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Abstract

The goal of this research is the precise investigations of the processes which are

helpful to test the physics of the Standard Model and beyond it. We concentrate

on the flavor sector of the theory which is still one of the sticking point in high

energy physics. At the same time flavor physics possesses a rich phenomenology

which makes it one of the hot topics in the current theoretical and experimental

investigations.

In this thesis we present the studies of several processes of particle physics taking

place at the energy scale of O (GeV), namely neutrino interactions with nucleons

and semileptonic B meson decays.

For the neutrino scattering on nucleons with neutrino energies of about one GeV,

we determine the form factors of the nucleon-resonance transition with the help of

the recent electroproduction data. We extend the analysis to the second resonance

region, where in addition to the resonance P33(1232), also D13(1520), P11(1440) and

S11(1535) resonances contribute. Using the updated form factor fit we calculate the

differential and total cross sections for the resonance production by neutrinos.

A detailed analysis of angular distributions is done for the exclusive decays B →
K,K∗l̄l. The calculations are performed in the large recoil region using the QCD

factorization formalism. We give the Standard Model predictions for the coefficients

of angular distribution of B → Kl̄l decays, namely F l
H and Al

FB. The predicted

values are remarkable for their vanishing values in the Standard Model and small

theoretical uncertainties. The sensitivity of these coefficients to New Physics is

studied in a model-independent way.

In the case of the decay B → K∗(→ Kπ)l̄l we investigate eight CP asymmetries

in the Standard Model and Beyond. Three of them are T-odd and five T-even CP

asymmetries. In the Standard Model, where the CP violation comes from the CKM

matrix, we predict the values of the CP asymmetries to be of O (10−3). We also show

that the current experimental bounds allow the T-odd asymmetries to be of O (1),

whereas the values of the T-even asymmetries can be of O (0.1) in the presence of

New Physics.





Zusammenfassung

In dieser Arbeit präsentieren wir die Studien einiger ausgewählter Prozesse der

Teilchenphysik, die an der Energieskala von O (GeV) stattfinden, erstens die Wech-

selwirkung zwischen Neutrinos und Nukleonen und zweitens semileptonische Zerfälle

der B-Mesonen.

Im Falle der Streuung von Neutrinos an Nukleonen im Energiebereich von ca. 1

GeV, bestimmen wir die Formfaktoren der Nukleon-Resonanz-Übergänge mit Hilfe

neuester Elektron-Nukleon Streuungs-Daten. Unsere Analyse beinhaltet außer der

P33(1232) Resonanz auch die D13(1520), P11(1440), S11(1535) Resonanzen. Unter

Verwendung dieser aktualisierten Formfaktoren berechnen wir den differentiellen

und gesamten Wirkungsquerschnitt für die Erzeugung von Resonanzen in der Neu-

trino-Nukleon Streuung.

Im Falle der semileptonischen B-Mesonzerfälle werden Winkelverteilungen des Spek-

trums für die exklusiven Zerfälle B → K,K∗l̄l detailliert diskutiert. Die Rechnung

beschränkt sich auf kleine invariante Massen des Dileptonsystemes im Rahmen des

Formalismus der QCD Faktorisierung. Wir bestimmen die Standardmodell Vorher-

sage der Koeffizienten der Winkelverteilung F l
H und Al

FB des Zerfalles B → Kl̄l.

Diese Observablen zeichnen sich durch ihre verschwindend kleinen Standardmodell-

werte und kleinen Unsicherheiten aus. Desweiteren wird die Sensitivität dieser Ko-

effizienten auf Signale Neuer Physik in modellunabhängiger Art und Weise studiert.

Für die Zerfälle B → K∗(→ Kπ)l̄l untersuchen wir acht CP Asymmetrien im Stan-

dardmodell und darüber hinaus. Drei von ihnen sind T-ungerade und fünf T-gerade

CP Asymmetrien. Im Standardmodell ist die Ursache der CP Verletzung die CKM

Matrix und die CP Asymmetrien verschwindend klein im Bereich O (10−3). Wir

zeigen außerdem, dass die gegenwärtigen experimentellen Daten keine wesentlichen

Einschränkungen darstellen und folglich die T-ungeraden Asymmetrien im Falle

Neuer Physik im Bereich O (1) sein können. Die Sensitivität der T-geraden Asym-

metrien auf Signale Neuer Physik ist etwas kleiner, diese können im Bereich O (0.1)

liegen.
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Introduction

The developments of the last 50 years in particle physics give the hope that the

description of the nature can be arranged in terms of several fundamental principles.

The Standard Model (SM) [1, 2, 3], the model describing electromagnetic, weak and

strong interactions, is such an attempt. With the help of the quantum field theory

and the principle of local gauge invariance the SM explains successfully the wide

range of particle physics phenomena up to distances of O (10−18 m), which has been

confirmed by a large number of accelerator experiments.

In spite of its success one believes that the SM is not complete. The reason is a

number of unanswered questions raised in the theory. Namely, there is a number of

parameters in the theory whose values are unnaturally remote from each other, more

than one would expect. For example, there is a large difference, about seventeen

orders of magnitude, between the electroweak scale and the Planck scale. Similarly,

it is unclear why the spectrum of matter particles in the SM is so different. The

mass of the top quark exceeds the mass of one of the neutrinos by eleven orders

of magnitude. This problem is probably correlated with the question: ”Where do

masses of the particles come from?”. We also do not know why there are only three

generations of particles. Although, the direct experimental constraints still do not

rule out an additional fourth generation [4, 5]. The neutrinos are massless in the SM,

whereas the oscillation experiments confirmed that neutrinos have masses. Another

problem is related to the fact that our Universe is observed to have an excess of

matter over antimatter. It would be impossible to achieve it without the existence

of CP violating processes during the evolution of the Universe [6]. Thus, it generates

the need to have CP violation in the theory. Unfortunately, the amount of CP

violation in the SM is not enough to explain quantitatively the asymmetry between

matter and antimatter. Thus, these shortcomings and inconsistencies motivate us

to think about the existence of physics beyond the SM, i.e., New Physics (NP). We

hope that the dedicated experiments at the Large Hadron Collider (LHC) will shed

light on some of these questions.

The most part of this manuscript is devoted to various phenomenological aspects

of flavor physics. In the SM the matter particles (fermions) appear in three gen-

erations. Flavor physics describes the interactions responsible for the transitions

between different generations. There are two sectors of flavor physics: quark and
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lepton flavor physics. These two parts are often discussed separately in spite of

many similarities. However, the belief in the Grand Unified Theories (GUT) unify-

ing quarks and leptons makes us expect that quark and lepton flavor physics have

same origins. Concerning the SM, the following question raises: ”What is the source

of such generation (flavor) changing interactions in the SM?”. The fermions in the

SM take part in the gauge (coupling to gauge boson) and Yukawa interactions (cou-

pling to scalar boson). Yukawa terms are unconstrained in generation space which

leads to flavor violation transitions. In the SM Yukawa couplings are just free pa-

rameters which should be extracted from experiment. Going beyond the SM one

introduces some flavor (family) symmetry which is spontaneously broken by the vac-

uum expectation value of some scalar filed called flavon. Further, by constructing

non-renormalizable theory valid below some scale we can introduce interactions de-

scribing the SM fields plus the flavon in such way that for the low energies they lead

to Yukawa couplings.

Why is flavor physics so interesting to investigate? The processes of flavor physics

have a potential to test the SM and even predict its extensions. There are some

examples from the past when new particles were predicted before their direct ob-

servations in accelerator experiments. One of such examples is the measured value

of Kaon mass difference which led to a successful prediction of charm quark mass

before it was discovered. Therefore, if NP appears at or below the TeV scale, pre-

dicted by some SM extensions, NP particles can contribute either at tree or loop

level, depending on NP flavor structure, to some low energy obsevables. Again, the

discrepancy between experimental and theoretical estimates of those flavor physics

observables can be a signal of the physics beyond the SM.

The other problem related to flavor physics is a need of new sources of CP vio-

lation. In the SM there is only one CP violating phase originated from the quark

flavor mixing, which, as we said above, is not enough to produce matter-antymatter

asymmetry of the Universe. Measuring CP sensitive observables in flavor changing

processes can provide evidence of additional sources of CP violation.

On the other hand lepton flavor physics is also very important. The measurements

of neutrino mass differences and mixing in the oscillation experiments gave the

first experimental result being inconsistent with the SM. In the SM leptons, i.e.,

electron, muon and tau, obtain their masses through the Yukawa terms, whereas

neutrinos stay massless. To construct Yukawa-like terms for neutrinos one adds

heavy right-handed singlets to the theory which leads to Dirac neutrino masses.

Another possibility is to introduce a triplet Higgs scalar coupled only to left-handed

neutrinos. Such terms would generate Majorana neutrino masses (more on neutrino

masses see [7]). In the both cases there is a problem with unnaturally small Yukawa
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couplings needed to tune with the experimental neutrino mass scale of O (0.1 eV).

This problem can be solved with a help of seesaw mechanism. In this framework

small neutrino masses are naturally generated by the ratio of two mass scales, i.e.,

square of SM Higgs scalar scale of O (100 GeV) over the scale of heavy right-handed

singlet of order GUT or Placnk scales & O (1016 GeV).

This thesis is split into two parts. The first part is dedicated to the process of the

resonance production in neutrino scattering on nucleons. The current and future

experiments on neutrino oscillations, like K2K, MiniBoone, MINOS, JHF, provide

the evidence of non-vanishing neutrino masses. Since the neutrinos are massless in

the SM, the observations of the neutrino masses in oscillation experiments call for an

extension of the SM. For the accurate measurements of the oscillation parameters,

i.e., constrains on NP, one needs precise knowledge of neutrino-nucleon scattering

cross sections. For the low neutrino energies, Eν ≃ 1 GeV the resonance production

reactions give significant contribution to the total cross section. For this purpose we

study these reactions in detail and present the results in the publication:

• O. Lalakulich, E. A. Paschos, G. Piranishvili, ”Resonance production by neu-

trinos: The Second resonance region.”, Phys.Rev.D74:014009,2006.

Cross section of these processes depend on the nucleon-resonance form factors. The

underlying fundamental theory of such nucleon-resonance transitions is quantum

chromodynamics (QCD). However, in the non-pertubative regime QCD calculations

are not currently practicable due to their complexity. Therefore one has to inves-

tigate nucleon-resonance transitions with a help of phenomenological approaches

and experimental data. We update the form factors of nucleon-resonance transi-

tion for the P33(1232) resonance and give fits of form factors for higher resonances

D13(1520), P11(1440) and S11(1535). The extraction of the vector form factors is

possible due to the new data on electron-nucleon scattering from JLAB and the

Mainz accelerators, whereas for the axial form factors we adopted the concept of

partially conserved axial-vector currents (PCAC). We present these investigations

in Chapter 2, where we show the detailed extraction of the form factors. Using

the newly fitted form factors we calculate differential and total cross sections as

functions of kinematic parameters.

The second part of the thesis is dedicated to quark flavor physics. In the last

decade, experimental investigations done at B-factories put forward our knowledge

on the quark-flavor sector of the SM. The major part of these researches are devoted

to the B-meson system. At SLAC (BaBar detector) and KEK (Belle detector), e+e−

collision experiments are able to produce Υ(S4) resonances decaying subsequently

in B-mesons, e.g., B+(ub̄), B−(ūb), B0(db̄) and B̄0(d̄b). Furthermore , Tevatron

(Fermilab) with the help of detectors CDF and D0 gives a possibility to study the
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phenomenology of Bs and Bc mesons. Thanks to the LHCb experiment, further and

more profound investigations concerning B-physics will be performed at the LHC.

The phenomenology of B-physics gives a huge possibility to understand the flavor

structure of the SM better. Due to improved measurements of various observables

one is able to constrain NP being a source of additional flavor and CP violations.

On the other side the theoretical predictions still suffer from large ”hadronic” un-

certainties due to the complex nature of the strong interactions. Therefore, various

strategies are elaborated by constructing observables being free of hadronic uncer-

tainties.

Here we study the semileptonic B → K,K∗l̄l decays. These decays belong to the

flavor changing neutral current (FCNC) processes and appear only at loop level in the

SM, which makes them very sensitive to NP. Since these decays are loop induced and

suppressed in the SM, NP particles contributing either through loops or at tree level

can enhance the magnitudes of the observables. Therefore the goal of the research

is to elaborate such observables of B → K,K∗l̄l decays which would have precise

SM values. Thank to multi-partical final states of B → Kl̄l and B → K∗(→ Kπ)l̄l

decays one can investigate normalized angular distributions offering a number of

useful obsevables to study NP.

For the case of B → Kl̄l decays we study several observables which are sensitive

to lepton flavor changing NP. We also give some examples of NP models which

might manifest themselves in B → Kl̄l decays. To study additional sources of CP

violation we apply the angular distribution of B → K∗(→ Kπ)l̄l having richer final

structure due to the subsequent decay K∗ → Kπ. It allows to have nine coefficients

in the angular distribution. With the help of these coefficients one can construct

eight CP asymmetries, three T-odd CP-odd and five T-even CP-odd asymmetries

(T is a transformation changing the sign of all particle momenta and spins). All

asymmetries are doubly Cabibbo-suppressed in the SM and are of O (10−3) which

makes them very attractive probes of NP sources of CP violation. They can be

additionally suppressed due to the smallness of strong phases generated by quark

loops. In this case the T-odd CP asymmetries are especially remarkable exhibiting

maximal CP violation in the limit when strong phases vanish. In Chapter 3 we

present the investigations of those observables and the results, published in:

• C. Bobeth, G. Hiller, G. Piranishvili, ”Angular distributions of B → Kl̄l

decays”, JHEP 0712:040, 2007.

• C. Bobeth, G. Hiller, G. Piranishvili, ” CP Asymmetries in B̄ → K̄∗(→ K̄π)l̄l

and Untagged B̄s, Bs → φ(→ K+K−)l̄l Decays at NLO”, JHEP 0807:106,

2008.

vi



The plan of this thesis is the following. In Chapter 1 we overview flavor and CP

violation in the SM and consider the various symmetries of the quark sector. Here

we also make an introduction into the concept of effective Hamiltonians. Chapter

2 is devoted to the topic of neutrino production of resonances, giving the detailed

analysis of the second resonance region. The analysis of angular distributions of

B → K,K∗l̄l decays is given in Chapter 3 where we discuss various number of

observables in the SM and beyond. Appendices A and B contain formulae and

technical details relevant for the calculations.
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1 Basics

1.1 Flavor in the Standard Model

The SM of particle physics contains in the matter sector three generations of ele-

mentary particles which are split into two parts

Leptons
(

νe

e

)

L

,

(

νµ

µ

)

L

,

(

ντ

τ

)

L

, eR, µR, τR (1.1)

and

Quarks
(

u

d

)

L

,

(

c

s

)

L

,

(

t

b

)

L

, uR, dR, cR, sR, tR, bR, (1.2)

where the indices L,R stand for the transformation property of the field under

the SU(2)L gauge group, i.e., doublet and singlet, respectively. One introduces a

quantum number, i.e., e, νe, u, d..., which distinguishes different particles, and calls

it flavor. Therefore, in the SM we have twelve kinds of flavor. However, in the SM,

flavor is not a conserved quantum number. Due to the gauge group structure, i.e.

SU(2)L, the flavor transitions are allowed within a particular doublet only.

Further flavor transitions are induced after spontaneous symmetry breaking (SSB)

SU(2)L × U(1)Y → U(1)QED [8, 9, 10]. Due to SSB the quarks and leptons obtain

their masses by the Yukawa interactions with the so-called Higgs field
(

H+

H0

)

, (1.3)

whose neutral component receives a non-vanishing vacuum expectation value. The

neutrinos stay massless due to the absence of right-handed neutrino singlets under

SU(2)L which was based on phenomenological grounds before the discovery of neu-

trino oscillations. Thus, the SM by itself does not predict a mechanism of neutrino

mass generation which requires an extension in this regard. However, in view of

neutrino oscillation experiments neutrinos are massive. The recent oscillation re-

sults and mechanisms of neutrino mass generation are reviewed in [11, 7, 12]. After

SSB the flavor-violating effects manifest themselves in the SM in terms of fermion
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Basics

masses. CP-violation appears in the modified structure of the charged-current (CC)

interactions which reads in terms of the mass eigenstates

LCC
int = − g√

2

(

ūL c̄L t̄L

)

γµVCKM







dL

sL

bL






W †

µ + h.c., (1.4)

where g is the gauge coupling corresponding to the SU(2)L gauge group and Wµ

corresponds to the charged W -boson. VCKM is the Cabibbo-Kobayashi-Maskawa

(CKM) 3×3 matrix [13, 14] presenting the strength of charged-current interactions.

The appearance of such a matrix is due to the fact that after SSB the mass matrices

of quarks and leptons in terms of the gauge eigenstates are in general non-diagonal

in the SM. However, such a matrix does not appear in the CC-interaction of leptons

with neutrinos due to the absence of right-handed neutrino singlets in the SM.

Then the diagonalization of mass matrices leads to the non-diagonal structure in

generation space of VCKM in the charged-current interaction.

On the other side, neutral-current interactions (NC), i.e., corresponding to the

photon A and Z−bosons, stay diagonal in generation and flavor space preventing

the theory from the existence of FCNC processes at the tree level. The Lagrangian

for those interactions reads as

LNC
int = − g

cos θW

∑

i

(ψ̄iLγ
µI3ψiL −Qi sin

2 θW ψ̄iγ
µψi)Zµ − eQi

∑

i

ψ̄iγ
µψiAµ, (1.5)

where i is the flavor index and I3 = +1/2 for neutrinos and up-type quarks and

I3 = −1/2 for charged leptons and down-type quarks. Here Qi presents the electric

charges of the fermions ψi in units of the electron charge. θW is the angle corre-

sponding to electoweak mixing. The absence of flavor changing transitions in (1.5)

is a prediction of the SM.

Being the characteristic quantity for flavor physics of the SM, VCKM will be con-

sidered closer. VCKM is a complex unitary (3×3) matrix with 9 real parameters.

However, the freedom of phase redefinitions of the quark fields leaves only four real

parameters in the case of three generations. VCKM can be parametrized in different

ways leading to the same physical consequences, i.e., physics is independent of the

particular choice. Particularly, in Euler parametrization those parameters are three

angles and one complex phase, which is the only source of CP-violation in the SM.

A possible Euler parametrization is the so-called ”Standard Parametrization” [15],

defining VCKM as






c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13






(1.6)
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1.1 Flavor in the Standard Model

where sij ≡ sin θij and cij ≡ cos θij . The advantage of this parametrization is that

if one of the mixing angles, e.g., θij , becomes zero then the corresponding mixing

between the two generations i and j vanishes.

Another useful parametrization of VCKM, widely used in phenomenological anal-

ysis, was introduced by L.Wolfenstein [16]. The experimental data shows a strong

hierarchy between non-diagonal matrix elements of VCKM, namely, the farther off-

diagonal an element is the more suppressed it is. This hierarchy can be approxi-

mately written as

s12 ≈ 0.22 ≫ s23 ≈ O
(

10−2
)

≫ s13 ≈ O
(

10−3
)

. (1.7)

Applying this to the Standard parametrization we define mixing angles as

s12 = λ, s23 = Aλ2, s13e
−iδ13 = Aλ3(ρ+ iη), (1.8)

and expand (1.6) in the so-called Cabibbo-angle λ. Keeping terms up to O (λ6) one

obtains the following expression for the CKM matrix

VCKM=







1− 1
2
λ2− 1

8
λ4 λ Aλ3(ρ− iη)

−λ+ 1
2
A2λ5[1−2(ρ+ iη)] 1− 1

2
λ2− 1

8
λ4(1+4A2) Aλ2

Aλ3[1−(ρ̄+ iη̄)] −Aλ2−Aλ4(ρ+ iη)+ 1
2
Aλ4 1− 1

2
A2λ4






+O

(

λ6
)

(1.9)

where ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2). In spite of its approximative character,

the CKM matrix remains unitary in the Wolfenstein parametrization up to negligible

higher order terms. The useful consequence of this parametrization is that the matrix

element Vub, which contains the CP-violating phase, is exact, i.e., does not receive

power corrections in λ. Since the different parametrizations of the CKM matrix are

just different reformulations of the same mechanism, the most convenient version can

be chosen depending on the particular phenomenological or experimental studies.

Thus, this simple framework appears to be very effective in studies of flavor and

CP-violating processes. On the other hand this picture as a whole can be tested

experimentally. For this purpose one uses the so-called Unitarity Triangle (UT). As

we already discussed, the CKM matrix is unitary

V †
CKMVCKM = VCKMV

†
CKM = 1̂, (1.10)

where 1̂ is the 3×3 unit matrix. The matrix equation (1.10) implies 6 orthogonality

relations which can be written explicitly as
∑

i=u,c,t

ViαV
∗
iβ = 0, α, β = d, s, b, α 6= β, (1.11)

∑

α=d,s,b

ViαV
∗
jα = 0, i, j = u, c, t, i 6= j. (1.12)

3
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Each of these six relations can be presented as a triangle in the complex (ρ̄, η̄) plain.

The areas of the triangles are all equal in size and half of the Jarlskog parameter J

[17], which is an invariant and a measure of the strength of CP-violation in the SM.

In the Standard and Wolfenstein parametrizations it reads as

J = s12s13s23c12c23c
2
13 sin δ13 = A2λ6η, (1.13)

with the experimental value Jexp ≃ O (10−5). Actually, the smallness of J implies

that CP-violating effects are hard to observe. In spite of the equal areas most

of the triangles have one suppressed side compared to the other two making their

study complicated. Only two triangles have comparable sides. They follow from the

relations

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = VudV

∗
td + VusV

∗
ts + VubV

∗
tb = 0, (1.14)

which can be rewritten in terms of Wolfenstein parameters as

Aλ3(ρ̄+ iη̄) − Aλ3 + Aλ3(1 − ρ̄− iη̄) + O
(

λ7
)

= 0. (1.15)

Introducing the quantities

Rb ≡
√

ρ̄2 + η̄2, Rt ≡
√

(1 − ρ̄)2 + η̄2 (1.16)

relation (1.15) leads to the triangle shown in the left-hand plot of Figure 1.1 with

unit length base and two sides Rb and Rt. All parameters of the UT, i.e., sides and

angles are measurable quantities. Particularly, the angle γ, coinciding with δ13, is

O (60◦) according to the experimental data. It means that CP-violation in the SM

is nearly maximal.

The various measurements do not serve only to measure particular elements of

the CKM matrix but also to verify and overconstrain the complete framework of

flavor and CP violations in the SM. The right-hand plot of Figure 1.1 describes such

attempts done by the CKMfitter collaboration [18]. Several observables indicated by

the bands various bands constrain the position of the UT apex. The global analysis

shows that current data are in good agreement with the SM predictions. But still

there is a big space for improving the data and hopefully finding some inconsistencies

with the SM which helps us to study the physics beyond the SM.

1.2 From Quarks to Hadrons

1.2.1 QCD Lagrangian

After SSB in the SM the unbroken symmetry is SU(3)QCD×U(1)QED, corresponding

to Quantum Chromodynamics(QCD) and Quantum Electrodynamics(QED), respec-

tively. The corresponding degrees of freedom of SU(3)QCD × U(1)QED are nine
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10

R R tb

Figure 1.1: Draft of Unitarity triangle (left) and current CKMfitter analyses of UT

[18] (right).

massless gauge bosons, i.e., the photon and the eight gluons. Whereas QED is the

theory describing interactions of electrically charged quarks and leptons, QCD ap-

plies only to quarks. Moreover, the non-abelian nature of the QCD leads to the

fact that the only observable form of quarks and gluons at long distances are the

hadrons. In this section we discuss the basics of QCD starting from the Lagrangian

of the theory, which reads as

LQCD = −1

4
Ga

µνG
aµν +

∑

q=u,d,s...

q̄(iDµγ
µ −mq)q, (1.17)

where

Dµ = ∂µ − igs
λa

2
Aa

µ, (1.18)

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (1.19)

Here gs is the dimensionless coupling of SU(3)QCD and Ga
µν is the field-strength

tensor corresponding to the gluon field Aa
µ, where a = 1...8. In (1.17) we skip

gauge-fixing and ghost terms which are irrelevant for the current discussions. The

non-abelian nature of QCD manifests in the fact that the gluon fields carry color

charge and the selfinteraction due to the third term in (1.19). In contrast to QED,

the quark can change its color-charge after emission or absorption of a gluon field.

If we assume that gs is small enough for a perturbative treatment, we can calculate

different processes in QCD applying (1.17). Going beyond tree level by considering

5
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loop corrections will lead to divergences. This happens because the momentum of

virtual particles in the loop is integrated from zero to infinity. Fortunately, similar to

QED, QCD is a renormalizable theory. This means that the ultraviolet divergences,

appearing in Feynman diagrams with loops, can be isolated by the redefinition of

Lagrangian parameters (regularization), i.e., couplings, masses and fields. Thus, the

physically observable quantities are finite to all orders in perturbation theory.

Due to the regularization the renormalization technique introduces an additional

mass dimension parameter µ, the renormalization scale. All the parameters of the

Lagrangian are µ dependent, i.e., gs ≡ gs(µ), mq ≡ mq(µ) etc. The µ-scale de-

pendence is governed by the so-called renormalization group equations (RGE). For

example, in QCD the renormalization scale dependence of the gauge coupling and

quark masses can be computed by solving the following RGE

dgs(µ)

d lnµ
= β(gs(µ)),

dmq(µ)

d lnµ
= −γm(gs(µ))mq, (1.20)

where β is the RGE-function of the coupling and γm is the anomalous dimension of

the mass. They can be calculated in perturbation theory and at two loop order we

have

β(gs) = −gs

[ g2
s

16π2
β0 +

( g2
s

16π2

)2

β1

]

, (1.21)

γm(gs) =
g2

s

16π2
γ(0)

m +
( g2

s

16π2

)2

γ(1)
m . (1.22)

In the so-called MS scheme the coefficients read as

β0 = 11 − 2nf

3
, (1.23)

β1 = 102 − 38

3
nf , (1.24)

γ(0)
m = 8, (1.25)

γ(1)
m =

404

3
− 40nf

9
, (1.26)

where nf is the number of active flavors. In terms of αs(µ) = g2
s(µ)/(4π) the solutions

of the differential equations (1.20) are

αs(µ) =
β0

ln (µ2/Λ2)

[

1 − β1 ln ln (µ2/Λ2
QCD)

β0 ln (µ2/Λ2
QCD)

]

,

mq(µ) = mq(µ0)
[ αs(µ)

αs(µ0)

]

γ
(0)
m

2β0

[

1 +
(γ

(1)
m

2β0

− γ
(0)
m β1

2β2
0

)αs(µ) − αs(µ0)

4π

]

, (1.27)
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where ΛQCD is the momentum scale where αs diverges. In the case of five active

flavors, ΛQCD ∼ O (200 MeV), being the characteristic scale of the breakdown of the

perturbative expansion. The growth of αs, predicted in perturbation theory, indi-

cates the necessity to use non-perturbative methods at long distances of O (1/ΛQCD).

This regime of QCD is called confinement. The interaction between quarks and glu-

ons becomes strong, and they are confined into hadronic bound states. Thus, it is

quite natural that the characteristic scale of hadron interactions is of order ΛQCD.

The limit µ → ∞ leads to a vanishing quark-gluon coupling. This regime reveals

that at short distances the behavior of quarks and gluons in QCD is asymptotically

free.

1.2.2 Quark Model of Hadrons

The large amount of hadrons can be nicely systematized and studied with the help of

the various approximate symmetries in QCD. First we consider the consequences of

the QCD gauge group for the hadron formation. Each quark q carries a color index

and transforms as a triplet, whereas an antiquark q̄ transforms as an antitriplet

under the SU(3)QCD gauge group. Since the hadrons are color-neutral particles, we

need such combinations of q and q̄ which will be singlets under SU(3)QCD. There

are two possibilities to form such color neutral combinations. The first one is the

so-called meson state, which can be built from quark and antiquark by summing

over all color quantum numbers

|M〉 =
3
∑

i=1

|qi
1 q̄2 i〉. (1.28)

The second possibility is a combination of three quarks (antiquarks) multiplied by

the totally antisymmetric tensor εijk (εijk)

|B〉 =
3
∑

i,j,k=1

εijk |qi
1 q

j
2 q

k
3 〉, (1.29)

which are called baryons. Therefore the SU(3)QCD group explains naturally the

absence of such states as qq (diquark) or qqqq (four-quark) in the hadronic spectrum,

since these quark combinations are not color-singlets. It also clarifies the existence

of the uuu or sss bound states, i.e., ∆++ and Ω−, respectively, which in the absence

of the color quantum number would violate the Pauli principle for fermions.

The quarks in (1.28), (1.29) are called valence quarks since they define the flavor

type of the hadron. However, the true structure of hadrons is more complicated.

At the distances of O (1/ΛQCD) additional quark-antiquark pairs and gluons are

created and annihilated inside of hadrons due to quantum fluctuations. The reason

7
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is that the masses of light quarks, i.e., u, d and s, are smaller than ΛQCD. These

virtualities are color neutral and flavor conserving. We can qualitatively estimate

the importance of these virtual processes for the example of the neutron and the

proton. The proton and neutron are the lightest baryons with the quark structure

uud and udd, respectively. If we take a look at the quark masses in the MS scheme

from the Particle Data Group review [15]

mu(2 GeV) = 3 ± 1 MeV, md(2 GeV) = 6.0 ± 1.5 MeV,

ms(2 GeV) = 103 ± 20 MeV, mc(mc) = 1.24 ± 0.09 GeV,

mb(mb) = 4.2 ± 0.07 GeV, mt(mt) = 162.9 ± 1.3 GeV, (1.30)

we can see that u and d quarks are the lightest ones with masses of order several

MeV. It should be noted that these masses are due to the interaction with the

Higgs-field. If we just sum the masses of u and d correspondingly to the valence

quark content of the proton and neutron, we obtain that the nucleon mass should be

of O (10 MeV). This contradicts the well known experimental values of the proton

and neutron masses of O (940 MeV) being three orders of magnitude larger then

the naive estimate given above. The transparent example shows the important role

of the long-distance quark-gluon dynamics in non-pertubative QCD for the mass

generation of hadronic matter, which can not be explained by the SSB-mechanism

alone.

1.2.3 Flavor Symmetries: Isospin and SU(3)

Since the discovery of Yang-Mills local gauge theories and their role in particle

physics, group theory helps to understand high energy physics from the first princi-

ples. A physical system having with a symmetry can be studied by group-theoretical

methods, since the symmetry transformations form a group. In QCD, besides

the space-time (Poincare) and color (SU(3)QCD) symmetries the fundamental La-

grangian can be studied using flavor symmetries. One of the well-known examples is

the isospin symmetry introduced by Heisenberg in the 1930’s. If we concentrate on

u and d quarks, we can observe the fact that their masses and the mass difference

are much smaller with respect to ΛQCD

mu, md, mu −md ≪ ΛQCD. (1.31)

Neglecting the mass difference and introducing a common mass m for up and down

quarks the QCD Lagrangian (1.17) can be written in this limit as

LQCD = N̄(iDµγ
µ −m)N +

∑

q=s,c,b,t

q̄(iDµγ
µ −mq)q + Lgluon, (1.32)

8



1.2 From Quarks to Hadrons

where we introduce the doublet N as

N =

(

u

d

)

. (1.33)

The Lagrangian (1.32) has a global symmetry under the following transformations

of the new field N

N → N ′ = eiαaσa/2N (1.34)

where the summation over a = 1, 2, 3 is understood. The σa are the well-known

2 × 2 Pauli matrices, i.e., the generators of the SU(2) group transformations. The

isospin symmetry is not exact. The violation is due to the mass difference mu −md

and the difference of the electric charges of u and d quarks, being effects of O (α)

and O
(

mu−md

ΛQCD

)

, respectively.

The isospin symmetry manifests itself in hadrons. The hadrons which differ in the

quark content by the interchange of the u and d quarks, form isodoublets (I = 1/2).

The components of such doublets differ in their mass by order of few MeV as pre-

dicted by the SU(2) symmetry breaking corrections, which is confirmed experimen-

tally. Examples are the proton (uud) and the neutron (udd), K+ (us̄) and K− (ds̄),

B+ (ub̄) and B0 (db̄), etc. The mesons built only from the N doublets can be written

as

NαN̄β =

(

uū−dd̄√
a

ud̄

dū −uū−dd̄√
a

)α

β

+ δα
β

uū+ dd̄√
2

(1.35)

with α, β = 1, 2. The first term in (1.35) corresponds to the isotriplet (I = 1)

whereas the second one is the isosinglet (I = 0). Examples of such triplets are the

pions, π+, π0 and π− and the ρ mesons, ρ+, ρ0 and ρ−. Similarly to the doublet

states, the mass difference within the triplet is of order few MeV, which is nicely

confirmed by experimental observations.

The smallness of the strange quark mass ms with respect to ΛQCD allows us to

extend the isospin SU(2) symmetry to the SU(3) flavor symmetry group. In analogy

with isospin we neglect the mass differences between u, d and s quarks. Introducing

the common m3 mass for u, d and s, the QCD Lagrangian takes the form

LQCD = ψ̄(iDµγ
µ −m3)ψ +

∑

q=c,b,t

q̄(iDµγ
µ −mq)q + Lgluon, (1.36)

where ψ is a triplet

ψ =







u

d

s






. (1.37)

9
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The Lagrangian (1.36) is invariant under transformations of the new field ψ

ψ → ψ′ = eiαaλa/2 ψ, (1.38)

where a = 1...8 and λa are eight Gell-Mann matrices, i.e., the generators of the

SU(3) flavor group. This symmetry was introduced by Gell-Mann, Ne’eman and

Zweig in early 1960’s as an extension of the isotopic spin group SU(2) in order

to classify the large amount of baryons and mesons seen in terms of quarks. At

that time several particles were discovered which besides isospin have an additional

quantum number called strangeness. It can be shown that the charge of a particle

Q is correlated to the strangeness S and the third component of isospin I3 in the

following way

Q = I3 +
Y

2
, Y = B + S, (1.39)

where B is the baryon number B = +1 for baryons and B = −1 for antibaryons.

The corresponding quantum numbers for the quarks u, d and s read as

Quarks Q I I3 Y S B

u 2/3 1/2 1/2 1/3 0 1/3

d -1/3 1/2 -1/2 1/3 0 1/3

s -1/3 0 0 -2/3 -1 1/3

The meson bound states are formed by the ψψ̄ combination. As a result of multiplet

multiplication

3 ⊗ 3∗ = 1 ⊕ 8 (1.40)

mesons belong either to the singlet or the octet representations of SU(3). Using

(1.40) one can show that the quark content of the scalar meson octet is

π+ ∼ (d̄u), π0 ∼ (ūu, d̄d), π− ∼ (ūd),

K+ ∼ (s̄u), K0 ∼ (s̄d), K̄0 ∼ (d̄s), K− ∼ (ūs),

η0 ∼ (ūu, d̄d, s̄s), (1.41)

being the same as for the vector mesons. The baryons are bound states of three

quarks ψψψ and from

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 (1.42)

10
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follows that they form octets and decuplets. For the spin 1/2 baryon octet we have

p ∼ (udu), n ∼ (udd),

Σ+ ∼ (suu), Σ0 ∼ (sud, sdu), Σ− ∼ (sdd),

Ξ0 ∼ (ssu), Ξ− ∼ (ssd),

Λ0 ∼ (suu, sdd, sud) (1.43)

and the quark content for the spin 3/2 baryon decuplet is

∆++ ∼ (uuu), ∆+ ∼ (uud), ∆0 ∼ (udd), ∆− ∼ (ddd),

Σ∗+ ∼ (suu), Σ∗0 ∼ (sud), Σ∗− ∼ (sdd),

Ξ0 ∼ (ssu), Ξ− ∼ (ssd),

Ω− ∼ (sss). (1.44)

Of course, the SU(3) is not an exact symmetry. The experimental data shows

that the masses of the mesons or baryons differ from component to component in

the multiplet. Thus, the violation of SU(3) is characterized by the mass splitting

within one multiplet, which varies from O (mu −md) to O (ms −m), where m is the

common mass of u and d quarks.

Taking into account the spin of the light quarks, SU(3) can be extended to an

SU(6) symmetry group. The fundamental representation of SU(6) is 6, i.e.

q =





















u ↑
d ↑
s ↑
u ↓
d ↓
s ↓





















(1.45)

and from the multiplication of representations

6 ⊗ 6 ⊗ 6 = 56 ⊕ 70 ⊕ 70 ⊕ 20 (1.46)

it follows that the baryon bound states transform as 56, 70 and 20 representations.

The SU(6) multiplets can be decomposed into SU(3) ones as

56 = 104 ⊕ 82,

70 = 102 ⊕ 84 ⊕ 82 ⊕ 12,

20 = 82 ⊕ 14,

(1.47)
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where the superscript denotes (2S + 1) and S is the spin of a baryon in a partic-

ular multiplet. In order to take into account orbitally excited baryons rigorously

one extends SU(6) to the SU(6) × O(3) group (”symmetric” quark model) where

O(3) corresponds to the symmetry transformation of the spatial part of baryon

wave functions. In this model the 56-plet is a ”ground state” and contains such

baryons as p, n, ∆(1232) and P11(1440). The next ”excited” multiplet is 70 which

includes D13(1520) and S11(1535). Particularly these resonances will be considered

in Chapter 2 in the context of neutrino scattering on nucleons.

1.2.4 Heavy Quark Symmetry

Here we focus on the heavy quark sector of the QCD Lagrangian, namely on c and b

quarks with mc, mb ≫ ΛQCD, see (1.30). We do not consider t quark since it is too

heavy to form hadronic bound states before decaying. That leads to the situation

when

mc ∼ mb ∼ mQ → ∞. (1.48)

In this limit the Lagrangian (1.17) can be formally rewritten as

LQCD = Q̄(iDµγ
µ −mQ)Q+ Lgluon, u, d, s, (1.49)

where we introduce a new doublet

Q =

(

c

b

)

. (1.50)

We now rewrite (1.49) such that it does not contain mQ explicitly. The momentum

of the heavy quark Q can be decomposed in the rest frame of the heavy meson as

pQ = mQv + k, (1.51)

with v = (1,~0) being the 4-velocity of the meson and with the small residual mo-

mentum k ∼ ΛQCD ≪ mQ. In this limit the heavy quark field can be decomposed

into the large hv and small χv components as

Q = e−imQv·x(hv + χv) (1.52)

with

(v/− 1)hv = 0, (v/+ 1)χv = 0. (1.53)
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Since the χv part is suppressed by k/mQ and therefore can be neglected, we rewrite

(1.49) in terms of the hv as

Q̄(i /D −mQ)Q ≃ h̄vi /Dhv = h̄v

(/v + 1

2

)

i /Dhv

= h̄v

[

iv ·D − i /D
(/v − 1

2

)

]

hv = h̄viv ·Dhv. (1.54)

In this form the Lagrangian becomes independent of the mQ scale. We can generalize

this to the case of N heavy quarks as

LQ =

N
∑

i=1

h̄(i)
v iv ·Dh(i)

v . (1.55)

One can show that the effective Lagrangian possesses a SU(2N) spin-flavor symme-

try, which in the case of c and b becomes SU(4). The SU(2N) symmetry becomes

broken if one includes O (1/mQ) corrections to the Lagrangian.

The consequence of the heavy quark limit is that the mass of a meson M can be

written as

mM = mQ + Λ̄ + O (1/mQ) , (1.56)

where the constant Λ̄ is of order ΛQCD and characterizes the energy of the light

quark and gluon ”cloud” in the meson M and is independent of mQ. In the heavy

meson case such a quark-gluon cloud is purely relativistic with a non-perturbative

long-distance behavior.

1.3 Effective Theory of Electroweak Processes

1.3.1 Idea

Rare B meson decays, governed by FCNC, consist useful probe to investigate NP.

To study FCNC processes one uses a useful technique, called Effective Weak Hamil-

tonian. The effective Hamiltonian notation is nothing but the construction of an

effective theory in the presence of several energy scales in the problem. In the effec-

tive theories one separates low energy (large distances) dynamics from high energy

(small distances) ones by decoupling degrees of freedom which are not actively par-

ticipating in low energy processes. For FCNC processes, these degrees of freedom

correspond to the particles running in loops. Crucially, it is possible to decouple (or

integrate out) the virtual degrees of freedom in such a way that they do not appear

in the low energy Lagrangian anymore.
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One of the examples of such a reduction is the well known Fermi theory of the

β-decay. In the SM, on the quark level, the leading contribution to this process

comes from the tree level W -boson exchange. Since the typical energy scale of the

external momentum (in the center of mass frame) in the β-decay is much smaller

than the W -boson mass it is possible to integrate it out from the theory by keeping

only the leading term in the expansion of the W -propagator

−i gµν

q2 −m2
W

≃ igµν(
1

m2
W

+
q2

m2
W

+ ...) (1.57)

and omitting higher order terms in q2/m2
W . Here we denote by q2 the four momen-

tum transfer and by mW the W -boson mass, where q2 ≪ m2
W is understood. (A

more elegant formulation can be given with the help of the functional path integral

formalism.) Thus, the β-decay can be described with high order of accuracy by the

effective theory with the following Hamiltonian

Heff = −4GF√
2
V ∗

ud(ēγµPLνe) (ūγµPLd) + O
(

q2

m2
W

)

, (1.58)

GF√
2
≡ g2

8m2
W

(1.59)

and PL = (1 − γ5)/2. Here GF is the well-known Fermi constant and Vlm are the

CKM matrix elements. Note that the information about small distances is not

completely removed from the theory (it is only removed dynamically) but contained

in the GF effective constant.

Generalizing this approach, the amplitude in the effective theory can be written

as a projection of the effective Hamiltonian onto external states

A(I → F ) = 〈F |Heff |I〉 ∼ GFVCKMCi(µ)〈F |Oi(µ)|I〉, (1.60)

where Oi are high dimensional operators sandwiched between I and F , i.e., initial

and final states respectively. The Wilson coefficients can be computed perturbatively

in αs

Ci = C
(0)
i (µ0) +

αs

4π
C

(1)
i (µ0) +

α2
s

(4π)2
C

(2)
i (µ0) + O

(

α3
s

)

(1.61)

as a function of the high-energy scale (matching scale) µ0 ∼ mW of the order of the

decoupled heavy degrees of freedom. Technically, one calculates the amplitude in

the full theory and in the effective theory, and subsequently determines the Wilson

coefficient by requiring the equality of both. In order to add higher order QCD

corrections and evaluate the Wilson coefficients at the low scale µ, where particular

phenomena are observed (for b-decays µ ∼ mb), one uses the powerful technique of
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the RGE. The RGE for the Wilson coefficients has the following general form

dCi(µ)

d lnµ
= γij(µ)Cj(µ), (1.62)

where γij is the so-called anomalous dimension matrix

γij(µ) = Z−1
ik

dZkj

d lnµ
. (1.63)

The Zij are the renormalization constants appearing during the renormalization of

the amplitude 〈F |Heff |I〉. The non-diagonal nature of the Zij leads to the mixing of

the different operators under the renormalization procedure. γij can be expanded in

perturbation theory as

γij =
αs

4π
γ

(0)
ij +

α2
s

(4π)2
γ

(1)
ij +

α3
s

(4π)3
γ

(2)
ij + ... (1.64)

The RGE (1.62) is a system of ordinary coupled differential equations with the

formal solution

Ci(µ) = Uij(µ, µ0)Cj(µ0), (1.65)

expressing the running of the Wilson coefficients from the scale µ0 to the scale µ.

The evolution matrix U(µ, µ0) allows us to calculate the Wilson coefficients at the

low scale.

Let us summarize the important features of the effective Hamiltonian. First, the

Wilson coefficients are process independent quantities, i.e., do not depend on the

type of the external hadronic states. Therefore, once calculated, they can be used

for different processes. This manifests itself by the fact that the Wilson coefficients

depend only on the masses of the particles which we integrated out. Second, the

hadronic matrix elements are process dependent quantities and have to be calcu-

lated using some non-perurbative methods. Third, the physical observables must

not depend on the scale µ, which cancels between the short distance (Wilson co-

efficients) and long distance (hadronic matrix elements) dynamics. Unfortunately,

the truncation of the perturbation expansion leaves a remnant µ dependence in the

predictions, which introduces an additional uncertainty to the observables and is

usually used as an indication of the size of missing higher order corrections. The

inclusion of higher order terms is supposed to reduce the µ dependence.

1.3.2 Hadronic Matrix Elements

In order to compute the amplitude (1.60) we should know the Wilson coefficients

and matrix elements of the operators 〈Oi(µ)〉 being sandwiched between the initial
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and final states. The Wilson coefficients are process independent quantities and

can be computed in perturbation theory. The computation of the matrix elements

is a sophisticated task. In the so-called naive factorization approach the matrix

elements of B → K,K∗l̄l exclusive semileptonic decays are assumed to factorize

into the product of a leptonic current and the matrix element of a quark current,

which schematically can be written as

〈l̄lK,K∗|Oi|B〉 ∼ 〈K,K∗|s̄Γ1 b|B〉 (l̄Γ2 l), (1.66)

where Γ1,2 corresponds to different Dirac matrix structures. Applying Lorentz-

transformation properties of the matrix element, the hadronic part is parametrized

in terms of the form factors FB→K,K∗

i of the B → K,K∗ transitions and can be

formally written as

〈K,K∗|s̄Γ1 b|B〉 ∼ FB→K,K∗

i , (1.67)

where the form factors are functions of Lorentz-scalars. This picture is incomplete

due to the presence of so-called non-factorizable strong interactions effects which

are not contained in the definition of the form factors of the B → K,K∗ transitions

[19, 20]. There are two types of such non-factorizable contributions. The first type

corresponds to the photon scattering with the spectator quarks of the B-meson or

Kaon. The corresponding diagrams are (g), (j) and (k) in Figure B.1 of Appendix B.4

which contribute at LO and NLO in αs. The second type of the non-factorizable

contributions come from the diagrams (d), (e) and (f) in Figure B.1 where the

omitted spectator quark is connected to the hard process through soft interactions.

The consistent method which goes beyond the naive factorization and is able to

include non-factorizable contributions is called QCD factorization (QCDF). It was

firstly introduced in [21, 22] for the non-leptonic B-decays and was extended to

semileptonic and radiative decays in [19, 20, 23, 24]. The amplitude of the B →
K,K∗l̄l decays computed in QCDF can be schematically written as

〈l̄lK(∗)
a |Heff |B〉 = Caξa + ΦB ⊗ Ta ⊗ ΦK(∗) (1.68)

where a = P,⊥, ‖ corresponds to a pseudoscalar K-meson, a transversely or lon-

gitudinally polarized K∗, respectively. Here ξa are universal heavy-to-light form

factors [25, 26] and Φ light cone distribution amplitudes of the B and K mesons.

The factors Ca and Ta are computed in perturbation theory [19, 20], whose explicit

expressions can be found in Appendix B.4.

The resulting calculations are limited to the dilepton invariant mass range 1 GeV2 .

q2 . 7 GeV2. The lower cut is chosen in order to avoid the contributions from light

resonances. The proper upper limit is determined by the requirements that the mo-

mentum of the Kaon is large pK ∼ mb and the contributions from charm resonances

are evaded [19, 20].
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2 Resonance Production by

Neutrinos

In this chapter we discuss neutrino scattering on nucleons in the resonance region.

Here we will consider first four dominantly contributing resonances. We present

the updated fit of the form factors of nucleon-resonance transitions. The form fac-

tors are determined from the experimental data on helicity amplitudes and using

theory general principles. Employing the new fit we compute cross sections of the

neutrinoproduction processes.

2.1 Introduction

The neutrino production of the resonances has been studied for a long time. Together

with quasielastic scattering (QE) and deep inelastic scattering (DIS) the resonance

production contributes to the total cross section of the neutrino-nucleon interaction.

Schematically, this process is shown in Figure 2.1. The first attempts concerned the

proton excitation in the delta resonance ∆ which gives the main contribution to the

cross section [27, 28, 29, 30]. These papers determined the p→ ∆ transition in terms

of hadronic form factors using general principles such as conserved vector current

(CVC), partially conserved axial-vector currents (PCAC), dispersion relations, etc.

In a later article [31], also resonance electroproduction data was used which gives

more precise values for the vector form factors and shows that the form factors fall

faster with increasing Q2 than the nucleon form factors in the dipole approximation.

The result of the papers [32, 33, 34] are the cross sections depending on several

parameters characterizing form factor fits.

In the latest decade the interest to study resonance production has increased

because of the discovery of neutrino oscillations. For the precise study of neutrino

oscillations the production of resonances by muon- and tau-neutrinos was analyzed

[35, 36, 31, 37, 38]. In the paper [38] calculations have been done taking into account

the mass of the outgoing muon.

The goal of the present work is to extend the previous investigations for isospin-1/2

resonances P11(1440), D13(1520), S11(1535) whose contribution to the cross section
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is sufficient besides P33(1232). Recently, electroproduction of resonance data has

become available from the Jefferson Laboratory [39, 40, 41] and Mainz [42] (BATEs

and Bonn). The data is mainly given in terms of helicity amplitudes. Here we

present the approach of determining the vector form factors of nucleon-resonance

transition from the helicity amplitudes of electroproduction data. For the axial form

factors we adopt an effective Lagrangian for the R → Nπ couplings and calculate

the decay widths. For each resonance we assume PCAC which gives us one relation

between axial form factors. Another coupling is determined from the decay width

of each resonance.

Knowing the resonance coupling we will consider different processes of resonance

production by neutrinos and predict cross sections.

W+

�l l�

R
N N

�

Figure 2.1: Single-pion production through a resonance R in neutrino reaction.
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2.2 Formalism of Resonance Production in Neutrino-Nucleon Interactions

2.2 Formalism of Resonance Production in

Neutrino-Nucleon Interactions

2.2.1 Cross Section

In this section we give the parametrization of the cross sections of the neutrino

resonance production, involving the following reaction

ν(k)n(p) → µ−(k′)R(p′) → µ−
{

p π0

nπ− , (2.1)

where R = D13(1520), P33(1232), P11(1440) and S11(1535). The calculations of

cross sections are based on the formalism analogous to the one used in deep inelastic

scattering (DIS). The cross section in DIS is given as

dσ

dΩdE ′ =
G2

F

16π2
cos2 θC

E ′

E
LµνWµν , (2.2)

where GF is Fermi constant, E and E ′ are the corresponding energies of incoming

and outgoing leptons, θC is the Cabibbo angle, i.e., sin θC = Vus (see Section 1.1).

We prefer to work with variables convenient for the resonance production and write

the cross section as
dσ

dQ2dW
=

πW

mNEE ′
dσ

dΩdE ′ , (2.3)

where mN is the nucleon mass and we use the following standard kinematics

Q2 = −q2 = (k − k′)2,

W 2 = p′2 = (q + p)2 = m2
N + 2mNq0 −Q2,

q0 = E ′ − E. (2.4)

The leptonic tensor Lµν has the form

Lµν = Tr[γµ(1 − γ5)k/γνk
′/]

= 4(kµk
′
ν + kνk

′
µ − gµνk · k′ − iεµναβk

αk′β). (2.5)

The hadronic tensor, which has also to be a Lorentz tensor, can be written in general

in terms of the 4-momenta p and q as

Wµν =
1

2mN

∑

〈p|Jµ(0)|∆〉〈∆|Jν(0)|p〉δ(W 2 −M2
R)

= −W1g
µν +

W2

m2
N

pµpν − iεµνσλpσqλ
W3

2m2
N

+
W4

m2
N

qµqν +
W5

m2
N

(pµqν + qµpν) + i
W6

m2
N

(pµqν − qµpν), (2.6)
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where MR is the mass of the resonance and Wi are the functions of Q2 and q0. In

this expression the sum runs over the R resonance polarization states and implies an

averaging over the spins of the target. The Wi are the so-called structure functions

which describe the hadron current. The integration over the phase space of the R was

carried out and gives the one-dimensional δ−function. Since the resonance has an

observable width, the δ−function should be replaced by its resonance representation

δ(W 2 −M2
R) =

MRΓR

π

1

(W 2 −M2
R)2 +M2

RΓ2
R

. (2.7)

The presented formalism in this section is general and holds for various resonances.

The structure functions Wi can be expressed through resonance form factors and

the corresponding expressions are summarized in the Appendices A.1 and A.2.

2.2.2 Hadronic Matrix Element

First we consider the resonances D13 and P33 with spin-3/2. According to the

Rarita-Schwinger formalism, the spin-3/2 particles are described by the so called

Rarita-Schwinger spinor field ψa
µ which has two indices, a Lorentz index µ and the

spinor index a (later the spinor index will be omitted). The hadronic matrix elements

for D13 and P33 resonances consist of 3 vector CV
i and 4 axial CA

i form factors. For

example, the parametrization of the matrix element for the D13 has the following

form

〈D13|Jν |N〉 = ψ̄(D)
µ (p′)dµν

D u(p) (2.8)

with the spinor of the target u(p) and the Rarita-Schwinger field ψ
(D)
µ for the D13

resonance. The structure of dµν
D is given in terms of form factors, which generally

are functions of the squared momentum transfer

dµν
D = gµν

[

CV
3

mN

q/+
CV

4

m2
N

(p′q) +
CV

5

m2
N

(pq) + CV
6

]

− qµ

[

CV
3

mN
γν +

CV
4

m2
N

p′ν +
CV

5

m2
N

pν

]

+ gµν

[

CA
3

mN
q/+

CA
4

m2
N

(p′q)

]

γ5

− qµ

[

CA
3

mN

γν +
CA

4

m2
N

p′ν
]

γ5 +

[

gµνCA
5 + qµqν C

A
6

m2
N

]

γ5. (2.9)

In the square of the matrix element also appears the Rarita-Schwinger projection

operator

|ψ(D)
σ 〉〈ψ(D)

λ | = Sσλ (2.10)

= [p/′ +MR]

(

−gσλ +
1

3
γσγλ +

1

3MR

(γσp
′
λ − p′σγλ) +

2

3M2
R

p′σp
′
λ

)

.
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Another form to write the weak vertex, which will be used later for the determination

of the form factors through the helicity amplitudes, is

〈D13|Jρ
(V )ερ|N〉 = ψ̄(D)

µ

[

Γ(V )
ν F µν + Γ(A)

ν γ5F µν + CA
5 γ

5gµνεν +
CA

6

m2
N

γ5qµqνεν

]

u(p),

(2.11)

where

Γ(V )
ν =

CV
3

mN

γν +
CV

4

m2
N

p′λ +
CV

5

m2
N

pλ, Γ(A)
ν =

CV
3

mN

γν +
CV

4

m2
N

p′λ, F µν = qµεν − qνεµ.

(2.12)

In these expressions εµ denotes the polarization vector of either photon or leptonic

vector current. There are right-, left- handed and scalar polarizations of the photon.

In the frame of reference, where the photon moves along the z−axis the polarization

vectors are

εµ(R) = 1√
2

(

0,−1,−i, 0), εµ(L) = 1√
2

(

0, 1,−i, 0),

εµ(S) = 1√
Q2

(

q3, 0, 0, q0).
(2.13)

The parametrization of the hadronic matrix element for the P33 resonance is sim-

ilar. The only difference with respect to D13 is the location of the γ5 matrix (in the

case of the P33 resonance it appears in the vector part of the vertex), because these

two resonance have opposite parity.

Thus, with this notation the hadronic tensor takes the form

Wµν =
1

2

1

2mN
Tr
[

(d̄)µσSσλd
λν(p/+mN)

]

δ(W 2 −M2
R) (2.14)

with (d̄)µσ = γ0(d
†)µσγ0 and then parametrized according to (2.6). Substituting

the dλν in (2.14) we find the dependence of the Wi structure functions on the form

factors (see Appendices A.1 and A.2).

For the spin-1/2 resonances the parametrization for the weak vertex of the res-

onance creation is simpler than for the spin-3/2 resonances and similar to the

parametrization for the nucleon. Since the initial nucleon and the outgoing reso-

nance do not enter the same isospin multiplet and have different masses, the term

gV
1 γ

µ does not vanish due to CVC, but its contribution is proportional to Q2. There

are also two axial form factors gA
1 and gA

3 , which are related by PCAC.

The matrix element of the P11 resonance production can be written as follows:

〈P11|Jν |N〉 = ū(p′)

[

gV
1

µ2
(Q2γν + q/qν) +

gV
2

µ
iσνρqρ − gA

1 γ
νγ5 −

gA
3

mN
qνγ5

]

u(p),

(2.15)
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where we use the standard notation σνρ = i
2
[γν , γρ] and the form factors are nor-

malized to µ = mN +MR.

For the S11 the amplitude of resonance production is similar to that for P11, only

now the γ5 matrix appears in the vector part of the hadronic current

〈S11|Jν |N〉 = ū(p′)

[

gV
1

µ2
(Q2γν + q/qν)γ5 +

gV
2

µ
iσνρqργ5 − gA

1 γ
ν − gA

3

mN
qν

]

u(p). (2.16)

2.3 Determination of Helicity Amplitudes in

Electroproduction

The data on exclusive electroproduction of π0, π+ on protons in the first and sec-

ond resonance region obtained at the Jefferson Laboratory [39, 40, 41] and Mainz

[42] (BATEs and Bonn) accelerators, are mainly expressed through the helicity am-

plitudes. The extraction of the vector form factors from the helicity amplitudes

provides more accurate results than the extraction from cross sections. Thus, these

data allow us to obtain more precise information about vector form factors of the

four first resonances. In this section we derive the general expressions for the helicity

amplitudes and in the next one we present the formulae for the particular resonance

case explicitly.

Let us consider unpolarized lepton-nucleon scattering. The cross section of this

process has the standard form, which is used widely in the literature:

dσ

dE ′dΩ
= ΓT (σT + ǫσL), (2.17)

where σT and σL are the transverse and longitudinal cross sections corresponding to

the virtual photon polarization, and

ΓT =
Kα

2π2Q2

E ′

E

1

1 − ǫ
, (2.18)

ǫ =
[

1 + 2
Q2 + q2

0

Q2
tan2 θ

2

]−1

. (2.19)

The virtual photoabsorption cross section is given by

σi(W ) =
1

2
K
∣

∣〈R|εν(i)Jem
ν |N〉

∣

∣

2
R(W,MR), (2.20)

K =
4π2α

2mN(ν −Q2/2mN)
,

22



2.4 Calculation of the Amplitudes

where i = R, L or S is the helicity of the photon and the R(W,MR) is given by (2.7).

〈R|εν(i)Jem
ν |N〉 is the matrix element of the resonance electroproduction, which will

be specified below for each resonance and expressed through the corresponding form

factors. When the invariant mass of the final state equals the mass of a particular

resonance, the cross section has a peak and is expressed as

σi(W = MR) =
1

2
K
∣

∣〈R, λ|εν(i)Jem
ν |N〉

∣

∣

2 1

πMRΓR

. (2.21)

We write the cross section in this form because analyses of electroproduction data

give the cross section as [39, 43, 41, 42]

σT (W = MR) =
2mN

MRΓR
(A2

1/2 + A2
3/2), (2.22)

σL(W = MR) =
2mN

MRΓR

Q2

q2
3

S2
1/2. (2.23)

In this way we determine the normalization of the amplitudes

A1/2 = AW 〈R,+1

2
|Jem · ε(R)|N,−1

2
〉,

A3/2 = AW 〈R,+3

2
|Jem · ε(R)|N,+1

2
〉,

S1/2 = AW
q3
√

Q2
〈R,+1

2
|Jem · ε(S)|N,+1

2
〉,

(2.24)

where AW =
√

πα
mN (W 2−m2

N )
. In the next sections we implement these definitions to

extract later the vector couplings CV
i .

2.4 Calculation of the Amplitudes

Here we present the detailed calculations of the helicity amplitudes for the example

of the D13 resonance. Following the definition of the helicity amplitudes (2.24) we

get the corresponding expressions for spin-3/2 resonances:

AD
3/2 = AW

(

ψµ(p
′, 3/2)qµΓ(V )

ν ενu(p,+) − ψµ(p′, 3/2)εµΓ(V )
ν qνu(p,+)

)

, (2.25)

AD
1/2 = AW

(

ψµ(p
′, 1/2)qµΓ(V )

ν ενu(p,−) − ψµ(p′, 1/2)εµΓ(V )
ν qνu(p,−)

)

, (2.26)

SD
1/2 =

q3
√

Q2
AW

(

ψµ(p
′, 1/2)qµΓ(V )

ν ενu(p,+) − ψµ(p′, 1/2)εµΓ(V )
ν qνu(p,+)

)

. (2.27)
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The vertex factor Γ
(V )
ν is given in (2.12) for the D13 resonance. In the following

we work in the nucleon rest frame with pµ = (mN , 0, 0, 0) and the virtual photon

moving along the z-axis with four-momentum qµ = (q0, 0, 0, q3). For the resonance

we take the Rarita-Scwinger wave function in the representation (see [44])

ψµ(p′, 3/2) = e
(R)
µ u(p′,+1/2),

ψµ(p′, 1/2) =
√

2
3
e
(S)
µ u(p′,+1/2) +

√

1
3
e
(R)
µ u(p′,−1/2),

ψµ(p′,−1/2) =
√

2
3
e
(S)
µ u(p′,−1/2) +

√

1
3
e
(L)
µ u(p′,+1/2),

ψµ(p′,−3/2) = e
(L)
µ u(p′,−1/2),

(2.28)

where

u(p, sz) =
1√
N

[

1
~p′·~σ

p′0+MR

]

usz (2.29)

and the polarization vectors of the resonance D13 are

e
(R)
µ = 1√

2

(

0,−1,−i, 0), e
(L)
µ = 1√

2

(

0, 1,−i, 0),

e
(S)
µ = 1√

MR

(

q3, 0, 0, q0 +mN ).

(2.30)

The normalization of the Dirac spinors we choose as

u(0, s)u(0, s) = 2mN , u(p′, s′)u(p′, s′) = p′0 +MR (2.31)

where s corresponds to the two spin projections ” + ” and ”− ” of the nucleon, and

the resonance spin projections s′ = 3/2, 1/2,−1/2,−3/2.

2.4.1 AD13

3/2 , A
D13

1/2 and SD13

1/2

Let us first consider the amplitude A3/2 for the D13. Here we rewrite the amplitude

using the explicit form of the ψµ spinor (2.28)

AD13

3/2 = AW

(

(e(R)∗ · q)u(p′, 3/2)Γνε
(R)νu(0,+) − (e(R)∗ · ε(R))u(p′, 3/2)Γνq

νu(0,+)
)

.

(2.32)

The first term is equal to zero because of e(R)∗ · q = 0 and only the second term

contributes since e(R)∗ · ε(R) = 1. So, after substituting the explicit form for the

spinors and using Dirac matrix properties we obtain:

AD13

3/2 =
√
N
(CV

3

mN

(MR −mN) +
CV

4

m2
N

(q0mN −Q2) +
CV

5

mN

q0

)

(2.33)
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2.4 Calculation of the Amplitudes

where

N =
2πα(p′0 +MR)

M2
R −m2

N

. (2.34)

The matrix element of the AD13

1/2 is the sum of the four terms:

AD13

3/2 = AW

(

√

2

3
(eS∗ · q)u(p′,+)Γνε

(R)νu(0,−) +

√

1

3
(eR∗ · q)u(p′,−)Γνε

(R)νu(0,−)

−
√

2

3
(eS∗ · ε(R))u(p′,+)Γνq

νu(0,−) −
√

1

3
(eR∗ · ε(R))u(p′,−)Γνq

νu(0,−)
)

.

(2.35)

The second and the third terms are equal to zero because of

e(R)∗ · q = 0, u(p′,±)Γνq
νu(0,∓) = 0, (2.36)

and the calculation of the last term is analogous to the one of AD13

3/2 with the addi-

tional factor
√

1
3
. For the evaluation of the first term we use:

e(S)∗ · q = −mN

MR
q3,

u(p′,+)Γνε
(R)νu(0,−) =

√
2

q3
p′0 +MR

CV
3

mN

. (2.37)

Finally, substituting (2.37) in (2.35), we get the amplitude

AD13

1/2 =

√

1

3
AD13

3/2 − 2√
3

√
N q2

3

p′0 +MR

CV
3

MR

. (2.38)

The same steps should be done for the SD
1/2 amplitude

SD
1/2 =

AW q3
√

Q2

(

√

2

3
(eS∗ · q)u(p′,+)Γνε

(S)νu(0,+)

+

√

1

3
(e(R)∗ · q)u(p′,−)Γνε

(S)νu(0,+)

−
√

2

3
(e(S)∗ · ε(S))u(p′,+)Γνq

νu(0,+)

−
√

1

3
(e(R)∗ · ε(S))u(p′,−)Γνq

νu(0,+)
)

. (2.39)

The second and last terms are zero due to (2.36). Calculating explicitly the expres-

sions

e(S)∗ · ε(S) = −νmN −Q2

MR

√

Q2
,

u(p′,+)Γνε
(S)νu(0,−) =

√
2

q3
p′0 +MR

CV
3

mN
(2.40)
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and substituting them into (2.39) we arrive at

SD13

1/2 = −
√

2/3
√
N q3

3

MRQ2

(mN +MR

p′0 +MR
CV

3 + CV
4 + CV

5

)

+
√

2/3
νmN −Q2

MRQ2
q3A

D13

3/2 . (2.41)

2.4.2 Helicity Amplitudes for the P33(1232) Resonance

Since the P33 has positive parity, the Γ
(V )
µ vertex has an additional γ5 matrix

Γ(V )
µ =

(CV
3

mN
γµ +

CV
4

m2
N

p′µ +
CV

5

m2
N

pµ

)

γ5. (2.42)

Following the same steps as in the previous section we obtain the expressions for the

helicity amplitudes as functions of CV
i as

AP33

3/2 =
√
N q3
p′0 +MR

(CV
3

mN
(MR +mN ) +

CV
4

m2
N

(q0mN −Q2) +
CV

5

mN
q0

)

,

AP33

1/2 = −
√

1

3
AD13

3/2 − 2√
3

√
N q3C

V
3

MR
,

SP33

1/2 = −
√

2/3
√
N mNq

2
3

MRQ2

(CV
3

mN
(

q2
3

p′0 +MR
− q0) −

q2
3

(p′0 +MR)mN
(CV

4 + CV
5 )
)

+
√

2/3
νmN −Q2

MRQ2
q3A

D13

3/2 . (2.43)

2.4.3 Helicity Amplitudes for the P11(1440) Resonance

According to (2.15), the hadronic matrix element for electroproduction of resonance

can be written as

〈P11|Jν |N〉 = ū(p′)

[

gV
1

(mN +MR)2
(Q2γν + q/qν) +

gV
2

mN +MR

iσνρqρ

]

u(p). (2.44)

Since the P11 resonance is a spin-1/2 particle, only the two helicity amplitudes

AP11

1/2 = AW (BR
1 +BR

2 ), SP11

1/2 = AW
q3
√

Q2
(DS

1 +DS
2 ) (2.45)
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exist. Using Dirac matrices, spinor formalism and (2.13), (2.31) we find

BR
1 =

gV
1

(mN +MR)2
ū(p′,+)(Q2ε/(R) + q/ε(R) · q)u(0,−)

=
gV
1

(mN +MR)2

√

(p′0 +MR)2mNQ
2

√
2q3

p′0 +MR
,

BR
2 =

gV
2

(mN +MR)
ū(p′,+)iσνρε(R)

ν qρu(0,−)

=
gV
2

(p′0 +MR)

√

(p′0 +MR)2mN

√
2q3, (2.46)

and

DS
1 =

gV
1

(mN +MR)2
ū(p′,+)(Q2ε/(S) + q/ε(S) · q)u(0,+)

=
gV
1

(mN +MR)

√

(p′0 +MR)2mNQ
2 q3
p′0 +MR

,

DS
2 =

gV
2

(mN +MR)
ū(p′,+)iσνρε(S)

ν qρu(0,+)

= − gV
2

(mN +MR)

√

(p′0 +MR)2mN

√

Q2
q3

p′0 +MR

. (2.47)

Substituting (2.46) and (2.47) in (2.45) we get the final formulas for the amplitudes

as functions of vector form factors gV
i

AP11

1/2 =
√
N

√
2q3

p′0 +MR

[

gV
1

(mN +MR)2
Q2 + gV

2

]

, (2.48)

SP11

1/2 =
√
N q2

3

p′0 +MR

[

gV
1

mN +MR
− gV

2

mN +MR

]

. (2.49)

2.4.4 Helicity Amplitudes for the S11(1535) Resonance

The parametrization of the matrix element of S11 resonance production is similar to

P11, except for an additional factor of γ5 in the matrix element (2.44) due to parity

〈S11|Jν |N〉 = ū(p′)

[

gV
1

(mN +MR)2
(Q2γν + q/qν)γ5 +

gV
2

mN +MR
iσνρqργ5

]

u(p).(2.50)

Substituting (2.50) into the definitions (2.24) we get the following expressions for

the helicity amplitudes

AS11

1/2 =
√

2N
[

gV
1

(mN +MR)2
Q2 +

gV
2

(mN +MR)
(q0 −

q2
3

p′0 +MR
)

]

, (2.51)
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SS11

1/2 =
√
N q3

[

− gV
1

(mN +MR)2
(q0 −

q2
3

p′0 +MR
) +

gV
2

mN +MR

]

. (2.52)

2.5 Data Analysis and the Extractions of the Form

Factors

Having expressed all helicity amplitudes in terms of the vector form factors, we can

compare them with the data. In the case of spin-3/2 resonances we have three vector

form factors CV
i and three equations for amplitudes, which allows us unambiguously

to extract the form factors. The data in [39, 40, 41], [42] are presented in terms

of amplitudes whose numerical value are given as a function of Q2. We also take

into account numerical values of the helicity amplitudes at Q2 = 0 summarized in

the Review of Particles Properties [45], where the helicity amplitudes characterize

the radiative decay of the resonance R → γN . Fitting form factors at different Q2

allows us to determine their Q2-dependence.

To relate electromagnetic to weak form factors we use the isotopic symmetry.

The photon has two isospin components |I, I3〉 = |1, 0〉 and |0, 0〉. The isovector

component belongs to the same isomultiplet as the vector part of the weak current.

Each of the amplitudes A3/2, A1/2, S1/2 can be further decomposed into three isospin

amplitudes. Let us use a general notation and denote by b the contribution from

the isoscalar photon; similarly a1 and a3 denote contributions of isovector photon to

resonances with isospin 1/2 and 3/2, respectively. A general helicity amplitude on

a proton (Ap) and neutron (An) target has the decomposition

Ap = Ap(γp→ R+) = b−
√

1

3
a1 +

√

2

3
a3,

An = An(γn→ R0) = b+

√

1

3
a1 +

√

2

3
a3. (2.53)

For the weak current we have only an isovector component of the vector current,

therefore the b amplitude never occurs in weak interactions. A second peculiarity

of the charged currents is that V1 ± iV2 does not have the normalization for the

Clebsch–Gordon coefficients, it must be normalized as (V1 ± iV2)/
√

2, which brings

an additional factor of
√

2 to each of the charged current in comparison with the

Clebsch–Gordon coefficients:

A(W+n→ R(1)+) =
2√
3
a1,
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A(W+p→ R(3)++) =
√

2a3,

A(W+n→ R(3)+) =

√

2

3
a3,

(2.54)

where R(1) and R(3) are the isospin-1/2 and isospin-3/2 resonances, respectively.

Comparing (2.53) with (2.54), one easily sees, that, for the isospin-1/2 resonances,

the weak amplitude satisfies the equality A(W+n → R(1)+) = An − Ap. Since the

amplitudes are linear functions of the form factors, the weak vector form factors are

related in the same way to electromagnetic form factors for neutrons Cn
i and protons

Cp
i :

I = 1/2 : CV
i = Cn

i − Cp
i , (2.55)

with the index i distinguishing the Lorenz structure of the form factors.

For the isospin-3/2 resonances one gets A3
n(W+n→ R(3)+) = A3

p(W
−p→ R(3)0) =

√

2/3a3. The weak form factors, which are conventionally specified for these two

processes, are

I = 3/2 : CV
i = Cp

i = Cn
i . (2.56)

For the process W+p → R(3)++ the amplitude is
√

3 times bigger: A(W+p →
R(3)++) =

√
3A(W+n→ R(3)+).

2.5.1 D13(1520)

Matching the equations (2.33), (2.38), (2.41) on the data of helicity amplitudes

[39, 40, 41, 42, 45] we extract the form factors and fit the Q2-dependence for the

D13 resonance:

C
(p)
3 =

2.95/DV

1 +Q2/8.9M2
V

, C
(p)
4 =

−1.15/DV

1 +Q2/8.9M2
V

,

C
(p)
5 =

−0.48

DV
,

C
(n)
3 =

−1.13/DV

1 +Q2/8.9M2
V

, C
(n)
4 =

0.46/DV

1 +Q2/8.9M2
V

,

C
(n)
5 =

−0.17

DV
,

(2.57)

whereDV = (1+Q2/M2
V ) denotes the dipole function with the vector mass parameter

MV = 0.84 GeV. To give an impression, how good this parametrization is, we plot

in Figure 2.2 the helicity amplitudes, obtained with these form factors (2.57).
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Figure 2.2: The fit of the helicity amplitudes AD13

3/2 , AD13

1/2 and SD13

1/2 on the proton

data [39, 40, 41, 42, 45], leading to the parametrization (2.57) of the

proton form factors.

2.5.2 P33(1232)

Using the same method as for the D13 we match equations (2.43) on the data [42, 45].

It leads us to the following vector form factors

CV
3 =

2.133/DV

1 +Q2/4M2
V

,

CV
4 =

−1.505/DV

1 +Q2/4M2
V

,

CV
5 =

−0.481/DV

1 +Q2/0.776M2
V

, (2.58)

which are the same for proton and neutron since P33 is an isospin-3/2 particle.

The form factors are in agreement with the generally accepted magnetic dominance

approximation within a 5% accuracy and at the same time correctly describe the

nonzero scalar helicity amplitude. The fit of the helicity amplitudes for the form

factors from (2.58) is shown in Figure 2.3.

2.5.3 P11(1440)

In the case of spin-1/2 resonances we have two independent vector form factors and

two helicity amplitudes A1/2 and S1/2. At nonzero Q2 data on helicity amplitudes

30



2.5 Data Analysis and the Extractions of the Form Factors

-300

-250

-200

-150

-100

-50

 0

 50

 0  0.5  1  1.5  2  2.5  3

A
3/

2,
 A

1/
2,

 S
1/

2,
 1

0-3
 G

eV
-1

/2

2

A3/2
(p)

A1/2
(p)

S1/2
(p)

Q [GeV2]

Figure 2.3: The fit of the helicity amplitudes AP33

3/2 , A
P33

1/2 and SP33

1/2 on the data [42, 45],

leading to the parametrization (2.58) of the form factors.

for the P11 are available only for the proton. Unlike the case of the other resonances,

the accuracy of the data is low and the measurements provided by different groups

differ significantly [42, 41, 46], as is illustrated in Figure 2.4. In this case we fit only

the recent data from [41, 46]. The uncertainty of the measurements of the helicity

amplitudes of the proton turn out to be bigger than the predicted difference between

proton and neutron. So we neglect the isoscalar contribution to the electromagnetic

current and use A
(n)
1/2 = −A(p)

1/2, then the isovector form factors become gV
i = 2g

(p)
i .

We use for our fit only the recent data [41, 46] and parametrize the proton elec-

tromagnetic form factors as follows:

P11(1440) : g
V (p)
1 =

2.3/DV

1 +Q2/4.3M2
V

,

g
V (p)
2 =

−0.76

DV

[

1 − 2.8 ln

(

1 +
Q2

1 GeV2

)]

.
(2.59)

The fit result of the helicity amplitudes together with the experimental data is

plotted in Figure 2.5.

2.5.4 S11(1535)

Like the P11 resonance, we choose here to fit only proton data [41, 46] and neglect

the isoscalar contribution to the electromagnetic current. We get the following form

31



Resonance Production by Neutrinos

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  1  2  3  4  5  6

A
1/

2,
 S

1/
2,

 1
0-3

 G
eV

-1
/2

2

A1/2

S1/2

Q [GeV2]

Figure 2.4: Helicity amplitudes for the P11(1440) resonance, calculated with the form

factors from (2.59). For A1/2 the data are from: [42] (unshaded circles),

[41] (unshaded pentagons), [46] (full circles); for S1/2: [42] (unshaded up

triangles), [41] (unshaded down triangles), [46] (full triangles)

factors:

S11(1535) :

g
V (p)
1 =

2.0/DV

1 +Q2/1.2M2
V

[

1 + 7.2 ln

(

1 +
Q2

1 GeV2

)]

,

g
V (p)
2 =

0.84

DV

[

1 + 0.11 ln

(

1 +
Q2

1 GeV2

)]

.

(2.60)

The illustration of this parametrization in terms of the helicity amplitudes is plotted

in Figure 2.5 together with the data.

2.6 Decays of the Resonances and PCAC

One of the properties of the weak current is the existence of the axial part. The

calculation of the divergence of the axial current gives us a nonzero result

〈0|∂µAa
µ|πb(p)〉 = fπm

2
π〈0|φa(0)|πb(p)〉 (2.61)

where fπ denotes the decay constant. It is measured in the leptonic pion decay

π+ → l+νl. mπ is the pion mass and φa(0) is the pion field. The nonzero divergence

of the axial current is explained by SU(2)L × SU(2)R → SU(2)R flavor symme-

try breaking, according to which the pions get nonzero masses. In the case of an
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Figure 2.5: Helicity amplitudes for the S11(1535) resonance, calculated with the

form factors from (2.60). For A1/2 data are from: [42] (unshaded circles),

[41] (unshaded pentagons), [46] (full circles), [47] (unshaded diamond);

for S1/2: [42] (unshaded up triangles), [41] (unshaded down triangles),
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unbroken symmetry we have the conserved axial current

〈0|∂µAa
µ|πb(p)〉 = 0, (2.62)

corresponding to mπ = 0 as required by the Goldstone theorem.

The generalization of (2.61) leads to an operator relation

∂µAa
µ = fπm

2
πφ

a(0), (2.63)

which is known as the partial conserved axial-vector current (PCAC) and can be

used in hadronic matrix elements. Several applications of PCAC have been estab-

lished, particularly the so-called Goldberger-Treiman relation analog which we use

to determine the axial form factors. This application is based on the assumption

that the matrix element of the corresponding pion current is a slowly changing func-

tion in the interval from the point where the pion field is off-shell q2 = 0 to point

where it goes on-shell q2 = m2
π. Thus, our goal is to calculate the resonance axial

form factors CA
i and gA

i by using PCAC and by fitting the decay width, the latter

taken from [45].
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2.6.1 P33(1232)

For the P33(1232) the isospin invariance predicts the following phenomenological

Lagrangian of the ∆Nπ interactions:

LP33(1232)
πNR = g∆(∆++

µ p∂µπ
+ +

√

1

3
∆+

µn∂µπ
+

+

√

1

3
∆0

µp∂µπ
− +

√

2

3
∆+

µ p∂µπ
0 (2.64)

+

√

2

3
∆0

µn∂µπ
0 + ∆−

µn∂µπ
−),

where n, p and π are neutron, proton and pion, respectively. The width is calculated

using the standard formula for the decay of the particle in its rest frame

dΓ =
1

32π2(2J + 1)
|M|2 |~q|

M2
R

dΩ (2.65)

where J and MR stand for the spin and mass of the decaying particle, respectively.

For the P33 resonance we obtain

|M|2 =
∑

s,λ

g2
∆q

νqµu(p)ψµ(λ)ψν(λ)u(p), (2.66)

∑

λ

qνqµψµ(λ)ψν(λ) =
2

3
(p/′ +MR)(q · e(S))2. (2.67)

Substituting (2.67) in (2.65) and calculating the trace of the matrix element we get

the following formula for the width of the ∆ resonance decaying into πN

Γ∆ =
g2
∆

8π

1

3M2
R

[

(MR +mN)2 −m2
π

]

|pπ|3, (2.68)

where the pion momentum is

pπ =
1

2MR

√

(M2
R −m2

N −m2
π)2 − 4m2

Nm
2
π. (2.69)

For the experimental value Γ∆ = 0.114 GeV, we obtain g∆ = 15.3 GeV−1.

According to the PCAC relation holds

〈R+|∂µA
µ(0)|n〉 = −im2

πfπ
1

q2 −m2
π

T (π+n→ R+), (2.70)

where T (π+n→ R+) denotes the pion mass shell amplitude for the π+n→ R+. The

weak vertex for all the resonances includes the charged state of the resonance and

the neutral state of the initial nucleon, so for the weak vertex we should always take

the decay R+ → nπ+.
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For the P33(1232) the relation (2.70) turns into

i∆+
µ q

µ

[

CA
5 +

CA
6

m2
N

q2

]

uN = −i
√

1

3

m2
πfπ

q2 −m2
π

∆+
µ g∆q

µuN , (2.71)

and we obtain in the limit mπ → 0 a relation between the two form factors

CA
6 = −m2

N

CA
5

q2
. (2.72)

The denominator of the above formula is usually phenomenologically extended as

q2 → q2 − m2
π. Making use of the relation (2.72) for q2 → 0 one also obtains

CA
5 = g∆fπ/

√
3. Thus, we find

CA
5 (P33) =

g∆fπ√
3

= 1.2, CA
6 (P33) = m2

N

CA
5 (P33)

m2
π +Q2

. (2.73)

The first relation in (2.73) is an analogy to the Goldberger-Treiman relation of the

β-decay, which shows that the vertex constant g∆ does not vary significantly when

the pion goes on-shell q2 = m2
π with respect to the q2 = 0 value. For the ∆++ the

πNR vertex is bigger by a factor
√

3, so, strictly speaking, CA
5 is also

√
3 times

bigger. However, by historical reasons, this
√

3 is conventionally attributed to the

vertex itself and not to the CA
5 .

The same method will be used for the other resonances. We will present the brief

calculations of the form factors briefly in the next sections.

2.6.2 D13(1520)

For the D13 the isospin-invariant Lagrangian of the D13Nπ interactions reads as

follows:

LD13
πNR = gD13

[

√

2

3
D+

µ γ5n∂µπ
+ −

√

2

3
D0

µγ5p∂µπ
− (2.74)

−
√

1

3
D+

µ γ5p∂µπ
0 +

√

1

3
D0

µγ5n∂µπ
0

]

,

where Dµ denotes the D13 field. The width of the πN decay is

ΓD13→πN =
g2

D13

8π

1

3M2
R

[

(MR −mN)2 −m2
π

]

|pπ|3. (2.75)

The total width of the D13 resonance is about 0.125 GeV and the elasticity (the

relation of πN width to the total width) is about 0.5. With ΓD13→πN = 0.0625 GeV,

we obtain gD13 = 15.5 GeV−1 and the running width of the resonance is again
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proportional to the third power of the pion momentum. The PCAC relation turn

into

iDµq
µ

[

CA
5 +

CA
6

m2
N

q2

]

γ5uN =

√

2

3
DµgD13q

µγ5uN , (2.76)

which results in

CA
6 (D13) = m2

N

CA
5 (D13)

m2
π +Q2

, CA
5 (D13) =

√

2

3
gD13fπ = 2.1. (2.77)

2.6.3 P11(1440)

For the P11 the isospin-invariant Lagrangian is

LP11
πNR = gP11

[

√

2

3
P+γ5nπ

+ −
√

2

3
P 0γ5pπ

−

−
√

1

3
P+γ5pπ

0 +

√

1

3
P 0γ5nπ

0

]

,

where P is the field corresponding to the P11 resonance. The decay width is

ΓP11→πN =
g2

P11

8πM2
R

[

(MR −mN)2 −m2
π

]

|pπ|. (2.78)

With the experimental value ΓP11→πN = 0.6 · 0.350 GeV we obtain gP11 = 10.9.

The PCAC relation

iūR(p′)
[

gA
1 γ

µqµ +
gA
3

mN
q2
]

γ5uN(p) =

=

√

2

3
(−im2

π)
fπ

q2 −m2
π

ūR(p′)gP11γ
5uN(p)

(2.79)

at mπ → 0 leads to

gA
3 (P11) = −mN (MR +mN )

q2 −m2
π

gA
1 (P11) (2.80)

(here the denominator is phenomenologically extended as usual) and at Q2 → 0 the

coupling is

gA
1 (P11) =

√

2

3

gP11fπ

MR +mN
= 0.51. (2.81)

2.6.4 S11(1535)

For the S11 the isospin-invariant Lagrangian is

LS11
πNR = gS11

[

√

2

3
S+nπ+ −

√

2

3
S0pπ− −

√

1

3
S+pπ0 +

√

1

3
S0nπ0

]

, (2.82)
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where S denotes the S11 field. The decay width is

ΓS11→πN =
g2

S11

8πM2
R

[

(MR +mN)2 −m2
π

]

|pπ|. (2.83)

With the experimental value ΓS11→πN = 0.06 GeV we obtain gS11 = 1.12.

The PCAC relation

iūR(p′)

[

gA
1 γ

µqµ +
gA
3

mN
q2

]

uN(p)

=

√

2

3
(−im2

π)
fπ

q2 −m2
π

ūR(p′)gS11uN(p)

(2.84)

at mπ → 0 leads to

gA
3 (S11) = −mN (MR −mN )

q2 −m2
π

gA
1 (S11) (2.85)

where we used the physical propagator pole. At Q2 → 0 the coupling is

gA
1 (S11) =

√

2

3

gS11fπ

MR −mN
= 0.21. (2.86)

2.7 Cross Sections in the Second Resonance Region
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Figure 2.6: The left-hand plot shows the differential cross section dσ/dW for the

one-pion neutrinoproduction on neutron for the neutrino energy Eν =

1, 2, 3 GeV. The right-hand plot shows the differential cross section

dσ/dW for the one-pion neutrinoproduction for the BEBC experiment

[48] with the neutrino energy Eν = 54 GeV.

In this section we present the cross sections of neutrinoproduction of the reso-

nances for the second resonance region using the isovector form factors. We spe-

cialize to the final states νn → R → µ−pπ0 and νn → R → µ−nπ+, where both
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Resonance Production by Neutrinos

I = 3/2 and I = 1/2 resonances contribute. We use the form factors obtained in

Section 2.5 and plot the differential cross section dσ/dW in Figure 2.6 for incom-

ing neutrino energies Eν = 1, 2 and 3 GeV. We note, that the second resonance

peak grows faster than the first one with the neutrino energy and becomes more

pronounced for the higher neutrino energies. For this purpose we show in Figure

2.6 also the theoretical curve together with the experimental data from the BEBC

experiment [48] for Eν = 54 GeV. The theoretical curve clearly shows two peaks

with comparable areas under the peaks. The experimental points are of the same

order of magnitude and follow general trends of our curves, but are not accurate

enough to resolve two resonant peaks.

We also present the integrated cross sections for the final states µ−pπ0 and µ−nπ+

as functions of the neutrino energy. Together with the theoretical curves we show

the experimental data taken from the ANL [49, 50], SKAT [51] and BNL [52] ex-

periments. The experiments use different neutrino energy spectra, however, with

an overlap region for Eν < 2.0 GeV where different results can be compared. The

solid curves in Fig. 2.7 show the theoretically calculated cross sections with the cut

W < 2.0 GeV and the dashed ones with the cut W < 1.6 GeV. For pπ0 the solid

curve goes through most of the experimental points except for those of the BNL

experiment, which are consistently higher than the ones of the other experiments.
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Figure 2.7: Integrated cross section for the µ−pπ0 (left-hand plot) and µ−nπ+ (right-

hand plot) final states. The solid curves show the theoretically calculated

cross sections with the cut W < 2.0 GeV and the dashed ones with the

cut W < 1.6 GeV. The double dashed curve in the case µ−nπ+ state

includes a smooth background (see text). The data are taken from ANL

[49] (red full squares) and [50] (green full circles), SKAT [51] (magenta

triangles) and BNL [52] (blue triangles) experiments.

For the nπ+ channel our prediction is a little lower than the data. This means that

there are contributions from higher resonances or axial form factors that cannot be
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fixed using available data. Another possibility is to add a smooth background which

grows with energy. By isospin conservation, the background for the pπ0 channel is

determined to be half as big as the one for nπ+. Including this background, which

may originate from various sources, produces the double-dashed curves in Fig. 2.7.

2.8 Conclusions

The production of resonances in neutrino-nucleon collisions can be uniquely de-

scribed by the form factors of the nucleon-resonance transitions. Thank to the

recent electroproduction data from JLAB and the Mainz accelerators we were able

to determine the vector form factors by fitting the measured helicity amplitudes.

We found, that several of the form factors fall slower than the dipole form factor,

at least for Q2 < (2 − 3) GeV2. The fit of the form factors is illustrated in Figures

2.2, 2.3, 2.4, 2.5. We obtain values for two axial form factors by applying PCAC

whenever the decay width and elasticity are known. For the spin-3/2 resonances

there is still freedom for two additional axial form factors whose contribution may

be important. This should be tested in the experiments. The impact of the second

resonance region to the cross section is sizable. For the differential cross section it

has a noticeable peak in dσ/dW (Fig.2.6), which grows as Eν increases from 1 to

3 GeV. The integrated cross section for the I = 1/2 channel also grows with the

energy of the beam and requires a stronger contribution from the resonances and a

non-resonant background (Fig.2.7).
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3 Angular Analysis of B → K,K∗l̄l
Decays

In this chapter we present the detailed study of the exclusive B → K,K∗l̄l decays.

We give the precise SM values of observables constructed by angular distributions

of decay rates. The sensitivity of these observables to NP is analyzed.

3.1 Introduction

In the SM due to the absence of tree level FCNC, B → K,K∗l̄l with l = e, µ occur at

loop level, what makes these processes very rare. The experimental measurements of

the branching ratios confirm the SM predictions within uncertainties, estimating it

in the region of O (10−7) [53, 54, 55, 56, 57, 58]. The early theoretical studies [57, 58]

were devoted to phenomenological analyses of different observables in the SM and

beyond, such as integrated rates, dilepton mass spectra, lepton angle distributions

and dimuon to dielectron ratios. Taking into account the subsequent decay K∗ →
Kπ enlarges the number of obsevables of B → K∗ l̄l offering the angular analysis of

the K̄πl̄l final state [59, 60, 61, 62, 63, 64].

In spite of recent improvements of the theoretical methods, the resulting theory

uncertainties in the rates are still large, making them not so useful to test the SM.

Therefore additional more convenient observables need to be discussed. Particularly,

the source of such observables is the angular distributions of the decay rates with

respect to angles defined by outgoing particles. Normalizing the angular distribution

to the decay rate makes the corresponding observables less sensitive to the various

input uncertainties.

Particularly, in the SM the normalized angular distribution of B → Kl̄l with

respect to the the lepton charge asymmetry angle θ has a simple structure [57, 58]:

dΓl
SM

dcos θ
∝ sin2 θ + O(m2

l ), (3.1)

which is very attractive to test the SM, since any modifications of it can reveal

underling NP. A closer analysis shows that the cos θ-dependence of the (normalized)
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Angular Analysis of B → K,K∗l̄l Decays

angular distribution can be parametrized as [55, 57, 58]

1

Γl

dΓl

dcos θ
=

3

4
(1 − F l

H)(1 − cos2 θ) +
1

2
F l

H + Al
FB cos θ, (3.2)

with a flat term F l
H/2 and a linear term in cos θ, the forward-backward asymmetry

Al
FB. Both are small within the SM, and therefore can signal the presence of NP.

The richer structure of the B → K∗(→ Kπ)l̄l decay product gives a possibility to

study eight CP asymmetries, the one in the decay rate plus seven more requiring

angular information. Three of them are T-odd CP-odd and five are T-even CP-odd,

where T-transformation reverses the sign of all particle momenta and spins. The

advantage of T-odd CP asymmetries is a maximal sensitivity to CP violation in

the case of vanishing small strong phases. Denoting by δS and δW strong and weak

phases, respectively, it can be shown that T-odd CP asymmetries ∝ cos δS sin δW ,

whereas T-even CP asymmetries ∝ sin δS sin δW .

Here, we compute the observables in the SM using the formalism of QCD fac-

torization (QCDF), which has been applied to B → K,K∗l̄l decays [19, 20] and

is valid in the low q2 region. Presenting a model-independent analysis of NP, we

give the predictions of the the F l
H , Al

FB and CP asymmetries while implementing

constrains on NP from other rare B-decay observables. The various NP models are

also discussed which can be tested by the observables in (3.2).

3.2 Effective Hamiltonian for b→ sl̄l

In this section we focus on the b→ sl̄l transition which is the dominant quark level

process contributing to B → Kl̄l and B → K∗l̄l semileptonic exclusive decays. The

effective Hamiltonian for the ∆B = 1 flavor changing processes [65, 20] reads as

Heff = −4GF√
2

(

λtH
(t)
eff + λuH

(u)
eff

)

+ h.c., (3.3)

where λq = V ∗
qsVqb and

H
(t)
eff = C1Oc

1 + C2Oc
2 +

10
∑

i=3

CiOi,

H
(u)
eff = C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 ). (3.4)

The second term in (3.3) is CKM-suppressed and can often be neglected, but we

keep it when we discuss CP asymmetries for B → K∗ l̄l decays since it contains the

CP violating phase of the SM. The Oi are dimension six operators and the Ci are

Wilson coefficients being both dependent on the renormalization scale µ. Since the
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Figure 3.1: The SM diagrams giving rise to the operators in the effective Hamilto-

nian of ∆B = 1 decays.
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characteristic scale of b→ sl̄l decays is O (mb) we assume µ to be of the same order.

The Oi i = 1, 2 correspond to the current-current operators

Oq
1 = [s̄γµT

aPLq][q̄γ
µT aPLb], (3.5)

Oq
2 = [s̄γµPLq][q̄γ

µPLb] (3.6)

with q = u, c. They originate from the diagrams (a) in Figure 3.1. One should

emphasize that Oq
1 does not contribute at leading order (LO) in αs. The QCD-

penguin operators Oi, i = 3, 4, 5, 6 are shown in diagram (b) in Figure 3.1 and read

as

O3 = [s̄γµPLb]
∑

q

[q̄γµq], O4 = [s̄γµT
aPLb]

∑

q

[q̄γµT aq], (3.7)

O5 = [s̄γµγνγρPLb]
∑

q

[q̄γµγνγρq], O6 = [s̄γµγνγρT
aPLb]

∑

q

[q̄γµγνγρT aq],

where the sum is over q = u, d, s, c, b. The photon and gluon dipole operators Oi,

i = 7, 8, stem from diagrams (e), and the semileptonic operators i = 9, 10, from

diagrams (c) in Figure 3.1, and read as

O7 =
e

(4π)2
mb[s̄σ

µνPRb]Fµν , O9 =
e2

(4π)2
[s̄γµPLb][l̄γ

µl],

O8 =
gs

(4π)2
mb[s̄σ

µνPRT
ab]Ga

µν , O10 =
e2

(4π)2
[s̄γµPLb][l̄γ

µγ5l], (3.8)

where PR/L = (1± γ5)/2 denote chiral projectors, T a are SU(3)QCD generators and

mb(µ) the MS b-quark mass at the scale µ. For completeness we also introduce the

chirality-flipped operators

O′
7 =

e

(4π)2
mb[s̄σ

µνPLb]Fµν ,

O′
9 =

e2

(4π)2
[s̄γµPRb][l̄γ

µl],

O′
10 =

e2

(4π)2
[s̄γµPRb][l̄γ

µγ5l], (3.9)

though in the SM the corresponding Wilson coefficients are suppressed, namely

C ′
i ∼ ms/mbCi. They can only compete with O7,9,10 in models beyond the SM. This

set of operators suffices to describe b → sl̄l induced processes in the SM, which

are dominated by C7, C9 and C10, whereas C8 enters at higher order in the strong

coupling.

Using NNLO results from [65, 66, 67] we calculate Wilson coefficients in the SM

and show their numerical values in Table 3.1 for the different values of the lower

scale.
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3.2 Effective Hamiltonian for b → sl̄l

mb/2 mb 2mb

LO NLO NNLO LO NLO NNLO LO NLO NNLO

C1 −0.754 −0.507 −0.458 −0.504 −0.297 −0.265 −0.340 −0.156 −0.132

C2 1.053 1.022 1.022 1.025 1.008 1.009 1.012 1.002 1.003

C3 −0.0107 −0.0112 −0.0124 −0.0049 −0.0045 −0.0054 −0.0023 −0.0017 −0.0024

C4 −0.111 −0.137 −0.136 −0.068 −0.082 −0.080 −0.043 −0.052 −0.051

C5 0.0010 0.0008 0.0009 0.0005 0.0003 0.0004 0.0002 0.0001 0.0002

C6 0.0023 0.0025 0.0027 0.0010 0.0009 0.0010 0.0005 0.0003 0.0003

C7 0 −0.395 −0.370 0 −0.342 −0.330 0 −0.302 −0.298

C8 0 −0.193 −0.207 0 −0.167 −0.178 0 −0.148 −0.160

C9 2.234 4.381 4.532 2.015 4.130 4.218 1.671 3.750 3.801

C10 0 −4.194 −4.092 0 −4.194 −4.092 0 −4.194 −4.092

Table 3.1: Wilson coefficients at the low scale for µ = mb/2, mb and 2mb with

mb = 4.6 GeV.

Beyond the SM, NP might contribute in various ways. Assuming that NP man-

ifests itself at and above the electroweak scale, it can be model-independently an-

alyzed in the effective theory framework by allowing for NP contributions to the

Wilson coefficients of the SM operators and by additional operators not present in

the SM. To account also for the latter we include the most general b→ s (pseudo-)

scalar and tensor operators with dileptons into our analysis:

Ol
S =

e2

(4π)2
[s̄PRb][l̄l], Ol′

S =
e2

(4π)2
[s̄PLb][l̄l],

Ol
P =

e2

(4π)2
[s̄PRb][l̄γ5l], Ol′

P =
e2

(4π)2
[s̄PLb][l̄γ5l],

Ol
T =

e2

(4π)2
[s̄σµνb][l̄σ

µν l], Ol
T5 =

e2

(4π)2
[s̄σµνb][l̄σ

µνγ5l], (3.10)

where we made the dependence on the lepton flavor explicit by the superscript l.

Note that there are only two independent tensor operators in four dimensions. At

higher order also 4-quark operators with scalar, pseudoscalar and tensor structure

contribute to rare radiative and semileptonic decays [68, 69]. As these studies show

4-quark operators with scalar and pseudoscalar structure mix under QCD into O7,8,9.

Here we assume that scalar and pseudoscalar 4-quark operators are not affected by

NP.

The additional NP operators (3.10) mix under QCD only with themselves. Their

1-loop anomalous dimensions γi = αs

4π
γ

(0)
i are

γ
(0)
i = −6CF = −8, i = S, S ′, P, P ′,
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γ
(0)
i = 2CF =

8

3
, i = T, T5. (3.11)

In our NP analyses all Wilson coefficients are taken at the low scale µb.

3.3 Some New Physics Models

In this section we give a short description of several possible extensions of the SM. We

concentrate on the models originating large (pseudo-) scalar and tensor interactions

contributing to b→ sl̄l transitions. Particularly, the most promising and interesting

are the models with lepton flavor violation.

3.3.1 MSSM with Large tanβ

One of the NP theories contributing to (pseudo-) scalar operators is a minimal

extension of the SM with N = 1 broken global supersymmetry called Minimal

Supersymmetric Standard Model (MSSM) [70]. In the MSSM one introduces su-

perpartners to the SM matter fields. They are taken to be spin zero scalars and

called squarks and sleptons. For the first generations we have

q̃L =

(

ũ

d̃

)

L

, ũR, d̃R, l̃L =

(

ν̃e

ẽ

)

L

, ẽR, (3.12)

where q̃L and l̃L are the SU(2)L squark and slepton doublets, whereas ũR, d̃R and ẽR

singlets. In the gauge sector of the SM we have three type of twelve spin one bosons

Bµ, W
i
µ, Aa

µ, i = 1, 2, 3; a = 1, ..., 8, corresponding to symmetry groups U(1)Y ,

SU(2)L, SU(3)C respectively. Their superpartners are spin 1/2 Majorana gauginos

λ̃0 (bino), λ̃i (wino), g̃a (gluino).

The Higgs sector of the MSSM is more complicated. In the SM we have only

one Higgs field h which after electroweak symmetry breaking gives masses to ”up”

quarks. The lepton and ”down” quark masses are generated by conjugated Higgs

field hC . In the MSSM such Yukawa interactions are derived from the superpotential

which is a function of chiral superfields (a field which contains particles and their

superpartners). This superpotential has to be an analytic function of superfield,

which forbids the simultaneous appearance of both h and hC fields. This restriction

requires the introduction of a second Higgs field in order to give leptons and ”down”

quarks their masses. Thus, in the supersymmetric theory we need to have two Higgs

doublets denoting them as hd (”down” type) and hu (”up” type). The vacuum

expectation values (VEVs) of the neutral components of the Higgs fields are related
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3.3 Some New Physics Models

to the mass of the Z0 boson and the electowek gauge couplings

〈h0
u〉 = vu, 〈h0

d〉 = vd, (3.13)

v2
u + v2

d = v2 = 2m2
Z/(g

2 + g
′2) ≃ (174GeV)2, (3.14)

where the couplings g′ and g couplings correspond to U(1)Y and SU(2)L respectively.

In the MSSM the ratio of VEV’s is commonly written as

vu

vd
= tan β, (3.15)

which is a free parameter of the theory appearing also in processes involving the

fermion mass spectrum. The theoretical estimates, based on the pertubative running

of the top and bottom Yukawa couplings, require that the values of tanβ lie in the

range 1 . tanβ . 65, whereas the experimental data require lower bound tanβ > 2

[15].

The superpartners of the MSSM Higgs particles are two higgsino doublets. After

electroweak symmetry breaking, the charged higgsinos mix with the charged winos

giving two massive Dirac charginos χ̃±
i (i=1,2). The two neutral higgsinos h̃0

d and

h̃0
v mix with the neutral bino λ̃0 and wino λ̃3 giving rise to four Majorana particles

called neutralinos χ̃0
i (i=1,...,4).

Omitting the SU(2)L and generation indices, the superpotential of the MSSM is

given by

WMSSM = µHdHu − yeHdLLēR − ydHdLQd̄R − yuQLHuūR, (3.16)

where LL(QL) and eR(dR, uR) denote the superfields containing the lepton (quark)

doublet and the charged lepton (down-type quark, up-type quark) singlet, respec-

tively. The Hu and Hd are Higgs superfields. The ye, yd and yu are Yukawa couplings

presented in terms of 3 × 3 matrices in family space. Thus, (3.16) is just the su-

persymmetric generalization of Yukawa couplings and leads to the standard Yukawa

Lagrangian from (3.16) by applying the following rule

LYukawa = −1

2
ψiψj

∂2W (φ)

∂φi∂φj
+ h.c., (3.17)

where ψi are fermions and φi are their scalar superpartners. The first term in

the superpotential (3.16), called ”µ-term”, is the supersymmetric version of the

Higgs boson mass term in the SM. The consistent incorporation of spontaneous EW

symmetry breaking requires the µ parameter to be of the order of the weak scale.

After brief introduction to the MSSM let us consider the case with large value of

tanβ. Similarly to the SM, the MSSM has Higgs-like interactions and one can expect

the appearance of operators with (pseudo-)scalar structure in the Weak Hamiltonian.
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Figure 3.2 shows MSSM diagrams contributing to b → sl̄l. These diagrams have

been calculated in [58] considering the box, penguin and wave-function counterterm

diagrams. As a result they obtained that for a regime when tanβ is large the

contributions to C l
S,P from the box and penguin diagrams are

C l,box
S,P ∼ O

(

mlmb tan2 β

m2
χ̃

)

, (3.18)

C l,penguin
S,P ∼ O

(

mlmb tan2 β

m2
A0

)

, (3.19)

where mA0 is the mass of the CP odd neutral Higgs (pseudoscalar Higgs) A0 being

a linear combination of the imaginary components of the neutral h0
d, h

0
u Higgs fields.

The counterterms contribute with third power of tanβ (for the exact formulas, see

[58])

C l,count
S,P ∼ O

(

mlmb tan3 β

m2
A0

)

. (3.20)

Note that at this order the following relation holds

C l,count
S = −C l,count

P . (3.21)

The chirality-flipped Wilson coefficients C l′

S,P are also enhanced by tan β but sup-

pressed by a factor ms/mb compared to C l
S,P , thus, can be neglected. Evidently, the

impact on the electron channel from such interactions is negligible since Ce ∼ me.

H, h, A, G H, h, A, G0 0 0 0 0 000j
~

i
~

ua
~

ua
~

i
~

ua
~ ub

~
j

~
i

~

k
~

b s b s b s

l l l l ll

Figure 3.2: The box and penguin contributions to b→ sl̄l in the MSSM.

3.3.2 Models with Broken R-parity

In the previous section we introduced the superpotential (3.16), which is a supersym-

metric version of the Yukawa couplings and the Higgs mass term. The construction
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of this superpotential is dictated by Lorentz invariance and of course invariance un-

der the SM gauge group SU(3)C⊗SU(2)L⊗U(1)Y . We did not mention though that

(3.16) has an additional symmetry, called R-parity (Rp). This symmetry follows in

the MSSM from the assumption that baryon number B and lepton number L are

conserved as in the SM. Denoting by S the spin of the MSSM particle, Rp can be

written in the form

Rp = (−1)3(B−L)+2S , or

Rp = (−1)3B−L+2S = (−1)3B+L+2S . (3.22)

From (3.22) it follows that particles always have positive R-parity whereas their

superpartners (sparticles) have negative Rp. This symmetry forbids proton decay

at the renormalizable level and predicts the existence of a stable lightest supersym-

metric particle (LSP).

Once lifting the requirement of R-parity conservation the following additional

terms to (3.16) are allowed by gauge and supersymmetry

W6Rp = −ǫiLi
LHu + λijkL

i
LL

j
Le

k
R + λ′ijkL

i
LQ

j
Ld

k
R + λ′′ijku

i
Rd

j
Rd

k
R, (3.23)

where i, j, k are flavor indices and ǫ, λ, λ′, λ′′ are R-parity violating couplings (ǫ has

the dimension of mass and the λ’s are dimensionless). The invariance under SU(2)L

and SU(3)C requires λijk to be antisymmetric in i, j and λ′′ijk to be antisymmetric in

j, k, respectively. If L =
∑

i Li is the sum of lepton type numbers then ǫ, λ and λ′

violate both L and Li, whereas the couplings λ′′ violate baryon number B. If both

λ′ and λ′′ are present and unsuppressed, it would lead to extremely rapid proton

decay. Thus, already from the lower bound on the proton lifetime one can strongly

constrain these couplings. We do not discuss this problem in detail and theoretical

solutions (see review [71] and references therein). Here, we just assume for further

consideration that W6Rp contains only λ and λ′ couplings. Such models without R-

parity can enhance (pseudo-) scalar interactions. Figure 3.3 shows a diagram which

can contribute to b → sl̄l transitions in rare decays. The corresponding effective

couplings are [72]

C l
S = −C l

P =
λ

′∗
k23λkll√

2GFαe VtbV
∗
tsm

2
ν̃k

, (3.24)

C l′

S = C l′

P =
λ

′

k32λ
∗
kll√

2GFαe VtbV
∗
tsm

2
ν̃k

, (3.25)

where mν̃k
is the sneutrino mass of the k-th generation. The Rp violating models do

not generate effective tensor interactions. The difference with respect to the MSSM

is that now the primed Wilson coefficients C ′
S,P are not suppressed by lepton mass

and can be sizeable.
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Figure 3.3: Sneutrino exchange diagram contributing to b → sl̄l in the R-parity

violating MSSM.

3.3.3 Leptoquarks

Here we consider models generating tensor interactions based on the concept of

Leptoquark (LQ). LQs, particles carrying both lepton and baryon numbers, emerge

naturally in some high-energy scale theories, such as GUT, technicolor and compos-

ite models (see [73], [74] and references therein). The low-energy theory of LQs can

be introduced by constructing the most general Lagrangian assuming two generic

principles taken from the SM [74]: i) renormalizability of the theory and ii) invari-

ance under the SM gauge group. Thus, the LQ interactions with leptons and quarks

have the following form [74]

LS−l−q = λ
(R)
S0

· ucPRe · SR†
0 + λ

(R)

S̃0
· dcPRe · S̃†

0 + λ
(R)
S1/2

· uPLl · SR†
1/2

+ λ
(R)

S̃1/2
· dPLl · S̃†

1/2 + λ
(L)
S0

· qcPLiτ2l · SL†
0 + λ

(L)
S1/2

· qPRiτ2e · SL†
1/2

+ λ
(L)
S1

· qcPLiτ2Ŝ
†
1l + h.c. (3.26)

and

LV −l−q = λ
(R)
V0

· dγµPRe · V R†
0µ + λ

(R)

Ṽ0
· uγµPRe · Ṽ †

0µ + λ
(R)
V1/2

· dcγµPLl · V R†
1/2µ

+ λ
(R)

Ṽ1/2
· ucγµPLl · Ṽ †

1/2µ + λ
(L)
V0

· qγµPLl · V L†
0µ + λ

(L)
V1/2

· qcγµPRe · V L†
1/2µ

+ λ
(L)
V1

· qγµPLV̂
†
1µl + h.c. (3.27)

The LQ field Φj
i can be scalar (S) or vector like (V ) under the Lorentz group.

The index i corresponds to the transformation properties under the SU(2)L gauge

group and index j shows the chirality of the quarks coupled to LQ (j=L,R). The LQ
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3.3 Some New Physics Models

LQ SU(3)C SU(2)L Y Q
em

S0 3 1 -2/3 -1/3

S̃0 3 1 -8/3 -4/3

S1/2 3∗ 2 -7/3 (-2/3, -5/3)

S̃1/2 3∗ 2 -1/3 (1/3, -2/3)

S1 3 3 -2/3 (2/3, -1/3,-4/3)

V0 3∗ 1 -4/3 -2/3

Ṽ0 3∗ 1 -10/3 -5/3

V1/2 3 2 -5/3 (-1/3, -4/3)

Ṽ1/2 3 2 1/3 (2/3, -1/3)

V1 3∗ 3 -4/3 (1/3, -2/3,-5/3)

Table 3.2: SM gauge group assignments of leptoquarks (Y = 2(Q
em

− T3)).

interaction with the SM H =

(

H+

H0

)

Higgs doublet is

LLQ−H = h
(i)
S0
Hiτ2S̃1/2 · Si

0 + h
(i)
V0
Hiτ2Ṽ

µ
1/2 · V i

0µ

+ hS1Hiτ2Ŝ1 · S̃1/2 + hV1Hiτ2V̂
µ
1 · Ṽ1/2µ

+ Y
(i)
S1/2

(

Hiτ2S
i
1/2

)

·
(

S̃†
1/2H

)

+ Y
(i)
V1/2

(

Hiτ2V
µ(i)
1/2

)

·
(

Ṽ †
1/2µH

)

+ YS1

(

Hiτ2Ŝ
†
1H
)

· S̃0 + YV1

(

Hiτ2V̂
†
1µH

)

· Ṽ µ
0

+ κ
(i)
S

(

H†Ŝ1H
)

· Si†
0 + κ

(i)
V

(

H†V̂ µ
1 H
)

· V i†
0µ + h.c.

−
(

ηΦM
2
Φ − g

(i1i2)
Φ H†H

)

Φi1†Φi2 . (3.28)

The general study of the Lagrangian above shows that vector-like LQs alone can

not generate an effective tensor interaction. It is easy to see that when integrating

out the vector-like V field and fierzing the effective interactions does not yield tensor

operators, but gives rise to scalar operators:

[s̄γµPLl][l̄γ
µPRb] = 2[s̄PRb][l̄PLl], (3.29)

[s̄γµPRl][l̄γ
µPLb] = 2[s̄PLb][l̄PRl]. (3.30)

Considering only scalar LQ interactions with leptons and quarks is also not sufficient

to generate tensor operators because the Lagrangian (3.26) does not provide the

necessary operator structure. Integrating out LQs one has

[q̄PLl][l̄PRq], [q̄PRl][l̄PLq], (3.31)

51



Angular Analysis of B → K,K∗l̄l Decays

which after ”fierzing” lead to the vanishing tensor operators

[q̄PRσabPLq][l̄PLσ
abPRl] = 0, [q̄PLσabPRq][l̄PLσ

abPRl] = 0. (3.32)

In order to produce non-vanishing tensor operators one needs initially (before Fierz

transformation) the following form for the effective interaction

[q̄PLl][l̄PLq], [q̄PRl][l̄PRq] (3.33)

and this structure is provided by the LQ interaction with the SM Higgs. The sponta-

neous symmetry breaking of SU(2)L×U(1)Y leads to the non-trivial mixing between

different types of LQ’s according to (3.28). As one possibility we consider the mixing

between the S̃1/2 and SL
1/2 (where the relevant terms in Lagrangian (3.26) and (3.28)

have been underlined) which, as we see later, could generate tensor like effective op-

erators in the (s̄b)(l̄l) transition. The relevant mass matrix for the LQs with charge

Q = −2/3 has the form [74]

M2
S =





M̄2
S̃1/2

√
2YS1/2

v2

√
2YS1/2

v2 M̄2
SL

1/2



 , (3.34)

where M̄2
S = M2

S + gS|v|2 is the ”shifted” diagonal mass and v is the vacuum expec-

tation value (VEV) of the SM Higgs field. This mass matrix can be diagonalized by

an orthogonal transformation and as a result we have in the mass eigenstate basis

two new LQ fields as a mixture of the S̃1/2 and SL
1/2. The masses of the new LQ

fields Sa and Sb are

M2
a,b =

1

2
(M̄2

S̃1/2
) + M̄2

SL
1/2

±
√

(M̄2
S̃1/2

− M̄2
SL

1/2

)2 + 8Y 2
S1/2

v4 (3.35)

and the mixing

Sa = cos θS̃1/2 + sin θSL
1/2, S̃1/2 = cos θSa − sin θSb,

Sb = cos θSL
1/2 − sin θS̃1/2, SL

1/2 = cos θSb + sin θSa.
(3.36)

The mixing angle can be written in terms of couplings and masses

tan 2θ =
4YS1/2

v2

(M̄2
S̃1/2

− M̄2
SL

1/2

)
. (3.37)

Substituting (3.36) in the Lagrangian (3.26) we derive the interaction in terms of

the LQ mass eigenstates and keep only relevant terms one has

L = λ
(R)

S̃1/2
d̄PLl[cos θSa − sin θSb] − λ

(L)
S1/2

l̄PLd[cos θS†
b + sin θS†

a] + h.c. (3.38)
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3.4 Form Factors and Large Recoil Limit

where we omitted generation indices. Now, it is easy to see that after integrating

out LQs one gets the necessary structures (3.33)

[d̄PLl][l̄PLq], [q̄PRl][l̄PRd]. (3.39)

Finally one can deduce the tensor Wilson coefficients for the (s̄b)(l̄l) transition in

terms of the LQ Lagrangian parameters

CT,T5 =
cos θ sin θ(M2

b −M2
a )√

2GFαeVtbV ∗
tsM

2
aM

2
b

(

[λ
(L)∗
S1/2

]l3[λ
(R)

S̃1/2
]2l ± [λ

(L)
S1/2

]l2[λ
(R)∗
S̃1/2

]3l.
)

(3.40)

From this expressions one can see that we get an additional suppression from the

mixing of order sin θ ∼ O (v2/M2
S) where MS is a general scalar LQ mass.

3.4 Form Factors and Large Recoil Limit

As we see from Section 1.3.2 B → K,K∗l̄l transitions can be partly factorized.

This factorizable parts are described by B → K,K∗ transition form factors. In this

section we show that in particular regime, i.e., large recoil, the number of the form

factors can be substantially reduced.

In QCD the B → K transition can be defined in terms of three form factors

f+(q2), f0(q
2), fT (q2)

〈K(pB − q)|s̄γµb|B(pB)〉 = f+(q2)
[

(2pB − q)µ − M2
B −M2

K

q2
qµ

]

+
M2

B −M2
K

q2
f0(q

2)qµ, (3.41)

〈K(pB − q)|s̄σµνq
νb|B(pB)〉 = i

[

(2pB − q)µq
2 − qµ(M2

B −M2
K)
] fT (q2)

MB +MK
,

where the momentum transfer q is in the range 4m2
l ≤ q2 ≤ (MB − MK)2, but

as we show later in QCDF this range is quite restricted. As a consequence of this

parametrization the relation f+(0) = f0(0) holds.

Since K∗ is a vector meson, the parametrization of the B → K∗ transition is more

complicated and needs seven q2-dependent QCD form factors V,A0,1,2 and T1,2,3. It

reads as

〈K∗(pB − q)|s̄γµ(1 − γ5)b|B(pB)〉 =

− 2ǫµναβε
∗νpα

Bq
β V

MB +MK∗

− iε∗µ(MB +MK∗)A1

+ i(2pB − q)µ(ε∗ · q) A2

MB +MK∗

+ iqµ(ε∗ · q)2MK∗

q2
[A3 −A0], (3.42)
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〈K∗(pB − q)|s̄σµνq
ν(1 + γ5)b|B(pB)〉 =

− 2i ǫµναβε
∗νpα

Bq
β T1 + [ε∗µ(M2

B −M2
K∗) − (ε∗ · q)(2pB − q)µ]T2

+ (ε∗ · q)
[

qµ − q2

M2
B −M2

K∗

(2pB − q)µ

]

T3 (3.43)

and

A3 =
MB +MK∗

2MK∗

A1 −
MB −MK∗

2MK∗

A2, (3.44)

where ǫ∗µ denotes the polarization vector of the K∗ and pµ
B the four momentum of

the B meson.

Let us assume the case when the outgoing Kaon (K or K∗) is energetic (small

q2). We also require that the s quark in the Kaon is created by the b → s transition.

The b quark interacts with the spectator quark only via soft gluon exchange (hard

interactions imply large momenta of the spectator quarks in the B meson which is

highly improbable). The effective theory applied to this case is called heavy quark

effective theory (HQET) [75, 76, 77, 78]. In this theory the heavy quark momentum

pb expanded as (1.51). A similar expression can be written for the energetic s quark.

Introducing a light-like vector nµ
− (n2

− = 0) parallel to the Kaon momentum we can

write

pµ
s = Enµ

− + k′µ, k′ ≪ E, (3.45)

where k′ is a small residual momentum and E is the Kaon energy E = (M2
B +M2

K −
q2)/(2MB) ∼ MB/2 for q2 ≪ M2

B. The QCD form factors obey symmetry relations

in this limit (Large Recoil) limit and can be expressed at leading order in the 1/E

expansion in terms of universal form factors ξP , ξ⊥ and ξ‖ [25, 26] as

f+(q2) =
MB

E
f0(q

2) =
MB

MB +MK

fT (q2) = ξP (q2), (3.46)

MK∗

E
A0(q

2) =
MB +MK∗

2E
A1(q

2) − MB −MK∗

MB
A2(q

2) =
MB

2E
T2(q

2) − T3(q
2) = ξ‖(q

2),

MB

MB +MK∗

V (q2) =
MB +MK∗

2E
A1(q

2) = T1(q
2) =

MB

2E
T2(q

2) = ξ⊥(q2). (3.47)

Symmetry breaking corrections at order αs have been calculated using QCDF in

Ref. [26]. For the case of theB → K transition they can be written in a schematically

simple form

f0

f+
=

2E

MB

[

1 + O (αs) + O
(

q2

M2
B

√

ΛQCD

E

)]

,

fT

f+

=
MB +MK

MB

[

1 + O (αs) + O
(
√

ΛQCD

E

)]

, (3.48)
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3.4 Form Factors and Large Recoil Limit

up to higher order QCD, power and mixed corrections. The αs-corrections from the

soft-overlap and hard scattering contributions indicated in (3.48) have been calcu-

lated in QCDF and are given in [26]. The symmetry relation breaking corrections

due to sub-leading orders in the ΛQCD/E expansion have been considered for the

soft-overlap part using SCET [79]. The corresponding corrections are indicated in

(3.46). Note that the expansion parameter is rather
√

ΛQCD/E than ΛQCD/E, and

that for f0/f+ an additional suppression of q2/M2
B appears.

The q2 dependence of the only form factor f+(q2) = ξP (q2) is adopted from LCSR

calculations [80]. This parametrization is given in terms of the Gegenbauer moments

of the K-meson LCDA, aK
1 , a

K
2 and aK

4 as

f+(q2) = fas
+ (q2) + aK

1 (µIR)fa1
+ (q2) + aK

2 (µIR)fa2
+ (q2) + aK

4 (µIR)fa4
+ (q2). (3.49)

where

fas
+ (q2) =

0.0244

1 − q2/(5.41 GeV)2
+

0.2590

(1 − q2/(5.41 GeV)2)2
(3.50)

and fai are fitted by polynomials of 3rd degree

fai = a+ bq2 + c(q2)2 + d(q2)3. (3.51)

where the numerical values of {a, b, c, d} are {0.310, 0.930×10−2, 0.139×10−2,−0.083×
10−3} respectively. Here we use “set 2” of the fit withmpole

b = 4.8 GeV corresponding

to the infrared factorization scale µIR =
√

M2
B −mpole 2

b = 2.2 GeV. The running

of the Gegenbauer moments given in Table 3.4 from 1 GeV to 2.2 GeV is accounted

for by the scaling factors {0.793, 0.696, 0.590} for {aK
1 , a

K
2 , a

K
4 }. The relative uncer-

tainty of f+ due to the asymptotic form factor fas
+ (which is independent of the aK

i )

at q2 = 0 is approximately ∆as/f+(0) = 10%, see Table 2 of [80]. In order to esti-

mate the form factor uncertainty in the low-q2 region we scan over the Gegenbauer

moments according to the ranges in Table 3.4 translated to µIR = 2.2 GeV and add

the uncertainty from ∆as in quadrature. The form factor f+(q2) = ξP (q2) with its

uncertainties with and without ∆as is shown in Figure 3.4. The total uncertainty is

16% at maximal recoil and reduces to 12% at q2 = 7 GeV2. The reduction of the

relative form factor uncertainty towards larger values of q2 stems from the increase

of the form factor in this region while keeping ∆as from q2 = 0.

For the q2 dependence of the form factors ξ⊥ and ξ‖ we adopt also the results from

light cone sum rule (LCSR) calculations [81] for the V (q2), A1(q
2) and A2(q

2) form
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Figure 3.4: The form factor ξP (q2) = f+(q2) in the low-q2 region including un-

certainties from the Gegenbauer moments aK
i (lighter shaded area) and

from aK
i and ∆as with their uncertainties added in quadrature (darker

shaded area), for details see text. In the left-hand plot is shown ξP (q2),

and in the right-hand plot the form factor normalized to its central value,

ξP (q2)/ξcentral
P (q2).
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Figure 3.5: The universal form factors ξ⊥ and ξ‖ in the low-q2 region and their

uncertainty indicated by the bands.
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3.5 Standard Model Analysis

factors. Here the q2 dependence is parametrized as

V (q2) =
r1

1 − q2/m2
R

+
r2

1 − q2/m2
fit

, (3.52)

A1(q
2) =

r2
1 − q2/m2

fit

, (3.53)

A2(q
2) =

r1
1 − q2/m2

fit

+
r2

(1 − q2/m2
fit)

2
, (3.54)

where the fit parameters r1,2, m
2
R and m2

fit are shown in Table 3.3. Also given

in this table are the values of the form factors at q2 = 0 and the corresponding

parametric uncertainties within the LCSR approach. We give the uncertainties

independent of the Gegenbauer moments a
⊥,‖
1,K∗ and the ones due to a

⊥,‖
1,K∗ separately.

We use a
⊥,‖
1,K∗(1 GeV) = 0.1± 0.07 [81]. The relative uncertainty of the form factors

V (0), A1(0) and A2(0) amounts to 8%, 10% and 10% without, and 11%, 12% and

14% after adding the a1,K∗ induced uncertainty in quadrature, respectively. We use

the total relative uncertainty from maximal recoil as an estimate for the form factor

uncertainties for q2 > 0. The form factors ξ⊥,‖ defined via (3.47) are shown as a

function of q2 in Figure 3.5. Here the bands indicate the uncertainty in ξ⊥ and ξ‖

of 11% and 14%, respectively.

r1 r2 m2
R [ GeV2] m2

fit [ GeV2] F (0) ∆0F (0) ∆a1F (0)

V 0.923 −0.511 5.322 49.40 0.411 0.033 0.44δa1

A1 0.290 40.38 0.292 0.028 0.33δa1

A2 −0.084 0.342 52.00 0.259 0.027 0.31δa1

Table 3.3: The parameters r1,2, m
2
R and m2

fit describing the q2 dependence of the

form factors V and A1,2 in the LCSR approach [81]. Also shown are the

corresponding values of the form factors at q2 = 0, F (0), their uncer-

tainties independent of the Gegenbauer moment a1,K∗, ∆0F (0) and the

uncertainties induced by a1,K∗ in terms of δa1 = (a1,K∗(1 GeV) − 0.1),

∆a1F (0).

3.5 Standard Model Analysis

In this section we concentrate on the SM contributions in B → K,K∗l̄l. We in-

troduce several observables constructed by angular distributions. We give their SM

predictions and dominant uncertainties computed in QCDF.
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αs(mZ) = 0.1176 ± 0.0020 [15] fK = (159.8 ± 1.4 ± 0.44) MeV [15]

αe(mb) = 1/133 fBu,d
= (200 ± 30) MeV

mW = 80.403 GeV [15] fBs = (240 ± 30) MeV [82]

mpole
t = (170.9 ± 1.8) GeV [83] λB,+(1.5 GeV) = (0.458 ± 0.115) GeV [20, 84]

mb = (4.6 ± 0.1) GeV [19] τB± = (1.638 ± 0.011) ps [15]

mpole
c = (1.4 ± 0.2) GeV τB0 = (1.530 ± 0.009) ps [15]

B(B̄ → Xclν̄l) = (10.57 ± 0.15)% [15] τBs = (1.425 ± 0.041) ps [15]

fK = (159.8 ± 1.4 ± 0.44) MeV [15]† fK∗

⊥ (1 GeV) = (185 ± 10) MeV [85]††

aK
1 (1 GeV) = 0.06 ± 0.03 [86]† fK∗

‖ = (217 ± 5) MeV [15]††

aK
2 (1 GeV) = 0.25 ± 0.15 [86]† a

⊥,‖
1,K∗(1 GeV) = 0.1 ± 0.07 [81]††

aK
4 (1 GeV) = −0.015 ± 0.1 [80]† a

⊥,‖
2,K∗(1 GeV) = 0.1 ± 0.1 [81]††

ξP (0) = 0.327 ± 0.053 [86, 80]† λ = 0.2258+0.0016
−0.0017 (95% C.L.) [18]††

|Vts| = 0.0409 ± 0.0021 [87]† |Vcb| = 0.0417 ± 0.0013 (95% C.L.) [18]††

|Vcb| = 0.0416 ± 0.0007 [87]† ρ̄ = [0.108, 0.243] (95% C.L.) [18]††

η̄ = [0.288, 0.375] (95% C.L.) [18]††

Table 3.4: The numerical input used in B → K,K∗l̄l analysis. We neglect the

strange quark mass throughout this work. We denote by mb the PS mass

at the factorization scale µf = 2 GeV. We neglect the strange quark mass

throughout this work unless otherwise stated. The numerical input for the

form factors ξ⊥,‖ is given in Section 3.4. † The numerical input relevant

only for B → Kl̄l. †† The numerical input relevant only for B → K∗ l̄l.

3.5.1 Angular Distribution in B → Kl̄l

A systematic treatment of the matrix element M[B → Kl̄l] is available in the large

recoil region. According to the symmetry relations (3.46) only one soft form factor

ξP (q2) appears in the B → K heavy-to-light decay amplitude in the large energy

limit of QCD [25, 26]. Denoting by pB, p, p− and p+ the 4-momenta of the B-meson,

Kaon, lepton l and antilepton l̄, respectively, the SM B → Kl̄l matrix element can

be written as

M[B → Kl̄l] = 〈l(p−)l̄(p+)K(p)|Heff |B̄(pB)〉 (3.55)

= i
GFαe√

2π
V ∗

tbVts ξP (q2)

(

FV p
µ
B [l̄γµl] + FA p

µ
B [l̄γµγ5l] + FP [l̄γ5l]

)

.

The functions Fi ≡ Fi(q
2), i = P,A, V are given as

FP = mlC10

[

M2
B −M2

K

q2

(

f0(q
2)

f+(q2)
− 1

)

− 1

]

, (3.56)

FA = C10, FV = C9 +
2mb

MB

TP (q2)

ξP (q2)
+

8ml

MB +MK

fT (q2)

f+(q2)
C l

T , (3.57)
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3.5 Standard Model Analysis

where

λ = M4
B +M4

K + q4 − 2(M2
BM

2
K +M2

Bq
2 +M2

Kq
2), βl =

√

1 − 4
m2

l

q2
. (3.58)

The quantity TP (q2) appearing in the vector coupling to leptons, FV , takes into

account virtual one-photon exchange between the hadrons and the lepton pair and

hard scattering contributions. TP (q2) can be extracted from [19] and is given in

Appendix B.4. At lowest order (denoted by the superscript (0)) up to numerically

small annihilation contributions, it has the simple form

T (0)
P (q2) = ξP (q2)

[

C
eff(0)
7 +

MB

2mb

Y (0)(q2)

]

. (3.59)

Here Ceff
7 is an effective Wilson coefficient and Y denotes 1-loop matrix elements of

4-quark operators contributing to b→ sl̄l which can be found in Appendix B.4.

Based on the matrix element (3.55) the double differential decay rate with respect

to q2 and cos θ with lepton flavor l reads as

d2Γl

dq2 dcos θ
= al(q

2) + bl(q
2) cos θ + cl(q

2) cos2 θ, (3.60)

where

al(q
2)

Γ0

√
λ βl ξ2

P

= q2|FP |2 +
λ

4
(|FA|2 + |FV |2)

+ 2ml(M
2
B −M2

K + q2)Re(FPF
∗
A) + 4m2

lM
2
B|FA|2, (3.61)

bl(q
2)

Γ0

√
λ βl ξ2

P

= 0, (3.62)

cl(q
2)

Γ0

√
λ βl ξ2

P

= −λ
4
β2

l (|FA|2 + |FV |2) (3.63)

and

Γ0 =
G2

Fα
2
e|V ∗

tbVts|2
512π5M3

B

. (3.64)

Here, θ denotes the angle between the direction of motion of the B and the negatively

charged lepton l in the dilepton center of mass frame. In the limit ml → 0 further

relation al(q
2) = −cl(q2) holds.

With (3.60) at hand the angular distribution

dΓl

d cos θ
= Al +Bl cos θ + Cl cos2 θ (3.65)
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is given in terms of the q2-integrated coefficients

Al =

∫ q2
max

q2
min

dq2 al(q
2), Bl =

∫ q2
max

q2
min

dq2 bl(q
2), Cl =

∫ q2
max

q2
min

dq2 cl(q
2). (3.66)

Their values depend on the cuts in q2. We recall that while the boundaries of the

phase space allow for dilepton masses in the range 4m2
l < q2 ≤ (MB −MK)2, the

QCDF approach is valid only in the low-q2 region. Note that for very low dilepton

masses there is sensitivity to light resonances. We therefore restrict our analysis to

1 GeV2 . q2 < 7 GeV2.

The decay rate Γl and the integrated and normalized forward-backward asymme-

try Al
FB of the lepton pair can be expressed in terms of Al, Bl and Cl

Γl = 2

(

Al +
1

3
Cl

)

, Al
FB =

Bl

Γl
. (3.67)

We further introduce the observable

F l
H ≡ 2

Γl

(Al + Cl) =

∫ q2
max

q2
min

dq2
[

al(q
2) + cl(q

2)
]

/

∫ q2
max

q2
min

dq2
[

al(q
2) +

1

3
cl(q

2)
]

.

(3.68)

Since F l
H is normalized to Γl, we expect reduced uncertainties in the former compared

to the latter due to cancellations between numerator and denominator. As already

anticipated after (3.64) within the SM a cancellation takes place in (3.68) between

al and cl such that F l SM
H vanishes in the limit ml → 0. From here follows the

approximate ∝ sin2 θ angular dependence of B → Kl̄l decays in the SM.

We would like to comment on the possibility of corrections to (3.65) from higher

powers of cos θ, that is, a polynomial dependence in the angular distribution on

cosn θ with n > 2. Higher angular momenta arise from higher (> 6) dimensional

operators in the weak Hamiltonian (3.3) or from QED corrections. Hence, they are

suppressed by powers of external low energy momenta or masses over the electroweak

scale, and αe/4π, respectively.

A further useful observable in B → Kl̄l decays is RK , the ratio of B → Kµ̄µ to

B → Kēe decay rates with the same q2 cuts [68]

RK ≡ Γµ

Γe
=

∫ q2
max

q2
min

dq2 dΓµ

dq2

/

∫ q2
max

q2
min

dq2 dΓe

dq2
=

ΓµF
µ
H − 4/3Cµ

Γe
, (3.69)

which probes lepton flavor dependent effects in and beyond the SM. We find that

F l
H and RK are model-independently related

RK · (1 − F µ
H − ∆) = 1, where ∆ =

4

3

Ce − Cµ

Γµ
− F e

H

RK
. (3.70)

60
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The expression for ∆ simplifies in models where chiral couplings to electrons can be

neglected as, for example, in the SM with me = 0. Then F e
H = 0 and Γe = −4/3Ce

and in the SM ∆SM ∝ m2
µ.

Let us examine the observables F l
H , RK and Γl and the corresponding branching

ratios Bl ≡ B(B → Kl̄l) for low dilepton mass. We start with Γl and analyze the

lepton flavor dependence. In the SM this effect is purely of kinematical origin, i.e.,

proportional to the lepton mass, and often negligible in the analysis of branching

ratios. Here we try to keep these contributions and quantify them analytically. For

that we use the form factor symmetry relations (3.48) and as a consequence of it

the useful relation holds

q2

M2
B

|F̃P |2 + 4|FA|2 +
M2

B −M2
K + q2

M2
B

2Re(F̃PF
∗
A) = O

(

αs,
q2

M2
B

√

ΛQCD

E

)

, (3.71)

which enters both aSM
l + cSM

l and aSM
l + cSM

l /3 combinations. Here, the explicit SM

expressions for FV,A,P (3.56) have been used and FP = mlF̃P has been rescaled.

The relation (3.71) involves only the ratio f0/f+ and results in a beneficial q2/M2
B

suppression of the power corrections. Thus, Γl in the low q2 region reads as

Γl
SM =

Γ0

3

∫ q2
max

q2
min

dq2 ξ2
P (q2)

√
λ

3
(|FA|2 + |FV |2) (3.72)

×
{

1 + O
(

m4
l

q4

)

+
m2

l

M2
B

×O
(

αs,
q2

M2
B

√

ΛQCD

E

)}

,

where we get the higher order lepton flavor depending terms O (m4
l ) and O (m2

l ).

Here, we neglect terms of order M2
K/M

2
B and in λ ≈M4

B drop q2/M2
B terms which is

consistent with the ΛQCD/E expansion. These corrections are obtained expanding

the coefficients al and cl in ml. It is necessary to note that the O (m2
l ) term is addi-

tionally suppressed by a factor of order O
(

αs,
q2

M2
B

√

ΛQCD

E

)

and numerically negli-

gible with respect to O (m4
l ) one. Thus, there is no term of O (m2

l ) up to symmetry

breaking corrections. The leading order term is proportional to ξ2
P (q2)(|FA|2+|FV |2).

The functions FA (|FA| = |CSM
10 | ∼ 4) and FV are quantities of the same order, since

FV is a sum of |CSM
9 | ∼ 4 and a term containing TP , where |TP (q2)| ∼ 0.1.

Thus, as a conclusion one should note that the SM B → Kl̄l decay rate is highly

insensitive to lepton mass (or lepton flavor) dependent effects. For the muon channel

these effects are of order m4
µ/q

4 ∼ 10−4 in the low q2 (1− 7GeV2). These effects are

even more suppressed for electrons by the factor m2
e/m

2
µ ≃ 2 · 10−5.

In view of the large form factor uncertainties and the insensitivity to lepton mass

effects of Γl
SM it is proposed to investigate the ratio Γµ/Γe, i.e., RK [68]. First,

one expects cancellations of the hadronic uncertainties in RK for low dilepton mass.
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B− → K− l̄l B̄ → K̄l̄l

SM value ξP [%] µb[%] SM value ξP [%] µb[%]

Bµ

1.60+0.51
−0.46

+29.9
−27.0

+2.0
−1.8 1.46+0.47

−0.43
+30.4
−27.4

+2.1
−2.0

1.27+0.40
−0.36

+29.4
−26.6

+2.2
−2.1 1.16+0.37

−0.33
+29.8
−27.0

+2.3
−2.2

[10−7]
1.91+0.59

−0.54
+29.2
−26.6

+2.2
−2.2 1.74+0.55

−0.50
+29.6
−26.8

+2.3
−2.3

1.59+0.48
−0.44

+28.7
−26.0

+2.4
−2.4 1.45+0.45

−0.41
+29.0
−26.3

+2.5
−2.6

F µ
H

0.0244+0.0003
−0.0003

+0.8
−1.0

+0.7
−0.5 0.0243+0.0003

−0.0003
+0.9
−1.1

+0.7
−0.4

0.0188+0.0002
−0.0001

+0.4
−0.5

+0.7
−0.4 0.0187+0.0002

−0.0001
+0.5
−0.5

+0.7
−0.4

0.0221+0.0003
−0.0003

+1.2
−1.4

+0.9
−0.6 0.0221+0.0003

−0.0004
+1.2
−1.5

+0.9
−0.6

0.0172+0.0002
−0.0002

+0.7
−0.8

+0.9
−0.6 0.0172+0.0002

−0.0002
+0.7
−0.8

+0.9
−0.6

RK

1.00030+0.00010
−0.00007

+0.004
−0.003

+0.010
−0.006 1.00031+0.00010

−0.00007
+0.004
−0.003

+0.010
−0.006

1.00037+0.00010
−0.00007

+0.004
−0.003

+0.010
−0.006 1.00038+0.00011

−0.00007
+0.004
−0.003

+0.010
−0.006

1.00032+0.00010
−0.00007

+0.004
−0.003

+0.010
−0.006 1.00033+0.00011

−0.00007
+0.004
−0.003

+0.010
−0.006

1.00039+0.00011
−0.00007

+0.004
−0.003

+0.010
−0.006 1.00040+0.00011

−0.00007
+0.004
−0.003

+0.010
−0.007

Table 3.5: SM predictions for Bµ (in units of 10−7), F µ
H and RK for charged

and neutral B-meson decays and different q2 cuts (q2
min, q

2
max) =

(1, 6), (2, 6), (1, 7), (2, 7) GeV2 (from top to bottom). The uncertainties

from the form factor ξP (q2) and the renormalization scale µb varied be-

tween mb/2 and 2mb are also given separately in percent of the cen-

tral value. The corresponding branching ratios with electrons, Be, agree

within uncertainties with the ones with muons, Bµ.

Second, the deviation of RSM
K from 1 is mainly due to the inclusion of effects of

O
(

m4
µ/q

4
)

∼ 10−4 given in (3.72).

The numerical analysis, carried out within the numerical input from Table 3.4,

confirms the qualitative properties of Γl and RK described above. In Table 3.5 we

summarize our numerics giving the predictions for the two channels, B− → K− l̄l

and B̄0 → K̄0 l̄l. The splitting between the B− and B̄0 modes branching ratios is of

O (10%) due to the difference in lifetime and small isospin breaking terms in TP . For

the Γl the dominant errors come from uncertainties in the form factor ξP , the CKM

matrix element Vts and the renormalization scale µb. Adding errors in quadrature

gives the combined uncertainty from ξP (q2), µb and Vts which can be as large as 32%

( see Table 3.5). At low dilepton mass, the form factor has an uncertainty between

(12 − 16)%, with smaller uncertainty for larger q2 due to the findings from Light

Cone Sum Rules (LCSR) [80]. We find that the µb-dependence of the decay rate is

rather small, about a few percent, as can be seen from Figure 3.6 (left-hand plot).

The small uncertainty due to µb is not unexpected because of the inclusion of NNLL
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3.5 Standard Model Analysis

corrections to the matrix elements of the current-current operators [88, 89, 90] in

TP , which cancels the µb-dependence of CSM
9 . Further subleading sources are the

lifetime with 0.7% uncertainty and αe(µ), which enters quadratically and brings in

about 6% uncertainty to the B → Kl̄l decay rates. The uncertainties in Γl from the

charm, bottom and top mass are 2%, 0.4% and 2%, respectively.

In the right-hand plot of Figure 3.6 we plot Γµ for three lower cuts q2
min =

{0.5, 1, 2} GeV2 as a function of the upper boundary q2
max. The bands show de-

pendence on the uncertainties from ξP (q2), µb and Vts. The Figure 3.7 presents a

dependence on q2
max done for different cuts q2

min = {0.5, 1, 2} GeV2. As already ex-

pected above, the cancellation of the hadronic uncertainties is observed in RK , see

also Table 3.5. The combined error from form factor and the renormalization scale

is tiny. One can conclude that in the SM RK is 1 with high precision (deviation

from 1 is of O
(

m4
µ/q

4
)

, see (3.72)), what makes this observable so attractive to

study possible NP effects characterized by non-universal lepton couplings. It should

be noticed that the additional lepton flavor dependence can appear in RK due to

the QED bremsstrahlung corrections. In the case of the inclusive B → Xs l̄l decay

these corrections are computed in [67] and enhanced by the logarithms ln(m2
b/m

2
l ).

However, in the exclusive decay case such corrections are unknown.

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 0  1  2  3  4  5  6  7

(a
µ 

, 
 -

c µ
) 

× 
1

0
2

1
  

 [
G

eV
-1
]

q
2
  [GeV

2]

   aµ

 - cµ

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7

Γ µ
 ×

 1
0

2
1
  

 [
G

eV
]

qmax
2
      [GeV

2]

 q
2
min = 0.5 GeV

2

 q
2
min = 1 GeV

2

 q
2
min = 2 GeV

2

Figure 3.6: In the left-hand plot al(q
2) and −cl(q2) defined in (3.60) are shown for

l = µ in the SM as a function of q2 for the renormalization scale µb

between mb/2 and 2mb. In the right-hand plot the SM B → Kµ̄µ decay

rate is given for three different cuts q2
min = {0.5, 1, 2} GeV2 as a function

of q2
max. Here the bands take into account uncertainties from the form

factor ξP , µb and Vts.
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Figure 3.7: The ratio RK in the SM for different cuts q2
min = {0.5, 1, 2} GeV2 as a

function of q2
max. The uncertainties from the scale µb and the form factor

are added in quadrature.

The other interesting observable is F l
H (3.68), being similarly to RK a ratio which

leads to cancellation of hadronic and other uncertainties. This concerns the ones

from the form factor, the renormalization scale, Vts and unknown subleading 1/E

corrections in TP . In the same way as for Γl we apply symmetry relations for the

form factors (3.48) and (3.71) in order to obtain an expression for F l
H in the SM at

low q2:

F l SM
H = 2m2

l

Γ0

Γl
SM

∫ q2
max

q2
min

dq2

q2
ξ2
P (q2)

√
λ

3
βl(|FA|2 + |FV |2) (3.73)

×
{

1 +
q2

M2
B

×O
(

αs,
q2

M2
B

√

ΛQCD

E

)}

,

where the denominator Γl
SM is given in (3.72). The leading terms cancel in the sum

al + cl and as a result F l SM
H ∝ m2

l and F eSM
H /F µ SM

H ∝ m2
e/m

2
µ such that F e SM

H is

negligible. This fact can be also seen from the Figure 3.6 (left-hand plot). In Figure

3.8 (also Table 3.5) one can see the cancellation of uncertainties transparently, where

F µ
H is plotted for q2

min = 0.5, 1, 2 GeV2 versus the upper integration boundary q2
max.

The value of F µ
H becomes larger for smaller dilepton mass intervals. It also increases

for lower values of the lower cut q2
min. The tiny bands indicate small errors due

to ξP and µb, combining which gives the uncertainty of F µ
H . 2%. Here, in the

numerical analysis we skip an additional uncertainty from the subleading power
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Figure 3.8: The observable F µ
H in the SM depending on q2

max for three cuts q2
min =

{0.5, 1, 2} GeV2 (left-hand plot) and normalized to the central value

(right-hand plot). The bands include combined uncertainties from µb

and the form factor ξP (q2).

corrections. These subleading corrections contributing to form factor symmetry

breaking relations are known [79] and give additional uncertainties to F µ
H of order

q4/M4
B

√

ΛQCD/E ∼ 3%. We expect, that the subleading corrections for the hard

scattering part which have not been calculated yet, contribute to F µ
H at the order

q2/M2
Bαs

√

ΛQCD/E ∼ 3% assuming the same power counting as for the soft overlap

part. Thus, combining the errors one can predict F µ
H with maximal precision of

∼ O(6%) in the SM. For the electron channel F e
H becomes a null test of the SM due

to the huge suppression coming from m2
e.

3.5.2 Angular Distribution in B → K∗(→ Kπ)l̄l

In the most general case the decay B̄0 → K̄∗0(→ K−π+)l̄l can be characterized by

five kinematic variables considering an off-shell K∗ meson in narrow width approx-

imation [59]. Here we follow [63] where the limit of an on-shell K∗ has been con-

sidered. In this approximation the differential decay rate of B̄0 → K̄∗0(→ K−π+)l̄l,

when summing over the spin of the final state particles, reads

d4Γ

dq2 d cos θl d cos θK∗ dφ
=

3

8π
J(q2, θl, θK∗ , φ). (3.74)

65



Angular Analysis of B → K,K∗l̄l Decays

Note that we use B̄ ≡ (bd̄) and K̄0∗ ≡ (sd̄). The angular dependence can be

explicitly written as

J(q2, θl, θK∗, φ) = Js
1 sin2 θK∗ + Jc

1 cos2 θK∗ + (Js
2 sin2 θK∗ + Jc

2 cos2 θK∗) cos 2θl

+ J3 sin2 θK∗ sin2 θl cos 2φ+ J4 sin 2θK∗ sin 2θl cosφ

+ J5 sin 2θK∗ sin θl cosφ+ J6 sin2 θK∗ cos θl + J7 sin 2θK∗ sin θl sinφ

+ J8 sin 2θK∗ sin 2θl sin φ+ J9 sin2 θK∗ sin2 θl sin 2φ, (3.75)

where the coefficients J
(a)
i = J

(a)
i (q2) for i = 1, . . . , 9 and a = s, c are functions of the

dilepton mass q2. Here θl is the angle between the negatively charged lepton and the

B̄ in the dilepton center of mass system (CMS) and θK∗ denotes the angle between

the K− and the B̄ in the (K−π+) CMS. The angle φ is given by the normals of the

two planes defined by the (K−π+) and (l+l−) pairs, respectively, in the rest frame

of the B̄. The kinematically accessible phase space is

4m2
l 6 q2 6 (MB −MK∗)2, −1 6 cos θl 6 1, −1 6 cos θK∗ 6 1, 0 6 φ 6 2π.

(3.76)

The corresponding distribution of the CP conjugated decayB0 → K∗0(→ K+π−)l̄l

can be written as

d4Γ̄

dq2 d cos θl d cos θK∗ dφ
=

3

8π
J̄(q2, θl, θK∗ , φ). (3.77)

Here, θK∗ denotes the angle between the Kaon and the B meson in the (K+π−)

CMS. The definition of θl is identical for both B and B̄ decays. Again, the angle φ

is given by the normals of the two planes defined by the (K+π−) and (l+l−) pairs.

The functions J̄i are obtained from Ji in (3.75) by the replacements (see Appendix

B.1)

J
(a)
1,2,3,4,7 → J̄

(a)
1,2,3,4,7(δW → −δW ), J5,6,7 → −J̄5,6,8,9(δW → −δW ), (3.78)

the conjugation of weak phases denoted collectively by δW is understood [59].

Let us discuss the CP properties of the angles in the angular distributions (3.75)

and (3.78). We have three angles θl, θK∗ and φ which correspond to the decay

B̄ → K̄0∗(→ K−π+)l+l−, and the angles θ̄l, θ̄K∗ and φ̄ of the CP conjugate decay

B → K0∗(→ K+π−)l+l− (in (3.77) we have skipped the bars in the notation of

the angles, but reintroduce them here for clearness). We denote by pi(p̄i),qi(q̄i)

and ki(k̄i) the three momentum vectors of particle i in the B̄(B), lepton pair and

K̄∗(K∗) rest frame, respectively. Let us further take the direction of motion of the

K̄∗ meson along the z-axis in the B̄ rest frame. One can then define three unit
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_

Figure 3.9: The kinematical angles in B̄ → K̄0∗(→ K−π+)l+l− decays.

vectors

ez =
pK− + pπ+

|pK− + pπ+ | , el =
pl− × pl+

|pl− × pl+ |
, eK =

pK− × pπ+

|pK− × pπ+ | (3.79)

for the B̄ decay and correspondingly

ēz =
p̄K+ + p̄π−

|p̄K+ + p̄π− | , ēl =
p̄l+ × p̄l−

|p̄l+ × p̄l−|
, ēK =

p̄K+ × p̄π−

|p̄K+ × p̄π−| (3.80)

for the decay of the B meson. One can now define the angles θl, θK∗ , φ for B̄ →
K̄0∗(→ K−π+)l+l− decays as

sin θl =
(kl− × ez) · el

|kl−|
, cos θl =

kl− · ez

|kl−|
, (3.81)

sin θK∗ =
(qK− × ez) · el

|qK−| , cos θK∗ =
qK− · ez

|qK−| , (3.82)

sinφ = (el × eK) · ez, cosφ = eK · el. (3.83)

Likewise, we have for B → K0∗(→ K+π−)l+l− decays

sin θ̄l =
(k̄l− × ēz) · ēl

|k̄l−|
, cos θ̄l =

k̄l− · ēz

|k̄l−|
, (3.84)

sin θ̄K∗ =
(q̄K+ × ēz) · ēl

|q̄K+| , cos θ̄K∗ =
q̄K+ · ēz

|q̄K+| , (3.85)

sin φ̄ = (ēl × ēK) · ēz, cos φ̄ = ēK · ēl. (3.86)
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Since under CP pi± → −p̄i∓ , the unit vectors transform as

ez → ēz = −ez, eK,l → ēK,l = eK,l. (3.87)

It is easy to see from the formulae above that only sinφ is odd under the CP

transformation and the other are CP even where we apply (3.87). We summarize

the CP properties of the following quantities:

sin φ
CP−−→ sin φ̄ = − sinφ, (3.88)

cosφ
CP−−→ cos φ̄ = cos φ, (3.89)

sin θl,K∗
CP−−→ sin θ̄l,K∗ = − sin θl,K∗, (3.90)

cos θl,K∗
CP−−→ cos θ̄l,K∗ = − cos θl,K∗ . (3.91)

Transversity Amplitudes

The functions Ja
i are expressed in terms of transversity amplitudes (see Appendix

B.1) A⊥, A‖ and A0 being the functions of Wilson coefficients and form factors.

Here we are giving the expressions for the transversity amplitudes in the presence of

NP Wilson coefficients within QCDF and neglecting kinematical terms1 M2
K∗/M2

B.

They read as

AL,R
⊥ = +

√
2NMB(1 − ŝ)

{

[

(C9 + C ′
9) ∓ (C10 + C ′

10)
]

ξ⊥ +
2m̂b

ŝ
T +
⊥

}

,

AL,R
‖ = −

√
2NMB(1 − ŝ)

{

[

(C9 − C ′
9) ∓ (C10 − C ′

10)
]

ξ⊥ +
2m̂b

ŝ
T −
⊥

}

,

AL,R
0 = −NM

2
B(1 − ŝ)2

2MK∗

√
ŝ

{

[

(C9 − C ′
9) ∓ (C10 − C ′

10)
]

ξ‖ − 2m̂bT −
‖

}

,

At =
NM2

B(1 − ŝ)2

MK∗

√
ŝ

(C10 − C ′
10)

ξ‖
∆‖

, (3.92)

where

ŝ =
q2

M2
B

, m̂b =
mb

MB
, N =

[

G2
Fα

2
e

3 · 210 π5MB
|VtbV

∗
ts|2 ŝ

√
λ βl

]1/2

(3.93)

and

λ = M4
B +M4

K∗ + q4 − 2(M2
BM

2
K∗ +M2

Bq
2 +M2

K∗q2), βl =

√

1 − 4m2
l

q2
. (3.94)

1These formally subleading terms in the 1/E expansion are included in the numerical evaluation.
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Note that At contributes only for ml 6= 0 and contains ∆‖, see [19], which represents

form factor symmetry breaking QCD corrections. Note that helicity conservation

dictates AL,R
⊥ = −AL,R

‖ for C ′
i = 0 up to 1/E corrections [91].

In the framework of QCDF, the functions T ±
⊥,‖ are calculated at 1/mb order in

heavy quark mass expansion and at NLO in αs for the SM operators and the cor-

responding chirality flipped operators, see (3.9). The T ±
⊥,‖ have the following CKM

and QCD structure

T ±
a = T ±(t)

a + λ̂uT (u)
a ,

T ±(t)
a = T ±(t),LO

a +
αs

4π
T ±(t),NLO

a , T (u)
a = T (u),LO

a +
αs

4π
T (u),NLO

a , (3.95)

where a =⊥, ‖. At LO in αs (denoted by the superscript (0)) and neglecting numer-

ically small weak annihilation terms in T ±(t),
‖ we have

T ±(t),LO
⊥ = ξ⊥

[

C
eff(0)
7 ± C

′(0)
7 +

q2

2mbMB
Y (0)

]

, T (u),LO
⊥ = ξ⊥

q2

2mbMB
Y (u)(0),

T ±(t),LO
‖ = −ξ‖

[

C
eff(0)
7 ± C

′(0)
7 +

MB

2mb

Y (0)

]

+HS, T (u),LO
‖ = −ξ‖

MB

2mb

Y (u)(0) +HS

(3.96)

where spectator effects are denoted by HS (complete expressions can be found in

Appendix B.4). Two kind of phases are contained in the T ±
⊥,‖ functions. The weak

phase comes from the CKM matrix, i.e. λ̂u pre-factor. The strong phases come at

LO in αs from Y (q2) and Y (u)(q2), [19, 20], containing 1-loop contributions of four-

quark operators ∼ s̄bq̄q with an imaginary part if q2 > 4m2
q. These phases are small

in the low q2-region, where the 1/E expansion of QCDF is valid, which is below

the charm threshold (the origin of large phases coming from the cc̄ resonances).

In this low q2-region the lighter quarks induce either CKM suppressed or penguin

contributions leading to small strong phases. At higher order in αs, strong phases

are further generated in T (i),NLO
a and from spectator interactions [19, 20], which have

been included in our numerical analysis. The form factors ξ⊥ and ξ‖ are discussed

in Section 3.4.

Branching Ratio and AFB

The differential decay rate for B̄0 → K̄∗0(→ K−π+)l̄l decays can be obtained after

integration of (3.75) over all angles. It is simply a linear combination of J1 and J2

dΓ

dq2
= J1 −

J2

3
, where J1,2 ≡ 2Js

1,2 + Jc
1,2. (3.97)

It can be also rewritten more explicitly, i.e., in terms of the transversity amplitudes

(3.92) as
dΓ

dq2
= |AL

⊥|2 + |AL
‖ |2 + |AL

0 |2 + (L→ R) + O
(

m2
l /q

2
)

(3.98)
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Figure 3.10: The differential branching ratio (right-hand plot) and AFB(q2) (left-

hand plot) in the SM as functions of the dilepton invariant mass cal-

culated in the QCDF. The bands show the uncertainties of the form

factors, the CKM parameters, µb and the total uncertainties (by adding

errors in quadrature) separately.

up to contributions suppressed by the lepton mass.

The (normalized) forward-backward asymmetry AFB is given after full φ and θK∗

integration as 2

AFB(q2) ≡
[
∫ 1

0

−
∫ 0

−1

]

d cos θl
d2Γ

dq2 d cos θl

/

dΓ

dq2
= J6

/

dΓ

dq2
. (3.99)

By dΓ̄/dq2 and ĀFB(q2) we refer to the corresponding spectra of the CP conjugated

decays.

We worked out both dΓ/dq2 and AFB(q2) in the SM using QCDF. In Figure 3.10

we plot the differential branching ratio, which is just dΓ/dq2 multiplied by life time

τB0 , and AFB(q2) as functions of q2. The various bands represent the three dominant

uncertainties coming from the form factors, renormalization scale µb and the CKM

parameters. We vary the scale between mb/2 and 2mb and allow for an uncertainty

of 11% and 14% for ξ⊥ and ξ‖, respectively. The CKM input is given in Table

3.4. For the total uncertainty estimate, all three sources of uncertainty are added in

quadrature.

2Since we define the lepton angle θl with respect to the l−, our definiton of the forward-backward

asymmetry (3.99) differs from the one in other works using the l+, e.g., [19, 20, 92], by a global

sign.
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In the left-hand plot of Figure 3.10 one can see that the dominant uncertainties

to the decay rate come from the form factors ξ⊥ and ξ‖. From the formulae (3.92)

and (3.98) follows that the longitudinal amplitudes AL,R
0 are enhanced by MB/MK∗

with respect to AL,R
⊥ , AL,R

‖ , what implies a stronger dependence of dΓ/dq2 on ξ‖ than

on ξ⊥.

In the framework of QCDF we calculate numerically in the SM the quantities FL,T

defined as

FL =
〈|AL

0 |2 + |AR
0 |2〉

〈dΓ/dq2〉 , (3.100)

and

FT =
〈|AL

⊥|2 + |AR
⊥|2 + |AL

‖ |2 + |AR
‖ |2〉

〈dΓ/dq2〉 , (3.101)

being the longitudinal and transversal K∗ contribution to the total decay rate, re-

spectively. Here we introduce a short notation for q2-integrated quantities

〈X〉 =

∫ q2
max

q2
min

dq2X(q2). (3.102)

For the cuts (q2
min, q

2
max) = (1, 6) and (1, 7) GeV2 FL is 0.73+0.08

−0.10 and 0.72+0.08
−0.11, re-

spectively. Whereas FT for the same cuts is 0.27+0.11
−0.08 and 0.28+0.11

−0.09.

The dominant error to AFB comes also from form factors. The numerator of

AFB presented by function J6 is proportional to ξ2
⊥ at LO in QCDF, whereas the

denominator being the decay rate is dominated by ξ‖. The independent variation of

ξ⊥ and ξ‖ gives about 30% error of AFB for the upper part of the region 1− 7 GeV2.

CP Asymmetries

To reveal CP violation effects of a theory there should exist a non-trivial phase,

which can not be removed by any field transformations and there should exist an

observable which depends on this phase. Particularly, in the SM this phase resides

in the CKM matrix, as a result of the fact that the SM has three generations.

To construct CP-odd observables having the structure of |M |2 − |M̄ |2, where

M and M̄ are the matrix elements of to each other CP conjugated processes, one

needs several contributing amplitudes. The relative phases appearing in the matrix

element can be of two kinds, conventionally called ”weak” and ”strong” phases. A

weak phase has an opposite sign in the CP-conjugated process and a strong one

has the same one. As an example, we consider the matrix element of the i → f

transition in terms of two contributing amplitudes A1 and A2

M(i → f) = A1e
iδW + A2e

iδS (3.103)
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where the phase δW changes the sign in the CP-conjugated matrix element M̄ and

δS not. Computing |M |2 −|M̄ |2 one finds that CP-odd observables are proportional

to sin δW sin δS and vanishes when one of the phases goes to zero.

There are basically two types of origins of the strong phases. In perturbative

calculations they appear as absorptive parts in the loop integrals. The second origin

is the so-called final-state-interaction scattering. In this case the transition i →
f ′ → f has two parts, i→ f ′ is due to the weak interaction and f ′ → f is due to the

strong interaction. If the f ′ intermediate state is on mass shell then this generates

an absorptive part (strong phase) in the amplitude.

Using the discrete symmetry T (is not same as the time reversal invariance),

which changes the signs of all particle momenta and spins, one can classify CP-

odd observables. The observable discussed above is CP-odd and T-even and gen-

erally proportional to quantities like sin δW sin δS. T-even observables depend on a

strong phase and can be additionally suppressed in the case if the latter is small.

On the other hand CP-odd T-odd observables are proportional to quantities like

sin δW cos δS +cos δW sin δS and survive in the case δS → 0. Typically, CP-odd T-odd

observables are proportional to the triple product of three momenta or spin vectors

~p1 · ~p2 × ~p3 originating from the Lorenz invariant expression ǫµναβp
µ
1p

ν
2p

α
3 p

β
4 (in the

rest of frame of p4). Particularly, considering B → K∗ transitions one can find the

Levi-Civita tensor in the definition of QCD form factors (3.42)-(3.43). Such terms

with a triple product generate terms in the decay rate, as for the CP-conjugated

process, being

Im[A1A
∗
2] ~p1 · ~p2 × ~p3 (3.104)

which will contribute to CP-odd observables if the relative weak phase is contained

either in A1 or A2. The nice property of CP-odd T-odd observables is that they are

non zero even in the case when the strong phases vanish.

In the case of B̄0 → K̄∗0(→ K−π+)l̄l decays CP violating effects in the angular

distribution are signaled by non-vanishing differences between the (q2-dependent)

angular coefficients

∆J
(a)
i = ∆J

(a)
i (q2) ≡ J

(a)
i − J̄

(a)
i . (3.105)

Using these differences one can construct CP-odd T-even and T-odd observables.

Under T-transformation the coefficients J7,8,9 are odd (φ→ −φ under T) and hence

induce T-odd asymmetries ∆J7,8,9 which are not suppressed by small strong phases

predicted from QCDF. The remaining coefficients Ji will induce T-even asymmetries

which will be suppressed by small strong phases.

The CP asymmetry in the dilepton mass distribution, being T-even quantity, is
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commonly defined as (see (3.97))

ACP(q2) ≡ d(Γ − Γ̄)

dq2

/

d(Γ + Γ̄)

dq2
=

1

NΓ

[

∆J1 −
∆J2

3

]

, NΓ = NΓ(q2) =
d(Γ + Γ̄)

dq2
.

(3.106)

Following [59], we define in addition to ACP seven normalized CP asymmetries as

Ai(q
2) ≡ 2∆Ji

NΓ

for i = 3, 6, 9, AD
i (q2) ≡ −2∆Ji

NΓ

for i = 4, 5, 7, 8, (3.107)

where again A3,6 and AD
4,5 are T-even, and A9 and AD

7,8 are T-odd observables. We

then define the normalized q2-integrated CP asymmetries as

〈Ai〉 ≡ 2
〈∆Ji〉
〈NΓ〉

for i = 3, 6, 9,
〈

AD
i

〉

≡ −2
〈∆Ji〉
〈NΓ〉

for i = 4, 5, 7, 8, (3.108)

where the numerator and the denominator are integrated with the same q2 cuts

which should be in the low dilepton mass region in order to be consistent with the

QCDF formalism (see Section 3.5.2).

These CP asymmetries can be extracted from the differential decay rate (3.74)

by partial integration over the angles. Particularly, integrating (3.74) over θK∗ gives

the double-differential distribution in θl and φ,

d2 〈Γ〉
d cos θl dφ

=
1

4π

{

〈J1〉 + 〈J2〉 cos 2θl + 2 〈J3〉 sin2 θl cos 2φ

+ 2 〈J6〉 cos θl + 2 〈J9〉 sin2 θl sin 2φ
}

, (3.109)

which can be used to extract the CP asymmetry 〈A6〉. Further integration over θl

gives

d 〈Γ〉
dφ

=
1

2π

{

〈J1〉 −
〈J2〉
3

+
4

3
〈J3〉 cos 2φ+

4

3
〈J9〉 sin 2φ

}

, (3.110)

which shows the possibility of finding 〈∆J9〉 from d
〈

Γ + Γ̄
〉

/dφ, whereas 〈∆J3〉 can

be obtained from d
〈

Γ − Γ̄
〉

/dφ, with 〈∆J1〉 − 〈∆J2〉 /3 from ACP without angular

study, see (3.106).

The construction of the CP asymmetries 〈AD
i 〉 (i = 4, 5, 7, 8) requires binning into

cos θK∗ as

d2 〈AθK∗ 〉
d cos θl dφ

≡
[
∫ 1

0

−
∫ 0

−1

]

d cos θK∗

d3 〈Γ〉
d cos θK∗ d cos θl dφ

=
1

2π

{

〈J4〉 sin 2θl cos φ+ 〈J5〉 sin θl cos φ

+ 〈J7〉 sin θl sin φ+ 〈J8〉 sin 2θl sin φ
}

. (3.111)
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Performing the θl-integration leads to the distribution

d 〈AθK∗ 〉
dφ

=
1

4
{〈J5〉 cos φ+ 〈J7〉 sinφ} (3.112)

giving the possibility of extracting 〈∆J5〉 from d
〈

AθK∗ + ĀθK∗

〉

/dφ whereas 〈∆J7〉
can be obtained from d

〈

AθK∗ − ĀθK∗

〉

/dφ.

The double asymmetry in θK∗ and θl,

d 〈AθK∗ ,θl
〉

dφ
≡
[
∫ 1

0

−
∫ 0

−1

]

d cos θl

d2 〈AθK∗ 〉
d cos θl dφ

=
2

3π
{〈J4〉 cosφ+ 〈J8〉 sinφ} , (3.113)

then allows to obtain 〈∆J4〉 from d
〈

AθK∗ ,θl
− ĀθK∗ ,θl

〉

/dφ, whereas 〈∆J8〉 can be

extracted from d
〈

AθK∗ ,θl
+ ĀθK∗ ,θl

〉

/dφ.

Note that only A3, A6 and A9 can be obtained from a genuinely single differential

distribution. A9 is the only T-odd asymmetry with this property.

Another way of the extraction is based on the construction of corresponding weight

functions Wi which project out Ji from the decay distribution (3.74), see Appendix

B.2.

Let us discuss the SM predictions of the CP asymmetries applying the framework

of QCDF. The complete NLO in αs and LO in 1/E analytical expressions for CP

asymmetries in the low-q2 region are given in Appendix B.3. Those expressions can

be reduced to the SM ones by setting NP Wilson coefficients C
(′),NP
7,9,10 = 0. In the

large recoil limit the symmetry relations reduce the seven QCD form factors to the

two form factors ξ⊥ and ξ‖. To calculate ξ⊥,‖ we use q2-dependent fits of B → K∗

form factors from light cone QCD sum rules (LCSR) [81], see Section 3.4.

In the SM CP asymmetries A
(D)
i are uniquely induced by the phase of the CKM

matrix. Therefore an overall factor

Im[λ̂u] = Im
[VubV

∗
us

VtbV
∗
ts

]

≃ η̄λ2, (3.114)

where λ and η̄ are Wolfenstein parameters, gives a suppression of O (10−2). Due to

this fact all CP asymmetries obtain a universal 15% uncertainty coming from the

variation of the CKM matrix parameters in the ranges given in Table 3.4.

Together with the CKM parameters, the form factors and the renormalization

scale µb are dominant sources of uncertainties in CP asymmetries. Similarly as in

Section 3.5.2, we vary the scale between mb/2 and 2mb and for ξ⊥ and ξ‖ we assume

a flat (not depending on q2) uncertainty of 11% and 14%, respectively. For the total

uncertainty estimate, all three sources of uncertainty are added in quadrature.

In the Figure 3.11 we plot T-even CP asymmetries, i.e., ACP,6(q
2) and AD

4,5(q
2) as

functions of q2. From the plots one can see that LO and NLO results are comparable

to each other, therefore impact of higher order terms to these particular T-even
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SM ·10−3 ξ⊥,‖[%] µb[%] SM LO ·10−3 SM(B∓) ·10−3

〈ACP 〉
4.2+1.7

−2.5
+19
−24

+33
−51 3.0+1.2

−1.5 10.0+2.3
−2.9

4.8+1.7
−2.4

+13
−17

+29
−44 3.1+1.2

−1.6 9.9+2.2
−2.8

〈AD
4 〉

−1.8+0.3
−0.3

+11
−8

+2
−6 −0.7+0.4

−0.4 −0.7+0.4
−0.3

−2.0+0.4
−0.4

+11
−8

+7
−8 −0.8+0.5

−0.4 −1.1+0.4
−0.4

〈AD
5 〉

7.6+1.5
−1.6

+10
−13

+7
−8 2.7+0.8

−1.2 10.0+2.2
−2.3

7.6+1.5
−1.6

+9
−12

+7
−9 2.7+0.8

−1.2 9.8+2.1
−2.1

〈A6〉
−6.4+2.2

−2.7
+31
−39

+0
−2 −1.9+1.0

−0.9 −6.3+2.1
−2.6

−6.7+2.2
−2.7

+30
−37

+1
−3 −2.0+1.1

−1.0 −6.6+2.2
−2.7

〈AD
7 〉

−5.1+2.4
−1.6

+11
−8

+42
−26 < 10−2

−7.1+2.6
−1.9

−4.6+2.1
−1.4

+10
−6

+42
−25 −6.5+2.3

−1.7

〈AD
8 〉

3.5+1.4
−2.0

+7.4
−10

+37
−53 0.2+0.04

−0.08 3.4+1.4
−2.0

3.1+1.3
−1.7

+6
−10

+37
−53 0.14+0.03

−0.06 3.1+1.3
−1.8

〈A3,9〉† O (1) O (1) O (1)

Table 3.6: SM predictions for the integrated CP asymmetries in units of 10−3 with

the integration boundaries (q2
min, q

2
max) = (1, 6), (1, 7) GeV2 (from top to

bottom). We take into account uncertainties from the form factors, the

scale dependence µb and the CKM parameters, all of them added in

quadrature. The form factor uncertainty employed is 11% and 14% for

ξ⊥ and ξ‖, respectively, and µb is varied within [mb/2, 2mb]. The relative

uncertainties due to ξ⊥, ξ‖ and µb are also shown separately. The asym-

metries at LO in αs and the NLO ones for charged B-decays are given as

well, see text for details. †The leading contributions 〈A3,9〉 in the SM are

power counting estimates only.
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asymmetries is numerically sizeable, but qualitatively less pronounced. For the NLO

result we also show separately the uncertainty dependence from the form factors,

CKM parameters and µb by plotting various bands.

-0.005

 0

 0.005

 0.01

 0.015

 1  2  3  4  5  6  7

A
C

P

q2[GeV2]

total(LO)
total(NLO)

µb
VCKM
ξ⊥,ξ||

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 1  2  3  4  5  6  7

A
6 

q2[GeV2]

total(NLO)
ξ⊥,ξ||

VCKM
µb

total(LO)

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 1  2  3  4  5  6  7

A
4D

q2[GeV2]

total(LO)
total(NLO)

µb
VCKM
ξ⊥,ξ||

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 1  2  3  4  5  6  7

A
5D

q2[GeV2]

total(NLO)
VCKM
ξ⊥,ξ||

µb
total(LO)

Figure 3.11: The T-even CP asymmetries ACP,6(q
2) and AD

4,5(q
2) in the SM in the

low-q2 region at LO and NLO in QCDF. The various bands show the

uncertainty due to the form factors, the CKM parameters and µb sep-

arately, whereas the overall band indicates the total uncertainty.

In contrast to T-even asymmetries the higher order terms in the T-odd AD
7,8(q

2)

asymmetries are even more dominant, see Figure 3.12. Particularly, at LO in αs A
D
7

asymmetry, i.e.,

AD
7 ∼ Im[λ̂u]Re

[

T (u)
⊥
ξ⊥

+
q2

M2
B

T (u)
‖
ξ‖

]

, (3.115)

vanishes due to cancellations of the terms in the square brackets [93]. (Our value

of AD
7 at LO is tiny but finite since in the numerical analysis we do not neglect

kinematical factorsM2
K∗/M2

B.) Therefore adding higher order αs corrections increase
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the value of AD
7 drastically. That is what we observe on the left-hand plot of Figure

3.12.

The similar cancellations at LO happens in the AD
8 asymmetry, i.e.,

AD
8 ∼ Im[λ̂u]Re





2mb

MB

(

T (u)
⊥ T (t)∗

‖ − T (t)
⊥ T (u)∗

‖

)

ξ⊥ξ‖
−
(T (u)

⊥
ξ⊥

+
q2

M2
B

T (u)
‖
ξ‖

)

CSM
9



 ,

(3.116)

although here an additional numerically subleading LO term exists (the first term

in square brackets), giving a small contribution, see Figure 3.12.
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Figure 3.12: The T-odd CP asymmetries AD
7,8(q

2) in the SM in the low-q2 region at

LO and NLO in QCDF. The various bands show the uncertainty due

to the form factors, the CKM parameters and µb separately, whereas

the overall band indicates the total uncertainty.

The T-even A3 and T-odd A9 CP asymmetries are considered separately since

they vanish in the SM at lowest order in 1/E. Being the result of higher order in

1/E

A3,9 ∼ Im[λ̂u]O(ΛQCD/E) ∼ O(10−3), (3.117)

the numerical values of A3,9 are expected to be smaller then the other CP asymme-

tries.

We present in Table 3.6 the integrated CP asymmetries for the two cuts (q2
min, q

2
max) =

(1, 6) GeV2 (upper entries) and (1, 7) GeV2 (lower entries), respectively. The predic-

tions are given for both neutral and charged B-decays. In the case of neutral modes

we consider the results in detail, by showing LO values of CP asymmetries and giving

separate information about form factor and renormalization scale uncertainties.
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The form factor induced uncertainty in the asymmetries depends on the amount

of cancellations between the numerator and the decay rate in the denominator. We

recall that we vary the two form factors within their uncertainties independently.

The denominators of CP asymmetries, i.e., decay rates, are dominated by ξ‖ (see

Section 3.5.2), whereas the numerators are proportional to ξ2
⊥ for A6 and ξ⊥ξ‖ for the

AD
4,5,7,8. Therefore the cancellations in AD

4,5,7,8 are expected to be more pronounced

than in A6. The numerator of ACP has a more complicated structure leading to an

intermediate size of cancellations. From the second column of the Table 3.6 one can

see that the biggest, about 40%, form factor uncertainties appear in A6, whereas for

AD
4,5,7,8 the errors do not exceed 13%.

As can be seen from Table 3.6, 〈ACP〉, 〈AD
7 〉 and 〈AD

8 〉 exhibit a massive µb depen-

dence of order 50 %. The CP asymmetries A
(D)
i with i = 4, 5, 6 are not subject of

the cancellations mentioned after (3.115) and have a smaller residual µb uncertainty

below ten percent. The µb dependence of 〈A6〉 of a few percent is accidentally small

due to significant cancellations between different q2-regions, see the crossing of the

µb bands in A6 near q2 ≃ (3 − 4) GeV2 in Figure 3.11.

The last column in Table 3.6 shows the NLO SM predictions for charged B-decays.

The splitting between the CP asymmetries in neutral versus charged B-decays is

dominated by weak annihilation contributions from current-current operators and

varies a lot in size: 〈AD
5,7〉 (〈ACP〉) increase by O(30%) (a factor of two) from neutral

to charged B-decays, whereas 〈AD
4 〉 decreases by ∼ 1/2. The splitting for 〈A(D)

6,8 〉 is

at the few percent level.

In conclusion it should be said that in spite of large theoretical uncertainties for

the SM predictions, CP asymmetries are very attractive for the search of NP CP

violating phases. This advantage comes from the smallness of the CP asymmetries

in the SM due to the CKM suppression. In the next section we will show that

current experimental bounds on NP allow for huge enhancement of CP asymmetries,

particularly T-odd ones, up to O (1).

3.6 New Physics Analysis

The NP section is split into two parts. In the first one we discuss the experimental

constraints on NP from various FCNC B-decay observables. The second part is

devoted to NP model-independent analysis of the obsevables defined in Section 3.5.

It is shown that the large enhancements with respect to the SM contributions are

allowed by the present data.
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observable sensitive to SM value data

F µ
H Cµ

S,P + Cµ′
S,P , Cµ

T (5) O(m2
µ/q

2) 0.81+0.58
−0.61 ± 0.46† [55]

Aµ
FB Cµ

S,P + Cµ′
S,P , Cµ

T (5) O(αe/(4π)) 0.15+0.21
−0.23 ± 0.08† [55]

0.10 ± 0.14 ± 0.01† [54]

RK − 1 C l
S,P + C l′

S,P , C l
T (5), e vs. µ O(10−4) 0.24 ± 0.31† [53, 55]

B(B̄s → µ̄µ) Cµ
S,P − Cµ′

S,P (3.23 ± 0.44) · 10−9 < 8.0 · 10−8 [56]

B(B̄s → ēe) Ce
S,P − Ce′

S,P (7.56 ± 0.32) · 10−14 < 5.4 · 10−5 [94]

Bincl
µ |[>0.04] C

µ(′)
S ± C

µ(′)
P , Cµ

T (5) (4.15 ± 0.70) · 10−6 [57, 92] (4.3 ± 1.2) · 10−6 [15]

Bincl
e |[>0.04] C

e(′)
S ± C

e(′)
P , Ce

T (5) (4.15 ± 0.70) · 10−6 [57, 92] (4.7 ± 1.3) · 10−6 [15]

Table 3.7: Observables in b → sl̄l induced transitions and used in the NP analysis

of B → K∗l̄l decays. Upper bounds are given at 90% C.L. For details

see text. †Data include q2-regions where QCDF does not apply and both

l = e and µ are included.

observable sensitive to SM data

B(B̄ → Xsγ)
a C7, C

′
7 (3.15 ± 0.23) · 10−4 [95] (3.52 ± 0.25) · 10−4 [96]

Sb
K∗γ C7, C

′
7 (−2.8+0.4

−0.5) · 10−2 −0.19 ± 0.23 [96, 97, 98]

B(B̄ → Xs l̄l)|[1,6] C
(′)
7 , C

(′)
9 , C

(′)
10 (1.59 ± 0.11) · 10−6 [67] (1.60 ± 0.51) · 10−6 [99]

B(B̄ → Xs l̄l)|[>0.04] C
(′)
7 , C

(′)
9 , C

(′)
10 (4.15 ± 0.70) · 10−6 [92] (4.5 ± 1.0) · 10−6 [15]

〈AFB〉c[high q2] C
(′)
7 , C

(′)
9 , C

(′)
10 < 0 −(0.76+0.52

−0.32 ± 0.07) [55], also [53, 54]

B(B̄s → µ̄µ) C10 − C
′

10 ≃ 3 · 10−9 < 4.7 · 10−8 at 90% C.L. [100]

Table 3.8: Relevant b → sγ and b → sl̄l observables used in the NP analysis of

B → K∗ l̄l decays. aWith photon energy cut Eγ > 1.6 GeV. bSM value

obtained withms = 0.12 GeV. cNote the different lepton angle convention

between [54, 55] and this work.

3.6.1 Experimental Constraints

In this section we discuss the experimental constraints on NP from different FCNC

B-decay observables. For the case of the angular distribution in B → Kl̄l decays we

discuss the observables sensitive to (pseudo-) scalar and tensor interactions. Relevant

to B → K∗l̄l decay analysis, we consider the observables being able to constrain

the NP Wilson coefficients CNP
i and C

′NP
i = C ′

i for i = 7, 9, 10 corresponding to

O7,9,10 and chirality-flipped O′
7,9,10 operators in model-independent way. We allow

the respective NP coefficients to be varied in a magnitude and a phase, denoted by

φi.

B̄s → l̄l Decay

A detailed study of the b → sl̄l operators shows that not all contribute to the

B̄s → l̄l. For instance, the matrix element 〈0|s̄σµνb|B̄s〉 vanishes since it depends
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Figure 3.13: Allowed region for real CNP
7 and C ′

7. The regions allowed by B(B̄ →
Xsγ), SK∗γ and B(B̄ → Xs l̄l)|[1,6] are shown as the green ring, the red

cross and the blue half circle, respectively.

only on the momentum pBs of the Bs meson, making it impossible to construct an

antisymmetric tensor with respect to µ and ν indices. The contribution from the

axial-vector matrix element 〈0|s̄γµγ5b|B〉 contracted with the leptonic vector current

l̄γµl also vanishes since it is proportional pµ
Bs

= pµ
l+ + pµ

l−. Since B̄s is a pseudoscalar

particle the matrix elements of the s̄b and s̄γµb operators vanish too.

Thus, the remaining relevant operators relevant for B̄s → l̄l are

(s̄γµγ5b)(l̄γ
µγ5l), (s̄γ5b)(l̄γ5l), (s̄γ5b)(l̄l). (3.118)

Applying for these PCAC relations

〈0|s̄γµγ5b|B〉 = ipµ
Bs
fBs , 〈0|s̄γ5b|B〉 = −ifBs

MBs

mb +ms
, (3.119)

which express the matrix elements in terms of the decay constant fBs , momentum

pµ
Bs

and mass MBs of the B̄s meson, we can write the matrix element for the B̄s → l̄l

as [101, 72, 58]

M =
GFαe√

2π
VtbV

∗
ts

[

Fs l̄l + (FP + 2mlFA)l̄γ5l
]

, (3.120)

where

FA = − i

2
fBsC10, Fi = − i

2
M2

Bs
fBs

[ Ci − C ′
i

mb +ms

]

, i = S, P, (3.121)

where C
(′)
S,P are (pseudo-) scalar Wilson coefficients needed to be constrained for the

B → Kl̄l analysis.
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Figure 3.14: Allowed areas for the NP Wilson coefficients in particular scenar-

ios: ”CNP
9 only”, ”CNP

10 only”, ”CNP
7 only” and ”C

′

7 only”. The

regions are constrained by B(B̄ → Xsγ), SK∗γ, B(B̄ → Xs l̄l)|[1,6],

B(B̄ → Xs l̄l)|[>0.04] and integrated AFB.
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Finally, we ca write the branching ratio B(B̄s → l̄l) explicitly in terms of NP

Wilson coefficients

B(B̄s → l̄l) =
G2

Fα
2
eM

5
Bs
f 2

Bs
τBs

64π3
|VtbV

∗
ts|2
√

1 − 4m2
l

M2
Bs

×
{(

1 − 4m2
l

M2
Bs

)∣

∣

∣

∣

∣

C l
S − C l′

S

mb +ms

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

C l
P − C l′

P

mb +ms

+
2ml

M2
Bs

C10

∣

∣

∣

∣

∣

2}

. (3.122)

Tensor operators do not contribute to B̄s → l̄l decays and hence C l
T,T5 are not

constrained by these decays. The B̄s → l̄l branching ratios depend on the difference

of Wilson coefficients (C l
S,P − C l′

S,P ). It means that constraints from (3.122) can

be evaded in the presence of both unprimed and primed (pseudo-)scalar Wilson

coefficients. In the exclusive B → K,K∗l̄l decays this can be avoided by the presence

of a sum (C l
S,P + C l′

S,P ) [68].

In the Table 3.7 we give current experimental upper bound on B(B̄s → l̄l) together

with their SM values obtained with the input from Table 3.4. One should note that

in the SM the branching ratio of B̄s → l̄l is proportional to m2
l and for the electron

mode is of order O (10−14), i.e., nine orders of magnitude smaller than the current

upper bound from L3 [94]. As we show later, the current B(B̄s → ēe) constraint is

nevertheless on the verge of being useful, since NP in C
l(′)
S,P does not enter the B̄s → l̄l

modes with ml-suppression as the SM contribution, see (3.122). The current upper

bound on B(B̄s → µ̄µ) comes from CDF and DØ [56]([102]) presented at 90% C.L.

(95% C.L. B(B̄s → µ̄µ) < 5.8 · 10−8) which is quite close to the SM prediction.

Inclusive B̄ → Xs l̄l and B̄ → Xsγ Decays

In our analysis we take into account the further constraint which comes from the

branching ration of the inclusive B̄ → Xs l̄l decay. Currently, the inclusive de-

cays can be predicted with better accuracy, especially in the low-q2 region it has

reached the level of . 10% [66, 90, 67, 103], but also the high-q2 region is the-

oretically accessible [90, 104, 103] with larger uncertainties. In our analysis we

use two regimes, i.e., the integrated branching ratio in the low-q2 region with

q2 ∈ [1, 6] GeV2 B(B̄ → Xsl̄l)|[1,6] as well as the whole q2 region with q2 > 0.04 GeV2

B(B̄ → Xs l̄l)|[>0.04]. One should note that the latter case has some model-dependence

due to the cuts of the first and second charm resonances in the experimental analysis.

The computational method of the B̄ → Xs l̄l inclusive branching ratio differs from

the exclusive ones. The matrix element of the B̄ → Xs transition (Xs is a sum of the

states with strangeness S=1) can be computed in perturbation theory based on the

method of the heavy quark expansion (HQE). Considering a non-relativistic theory

of the b quark, the expansion takes place in terms of the inverse powers of the heavy
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quark mass mb. Employing the optical theorem, one can relate the decay rate to

the absorptive part of the forward scattering amplitude Im(〈B̄|A|B̄〉), with

A = i

∫

d4xT[Heff(x)Heff(0)], (3.123)

where T is a time-ordering operation andHeff is defined in (3.3). Inserting a complete

set of the states inside of the time-ordered product we get an expression for the decay

rate of the B̄ → Xs

Γ(B̄ → Xs) =
1

2MB

∑

Xs

(2π)4δ4(pB − pXs)|〈Xs|Heff |B̄〉|2. (3.124)

The leading term of the OPE in A corresponds to the lowest dimension operator b̄b.

It means that in the limit of mb → ∞ the decay rate of B meson is given by the decay

rate of the b quark. The corrections to the leading order result are of O (1/m2
b) with

corresponding operators b̄(D)2b and b̄σµνGµνb . There is no correction of O (1/mb)

because the corresponding operator b̄ /Db can be reduced to b̄b.

Since for the B → Kl̄l decays we are interested in lepton flavor dependent physics,

we apply the effective Hamiltonian Heff extended by the NP operators (3.10) and

write the q2-cut dependent B̄ → Xs l̄l branching ratios in terms of (pseudo-) scalar

and tensor Wilson coefficients as (see, e.g., [105])

Bincl
l |[q2

min, q2
max] ≡ B(B̄ → Xs l̄l) = Bincl

l |[q2
min, q2

max],SM + (|C l
T |2 + |C l

T5|2)MT (3.125)

+ (|C l
S + C l

P |2 + |C l′
S + C l′

P |2 + |C l
S − C l

P |2 + |C l′
S − C l′

P |2)MS,

where

MS,T =
B0

2m8
b

∫ q2
max

q2
min

dq2 MS,T (q2), B0 =
3α2

e

(4π)2

|VtbV
∗
ts|2

|Vcb|2
B(B̄ → Xclν̄l)

f(mc/mb)κ(mc/mb)

(3.126)

and

MS(q2) = 2q2(m2
b − q2)2, MT (q2) =

64

3
(m2

b − q2)2(2m2
b + q2). (3.127)

The factor B0, is fixed due the normalization of B(B̄ → Xs l̄l) to the well measured

experimental value of B(B̄ → Xclν̄l)

B(B̄ → Xs l̄l) = B(B̄ → Xclν̄l)

∫

d q2 1

Γ(B̄ → Xclν̄l)

dΓ(B̄ → Xs l̄l)

d q2
(3.128)

in order to avoid a strong dependence on m5
b .

In the expressions (3.127) we neglect kinematical factors of ms and ml in the NP

part and evaluate (3.126) and (3.127) with a b-quark mass of 4.8 GeV, corresponding

83



Angular Analysis of B → K,K∗l̄l Decays

to the pole mass in accordance with [57, 92]. The functions f(mc/mb) and κ(mc/mb)

represent the phase space function and QCD corrections of the decay B̄ → Xclν̄l,

respectively, and can be seen in [105].

Since MS,T > 0 are positive for the whole kinematic region, (pseudo-) scalar

and tensor like NP enhances the B̄ → Xs l̄l branching ratios, and only the upper

boundary of the experimental value of B(B̄ → Xs l̄l) becomes a constraint on the

corresponding Wilson coefficients. Also, since MT ≫ MS, the inclusive branching

ratios are more sensitive to tensor than scalar and pseudoscalar operators.

There are two interesting kinematical ranges. First, the range 0.04 GeV2 < q2 ≤
m2

b where the lepton flavor specified data exist, and we use these data as a constraint.

For this range numerical values of MS,T are

MS = 1.92 · 10−8, MT = 1.84 · 10−6. (3.129)

The MS,T -coefficients for the low dilepton mass region 1 GeV2 < q2 ≤ 6 GeV2 are

MS = 0.52 · 10−8, MT = 0.83 · 10−6. (3.130)

Note that we used here the b-quark pole mass in the NP part of B(B̄ → Xsl̄l) as

well. To be consistent with the SM results of [67] the 1S mass should be used once

the next-to-leading order corrections to the NP part are known.

For the B → Kl̄l decay studies we neglect with (pseudo-) scalar and tensor

interactions and rewrite the branching ratio of B̄ → Xs l̄l decays as The branching

ratio of B̄ → Xs l̄l is

B(B̄ → Xsl̄l)|[q2
min, q2

max] = B(B̄ → Xsl̄l)|[q2
min, q2

max],SM

+

{

[

|CNP
7 |2 + |C ′

7|2 + 2Re(Ceff,SM
7 CNP∗

7 )
]

M1

+ Re
(

C9C
NP∗
7 + CNP

9 Ceff,SM∗
7 + C ′

9C
′∗
7

)

M2 (3.131)

+
(

|CNP
9 |2 + |C ′

9|2 + |CNP
10 |2 + |C ′

10|2 + 2Re(CSM
9 CNP∗

9 + CSM
10 C

NP∗
10 )

)

M3

}

,

where the SM contribution has been splitted off. The q2-cut-dependent functions
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Mi read as

M1 =
Bb→sl̄l

0

m8
b

∫ q2
max

q2
min

dq2 16

3

m2
b

q2
(m2

b − q2)(2m4
b −m2

bq
2 − q4),

M2 =
Bb→sl̄l

0

m8
b

∫ q2
max

q2
min

dq2 16m2
b(m

2
b − q2)2,

M3 =
Bb→sl̄l

0

m8
b

∫ q2
max

q2
min

dq2 4

3
(m2

b − q2)(m4
b +m2

bq
2 − 2q4). (3.132)

The experimental data as well as theory predictions are shown in Table 3.8. For

those two integrations regions the quantities Mi have following values

• for q2 ∈ [1, 6] GeV2: M1 = 3.61 · 10−6, M2 = 0.58 · 10−6, M3 = 0.06 · 10−6,

• for q2 ∈ [> 0.04] GeV2: M1 = 1.05 · 10−5, M2 = 0.12 · 10−5, M3 = 0.02 · 10−5,

where we used the b-quark pole mass mpole
b = 4.8 GeV.

Since the NP parts of branching ratios are at LO, we take for the theoretical

uncertainties of the NP part twice the SM uncertainty in order to account for the

missing higher order terms.

For the NP analysis of the C
l(′)
S,P and C l

T,T5 Wilson coefficients we use branching

ratios of the B̄ → Xsēe and B̄ → Xsµ̄µ decays for q2 > 0.04 GeV2 denoted by

Bincl
l |[>0.04] in Table 3.7. Since only for this kinematical region the numbers are

accessible for the muon and electron channels separately. The experimental values

can be compared with SM predictions taken from [57, 92]. The second region,

1 GeV2 < q2 ≤ 6 GeV2 , will be consider to predict Bincl
l |[1,6] for l = e, µ using

Bincl
e |[1,6],SM = (1.64 ± 0.11) · 10−6 and Bincl

µ |[1,6],SM = (1.59 ± 0.11) · 10−6 [67]. These

values are close to the experimental world average Bincl
l |[1,6],exp = (1.60± 0.51) · 10−6

[99, 106, 107] which is lepton flavor averaged and we therefore can not use it as a

constraint.

On the other hand for the analysis of the C
(′)NP
i Wilson coefficients we employ the

branching ratios in the both q2 regions, see Table 3.8, using the experimental data

averaged over lepton flavor.

The most important and currently best measured are B̄ → Xsγ being sensitive

to C
′

7 and B̄ → Xs l̄l testing all 6 Wilson coefficients. For these processes branching

ratios can be splitted into the SM and NP contributions. In the case of B̄ → Xsγ it

reads as

B(B̄ → Xsγ) = B(B̄ → Xsγ)|SM + Bb→sγ
0

(

|CNP
7 |2 + 2Re(Ceff,SM

7 CNP ∗
7 ) + |C ′

7|2
)

(3.133)
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with Ceff,SM
7 being real and

Bb→sγ
0 = 6

αe

π

∣

∣

∣

∣

VtbV
∗
ts

Vcb

∣

∣

∣

∣

2 B(B̄ → Xclν̄l)

f(mc/mb)κ(mc/mb)
. (3.134)

Here f(mc/mb) and κ(mc/mb) represent the phase space function and the QCD

corrections of the semileptonic decay [108]. Both the SM branching ratio at NNLO

and experimental one are given in Table 3.8 for the photon energy Eγ > 1.6 GeV

cut.

AFB Forward-Backward Asymmetry of B → K∗l̄l Decays

We should notice that we do not consider in our analysis B → Kl̄l and B → K∗ l̄l

decays as a constraint. The main reason is that currently available data are pre-

sented with q2-cuts where QCDF does not apply. In addition the experimental and

theoretical uncertainties are much larger.

Instead we consider the less stringent but important measurement of the forward-

backward asymmetry AFB of B → K∗ l̄l decays. We employ early data from Belle

and BaBar [53, 54, 55], which strongly indicate that the sign of AFB in the high-q2

region above the second charmonium peak is SM-like. A rigorous theory calculation

of the exclusive B → K∗l̄l decays in this kinematical region can be facilitated with

an operator product expansion in ΛQCD/Q and m2
c/Q

2 where Q = {
√

q2, mb} put

forward in [109]. The leading contribution and also the order m2
c/Q

2 terms do

not introduce new non-perturbative matrix elements beyond naive factorization.

Corrections start to enter at O (αsΛQCD/Q). The framework holds at low recoil,

(MB −MK∗)2 − 2MBΛQCD . q2 < (MB −MK∗)2, which covers the large dilepton

mass region above the Ψ′ resonance, q2 & 14 GeV2.

To leading order in the 1/Q-expansion we obtain the AFB at low recoil as

AFB(q2) ∝ Re
[

(Ceff
9 (q2) +

2m2
b

q2
Ceff

7 )C∗
10 − (C ′

9 +
2m2

b

q2
C ′

7)C
′∗
10

]

. (3.135)

The effective coefficients read as

C eff
7 = C7 −

C3

3
− 4

9
C4 −

20

3
C5 −

80

9
C6 +

αs

4π

[

(C1 − 6C2)A(q2) − C8F
(7)
8 (q2)

]

,

C eff
9 = C9 + Y (q2)|mc=0

+
αs

4π

[9

2
C1C(q2) + (C1 − 6C2)(B(q2) − 1

2
C(q2)) − C8F

(9)
8 (q2)

]

, (3.136)

where Y (q2) is given in Appendix B.4. The functions F
(7,9)
8 can be found in [19],

whereas functions A(q2), B(q2) and C(q2) are given in [110].
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Interestingly, the dependence on form factors can be factored out in AFB (3.135)

at this order. We require that the sign of the integrated AFB over q2 > 14 GeV2 to

be negative according to experimental observations, see Table 3.8 .

Time-Dependent CP Asymmetry in B̄d, Bd → K∗0(→ K0π0)γ Decays

Since the branching ratio of B̄ → Xsγ is not sensitive to interference of the O7

and O′

7 operators (the interference of photons with different polarizations), we dis-

cuss the additional important constraint from the time-dependent CP asymmetry

in B̄d, Bd → K∗0(→ K0π0)γ decays [111]. The asymmetry is given by

ACP(t) =
Γ(B̄(t) → K̄∗γ) − Γ(B(t) → K∗γ)

Γ(B̄(t) → K̄∗γ) + Γ(B(t) → K∗γ)
= SK∗γ sin(∆MBt) − CK∗γ cos(∆MBt),

(3.137)

where the term proportional to SK∗γ is responsible for the interference of photons

with different polarizations. To illustrate this we give an expression of SK∗γ at the

lowest order (indicated by the superscript (0) for the contributions already presented

in the SM):

SK∗γ = − 2|r|
1 + |r|2 sin

(

2β − arg(C
(0)
7 C ′

7)
)

, r = C ′
7/C

(0)
7 . (3.138)

Here we assume that there is no physics beyond the SM in Bd − B̄d-mixing, and

its phase is given by the CKM matrix elements. The dimensional analysis suggests

that the SM value of SK∗γ can be larger than naive SM estimate O (ms/mb). Power

corrections can give additional contributions to r of the order C2ΛQCD/(3mbC7) ∼
0.1 [112]. We calculate SK∗γ using QCDF following [20] including αs-corrections

adding a rough estimate of power corrections according to [112].

Assuming CNP
7 and C ′

7 to be real and applying the data from Table 3.8 we plot

the constrained parameter space in Figure 3.13. One can see that together with

semileptonic decays SK∗γ plays significant role as a NP constraint. The regions

allowed by B(B̄ → Xsγ), SK∗γ and B(B̄ → Xs l̄l)|[1,6] are shown as the green ring,

the red cross and the blue half circle, respectively. Including the power corrections

enlarges red cross to the dashed area. Therefore the present experimental situation

is not sensitive to the inclusion of the power corrections, which enlarge a little bit

the red cross to the dashed area, see Figure 3.13.

3.6.2 B → Kl̄l: Beyond the Standard Model

New Physics in F l
H, RK and Al

FB

In this section we present expressions for F l
H , RK and Al

FB depending on NP Wilson

coefficients corresponding to the operators (3.10). The matrix element is modified
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due to additional contributions from scalars and tensors and is written as

M[B → Kl̄l] = i
GFαe√

2π
VtbV

∗
ts ξP (q2)

(

FV p
µ
B [l̄γµl] + FA p

µ
B [l̄γµγ5l] (3.139)

+ (FS + cos θFT ) [l̄l] + (FP + cos θFT5) [l̄γ5l]

)

.

where the functions FV,P get additional terms and the FS,T,T5 are completely new:

FA = C10, FT =
2
√
λ βl

MB +MK

fT (q2)

f+(q2)
C l

T , FT5 =
2
√
λ βl

MB +MK

fT (q2)

f+(q2)
C l

T5,

FP =
1

2

M2
B −M2

K

mb −ms

f0(q
2)

f+(q2)
(C l

P + C l′
P ) +mlC10

[

M2
B −M2

K

q2

(

f0(q
2)

f+(q2)
− 1

)

− 1

]

,

(3.140)

FS =
1

2

M2
B −M2

K

mb −ms

f0(q
2)

f+(q2)
(C l

S + C l′
S), FV = C9 +

2mb

MB

TP (q2)

ξP (q2)
+

8ml

MB +MK

fT (q2)

f+(q2)
C l

T .

The coefficients of the double differential expansion (3.60) read in the presence of

NP wilson coefficients as follows

al(q
2)

Γ0

√
λβl ξ2

P

= q2
(

β2
l |FS|2 + |FP |2

)

+
λ

4
(|FA|2 + |FV |2)

+ 2ml(M
2
B −M2

K + q2)Re(FPF
∗
A) + 4m2

lM
2
B|FA|2, (3.141)

bl(q
2)

Γ0

√
λβl ξ2

P

= 2
{

q2
[

β2
l Re(FSF

∗
T ) +Re(FPF

∗
T5)
]

+ml

[√
λβlRe(FSF

∗
V ) + (M2

B −M2
K + q2)Re(FT5F

∗
A)
]}

,

(3.142)

cl(q
2)

Γ0

√
λβl ξ2

P

= q2
(

β2
l |FT |2 + |FT5|2

)

− λ

4
β2

l (|FA|2 + |FV |2) + 2ml

√
λβlRe(FTF

∗
V )

(3.143)

We assume in the following all NP Wilson coefficients to be real and at the low scale

µb, i.e., here C l
i = C l

i(µb). The LO RGE evolution from the electroweak scale can

be done with the anomalous dimensions given in (3.11).

If we keep the lepton mass non-zero and integrate our observables over the dilepton

mass region 1 GeV2 < q2 ≤ 7 GeV2, then using the central values of the input
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parameters given in Table 3.4 we find the following expressions for the branching

ratio

Bl =

[

τB±

1.64ps

]

[

1.91 + 0.02 (C l2
S + C l2

P ) + 0.06 (C l2
T + C l2

T5) +
ml

GeV

( C l
T

0.99
− C l

P

2.92

)

+
m2

l

GeV2

( C l2
T

3.282
− C l2

T5

3.282
− C l2

P

10.362
− C l2

S

5.982

)

+ O
(

m3
l

)

]

· 10−7, (3.144)

the numerator of F l
H (3.68) multiplied to τB±

2 τB± (Al + Cl) =

[

τB±

1.64ps

]

[

m2
l

(0.51 GeV)2
+ 0.02 (C l2

S + C l2
P ) + 0.19 (C l2

T + C l2
T5)

(3.145)

+
ml

GeV

( C l
T

0.99
− C l

P

2.92

)

+
m2

l

GeV2

( C l2
T

3.282
− C l2

T5

1.892
− C l2

P

10.362
− C l2

S

5.982

)

+ O
(

m3
l

)

]

· 10−7,

and the numerator of the normalized forward-backward asymmetry multiplied by

τB± (3.67)

τB± Bl =

[

τB±

1.64ps

]

[

0.06(C l
SC

l
T + C l

PC
l
T5) +

ml

GeV

( C l
S

6.25
− C l

T5

1.85

)

− m2
l

GeV2

(C l
SC

l
T

4.122
+
C l

PC
l
T5

4.122

)

+ O
(

m3
l

)

]

· 10−7. (3.146)

Thus, F l
H is given by the ratio of (3.145) and (3.144), RK by the ratio of (3.144)

for l = µ and l = e and Al
FB by the ratio of (3.146) and (3.144), respectively.

Replacing C l
S,P → C l

S,P + C l′
S,P we can include the contributions from the chirality-

flipped operators Ol′
S,P . The higher order terms in the expressions (3.144)-(3.146)

are suppressed kinematically by higher power of the lepton mass. The equation

(3.144) illustrates the fact that the B → Kl̄l branching ratio is not very sensitive

to NP effects from scalar and tensor operators due to the small coefficients in front

of the NP couplings with respect to the SM contribution. In the Section 3.5.1 we

found that Bl possesses large uncertainties in the SM which in addition will hide

NP effects unless the NP Wilson coefficients become large C l NP
i & 1. This can be

avoided in RK being the ratio of two decay rates and having tiny SM uncertainties.

Thus, RK is a much more powerful probe of NP than the B → Kl̄l branching ratios.

Particularly, a combination RK −1 can be significantly modified with respect to the

SM value by the terms both zeroth and first order in the lepton mass.

Similarly to the combination RK − 1, F l
H (3.145) and Al

FB have the clean SM

predicted values (see Section 3.5.1). Both observable are also more sensitive to the

tensor Wilson coefficients than to (pseudo-) scalar ones. Note that the dependence
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of Bl and F l
H on the (pseudo-) scalar Wilson coefficients is the same. In the leading

order in the lepton mass, the deviation of Al
FB from its zero SM value requires the

presence of both (pseudo-) scalar and tensor like NP.

In the Table 3.7 we present current experimental information on F l
H , RK − 1 and

Al
FB observables. In the second column we give estimates of the SM predictions.

Unfortunately, these data can not be used in the analysis being aimed to constrain

NP Wilson coefficients. The reason is that the data on RK include large dilepton

masses where QCDF is not applicable and the values of F l
H and Al

FB are in addi-

tion lepton flavor averaged. We do not take these constraints into account since a

straightforward application of these data is impossible.

Model-Independent NP Analysis

Summarizing previous sections, we have four experimental bounds at our disposition,

i.e., B̄s → l̄l and Bincl
l |[>0.04] with l = e, µ, and twelve NP Wilson coefficients. Since

the existing experimental constraints do not allow us to perform at present a full

model-independent fit of all Wilson coefficients, we split our study into four steps.

We consider the following four benchmark scenarios with (pseudo-) scalar operators

(Scenario I-III) and the tensor operators (Scenario IV) defined as:

– Scenario I: NP in C l
S and C l

P , all other NP contributions vanish.

– Scenario II: Same as Scenario I, but with the additional assumptions C l
S =

−C l
P and C l ∝ ml.

– Scenario III: NP in C l
S, C l

P and C l′
S , C l′

P , the tensor coefficients C l
T,T5 vanish.

– Scenario IV: NP in the tensor coefficients C l
T , C l

T5, all other NP contributions

vanish.

Scenario II is inspired by the MSSM for large values of tan β (see also Section 3.3.1).

One should comment that we employ all experimental bounds in the analysis

at 90% C.L. The resulting allowed ranges of the NP Wilson coefficients in each of

the scenarios are summarized in Table 3.9. These values of the parameters (Wilson

coefficients) predict numerical values of B → Kl̄l observables obtained for 1 GeV2 <

q2 ≤ 7 GeV2 and given in the Table 3.10. Since the current experimental errors

dominate the theoretical uncertainties, in the analysis we do not take into account

SM uncertainties. Their inclusion would allow for slightly bigger NP effects.

Scenario I: Scalars C l
S and C l

P

In the Scenario I we consider only scalar and pseudoscalar Wilson coefficients C l
S

and C l
P per lepton species. We start with a discussion of the Wilson coefficients for
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Figure 3.15: In the left-hand plot contours of B(B̄s → µ̄µ) are shown in the Cµ
S −

Cµ
P plane in Scenario I. The contours enclose values of B(B̄s → µ̄µ) <

{0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} · 10−7 starting with the innermost. In

the right-hand plot contours of Bincl
e |[>0.04] < {4.5, 5.0, 6.0, 6.8, 8.0}·10−6

(dashed black) and B(B̄s → ēe) < {0.1, 0.5, 1.0} · 10−5 (solid green) are

shown in the Ce
S −Ce

P plane in Scenario I starting with the innermost.
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H −RK plane (right-hand plot) in Scenario I.
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muons, Cµ
S,P where the bound from B(B̄s → µ̄µ) is stronger than that from the inclu-

sive decay Bincl
µ |[>0.04]. In Figure 3.15 various bounds on Cµ

S,P as contours correspond-

ing to different upper bounds on B(B̄s → µ̄µ) < {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}·10−7

are displayed, reminding that the current experimental bound is B(B̄s → µ̄µ) <

0.8 · 10−7 90% C.L.. Employing the ranges for the Cµ
S and Cµ

P we calculate the

ranges for B → Kl̄l and B̄ → Xsl̄l observables which can be seen in Table 3.10.

The F µ
H can deviate from the SM by about 40% whereas the forward-backward

asymmetry is less then 1% in agreement with and updating earlier findings [58].

The forward-backward asymmetry Aµ
FB is small, of order one percent. The impact

on the branching ratio Bµ is about 2% and can be completely neglected as soon as

one takes into account SM uncertainties. Also the NP contributions to Bincl
µ |[1,6] and

Bincl
µ |[>0.04] are small compared to the theoretical uncertainties.

Concerning the Wilson coefficients for electrons the case is different. The current

experimental bound from B(B̄s → ēe) is much weaker than the one from Bincl
e |[>0.04].

Similarly to the muon case, in Figure 3.15 we plot the contours in the Ce
S − Ce

P

plane corresponding to the different bounds from Bincl
e |[>0.04] < {4.5, 5.0, 6.0, 6.8, 8.0}·

10−6. Additionally we plot in the same figure hypothetical future bounds from

B(B̄s → ēe) < {0.1, 0.5, 1.0} · 10−5. As can be seen, the improved measurements

on B(B̄s → ēe) would be important when restricting Ce
S,P . The allowed ranges for

Ce
S,P determined by Bincl

e |[>0.04] < 6.8 · 10−6 at 90% C.L. are given in the Table 3.7.

The corresponding ranges for the decay observables for l = e are presented in Table

3.10. The flat term in the angular distribution, F e
H is strongly enhanced and can be

of order 40%. The branching ratio Be can be enhanced by about 60% with respect

to its SM value. Since, RK has inverse dependence on Be, its allowed region is

extended to lower values and currently can be 40% smaller than the SM value. In

the Figure 3.16 we plot correlations Be − F e
H and RK − F e

H . Particularly, one can

see a significant decrease of RK and huge increase of F e
H with respect to their SM

values. The forward-backward asymmetry Ae
FB is one order smaller than the one for

muons. The Bincl
e |[1,6] is enhanced by 60% with respect to the SM value.

Scenario II: MSSM-like Cµ
S = −Cµ

P

The discussion of such scenario can be interesting due to similarity with the MSSM

at large tanβ. For instance, similar to the SM the Wilson coefficients in the MSSM

C l
S,P ∼ ml and in turn Ce

S,P can be safely neglected with the result that all observ-

ables corresponding to b → sēe are SM-like. A further restriction appears due to

the relation Cµ
S = −Cµ

P which holds in the large tanβ MSSM only for the dominant

leading order term ∼ tan3 β. We also neglect chirality-flipped Wilson coefficients

Cµ′
S,P because of the additional suppression ms/mb. These additional assumptions
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Wilson coefficient Sc I Sc II Sc III Sc IV

Ce
S,P [−8.3, 8.3] − [−8.3, 8.3] −
Cµ

S [−0.69, 0.69] [−0.55, 0.41] [−5.6, 5.6] −
Cµ

P [−0.55, 0.82] = −Cµ
S [−5.6, 5.6] −

Ce′
S,P − − [−8.3, 8.3] −

Cµ′
S,P − − [−5.6, 5.6] −

Ce
T,T5 − − − [−1.2, 1.2]

Cµ
T,T5 − − − [−1.1, 1.1]

Table 3.9: The allowed ranges for the NP Wilson coefficients C l
i in Scenarios I-

IV after using the constraints B(B̄s → ēe) < 5.4 · 10−5, B(B̄s → µ̄µ) <

0.8 · 10−7, Bincl
e |>0.04 < 6.8 · 10−6 and Bincl

µ |>0.04 < 6.3 · 10−6, see Table

3.7. A “−” means that the corresponding coefficient is zero in this NP

scenario.

Observable Sc I Sc II Sc III Sc IV

F e
H < 0.39 − < 0.56 < 0.13

F µ
H [0.013, 0.035] [0.018, 0.032] [0.013, 0.56] [0.014, 0.18]

RK [0.61, 1.01] [0.996, 1.01] [0.44, 2.21] [0.93, 1.10]

Be [10−7] [1.91, 3.14] − [1.91, 4.36] [1.91, 2.00]

Bµ [10−7] [1.90, 1.94] [1.90, 1.93] [1.90, 4.26] [1.87, 2.10]

Ae
FB [%] [−0.02, 0.02] − [−0.02, 0.02] [−0.02, 0.02]

Aµ
FB [%] [−0.6, 0.6] [−0.5, 0.3] [−4.46, 4.46] [−3.1, 3.1]

B(B̄s → ēe) [10−5] < 1.17 − < 2.33 −
B(B̄s → µ̄µ) [10−7] < 0.8 < 0.8 < 0.8 −
Bincl

e |[1,6] [10−6] [1.64, 2.35] − [1.64, 2.35] [1.64, 2.83]

Bincl
µ |[1,6] [10−6] [1.59, 1.60] [1.59, 1.60] [1.59, 2.17] [1.59, 2.56]

Bincl
e |[>0.04] [10−6] [4.15, 6.8] − [4.15, 6.8] [4.15, 6.8]

Bincl
µ |[>0.04] [10−6] [4.15, 4.18] [4.15, 4.17] [4.15, 6.3] [4.15, 6.3]

Table 3.10: Allowed ranges for b → sl̄l observables in Scenarios I-IV after taking

into account the constraints from B(B̄s → l̄l) and Bincl
l |[>0.04] for l = e

and l = µ, see Table 3.7 and the text for details. A “−” means that the

corresponding observable is SM-like.
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give rise to the expectation of smaller deviations from the SM than in Scenario I.

The allowed range of Cµ
S and the effects of NP on the rare decay observables

are given in Table 3.9 and Table 3.10, respectively. In the Figure 3.17 we show

the dependence of B → Kl̄l observables on the only Wilson coefficient CS. The NP

contributions enhance F µ
H by 30% with respect to the SM value. The deviations of Bµ

from the SM are of the order of 2%, much smaller than the theoretical uncertainties.

The same holds for Bincl
µ |[1,6], which confirms earlier studies within the MSSM [113].

Since Be is SM-like in Scenario II, the deviation of RK from the SM is much reduced

with respect to the one in Scenario I. We find NP effects of 1%, which are larger

than the uncertainties of the SM prediction. The forward-backward asymmetry is

smaller then 1% in agreement with previous works in the framework of the MSSM

[114].

Scenario III: Scalars C l
S, C

l
P and C l′

S, C l′
P

In the third scenario we consider the full set of (pseudo-) scalar Wilson coefficients

including the chirality flipped ones C l′
S,P for l = e and l = µ. Thus, as we have

already mentioned in the Section 3.6.1 the only bounds from B̄s → l̄l can be evaded

since C l
S,P and corresponding C l′

S,P Wilson coefficients contribute as a difference in

the expression for the branching ratio. Therefore, one needs to use the whole set

of our experimental data, i.e., both B(B̄s → l̄l) and Bincl
l |[>0.04]. The allowed ranges

are given in the Table 3.9. The chirality-flipped Wilson coefficients have identical

ranges as the unprimed one and all Ci’s are comparable in magnitude.

The large Wilson coefficients lead to big NP effects in the rare decay observables,

see Table 3.10. In Scenario III RK can both increase and decrease significantly with

respect to the SM as opposed to Scenario I where B(B̄s → µ̄µ) permits only a large

decrease of RK . This happens due to the fact that the muon Wilson coefficients

become less constrained. The correlation between F l
H and RK can be seen in the

Figure 3.18, where in addition we show contours corresponding to the predictions of

Bincl
µ |[1,6] < {1.75, 2.0, 2.17} · 10−6 for muons and Bincl

e |[1,6] < {1.75, 2.0, 2.25, 2.35} ·
10−6 for electrons. The NP contributions enhance both Be and Bµ by order 200%

above the SM such that measurements of these observables in the low-q2 region

could provide constraints regardless of the large form factor uncertainties. In this

scenario the forward-backward asymmetry of the muon channel reaches bigger values

in comparison with other scenarios, which is of order (4 − 5)%. For the electron

channel the forward-backward asymmetry is negligible.
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Figure 3.17: Dependence of B → Kl̄l observables, integrated over the interval

1 GeV2 < q2 ≤ 7 GeV2, on NP Wilson coefficient CS in the Scenario II.
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µ |[1,6] < {1.75, 2.0, 2.17} · 10−6 in the F µ
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in Scenario III (left-hand plot). In the right-hand plot contours of

Bincl
e |[1,6] < {1.75, 2.0, 2.25, 2.35} · 10−6 are shown in the F e

H −RK plane

in Scenario III. For details see text.
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µ |[1,6] < {1.75, 2.0, 2.25, 2.56}·10−6

are shown for F µ
H versus RK in Scenario IV starting with the innermost.
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Scenario IV: Tensors C l
T , C l

T5

In Scenario IV we consider only NP in C l
T,T5 and only inclusive B̄ → Xs l̄l decays

(3.125) are sensitive to tensor interactions. The allowed ranges for tensor Wilson

coefficients can be seen in the Table 3.9. We plot the bounds on C l
T,T5 in the left-

hand plot of Figure 3.19, where contours of Bincl
e |[>0.04] < {4.5, 5.5, 6.3, 6.8, 8.0} ·10−6

are shown in the Ce
T − Ce

T5 plane starting with the innermost. The constraints on

Cµ
T,T5 from upper bounds on Bincl

µ |[>0.04] can be read off from the same plot.

The NP effects in F e
H and F µ

H are comparable with Scenario III and huge with

respect to the SM. RK receives order 10% corrections from NP which are well above

the theoretical uncertainties. The branching ratios Bl are subject to NP contri-

butions . +10%, which cannot be separated from the larger form factor induced

uncertainties. Whereas Bincl
l |[1,6] gets large enhancement, about 70%, which makes

the inclusive decays a sensitive probe of tensor operators. The correlation between

the three observables F µ
H , RK and Bincl

µ |[1,6] is shown in the right-hand plot of Fig-

ure 3.19 for contours of Bincl
µ |[1,6] < {1.75, 2.0, 2.25, 2.56} · 10−6. Similarly to other

scenarios |Aµ
FB| is small and does not exceed 3%.

3.6.3 CP Asymmetries in the Presence of New Physics

In this sections we discuss NP effects on CP asymmetries defined in Appendix B.3

in terms of 6 NP Wilson coefficients. We consider two main possibilities:

• We vary all twelve parameters, i.e., six absolute values and six phases. We call

this scenario ”Generic NP”.

• We vary one particular Wilson coefficient assuming for the remaining Wilson

coefficients their SM values. We call each scenario ”Ci only”.

We make several plots corresponding for the particular ”C
(′)
i only” scenarios applying

the constraints from Table 3.8. In Figure 3.14 we see the constrained regions for

Wilson coefficients in ”CNP
9 only”, ”CNP

10 only”, ”CNP
7 only” and ”C

′

7 only” scenarios.

From the plots we can see that the rare decays give the strongest bounds. The AFB

plays an important role in the ”CNP
9 only” and ”CNP

10 only” cutting out the regions

with large absolute values of Wilson coefficients. The time-dependent asymmetry

SK∗γ is only relevant for ”C
′

7 only”. In the case of ”Generic NP” both AFB and SK∗γ

become less important.

The dependence of the CP asymmetries A
(D)
i on the Wilson coefficients can be

seen from the analytical (NLO) formulae in Appendix B.3. Explicit LO expressions
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generic NP CNP
10 only C

′NP
10 only CNP

9 only

〈ACP〉 [−0.1, 0.1] [3, 8] · 10−3 SM-like [−0.02, 0.02]

〈A3〉 [−0.08, 0.08] SM-like SM-like SM-like

〈AD
4 〉 [−0.04, 0.04] [−4,−1] · 10−3 [−3,−1] · 10−3 [−0.01, 0.01]

〈AD
5 〉 [−0.07, 0.07] [−0.04, 0.04] [−0.02, 0.04] [5, 9] · 10−3

〈A6〉 [−0.1, 0.1] [−0.05, 0.05] [−9,−3] · 10−3 SM-like

〈AD
7 〉 [−0.76, 0.76] [−0.48, 0.48] [−0.38, 0.38] SM-like

〈AD
8 〉 [−0.48, 0.48] [2.2, 6.8] · 10−3 [−0.28, 0.28] [−0.17, 0.17]

〈A9〉 [−0.62, 0.60] SM-like [−0.20, 0.20] SM-like

B(B̄s → µ̄µ) < 1.4 · 10−8 < 6.3 · 10−9 < 1.3 · 10−8 SM-like

C ′
9 only CNP

7 only C ′
7 only

〈ACP 〉 [−3, 6] · 10−3 [−0.03, 0.04] [3.5, 4.5] · 10−3

〈A3〉† [−0.02, 0.02] SM-like [−0.02, 0.01]

〈AD
4 〉 [−0.01, 0.01] [−3,−1] · 10−3 [−3,−1] · 10−3

〈AD
5 〉 [0.003, 0.01] [5, 8] · 10−3 [7, 8] · 10−3

〈A6〉 [−8,−3] · 10−3 [−6,−4] · 10−3 [−7,−5] · 10−3

〈AD
7 〉 [−6.2,−2.2] · 10−3 [−0.3, 0.32] [−0.22, 0.18]

〈AD
8 〉 [−0.07, 0.07] [−0.17, 0.16] [−0.09, 0.10]

〈A9〉† [−0.036, 0.032] [−3.1, 3.2] · 10−3 [−0.070,−0.080]

Table 3.11: The ranges of the integrated CP asymmetries 〈A(D)
i 〉 for (q2

min, q
2
max) =

(1, 6) GeV2 are given after applying the experimental constraints at 90%

C.L. for the general scenario and the scenarios with particular Wilson

coefficient only. Note that in the scenarios ”CNP
7,9 only” and ”C

′

7,9 only

” B(B̄s → µ̄µ) is SM-like.
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for the T-odd asymmetries, which present the most interest, read as

AD
7 = 2AD m̂b

ŝ
(1 − ŝ)Im

[

(C
(0)
10 − C ′

10)(C
eff(0)
7 − C ′

7)
∗
]

, (3.147)

AD
8 = ADβl

{

Im

[

C
(0)
9 C ′∗

9 + C
(0)
10 C

′∗
10 +

4m̂2
b

ŝ
C

eff(0)
7 C ′∗

7

+
m̂b

ŝ

(

(1 − ŝ)(C ′
7C

′∗
9 − C

eff(0)
7 C

(0)∗
9 ) + (1 + ŝ)(C

eff(0)
7 C ′∗

9 − C ′
7C

(0)∗
9 )

)

]

− Re(Y (0))Im

[

C ′
9 +

m̂b

ŝ

(

(1 − ŝ)C
eff(0)
7 + (1 + ŝ)C ′

7

)

]}

+ O(λ̂u),

(3.148)

A9 = 4ADβl

{

Im

[

C
(0)
9 C ′∗

9 + C
(0)
10 C

′∗
10 +

4m̂2
b

ŝ2
C

eff(0)
7 C ′∗

7 +
2m̂b

ŝ
(C

eff(0)
7 C ′∗

9 − C ′
7C

(0)∗
9 )

]

− m̂b

ŝ
Re(Y (0))Im

[

2C ′
7 +

m̂b

ŝ
C ′

9

]}

+ O(λ̂u), (3.149)

where for AD
8 , A9 we neglected the SM CP violation suppressed by λ̂u. From numer-

ical model-independent formulae for the B → K∗(→ Kπ)l̄l branching ratio and CP

asymmetries in Appendix B.5 one can read out the dependence CP asymmetries on

a particular NP Wilson coefficient. The numerators of A
(D)
CP,3,4 are sensitive to C7,9

and C ′
7,9 whereas the numerators of AD

5,7 and A6 probe C7,10 and C ′
7,10. The numera-

tors of A
(D)
8,9 can be affected by all Wilson coefficients considered here. The A3,9 are

very sensitive to the flipped Wilson coefficients and vanish in the limit C ′
i → 0 at

lowest order in the 1/E-expansion. In Appendix B.5 we provide numerical model-

independent formulae for branching ratios and CP asymmetries as functions of all

NP Wilson coefficients.

In Table 3.11 we show the allowed ranges of the CP asymmetries in various NP sce-

narios. The asymmetries are integrated over low dilepton masses, q2 ∈ [1, 6] GeV2.

Numerically we find that the CP asymmetries can deviate significantly from their

SM values, which are doubly Cabibbo-suppressed and below the percent level. Espe-

cially, this concerns T-odd asymmetries A
(D)
7,8,9 which can receive large NP enhance-

ments, up to order one. T-even CP asymmetries can be enhanced by one order

of magnitude up to . 10%. By ”SM-like” we denote a residual tiny contribution

coming from the normalization to the CP averaged decay rate, which can not be

distinguished from the SM value at 1σ. In Table 3.11 we also predict an upper

bound for the purely leptonic decay B̄s → µ̄µ which has strong sensitivity to the

combination |C10−C ′
10| of NP Wilson coefficients (see [115]). We find a possible en-

hancement of B(B̄s → µ̄µ) up to almost an order of magnitude in NP scenarios with

these coefficients modified, see Table 3.11. The largest branching ratio, obtained

with generic NP, is still a factor of two below the current experimental upper bound
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Figure 3.20: The dependence of the integrated T-odd CP asymmetries 〈A(D)
7,8,9〉 for

(q2
min, q

2
max) = (1, 6) GeV2 on NP Wilson coefficients after applying the

experimental constraints. In each plot all other NP Wilson coefficients

have been set to zero.
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3.6 New Physics Analysis

given in Table 3.8. We conclude that improved data on or a discovery of B̄s → µ̄µ

decays will have a strong impact on this type of analysis.

In Figure 3.20 we show the dependence of the T-odd asymmetries integrated over

(q2
min, q

2
max) = (1, 6) GeV2 on the absolute value and the phase of the NP Wilson co-

efficients in particular scenario. The plots indicate the strong dependence on phases.

In Figure 3.21 we also present correlations between T-even and T-odd asymmetries

in several scenarios. Falsifying such correlations can establish the nature of the NP.

Figure 3.21: Correlations between T-odd (〈AD
7 〉,〈AD

7 〉 and 〈A9〉 ) and T-even

(〈AD
4 〉,〈A6〉 and 〈ACP 〉) asymmetries integrated over (q2

min, q
2
max) =

(1, 6) GeV2 in different scenarios.
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3.7 Conclusion

We have shown, that the observables appearing in normalized 1/Γl dΓl/dcos θ of

B → Kl̄l decay angular distribution offer great opportunities to test the SM and

search for NP. Namely, they are the flat term in the distribution, F l
H/2 and the

forward-backward asymmetry Al
FB. The angular distribution can be presented as the

power series in cos θ truncated after power two. The powers greater than two appear

only if we include either higher dimensional operators in Heff or QED corrections.

Both are strongly suppressed by powers of the low energy masses and momenta over

the scale of electroweak NP and by αe/(4π), respectively.

Whereas the SM predictions of B → Kl̄l branching ratios suffer from O (30%)

uncertainties, the SM value of F µ
H is order few percent, and can be cleanly predicted

using QCDF for low dilepton masses with ∼ 6% accuracy, see Table 3.5. Being

F l
H ∝ m2

l in the SM, F e
H is negligible. At the same time the forward-backward

asymmetry vanishes exactly in the SM up to the aforementioned higher order OPE

and QED corrections. We also analyzed the ratio of B → Kµ̄µ to B → Kēe decay

rates, denoted as RSM
K , being one at the level of m4

µ/q
4 ∼ 10−4 in the SM. Such strong

suppression comes due to the cancellations of O(m2
l )-corrections at LO in 1/E and

αs in the decay rate. However, lepton flavor dependence in RK can be increased

by taking into account collinear QED logarithms, which have not be computed for

B → Kl̄l decays yet.

The clean and definite predictions of F l
H , Al

FB and RK in the SM makes these

observables very attractive for NP studies. All observables, i.e., F l
H , Al

FB and RK are

sensitive to Higgs and tensor interactions. We have worked out NP signatures and

correlations by taking into account existing data on B(B̄s → l̄l) and B(B̄ → Xs l̄l)

for l = e and l = µ separately. We found that the NP modifications to the angular

observables F e
H , F µ

H , Aµ
FB and RK − 1 can be sizeable, see Table 3.10.

The current experimental situation for the observables F l
H , Al

FB andRK is at a very

early stage, see Table 3.7. In particular, all measurements average l = e and l = µ

final states except the ones of RK [53, 55]. In addition the data include q2-regions

where QCDF does not apply. Therefore, for the future improvements and abilities

to compare with the theory all data in rare semileptonic decays B → Kl̄l, B → K∗ l̄l

and B̄ → Xs l̄l should be available for each lepton flavor separately since deviations

from the SM could be l-dependent. Appropriate cuts in q2 should be taken into

account to maximally exploit the theoretical predictions.

We also studied eight CP asymmetries, which can be constructed from the angular

distribution of the B → K∗(→ Kπ)l̄l, in the SM and the presence of NP phases.

The SM predictions suffer from large uncertainties, i.e., ∼ 20% for AD
4,5, ∼ 50% for

ACP, A6, A
D
7,8 and order one for A3,9, coming from uncertainties in µb scale, CKM
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3.7 Conclusion

matrix elements and form factor uncertainties. In spite of large SM errors, the

magnitude of the CP asymmetries . 10−2 makes them all ideal to search for a variety

of different NP effects. We summarize here specific features of the asymmetries:

– AD
7 , A

D
8 , A9 are T-odd and can be order one with NP.

– AD
5 , A6, A

D
8 , A9 are CP-odd and can be obtained without tagging from dΓ+dΓ̄.

– A3, A9 are very sensitive to right-handed currents.

– A3, A9, (A6) can be extracted from a single-differential distribution in φ(θl).

– AD
7 is very sensitive to the phase of the Z-penguins ∼ C

(′)
10 .

Therefore CP asymmetries are sensitive to the whole set of NP Wilson coefficients.

Large NP effects are possible, which survive also the current experimental FCNC

constraints, see Table 3.11. The future measurements of the CP asymmetries will

make possible to test the SM mechanism of CP violation through the CKM matrix.

Further, the correlations between various CP asymmetries will be able to reveal the

peculiar nature of NP, see Figure 3.21.
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4 Summary

Today particle physics appears to be at the border of new discoveries which will shed

light on fundamental questions of physics. Thank to experiments at LHC we might

find the most important missing particle of the SM, Higgs boson. The existence of

it will confirm the mechanism of the mass generation of the SM particles. Besides,

it might be discovered a lot of other particles predicted by models beyond the SM.

On the other side B-factories and the Tevatron have studied and continue to in-

vestigate a large number of observables to test the SM and directly or/and indirectly

to demystify the nature of NP. In spite of the fact that the B-factory data agree

globally with CKM mechanism of flavor and CP violations in the quark sector, the

uncertainties of measurements are still too large to make some definite and final con-

clusions. Collecting statistics at the B-factories and the future SuperB-factory with

high luminosity will continue improve the precision of CKM pattern by accessing

to branching fractions, kinematic distributions, asymmetries of rare processes in the

SM. In the forthcoming perspective with a help of LHCb, i.e., experiment devoted

to B physics at LHC, we have additional tool to learn more about flavor physics

with a higher precision.

Such rich experimental potential needs elaboration of appropriate observables.

Such important observables are those from processes proceeding through FCNC.

Being loop suppressed in the SM they could be very sensitive to NP contributions

which can be easily detected. Practically all extensions of the SM, e.g, Higgs doublet

models, fourth gereration, generic SUSY models, left-right models, extra dimensions

etc., lead to new sources of CP-odd phases. Therefore additional tools to probe

NP are CP violating observables. In this thesis we presented the example of the

observables in semileptonic b → s penguins with the above discussed properties.

Those are branching rates, angular distributions in rates, forward-backward asym-

metries, CP-odd asymmetries where some of them present null tests of the SM. In

the presence of NP we showed that the current experimental bounds from various

rare decays give large enhancements for these observables.

In the leptonic sector the neutrino oscillation experiments of the last decade con-

firmed the existence of physics beyond the SM. In comparison with quark sector

neutrino mixing is large, whereas the neutrino mass scale is O (0.1 eV) being much

smaller than quark and lepton masses. The topic of CP violation in the leptonic
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sector is still untested. Depending on the neutrino mass nature, i.e., Dirac or Majo-

rana mass, the number of CP violating phases can be three. The neutrino oscillation

experiments can not distinguish neutrino mass type. Whereas, in the future the

possible discovery of the neutrinoless double β-decay in some nuclei will claim that

neutrino mass has Majorana origin.

The important role in the analysis of the neutrino oscillation experiments play the

pion production from the nucleons with resonances as intermediate states. There-

fore, it is crucial to understand the production of leptons and pions by neutrinos.

The cross section of these processes depend on the nucleon-resonance form factors,

which can be mainly extracted form the experimental data. The currently available

neutrinoproduction data [49, 50, 51, 52] is not useful fot it due to low statistic and

inconsistency with each other. The future experiments like Minerνa, MiniBooNE,

OPERA, MINOS will improve this situation. Since the electroproduction data from

JLAB and the Mainz accelerators is more consistent and precise we used it to define

the vector form factors of nucleon-resonance transitions for first four resonances,

P33(1232), D13(1520), P11(1440) and S11(1535). The calculated cross sections with

the updated form factors claim the importance of the second resonance region, i.e.,

D13(1520), P11(1440) and S11(1535), with the energy increase of scattered neutrinos.

The future improvements of lepton-nucleon scattering will also be useful to under-

stand the phenomenon of quark-hadron duality (see more [116, 117]). For this the

resonance production region is particularly interesting having possibility to link it

with DIS region. These all dictate the need for further investigation in this field

both from experimental (next generation of accelerators) and theoretical (precise

calculations, background extraction, medium impact etc.) sides.

Thus, we expect that the near future of particle physics phenomenology will be

extremely exciting and fruitful for new discoveries which are just around the corner.
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A Resonance Production by

Neutrinos

In this appendix we collect the relevant formulae for Chapter 2. Particularly, we

give the explicit expressions for the structure functions of all four resonances, i.e.,

P33(1232), D13(1520), P11(1440) and S11(1535).

A.1 Structure of Hadronic Tensor for P33 and D13

Following the notations of [38], we write the cross section of the resonance production

in a form close to DIS, that is, express it via the hadronic structure functions W1...5

as

dσ

dQ2dW
=

G2
F

4π
cos2 θC

W

mNE2

{

W1(Q
2 +m2

µ)

+
W2

m2
N

[

2(k · p)(k′ · p) − 1

2
m2

N(Q2 +m2
µ)

]

+
W3

m2
N

[

Q2k · p− 1

2
q · p(Q2 +m2

µ)

]

+
W4

m2
N

m2
µ

(Q2 +m2
µ)

2
− 2

W5

m2
N

m2
µ(k · p)

}

. (A.1)

where mµ is the mass of the muon. The hadronic structure functions for the reso-

nance D13 are similar to those for the P33, presented in paper [38] (see Appendix)

and can be obtained from them by replacing mNMR by −mNMR. In the formu-

lae below the upper sign corresponds to the P33 resonance, whereas the lower sign

corresponds to the D13.

Wi(Q
2, ν) =

2

3mN
Vi(Q

2, ν)R(W,MR), (A.2)
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V1 =
(CV

3 )2

m2
NM

2
R

[

(q · p−Q2)2(q · p+m2
N ) +M2
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[
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5 − CV

5 C
A
4

m2
N

(Q2 − q · p)
]

q · p. (A.5)

These are the dominant structure functions for most of the kinematical region. There

are two additional structure functions, whose contribution to the cross section is

proportional to the square of the muon mass.

V4 =
(CV

3 )2

M2
R

[

(2q · p−Q2)(q · p+m2
N ) −M2

R(m2
N ±mNMR)

]

+

(

(CV
4 )2(2q · p−Q2)

m2
N

+
(CV

5 )2(q · p)2

m2
NM

2
R

+ 2
CV

4 C
V
5

m2
N

pq

)

[

q · p+m2
N ∓mNMR

]

+
CV

3 C
V
4

mNMR

[

(2q · p−Q2)(q · p +m2
N ∓ 2mNMR) + q · pM2

R

]
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+
CV

3 C
V
5

mNMR
q · p

[

2q · p+m2
N ∓ 2mNMR +M2

R +Q2
]

+
[

(CA
5 )2m

2
N

M2
R

+
(CA

4 )2

m2
N

(2q · p−Q2) +
(CA

6 )2

m2
NM

2
R

(

(Q2 − q · p)2 +Q2M2
R

)

+ 2CA
4 C

A
5 − 2

CA
4 C

A
6

m2
N

q · p

− 2
CA

5 C
A
6

M2
R

(M2
R +Q2 − q · p)

]

[

q · p+m2
N +mNMR

]

, (A.6)

V5 =
(CV

3 )2

M2
R

q · p
[

q · p+m2
N +M2

R

]

+
CV

3 C
V
4

mNMR
q · p

[

q · p+ (MR ∓mN)2
]

+
CV

3 C
V
5

mNMR
q · p

[

q · p+ (MR ∓mN )2 +Q2
]

+ 2

(

(CV
4 )2

m2
N

+
(CV

5 )2(Q2 +M2
R)

m2
NM

2
R

+
CV

4 C
V
5

m2
N

)

q · p
[

q · p+m2
N ∓mNMR

]

+
[(CA

4 )2

m2
N

q · p+ (CA
5 )2m

2
N

M2
R

+ CA
4 C

A
5 − CA

4 C
A
6

m2
N

Q2

+
CA

5 C
A
6

M2
R

(q · p−Q2)
]

[

q · p+m2
N ±mNMR

]

. (A.7)

A.2 Structure of the Hadronic Tensor for P11 and S11

The hadronic structure functions for P11 and S11 resonances are:

V1 =
(gV

1 )2

µ4

[

(q · p+m2
N ∓mNMR)

]

Q4

+
(gV

2 )2

µ2

[

2(q · p)2 +Q2(m2
N ±mNMR − q · p)

]

+
gV
1 g

V
2

µ3
2Q2

[

(q · p)(MR ∓mN) ±mNQ
2
]

+ (gA
1 )2(m2

N ±mNMR + q · p), (A.8)

V2 = 2m2
N

[

(gV
1 )2

µ4
Q4 +

(gV
2 )2

µ2
Q2 + (gA

1 )2

]

, (A.9)

V3 = 4m2
N

[

gV
1 g

A
1

µ2
Q2 +

gV
2 g

A
1

µ
(MR ±mN )

]

, (A.10)
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V4 = m2
N

[

(gV
2 )2

µ2

[

q · p−m2
N ∓mNMR

]

+
(gV

1 )2

µ4

[

2(q · p)2 −Q2(q · p+m2
N ∓mNMR)

]

(A.11)

− gV
1 g

V
2

µ3

[

q · p(MR ∓mN ) ±mNQ
2
]

∓ 2gA
1 g

A
3 +

(gA
3 )2

m2
N

[

(q · p) +m2
N ∓mNMR

]

]

,

V5 = m2
N

[

2
(gV

1 )2

µ4
Q2q · p+ 2

(gV
2 )2

µ2
q · p+ (gA

1 )2 +
gA
1 g

A
3

mN

(MR ∓mN )

]

, (A.12)

where the upper sign correspond to the P11 and the lower sign to the S11 resonances.
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B Angular Analysis of B → K,K∗l̄l
Decays

Here we present auxiliary expressions and formulae which are important for the

discussions in Chapter 3.

B.1 Angular Coefficients J
(a)
i

Here the functions J
(a)
i in the angular distribution (3.74) are given in terms of the

transversity amplitudes A⊥,‖,0,t [63]:

Js
1 =

3

4

{

(2 + β2
l )

4

[

|AL
⊥|2 + |AL

‖ |2 + (L→ R)
]

+
4m2

l

q2
Re
(

AL
⊥A

R
⊥
∗
+ AL

‖A
R
‖
∗)
}

,

(B.1)

Jc
1 =

3

4

{

|AL
0 |2 + |AR

0 |2 +
4m2

l

q2

[

|At|2 + 2Re(AL
0A

R
0

∗
)
]

}

, (B.2)

Js
2 =

3β2
l

16

[

|AL
⊥|2 + |AL

‖ |2 + (L→ R)

]

, (B.3)

Jc
2 = −3β2

l

4

[

|AL
0 |2 + (L→ R)

]

, (B.4)

J3 =
3

8
β2

l

[

|AL
⊥|2 − |AL

‖ |2 + (L→ R)

]

, (B.5)

J4 =
3

4
√

2
β2

l

[

Re(AL
0A

L
‖
∗
) + (L→ R)

]

, (B.6)

J5 =
3
√

2

4
βl

[

Re(AL
0A

L
⊥
∗
) − (L→ R)

]

, (B.7)

J6 =
3

2
βl

[

Re(AL
‖A

L
⊥
∗
) − (L→ R)

]

, (B.8)

J7 =
3
√

2

4
βl

[

Im(AL
0 A

L
‖
∗
) − (L→ R)

]

, (B.9)

J8 =
3

4
√

2
β2

l

[

Im(AL
0A

L
⊥
∗
) + (L→ R)

]

, (B.10)

J9 =
3

4
β2

l

[

Im(AL
‖
∗
AL

⊥) + (L→ R)

]

. (B.11)
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The transversity amplitudes in QCDF can be seen in (3.92) and have the following

CP transformation properties [59]

AL,R
0

CP−−→ ĀL,R
0 = AL,R

0 (δW → −δW ), (B.12)

AL,R
‖

CP−−→ ĀL,R
‖ = AL,R

‖ (δW → −δW ), (B.13)

AL,R
⊥

CP−−→ ĀL,R
⊥ = −AL,R

⊥ (δW → −δW ). (B.14)

B.2 Optimal Observables from Optimal Weights

It is possible to construct weight functions Wi which project out the Ji from the

differential decay distribution (3.74). For this purpose it is convenient to rewrite the

distribution J in terms of associated Legendre polynomials Pm
l (x) in cos θK∗ and

cos θl. The requisite polynomials read as

P 0
0 (cos θ) = 1, P 0

1 (cos θ) = cos θ, (B.15)

P 1
1 (cos θ) = − sin θ, P 0

2 (cos θ) =
1

2
(3 cos2 θ − 1), (B.16)

P 1
2 (cos θ) = −3 sin θ cos θ, P 2

2 (cos θ) = 3 sin2 θ. (B.17)

Introducing x1 = cos θK∗ and x2 = cos θl, and using the orthonormality property of

the Legendre polynomials one can compute weight functions defined as

Ji =

∫

dq2 dx1 dx2 dφWi
d4Γdata

dq2 dx1 dx2 dφ
, (B.18)

where

W3,9 =
25

96
P 2

2 (x1)P
2
2 (x2) ·

{

cos 2φ

sin 2φ

}

, (B.19)

W4,8 =
25

24
P 1

2 (x1)P
1
2 (x2) ·

{

cosφ

sinφ

}

, (B.20)

W5,7 =
5

4
P 1

2 (x1)P
1
1 (x2) ·

{

cos φ

sinφ

}

, (B.21)

W6 =
5

8
P 2

2 (x1)P
0
1 (x2). (B.22)

B.3 CP Asymmetries and AFB beyond the SM

Here we give analytical expressions of the CP asymmetries defined in (3.106) and

(3.107) including contributions from NP operators (3.9). The asymmetries have
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been obtained from the transversity amplitudes in QCDF, see (3.92), valid in the

low dilepton mass region. The coefficients Ceff
7 = Ceff,SM

7 + CNP
7 and C ′

7 are taken

into account by T ±
⊥,‖. Except for ACP, the CP asymmetries are given with their full

lepton mass dependence which is confined to powers of βl. Neglecting kinematical

factors M2
K∗/M2

B, the CP asymmetries as a function of the dilepton mass read as

ACP = A8m̂b

3ŝ
Re

{

ξ2
‖
ξ2
⊥

M2
B

M2
K∗

(1 − ŝ)2

8

[

m̂b

|T −
‖ |2
ξ2
‖

−
T −
‖
ξ‖

(C9 − C ′
9)

∗

]

+
m̂b

ŝ

|T +
⊥ |2 + |T −

⊥ |2
ξ2
⊥

+
T +
⊥ − T −

⊥
ξ⊥

C∗
9 +

T +
⊥ + T −

⊥
ξ⊥

C ′∗
9 − (δW → −δW )

}

+ O
(

m2
l /q

2
)

, (B.23)

A3 = A2m̂bβl

ŝ
Re

{

m̂b

ŝ

|T +
⊥ |2 − |T −

⊥ |2
ξ2
⊥

+
T +
⊥ − T −

⊥
ξ⊥

C∗
9 +

T +
⊥ + T −

⊥
ξ⊥

C ′∗
9 − (δW → −δW )

}

,

(B.24)

AD
4 = −AD m̂bβl

2ŝ
Re

{

(

T −
⊥
ξ⊥

− ŝ
T −
‖
ξ‖

)

(C9 − C ′
9)

∗ − 2m̂b

T −
⊥ (T −

‖ )∗

ξ⊥ξ‖
− (δW → −δW )

}

,

(B.25)

AD
5 = −AD m̂b

ŝ
Re

{

(

T −
⊥
ξ⊥

− ŝ
T −
‖
ξ‖

)

C10 −
(

T −
⊥
ξ⊥

+ ŝ
T −
‖
ξ‖

)

C ′∗
10 − (δW → −δW )

}

,

(B.26)

A6 = A4m̂b

ŝ
Re

{T +
⊥ + T −

⊥
ξ⊥

C∗
10 −

T +
⊥ − T −

⊥
ξ⊥

C ′∗
10 − (δW → −δW )

}

, (B.27)

AD
7 = AD m̂b

ŝ
Im

{

(C10 − C ′
10)

(

T −
⊥
ξ⊥

+ ŝ
T −
‖
ξ‖

)∗

− (δW → −δW )

}

, (B.28)

AD
8 = ADβl

2
Im

{

2m̂2
b

ŝ

T +
⊥ (T −

‖ )∗

ξ⊥ξ‖
− m̂b

ŝ

[

(

T +
⊥
ξ⊥

+ ŝ
T −
‖
ξ‖

)

C∗
9 −

(

T +
⊥
ξ⊥

− ŝ
T −
‖
ξ‖

)

C ′∗
9

]

+ C9C
′∗
9 + C10C

′∗
10 − (δW → −δW )

}

, (B.29)

A9 = −A 2βlIm

{

2m̂2
b

ŝ2

T +
⊥ (T −

⊥ )∗

ξ2
⊥

+
m̂b

ŝ

[T +
⊥ − T −

⊥
ξ⊥

C∗
9 − T +

⊥ + T −
⊥

ξ⊥
C ′∗

9

]

− C9C
′∗
9 − C10C

′∗
10 − (δW → −δW )

}

, (B.30)
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where (δW → −δW ) is short hand notation for conjugating all weak phases. Fur-

thermore,

A =
G2

F α
2
e

32 · 26 π5
|VtbV

∗
ts|2

M3
Bβ

2
l ŝ(1 − ŝ)3ξ2

⊥
NΓ

,

AD =
G2

F α
2
e

32 · 26 π5
|VtbV

∗
ts|2

M4
Bβ

2
l

√
ŝ(1 − ŝ)4ξ‖ξ⊥
MK∗NΓ

, (B.31)

where NΓ is defined in (3.106).

At lowest order in αs, the expressions for the above CP asymmetries simplify by

T +,LO
⊥ ± T −,LO

⊥
ξ⊥

=







2C
eff(0)
7 + ŝ

m̂b
(Y (0) + λ̂uY

(u)(0))

2C
′(0)
7

, (B.32)

T ±,LO
⊥
ξ⊥

+ ŝ
T −,LO
‖
ξ‖

=







(1 − ŝ)C
eff(0)
7 + (1 + ŝ)C

′(0)
7

(1 − ŝ)(C
eff(0)
7 − C

′(0)
7 )

, (B.33)

T ±,LO
⊥
ξ⊥

− ŝ
T −,LO
‖
ξ‖

=







(1 + ŝ)C
eff(0)
7 + (1 − ŝ)C

′(0)
7 + ŝ

m̂b
(Y (0) + λ̂uY

(u)(0))

(1 + ŝ)(C
eff(0)
7 − C

′(0)
7 ) + ŝ

m̂b
(Y (0) + λ̂uY

(u)(0))
.

(B.34)

Note that in the SM, or more general, in any model without right-handed contribu-

tions to the electromagnetic dipole operator, T +
⊥ = T −

⊥ , see Section 3.5.2.

The lepton forward-backward asymmetry is written as

AFB =
12βlN

2M2
B(1 − ŝ)2ξ2

⊥
dΓ/dq2

(B.35)

× Re

{[

C9 +
m̂b

ŝ

(T +
⊥ + T −

⊥ )

ξ⊥

]

C∗
10 −

[

C ′
9 +

m̂b

ŝ

(T +
⊥ − T −

⊥ )

ξ⊥

]

C
′∗
10

}

.

B.4 Ta Amplitudes

Here we present the expressions of the Ta (a = P,⊥, ‖) amplitudes calculated in

QCDF [19, 20]. The matrix elements of the O9,10 operators of (3.3) can be directly

expressed through the B → K,K∗ form factors, whereas the remaining operators

contribute via the exchange of a virtual photon which decays subsequently into the

lepton pair. For the later part in QCDF one defines the matrix element as

〈γ∗K∗(p, ε)|H(i)
eff |B(pB)〉 =

iemb

4π2

(

2 T (i)
⊥ (q2)ǫµνρσε∗νpBρpσ

− 2i T (i)
⊥ (q2)[EK∗MBε

∗
µ − (ε∗ · q)pµ]

− i T (i)
‖ (q2)(ε∗ · q)

[

qµ − q2

M2
B

(pµ
B + pµ)

]

)

, (B.36)
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B.4 Ta Amplitudes

Figure B.1: The diagrams contributing to the matrix elements 〈γ∗K,K∗|H(i)
eff |B〉.

The crossed circles mark the interaction vertices of the photon (see Ap-

pendix B.4 for details).
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for B → K∗l̄l decays and

〈γ∗K(p, ε)|H(t)
eff |B(pB)〉 =

emb

4π2MB
TP (q2)

[

q2(pµ
B + pµ) − (M2

B −M2
K)qµ

]

, (B.37)

for B → Kl̄l decays. Ta (a = ⊥, ‖, P ) contain factorizable (f) and non-factorizable

(nf) contributions [19, 20]:

T (i)
a = C(i)

a ξa(q
2) +

π2

Nc

fB f
(K∗)
a

MB

Ξa

∑

±

∫

dω

ω
ΦB,±(ω)

∫ 1

0

duΦ(K∗)
a (u)T

(i)
a,±(u, w),

(B.38)

where Ξ⊥,P = 1 and Ξ‖ = mK∗/EK∗ . The first term depends on ”soft” form factors

ξ⊥, ξ‖ and ξP . fB,fK and fK
a denote the B-, K- and K∗-meson decay constants,

respectively, whereas ΦB,±(ω), ΦK(u) and Φ
(K∗)
a (u) are corresponding the light cone

distribution amplitudes (explicit expressions for the Φa, ΦB,± one can find in [19]).

The remaining quantities C’s and T ’s are calculable perturbatively

C(i)
a = C

(0,i)
a + αsCF

4π
C

(1,i)
a + ...,

T
(i)
a,±(u, w) = T

(0,i)
a,± + αsCF

4π
T

(1,i)
a,± + .... (B.39)

The strong coupling αs is evaluated differently for C and T coefficients, at the scale

µb ∼ mb and the scale µf ∼ (mbΛQCD)1/2. At leading order the diagrams in Figure

B.1 (a), (b) and (g) contribute where the crossed circles mark the interaction vertices

of the photon. Leading order coefficients C equal

C
(0,t)
⊥ = Ceff

7 +
q2

2mbMB

Y (q2), C
(0,t)
‖ = −Ceff

7 − MB

2mb

Y (q2),

C
(0,u)
⊥ =

q2

2mbMB
Y (u)(q2), C

(0,u)
‖ = −MB

2mb
Y (u)(q2),

C
(0)
P = −C(0,t)

‖ , (B.40)

where C eff
7 = C7 −C3/3− 4C4/9− 20C5/3− 80C6/9. Explicitly Y (q2) and Y (u)(q2)

read as

Y (q2) = h(q2, 0)
[

− 1

2
C3 −

2

3
C4 − 8C5 −

32

3
C6

]

+ h(q2, mc)
[4

3
C1 + C2 + 6C3 + 60C5

]

+ h(q2, mb)
[

− 7

2
C3 −

2

3
C4 − 38C5 −

32

3
C6

]

+
4

3
C3 +

64

9
C5 +

64

27
C6,

Y (u)(q2) =
[4

3
C1 + C2

]

(h(q2, mc) − h(q2, 0)), (B.41)
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where

h(q2, mq) = −4

9

(

ln
m2

q

µ2
− 2

3
− z

)

−4

9
(2+z)

√

|z − 1|















arctan
1√
z − 1

z > 1

ln
1 +

√
1 − z√
z

− iπ

2
z ≤ 1

,

(B.42)

defining z = 4m2
q/q

2. The diagram Figure B.1 (c) contributes to C
(f)
P and the

diagrams Figure B.1 (d), (e) and (f) to the quantity C
(nf)
P .

The first-order corrections to C’s are separated into ”factorizable” (diagram (c)

of the Figure B.1) and ”non-factorizable” (diagrams (d), (e) and (f) of the Figure

B.1) parts C
(1,i)
a = C

(f,i)
a + C

(nf,i)
a and they read as

C
(f,t)
⊥ = Ceff

7

(

ln
m2

b

µ2
− L+ ∆M

)

, C
(f,t)
‖ = −Ceff

7

(

ln
m2

b

µ2
+ 2L+ ∆M

)

,

C
(f,u)
⊥ = C

(f,u)
‖ = 0, C

(f)
P = −C(f,t)

‖ . (B.43)

The ∆M depends on the renormalization scheme of mb which is the overall factor

in the (B.36) and (B.37). In the scheme (PS scheme) used here ∆M and L are

defined as

L = −m
2
b − q2

q2
ln

(

1 − q2

m2
b

)

, ∆M = 3 ln
m2

b

µ2
− 4

(

1 − µf

mb

)

. (B.44)

The factorization scale in the PS scheme is chosen µf = 2 GeV, see also Table 3.4.

The ”non-factorizable” parts of the C
(1,i)
a have the following form

C
(nf,t)
⊥ =

3

4

(

− (C2 −
1

6
C1)F

(7)
2 − Ceff

8 F
(7)
8

− q2

mbMB

[

(C2 −
1

6
C1)F

(9)
2 + 2C1

(

F
(9)
1 +

1

6
F

(9)
2

)

+ Ceff
8 F

(9)
8

]

)

, (B.45)

C
(nf,t)
‖ =

3

4

(

(C2 −
1

6
C1)F

(7)
2 + Ceff

8 F
(7)
8

+
MB

2mb

[

(C2 −
1

6
C1)F

(9)
2 + 2C1

(

F
(9)
1 +

1

6
F

(9)
2

)

+ Ceff
8 F

(9)
8

]

)

, (B.46)

C
(nf)
P = −C(nf,t)

‖ , (B.47)

where C eff
8 = C8 +C3 −C4/6 + 20C5 − 10C6/3. The functions F

(7),(9)
8 correspond to

1-loop matrix element of the operator O8 and can be found in [19], whereas F
(7),(9)
1,2

being 2-loop matrix element of the O1,2 operators, can be extracted from [110]. The

corresponding expressions for C
(nf,u)
a one can be obtained by replacing the F

(7,9)
8 → 0

and F
(7,9)
1,2 → F

(7,9)
1,2 − F

(7,9)
1,2,u with F

(7,9)
1,2,u given in [110].

Only the longitudinal amplitude receives contribution from spectator scattering at

leading order. This contribution comes from the so-called weak annihilation diagram
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where the photon is emitted from the spectator quark in the B meson which later

decays into lepton-antilepton pair (diagram (g) of Figure B.1):

T
(0,i)
⊥,+(u, ω) = T

(0,i)
⊥,−(u, ω) = T

(0,i)
‖, + (u, ω) = 0, (B.48)

T
(0,t)
‖,− (u, ω) = −eq

MBω

MBω − q2 − iǫ

4MB

mb
(C3 +

4

3
C4 + 16C5 +

64

3
C6), (B.49)

T
(0,u)
‖,− (u, ω) = eq

MBω

MBω − q2 − iǫ

4MB

mb
δqu3C2, (B.50)

T
(0)
P,− = −T (0,t)

‖,− , T
(0)
P,+ = 0, (B.51)

where T
(0,u)
‖,− is relevant only for charged B-meson modes.

The T 1,i
a,± are also divided into ”factorizable” (diagrams (h), (i) of Figure B.1) and

”non-factorizable” (diagrams (j), (k) of Figure B.1) parts T
(1,i)
a,± = T

(f,i)
a,± + T

(nf,i)
a,± .

The factorizable contributions read as

T
(f,t)
⊥,+ (u, ω) = Ceff

7

2MB

ūEK∗

, T
(f,t)
‖,+ (u, ω) = Ceff

7

4MB

ūEK∗

, (B.52)

T
(f,t)
⊥,− (u, ω) = T

(f,t)
‖,− (u, ω) = T

(f,u)
⊥,± (u, ω) = T

(f,u)
‖,± (u, ω) = 0, (B.53)

T
(f)
P,+ = −T (f,t)

‖,+ , T
(f)
P,− = 0. (B.54)

The non-factorizable contributions of the top-sector read as

T
(nf,t)
⊥,+ (u, ω) = − 4edC

eff
8

u+ ūq2/M2
B

+
MB

2mb

[

eut⊥(u,mc) (C2 −
1

2
C1 + 6C6)

+ ed t⊥(u,mb) (C3 −
1

6
C4 + 16C5 +

10

3
C6 −

4mb

MB
(C3 −

1

6
C4 + 4C5 −

2

3
C6))

+ ed t⊥(u, 0) (C3 −
1

6
C4 + 16C5 −

8

3
C6)
]

,

T
(nf,t)
⊥,− (u, ω) = 0,

T
(nf,t)
‖, + (u, ω) =

MB

mb

[

eut‖(u,mc) (C2 −
1

2
C1 + 6C6)

+ ed t‖(u,mb) (C3 −
1

6
C4 + 16C5 +

10

3
C6)

+ ed t‖(u, 0) (C3 −
1

6
C4 + 16C5 −

8

3
C6)
]

,

T
(nf,t)
‖,− (u, ω) = eq

MBω

MBω − q2 − iǫ

[

8C eff
8

ū+ uq2/M2
B

+
6MB

mb

(

h(ūM2
B + uq2, mc) (C2 −

1

2
C1 + C4 + 10C6)
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+ h(ūM2
B + uq2, mb) (C3 +

5

6
C4 + 16C5 +

22

3
C6)

+ h(ūM2
B + uq2, 0) (C3 +

17

6
C4 + 16C5 +

82

3
C6)

− 8

27
(−15

2
C4 + 12C5 − 32C6)

)

]

,

T
(nf)
P,±(u, ω) = −T (nf,t)

‖,± . (B.55)

Here ū = 1 − u, eu = 2/3, ed = −1/3 and eq is the electric charge of the spectator

quark in the B meson. The explicit expressions for the ta(u,mq) can be found in

[19].

B.5 Model-independent CP Asymmetries beyond the

SM

We give numerical formulae for the q2-integrated quantities B = τB0 〈dΓ/dq2〉,
B = τB0

〈

dΓ̄/dq2
〉

and Num
〈

A
(D)
i

〉

for q2 ∈ [1, 6] GeV2 in terms of the NP Wilson

coefficients CNP
i . Here, Num

〈

A
(D)
i

〉

denotes the numerators of the CP asymmetries

multiplied by the B-meson lifetime such that the normalized CP asymmetries (see

(3.108)) are obtained from

〈

A
(D)
i

〉

=
Num

〈

A
(D)
i

〉

B + B . (B.56)

The dependence of the branching ratios on the NP Wilson coefficients can be written

as

X = XSM

[

1 +
∑

i

(

ai|CNP
i |2 + biReCNP

i + ciImC
NP
i

)

+
∑

j>i

dijRe(CNP
i CNP∗

j )
]

(B.57)

for B, B, whereas the numerators of the T-odd CP asymmetries are parametrized as

X = XSM

[

1 +
∑

i

(

biReCNP
i + ciImC

NP
i

)

+
∑

j>i

eijIm(CNP
i CNP∗

j )
]

for Num
〈

AD
7,8

〉

.

(B.58)

The numerators of the T-even CP asymmetries read as

X = XSM

[

1 +
∑

i

(

biReCNP
i + ciImC

NP
i

)

]

for Num 〈ACP,6〉 ,Num
〈

AD
4,5

〉

.

(B.59)
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XSM i = 7 i = 7′ i = 9 i = 9′ i = 10 i = 10′

BSM

ai 2.634 2.634 0.035 0.035 0.035 0.035

bi −0.271 −0.373 0.162 −0.179 −0.288 0.205

= 2.444 · 10−7 ci −0.156 0.001 −0.009 −0.0002 0 0

BSM

ai 2.656 2.656 0.036 0.036 0.035 0.035

bi −0.312 −0.370 0.158 −0.178 −0.290 0.206

= 2.423 · 10−7 ci 0.106 0.003 0.004 0.002 0 0

Num 〈ACP〉SM bi 4.469 −0.726 0.587 −0.345 0 0

= 2.068 · 10−9 ci −30.770 −0.275 −1.500 −0.259 0 0

Num 〈A3〉SM bi −0.077 5.720 −0.012 0.378 0 0

= 0† ci 0.542 −47.174 0.081 −2.743 0 0

Num
〈

AD
4

〉

SM
bi 3.604 −3.604 0.536 −0.536 0 0

= −8.642 · 10−10 ci −1.435 1.435 −2.487 2.487 0 0

Num
〈

AD
5

〉

SM
bi 0 0 0 0 −0.244 0.068

= 3.718 · 10−9 ci 0 0 0 0 1.152 −1.258

Num 〈A6〉SM bi 0 0 0 0 −0.244 0.004

= −3.117 · 10−9 ci 0 0 0 0 1.774 −0.026

Num
〈

AD
7

〉

SM
bi 0 0 0 0 −0.244 0.244

= −2.496 · 10−9 ci −247.248 247.248 0 0 23.019 −23.019

Num
〈

AD
8

〉

SM
bi −0.491 −1.423 0.176 −0.288 0 0

= 1.706 · 10−9 ci −189.333 −170.364 −16.524 −7.160 0 26.834

Num 〈A9〉SM bi 0 −8.390 0.007 −0.491 0 0

= 0† ci −6.514 225.487 −0.568 6.064 0 31.913

Table B.1: The SM predictions XSM and the corresponding coefficients ai, bi and ci

for i = 7, 7′, 9, 9′, 10, 10′. †For Num 〈A3,9〉 XSM has been set to zero and

the corresponding coefficients are given in units of 10−9.
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dij B B eij Num
〈

AD
7

〉

Num
〈

AD
8

〉

Num 〈A9〉†

7, 7′ −0.255 −0.257 7, 7′ 0 200.542 1801.269

7, 9 0.394 0.397 7, 9 0 −43.413 −1.547

7, 9′ −0.107 −0.108 7, 9′ 0 56.532 105.869

7, 10 0 0 7, 10 60.420 0 0

7, 10′ 0 0 7, 10′ −60.420 0 0

7′, 9 −0.107 −0.108 7′, 9 0 −56.532 −105.869

7′, 9′ 0.394 0.397 7′, 9′ 0 43.413 1.547

7′, 10 0 0 7′, 10 −60.420 0 0

7′, 10′ 0 0 7′, 10′ 60.420 0 0

9, 9′ −0.050 −0.050 9, 9′ 0 6.558 7.799

10, 10′ −0.050 −0.050 10, 10′ 0 6.558 7.799

Table B.2: The coefficients dij and eij for i, j = 7, 7′, 9, 9′, 10, 10′ and j > i. †For

Num 〈A9〉 XSM has been set to zero and the corresponding coefficients

are given in units of 10−9.

Here, the summations are over i, j = 7, 7′, 9, 9′, 10, 10′ and XSM denotes the SM

prediction of the corresponding quantity. Note that for Num 〈A3,9〉 we have set XSM

to zero, see Section 3.5.2, and, hence, the corresponding formulae read as

X =
∑

i

(

biReCNP
i + ciImC

NP
i

)

for Num 〈A3〉 , (B.60)

X =
∑

i

(

biReCNP
i + ciImC

NP
i

)

+
∑

j>i

eijIm(CNP
i CNP∗

j ) for Num 〈A9〉 . (B.61)

The SM predictions XSM and the coefficients ai, bi, ci and dij, eij are given in Table

B.1 and Table B.2, respectively. We assumed central values for all parameters.
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