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Abstract: For studies comparing two independent groups, experimental E and control

C, with normally distributed response variables, the outcome measure standardized differ-

ences of means is considered that is scale and translation invariant. This effect measure

enables a convenient specification of a noninferiority margin in a concrete application.

The present paper provides in particular a group sequential confidence interval approach

to noninferiority trials and to switching between noninferiority and superiority for the

effect size measure standardized mean difference. During the course of the trial, the sam-

ple size can be calculated in a completely adaptive way, based on the unblinded data

of previously performed stages. Concrete rules for sample size updating are provided

in this paper. Moreover, in each interim analysis, it is possible to change the planning

from showing noninferiority to showing superiority or vice versa. A real data example

is worked out in detail and the change in the planning from showing noninferiority to

showing superiority is considered during the ongoing trial.

Keywords: Standardized difference of means, Effect size, Multi-stage confidence inter-

vals, Adaptive sample size planning, Switching between noninferiority and superiority.

1 Introduction

In this paper, we consider comparative studies with normally distributed response vari-

ables in two independent groups, experimental E and control C. Common outcome mea-

sures are the difference of means, say µE − µC , the ratio of means, say µE/µC , and the

standardized difference of means, say (µE − µC)/σ, where σ2 > 0 denotes the common

variance of the responses. In the analysis, the confidence interval approach is of partic-

ular attractiveness. It demonstrates in the best way a switching from noninferiority to

superiority, if possible.

1Address correspondence to Joachim Hartung, Department of Statistics, Dortmund University of

Technology, 44221 Dortmund, Germany; E-mail: hartung@statistik.tu-dortmund.de
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In a clinical examination, for example, when a new treatment is to be compared to

a standard treatment with regard to noninferiority, the difficulty arises to choose not

only the suitable outcome measure in advance but also the noninferiority margin before

the beginning of the study. The noninferiority margin depends directly on the outcome

measure. Since the difference of means is not scale invariant and the ratio of means

is not translation invariant, the most convenient measure with respect to specifying a

noninferiority margin in advance is the standardized difference of means that is both:

scale invariant and translation invariant. That means, if both outcome variables, say XE

and XC , are transformed by aXE + b and aXC + b, a 6= 1, b 6= 0, which does not change

anything from the clinical point of view, then only the outcome measure standardized

difference of means remains unchanged.

Since the estimator of the standardized mean difference follows a scaled noncentral

t-distribution, it is not widely used in clinical trials although it would be the suitable

outcome measure in many cases. An exact confidence interval for the effect size standard-

ized mean difference is discussed by Hedges and Olkin (1985). In spite of its practical

importance, the standardized mean difference does not seem to be considered in group

sequential trials until now, neither for testing noninferiority nor for deriving confidence

intervals.

In this paper, we consider the outcome measure standardized mean difference in gen-

eral adaptive group sequential trials, see Hartung (2006). Parameterized p-values, see

Cox and Hinkley (1974), of the several stages are combined by the inverse normal method

from meta-analysis, see Hedges and Olkin (1985), Hartung, Knapp, and Sinha (2008).

As with the confidence interval of Hedges and Olkin, the proposed confidence intervals

are defined implicitly and for obtaining the boundaries, nonlinear equations have to be

solved. Indeed, the solutions are always unique. Besides this, we provide approximate

confidence intervals in an explicit form.

At each stage, a confidence interval will be computed using the data of all previous

stages. The consecutive intersection of these individual confidence intervals leads to a se-

quence of intervals that are nested. This property is a particular interest in the confidence

interval approach to the analysis of noninferiority trials, see Bauer and Kieser (1996) and,

for instance, the clinical trial guideline EMEA (2000). Practically this means that the po-

sition of the confidence interval determines the kind of result of the study, independently

of the question, whether originally the study was planned as noninferiority or superiority

trial. The consequence of the proposed confidence interval intersection-approach is that,
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if we gain noninferiority at an early stage, we will not take a risk to lose this significance

when we decide to continue the trial for an attempt to reach superiority.

In group sequential trials, interim analyses are based on the unblinded data. Since

stochastically independent and uniformly distributed p-values will be combined for con-

structing the confidence intervals, the information from the interim analyses of the previ-

ous stages may be used for an adaptive sample size calculation of the following stage, see

Brannath, Posch, and Bauer (2002) and Hartung (2006). We will provide concrete rules

for updating sample sizes.

The outline of the present paper is as follows: In Section 2.1, one-sided group sequen-

tial confidence intervals for the standardized mean difference are derived, and switching

between noninferiority and superiority is considered. In Section 2.2, two-sided confidence

intervals and a test on the homogeneity of the standardized mean differences underlying

the different stages of the trial are presented. In Section 2.3, approximate confidence

intervals are derived in an explicit form. Section 3 contains median unbiased maximum

likelihood estimators for the standardized mean difference at each stage. Section 4 deals

with general adaptive sample size planning. Section 5 contains a real data example in an

adaptive three-stage Pocock (1977) design, which is worked out in detail and demonstrates

switching from noninferiority to superiority during the ongoing trial. Some additional

comments are given in Section 6.

2 Nested Multi-Stage Confidence Intervals for the

Standardized Difference of Normal Means

Let XE and XC be independent normally distributed random variables with mean µE in

an experimental group E and mean µC in an active control group C with common variance

σ2 > 0, succinctly, XE ∼ N (µE, σ
2) and XC ∼ N (µC , σ

2).

Let ∆0 ≥ 0 be a margin for the noninferiority parameter ∆ ≥ 0. We are interested in

hypotheses testing for noninferiority when the noninferiority margin for µE − µC is put

in relation to the standard deviation, that is, the test problem is

H0,∆ : µE = µC −∆ σ versus H1,∆ : µE > µC −∆ σ, 0 ≤ ∆ ≤ ∆0, (1)

at a predefined level α, 0 < α < 1/2. The alternative stands for (∆σ-)noninferiority,

0 < ∆ ≤ ∆0, and means superiority of the experimental group E with regard to the
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control group C for ∆ = 0. Let ϑ denote the standardized difference of the means, say

ϑ =
µE − µC

σ
,

we can reformulate the hypotheses in (1) as follows,

H0,∆ : ϑ+ ∆ = 0 versus H0,∆ : ϑ+ ∆ > 0, 0 ≤ ∆ ≤ ∆0. (2)

We consider a comparative study which is carried out consecutively in a number,

say K, of independent stages. In the i-th stage, i = 1, . . . , K, we observe the sample

mean X̄Ei
of nEi

≥ 2 responses, the sample mean X̄Ci
of nCi

≥ 2 responses, and the

pooled sample variance S2
i in the two independent groups E and C. Note that S2

i is

stochastically independent of the sample means and follows a scaled χ2-distribution with

νi = nEi
+ nCi

− 2 degrees of freedom, that is,

νi
S2
i

σ2
∼ χ2

νi
, νi = nEi

+ nCi
− 2, i = 1, . . . , K. (3)

2.1 Nested One-sided Confidence Intervals

The standardized mean difference ϑ is estimated by use of Hedges’s g which is given by

gi =
X̄Ei
− X̄Ci

Si
(4)

in the i-th stage, i = 1, . . . , K. The estimator gi from (4) possesses the distributional

property that√
bi gi ∼ t

(
νi,
√
bi ϑi

)
, bi =

nEi
nCi

nEi
+ nCi

, νi = nEi
+ nCi

− 2, i = 1, . . . , K, (5)

where t(νi,
√
bi ϑ) stands for the noncentral t-distribution with νi degrees of freedom and

noncentrality parameter
√
bi ϑ, see Hedges (1981), Hedges and Olkin (1985).

Let Ft(νi,
√
bi ϑ) denote the cumulative distribution function of a t(νi,

√
bi ϑ)-variate,

then, with the true parameter ϑ, it holds for the 1− p-value

Ft(νi,
√
bi ϑ)

(√
bi gi

)
∼ U(0, 1), i = 1, . . . , K, (6)

where U(0, 1) stands for the uniform distribution on the unit interval. Consequently, we

have

zi(ϑ) := Φ−1
[
Ft(νi,

√
bi ϑ)(

√
bi gi)

]
∼ N (0, 1), i = 1, . . . , K, (7)
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with Φ−1 the inverse of the standard normal distribution function Φ.

Since the stages of the study are assumed to be independent, we can define up to the

j-th stage the combining pivotal statistic as

Zj(ϑ) :=

j∑
i=1

zi(ϑ) ∼
√
j N (0, 1), j = 1, . . . , K. (8)

Let Y1, . . . , YK , in general, be mutually independentN (0, 1)-distributed random variables,

then, for given α, 0 < α < 1/2, positive critical values cv1, . . . , cvK may be defined by

the following probability condition:

P

(
j∑
i=1

Yi ≤ cvj for all j = 1, . . . , K

)
= 1− α, (9)

see Hartung (2006). Using critical values cvj defined by (9), we get the following proba-

bility statements for the combining pivotal statistics from (8),

Pϑ (Zj(ϑ) ≤ cvj for j = 1, . . . , k ≤ K)

≥ 1− α for k < K,

= 1− α for k = K.
(10)

From (10), we define the lower confidence sets on ϑ as

CIk,L(ϑ) := {ϑ̃ ∈ IR | Zj(ϑ̃) ≤ cvj for j = 1, . . . , k}, k = 1, . . . , K. (11)

The confidence sets in (11) are nested, that is, CIk+1,L(ϑ) ⊂ CIk(ϑ), k = 1, . . . , K − 1,

and, by (10), the confidence coefficient of CIk,L(ϑ) is at least 1−α, and exactly 1−α for

k = K.

The distribution function of the noncentral t-distribution in (strictly) monotone de-

creasing with respect to the noncentrality parameter, that is, ϑ1 > ϑ2 implies

Ft(νi,
√
biϑ1)(y) < Ft(νi,

√
biϑ2)(y) ∀ y ∈ IR.

Further, Φ−1(.) is a monotone increasing function in its argument, implying that zi(ϑ)

from (7) is monotone decreasing in ϑ. Consequently, the combining statistics Zj(ϑ), j =

1, . . . , K, from (8) are monotone decreasing in ϑ. Thus CIk,L(ϑ) can be represented as a

genuine interval, that is,

CIk,L(ϑ) = [ϑLk,∞) (12)

where ϑLk = max{ϑL(1), . . . , ϑL(k)} and ϑL(j) solves

Zj(ϑL(j)) = cvj, j = 1, . . . , k, k = 1, . . . , K. (13)
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Note, that the solutions ϑL(j) in (13) are unique and can be iteratively found, for instance,

by the bisection method.

Let us apply the multi-stage confidence intervals from (12) to the testing problem (1)

at level of at most α. At stage k, k = 1, . . . , K, using ϑLk from (12), we proceed as

follows:

if −∆ < ϑLk, then we decide for H1,∆,

if −∆0 ≥ ϑLk, then stay with H0,∆0

(14)

If we are satisfied with showing noninferiority, then we will stop the trial after that

stage k∗, when −∆0 lies the first time outside the corresponding confidence interval.

Fortunately, the confidence intervals CIk,L are nested, and so, provided k∗ < K, we may

decide to continue the trial without any risk to lose the noninferiority once shown. In case

an unexpected favorable parameter constellation has been observed up to stage k∗, this

may lead to considerations to switch from showing noninferiority to showing superiority.

The trial is then continued by planning with ∆ = 0.

Conversely, originally planned as a superiority trial, some initial interim analyses may

reveal that an unexpected high number of subjects would be required. In case of an active

control, one may decide to switch from showing superiority to showing noninferiority, and

to reduce the sample size of the rest of the trial by choosing some ∆ > 0 in the planning.

Note, that also in this situation, a noninferiority bound ∆0 should have been defined at

the beginning of the study, see the discussion in the clinical trial guideline EMEA (2000).

2.2 Nested Two-sided Confidence Intervals and Homogeneity of

Effect Sizes

In analogy to (11), let us define the upper confidence sets on ϑ as

CIk,U(ϑ) := {ϑ̃ ∈ IR| − cvj ≤ Zj(ϑ̃) for j = 1, . . . , k}, k = 1, . . . , K. (15)

Again, the confidence sets are nested, that is, CIk+1,U(ϑ) ⊂ CIk,U(ϑ), k = 1, . . . , K − 1,

and each confidence set has a confidence coefficient of at least 1− α, being exactly 1− α
for k = K. The interval representation is given by

CIk,U(ϑ) = (−∞, ϑUk], (16)

where ϑUk = min{ϑU(1), . . . , ϑU(k)} and ϑU(j) solves uniquely

Zj(ϑU(j)) = −cvj, j = 1, . . . , k, k = 1, . . . , K. (17)
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The two-sided confidence interval on ϑ at stage k is defined as the intersection of the

two corresponding one-sided confidence intervals,

CIk(ϑ) := CIk,L(ϑ) ∩ CIk,U(ϑ) = [ϑLk, ϑUk] (18)

with ϑLk from (12) and ϑUk from (16). The confidence intervals are nested, that is,

CIk+1(ϑ) ⊂ CIk(ϑ), k = 1, . . . , K − 1, (19)

and each confidence interval has a confidence coefficient of at least 1− 2α, 0 < α < 1/2.

Denote Ik(ϑ) = [ϑL(k), ϑU(k)], see (13) and (17), the individual confidence interval on

ϑ at the k-th stage. Then it holds

CI1(ϑ) = I1(ϑ) and CIk(ϑ) = CIk−1(ϑ) ∩ Ik(ϑ), k = 2, . . . , K. (20)

Since CIk ⊂ Ik, the interval Ik(ϑ) is another two-sided confidence interval with confidence

coefficient of at least 1− 2α on ϑ. The interval Ik(ϑ) results from the boundaries in stage

k alone and will be always nonempty. Therefore, Ik(ϑ) may be preferred to CIk(ϑ), see

for instance Jennison and Turnbull (2000, p. 192) in their corresponding settings.

Depending on the choice of α, the two-sided confidence interval CIk from (18) can

be empty, that is, it may occur that ϑUk < ϑLk. For interpreting such an event, let us

consider the extended model that each stage of the study has an individual parameter,

say ϑi = (µEi
− µCi

)/σi, i = 1, . . . , K. Since Hedges’s gi from (4) estimates ϑi, we have
√
bi gi ∼ t(νi,

√
bi ϑi), see (5). In analogy to (7), we get zi(ϑi) ∼ N (0, 1), i = 1, . . . , K,

and

Zj(ϑ1, . . . , ϑj) :=

j∑
i=1

zi(ϑi) ∼
√
j N (0, 1), j = 1, . . . , K, (21)

for the combining pivotal statistic up to the j-th stage, see (8).

Denote d′ = (d1, . . . , dk) the transposed of a vector d in IRk, then, by (9), the k-

dimensional confidence region, k = 1, . . . K,

CRk := {d ∈ IRk| − cvj ≤ Zj(d1, . . . , dj) ≤ cvj for j = 1, . . . , k} (22)

covers (ϑ1, . . . , ϑk)
′ with probability of at least 1−2α, 0 < α < 1/2. Note that CRk is not

empty for all α ∈ (0, 1/2). For example, the realized vector of ϑ̂i defined by zi(ϑ̂i) = 0,

i = 1, . . . , k, lies always in CRk, where ϑ̂i is the median unbiased maximum likelihood

estimator of ϑi in the i-th stage, see Section 3.
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When we assume that the parameters ϑi are really identical, say ϑi = ϑ, i = 1, . . . , k,

then the k-dimensional parameter vector (ϑ, . . . , ϑ)′k is covered by CRk, or, in other words,

(ϑ, . . . , ϑ)′k ∈ CRk with probability of at least 1 − 2α. But this is equivalent to ϑ ∈ CIk
with probability of at least 1− 2α. Thus, if CIk is empty for a common confidence level

1−2α, this will speak against our assumption of an identical standardized mean difference

over the first k stages. This can formally be stated as a test on the homogeneity of the

stage specific parameters.

In testing

H0,hom(k) : ϑ1 = . . . = ϑk versus H1,hom(k) : ϑi1 6= ϑi2 (23)

for some i1, i2 ∈ {1, . . . , k}, k = 2, . . . , K, the homogeneity hypothesis H0,hom(k) will be

rejected at level of at most 2α if the two-sided confidence interval CIk(ϑ) from (18) is

empty. If H0,hom(k∗) is rejected, then also H0,hom(k) for k∗ ≤ k ≤ K. An alternative to

this homogeneity test does not seem to be known.

Suppose that up to stage k − 1 the intersections in (20) are nonempty and in the

k-th stage, CIk is empty for a common level α, that is, the nonempty interval Ik lies

completely outside the nonempty interval CIk−1. Therefore, up to an error rate of 2α, see

(23), we may consider that a break in the underlying standardized mean differences has

been observed. So, with regard to statistical concerns, results from this stage k should

not influence conclusions from the previous stages. Consequently, preferring Ik to CIk

does not provide any real advantage. On the other hand, under the model assumption

of an identical standardized mean difference underlying the different stages of the study,

the probability to obtain an empty confidence interval CIk is bounded by 2α.

Finally, we would like to remark that, in the case K = 1, the interval from (18) is the

exact confidence interval discussed by Hedges and Olkin (1985, p. 91).

2.3 Approximative Confidence Intervals

From Hedges and Olkin (1985, Chapter 5) or Hartung, Knapp, and Sinha (2008, Chapter

2), we take over the following approximations. In the i-th stage, see (4),

g∗i =

(
1− 3

4ni − 9

)
gi, ni = nEi

+ nCi
, i = 1, . . . , K, (24)

is an approximately unbiased estimator of the standardized mean difference ϑ. The vari-

ance of gi, or g∗i , is approximately unbiasedly estimated in the i-th stage by, see (5),

Vi =
1

bi
+
g2
i

2νi
,

1

bi
=

1

nEi

+
1

nCi

, νi = ni − 2, i = 1, . . . , K, (25)
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and gi is approximately normally distributed, so that zi(ϑ) in (7) is approximated by

zAi (ϑ) = Φ−1
[
Φ
(

(g∗i − ϑ)/
√
Vi

)]
.

That means, the combining statistic Zj(ϑ) in (8) is approximated by

ZA
j (ϑ) =

j∑
i=1

g∗i − ϑ√
Vi

appr.∼
√
j N (0, 1), j = 1, . . . , K. (26)

Equating ZA
j (ϑ) to cvj, see (13), and to −cvj, see (17) and solving for ϑ, yields the

approximate individual confidence interval at the j-th stage, see (20),

IAj (ϑ) :

j∑
i=1

g∗i /
√
Vi∑j

h=1 1/
√
Vh
± cvj∑j

h=1 1/
√
Vh
, j = 1, . . . , K. (27)

By setting CIA1 = IA1 and CIAk = CIAk−1 ∩ IAk , k = 2, . . . , K, we get approximations of

the confidence intervals CIk in (18). The boundaries of these approximative confidence

intervals may be used as starting values in an iterative procedure to determine the exact

confidence intervals.

3 Point Estimation of the Standardized Mean Differ-

ence

The combining statistic Zj(ϑ) from (8) is N (0, j)-distributed with mode and median 0.

So, the maximum likelihood (ML) estimator ϑ̂ML(j) of the standardized mean difference

ϑ at stage j is given by:

ϑ̂ML(j) solves Zj

(
ϑ̂ML(j)

)
= 0, j = 1, . . . , K, (28)

where the solution in (28) is unique.

The global p-value at stage j is

pG(j) = 1− Φ
[
Zj(ϑ)/

√
j
]
, j = 1, . . . , K, (29)

and solving (29) for pG(j) = 1/2 yields ϑ̂ML(j) as solution. Note, that Zj(ϑ) is monotone

in ϑ. Consequently, see Cox and Hinkley (1974, p. 273),

ϑ̂ML(j) is median unbiased. (30)
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That means, ϑ̂ML(j) lies with equal probability as well below the parameter ϑ as above

ϑ.

Using in (28) the approximate combining statistic ZA
j (ϑ) from (26), we get the ap-

proximate median unbiased ML-estimator at stage j as, see (24) and (25),

ϑ̂AML(j) =

j∑
i=1

g∗i /
√
Vi∑j

h=1 1/
√
Vh
, j = 1, . . . , K. (31)

Note that the stage based estimators of ϑ are weighted by the inverses of their estimated

standard errors in (31) and not by the inverses of their estimated variances as known from

meta-analysis, see for instance Hartung, Knapp, and Sinha (2008).

The standard meta-analytical estimator up to the j-th stage takes on the form

ϑ̂MA(j) =

j∑
i=1

g∗i /Vi∑j
h=1 1/Vh

, j = 1, . . . , K. (32)

When sample sizes are chosen adaptively and the end of the study depends on a testing

decision, no special approximate properties of this estimator are known so far, in con-

trary to the estimator ϑ̂ML(j) from (28) or its approximation ϑ̂AML(j). Weighted means

like ϑ̂AML(j) from (31) are used in the generalized Cochran-Wald statistics considered by

Hartung, Böckenhoff, and Knapp (2003).

4 Adaptive Sample Size Planning for the Standard-

ized Mean Difference

Planning with equal sample sizes in the two groups and suppressing the subscript i, we

set nE = nC = m and get from (25) for the approximate variance of g,

V0 =
1

m

(
2 +

ϑ2

4− 4/m

)
=:

1

m
v(m). (33)

With some initial fixed m0, let us define the random variables

X ∼ N (ϑ, v(m0)) and X̄ ∼ N
(
ϑ,

1

m
v(m0)

)
. (34)

For fixed ∆ ∈ [0,∆0] and ϑ∗ with ϑ∗ + ∆ > 0, we want to test the point hypotheses

H∗0 : ϑ+ ∆ = 0 versus H∗1 : ϑ+ ∆ = ϑ∗ + ∆ > 0 by use of the test statistic

T =
√
m
X̄ + ∆√
v(m0)

∼ N (0, 1) under H∗0. (35)
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Assume the test is carried out in the j-th stage and ϑ∗ = ϑ̂(j− 1), where ϑ̂(j− 1) is some

estimate of ϑ, see Section 3, based on the information of stage 0, stage 1, . . ., stage j− 1,

satisfying ϑ̂(j − 1) + ∆ > 0. Hereby, stage 0 stands for a priori information.

Then, for given level α, 0 < α < 1, and power 1− β, 0 < β < 1, the required sample

size m has to be chosen (one-sample formula) as follows,

m = fj−1(α, β,∆) :=
[max{0,Φ−1(1− α) + Φ−1(1− β)}]2(

ϑ̂(j − 1) + ∆
)2

/ [2 + ϑ̂(j − 1)2/(4− 4/m0)]
, (36)

with ϑ̂(j− 1) + ∆ > 0, j = 1, . . . , K. Note that, for ease of presentation, we use a normal

sample size spending function in (36). Furthermore, we may replace m0 by m in (36) and

iterate until we reach a stabilization in the sense that two following values differ less than

1. The statistic T in (35) corresponds to the approximate test statistic in the i-th stage

for m = nEi
= nCi

, see (4) and (25),

Ti =
gi + ∆√

1/bi + g2
i /2νi

, i = 1, . . . , K, (37)

which is approximately N (0, 1)-distributed under H∗0. Indeed, Ti is used here only for

deriving the above formula (36).

Recall now from (9) that it holds:{
h∑
i=1

Yi ≤ cvh for h = 1, . . . , j − 1 and

j−1∑
i=1

Yi +
√
K − (j − 1)Yj ≤ cvK

}

⊃

{
h∑
i=1

Yi ≤ cvh for all h = 1, . . . , K

}
.

(38)

In the group sequential trial, the hypothesis H0,∆, see (2), will be rejected if Zj(−∆) > cvj,

see (8) and (10). Then, by (38), if we decide after stage j−1 to omit the interim analyses

j up to K − 1, we can assign the remaining weight
√
K − (j − 1) to the next final study

part and build the final test statistic, see (7) and (8), as

Zj,K(−∆) := Zj−1(−∆) +
√
K − (j − 1) Φ−1

[
F
t(νj ,
√
bj(−∆))

(√
bjgj

)]
, (39)

where Zj,K(−∆) ∼
√
K N (0, 1) under H0,∆, j = 1, . . . , K, defining Z0 = 0. The test

statistic Zj,K(−∆) has to be compared with the K-th critical value cvK in testing H0,∆.

Note, that the p-value of testing H0,∆ at stage i by use of
√
bigi is given by, see (5)

and (6),

pi = pi(∆) = 1− Ft(νi,
√
bi(−∆))

(√
bigi

)
, i = 1, . . . , K. (40)
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Assume that a significant result has not been obtained up to stage j−1, that is, Zi(−∆) ≤
cvi for i = 1, . . . , j − 1. In the next study part we want to reach cvK by use of the final

test statistic

Ẑj,K(−∆) := Zj−1(−∆) +
√
K − (j − 1) Φ−1[1− p̂j,K(∆)], (41)

then the projected p-value p̂j,K(∆) of the next study part should be

p̂j,K(∆) = 1− Φ[(cvK − Zj−1(−∆))/
√
K − (j − 1)]. (42)

To detect a deviation of the null-hypothesis in the direction H1,∆ at ϑ+∆ = ϑ̂(j−1)+∆ >

0 with the (conditional) power 1 − β, the sample size for the next final study part must

be chosen with (36) in each group as

Mj = Mj(∆) = fj−1(p̂j,K(∆), β,∆), j = 1, . . . , K. (43)

Consequently, p̂j,K can be named as a conditional error function.

If we do not want to finish the trial in this way and have in mind the originally

planned K − (j− 1) further stages, we will choose the sample size in each group for stage

j proportionally as

nj/2 = nj(∆)/2 =
Mj(∆)

K − j + 1
, nEj

= nCj
≈ nj/2, j = 1, . . . , K, (44)

which is a (slightly) conservative choice by (38), and use cvj as critical value for Zj(ϑ) in

stage j. Note that each sample size should be at least 2.

Especially for j = 1, we get the starting sample size of the trial as

n1 =
2M1

K
, M1 = f0(p̂1,K , β,∆), p̂1,K = 1− Φ(cvK/

√
K), (45)

where in f0 from (36), we use some prior guess g0 = ϑ̂(0) of ϑ with g0 + ∆ > 0.

We start with n1 observations in the first stage, n1 from (45). Then with the proceeding

above, we reach the full power 1− β, conditioned on ϑ+ ∆ = ϑ̂(K − 1) + ∆ > 0, latest in

stage j = K, if not stopped before because of shown significance,. Note, that the estimates

ϑ̂(j−1) are used only for planning the sample sizes, but not for computing the confidence

intervals. When we replace Zj(ϑ) by ZA
j (ϑ) from (26) in the above considerations, we

obtain an approximative proceeding.

Further, we may formally define the p-values, see (6), as suiting to the null-hypothesis

that ϑ is the true parameter, see Cox and Hinkley (1974, p. 221). So, we may apply
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Table 1: Controlled clinical trial concerning patients with acne papulopustulosa in an

adaptive 3-stage Pocock (1977) design with early stop for superiority after stage 2 at

given one-sided significance level α = 0.005.

Stage
Adaptive Data

ML-estimate Confidence interval
sample size on ϑ = (µE − µC)/σ

i ni gi ϑ̂ML(i) CIi(ϑ)

0 - 0.8 0.8 [Level ≥ 0.99]

1 24 1.177 1.1230 [−0.1425, 2.3992]

2 12 1.073 1.0572 [ 0.0136, 2.1076]

3 STOP

Because of shown superiority

the general result that under the null-hypothesis p-values preserve their distribution and

independence (for continuous null-distributions) when sample sizes are chosen adaptively

in a consecutive way, see Brannath, Posch, and Bauer (2002). All the above procedures

are based on such p-values. Consequently, all the statements remain valid when sample

sizes are chosen adaptively as demonstrated in this section, see also Hartung (2006).

5 A Real Data Example

Using the raw difference of means as effect measure in a controlled clinical trial concerning

patients with acne papulopustulosa, Lehmacher and Wassmer (1999) discussed an adap-

tive three-stage group sequential test of Pocock (1977) type, which led to an early stop

for superiority of the experimental group E with respect to the control group C after the

second stage at the one-sided overall significance level of α = 0.005. The response variable

was the reduction of bacteria (after six weeks of treatment) from baseline, examined on

agar plates and measured as logCFU/cm2 (CFU : colony forming units). We take over

the parameter estimates and compute the observed standardized means gi as presented

in Table 1.

Assuming that the noninferiority boundary for the treatment difference µE − µC is

specified in relation to the standard deviation, say ∆0σ, with ∆0 = 20%, we apply the

methods proposed in the previous sections. We choose the same test level α = 0.005 and
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the power 1 − β = 0.90. Each stage is planned with equal sample sizes in both groups,

where the two involved drugs will be equally randomized within blocks of size 6.

For a three-stage Pocock design, we get the (one-sided) critical values cvj = 2.873
√
j,

j = 1, 2, 3, using the combining statistic (8) in (9) for α = 0.005, see Hartung (2006,

p. 533), or Jennison and Turnbull (2000, p. 26) for the two-sided level 0.01. Planning

with ∆ = 0.2 for showing noninferiority, we compute the value n1 = 24.9 for the total

sample size of the first stage in (45) with the prior guess g0 = 0.8 for the standardized

mean difference ϑ, see Table 1. Starting with m0 = 30 in (36) we only need one iteration.

Because of the block size 6, we begin the trial with nE1 = nC1 = 12 patients.

For showing superiority we would calculate at least 19.3 patients in each group at

the first stage. For comparison, in a one-stage trial, we would compute a fixed sample

size in each group of at least 32.2 for showing noninferiority and of at least 50.3 for

showing superiority. By 50.3× 1.15/3 = 19.3, for instance, we confirm the rule of thumb

that a Pocock design needs about 5% per stage additional subjects when compared to a

non-group sequential trial, see Jennison and Turnbull (2000, p. 27).

Beginning with n1 = 24 patients, we observe the estimate g1 = 1.177 for the stan-

dardized mean difference, see Table 1. For a detailed illustration, let us demonstrate the

approximate procedure. With g∗1 = 1.13, see (24), and V1 = 0.198, see (25), we get the

first approximate confidence interval on ϑ of size ≥ 0.99, see (27), as

IA1 (ϑ) = [−0.142 , 2.414] ,

which lies clearly above −∆0 = −0.2. At level of at most 0.005, the significant noninfe-

riority of the experimental group E with regard to the control group C has been already

shown, see (14).

In the further planning we switch to showing superiority, that is, we set ∆ = 0 in the

following. Because the a priori information from Table 1 does not seem to be reliable,

we use g1 = 1.177 as ϑ̂(1) in the sample size spending function f1 from (36). With

ZA
1 (0) = 2.553, see (26), we compute the projected p-value, see (42),

p̂2,3(0) = 1− Φ
[(

2.873
√

3− 2.553
)
/
√

2
]

= 1− Φ[1.71345].

Then we obtain the value

2 M2(0) = 2
[1.71345 + 1.28]2

1.1772

(
2 +

1.1772

4− 4/12

)
= 30.76

by (43) and (36) for the total sample size of the remaining two stages, where the m0 in

(36) is set equal to 12. Instead of the projected 15 or 16 observations for the second stage,
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see (44), the decision was made for n2 = 12 patients to be observed in the second stage

because of the block size 6 and the option to carry out a third stage if the result of the

second stage would not be satisfying. Note that by (14), the already shown noninferiority

remains valid.

In the second stage, we observe the estimate g2 = 1.073 for the standardized mean

difference, see Table 1. With g∗2 = 0.990 and V2 = 0.391, see (24), (25), 1/
√
V1 + 1/

√
V2 =

3.847, g∗1/
√
V1 + g∗2/

√
V2 = 4.136, we obtain the second approximate confidence interval

on ϑ of size ≥ 0.99, see (27), as

IA2 (ϑ) :
4.136

3.847
± 2.873 ·

√
2

3.847
= [0.019 , 2.131],

which lies above 0. By (14) based on this interval, the trial is stopped after the second

stage because of having shown the superiority of the experimental group E with respect

to the control group C at level of at most 0.005.

The midpoints of the above intervals are the approximate median unbiased ML-

estimates for ϑ up to the corresponding stages, see (31),

ϑ̂AML(1) = 1.136 and ϑ̂AML(2) = 1.075.

With the exact combining statistics, see (7),

Z1(ϑ) = Φ−1
[
Ft(22,

√
6 ϑ)

(
1.177

√
6
)]
, and

Z2(ϑ) = Z1(ϑ) + Φ−1
[
Ft(10,

√
3 ϑ)

(
1.073

√
3
)]
,

we obtain the exact confidence intervals for ϑ by equating Z1(ϑ) to ±2.873 and Z2(ϑ) to

±4.063 = ±2.873
√

2 and solving for ϑ. Equating Z1(ϑ) = 0 and Z2(ϑ) = 0 and solving for

ϑ yield the exact median unbiased ML-estimates ϑ̂ML(j), j = 1, 2, for the standardized

mean difference. The exact results are put together in Table 1.

6 Final Remarks

In Section 2.1, we have defined positive one-sided critical values cvj, j = 1, . . . K, by the

probability condition (9). For a fixed number of stages K and an overall significance

level α, we get an O’Brien and Fleming (1979) design with constant critical values in (9),

say cvj = consOBF (K,α), and a Pocock (1977) design with monotone increasing critical

values given as cvj =
√
j consPO(K,α), j = 1, . . . , K, see Hartung (2006), where also
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some of these one-sided critical values are tabulated. Designs with intermediate values of

the critical values are considered, for instance, in Jennison and Turnbull (2000).

Usually, two-sided critical values at level 2α for the correspondent symmetric two-

sided tests are tabulated in literature. For K ≥ 2, these two-sided critical values are

slightly smaller than the one-sided critical values at level α. At least for α ≤ 0.05, these

two-sided critical values may be used here for practical applications, see Jennison and

Turnbull (2000, p. 192).

We have defined the two-sided confidence interval CIk as the intersection of the one-

sided intervals CIk,L and CIk,U , see (18), and the confidence coefficient of CIk is at least

1 − 2α. If we use the critical values of the correspondent two-sided tests at level 2α,

we get a two-sided confidence interval, say CI0
k , that is slightly narrower than CIk for

K ≥ 2, but has a confidence coefficient of at least 1− 2α as well. Moreover, CI0
K reaches

a confidence coefficient of exactly 1 − 2α. However, using the lower boundary of CI0
k in

the test decision (14), the test level α cannot be guaranteed. Indeed, no severe differences

are expected for practical applications at least for α ≤ 0.05, see above.

Moreover, let us consider the testing situation in a group sequential trial. In a supe-

riority test, for example, the null-hypothesis H0,0 is rejected at level α in favor of H1,0 if

we observe Zk∗(0) > cvk∗ in at least one stage k∗ ∈ {1, ..., K} or that the individual con-

fidence interval Ik∗(ϑ), see (20), lies above 0, as implied by (9). Suppose k∗ < K and the

study is continued to reach a larger data base, for instance, for safety reasons in clinical

trials, then we may observe Zk(0) ≤ cvk in all further stages k > k∗ or that Ik covers

0 without contradicting the already shown superiority. This fact is able to induce mis-

understandings in practical applications caused by a lack of knowledge of the theoretical

background. The same problem may arise when, after a shown significant noninferiority,

the trial is continued for an attempt to reach superiority. Such possible misunderstand-

ings are avoided by using CIk instead of Ik as proposed in the testing procedure (14); see

also the discussion on the use of Ik and CIk in Section 2.2. The automatically implied

homogeneity test (23) would react when quite different results would have been observed

in later stages.
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