B-meson,

Kaon, lepton [ and antilepton [, respectively, the SM B — K[l matrix element can

be written as

M[B — Kl = (Il(p-)l(p+) K (p)|Heet| B(p5))

.GFae

= —
V2m

Vis () <Fv Py [vl) + Faply (1,75l + Fp [l%l]) :

The functions F; = Fj(¢?), i = P, A,V are given as

MZ — ME ( folg?)
Fp=mCo { @)
2my, Tp(q?) 8my fr(@®)
Fy = C 5 Fy = C + C )
A 10 14 O M, ¢p(q?)  Mp+ My fi(g®) "

(3.55)

(3.56)

(3.57)
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3.5 Standard Model Analysis

where

2
A= Mp+ Mk +¢* = 2MEME + M3q> + M2q®),  Bi= 41— 4%. (3.58)

The quantity 7p(q?) appearing in the vector coupling to leptons, Fy, takes into
account virtual one-photon exchange between the hadrons and the lepton pair and
hard scattering contributions. 7p(¢*) can be extracted from [19] and is given in
Appendix B.4. At lowest order (denoted by the superscript (?)) up to numerically

small annihilation contributions, it has the simple form

Mg

2mbY(° (] . (3.59)

T(¢") = &p(@”) | CF" +

Here CST is an effective Wilson coefficient and Y denotes 1-loop matrix elements of
4-quark operators contributing to b — sll which can be found in Appendix B.4.

Based on the matrix element (3.55) the double differential decay rate with respect

to ¢ and cos @ with lepton flavor [ reads as

d2Fl 2 2 2 2
AP deost ai(q”) + bi(q?) cos O + ¢1(q”) cos” 0, (3.60)
where
al(qz) 2 9, A 2 2
————— = |Fp[" + —(|[Fal” + [FV[)
To VB E 4
+2my (M}, — ME + ¢*)Re(FpFy) + 4m? M3 | F4l%, (3.61)
2
% =0, (3.62)
1—‘0 \/Xﬁl SP
Cl(q ) 2
——6 (IFAl? + [Fv]?) (3.63)
LoV G l
and

Ghoa| Vi Vil

| -
T 51200 M3

(3.64)

Here, 6 denotes the angle between the direction of motion of the B and the negatively
charged lepton [ in the dilepton center of mass frame. In the limit m; — 0 further
relation a;(¢%) = —¢;(¢?) holds.

With (3.60) at hand the angular distribution

dl,
dcosf

= A; + Bycos@ + C, cos® 0 (3.65)
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is given in terms of the ¢*-integrated coefficients

2 2 2
min Qmin min

Thax Thax Thax
A = / dq? al(q2), B, = / dq? bl(qz), C, = / dq? cl(qz). (3.66)

Their values depend on the cuts in ¢. We recall that while the boundaries of the
phase space allow for dilepton masses in the range 4m; < ¢* < (Mp — M)?, the
QCDF approach is valid only in the low-¢? region. Note that for very low dilepton
masses there is sensitivity to light resonances. We therefore restrict our analysis to
1 GeV? < ¢? <7 GeV2

The decay rate I'; and the integrated and normalized forward-backward asymme-

try ALg of the lepton pair can be expressed in terms of A;, B; and C)

B

1
! < 1+ 301) ; FB = T (3.67)

We further introduce the observable

2 qIQnax q?nax ]_
Ff = A+ ) 2/2 dg* [az(q2)+q(q2)}//2 dg* [az(q2)+§(¢z(q2) :

Qmin
(3.68)
Since F, is normalized to I';, we expect reduced uncertainties in the former compared

Qmin

to the latter due to cancellations between numerator and denominator. As already
anticipated after (3.64) within the SM a cancellation takes place in (3.68) between
a; and ¢ such that F Il{SM vanishes in the limit m; — 0. From here follows the
approximate o< sin” # angular dependence of B — Kl decays in the SM.

We would like to comment on the possibility of corrections to (3.65) from higher
powers of cos@, that is, a polynomial dependence in the angular distribution on
cos” f with n > 2. Higher angular momenta arise from higher (> 6) dimensional
operators in the weak Hamiltonian (3.3) or from QED corrections. Hence, they are
suppressed by powers of external low energy momenta or masses over the electroweak
scale, and /47, respectively.

A further useful observable in B — KII decays is Ry, the ratio of B — Kjiu to
B — Keée decay rates with the same ¢* cuts [68]

B
Pe 2 1 dq2

9min

r G D G dl,  T,F4—4/3C

R == dq* —~ dg* — = 121 £ 3.69
" / q2ni1 q dq2 Fe ’ ( )
which probes lepton flavor dependent effects in and beyond the SM. We find that
Fl, and Rg are model-independently related

41C. - Cy  Fy

(3.70)
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3.5 Standard Model Analysis

The expression for A simplifies in models where chiral couplings to electrons can be
neglected as, for example, in the SM with m, = 0. Then Ff; =0 and I', = —4/3C,
and in the SM AM oc m?.

Let us examine the observables F,, Rx and I'; and the corresponding branching
ratios B; = B(B — KIl) for low dilepton mass. We start with I'; and analyze the
lepton flavor dependence. In the SM this effect is purely of kinematical origin, i.e.,
proportional to the lepton mass, and often negligible in the analysis of branching
ratios. Here we try to keep these contributions and quantify them analytically. For
that we use the form factor symmetry relations (3.48) and as a consequence of it

the useful relation holds
2 2 2 2 2
° 52 o, My — Mj+q 5 s ¢ [Aqcp
—|F 4| F 2Re(FpF3) =0 | a, — , (3.71

which enters both ™ + ™ and o™ + ¢f™ /3 combinations. Here, the explicit SM

expressions for Fy 4 p (3.56) have been used and Fp = mlF '> has been rescaled.

The relation (3.71) involves only the ratio fo/f; and results in a beneficial ¢*/M3

suppression of the power corrections. Thus, I'; in the low ¢? region reads as

Lo

FlSM —
3

[ e @R (EP + F P (3.72)

m} m? ¢ [Aocp
1 I I . [ Aq
X{+O<q4)+M§;XO<a’M§ z ,

where we get the higher order lepton flavor depending terms O (mj}) and O (m?).

Here, we neglect terms of order M% /M?% and in A\ ~ M} drop ¢>/M3% terms which is
consistent with the Aqcp/E expansion. These corrections are obtained expanding
the coefficients @; and ¢; in m;. It is necessary to note that the O (m?) term is addi-

¢ . /Aqcp
MZ E

tionally suppressed by a factor of order O (as, and numerically negli-

gible with respect to O (m}) one. Thus, there is no term of O (m?) up to symmetry
breaking corrections. The leading order term is proportional to £2(¢?)(|Fal?+|Fv|?).
The functions Fy (|Fa| = |C5Y| ~ 4) and Fy are quantities of the same order, since
Fy is a sum of |C5M| ~ 4 and a term containing 7p, where |7p(¢*)| ~ 0.1.

Thus, as a conclusion one should note that the SM B — Kl decay rate is highly
insensitive to lepton mass (or lepton flavor) dependent effects. For the muon channel
these effects are of order m, /¢* ~ 107 in the low ¢* (1 — 7GeV?). These effects are
even more suppressed for electrons by the factor m?/m2 ~2-107°.

In view of the large form factor uncertainties and the insensitivity to lepton mass
effects of I')"™ it is proposed to investigate the ratio I',/Te, ie., Rk [68]. First,

one expects cancellations of the hadronic uncertainties in Ry for low dilepton mass.
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B~ — Kl B — Kl
SM value Ep[ %] 1 %) SM value Epl%)] [ %0)]
+0.51 +29.9 +2.0 +0.47 +30.4 +2.1
B 1'60—0.46 —-27.0 —-1.8 1'46—0.43 —27.4 —-2.0

o

1271535 566 i 1165535 50 5
+0.59 +29.2 +2.2 +0.55 +29.6 +2.3
[10_7] 1'91—0.54 —26.6 —2.2 1'74—0.50 —26.8 —-2.3
159154 550 iy 145553 5563 Y
+0.0003 +0.8 +0.7 +0.0003 +0.9 +0.7
0'0244—0.0003 -1.0 -0.5 0'0243—0.0003 —1.1 -0.4
pro | O0188%G o5 1| 0.0187Iner 163 o
+0.0003 +1.2 +0.9 +0.0003 +1.2 +0.9
0'0221—0.0003 —1.4 —0.6 0'0221—0.0004 —-1.5 —0.6
00172555605 o T | 00172550 Iod 08
+0.00010 +0.004 +0.010 +0.00010 +0.004 +0.010
1'00030—0.00007 —0.003 —0.006 1'00031—0.00007 —0.003 —0.006
Ry | 100037000007 oo Tooos | 1.00038%550007 oo 0006
+0.00010 +0.004 +0.010 +0.00011 +0.004 +0.010
1'0003270.00007 —0.003 —0.006 1'0003370.00007 —0.003 —0.006
+0.00011 +0.004 +0.010 +0.00011 +0.004 +0.010
1'0003970.00007 —0.003 —0.006 1'0004070.00007 —0.003 —0.007

Table 3.5: SM predictions for B, (in units of 1077), F¥ and Rk for charged
and neutral B-meson decays and different ¢® cuts (¢, ¢Cnx) =
(1,6),(2,6),(1,7),(2,7) GeV? (from top to bottom). The uncertainties
from the form factor £p(¢?) and the renormalization scale p; varied be-
tween my/2 and 2m, are also given separately in percent of the cen-
tral value. The corresponding branching ratios with electrons, B,., agree

within uncertainties with the ones with muons, B,,.

Second, the deviation of R3M from 1 is mainly due to the inclusion of effects of
O (mj/q*) ~ 107* given in (3.72).

The numerical analysis, carried out within the numerical input from Table 3.4,
confirms the qualitative properties of I'; and Rg described above. In Table 3.5 we
summarize our numerics giving the predictions for the two channels, B~ — K~II
and B — K°[I. The splitting between the B~ and B° modes branching ratios is of
O (10%) due to the difference in lifetime and small isospin breaking terms in 7p. For
the I'; the dominant errors come from uncertainties in the form factor {p, the CKM
matrix element Vj, and the renormalization scale p;,. Adding errors in quadrature
gives the combined uncertainty from p(q?), pp and Vis which can be as large as 32%
( see Table 3.5). At low dilepton mass, the form factor has an uncertainty between
(12 — 16)%, with smaller uncertainty for larger ¢*> due to the findings from Light
Cone Sum Rules (LCSR) [80]. We find that the p,-dependence of the decay rate is
rather small, about a few percent, as can be seen from Figure 3.6 (left-hand plot).

The small uncertainty due to p; is not unexpected because of the inclusion of NNLL

62



3.5 Standard Model Analysis

corrections to the matrix elements of the current-current operators [88, 89, 90] in
Tp, which cancels the jy-dependence of C5M. Further subleading sources are the
lifetime with 0.7% uncertainty and a. (i), which enters quadratically and brings in
about 6% uncertainty to the B — KII decay rates. The uncertainties in I'; from the
charm, bottom and top mass are 2%, 0.4% and 2%, respectively.

In the right-hand plot of Figure 3.6 we plot ', for three lower cuts ¢2;, =
{0.5,1,2} GeV? as a function of the upper boundary ¢, . The bands show de-
pendence on the uncertainties from £p(q?), up and Vi,. The Figure 3.7 presents a
dependence on g2 done for different cuts ¢2,, = {0.5,1,2} GeV?. As already ex-
pected above, the cancellation of the hadronic uncertainties is observed in Ry, see
also Table 3.5. The combined error from form factor and the renormalization scale
is tiny. One can conclude that in the SM Ry is 1 with high precision (deviation
from 1 is of O (m},/q"), see (3.72)), what makes this observable so attractive to
study possible NP effects characterized by non-universal lepton couplings. It should
be noticed that the additional lepton flavor dependence can appear in Rx due to
the QED bremsstrahlung corrections. In the case of the inclusive B — X,II decay
these corrections are computed in [67] and enhanced by the logarithms In(mZ/m?).

However, in the exclusive decay case such corrections are unknown.

120

Q2 =0.5 GeV? e
100 Apyin = 1 GeV? —_—
Apyin =2 GeV* _
-
% 80
O
b=y —
k= = 60
- ol
x )
/-EL X
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G
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8.8 i 0
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2 2
qz [GeVZ] qmax [Gev ]

Figure 3.6: In the left-hand plot a;(¢?) and —¢;(¢?) defined in (3.60) are shown for
[ = p in the SM as a function of ¢* for the renormalization scale i,
between m;/2 and 2my. In the right-hand plot the SM B — K jij decay
rate is given for three different cuts ¢2;, = {0.5,1,2} GeV? as a function
of ¢2,.. Here the bands take into account uncertainties from the form

factor £p, up and V.
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Figure 3.7: The ratio Rx in the SM for different cuts ¢2,, = {0.5,1,2} GeV? as a
function of ¢2,.. The uncertainties from the scale j;, and the form factor

are added in quadrature.

The other interesting observable is FY; (3.68), being similarly to R a ratio which
leads to cancellation of hadronic and other uncertainties. This concerns the ones
from the form factor, the renormalization scale, V;; and unknown subleading 1/FE
corrections in 7p. In the same way as for I'; we apply symmetry relations for the
form factors (3.48) and (3.71) in order to obtain an expression for FY in the SM at
low ¢2:

ISM > Lo max dq® 5, 5 3 2 2
Fy ZQWlW . ?Sp(q WX B(|Fal* + | Fy ) (3.73)

l
2 2
q q Aqcp
14+ 5 x 0| o, — ;
{ ol ( 2 )}
where the denominator T';™ is given in (3.72). The leading terms cancel in the sum

SM :
a4 ¢ and as a result FiP™ oc mi and F5™/F™" o< m2 /m?, such that FgM is

negligible. This fact can be also seen from the Figure 3.6 (left-hand plot). In Figure

9min

3.8 (also Table 3.5) one can see the cancellation of uncertainties transparently, where
Ft is plotted for ¢2;, = 0.5,1,2 GeV? versus the upper integration boundary @
The value of F}; becomes larger for smaller dilepton mass intervals. It also increases
for lower values of the lower cut ¢2... The tiny bands indicate small errors due
to &p and p, combining which gives the uncertainty of Ff < 2%. Here, in the

numerical analysis we skip an additional uncertainty from the subleading power
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Figure 3.8: The observable F; in the SM depending on ¢2,  for three cuts ¢2;, =
{0.5,1,2} GeV? (left-hand plot) and normalized to the central value
(right-hand plot). The bands include combined uncertainties from
and the form factor £p(g?).

corrections. These subleading corrections contributing to form factor symmetry
breaking relations are known [79] and give additional uncertainties to F}; of order
q*/ME~\/Aqep/E ~ 3%. We expect, that the subleading corrections for the hard
scattering part which have not been calculated yet, contribute to F% at the order
q? /M%as\/m ~ 3% assuming the same power counting as for the soft overlap
part. Thus, combining the errors one can predict Ff with maximal precision of
~ O(6%) in the SM. For the electron channel F§; becomes a null test of the SM due

to the huge suppression coming from m?.

3.5.2 Angular Distribution in B — K*(— K)ll

In the most general case the decay B° — K*°(— K~77)Il can be characterized by
five kinematic variables considering an off-shell K* meson in narrow width approx-
imation [59]. Here we follow [63] where the limit of an on-shell K* has been con-
sidered. In this approximation the differential decay rate of B° — K*0(— K~n)Il,

when summing over the spin of the final state particles, reads

d'‘T 3

- 5 2 0. O~ i 74
IEdcosfideostr g~ an” (@200 0) (3.74)
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Note that we use B = (bd) and K% = (sd). The angular dependence can be

explicitly written as

J(q?, 01,05+, ¢) = Jisin® O« + Jf cos® O + (J5 sin? Ogee + J§ cos? O+ ) cos 20,
+ Jysin? O« sin? 0, cos 2¢ + Jy sin 20« sin 26, cos ¢
+ J5 sin 20« sin 6, cos ¢ + Jg sin® O« cos 6, + J sin 20« sin 0, sin ¢
+ Jg sin 20« sin 26; sin ¢ + Jg sin? O« sin? 6, sin 2¢, (3.75)

where the coefficients J. = J (¢2) fori = 1,...,9 and a = s, ¢ are functions of the
dilepton mass ¢. Here 0, is the angle between the negatively charged lepton and the
B in the dilepton center of mass system (CMS) and fg- denotes the angle between
the K~ and the B in the (K~7") CMS. The angle ¢ is given by the normals of the
two planes defined by the (K~ 7") and (I717) pairs, respectively, in the rest frame

of the B. The kinematically accessible phase space is

4m? < @ < (Mp — Mg+)?, —1<cos <1, —1<coslg-<1, 0<¢<2m.
(3.76)

The corresponding distribution of the CP conjugated decay B — K*°(— Kt77)il

can be written as

a1 = 3 .6 6x-.0) (3.77)

dq? dcos;dcosOi-dp 8w o '
Here, 0y« denotes the angle between the Kaon and the B meson in the (K+77)
CMS. The definition of §; is identical for both B and B decays. Again, the angle ¢
is given by the normals of the two planes defined by the (K*7~) and (I*]7) pairs.
The functions .J; are obtained from .J; in (3.75) by the replacements (see Appendix
B.1)

J1(fl2),3,4,7 — j1(fl2),3,4,7(5w — —0w), Js.67 — —J5.689(0w — —0w), (3.78)

the conjugation of weak phases denoted collectively by dy is understood [59].

Let us discuss the CP properties of the angles in the angular distributions (3.75)
and (3.78). We have three angles 0,0~ and ¢ which correspond to the decay
B — K%(— K—n%)I*l~, and the angles 6;, 0~ and ¢ of the CP conjugate decay
B — K%(— KTn7)ITI~ (in (3.77) we have skipped the bars in the notation of
the angles, but reintroduce them here for clearness). We denote by p;(p;), q:(qQ;)
and k;(k;) the three momentum vectors of particle i in the B(B), lepton pair and
K*(K*) rest frame, respectively. Let us further take the direction of motion of the

K* meson along the z-axis in the B rest frame. One can then define three unit
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Figure 3.9: The kinematical angles in B — K%(— K~7%)I*l~ decays.

X Prt
X Prt |

v

X Pr—

vectors
_ Px- +Prt P~ X P+ _ Pk-
e — e =——"7 €x =
|PK— + Prt| |Pi- X pr+| P~
for the B decay and correspondingly
_ P+ +Pr- _ P+ XDPi- __ Px+
e, =", e =, e = =
|Pr+ + Pr| |Pi+ X Dr-| Pr+

X Pr-|

(3.79)

(3.80)

for the decay of the B meson. One can now define the angles ), 0x-, ¢ for B —

K%(— K~n%)I*l~ decays as

Y

. (kl— X ez) - € kl* c €y
sinf) = ————, cos ) = ————,
k- | k- |
- Xey): -Gz
sin O+ = (ax e:) e cos Oy« = k- - ©
lak-| Ak |
sing = (e; X ex) - e, cos g = ey - €.
Likewise, we have for B — K%(— K™77)I"l~ decays
.= (17{17 X €,)- ¢ ~ k- -e,
sinf) = ——"+——, costh) = ———,
k- | k- |
_ X €, _ q -8,
sin O« = (qK+_ e:) el, cos Oy« = quie’
|QK+| |QK+|
sing = (& x ex) - e., cos ¢ = €k - €.

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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Since under CP p;+ — —p;=, the unit vectors transform as
e, » e, = —e,, ek — €x = €f. (3.87)

It is easy to see from the formulae above that only sin¢ is odd under the CP
transformation and the other are CP even where we apply (3.87). We summarize

the CP properties of the following quantities:

sin ¢ P, sin 6 = —sing, (3.88)
cos <L cos d = cos ¢, (3.89)
sin 0 e+ P, in Ok« = — sin O g, (3.90)
cos O g+ P, cos @K* = —cos b . (3.91)

Transversity Amplitudes

The functions J¢ are expressed in terms of transversity amplitudes (see Appendix
B.1) A;, A and A, being the functions of Wilson coefficients and form factors.
Here we are giving the expressions for the transversity amplitudes in the presence of
NP Wilson coefficients within QCDF and neglecting kinematical terms' M%. /M3,
They read as

~ / 2 '
Ai’R = +\/§NMB(1 — s){ [(Cg + ) F (Cy + ClO)}gl + ?be}’

Aﬁ,R = —V2NMp(1 - §){ [(09 —Cy) F (Cyp — Cio)] £+ meTf}a

3

L,R_ NM%(1_§)2 / A —
Ao = _—QMK*\/E [(Cg - Cg) + (CIO - Cio)} 5II - 2mb7I| )
NM3(1 — 5)? g
A =BV 7 (o _ —L 3.92
t MK*\/E ( 10 IO)A” ( )

L m G2 s ial
S= T2 my = ——, N = m“@b‘/}J SVAL (3.93)

and

A= Mg+ My +¢* —2(MaMi. + Mzg* + M2.q®), Bi=4/1—- =L (3.94)

!These formally subleading terms in the 1/E expansion are included in the numerical evaluation.
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3.5 Standard Model Analysis

Note that A; contributes only for m; # 0 and contains A, see [19], which represents
form factor symmetry breaking QCD corrections. Note that helicity conservation
dictates A7" —AL " for C! =0 up to 1/E corrections [91].

In the framework of QCDF, the functions T¢,|| are calculated at 1/my, order in
heavy quark mass expansion and at NLO in «g for the SM operators and the cor-
responding chirality flipped operators, see (3.9). The Tff” have the following CKM
and QCD structure

7;i _ ’];i(t) + j\uf];(u)

TEO — 7EOLO | Qs T +(),NLO TW — 7w.Lo | Qs 7 (u),NLO (3.95)

a a 47T a ? a a 47T a ? ‘
where a =L, ||. At LO in a; (denoted by the superscript (0)) and neglecting numer-
ically small weak annihilation terms in ’]ﬂi(t)’ we have

2
v (@)
2mbMB ’

Tﬂ:(t),LO _ COH(O) 4 C'(O) Y(O _
1 gl 7 7 meMB gl
MB

my

” By } +HS, T = —§||2—BY(“)(°) +HS
mp

||
(3.96)

where spectator effects are denoted by HS (complete expressions can be found in
Appendix B.4). Two kind of phases are contained in the Tfll functions. The weak
phase comes from the CKM matrix, i.e. A, pre-factor. The strong phases come at
LO in ay from Y (¢?) and Y (¢?), [19, 20], containing 1-loop contributions of four-
quark operators ~ 5bgq with an imaginary part if ¢> > 4m§. These phases are small
in the low g*region, where the 1/E expansion of QCDF is valid, which is below
the charm threshold (the origin of large phases coming from the c¢ resonances).
In this low g*region the lighter quarks induce either CKM suppressed or penguin
contributions leading to small strong phases. At higher order in ay, strong phases

are further generated in 7,.”"""° and from spectator interactions [19, 20], which have
been included in our numerical analysis. The form factors {, and §| are discussed

in Section 3.4.

Branching Ratio and Agp

The differential decay rate for B® — K*°(— K~n%)ll decays can be obtained after
integration of (3.75) over all angles. It is simply a linear combination of J; and Jo
ar J
— =g - 22
dq? 3
It can be also rewritten more explicitly, i.e., in terms of the transversity amplitudes
(3.92) as

where Jip =2J7, + J7,. (3.97)

ar

a7 = AL >+ \AH P+ AP+ (L — R)+ O (mj/q*) (3.98)
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Figure 3.10: The differential branching ratio (right-hand plot) and Apg(q?) (left-
hand plot) in the SM as functions of the dilepton invariant mass cal-
culated in the QCDF. The bands show the uncertainties of the form
factors, the CKM parameters, p;, and the total uncertainties (by adding

errors in quadrature) separately.

up to contributions suppressed by the lepton mass.
The (normalized) forward-backward asymmetry Apg is given after full ¢ and O

integration as 2

drl’
A = .
FB( [/ / } d cos 0, dq%lcos@l/ dq (3.99)

By dI'/dq? and App(q?) we refer to the corresponding spectra of the CP conjugated
decays.

We worked out both dI'/dg? and Apgp(¢®) in the SM using QCDF. In Figure 3.10
we plot the differential branching ratio, which is just dI'/dg* multiplied by life time
7o, and App(q?) as functions of ¢2. The various bands represent the three dominant
uncertainties coming from the form factors, renormalization scale i, and the CKM
parameters. We vary the scale between m,,/2 and 2m,;, and allow for an uncertainty
of 11% and 14% for £, and &, respectively. The CKM input is given in Table
3.4. For the total uncertainty estimate, all three sources of uncertainty are added in

quadrature.

2Since we define the lepton angle #; with respect to the [~, our definiton of the forward-backward
asymmetry (3.99) differs from the one in other works using the [T, e.g., [19, 20, 92], by a global

sign.
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In the left-hand plot of Figure 3.10 one can see that the dominant uncertainties
to the decay rate come from the form factors £, and §. From the formulae (3.92)
and (3.98) follows that the longitudinal amplitudes A" are enhanced by Mp /M-
with respect to Ai’R , Aﬁ’R , what implies a stronger dependence of dI"/dg* on §| than
on¢;.

In the framework of QCDF we calculate numerically in the SM the quantities Fr,
defined as
(1A + |AF1?)

FL= T

(3.100)

and
(AT + JATP? 4+ |AF1? + [A]?)

(dl'/dg?) ’

being the longitudinal and transversal K* contribution to the total decay rate, re-

Fr = (3.101)

spectively. Here we introduce a short notation for ¢>-integrated quantities

2
Imax

(X) = dq® X (¢%). (3.102)
q12nin

For the cuts (¢2,,, %) = (1,6)and (1,7) GeV? Fy is 0.731005 and 0.7270%, re-
spectively. Whereas Fr for the same cuts is 0.2770 0% and 0.2875.%.

The dominant error to Apg comes also from form factors. The numerator of
App presented by function Jg is proportional to &2 at LO in QCDF, whereas the
denominator being the decay rate is dominated by §;. The independent variation of
£1 and ¢ gives about 30% error of App for the upper part of the region 1 —7 GeV?.

CP Asymmetries

To reveal CP violation effects of a theory there should exist a non-trivial phase,
which can not be removed by any field transformations and there should exist an
observable which depends on this phase. Particularly, in the SM this phase resides
in the CKM matrix, as a result of the fact that the SM has three generations.

To construct CP-odd observables having the structure of |M|* — |M|?, where
M and M are the matrix elements of to each other CP conjugated processes, one
needs several contributing amplitudes. The relative phases appearing in the matrix
element can be of two kinds, conventionally called ”"weak” and ”strong” phases. A
weak phase has an opposite sign in the CP-conjugated process and a strong one
has the same one. As an example, we consider the matrix element of the i — f

transition in terms of two contributing amplitudes A; and A,

M(i — f) = AW 4 Aye's (3.103)
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where the phase dy changes the sign in the CP-conjugated matrix element M and
ds not. Computing |M|? —|M]|? one finds that CP-odd observables are proportional

to sin dyy sin 05 and vanishes when one of the phases goes to zero.

There are basically two types of origins of the strong phases. In perturbative
calculations they appear as absorptive parts in the loop integrals. The second origin
is the so-called final-state-interaction scattering. In this case the transition i —
f"— f has two parts, i — [’ is due to the weak interaction and f’ — f is due to the
strong interaction. If the f’ intermediate state is on mass shell then this generates

an absorptive part (strong phase) in the amplitude.

Using the discrete symmetry T (is not same as the time reversal invariance),
which changes the signs of all particle momenta and spins, one can classify CP-
odd observables. The observable discussed above is CP-odd and T-even and gen-
erally proportional to quantities like sin dy sin dg. T-even observables depend on a
strong phase and can be additionally suppressed in the case if the latter is small.
On the other hand CP-odd T-odd observables are proportional to quantities like
sin Oy cos dg+cos dyy sin dg and survive in the case dg — 0. Typically, CP-odd T-odd
observables are proportional to the triple product of three momenta or spin vectors
P1 - P2 X Ps originating from the Lorenz invariant expression €0} pgpg‘pf (in the
rest of frame of p,). Particularly, considering B — K* transitions one can find the
Levi-Civita tensor in the definition of QCD form factors (3.42)-(3.43). Such terms
with a triple product generate terms in the decay rate, as for the CP-conjugated

process, being

Im[A A3) Py - Po X 3 (3.104)

which will contribute to CP-odd observables if the relative weak phase is contained
either in A; or Ay. The nice property of CP-odd T-odd observables is that they are

non zero even in the case when the strong phases vanish.

In the case of BY — K*(— K~m%)ll decays CP violating effects in the angular
distribution are signaled by non-vanishing differences between the (g*-dependent)

angular coefficients

AT = AT () = T — T, (3.105)
Using these differences one can construct CP-odd T-even and T-odd observables.
Under T-transformation the coefficients J; g ¢ are odd (¢ — —¢ under T') and hence
induce T-odd asymmetries A.J7 g9 which are not suppressed by small strong phases
predicted from QCDF. The remaining coefficients J; will induce T-even asymmetries

which will be suppressed by small strong phases.

The CP asymmetry in the dilepton mass distribution, being T-even quantity, is
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commonly defined as (see (3.97))

dT-T) /dT+T) Ay d(l' +T)
2 = _— = 2 = —
Acp(q) = i / i NF AJi=—=|, No=Ne(q) o

(3.106)
Following [59], we define in addition to Acp seven normalized CP asymmetries as

2AJ; 20 J;
Ji fori=3,6,9, AP(¢*) =— Ji

Ai 2 =
(q ) NI‘ ) 3 NI‘

fori =4,5,7,8,  (3.107)

where again Asg and AP; are T-even, and Ag and AZg are T-odd observables. We

then define the normalized ¢?-integrated CP asymmetries as

(AJ;)
(Nr)

AJ; .
for i = 3,6,9, <A£>z—2< Ji) fori=4,5"7,8  (3.108)

(A) =2 )

where the numerator and the denominator are integrated with the same ¢? cuts
which should be in the low dilepton mass region in order to be consistent with the
QCDF formalism (see Section 3.5.2).

These CP asymmetries can be extracted from the differential decay rate (3.74)
by partial integration over the angles. Particularly, integrating (3.74) over Oy« gives
the double-differential distribution in #; and ¢,

_En) i{ (J1) + (Ja) cos 20, + 2 (J3) sin® f; cos 2¢
dcos@dp  Arm ! 2 : 37 S
+ 2 (J) cos b, + 2 (Jg) sin® f, sin 2¢ }, (3.109)

which can be used to extract the CP asymmetry (Ag). Further integration over 6,

gives

1) Lyt

dp — 2 3 3<J3>C°S2¢+ <J9>sm2<f>} (3.110)

which shows the possibility of finding (AJy) from d (I' +I') /d$, whereas (AJs) can
be obtained from d(I' — ') /d¢, with (AJ;) — (AJs) /3 from Acp without angular
study, see (3.106).

The construction of the CP asymmetries (AP) (i = 4, 5,7, 8) requires binning into

cos O+ as

2 ( 3
m / / d cos HK d <F>
dcost;dgp dcos Ok~ dcost; do

- ﬁ{ (Jy) sin 26, cos ¢ + (J5) sin 6, cos ¢

+ (J7) sin 6 sin ¢ + (Js) sin 20, sin ¢ }. (3.111)
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Performing the 6;-integration leads to the distribution

d{Ag,.) 1 .
%1 {(J5) cos ¢ + (J7) sin ¢} (3.112)

giving the possibility of extracting (AJs) from d (Ag,. + Ag,. ) /d$ whereas (AJ;)
can be obtained from d <A9K* — flgm> /do.
The double asymmetry in O+ and 6;,

AGK* o) U /]dcos@l A;deb _ 327T{(J4> cos ¢ + (Jg)sinp}, (3.113)

then allows to obtain (AJ,) from d<A9K* o — fng* 791> /d¢, whereas (AJg) can be
extracted from d (A, o, + Apy..0,) /do.

Note that only As, Ag and Ag can be obtained from a genuinely single differential
distribution. Ag is the only T-odd asymmetry with this property.

Another way of the extraction is based on the construction of corresponding weight
functions W; which project out J; from the decay distribution (3.74), see Appendix
B.2.

Let us discuss the SM predictions of the CP asymmetries applying the framework
of QCDF. The complete NLO in «, and LO in 1/E analytical expressions for CP
asymmetries in the low-¢? region are given in Appendix B.3. Those expressions can
be reduced to the SM ones by setting NP Wilson coefficients Céj?,ﬂf = 0. In the
large recoil limit the symmetry relations reduce the seven QCD form factors to the
two form factors &, and . To calculate £, | we use ¢*-dependent fits of B — K*
form factors from light cone QCD sum rules (LCSR) [81], see Section 3.4.

In the SM CP asymmetries AED) are uniquely induced by the phase of the CKM
matrix. Therefore an overall factor
Voo Ve

Im[},] = Im [V o
thb " ts

} ~ A2, (3.114)
where A and 77 are Wolfenstein parameters, gives a suppression of O (1072). Due to
this fact all CP asymmetries obtain a universal 15% uncertainty coming from the
variation of the CKM matrix parameters in the ranges given in Table 3.4.

Together with the CKM parameters, the form factors and the renormalization
scale p;, are dominant sources of uncertainties in CP asymmetries. Similarly as in
Section 3.5.2, we vary the scale between m;/2 and 2my, and for £, and & we assume
a flat (not depending on ¢?) uncertainty of 11% and 14%, respectively. For the total
uncertainty estimate, all three sources of uncertainty are added in quadrature.

In the Figure 3.11 we plot T-even CP asymmetries, i.e., Acpg(¢®) and Af5(¢?) as
functions of ¢?. From the plots one can see that LO and NLO results are comparable

to each other, therefore impact of higher order terms to these particular T-even
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SM -1073 &, y[%] (%] | SM LO -1073 || SM(BTF) -1073
) 42707 e 33 3.0112 10.0733
485 4 317175 9.913%
(AP —18753 o+l i —0.7154 —0.7753
B N R SR —0.870% — 11797
an) 7.608  H10 7 2.7+08 10.0733
° 76TE5 A9 AT 9.7+08 9.8731
(g} —6.4722 #3140 —1.9730 —6.33
—6.7t22 %+ —2.0%1] —6.6757
(AD) -51%s 5 I 102 —T155
7
—462 Hl0 4R —6.573
(A) 3550 o 13 027508 3.455%
8
3157 I 5| 014505 317173
(A30)7 | O(1) O(1) O(1)

Table 3.6: SM predictions for the integrated CP asymmetries in units of 1073 with

the integration boundaries (

2 2
mins> Ymax

) = (1,6),(1,7) GeV? (from top to
bottom). We take into account uncertainties from the form factors, the

scale dependence p;, and the CKM parameters, all of them added in

quadrature. The form factor uncertainty employed is 11% and 14% for

£1 and |, respectively, and p, is varied within [my/2, 2m,]. The relative

uncertainties due to £1,§ and p; are also shown separately. The asym-

metries at LO in a4, and the NLO ones for charged B-decays are given as

well, see text for details. "The leading contributions (A3 ¢) in the SM are

power counting estimates only.
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asymmetries is numerically sizeable, but qualitatively less pronounced. For the NLO
result we also show separately the uncertainty dependence from the form factors,

CKM parameters and py, by plotting various bands.

‘ 0.004 |
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i Hy, - .
0.01 total (LO)
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Figure 3.11: The T-even CP asymmetries Acpg(q®) and AP5(¢?) in the SM in the
low-¢? region at LO and NLO in QCDF. The various bands show the
uncertainty due to the form factors, the CKM parameters and gy, sep-

arately, whereas the overall band indicates the total uncertainty.

In contrast to T-even asymmetries the higher order terms in the T-odd A$f8(q2)
asymmetries are even more dominant, see Figure 3.12. Particularly, at LO in o, AP

asymmetry, i.e.,

AP ~ Im[A,|Re

() 2 W
PRI il N (3.115)

£L Mg ¢

vanishes due to cancellations of the terms in the square brackets [93]. (Our value
of AP at LO is tiny but finite since in the numerical analysis we do not neglect

kinematical factors Mz./M%.) Therefore adding higher order «, corrections increase
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3.5 Standard Model Analysis

the value of AP drastically. That is what we observe on the left-hand plot of Figure
3.12.

The similar cancellations at LO happens in the AY asymmetry, i.e.,

oy (Tf‘)Tn(t’* B TL@)T”@L)*) ) (Tf‘) ; 7”(“>>

Mpg £ §1 +M§; q

AP ~ Tm[\,]Re CM

(3.116)

although here an additional numerically subleading LO term exists (the first term

in square brackets), giving a small contribution, see Figure 3.12.
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total(NLO) I total(NLO) NN
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Vekv 0.008 Vekv
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Figure 3.12: The T-odd CP asymmetries A;(¢?) in the SM in the low-¢* region at
LO and NLO in QCDF. The various bands show the uncertainty due
to the form factors, the CKM parameters and u, separately, whereas

the overall band indicates the total uncertainty.

The T-even Az and T-odd A9 CP asymmetries are considered separately since
they vanish in the SM at lowest order in 1/E. Being the result of higher order in
1/E

Asg ~ Im[A,] O(Agep/E) ~ O(1073), (3.117)

the numerical values of As g are expected to be smaller then the other CP asymme-
tries.

We present in Table 3.6 the integrated CP asymmetries for the two cuts (g2, ¢2.) =
(1,6) GeV? (upper entries) and (1,7) GeV? (lower entries), respectively. The predic-
tions are given for both neutral and charged B-decays. In the case of neutral modes
we consider the results in detail, by showing LO values of CP asymmetries and giving

separate information about form factor and renormalization scale uncertainties.
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Angular Analysis of B — K, K*Il Decays

The form factor induced uncertainty in the asymmetries depends on the amount
of cancellations between the numerator and the decay rate in the denominator. We
recall that we vary the two form factors within their uncertainties independently.
The denominators of CP asymmetries, i.e., decay rates, are dominated by & (see
Section 3.5.2), whereas the numerators are proportional to £ for Ag and &, | for the
AP 75 Therefore the cancellations in AP ;¢ are expected to be more pronounced
than in Ag. The numerator of Acp has a more complicated structure leading to an
intermediate size of cancellations. From the second column of the Table 3.6 one can
see that the biggest, about 40%, form factor uncertainties appear in Ag, whereas for

AP 7 s the errors do not exceed 13%.

As can be seen from Table 3.6, (Acp), (AP) and (AP) exhibit a massive p;, depen-
dence of order 50 %. The CP asymmetries AZ(-D) with ¢ = 4,5,6 are not subject of
the cancellations mentioned after (3.115) and have a smaller residual p, uncertainty
below ten percent. The i, dependence of (Ag) of a few percent is accidentally small
due to significant cancellations between different ¢*-regions, see the crossing of the
1 bands in Ag near ¢> ~ (3 — 4) GeV? in Figure 3.11.

The last column in Table 3.6 shows the NLO SM predictions for charged B-decays.
The splitting between the CP asymmetries in neutral versus charged B-decays is
dominated by weak annihilation contributions from current-current operators and
varies a lot in size: (A7) ((Acp)) increase by O(30%) (a factor of two) from neutral
to charged B-decays, whereas (AY) decreases by ~ 1/2. The splitting for (Aég)) is

at the few percent level.

In conclusion it should be said that in spite of large theoretical uncertainties for
the SM predictions, CP asymmetries are very attractive for the search of NP CP
violating phases. This advantage comes from the smallness of the CP asymmetries
in the SM due to the CKM suppression. In the next section we will show that
current experimental bounds on NP allow for huge enhancement of CP asymmetries,

particularly T-odd ones, up to O (1).

3.6 New Physics Analysis

The NP section is split into two parts. In the first one we discuss the experimental
constraints on NP from various FCNC B-decay observables. The second part is
devoted to NP model-independent analysis of the obsevables defined in Section 3.5.
It is shown that the large enhancements with respect to the SM contributions are

allowed by the present data.
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H observable sensitive to SM value ‘ data H
Fh Chp+Chp: Chs) O(m2/q?) 0.81103% + 0.46" [55]
Ay Cspt ngPv C;(5) O(ae/(4m)) 0151—8:% +0.08" [55]

0.10 £ 0.14 4 0.011 [54]
Rk —1 Ch p+ Clp, Chsyr € V8. 1 01074 0.24 + 0.311 [53, 55]
B(B, — Jiy) Chp—Clp (3.23+£0.44) - 107° < 8.0-1078 [56]
B(B, — ée) Csp—Cdp (7.56 £ 0.32) - 104 < 5.4-107° [94]
B 50,04 o £ cr (4.154+0.70) - 106 [57, 92] | (4.3 +£1.2)-107° [15]
B (= 04 o 0, C) (4.15+0.70) - 106 [57, 92] | (4.7 + 1.3) - 1075 [15]

Table 3.7: Observables in b — sll induced transitions and used in the NP analysis
of B — K*Il decays. Upper bounds are given at 90% C.L. For details
see text. TData include ¢?-regions where QCDF does not apply and both

[ = e and p are included.

H observable ‘ sensitive to ‘ SM ‘ data H
B(B — X,7) Cr, CL (3.15+0.23) - 1074 [95] | (3.52+0.25) - 10~ [96]
Shuy Cy, Ch (—2.8703) - 1072 —0.19+0.23 [96, 97, 98]
B(B— X.Jl)|ng |CV,CS, )| (1.59+0.11)- 107 [67] | (1.60 + 0.51) - 1076 [99]
B(B — X500 | €V, €5, CY) | (4.15+0.70) - 1076 [92] | (4.5 4+ 1.0) - 10~° [15]
(ARB) fuign ) e ) o) <0 —(0.767932 £ 0.07) [55], also [53, 54]
B(B, — fij) Cio—Cho ~3.107° <4.7-10°% at 90% C.L. [100]

Table 3.8: Relevant b — sy and b — sl observables used in the NP analysis of
B — K*ll decays. “With photon energy cut E, > 1.6 GeV. *SM value
obtained with ms; = 0.12 GeV. “Note the different lepton angle convention
between [54, 55] and this work.

3.6.1 Experimental Constraints

In this section we discuss the experimental constraints on NP from different FCNC
B-decay observables. For the case of the angular distribution in B — KII decays we
discuss the observables sensitive to (pseudo-) scalar and tensor interactions. Relevant
to B — K*ll decay analysis, we consider the observables being able to constrain
the NP Wilson coefficients CN¥ and C;NP = (7 for i = 7,9,10 corresponding to
O7,9,10 and chirality-flipped Oy 4, operators in model-independent way. We allow

the respective NP coefficients to be varied in a magnitude and a phase, denoted by
b;.
B, — Il Decay

A detailed study of the b — sll operators shows that not all contribute to the

B, — ll. For instance, the matrix element (0|so*b|B,) vanishes since it depends

79



Angular Analysis of B — K, K*Il Decays
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Figure 3.13: Allowed region for real CN¥ and C}. The regions allowed by B(B —
X7), Sk« and B(B — Xsl_l)\[lvﬁ} are shown as the green ring, the red

cross and the blue half circle, respectively.

only on the momentum pp, of the B; meson, making it impossible to construct an
antisymmetric tensor with respect to p and v indices. The contribution from the
axial-vector matrix element (0|sy*75b| B) contracted with the leptonic vector current
[7*1 also vanishes since it is proportional p‘és = p;. +p-. Since B, is a pseudoscalar
particle the matrix elements of the sb and 5vy*b operators vanish too.

Thus, the remaining relevant operators relevant for By — [l are

(57,750) (Iv"y50),  (5v5b)(Isl),  (5vsb)(1). (3.118)

Applying for these PCAC relations

Mp,

, (3.119)
my + Mg

(0]59"v5b| B) = ip'g, [B., (0]5750|B) = —if,

which express the matrix elements in terms of the decay constant fp. , momentum
p‘és and mass Mp_ of the B, meson, we can write the matrix element for the B, — I
as [101, 72, 58]

GFae

M= Wvﬁ,v;; [Fll + (Fp + 2myFa)lysl], (3.120)
where
i i C,— !
Fu=—2L F= L0 [7] 5P 121
A 2f350107 2 szS me +m8 3 7 S, 5 (3 )

where C’gv)P are (pseudo-) scalar Wilson coefficients needed to be constrained for the

B — KII analysis.
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Figure 3.14: Allowed areas for the NP Wilson coefficients in particular scenar-
ios: "CY™ only”, "CNF only”, "CNP only” and ”"C; only”. The
regions are constrained by B(B — Xy), Sk+y, B(B — Xll)|pe.
B(B — X,ll)|[=0.04 and integrated App.
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Finally, we ca write the branching ratio B(B, — Il) explicitly in terms of NP

Wilson coefficients

— - G%"agMgféTBs * |2 4ml2
B(Bs — 1) = 613 Vi Visl "y 1 = M2,

2 2
Am? \ |CL — C4 cL—clv  2my
1— — S -8 r__-P C . 3.122
X{( Mé) my + mg * mb+ms+M§;S 10 ( )

Tensor operators do not contribute to B, — Il decays and hence C%. ;5 are not
constrained by these decays. The B, — [l branching ratios depend on the difference
of Wilson coefficients (C§ p — C¥4 p). It means that constraints from (3.122) can
be evaded in the presence of both unprimed and primed (pseudo-)scalar Wilson
coefficients. In the exclusive B — K, K*Il decays this can be avoided by the presence
of a sum (C§ p + C§ p) [68].

In the Table 3.7 we give current experimental upper bound on B(B, — [) together
with their SM values obtained with the input from Table 3.4. One should note that
in the SM the branching ratio of B, — [l is proportional to m? and for the electron
mode is of order O (107*), i.e., nine orders of magnitude smaller than the current
upper bound from L3 [94]. As we show later, the current B(B, — ée) constraint is
nevertheless on the verge of being useful, since NP in C'IS(&)D does not enter the B, — 1l
modes with m,-suppression as the SM contribution, see (3.122). The current upper
bound on B(B, — jijt) comes from CDF and D@ [56]([102]) presented at 90% C.L.
(95% C.L. B(Bs — fip) < 5.8 - 107%) which is quite close to the SM prediction.

Inclusive B — X,ll and B — X,y Decays

In our analysis we take into account the further constraint which comes from the
branching ration of the inclusive B — X,ll decay. Currently, the inclusive de-
cays can be predicted with better accuracy, especially in the low-¢? region it has
reached the level of < 10% [66, 90, 67, 103], but also the high-¢* region is the-
oretically accessible [90, 104, 103] with larger uncertainties. In our analysis we
use two regimes, i.e., the integrated branching ratio in the low-¢*> region with
¢* € [1,6] GeV? B(B — Xsl_l)|[1,6] as well as the whole ¢? region with ¢ > 0.04 GeV?
B(B — Xll)|[=0.04- One should note that the latter case has some model-dependence
due to the cuts of the first and second charm resonances in the experimental analysis.

The computational method of the B — Xl inclusive branching ratio differs from
the exclusive ones. The matrix element of the B — X, transition (X is a sum of the
states with strangeness S=1) can be computed in perturbation theory based on the
method of the heavy quark expansion (HQE). Considering a non-relativistic theory

of the b quark, the expansion takes place in terms of the inverse powers of the heavy
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quark mass m;,. Employing the optical theorem, one can relate the decay rate to
the absorptive part of the forward scattering amplitude Im({B|A|B)), with

A:i/ﬁ%iﬂﬂdﬂﬂgmﬂ, (3.123)

where T is a time-ordering operation and H.g is defined in (3.3). Inserting a complete
set of the states inside of the time-ordered product we get an expression for the decay
rate of the B — X,

[(B = X) = g (005 o = pe K el B (3.124)
The leading term of the OPE in A corresponds to the lowest dimension operator bb.
It means that in the limit of m; — oo the decay rate of B meson is given by the decay
rate of the b quark. The corrections to the leading order result are of O (1/m?) with
corresponding operators b(D)?b and bo**G,,,b . There is no correction of O (1/my)
because the corresponding operator bJPb can be reduced to bb.
Since for the B — Kl decays we are interested in lepton flavor dependent physics,
we apply the effective Hamiltonian H.g extended by the NP operators (3.10) and
write the ¢?-cut dependent B — Xl branching ratios in terms of (pseudo-) scalar

and tensor Wilson coefficients as (see, e.g., [105])

B2, g0 = BB = X,ll) = B2 2 jsm+ (IC7* +[Chs[) Mz (3.125)
+(|Cs + Cp[* +|Cs + Cp|* + |Cs — Cpf* +|Cg — Cp ") Ms,
where
Tnax 2 ]2 5 _
Msr = 28—7722 o dg* Msr(q®), Bo= (Ziiz “ﬁiﬁ;' f(nli(fmb—))m)((;fj/l;%)
(3.126)
and

Ms(q®) =2¢°(mi — ¢*)*,  Mqy(q®) = 63—4(m§ — )2(2m? + ¢%). (3.127)

The factor By, is fixed due the normalization of B(B — X,lI) to the well measured
experimental value of B(B — X.I1)

1 dT(B — X,ll)
(B — X.iy) d ¢?

B(B — X,ll) = B(B — X i) / dq* (3.128)

in order to avoid a strong dependence on m;.
In the expressions (3.127) we neglect kinematical factors of mg and m; in the NP

part and evaluate (3.126) and (3.127) with a b-quark mass of 4.8 GeV, corresponding
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to the pole mass in accordance with [57, 92]. The functions f(m./m;) and k(m./my)
represent the phase space function and QCD corrections of the decay B — X,

respectively, and can be seen in [105].

Since Mgr > 0 are positive for the whole kinematic region, (pseudo-) scalar
and tensor like NP enhances the B — X,ll branching ratios, and only the upper
boundary of the experimental value of B(B — X,ll) becomes a constraint on the
corresponding Wilson coefficients. Also, since My > Mg, the inclusive branching

ratios are more sensitive to tensor than scalar and pseudoscalar operators.

There are two interesting kinematical ranges. First, the range 0.04 GeV? < ¢% <
m7 where the lepton flavor specified data exist, and we use these data as a constraint.

For this range numerical values of Mg are
Ms=192-10"%, Mp=1.84-107°. (3.129)
The Mg p-coefficients for the low dilepton mass region 1 GeV? < ¢? < 6 GeV? are
Ms=0.52-10"%, Mz =0.83-107°. (3.130)

Note that we used here the b-quark pole mass in the NP part of B(B — X,ll) as
well. To be consistent with the SM results of [67] the 1.5 mass should be used once

the next-to-leading order corrections to the NP part are known.

For the B — KII decay studies we neglect with (pseudo-) scalar and tensor
interactions and rewrite the branching ratio of B — Xl decays as The branching
ratio of B — X,Il is

B(B — X,1) B(B — Xll)ig2,,.3.005M

162,100 ] =
+ { ICR7 2+ |C42 + 2Re(C5MEN™) | My

+ Re(CoCN" + GOSN 4 il ) Mo (3.131)

+ (ICYP[2 + |Co2 + [CXF I? + Clof? + 2Re(CEMCH™ + C%“‘C%P*))Ms},

where the SM contribution has been splitted off. The ¢?-cut-dependent functions
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M, read as

B(bfsn e 2 16mp 2 4 2 9 4
M1:T§/2 dq E?(mb_Q)(me_mbq —q°),
qmin

Bb—>sfl 42 .«
M, = 08/ dg? 16 m2(m? — ¢°)?,

mb qrznin
Bg_wﬁ e 24, 2N/ 4 2 9 4
My =—"3 / dg* 7 (mjy — ¢°)(my, +mig® — 24). (3.132)
mb q?nin 3

The experimental data as well as theory predictions are shown in Table 3.8. For

those two integrations regions the quantities M, have following values
e for ¢*> € [1,6] GeV*:  M; =3.61-107% My =0.58-107% M3 =0.06-1075,
e for ¢> € [> 0.04] GeV*: M; =1.05-10"°, My =0.12-107°, M3 = 0.02-1077,

where we used the b-quark pole mass miwle = 4.8 GeV.

Since the NP parts of branching ratios are at LO, we take for the theoretical
uncertainties of the NP part twice the SM uncertainty in order to account for the
missing higher order terms.

For the NP analysis of the C’IS(:}D and CF, p; Wilson coefficients we use branching
ratios of the B — X,ée and B — X, decays for ¢> > 0.04 GeV? denoted by
B}“Cl\bom} in Table 3.7. Since only for this kinematical region the numbers are
accessible for the muon and electron channels separately. The experimental values
can be compared with SM predictions taken from [57, 92]. The second region,
1GeV? < ¢ < 6GeV? | will be consider to predict B!, ¢ for | = e, using
B g oM = (1.64 +0.11) - 1075 and BL“CI|[1,6]7SM = (1.59 £0.11) - 107 [67]. These
values are close to the experimental world average Bi™|(; g exp = (1.60£0.51) - 107°
[99, 106, 107] which is lepton flavor averaged and we therefore can not use it as a
constraint.

On the other hand for the analysis of the C’i(l)NP Wilson coefficients we employ the
branching ratios in the both ¢? regions, see Table 3.8, using the experimental data
averaged over lepton flavor.

The most important and currently best measured are B — X, being sensitive
to C- and B — Xl testing all 6 Wilson coefficients. For these processes branching
ratios can be splitted into the SM and NP contributions. In the case of B — X,y it

reads as

B(B — X,7) = B(B — X)lsw+ By (ICX7[2 + 2Re(C5™MON ™) + 4 )
(3.133)
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with CS™% being real and

2 B(B — Xclﬂl)

fme/my)s(me/my)

Qe

Vi Vis

Bb—>s~/ 6—<
Veo

(3.134)

™

Here f(m./my) and k(m./my) represent the phase space function and the QCD
corrections of the semileptonic decay [108]. Both the SM branching ratio at NNLO
and experimental one are given in Table 3.8 for the photon energy £, > 1.6 GeV
cut.

App Forward-Backward Asymmetry of B — K*I] Decays

We should notice that we do not consider in our analysis B — Kll and B — K*Il
decays as a constraint. The main reason is that currently available data are pre-
sented with ¢?-cuts where QCDF does not apply. In addition the experimental and
theoretical uncertainties are much larger.

Instead we consider the less stringent but important measurement of the forward-
backward asymmetry Apg of B — K*II decays. We employ early data from Belle
and BaBar [53, 54, 55|, which strongly indicate that the sign of Apg in the high-¢?
region above the second charmonium peak is SM-like. A rigorous theory calculation
of the exclusive B — K*[I decays in this kinematical region can be facilitated with
an operator product expansion in Aqep/Q and m2/Q? where Q = {\/?, my} put
forward in [109]. The leading contribution and also the order m?/Q?* terms do
not introduce new non-perturbative matrix elements beyond naive factorization.
Corrections start to enter at O (asAqep/Q). The framework holds at low recoil,
(Mp — My+)* = 2MpAqep S ¢° < (Mp — Mg+)?, which covers the large dilepton
mass region above the ¥ resonance, ¢> > 14 GeV?

To leading order in the 1/@Q-expansion we obtain the App at low recoil as
2 eff 2mb * / ng , Iy
App(q®) Re[(Cg () + ZZboetty o — (O + 20 CIO]. (3.135)

The effective coefficients read as

C 4
Cit = Cr — gg — —04 — —Cs — _C6 + — [(Cl — 6Cy)A(q?) — Cstm(qz)]’

Cs" = Co+ Y (¢*)|me=o0

B30iC@) + (€1~ 6Ca)Ble) - 50 - GEY(@)]. (3:136)

where Y (¢?) is given in Appendix B.4. The functions F8(7’9)

whereas functions A(¢?), B(q*) and C(q?) are given in [110].

can be found in [19],
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Interestingly, the dependence on form factors can be factored out in App (3.135)
at this order. We require that the sign of the integrated App over ¢® > 14 GeV? to

be negative according to experimental observations, see Table 3.8 .

Time-Dependent CP Asymmetry in By, B; — K*°(— K°7%)y Decays

Since the branching ratio of B — X, is not sensitive to interference of the O
and (9’7 operators (the interference of photons with different polarizations), we dis-
cuss the additional important constraint from the time-dependent CP asymmetry
in By, By — K*(— K°%)y decays [111]. The asymmetry is given by

Acp(t) = F(B(t) — f(*’y) —T'(B(t) — K*y)
T T(B(t) — K) + T(B(t) — K*7)

= Sk+ysin(AMpt) — Cirry cos(AMpt),

(3.137)

where the term proportional to Sk~ is responsible for the interference of photons
with different polarizations. To illustrate this we give an expression of Sk-, at the
lowest order (indicated by the superscript (0) for the contributions already presented
in the SM):

Sgeny = —% sin (26 — arg(CéO)C§)> ., T= C’é/CéO) . (3.138)
Here we assume that there is no physics beyond the SM in B; — Bg-mixing, and
its phase is given by the CKM matrix elements. The dimensional analysis suggests
that the SM value of Sk-, can be larger than naive SM estimate O (m;/my). Power
corrections can give additional contributions to r of the order CyAgep/(3myCr) ~
0.1 [112]. We calculate Sk-, using QCDF following [20] including o,-corrections
adding a rough estimate of power corrections according to [112].

Assuming CXP and C} to be real and applying the data from Table 3.8 we plot
the constrained parameter space in Figure 3.13. One can see that together with
semileptonic decays Sk, plays significant role as a NP constraint. The regions
allowed by B(B — Xyv), Sk, and B(B — X,ll)|j1 g are shown as the green ring,
the red cross and the blue half circle, respectively. Including the power corrections
enlarges red cross to the dashed area. Therefore the present experimental situation
is not sensitive to the inclusion of the power corrections, which enlarge a little bit

the red cross to the dashed area, see Figure 3.13.

3.6.2 B — Kli: Beyond the Standard Model
New Physics in F};, Rx and AL

In this section we present expressions for F},, Ry and AL, depending on NP Wilson

coefficients corresponding to the operators (3.10). The matrix element is modified
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due to additional contributions from scalars and tensors and is written as
- Gra, * 2 o, Ko(T,
MB = KT = L2V, Vi €t) Pl [Pl) + vl ] (3.139)
+ (Fs + cos OFp) [ll] + (Fp + cos 0 Frs) [l_’}/g,l]) .

where the functions Fy p get additional terms and the Fg 75 are completely new:

2VAB fr(g?) 2VAB fr(g?)

4 . g Mg+ Mg fi(¢?) m ” Mg+ Mg fi(¢?)

1
CTS’

LMD M3 - M2 ( fole?)
Fp = 5 me —mf f+(q2>(053+0§3) +m;Cho [ qu K <f+(q2) - 1) - 1] )
(3.140)

_ EM% — M fold?)

_ me Tp(q2) 8ml fT(q2) Cl
2 my — Mg f+(q2)

Mp &p(q?) - Mp+ Mg fi(g?) "

The coefficients of the double differential expansion (3.60) read in the presence of

Fg (C'ZS—I—C'g), Fy =Cy+

NP wilson coefficients as follows

_ale’) ¢ (B|Fs|* + |Fpl?) + é(|FA|2 + |Fv|?)
ToVAB &R 1
+ 2my(M% — ME: + ¢*)Re(FpF}) + 4m? M3|F4|?, (3.141)
bl(qz) 2 [ 22 * *
_— =2 Re(FsFr) + Re(Fpl
r g~ 26 [ Re(FSF]) + Re(FeFry)
+ my |:\/X51R€(F5F{;) + (Mé - M]2{ + qz)Re(FT5F:1)] }7
(3.142)
alq®) — (ﬁfIFT|2 i |FT5|2) _ éﬁf(|FA|2 + |Fy[?) 4+ 2mV B Re(FrEy)
Lo VABEE 4

(3.143)

We assume in the following all NP Wilson coefficients to be real and at the low scale
ty, i.e., here C! = Cl(1y). The LO RGE evolution from the electroweak scale can
be done with the anomalous dimensions given in (3.11).

If we keep the lepton mass non-zero and integrate our observables over the dilepton
mass region 1 GeV? < ¢® < 7 GeV?, then using the central values of the input
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parameters given in Table 3.4 we find the following expressions for the branching

ratio

T+
B —
: [1.64ps}

2 2 12 12 2
m; ( Cr Crs Cp Cg

_ _ o O 3
T Gevi\3287 T 3282 10362 5.982)+ (mi)

C! Ct
1.91 4 0.02(C§ + CE) + 0.06 (CF + CF) + (ZZV (o 59 "9 9PQ>

1077, (3.144)

the numerator of FY; (3.68) multiplied to 75+

2
_ | TB% my 12 12 12 12
27p: (A + () = |:1-64PS:| [(0.51 GV +0.02(Cg 4+ Cp) +0.19(Cy + Cr5)

(3.145)

! ! 2 12 12 12 12
my ( Cr Cp ) my ( Cr Crs Cp Cs ) +0O (m?)] 1077,

T Gev 009 2.0 GeVv2\3.282 1892 10362 5.982

and the numerator of the normalized forward-backward asymmetry multiplied by
T+ (367)

TR+
o By = [1 GZps]

m (CL (!
0.06(C5Ch + CpClhs) + Gelv (6.2S5 - 1%@)

1077, (3.146)

my (ClsClT CpCrs

T GevE\ 4122 1122 )+O(m?)

Thus, FY is given by the ratio of (3.145) and (3.144), Rx by the ratio of (3.144)
for | = p and [ = e and ALy by the ratio of (3.146) and (3.144), respectively.
Replacing C p — C§ p + C§ p we can include the contributions from the chirality-
flipped operators OF . The higher order terms in the expressions (3.144)-(3.146)
are suppressed kinematically by higher power of the lepton mass. The equation
(3.144) illustrates the fact that the B — KII branching ratio is not very sensitive
to NP effects from scalar and tensor operators due to the small coefficients in front
of the NP couplings with respect to the SM contribution. In the Section 3.5.1 we
found that B; possesses large uncertainties in the SM which in addition will hide
NP effects unless the NP Wilson coefficients become large C'™ > 1. This can be
avoided in Ry being the ratio of two decay rates and having tiny SM uncertainties.
Thus, Rx is a much more powerful probe of NP than the B — KII branching ratios.
Particularly, a combination Ry — 1 can be significantly modified with respect to the
SM value by the terms both zeroth and first order in the lepton mass.

Similarly to the combination Rx — 1, FY (3.145) and ALy have the clean SM
predicted values (see Section 3.5.1). Both observable are also more sensitive to the

tensor Wilson coefficients than to (pseudo-) scalar ones. Note that the dependence
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of B; and F; on the (pseudo-) scalar Wilson coefficients is the same. In the leading
order in the lepton mass, the deviation of ALy from its zero SM value requires the
presence of both (pseudo-) scalar and tensor like NP.

In the Table 3.7 we present current experimental information on FY;, Ry — 1 and
ALp observables. In the second column we give estimates of the SM predictions.
Unfortunately, these data can not be used in the analysis being aimed to constrain
NP Wilson coefficients. The reason is that the data on Rg include large dilepton
masses where QCDF is not applicable and the values of F}; and ALy are in addi-
tion lepton flavor averaged. We do not take these constraints into account since a

straightforward application of these data is impossible.

Model-Independent NP Analysis

Summarizing previous sections, we have four experimental bounds at our disposition,
i.e., B, — Il and B}“Cl|[>o_04] with [ = e, i, and twelve NP Wilson coefficients. Since
the existing experimental constraints do not allow us to perform at present a full
model-independent fit of all Wilson coefficients, we split our study into four steps.
We consider the following four benchmark scenarios with (pseudo-) scalar operators

(Scenario I-IIT) and the tensor operators (Scenario IV) defined as:

— Scenario I: NP in C% and C4, all other NP contributions vanish.

— Scenario II: Same as Scenario I, but with the additional assumptions C% =

—CL and C! oc my.
— Scenario III: NP in C§, C} and C¥, C}, the tensor coefficients Cf, ;5 vanish.

— Scenario IV: NP in the tensor coefficients C%, Ch., all other NP contributions

vanish.

Scenario I is inspired by the MSSM for large values of tan 3 (see also Section 3.3.1).

One should comment that we employ all experimental bounds in the analysis
at 90% C.L. The resulting allowed ranges of the NP Wilson coefficients in each of
the scenarios are summarized in Table 3.9. These values of the parameters (Wilson
coefficients) predict numerical values of B — Kl observables obtained for 1 GeV?* <
¢® < 7GeV? and given in the Table 3.10. Since the current experimental errors
dominate the theoretical uncertainties, in the analysis we do not take into account

SM uncertainties. Their inclusion would allow for slightly bigger NP effects.

Scenario I: Scalars CL and CL,

In the Scenario I we consider only scalar and pseudoscalar Wilson coefficients C%

and C} per lepton species. We start with a discussion of the Wilson coefficients for
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muons, C’gf, » where the bound from B(B, — jijt) is stronger than that from the inclu-
sive decay BL“CI |[>0.04)- In Figure 3.15 various bounds on C'g p as contours correspond-
ing to different upper bounds on B(B, — jiu) < {0.05,0.1,0.2,0.4,0.6,0.8,1.0}-1077
are displayed, reminding that the current experimental bound is B(B, — jiu) <
0.8 -1077 90% C.L.. Employing the ranges for the C% and C% we calculate the
ranges for B — Kll and B — X,ll observables which can be seen in Table 3.10.
The F}; can deviate from the SM by about 40% whereas the forward-backward
asymmetry is less then 1% in agreement with and updating earlier findings [58].
The forward-backward asymmetry ALy is small, of order one percent. The impact
on the branching ratio B, is about 2% and can be completely neglected as soon as
one takes into account SM uncertainties. Also the NP contributions to B[y ¢ and
BL“CI\[>0,O4} are small compared to the theoretical uncertainties.

Concerning the Wilson coefficients for electrons the case is different. The current
experimental bound from B(B, — ée) is much weaker than the one from B [>0.04]-
Similarly to the muon case, in Figure 3.15 we plot the contours in the C§ — C§
plane corresponding to the different bounds from B¢ 04 < {4.5,5.0,6.0,6.8,8.0}-
107%.  Additionally we plot in the same figure hypothetical future bounds from
B(B, — ee) < {0.1,0.5,1.0} - 107°. As can be seen, the improved measurements
on B(B, — ée) would be important when restricting C§ . The allowed ranges for
C¢ p determined by B[54 < 6.8-107% at 90% C.L. are given in the Table 3.7.
The corresponding ranges for the decay observables for [ = e are presented in Table
3.10. The flat term in the angular distribution, F7j; is strongly enhanced and can be
of order 40%. The branching ratio B, can be enhanced by about 60% with respect
to its SM value. Since, Rk has inverse dependence on B, its allowed region is
extended to lower values and currently can be 40% smaller than the SM value. In
the Figure 3.16 we plot correlations B, — F}; and Rx — Ff;. Particularly, one can
see a significant decrease of Ry and huge increase of Fj; with respect to their SM
values. The forward-backward asymmetry Afp is one order smaller than the one for

muons. The B g is enhanced by 60% with respect to the SM value.

Scenario Il: MSSM-like C§ = —C%

The discussion of such scenario can be interesting due to similarity with the MSSM
at large tan 4. For instance, similar to the SM the Wilson coefficients in the MSSM
C%.p ~ my and in turn C§ p can be safely neglected with the result that all observ-
ables corresponding to b — see are SM-like. A further restriction appears due to
the relation C§ = —C'5 which holds in the large tan  MSSM only for the dominant
leading order term ~ tan®3. We also neglect chirality-flipped Wilson coefficients

C’g‘jp because of the additional suppression mg/m,. These additional assumptions
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Wilson coefficient Sc 1 Sc 11 Sc 111 Sc IV

Csp [—8.3,8.3] — [—8.3,8.3] —

(@) [—0.69,0.69] [—0.55,0.41] [-5.6,5.6] —

ch [—0.55,0.82] =—-Ck [—5.6,5.6] —
C¢p — — [—8.3,8.3] —
Ct'p - - [—5.6,5.6] -
C s - - — [—1.2,1.2]
C¥rs - - - [—1.1,1.1]

Table 3.9: The allowed ranges for the NP Wilson coefficients C! in Scenarios I-

IV after using the constraints B(Bs — ée) < 5.4 -107°, B(Bs — jiy) <
0.8 1077, B g4 < 6.8 -107% and Bifd|>0_04 < 6.3 -107°, see Table

3.7. A “=” means that the corresponding coefficient is zero in this NP
scenario.
Observable Sc 1 Sc 11 Sc IIT Sc IV
Fg < 0.39 — < 0.56 < 0.13
FY [0.013,0.035] | [0.018,0.032] | [0.013,0.56] | [0.014,0.18]
Ry [0.61,1.01] [0.996,1.01] | [0.44,2.21] [0.93,1.10]
B.[1077] [1.91, 3.14] - [1.91,4.36] [1.91,2.00]
B, [1077] [1.90, 1.94] [1.90, 1.93] [1.90, 4.26] [1.87,2.10]
A [%] [—0.02,0.02] — [—0.02,0.02] | [—0.02,0.02]
Abp (%] [—0.6,0.6] [—0.5,0.3] | [—4.46,4.46] | [-3.1,3.1]
B(B, — ée) [1077] < 1.17 — < 2.33 —
B(By — jip) [1077] <0.8 <0.8 <0.8 —
By ¢ [107] [1.64,2.35] - [1.64,2.35] | [1.64,2.83]
By ¢ [107F] [1.59,1.60] | [1.59,1.60] | [1.59,2.17] | [1.59,2.50]
B (50,04 [107°] [4.15,6.8] — [4.15,6.8] [4.15,6.8]
B 2000 1076 || [4.15,4.18] | [4.15,4.17] | [4.15,6.3] | [4.15,6.3]

Table 3.10: Allowed ranges for b — sl observables in Scenarios I-IV after taking

into account the constraints from B(Bs — Il) and B™ |04 for | = e
and [ = pu, see Table 3.7 and the text for details. A “—” means that the

corresponding observable is SM-like.
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give rise to the expectation of smaller deviations from the SM than in Scenario I.

The allowed range of C% and the effects of NP on the rare decay observables
are given in Table 3.9 and Table 3.10, respectively. In the Figure 3.17 we show
the dependence of B — Kl observables on the only Wilson coefficient Cg. The NP
contributions enhance F}; by 30% with respect to the SM value. The deviations of B,
from the SM are of the order of 2%, much smaller than the theoretical uncertainties.
The same holds for B}?!|1,¢/, which confirms earlier studies within the MSSM [113],
Since B, is SM-like in Scenario II, the deviation of Ry from the SM is much reduced
with respect to the one in Scenario I. We find NP effects of 1%, which are larger
than the uncertainties of the SM prediction. The forward-backward asymmetry is
smaller then 1% in agreement with previous works in the framework of the MSSM
[114].

Scenario Ill: Scalars CY, C% and CY4, C%

In the third scenario we consider the full set of (pseudo-) scalar Wilson coefficients
including the chirality flipped ones C’é{ p for Il = eand [ = p. Thus, as we have
already mentioned in the Section 3.6.1 the only bounds from B, — Il can be evaded
since Cf  and corresponding CY , Wilson coefficients contribute as a difference in
the expression for the branching ratio. Therefore, one needs to use the whole set
of our experimental data, i.e., both B(B, — Il) and Bi*|(~0.04. The allowed ranges
are given in the Table 3.9. The chirality-flipped Wilson coefficients have identical

ranges as the unprimed one and all C;’s are comparable in magnitude.

The large Wilson coefficients lead to big NP effects in the rare decay observables,
see Table 3.10. In Scenario IIT Ry can both increase and decrease significantly with
respect to the SM as opposed to Scenario I where B(B, — fij) permits only a large
decrease of Rg. This happens due to the fact that the muon Wilson coefficients
become less constrained. The correlation between Fl; and Ry can be seen in the
Figure 3.18, where in addition we show contours corresponding to the predictions of
By < {1.75,2.0,2.17} - 107° for muons and B¢ < {1.75,2.0,2.25,2.35} -
107° for electrons. The NP contributions enhance both B, and B, by order 200%
above the SM such that measurements of these observables in the low-¢? region
could provide constraints regardless of the large form factor uncertainties. In this
scenario the forward-backward asymmetry of the muon channel reaches bigger values
in comparison with other scenarios, which is of order (4 — 5)%. For the electron

channel the forward-backward asymmetry is negligible.
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Figure 3.17: Dependence of B — KIl observables, integrated over the interval
1 GeV? < ¢? < 7 GeV?, on NP Wilson coefficient Cy in the Scenario 1II.

95



Angular Analysis of B — K, K*1l Decays

22 22
2 2
s A st )
1.6 16 1
14 ‘ 14
M M |
: : Y
12 12 ‘ ‘
| . N
058 b 08 - )‘
0.6 / 0.6 |
0.4 0.4
0 01 02 03 04 05 06 0 01 02 03 04 05 06
Fj Fiy
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in Scenario III (left-hand plot). In the right-hand plot contours of
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Figure 3.19: In the left-hand plot contours of B[~ .4 are shown in the C% — C%,

plane in Scenario IV. Each contour encloses values of BX|-q0y <
{4.5,5.5,6.3,6.8,8.0}-107° starting with the innermost. Corresponding
constraints for Cf — C¥%. can be read off from the left-hand plot as well.
In the right-hand plot contours of B![;; ¢ < {1.75,2.0,2.25,2.56}-107°

are shown for F}; versus Ry in Scenario IV starting with the innermost.
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Scenario IV: Tensors CL, Cl.

In Scenario IV we consider only NP in C’IT7T5 and only inclusive B — Xl decays
(3.125) are sensitive to tensor interactions. The allowed ranges for tensor Wilson
coefficients can be seen in the Table 3.9. We plot the bounds on Cf, 15 in the left-
hand plot of Figure 3.19, where contours of B"%|(~0.4 < {4.5,5.5,6.3,6.8,8.0}-107°
are shown in the Cf — C%; plane starting with the innermost. The constraints on
C’%H from upper bounds on Bifld\[>o.o4} can be read off from the same plot.

The NP effects in Ff; and F}; are comparable with Scenario III and huge with
respect to the SM. Ry receives order 10% corrections from NP which are well above
the theoretical uncertainties. The branching ratios B; are subject to NP contri-
butions < +10%, which cannot be separated from the larger form factor induced
uncertainties. Whereas Bi"|;; g gets large enhancement, about 70%, which makes
the inclusive decays a sensitive probe of tensor operators. The correlation between
the three observables F};, Ry and B[y ¢ is shown in the right-hand plot of Fig-
ure 3.19 for contours of B |y ¢ < {1.75,2.0,2.25,2.56} - 107°. Similarly to other

scenarios |Afg| is small and does not exceed 3%.

3.6.3 CP Asymmetries in the Presence of New Physics

In this sections we discuss NP effects on CP asymmetries defined in Appendix B.3

in terms of 6 NP Wilson coefficients. We consider two main possibilities:

e We vary all twelve parameters, i.e., six absolute values and six phases. We call

this scenario ”Generic NP”.

e We vary one particular Wilson coefficient assuming for the remaining Wilson

coeflicients their SM values. We call each scenario ”C; only”.

We make several plots corresponding for the particular ” C’i(/) only” scenarios applying
the constraints from Table 3.8. In Figure 3.14 we see the constrained regions for
Wilson coefficients in ” CY'Y only”, ”CNF only”, ”CN? only” and ”C; only” scenarios.
From the plots we can see that the rare decays give the strongest bounds. The Apg
plays an important role in the "C)" only” and ”C}y only” cutting out the regions
with large absolute values of Wilson coefficients. The time-dependent asymmetry
S+~ is only relevant for ” C’; only”. In the case of ”Generic NP” both Apg and Sk
become less important.

(D)

The dependence of the CP asymmetries A;"’ on the Wilson coefficients can be

seen from the analytical (NLO) formulae in Appendix B.3. Explicit LO expressions
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generic NP CYY only C'NP only C3F only ‘
(Acp) [—0.1,0.1]  [3,8]-107° SMike  [—0.02,0.02]
(As) [—0.08,0.08] SM-like SM-like SM-like
(AD) [—0.04,0.04] [-4,—1]-107% [=3,—1]-10=* [—0.01,0.01]
(AD) [~0.07,0.07]  [-0.04,0.04]  [~0.02,0.04]  [5,9]- 1073
(Ag) [—0.1,0.1] [—0.05,0.05]  [-9,-3]-1073 SM-like
(AD) [—0.76,0.76]  [—0.48,0.48] [—0.38,0.38] SM-like
(AD) [—0.48,0.48] [2.2,6.8]-10=%  [—0.28,0.28] [—0.17,0.17]
(Ag) [—0.62,0.60]  SM-like [~0.20,0.20]  SM-like
BB, — pp) | <1.4-107% <6.3-107° <1.3-1078 SM-like
C{ only CN? only C? only

(Acp) | [-3,6]- 1073 [—0.03,0.04]  [3.5,4.5]-1072

(As)t | [~0.02,0.02] SM-like [—0.02,0.01]

(AD) [—0.01,0.01] [—3,-1]-1073  [=3,—1]-107®

(AD) [0.003,0.01] [5,8] - 102 [7,8] - 1072

(Ag) | [-8,-3]-10%  [-6,—4]-1073  [-7,—5]- 1073

(ADY | [-6.2,-2.2] 1073  [~0.3,0.32] [—0.22,0.18]

(AD) [—0.07,0.07] [—0.17, 0.16] [—0.09, 0.10]

(Ag)t [—-0.036,0.032]  [-3.1,3.2] -107% [-0.070, —0.080]

Table 3.11: The ranges of the integrated CP asymmetries <A§D)> for (g2, @ux)
(1,6) GeV? are given after applying the experimental constraints at 90%

C.L. for the general scenario and the scenarios with particular Wilson
coefficient only. Note that in the scenarios ”CPg” only” and ” C;’g only
” B(By — i) is SM-like.
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for the T-odd asymmetries, which present the most interest, read as

AQ:MD?Q-@)Im [(o — O )(CSTO oy (3.147)

4i? e
AP = A%{Im [qgm Cy + Cf) O + —?b om0 cr

~

(= a0y = OO + (1 80y - 0405”*))]

/\

— Re(YO)Im {cg ; (1= 3" (1+§)C§)]}+0(Xu),

(3.148)
e 2 e ™ / *
Ag = 4A%{1m [C§°> oW + Cﬁ 4+ —(Cﬁ c — e )}
- —Re(Y Im [207 f’cg} } +0O(\), (3.149)

where for AL Ag we neglected the SM CP violation suppressed by M. From numer-
ical model-independent formulae for the B — K*(— K )l branching ratio and CP
asymmetries in Appendix B.5 one can read out the dependence CP asymmetries on
a particular NP Wilson coefficient. The numerators of AEQM are sensitive to Crg
and C7 o whereas the numerators of AP, and Ag probe C7 10 and C% . The numera-
tors of Aég) can be affected by all Wilson coefficients considered here. The Aj g are
very sensitive to the flipped Wilson coefficients and vanish in the limit C! — 0 at
lowest order in the 1/FE-expansion. In Appendix B.5 we provide numerical model-
independent formulae for branching ratios and CP asymmetries as functions of all
NP Wilson coefficients.

In Table 3.11 we show the allowed ranges of the CP asymmetries in various NP sce-
narios. The asymmetries are integrated over low dilepton masses, ¢> € [1,6] GeVZ.
Numerically we find that the CP asymmetries can deviate significantly from their
SM values, which are doubly Cabibbo-suppressed and below the percent level. Espe-
cially, this concerns T-odd asymmetries A%?g which can receive large NP enhance-
ments, up to order one. T-even CP asymmetries can be enhanced by one order
of magnitude up to < 10%. By "SM-like” we denote a residual tiny contribution
coming from the normalization to the CP averaged decay rate, which can not be
distinguished from the SM value at 1o. In Table 3.11 we also predict an upper
bound for the purely leptonic decay By, — [is which has strong sensitivity to the
combination |Cyy— C1,| of NP Wilson coefficients (see [115]). We find a possible en-
hancement of B(B, — fiyt) up to almost an order of magnitude in NP scenarios with
these coefficients modified, see Table 3.11. The largest branching ratio, obtained

with generic NP, is still a factor of two below the current experimental upper bound
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of B — K, K*Il Decays
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Figure 3.20: The dependence of the integrated T-odd CP asymmetries (A;g,) for
(P> @) = (1,6) GeV? on NP Wilson coefficients after applying the
experimental constraints. In each plot all other NP Wilson coefficients

have been set to zero.
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3.6 New Physics Analysis

given in Table 3.8. We conclude that improved data on or a discovery of B, — Jij

decays will have a strong impact on this type of analysis.

In Figure 3.20 we show the dependence of the T-odd asymmetries integrated over
(s @) = (1,6) GeV? on the absolute value and the phase of the NP Wilson co-
efficients in particular scenario. The plots indicate the strong dependence on phases.

In Figure 3.21 we also present correlations between T-even and T-odd asymmetries

in several scenarios. Falsifying such correlations can establish the nature of the NP.
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Angular Analysis of B — K, K*Il Decays

3.7 Conclusion

We have shown, that the observables appearing in normalized 1/T';dIl';/dcos€ of
B — KIl decay angular distribution offer great opportunities to test the SM and
search for NP. Namely, they are the flat term in the distribution, F};/2 and the
forward-backward asymmetry ALg. The angular distribution can be presented as the
power series in cos 6 truncated after power two. The powers greater than two appear
only if we include either higher dimensional operators in Heg or QED corrections.
Both are strongly suppressed by powers of the low energy masses and momenta over
the scale of electroweak NP and by «./(47), respectively.

Whereas the SM predictions of B — Kl branching ratios suffer from O (30%)
uncertainties, the SM value of F}; is order few percent, and can be cleanly predicted
using QCDF for low dilepton masses with ~ 6% accuracy, see Table 3.5. Being
Fl, oc m? in the SM, F§ is negligible. At the same time the forward-backward
asymmetry vanishes exactly in the SM up to the aforementioned higher order OPE
and QED corrections. We also analyzed the ratio of B — Kpuu to B — Kee decay
rates, denoted as Ry, being one at the level of my, /¢* ~ 107* in the SM. Such strong
suppression comes due to the cancellations of O(mj)-corrections at LO in 1/E and
ay in the decay rate. However, lepton flavor dependence in Ry can be increased
by taking into account collinear QED logarithms, which have not be computed for
B — KIl decays yet.

The clean and definite predictions of Fl, ALy and Ry in the SM makes these
observables very attractive for NP studies. All observables, i.e., Fl;, ALy and Ry are
sensitive to Higgs and tensor interactions. We have worked out NP signatures and
correlations by taking into account existing data on B(B, — Il) and B(B — X,lI)
for | = e and | = p separately. We found that the NP modifications to the angular
observables Ff;, Fy;, Aig and Ry — 1 can be sizeable, see Table 3.10.

The current experimental situation for the observables FY;, ALy and R is at a very
early stage, see Table 3.7. In particular, all measurements average [ = e and [ = p
final states except the ones of Ry [53, 55]. In addition the data include ¢?-regions
where QCDF does not apply. Therefore, for the future improvements and abilities
to compare with the theory all data in rare semileptonic decays B — Kll, B — K*lI
and B — X,ll should be available for each lepton flavor separately since deviations
from the SM could be [-dependent. Appropriate cuts in ¢® should be taken into
account to maximally exploit the theoretical predictions.

We also studied eight CP asymmetries, which can be constructed from the angular
distribution of the B — K*(— K)ll, in the SM and the presence of NP phases.
The SM predictions suffer from large uncertainties, i.e., ~ 20% for A£5, ~ 50% for

ACP,AG,A% and order one for Asg, coming from uncertainties in py, scale, CKM
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3.7 Conclusion

matrix elements and form factor uncertainties. In spite of large SM errors, the
magnitude of the CP asymmetries < 1072 makes them all ideal to search for a variety

of different NP effects. We summarize here specific features of the asymmetries:
— AP AP Ag are T-odd and can be order one with NP.
— AP Ag, AP, Ag are CP-odd and can be obtained without tagging from dI'+dT.
— As, Ag are very sensitive to right-handed currents.
— Az, Ag, (Ag) can be extracted from a single-differential distribution in ¢(6;).
— AD is very sensitive to the phase of the Z-penguins ~ C’ﬂ)).

Therefore CP asymmetries are sensitive to the whole set of NP Wilson coefficients.
Large NP effects are possible, which survive also the current experimental FCNC
constraints, see Table 3.11. The future measurements of the CP asymmetries will
make possible to test the SM mechanism of CP violation through the CKM matrix.
Further, the correlations between various CP asymmetries will be able to reveal the

peculiar nature of NP, see Figure 3.21.
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4 Summary

Today particle physics appears to be at the border of new discoveries which will shed
light on fundamental questions of physics. Thank to experiments at LHC we might
find the most important missing particle of the SM, Higgs boson. The existence of
it will confirm the mechanism of the mass generation of the SM particles. Besides,
it might be discovered a lot of other particles predicted by models beyond the SM.

On the other side B-factories and the Tevatron have studied and continue to in-
vestigate a large number of observables to test the SM and directly or/and indirectly
to demystify the nature of NP. In spite of the fact that the B-factory data agree
globally with CKM mechanism of flavor and CP violations in the quark sector, the
uncertainties of measurements are still too large to make some definite and final con-
clusions. Collecting statistics at the B-factories and the future Super B-factory with
high luminosity will continue improve the precision of CKM pattern by accessing
to branching fractions, kinematic distributions, asymmetries of rare processes in the
SM. In the forthcoming perspective with a help of LHCb, i.e., experiment devoted
to B physics at LHC, we have additional tool to learn more about flavor physics
with a higher precision.

Such rich experimental potential needs elaboration of appropriate observables.
Such important observables are those from processes proceeding through FCNC.
Being loop suppressed in the SM they could be very sensitive to NP contributions
which can be easily detected. Practically all extensions of the SM, e.g, Higgs doublet
models, fourth gereration, generic SUSY models, left-right models, extra dimensions
etc., lead to new sources of CP-odd phases. Therefore additional tools to probe
NP are CP violating observables. In this thesis we presented the example of the
observables in semileptonic b — s penguins with the above discussed properties.
Those are branching rates, angular distributions in rates, forward-backward asym-
metries, CP-odd asymmetries where some of them present null tests of the SM. In
the presence of NP we showed that the current experimental bounds from various
rare decays give large enhancements for these observables.

In the leptonic sector the neutrino oscillation experiments of the last decade con-
firmed the existence of physics beyond the SM. In comparison with quark sector
neutrino mixing is large, whereas the neutrino mass scale is O (0.1 eV) being much

smaller than quark and lepton masses. The topic of CP violation in the leptonic
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Summary

sector is still untested. Depending on the neutrino mass nature, i.e., Dirac or Majo-
rana mass, the number of CP violating phases can be three. The neutrino oscillation
experiments can not distinguish neutrino mass type. Whereas, in the future the
possible discovery of the neutrinoless double [-decay in some nuclei will claim that
neutrino mass has Majorana origin.

The important role in the analysis of the neutrino oscillation experiments play the
pion production from the nucleons with resonances as intermediate states. There-
fore, it is crucial to understand the production of leptons and pions by neutrinos.
The cross section of these processes depend on the nucleon-resonance form factors,
which can be mainly extracted form the experimental data. The currently available
neutrinoproduction data [49, 50, 51, 52| is not useful fot it due to low statistic and
inconsistency with each other. The future experiments like Minerrva, MiniBooNE,
OPERA, MINOS will improve this situation. Since the electroproduction data from
JLAB and the Mainz accelerators is more consistent and precise we used it to define
the vector form factors of nucleon-resonance transitions for first four resonances,
P33(1232), Dy3(1520), Py1(1440) and S11(1535). The calculated cross sections with
the updated form factors claim the importance of the second resonance region, i.e.,
D15(1520), Py1(1440) and Sy1(1535), with the energy increase of scattered neutrinos.
The future improvements of lepton-nucleon scattering will also be useful to under-
stand the phenomenon of quark-hadron duality (see more [116, 117]). For this the
resonance production region is particularly interesting having possibility to link it
with DIS region. These all dictate the need for further investigation in this field
both from experimental (next generation of accelerators) and theoretical (precise
calculations, background extraction, medium impact etc.) sides.

Thus, we expect that the near future of particle physics phenomenology will be

extremely exciting and fruitful for new discoveries which are just around the corner.
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A Resonance Production by
Neutrinos

In this appendix we collect the relevant formulae for Chapter 2. Particularly, we
give the explicit expressions for the structure functions of all four resonances, i.e.,
P33(1232), D13(1520), P11(1440) and 511(].535)

A.1 Structure of Hadronic Tensor for P35 and Di3

Following the notations of [38], we write the cross section of the resonance production

in a form close to DIS, that is, express it via the hadronic structure functions W;_5
as

d@ci% _ j_fcoszecmZVEz{Wm@%mi)
+ % [2</<; p)(K p)——m?v(Q2+mi)}
- ﬂ% {Q2k-p—%Q'P(Q2+mi)]
N nyfgmi@?;mi)—%yfgimi(’“‘p)}' (A1)

where m,, is the mass of the muon. The hadronic structure functions for the reso-
nance Ds3 are similar to those for the P33, presented in paper [38] (see Appendix)
and can be obtained from them by replacing myMpg by —myMpg. In the formu-

lae below the upper sign corresponds to the P33 resonance, whereas the lower sign
corresponds to the Dqs.

Wi(Q*,v) = o——Vi(Q*, v)R(W, Mg), (A.2)




Resonance Production by Neutrinos

CV2
Vi= 77(123./\)42 [(q-p—Q%)*(q-p+miy) + Mj(miv? + Q*m3%, + Q*myMpg))
N-""R
CVV2(q-p— 022+ (CY)2(q - p)2
LG (gp Q)4 (C5)*(q-p) (g p-+m2 F mxMp)
my
CVCV 2 CVCV
@-p- Q]\;}j P g p— QMg p+mdy T 2maMg) + Mg p]
L CY 9
+2—="q-plg-p—Q°)(q-p+mi FmyMpg)
my
( f) 2\2 AN2 CfC? 2 2
| p = Q) () 2= (g p - Q) [q-p+my £ myMpg],
N N
(A.3)
C’V cycy
V2= (Mz) Q* [q-p+miy + Mg] +m?vM43Q2 [ p+ (Mg Fmy)?]
Cy Y 2 | 2
+m[Q'p+(MR:FmN) + Q7
(CY)? | (CY)2(Q*+ M}) 20YCY
+( ﬂ%v + =5 ERTE LI s Q% [q- p+m3 F myMg]
CA
[(CA)QWA}ng(m) Q2] lq-p+my £myMg]|, (A.4)
N
cY o4
Vo= 2O - @ 0| @t 00
cvoa
+2{%(Q2—q~p)—CfC§‘] (Q*—q-p)
N
oYyea
+2{05VC§‘— 524(Q2—q-p)]q-p~ (A.5)
N

These are the dominant structure functions for most of the kinematical region. There
are two additional structure functions, whose contribution to the cross section is

proportional to the square of the muon mass.

CV
V, = (M2) [(2q-p— Q) (q-p+mb) — MAi(m% + myMg)]
CY)2(2q-p— Q2 CYV2(g - p)? coveoY
((GELP= @) | (CEPOPR OV N5 s
N N*R N
CXCX 2 2 2
o (200 = @)y 2uyb) 00
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A.2 Structure of the Hadronic Tensor for P;; and Sy,

cycy
+mNMRq p[2q-p+my F2myMg + Mp, + Q)
aemy | (CF) 2 (Cg)? 2 N2 2172
[(o PAE T e 20 p = Q)+ (@ - g p) + @)
ciod
m¥,
cacs
-2 2 C(Mp+@Q*—q- p)] [q-p+m} +myMg], (A.6)
Cy cyoy
V%—(Mz) a-pla-ptmiy+ Mp) + g p g p o+ (M F my)’]
R
cycy
+mNMRq plg-p+ (Mg Fmy)?+ Q7
ey G+ Mp)  cicy 2
2 plg- M
+ (m?v + m2, M + w2, )9 pla-p+my FmyMg]
(Cf)2 A 2mN A CAC(? 2
+ -p+(C5) + et - 250
[ m%v ]\42 4
AYA
+ ?\/[26 (Q'p—cf)} [Q'pﬂLm?vimNMR}- (A7)
R

A.2 Structure of the Hadronic Tensor for P;; and S

The hadronic structure functions for P;; and S;; resonances are:

== (g p+mi FmyMp)] Q'

[Q(Q p)® + Q*(m3 £ myMg —q-p)]

+ %2@2 [(a-p) (Mg F my) £myQ?] + (91")*(my £my Mg +q-p), (A8)

V2 V2

vom o [N B gy g, (A9
vV _A vV _A

Vs = dm? {g%@? + %(MR + mN>] , (A.10)
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Vi = m2 (95)° 2 M
L=y | [q-p—m3 F myMpg]
(gY)2 2 2 2 2 M All
+ 1 [(q~p) —Q%(q-p+myFmy R)] (A.11)
9/ 95 2 A_A (934)2 2
— 4 p(Mg F muy) £ mn Q7] F 29195 + -5 [(q- ) +miy F my Mag] |,
N
V2 V2 A A
o md [29 s Ry ot 4 BB ()|, (a2)

where the upper sign correspond to the P;; and the lower sign to the Sj; resonances.
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B Angular Analysis of B — K, K*li
Decays

Here we present auxiliary expressions and formulae which are important for the

discussions in Chapter 3.

B.1 Angular Coefficients .J\"

(a)

Here the functions J;" in the angular distribution (3.74) are given in terms of the

transversity amplitudes A, o, [63]:

. 32+ 4my ) ’
5 = SR b a4 (2 - 1) + e (4E AT+ A AT) |,

4 (B1)
g5 = 3Lk + 1ag + 20 e+ ometafag) (B2)
5= 22 LAt 1A+ (2 - ), (B.3)
J5 = - 3@ [|AL\2 (LHR)}, (B4)
=g [|A A+ (2 - R, (B.5)
Jy = 4\[ [ e(AFAFT) + (L — R)], (B.6)
- —\/_ﬁl [Re(AgAﬁ*) —(L — R)], (B.7)
Jo = —ﬁl {Re(ALAﬁ*) — (L — R)] : (B.8)
{ (AFALT) — (L — R)] (B.9)

[ (AFALYY 4 (L — R)] (B.10)

= Zﬁf {Im(Af ALY+ (L — R)] . (B.11)
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Angular Analysis of B — K, K*1l Decays

The transversity amplitudes in QCDF can be seen in (3.92) and have the following

CP transformation properties [59]

Ap" cp, APt = AF (6w — —ow), (B.12)
P Y 13
Ai’R 2 Ai’R = —Ai’R((SW — —(51/{/') (B14)

B.2 Optimal Observables from Optimal Weights

It is possible to construct weight functions W; which project out the J; from the
differential decay distribution (3.74). For this purpose it is convenient to rewrite the
distribution J in terms of associated Legendre polynomials P/™(x) in cos 6« and

cos ;. The requisite polynomials read as

P(cos) =1, P(cosf) = cos b, (B.15)
Pl(cos) = —sin 6, P)(cos ) = %(3 cos? 0 — 1), (B.16)
Py (cos) = —3sinf cos 0, P} (cosf)) = 3sin’ 6. (B.17)

Introducing x; = cos 0k, and x9 = cos f;, and using the orthonormality property of

the Legendre polynomials one can compute weight functions defined as

d*T g
= | di* dey dry dp W;——— 224 B.1
where
25 cos 2¢
Wao = — P2(1,) P2 : B.19
3,9 96" 2 (371) 2 (5172) {sin2¢} ) ( )
25 Ccos
sin ¢
5 Cos
W577 = ZP21(1L'1)P11(£L'2) . { . ¢} s (B21)
sin ¢
5

B.3 CP Asymmetries and Ay beyond the SM

Here we give analytical expressions of the CP asymmetries defined in (3.106) and

(3.107) including contributions from NP operators (3.9). The asymmetries have
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B.3 CP Asymmetries and Arg beyond the SM

been obtained from the transversity amplitudes in QCDF, see (3.92), valid in the
low dilepton mass region. The coefficients C¢T = C£T™M 1 CNP and € are taken
into account by Tfl\' Except for Acp, the CP asymmetries are given with their full
lepton mass dependence which is confined to powers of ;. Neglecting kinematical

factors M%./M%, the CP asymmetries as a function of the dilepton mass read as

81ty {ﬁﬁ M (=82 | TP T | 4 Pl TP+ TP
Acp = A——Rel — Cy—C R e L b
o=Agt g s e g G|t g
Tt T~ Tr+717
+ =L Cs+ ;O’* (ow — —5W)} +0(mi/q®), (B.23)
&L &1
215, {mb ey -1 T +717 }
A3 = A——Re{ — + Loy Lo — (5 —6w) v,
HEEE N o Gt G e i)
(B.24)
- I T (T7)
Ai) _ _ADmbﬂl e{ T _ 3 i (C C/) 5 bﬁ — (5W — _5W)}7
& §|| §L&)
(B.25)
7 T~ T~ T T~
AD:—ADT,:% { L Cio — ——I-AL Cr — (b — =6 },
5 3 € £ S fn 10 3 5” 10 ( w W)
(B.26)
Ay, TH+77 T —T"
A6 = .A — Re{ = L Ciko — J‘ic <5W — —5w)}, (B27)
S §1 &L
A / T AT— *
1 ql
AY ZADQIrn{Q”ﬁ’Tl 3 ﬁ?”[ T—f+§£ Cy — LA 0/*}
2 s &g s L\ & g &1 3
+ CyCy" + OOy — (Ow — _5W)}7 (B.29)
i THT)* [T T Tr+177 }
= —A25Im e e Ot L g
& { 52 SJ_ S &1 &L
—CyCL — CooCly— (B — —5w>}, (B.30)
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Angular Analysis of B — K, K*1l Decays

where (6 — —dw ) is short hand notation for conjugating all weak phases. Fur-

thermore,
G a? e MBBES(1 — )%t
A: 32_2671_5“/;&6‘/1‘,5‘ NF )
AD _ G% Oég |V V*|2Méﬂl2\/7(1 - S>4£||£J_ (B 31)
- 32.96 15 b ts Mg+ Ny .

where N is defined in (3.106).

At lowest order in «y, the expressions for the above CP asymmetries simplify by

70 g0 [0 ) .
3 201
e (1-— )C’Cﬁ(o) +(1+ §)C’;(0)
L= , (B.33)
§1 & (1— §)(Coﬁ(0 ! /(0) )
vaLO A%_’LO ( )CCH(O (1 - §)C’;(0) + %(Y(O) +5\uy(u)(0))
1 € (14 3)(CS™O — /Oy 4 A(YO 43,y 00)
(B.34)

Note that in the SM, or more general, in any model without right-handed contribu-
tions to the electromagnetic dipole operator, 7, = 7|, see Section 3.5.2.
The lepton forward-backward asymmetry is written as
126, N2 M3 (1 — 8)%¢%
dl’/dq?

o (TH + T , T T
v Re{ [Cg+ ”;b%} iy — {C ”;b(gil)} Cw}.

App = (B.35)

B.4 7, Amplitudes

Here we present the expressions of the 7, (o = P, L, ||) amplitudes calculated in
QCDF [19, 20]. The matrix elements of the Oy ;o operators of (3.3) can be directly
expressed through the B — K, K* form factors, whereas the remaining operators
contribute via the exchange of a virtual photon which decays subsequently into the

lepton pair. For the later part in QCDF one defines the matrix element as

% Tk i em z Vpo %
0K (p.6) [ HY Bow)) = 5 b(w(( )7 Dy

— 2 T(¢*)[Ex-Mpe, — (" - q)p]
2

— A7) a)[a" - ]\Z—%(pﬁé +1")]). (B36)
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Figure B.1: The diagrams contributing to the matrix elements (y*K, K*\HQQ\B)
The crossed circles mark the interaction vertices of the photon (see Ap-
pendix B.4 for details).
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for B — K*Il decays and

emy

472 Mp

(v K(p,e)| HY|B(ps)) = To(a®) [¢* (P + 1) — (M2 — M2)q"], (B.37)

for B — Kl decays. T, (a = L, ||, P) contain factorizable (f) and non-factorizable
(nf) contributions [19, 20]:

2 .
T = COg, () + I o Za / o Pl / du ) ()T (u, w),
(B.38)

where Z, p =1 and Z| = mg-+/Ek-. The first term depends on "soft” form factors
£, & and Ep. fa,frk and fX denote the B-, K- and K*-meson decay constants,
respectively, whereas ®p 4 (w), P (u) and ®2K*)(u) are corresponding the light cone
distribution amplitudes (explicit expressions for the ®,, ®p 1 one can find in [19]).

The remaining quantities C’s and 7"s are calculable perturbatively

W =00 4 2l 4
T () =T+ mLeT 1 (B39

The strong coupling «y is evaluated differently for C' and T' coefficients, at the scale

1/2 At leading order the diagrams in Figure

py ~ my, and the scale iy ~ (mpAqep)
B.1 (a), (b) and (g) contribute where the crossed circles mark the interaction vertices

of the photon. Leading order coefficients C' equal

2 M
¢ =cf v L _y(g C" = st - Py (g
2 M
C(Ovu) — q Y(u) 2 C(Ovu) — B Y(u)
1 Mg (q )> I me ( )
o) =—¢™, (B.40)

where O = C; — C3/3 — 4C4/9 — 20C5/3 — 80Cs /9. Explicitly Y (¢?) and Y™ (¢?)
read as

1 2 32
Y(g?) = hig,0)| 5Cs = 5Ci —8C5 - 306}

4
+ h(q2, mc) [gCl + CQ + 603 + 6005]

7 2 32 4 64 64
+ h(q2,mb) |: - §C3 - 504 - 38C5 — §C6] + §C3 + 505 —+ 2_706>
4
Y(g*) = [gCl + Cz] (h(q®, me) — h(q?,0)), (B.41)
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where
arctan z2>1
4 m2 2 4 Vz—1
h(q? = [In—2 -2 —z)|—(2+2)/ ]z -1
(a7 mq) 9<nu2 3 Z) g 22Vl =1 1+vI—z ir
n——-—— 2<1
NZ 2
(B.42)

defining z = 4m?/q*>. The diagram Figure B.1 (c) contributes to Cg) and the
diagrams Figure B.1 (d), (e) and (f) to the quantity C’fgnf).

The first-order corrections to C’s are separated into ”factorizable” (diagram (c)
of the Figure B.1) and "non-factorizable” (diagrams (d), (e) and (f) of the Figure
B.1) parts oM = ol 4 oD and they read as

(50 _ poft (1, ™ () o (1, M
o = ¢ (ln?—LJrAM), o = —cx (ln?+2L+AM),
o = ¢ =, cp) = -, (B.43)

The AM depends on the renormalization scheme of m; which is the overall factor
in the (B.36) and (B.37). In the scheme (PS scheme) used here AM and L are
defined as

2 2 2 2
L=-""1 1n<1—q—), AM =3In 22 _ ( —ﬁ). (B.44)

2
¢ my K mp

The factorization scale in the PS scheme is chosen puy = 2 GeV, see also Table 3.4.

The "non-factorizable” parts of the CM have the following form

" 3 1 e
C,(L £t _ - ( (O — 601)F2(7) _ C8ffF8(7)

2

a 1 ©) © , L off 1~(9)
T [(02_601)F2 +2C1(F1 +6F2 )—|—08 Fy } ’ (B.45)

n 3 1 .
C|(| ) = 1 ((C2 - écl)Fzm + CSHF8(7)

M 1 1
+ 2N — —O) R 120, (FO + —FY) + ¢8R ), (B.46)
me 6 6
cpl) = -, (B.47)

where O = Cg + C5 — Cy/6 + 20C5 — 10Cs /3. The functions F8(7)’(9) correspond to
1-loop matrix element of the operator Og and can be found in [19], whereas Fl(;)’(g)
being 2-loop matrix element of the Oy » operators, can be extracted from [110]. The
)

corresponding expressions for C") one can be obtained by replacing the F; 8(7’9 — 0
and Fl(g’g) — F1(’7279) - Fl(zgu) with F1(72912 given in [110].
Only the longitudinal amplitude receives contribution from spectator scattering at

leading order. This contribution comes from the so-called weak annihilation diagram
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where the photon is emitted from the spectator quark in the B meson which later

decays into lepton-antilepton pair (diagram (g) of Figure B.1):

TV (w,w) = T\ (u,w) = T\ (u,w) = 0, (B.48)
(0,t) Mpw 4Mp 4 64
T” (u w) —€q MBw — q2 e . (Cg + §C4 + 1605 + ?Cﬁ), (B49)
(0,u) Mpw AMp
ﬂ|7 (u (U) €q MB(U o q2 — je my 6!]“43027 (B50)
0 0 0
) =-1", 1) =0, (B.51)

where T|| “) is relevant only for charged B-meson modes.
The T, 7, are also divided into ”factorizable” (diagrams (h), (i) of Figure B.1) and
"non-factorizable” (diagrams (j), (k) of Figure B.1) parts T(1 )= Té,fi’i) - T("f 2

The factorizable contributions read as

TV (ww) = 28 T w) = O (B.52)
T (w,w) = T (u,0) = T (u,w) = T/ (u,w) = 0, (B.53)
T, =1 Tl =0 (B.54)
The non-factorizable contributions of the top-sector read as
Tfﬂt)(uaw) i~ iezqcz’g;j/[% + ;WWZ [euu(u, me) (Cy — %C’l +6C%)
+ eqty(u,my) (Cs — —04 + 16C + Cﬁ - %(Cg — —C'4 +4C5 — —C’G))

1 8
+caty(u,0) (Cy = 21+ 1605 — g06)],
TP (u,w) = 0,

n M 1

1 10
+ eq t||(u, my) (C3 — 604 + 16C5 + ?Cﬁ)

1 8
+ eq t||(u, 0) (Cg — 604 + 1605 — gCﬁ) y

Mpw 8C°H
T(nft) o B
- (W) = Mpw — ¢* —ie [ u+ ug?/M3%
6M 1
+ mB (h(anfé2 +ug?®, me) (Cy — 5C1+Cat 10Cs)
b
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5! 22
+ h(ﬂMg + uq2, mb) (Cg + 604 + 16C5 + ECG)
+ h(aMg + ug*,0) (Cs + FC‘* + 16C5 + 506)

8 15
57 (—704 +12C5 — 3206))} ;

nf nf,
T8 (u,w) = —T("Y. (B.55)

Here u =1 —wu, e, = 2/3, e, = —1/3 and ¢, is the electric charge of the spectator
quark in the B meson. The explicit expressions for the ¢,(u,m,) can be found in
[19].

B.5 Model-independent CP Asymmetries beyond the
SM

We give numerical formulae for the ¢*-integrated quantities B = 750 (dI'/dg?),
B = 7po (dI'/dg*) and Num <A§D)> for ¢* € [1,6] GeV? in terms of the NP Wilson
coefficients CNY'. Here, Num <A§D)> denotes the numerators of the CP asymmetries

multiplied by the B-meson lifetime such that the normalized CP asymmetries (see
(3.108)) are obtained from

Num <AZ(-D)>
<A§D)> S W (B.56)
B+ B
The dependence of the branching ratios on the NP Wilson coefficients can be written

as

X = Xqu [1 + 3 (@|CNP + biReCN? + GImCNY) + d,-jRe(ql\IPCJNP*)]
g j>i

(B.57)
for B, B, whereas the numerators of the T-odd CP asymmetries are parametrized as
X = Xgm [1 + Z (b:ReC}Y + ¢, ImC") + Z eijIm(C’ZNPC]l-\IP*)] for Num (A%y) .

j>t

(B.58)

The numerators of the T-even CP asymmetries read as
X = XSM |:1 + Z (bZRGCZNP + CZIIIlCZNP):| for Num <ACP,6> ,NU.IIl <AZ5> .

(B.59)
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Xsu i=17 i=7 i=9 i=9 i=10 i=10
Bas, a; 2.634 2634 0035 0035 0035  0.035

b | —0271  —0373 0162 —0.179 —0.288  0.205

=2444-1077 | ¢ | —0.156 0.001  —0.009 —0.0002 0 0
By a; 2.656 2656  0.036  0.036 0.035  0.035

b | —0312  —0.370 0158 —0.178 —0.290  0.206

=2423-107 | ¢ 0.106 0.003  0.004  0.002 0 0
Num (Acp)gy | bi 4469  —0.726  0.587  —0.345 0 0
=2068-10"° | ¢ | —30.770  —0275 —1500 —0.259 0 0
Num (As)gy | b | —0.077 5720 —0.012 0378 0 0
=0f ¢ 0542 —47.174  0.081 —2.743 0 0
Num (AP)g,, | bi 3.604  —3.604 0536 —0.536 0 0
=—8.642-107 | ¢; | —1.435 1435 —2487 2487 0 0
Num (AD), | bi 0 0 0 0 —0.244  0.068
=3.718-107° | ¢ 0 0 0 0 1152 —1.258
Num (Ag)gy | bi 0 0 0 0 —0.244  0.004
=—3.117-107° | ¢ 0 0 0 0 1774  —0.026
Num (AP) o | bi 0 0 0 0 —0.244  0.244
=—2496-107" | ¢; | —247.248  247.248 0 0 23019 —23.019
Num(Af),, [ bi| —0491  —1423 0176 —0.288 0 0
=1.706-10"° | ¢ | —189.333 —170.364 —16.524 —7.160 0 26834
Num (Ag)gy | bi 0 —8390  0.007 —0.491 0 0
= 0f ¢ | —6514 225487 —0.568  6.064 0 31913

Table B.1: The SM predictions Xgy and the corresponding coefficients a;, b; and ¢;
for i = 7,7,9,9,10,10". TFor Num (A3 9) Xsu has been set to zero and

the corresponding coefficients are given in units of 1077,
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d;j B B| e; | Num(AP) Num(AY) Num (Ag)T
7,7 | —0.255 —0.257 | 7,7 0 200.542 1801.269
7,9 0394 0397 7,9 0 —43.413 —1.547
7,9 | —0.107 —0.108 || 7,9 0 56.532 105.869
7,10 0 0 7,10 60.420 0 0
7,10’ 0 01 7,10 —60.420 0 0
7,9 | =0.107 —0.108 | 7,9 0 —56.532  —105.869
79 0.394 0397 7,9 0 43.413 1.547
7,10 0 01 7,10 —60.420 0 0
7,10 0 01 7,10 60.420 0 0
9,9 | —0.050 —0.050 | 9,9 0 6.558 7.799
10,10" | —0.050 —0.050 || 10, 10/ 0 6.558 7.799

Table B.2: The coefficients d;; and e;; for 4,j = 7,7,9,9,10,10" and j > i. "For
Num (Ag) Xgu has been set to zero and the corresponding coefficients

are given in units of 1077,

Here, the summations are over i,j = 7,7,9,9,10,10" and Xgy denotes the SM
prediction of the corresponding quantity. Note that for Num (As g) we have set Xgy

to zero, see Section 3.5.2, and, hence, the corresponding formulae read as
X = Z (b;ReC]" + ¢,ImC")  for Num (43), (B.60)

X =" (bReCN" + ¢ImC}T) + Y e Im(CNYCNP*) - for Num (4g) . (B.61)

J>i

The SM predictions Xgy and the coefficients a;, b;, ¢; and d;;, e;; are given in Table

B.1 and Table B.2, respectively. We assumed central values for all parameters.
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