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Abstract: For studies comparing three independent arms: test group T , reference group

R, and control group C, we consider the hierarchical testing of the a priori ordered

hypotheses, that, in short,

(I) : T > C,

(II) : T > R−∆, ∆ > 0,

in general adaptive group sequential designs. For normally distributed response variables

with unknown variances, nested confidence intervals on the study parameters are derived

at each stage of the trial, holding a predefined confidence level. During the course of

the trial, the sample sizes can be calculated in a completely adaptive way based on

the unblinded data of previous stages. Concrete formulae for sample size updating are

provided in this paper. Moreover, in each interim analysis, it is possible to switch in the

planning from showing noninferiority of T in (II) to showing superiority of T , that is,

T > R.

A real data example is worked out in detail following an adaptive three-stage design of

Pocock (1977) type. In the example, (I) is shown in the first stage and (II) in the second

stage, so that the study stopped earlier at the second stage.

Keywords: Controlled noninferiority trials; Hierarchical testing; Group sequential con-

fidence intervals; Adaptive sample size planning; Switching from noninferiority to superi-

ority

1 Introduction

Several clinical trial guidelines, see for instance EMEA (1998), recommend to include

a placebo control group C, when an experimental test group T is to be compared to a

standard reference group R with respect to noninferiority. A more detailed regulatory

point of view is formulated by Koch (2006), who essentially says, that in areas, where

1Address correspondence to Joachim Hartung, Department of Statistics, Dortmund University of

Technology, 44221 Dortmund, Germany; E-mail: hartung@statistik.tu-dortmund.de
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difficulties exist with the description of the patient population in such a way that placebo-

response and response under a standard treatment can be well predicted, it may be

necessary to include both the placebo and active comparator in the confirmatory phase

III trial. It is an ethical mandate that the number of patients randomized to the placebo

comparison be limited as much as possible. An adaptive design combined with a multiple

testing procedure may offer the opportunity to stop recruitment to the placebo group after

an interim analysis, as soon as superiority of the experimental treatment over placebo has

been demonstrated. The trial is then continued into further stages to demonstrate the

noninferiority of the experimental treatment in comparison to the reference treatment.

By these considerations, we have a good description of the subject of the present

paper. With some noninferiority margin ∆ > 0, we test the a priori ordered hypotheses,

that, in short,

(I) : T > C,

(II) : T > R−∆, ∆ > 0.

When (I) is shown, we can test for (II). This proceeding has the positive consequence,

that for both hypotheses tests, we can take the same significance level, that describes the

overall test level, too. A controlled noninferiority trial is considered, for instance, also by

Pigeot et al. (2003), who present, in a one-stage trial, a different approach, where in a first

step it has to be shown that: R > C. Only when being here successful, other comparisons

are allowed. That approach bears the risk, that the whole study breaks down, when R

fails to be superior to C.

Excluding that risk, we may add in our approach at third order (III): R > C. But

the interest of the study is directed towards T , so that R is less important, especially as

R is usually well established on the market, which, however, does not imply to be very

effective.

In this paper, we consider normally distributed response variables, with unknown

variances, in general adaptive group sequential trials, see Hartung (2006). Parameterized

p-values, see Cox and Hinkley (1974), of the several stages are combined by use of the

inverse normal or Stouffer’s method, well known from meta-analysis, see Hartung, Knapp,

and Sinha (2008, Chapter 3). The resulting combined statistics are used for group se-

quential hierarchical testing of the a priori ordered hypotheses (I) and (II). A test on the

homogeneity of the stage specific treatment effects is derived. Further, the concept of re-

peated confidence intervals, see Jennison and Turnbull (2000) and references cited therein,
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is extended, in an exact way, to the case of unknown variances and possibly adaptively

chosen sample sizes. Moreover, in the considered adaptive sequential situation, where the

end of the study depends on a test decision, median unbiased maximum likelihood esti-

mators of the study parameters can be derived, including the possibly different variance

parameters.

In each interim analysis, it is possible to change the planning from showing nonin-

feriority of T to showing superiority of T with regard to R, too. We present a group

sequential confidence interval approach to switching from noninferiority to superiority,

see Bauer and Kieser (1996) and, for instance, the clinical trial guideline EMEA (2000).

Further, we develop formulae for sample size calculation in group sequential trials.

These formulae seem to be unknown so far, even in case of non-adaptive group sequential

trials, where the computed sample size for the first stage is taken in all following stages.

The outline of the present paper is as follows: In Section 2, the hierarchical testing

of the a priori ordered hypotheses is developed and the homogeneity of the stage specific

treatment differences is tested. Section 3 contains group sequential confidence intervals on

the treatment differences and the model parameters. Section 4 presents median unbiased

maximum likelihood estimators and meta-analytical estimators of the treatment effects

and of the model parameters. Section 5 contains the formulae for sample size calculation

and rules for adaptively updating the sample sizes. Section 6 presents a real data example,

following an adaptive three-stage design of Pocock (1977) type, in detail. There also, the

added test of (III): R > C is discussed in connection with the example. Section 7 contains

some further comments, especially concerning the choice of the critical values.

2 Group Sequential Testing

Let us consider a new treatment in a test group T, a standard treatment in a reference

group R, and a placebo treatment in a control group C. The associated response variables

may be denoted by XT , XR, and XC , which are mutually stochastically independent

normally distributed random variables with means µT , µR, µC and variances σ2
T > 0,

σ2
R > 0, and σ2

C > 0, respectively, that is,

XT ∼ N
(
µT , σ

2
T

)
, XR ∼ N

(
µR, σ

2
R

)
, XC ∼ N

(
µC , σ

2
C

)
.
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At level α, 0 < α < 1/2, we first test whether T is superior to C, that ist, we test the

hypotheses:

HTC
0 : µT = µC versus HTC

1 : µT > µC . (1)

If HTC
o is rejected at level α in favour of HTC

1 , then we test, at the same level α, the

noninferiority hypotheses of T with regard to R,

HTR
0 : µT = µR −∆ versus HTR

1 : µT > µC −∆, ∆ ∈ [0,∆0], (2)

where ∆0 ≥ 0 denotes some margin for the noninferiority parameter ∆. This hierar-

chical testing procedure holds the overall significance level α, see Maurer, Hothorn, and

Lehmacher (1995), and, for instance, Pigeot et al. (2003) for an application of this test

principle.

We consider a comparative study, which is carried out in a number of independent

stages, say K. In the i-th stage, i = 1, . . . , K, let be X̄Ti , X̄Ri , and X̄Ci the sample

means of nTi ≥ 2, nRi ≥ 2, and nCi ≥ 2 responses in the respective treatment groups.

The variance parameters can be estimated by the corresponding sample variances S2
Ti

,

S2
Ri

, and S2
Ci

, which are stochastically independent of the means and follow scaled χ2-

distributions, that is, for i = 1, . . . , K,

(nTi − 1)
S2
Ti

σ2
T

∼ χ2
nTi−1, (nRi − 1)

S2
Ri

σ2
R

∼ χ2
nRi−1, (nCi − 1)

S2
Ci

σ2
C

∼ χ2
nCi−1. (3)

2.1 Test Statistics

The parameters of interest are θTC = µT − µC and θTR = µT − µR. Denote tν the central

t-distribution with ν degrees of freedom, then with the true parameters θTC and θTR, we

have, in good approximation, at the i-th stage, i = 1, . . . , K,

DTC
i (θTC) :=

X̄Ti − X̄Ci − θTC√
σ̂2
Ti
/nTi + σ̂2

Ci
/nCi

∼ tνi(TC), (4)

DTR
i (θTR) :=

X̄Ti − X̄Ri − θTR√
σ̂2
Ti
/nTi + σ̂2

Ri
/nRi

∼ tνi(TR), (5)

where

σ̂2
Ti

= S2
Ti
, σ̂2

Ci
= S2

Ci
, σ̂2

Ri
= S2

Ri
,

and with Satterthwaite’s approximation,

νi(TC) =

(
S2
Ti
/nTi + S2

Ci
/nCi

)2(
S2
Ti
/nTi

)2
/(nTi − 1) +

(
S2
Ci
/nCi

)2
/(nCi − 1)

,
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νi(TR) =

(
S2
Ti
/nTi + S2

Ri
/nRi

)2(
S2
Ti
/nTi

)2
/(nTi − 1) +

(
S2
Ri
/nRi

)2
/(nRi − 1)

.

Provided σ2
T = σ2

C , then both parameters are estimated in the i-th stage by the pooled

estimator

σ̂2
Ti

= σ̂2
Ci

=
(nTi − 1)S2

Ti
+ (nCi − 1)S2

Ci

nTi − nCi − 2
, (6)

and in (4), we get an exact t-distribution with νi(TC) = nTi +nCi−2 degrees of freedom,

i = 1, . . . , K. Analogously, we proceed when σ2
T = σ2

R.

If σ2
T = σ2

C = σ2
R =: σ2, then the common variance is estimated in the i-th stage by

σ̂2
i =

(nTi − 1)S2
Ti

+ (nCi − 1)S2
Ci

+ (nRi − 1)S2
Ri

nTi + nCi + nRi − 3
(7)

and in (4) and (5), νi(TC) = νi(TR) = nTi + nCi + nRi − 3, i = 1, . . . , K.

Let Ftν denote the cumulative distribution function of a t-variate with ν degrees of

freedom, then it holds, for the parameterized 1− p-values,

1− pdi (θd) = Ftνi (d)(D
d
i (θd)) ∼ U(0, 1), d = TC, TR, i = 1, . . . , K, (8)

where U(0, 1) stands for the uniform distribution in the unit interval. Consequently, we

obtain

zdi (θd) := Φ−1(1− pdi (θd)) ∼ N (0, 1), d = TC, TR, i = 1, . . . , K, (9)

with Φ−1 the inverse of the standard normal cumulative distribution function Φ.

The stages of the trial are assumed to be independent. So up to the j-th stage, we

define the combining pivotal statistics

Zd
j (θd) :=

j∑
i=1

zdi (θd) ∼
√
j N (0, 1), d = TC, TR, j = 1, . . . , K. (10)

Let Y1, . . . YK , in general, be mutually independent N (0, 1)-distributed random vari-

ables. Then, for predefined level α, 0 < α < 1/2, positive critical values cv1(d), . . . , cvK(d)

may be defined by the following probability condition:

P

(
j∑
i=1

Yi ≤ cvj(d) for all j = 1, . . . , K

)
= 1− α, d = TC, TR, (11)

see Hartung (2006), and a respective comment in Section 7.
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Using these critical values cvj(d), we get the following probability statements for the

combining pivotal statistics from (10),

Pθd

(
Zd
j (θd) ≤ cvj(d) for j = 1, . . . , k ≤ K

)≥ 1− α for k < K,

= 1− α for k = K,

d = TC, TR.

(12)

Consequently, we can formulate the following test procedure at overall level of at most

α as implied by (12): At the k-th stage, k = 1, . . . , K, we reject HTC
0 in favour of HTC

1 ,

see (1),

if ∃i0 ∈ {1, . . . , k} : ZTC
i0

(0) > cvi(TC). (13)

Provided the decision is made for the alternative HTC
1 , then in the noninferiority test

problem (2), we decide in favour of the alternative HTR
1,∆, ∆ ∈ [0,∆0],

if ∃j∆ ∈ {1, . . . , k} : ZTR
j∆

(−∆) > cvj(TR). (14)

Provided the placebo arm C is not stopped after stage i0, since each stage of the trial

should be controlled by a placebo group C, for instance, because of safety concerns of the

treatments, we can continue the three-armed trial even in the case of an early stage i0

yielding significance in (13) without the risk of losing the already shown significance.

If we are satisfied with showing T as being noninferior to R, we will stop the trial after

that stage j∗, when ZTR
j∗ (−∆o) > cvj∗(TR) the first time and j∗ ≥ i0.

In case unexpected, for T favourable estimates of the involved parameters in the groups

T and R have been observed up to stage j∗ < K, this may lead to considerations to switch

from showing noninferiority to showing superiority of T with respect to R. The trial is

then continued by further planning with ∆ = 0 for the testing problem (2). Note that by

(14), there is no risk to lose the noninferiority once shown.

2.2 Homogeneity of the Treatment Differences

Let us consider the extended model that each stage has individual parameters, say µd,i

and σ2
d,i > 0, d = T,R,C, i = 1, . . . , K. Then

θTC,i = µT,i − µC,i and θTR,i = µT,i − µR,i, i = 1, . . . , K, (15)

are the stage specific parameters for the treatment differences. The distributions of the

test statistics DTC
i (θTC,i), see (4), and DTR

i (θTR,i), see (5), remain valid, so that, see (9),

zdi (θd,i) ∼ N (0, 1), d = TC, TR, i = 1, . . . , K. (16)
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So as in (10), we get

Z̃d
j (θd,1, . . . , θd,j) :=

j∑
i=1

zdi (θd,i) ∼
√
j N (0, 1), d = TC, TR, j = 1, . . . , K, (17)

and we can apply (11) with the positive critical values cvj(d) to give the following prob-

ability statement, see (12),

Pθd,1,...,θd,k

(
−cvj(d) ≤ Z̃d

j (θd,1, . . . , θd,j) ≤ cvj(d) for j = 1, . . . , k ≤ K
)

≥ 1− 2α, d = TC, TR.
(18)

For example, with d = TC, the stage specific estimators θ̂TC,i = X̄Ti− X̄Ci , i = 1, . . . , j ≤
k ≤ K, satisfy the inequalities in the brackets of (18) because of zTCi (θ̂TC,i) = 0.

When we assume that the parameters θd,i are really identical up to the k-th stage, say

θd,i = θd for i = 1, . . . , k, then Z̃d
j (θd,1, . . . , θd,j) = Zd

j (θd) from (10), j = 1, . . . , k, and by

(18), there holds

Pθd(−cvj(d) ≤ Zd
j (θd) ≤ cvj(d) for j = 1, . . . , k ≤ K) ≥ 1− 2α,

d = TC, TR.
(19)

If now for a common level α, we cannot find some value for θd satisfying the inequalities in

(19), we can conclude with an error rate of at most 2α, that the assumption of identical

parameters up to the k-th stage was wrong. This can formally be stated as a test on

homogeneity of the treatment differences.

In testing, for d = TC or TR,

Hd
0,hom(k) : θd,1 = . . . = θd,k versus Hd

1,hom(k) : θd,i1 6= θd,i2 (20)

for some i1, i2 ∈ {1, . . . , k}, k = 2, . . . , K, the homogeneity hypothesis Hd
0,hom(k) will be

rejected at level of at most 2α, if

C̃I
d

k := {y ∈ IR | −cvj(d) ≤ Zd
j (y) ≤ cvj(d) for j = 1, . . . , k} = ∅. (21)

If Hd
0,hom(k∗) is rejected, then also Hd

0,hom(k) will be rejected for k∗ ≤ k ≤ K. An

alternative to this homogeneity test does not seem to be known. A possible way to verify

(21) numerically will be provided in Section 3.2.

A specific group sequential homogeneity test was claimed, for instance, by Koch (2006),

who also pointed out its need for regulatory concerns.
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Suppose that up to stage k − 1 the sets C̃I
d

j , j = 1, . . . , k − 1, are nonempty and C̃Ik

is empty for a common level α. Thus, up to an error rate of 2α, see (20), we may consider

that the parameters of the underlying treatment difference are no longer homogeneous in

all the stages. So, with regard to statistical concerns, results from this stage k should

not influence conclusions, or non-conclusions, from the previous stages. Nevertheless, one

may try to find an explanation for the revealed treatment behavior.

The basic test principle applied here to (20) is the same as used by Hartung and

Knapp (2003) in deriving a test on homogeneity of variances of random treatment-by-

sample interactions. As usually done, the significance level in the homogeneity test may

be chosen higher than in the efficiency test. In the extreme case, when α comes near 1/2

in (19), all stage specific estimates of the treatment differences had to be nearly equal in

order to avoid a rejection of the homogeneity hypothesis H0,hom in (20), at level near 1.

Additionally to (20), in an approximate way, homogeneity tests from meta-analysis

may be applied, see Hartung, Knapp, and Sinha (2008, Chapter 6).

3 Group Sequential Confidence Intervals

The functions Ftν (·) and Φ−1(·), used in (8) and (9), are (strictly) monotone increas-

ing in their arguments. The pivotal test statistics DTC
i (θTC) and DTR

i (θTR) from (4)

and (5) are monotone decreasing in θTC and θTR, respectively, implying that zdi (θd) =

Φ−1(Ftνi(d)(D
d
i (θd))), see (9), is monotone decreasing in θd, d = TC, TR, i = 1, . . . , k.

Consequently, we can state for the whole functions from (10):

ZTC
j (θTC) and ZTR

j (θTR) are monotone decreasing in θTC and θTR,

respectively, j = 1, . . . , K.
(22)

3.1 One-sided Confidence Intervals

From (21), we derive the lower confidence sets on θd as

CIdk,I(θd) :={y ∈ IR | Zd
j (y) ≤ cvj(d) for j = 1, . . . , k},

d = TC, TR, k = 1, . . . , K,
(23)

and again by (12), the confidence coefficient of CIdK,I is at least 1− α and exactly 1− α
for k = K. Further, the confidence sets are nested,

CIdk+1,I(θd) ⊂ CIdk,I(θd), k = 1, . . . , K − 1, d = TC, TR, (24)
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Using now that Zd
j (y) is monotone decreasing in y, see (22), we obtain that the confidence

sets are genuine intervals, allowing the following representation:

CIdk,I(θd) =
[
Ldk,∞

)
, d = TC or TR, (25)

where Ldk = max{Ld(1), . . . , Ld(k)} and Ld(j) solves

Zd
j (Ld(j)) = cvj(d), j = 1, . . . , k, k = 1, . . . , K. (26)

Note that the solutions Ld(j) in (26) are unique and can be iteratively found, for instance,

by use of the bisection method. Let us apply the group sequential confidence intervals to

our hierarchical testing problem at overall significance level α, 0 < α < 1/2. Since the

intervals are nested, see (24), we obtain in accordance with (13) and (14) by use of Ldk

from (25) the following decision rules:

At stage k, k = 1, . . . , K,

(i) if 0 ≥ LTCk , then stay with HTC
0 in (1)

and HTR
0,∆0

in (2),

(ii) if 0 < LTCk and −∆0 ≥ LTRk , then decide for HTC
1 in (1)

and stay with HTR
0,∆0

in (2),

(iii) if 0 < LTCk and −∆ < LTRk , then decide for HTC
1 in (1)

and for HTR
1,∆ in (2), ∆ ∈ [0,∆0].

(27)

In case (iii), we may stop the trial after stage k. If at some stage j∗ < K we observe

−∆0 < LTRj∗ , we may consider, when continuing the study, to switch in the further planning

to show T as superior to R.

In case (ii), if k < K, we may stop the control arm C and continue the trial only with

the arms T and R.

In case (i), we have to continue the trial provided k < K.

3.2 Two-sided Confidence Intervals

In analogy to (23), let us define the upper confidence sets on θd as

CIdk,II(θd) :={y ∈ IR | −cvj(d) ≤ Zd
j (y) for j = 1, . . . , k},

d = TC, TR, k = 1, . . . , K,
(28)
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and by (12), each confidence set has a confidence coefficient of at least 1−α, being exactly

1− α for k = K. The interval representation, using (22), is given by

CIdk,II(θd) =
(
−∞, Ud

k

]
, d = TC or TR, (29)

where Ud
k = min{Ud(1), . . . , Ud(k)} and Ud(j) solves uniquely

Zd
j (Ud(j)) = −cvj(d), j = 1, . . . , k, k = 1, . . . , K. (30)

The two-sided confidence interval on θd at stage k is defined as the intersection of the two

corresponding one-sided confidence intervals,

CIdk (θd) :=
[
Ldk, U

d
k

]
, d = TC or TR, (31)

where Ldk is from (25) and Ud
k is from (29), k = 1, . . . , K. The confidence intervals are

nested,

CIdk+1(θd) ⊂ CIdk (θd), k = 1, . . . , K − 1, d = TC, TR, (32)

and each confidence interval has a confidence coefficient of at least 1− 2α, 0 < α < 1/2.

Denote Idk (θd) = [Ld(j), Ud(j)], see (26) and (30), the individual two-sided confidence

interval on θd at the k-stage. Then it holds,

CId1 (θd) = Id1 (θd) and

CIdk (θd) = CIdk−1(θd) ∩ Idk (θd), k = 2, . . . , K, d = TC, TR,
(33)

Since CIdk ⊂ Idk , the interval Idk is another two-sided confidence interval with confidence

coefficient of at least 1− 2α. The interval Idk results from the boundaries in stage k alone

and will be always nonempty. Therefore, Idk may be preferred to CIdk , see for instance

Jennison and Turnbull (2000, p. 192) in their corresponding setting. Depending on the

choice of α, the two-sided confidence interval CIdk (θd) from (31) may be empty.

Let us look at the homogeneity test (20). We have to check whether the set C̃I
d

k

defined in (21) is empty. Now we can state that this set coincides with the two-sided

confidence interval: C̃I
d

k = CIdk (θd). Hence, if CIdk (θd) is empty, that is Ud
k < Ldk, see (31),

we have to reject the homogeneity hypothesis Hd
0,hom(k) in (20) with an error rate of at

most 2α. Consequently, preferring Idk to CIdk does not provide some real advantage.

On the other hand, under the model assumptions of identical parameters underlying

the different stages of the study, the probability to obtain an empty confidence interval

CIdk (θd) is bounded by 2α, d = TC or TR.
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3.3 Approximative Confidence Intervals

Instead of the implicitly defined confidence intervals, we provide approximative confidence

intervals in an explicit form. Their boundaries may be used also as starting points in an

iterative procedure to determine the exact confidence intervals.

Let us approximate the central t-distributions involved in the combining statistics by

normal distributions with the same first two moments. The variance of a tν-variate is

ν/(ν − 2). So we may define the following weights at the i-th stage, i = 1, . . . , K,

wTCi :=

√
νi(TC)− 2

νi(TC)[σ̂2
Ti
/nTi + σ̂2

Ci
/nCi ]

, (34)

provided νi(TC) > 2, see (4), and thus, the statistic zTCi (θTC) from (9) is approximated

by

zTCi (θTC)appr = Φ−1
(
Φ
[
wTCi (X̄Ti − X̄Ci − θTC)

])
, (35)

which is approximately N (0, 1)-distributed. Hence, the combining statistic ZTC
j (θTC)

from (10) is approximated by

ZTC
j (θTC)appr =

j∑
i=1

wTCi (X̄Ti − X̄Ci − θTC), j = 1, . . . , K, (36)

which is approximately N (0, j)-distributed. Equating ZTC
j (y)appr to cvj(TC), see (26),

and to −cvj(TC), see (30), and solving for y yields the following approximate individual

confidence interval on θTC , see (33), for j = 1, . . . , K,

ITCj (θTC)appr =

j∑
i=1

wTCi (X̄Ti − X̄Ci)∑j
h=1w

TC
h

± cvj(TC)∑j
h=1w

TC
h

. (37)

By setting

CITC1 appr = ITC1 (θTC)appr and

CITCk (θTC)appr = CITCk−1(θTC)appr ∩ ITCk (θTC)appr, k = 2, . . . , K,
(38)

we obtain approximations of the confidence intervals CITCk on θTC = µT − µC in (31).

Proceeding analogously, we get approximate confidence intervals on θTR = µT − µR.

3.4 Confidence Intervals on the Means

Let, based on the data of the i-th stage, i = 1, . . . , K, σ̂2
i (T ) be an unbiased estimator of

σ2
T , which is stochastically independent of X̄Ti and satisfies, see (3), (6) or (7),

νi(T ) σ̂2
i (T )/σ2

T ∼ χ2
νi(T ), (39)
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then with the i-th test statistic

DT
i (µT ) :=

√
nTi

X̄Ti − µT√
σ̂2
i (T )

∼ tνi(T ), i = 1, . . . K, (40)

we derive the combining statistics, see (10), for j = 1, . . . , K,

ZT
j (µT ) :=

j∑
i=1

Φ−1
(
Ftνi(T )

(
DT
i (µT )

))
∼
√
j N (0, 1). (41)

In the same way as above, see (31), we obtain the two-sided confidence interval on µT at

the k-th stage, k = 1, . . . , K, as

CITk (µT ) =

[
max
1≤j≤k

LT (j), min
1≤j≤k

UT (j)

]
, (42)

where with positive critical values cvj(T ) in (11), LT (j) and UT (j) are the unique solutions

of

ZT
j (LT (j)) = cvj(T ) and ZT

j (UT (j)) = −cvj(T ), j = 1, . . . , k ≤ K. (43)

The confidence intervals are nested and possess confidence coefficients of at least 1 −
2α, 0 < α < 1/2.

Defining the weights, for i = 1, . . . , K,

wTi :=

√
(νi(T )− 2)nTi
νi(T )σ̂2

i (T )
, νi(T ) > 2, (44)

we receive the approximate individual confidence interval on µT at the j-th stage, see

(37), for i = 1, . . . , K,

ITj (µT )appr :=

j∑
i=1

wTi X̄Ti∑j
h=1 w

T
h

± cvj(T )∑j
h=1w

T
h

, (45)

Again by CIT1 (µT )appr = IT1 (µT )appr and CITk (µT )appr = CITk−1(µT )appr ∩ ITk (µT )appr, k =

2, . . . , K, we obtain approximations of CITk (µT ) in (42). Confidence intervals on µC and

µR are derived in the same way.

3.5 Confidence Intervals on the Variance Parameters

Let Fχ2
ν

denote the cumulative distribution function of a χ2-variate with ν degrees of

freedom. Using the pivotal χ2-statistics from (39), which are monotone decreasing in

σ2
T > 0, we obtain, in analogy to (8),

Fχ2
νi(T )

(
νi(T )

σ̂2
i (T )

σ2
T

)
∼ U(0, 1), i = 1, . . . , K, (46)
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leading as in (10) to the pivotal combining statistics, for j = 1, . . . , K,

V T
j (σ2

T ) :=

j∑
i=1

Φ−1

[
Fχ2

νi(T )

(
νi(T )

σ̂2
i (T )

σ2
T

)]
∼
√
j N (0, 1), (47)

which are monotone decreasing in σ2
T > 0. Denote cv∗1, . . . , cv

∗
K positive critical values

defined by (11).

Let σ2
T,L(j) and σ2

T,U(j) be the unique solutions of the equations

V T
j (σ2

T,L(j)) = cv∗j and V T
j (σ2

T,U(j)) = −cv∗j , j = 1, . . . , k ≤ K, (48)

then in analogy to (31), we derive the confidence intervals on σ2
T as

V CITk (σ2
T ) =

[
max
1≤j≤k

σ2
T,L(j), min

1≤j≤k
σ2
T,U(j)

]
, k = 1, . . . , K, (49)

which are nested and possess confidence coefficients of at least 1− 2α, 0 < α < 1/2. For

common α, an empty interval indicates that the assumption of homogeneous variances

over the stages may be violated, see (20) and Section 3.2.

Applying the rule of error propagation, we derive for the χ2-statistics of (39), that the

transformations

gTi (σ2
T ) :=

√
2
νi(T ) σ̂2

i (T )

σ2
T

−
√

2 νi(T ), i = 1, . . . , K, (50)

are approximately N (0, 1)-distributed, so that GT
j (σ2

T ) :=
∑j

i=1 g
T
i (σ2

T ) is approximately

N (0, j)-distributed, j = 1, . . . , K. Solving now GT
j (y) ≤ cv∗j and GT

j (y) ≥ −cv∗j for y > 0

yields the approximate individual confidence intervals, see (33), on σ2
T as

V ITj (σ2
T )appr := [aT (j)2, b∗T (j)2], j = 1, . . . , K, (51)

where

b∗T (j)2 =

{
bT (j)2 if bT (j) > 0,

∞ if bT (j) ≤ 0,

aT (j) =

∑j
i=1

√
2 νi(T ) σ̂i(T )∑j

h=1

√
2 νh(T ) + cv∗j

and

bT (j) =

∑j
i=1

√
2 νi(T ) σ̂i(T )∑j

h=1

√
2 νh(T )− cv∗j

.

Again by setting V CIT1 (σ2
T )appr = V IT1 (σ2

T )appr and V CITk (σ2
T )appr = V CITk−1(σ2

T )appr ∩
V ITk (σ2

T )appr, k = 2, . . . , K, we get explicit approximations to the confidence intervals on

σ2
T in (49). In the same way, we may derive confidence intervals on σ2

C and σ2
R.
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4 Group Sequential Point Estimation

4.1 Estimation of the Treatment Difference

For θTC = µT − µC , the combining statistic ZTC
j (θTC) from (10) is N (0, j)-distributed

with mode and median 0. The maximum likelihood (ML) estimator θ̂
(1)
TC(j) of θTC at stage

j is given by

θ̂
(1)
TC(j) solves ZTC

j

(
θ̂

(1)
TC(j)

)
= 0, j = 1, . . . , K. (52)

The solution in (52) is unique.

The global p-value at stage j is

pTC(j) = 1− Φ
(
ZTC
j (θTC)/

√
j
)
, j = 1, . . . , K, (53)

and solving (53) for θTC such that pTC(j) = 1/2 yields θ̂
(1)
TC(j) as solution. Since ZTC

j (θ)

is monotone in θTC , we can conclude:

θ̂
(1)
TC(j) is median unbiased, j = 1, . . . , K, (54)

see Cox and Hinkley (1974, p. 273), that is, the ML-estimator θ̂
(1)
TC(j) lies with equal

probability as well below the parameter θTC as above θTC .

Equating the approximative combining statistic ZTC
j (θTC)appr from (36) to 0 and

solving for θTC yields the midpoint of the approximative individual confidence interval

ITCj (θTC)appr from (37) as approximate median unbiased ML-estimator θ̂
(2)
TC(j) of θTC at

the j-th stage, given by

θ̂
(2)
TC(j) =

j∑
i=1

wTCi (X̄Ti − X̄Ci)∑j
h=1 w

TC
h

, j = 1, . . . , K, (55)

where the weights are defined in (34). Note that, in combining the mean differences of

the stages, their inverse estimated standard errors are used in the weights and not their

inverse estimated variances as known from the ’minimum variance unbiased’ estimator

of the overall mean difference in meta-analysis, see Hartung, Knapp, and Sinha (2008,

Chapter 8). Weighted mean differences like θ̂
(2)
TC(j) from (55) are used in the generalized

Cochran-Wald statistics considered by Hartung, Böckenhoff, and Knapp (2003).

Replacing in (55) the weights wTCi by

w̃TCi =

(
σ̂2
Ti

nTi
+
σ̂2
Ci

nCi

)−1

, i = 1, . . . , K, (56)
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we obtain the meta-analytical estimator θ̂
(3)
TC(j) of θTC up to the j-th stage, j = 1, . . . , K.

For θTR = µT − µR, the estimators θ̂
(h)
TR(j) of θTR at stage j, h = 1, 2, 3, are defined

analogously.

4.2 Estimation of the Mean and Variance Parameters

With the combining statistic from (41), the unique solution of ZT
j

(
µ̂

(1)
T (j)

)
= 0 defines

the median unbiased ML-estimator µ̂
(1)
T (j) of µT at the j-th stage, j = 1, . . . , K, see

above. The midpoint of the interval ITj (µT )appr in (45) is the approximate median unbiased

ML-estimator µ̂
(2)
T (j) of µT at the j-th stage, and the replacing there the weight wTi by

w̃Ti = nTi/σ̂
2
i (T ) yields the midpoints as the meta-analytical estimator µ̂

(3)
T (j) of µT at

the j-th stage, j = 1, . . . , K.

By a quite analogous argumentation as above in Section 4.1, we derive with the com-

bining statistic from (47) the median unbiased ML-estimator σ̂2
T

(1)
(j) of σ2

T at the j-th

stage as follows:

σ̂2
T

(1)
(j) solves uniquely V T

j

(
σ̂2
T

(1)
(j)

)
= 0, j = 1, . . . , K. (57)

The solution of GT
j (y) = 0, see (50), (51), is the approximate median unbiased ML-

estimator of σ2
T at the j-th stage, which can be represented as:

σ̂2
T

(2)
(j) =

(
j∑
i=1

√
νi(T ) σ̂i(T )∑j
h=1

√
νh(T )

)2

, j = 1, . . . , K. (58)

Since the variance of σ̂2
i (T ) from (39) is 2σ4

T/νi(T ), the meta-analytical inverse variance

weighted estimator of σ2
T up to the j-th stage takes on the following form:

σ̂2
T

(3)
(j) =

j∑
i=1

νi(T ) σ̂2
i (T )∑j

h=1 νh(T )
, j = 1, . . . , K, (59)

which may also be considered at the pooled estimator of σ2
T up to the j-th stage. Note

that in (58) the estimated standard deviations are combined, and in (59), the estimated

variances. In the groups R and C, the parameters are estimated in an analogous way.
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5 Sample Size Calculation and Adaptive Updating

Suppressing the subscript i and supposing known variances, let us consider the test statis-

tic, see (5),

DTR
0 (θTR) =

X̄T − X̄R − θTR√
σ2
T/nT + σ2

R/nR
∼ N (0, 1), (60)

which should be used for testing, with fixed ∆ ∈ [0,∆0] and fixed value θ∗TR > −∆, the

point hypotheses

H∗
0 : θTR = −∆ versus H∗

1 : θTR = θ∗TR > −∆, (61)

so that under H∗
0, D

TR
0 (−∆) ∼ N (0, 1).

Then for given level α, 0 < α < 1, and desired power 1 − βTR, 0 < βTR < 1, the

required sample sizes nT and nR should satisfy the following inequality,

θ∗TR − (−∆)√
σ2
T/nT + σ2

R/nR
≥ Φ−1(1− α) + Φ−1(1− βTR). (62)

For ease of presentation, we will use this formula (62) as a good approximation also in

the following, when t-statistics will be applied. Denote stage 0 a priori information and

external restrictions.

Then after stage j, based on previous information of stages 0, 1, . . . , j, let θ̂TR(j) >

−∆, θ̂TC(j) > 0, σ̂2
T (j) , σ̂2

R(j), and σ̂2
C(j), j = 0, 1, . . . , K, be reasonable estimates of their

corresponding parameters, for instance, by use of the point estimators provided in Section

4. Assume the test above is placed after stage j, and put θ∗TR = θ̂TR(j), σ2
T = σ̂2

T (j), and

σ2
R = σ̂2

R(j), then formula (62) becomes the following inequality, with θ̂TR(j) + ∆ > 0,

θ̂TR(j) + ∆√
σ̂2
T (j)/nT + σ̂2

R(j)/nR

≥ Φ−1(1− α) + Φ−1(1− βTR), j = 0, . . . , K. (63)

Whereas 1 − βTR is the desired power at θTR(j) = θ̂TR(j) > −∆ in the testing problem

(2) after stage j, let the desired power at θTC = θ̂TC(j) > 0 in the testing problem (1)

after stage j be 1−βTC , 0 < βTC < 1. So, with the same level α and by use of DTC
0 (θTC),

see (60), we derive analogously for the required sample sizes nT and nC in the testing

problem (1) after stage j the following inequality, with θ̂TC(j) > 0,

θ̂TC(j)√
σ̂2
T (j)/nT + σ̂2

C(j)/nC

≥ Φ−1(1− α) + Φ−1(1− βTC), j = 0, . . . , K. (64)
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For an easy use of these formulae in the following, let us define sets of feasible sample

sizes, for k = 0, . . . , K,

ΓTR(κ, βTR,∆)k := {(nT , nR) ∈ IN × IN |nT and nR satisfy (63) for j = k and α = κ}(65)

ΓTC(κ, βTC)k := {(nT , nC) ∈ IN × IN |nT and nC satisfy (64) for j = k and α = κ} . (66)

Recall now from (11), for d = TC or TR, the event

A :=

{
h∑
i=1

Yi ≤ cνh(d) for all h = 1, . . . , K

}
,

and let us consider for an arbitrary, but fixed, stage j, j ∈ {1, . . . , K}, the event

B :=

{
h∑
i=1

Yi ≤ cνh for h = 1, . . . , j − 1, and

j−1∑
i=1

Yi +
K∑
i=j

Yi ≤ cνK(d)

}
.

Clearly, the probability of event B is larger than of event A. Moreover,
∑K

i=j Yi isN (0, K−
(j − 1))-distributed and may be collapsed to

√
K − (j − 1)Yj, which has the same distri-

bution. Hence, we obtain{
h∑
i=1

Yi ≤ cνh(d) for h = 1, . . . , j − 1, and

j−1∑
i=1

Yi +
√
K − (j − 1)Yj ≤ cνK(d)

}

⊃

{
h∑
i=1

Yi ≤ cνh(d) for all h = 1, . . . , K

}
. (67)

Further, denote θ0
d a value for θd under the null-hypothesis Hd

0, given as HTC
0 from (1)

for d = TC or as HTR
0,∆ from (2) for d = TR and ∆ ∈ [0,∆0] fixed. The aim is, that

at some stage j, by use of the combining pivotal statistic from (10), we will obtain:

Zd
j (θ0

d) > cνj(d).

The following proceeding is a consequence of (67). If we decide after stage j−1 to omit

the interim analyses j up to K − 1, we can assign the remaining weight
√
K − (j − 1)

to the next final study part, named stage (j,K), and build the final test statistic, see (9)

and (10),

Zd
(j,K)(θ

0
d) = Zd

j−1(θ0
d) +

√
K − (j − 1) Φ−1

[
1− pd(j,K)(θ

0
d)
]
, (68)

where Zd
(j,K)(θ

0
d) ∼

√
K N (0, 1) under Hd

0, j = 1, . . . , K, defining Zd
0 = 0. The test

statistic Zd
(j,K)(θ

0
d) has to be compared with the K-th critical value cνK(d) in testing Hd

0.

We want to reach cνK(d) by use of Zd
(j,K)(θ

0
d), that is, we have to equate:

cνK(d) = Zd
j−1(θ0

d) +
√
K − (j − 1) Φ−1

[
1− pd(j,K)(θ

0
d)
]
, (69)
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and solving the equation for the unknown p-value yields as solution the projected p-value

p̂d(j,K)(θ
0
d) = 1− Φ

[
cνK(d)− Zd

j−1(θ0
d)√

K − (j − 1)

]
, d = TC or TR, j = 1, . . . , K. (70)

Now cνK(d) will be reached with probability 1 − βd when the stage specific t-tests, con-

cerning d = TC or TR, which are planned for the next final stage (j,K), will pro-

vide levels attained or p-values below the projected p-values with probability 1 − βTC

and 1 − βTR, respectively. Observed p-values below the projected p-values would yield:

Zd
(j,K)(θ

0
d) > cνK(d), d = TC or TR. Thus, the significance or α-level of these tests, say

αd(j,K), d = TC, TR, are chosen to satisfy

αd(j,K) = p̂d(j,K)(θ
0
d), d = TC, TR, j = 1, . . . , K. (71)

Consequently, conditioned on θTC = θ̂TC(j − 1) > 0 and θTR = θ̂TR(j − 1) > −∆, when

the above mentioned t-tests would be applied, the required sample sizes MTj , MCj and

MRj of the respective groups in the final stage (j,K), for holding the power 1− βTC for

d = TC in (1) and the power 1− βTR for d = TR in (2), should be feasible and satisfy:

(MTj ,MCj) ∈ ΓTC(p̂TC(j,K)(0), βTC)j−1 and (72)

(MTj ,MRj) ∈ ΓTR(p̂TR(j,K)(−∆), βTR,∆)j−1, (73)

see (65), (66), (70), (71). Thus, the projected p-values can be named as conditional error

functions.

If we do not want to finish the trial in this way and have in mind the originally planned

K − (j − 1) further stages, we will not perform the above mentioned t-tests in the final

stage (j,K) but in stage j. Consequently, we will choose now the sample size in each

group for stage j proportionally as, see (72) and (73),

nTj ≈
MTj

K − j + 1
, nCj ≈

MCj

K − j + 1
, nRj ≈

MRj

K − j + 1
, j = 1, . . . , K, (74)

which is a (slightly) conservative choice by (67). Note that each sample size should be at

least 2 in each stage. Then we use cνj(TC) as critical value for ZTC
j (0) and cνj(TR) as

critical value for ZTR
j (−∆), ∆ ∈ [0,∆0), in stage j, see (10).

Especially for j = 1:

nT1 ≈
MT1

K
, nC1 ≈

MC1

K
, and nR1 ≈

MR1

K
(75)
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where, see (65) and (66),

(MT1 ,MC1) ∈ ΓTC(αTC , βTC)0, αTC := 1− Φ(cνK(TC)/
√
K),

(MT1 ,MR1) ∈ ΓTR(αTR, βTR,∆)0, αTR := 1− Φ(cνK(TR)/
√
K),

are feasible starting sample sizes.

By taking the initial sample sizes in all stages, (75) provides formulae for sample size

calculation in non-adaptive group sequential trials.

Further, formulae (72) to (75) provide an optimal allocation of sample sizes at each

stage, when minimizing, for instance, the total sample size at each stage under some side

conditions. Often in practice, a chosen randomization scheme of the treatments has to be

taken into account.

We start with the above calculated initial sample sizes in the first stage of the study.

Then with the proceeding above, we reach the full power 1− βTC , conditioned on θTC =

θ̂TC(K − 1) > 0 and 1 − βTR, conditioned on θTR = θ̂TR(K − 1) > −∆, latest in stage

j = K, if not stopped before because of shown significance.

The total power, say 1 − βTotal, of the hierarchical testing of (1) and (2), can be

estimated by

1− βTC − βTR ≤ 1− βTotal ≤ min{1− βTC , 1− βTR}. (76)

When we replace the combining statistic Zj by its approximation Zj,appr from (36) in

the above considerations, we obtain an approximative proceeding, that fulfills the purpose

of sample size calculation in practical situations.

Further, we may formally define the p-values, see (8), as suiting to the null-hypothesis

that θd is the true parameter, see Cox and Hinkley (1974, p. 221). So, we may apply

the general result that under the null-hypothesis p-values preserve their distribution and

independence (for continuous null-distributions) when sample sizes are chosen adaptively

in a consecutive way, see for instance Brannath, Posch, and Bauer (2002). All the above

procedures are based on such p-values. Consequently, all the statements remain valid

when sample sizes are chosen adaptively as demonstrated in this section, see also Hartung

(2006).
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Table 1: Controlled noninferiority clinical trial concerning patients with asthma bronchiale

in an adaptive 3-stage Pocock (1977) design with early stop for shown significance after

stage 2 at given one-sided significance level α = 0.025.

Adaptive Critical

Stage sample size Data [in `] Test value value

i nTi nRi nCi x̄Ti x̄Ri x̄Ci σ̂i ZTCi (0) ZTRi (−0.2) ZTRi (0) cνi

0 — 2.6 2.5 2.1 0.9 — ∆0 = 0.2 —

1 116 58 29 2.65 2.56 2.13 0.87 2.86 2.06 0.45 2.289

2 96 48 24 2.69 2.51 2.15 0.81 5.76 4.70 1.71 3.237

3 STOP Because of shown significance

6 A Real Data Example

Let us consider a clinical trial one of the authors was concerned with as a statistical

advisor. Two different inhalers, a new test drug T and a standard reference drug R, for

treating patients with asthma bronchiale are compared with respect to a lung function

parameter named FEV1: forced expiratory volume in 1 second, measured in liter (`). A

control group C received a placebo drug, but the same basic treatment as the groups T

and R. Methods of the previous sections will be demonstrated for the hierarchical testing

problem (1) and (2) in the present application, where ∆0 = 0.2` is a usual margin of

the noninferiority parameter for the considered clinical variable. To increase the number

of observations on the new drug, the three drugs were randomized in blocks of size 7

containing each: 4×T, 2×R, 1×C. By technical reasons, the randomization scheme could

not be changed in an interim analysis. Further, a common variance σ2 could be assumed

in all groups so that formulae (7) is used for its estimation and computing the degrees of

freedom at each stage.

The one-sided significance level is chosen as α = 0.025, the power in showing T as

superior to C should be 1−βTC = 0.95, and 1−βTR = 0.90 should be the power for showing

T as a noninferior to R, which means by (76) for the total power 1−βTotal of the hierarchical

testing: 0.85 ≤ 1−βTotal ≤ 0.90. The study design was chosen as an adaptive three-stage

design of Pocock (1977) type for both comparisons (1) and (2). Using the combining

statistic from (10), we obtain in (11) the critical values cνj = 2.289
√
j, j = 1, 2, 3, see

Hartung (2006, p. 533), or Jennsion and Turnbull (2000, p. 26) for the two-sided level

0.05.
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Using the prior guesses of the parameters at stage 0 from Table 1, the differences

θTR = µT − µR and θTC = µT − µC are initially estimated by θ̂TR(0) = 0.10` and

θ̂TC(0) = 0.50`, and σ by σ̂(0) = 0.90`. Since the sample sizes have to satisfy nT = 2nR

and nT = 4nC , we get, by use of (75) from (72) and (73) the following conditions for MT1 :

MT1 ≥ (1 + 4)(2.289 + 1.645)2(0.9/0.5)2 = 250.7, and

MT1 ≥ (1 + 2)(2.289 + 1.282)2(0.9/[0.1 + 0.2])2 = 344.3.

Using (75), we compute a minimum of 29 blocks of size 7 for the first stage, such that

nT1 = 116, nR1 = 58, nC1 = 29.

The trial started with these numbers of patients. In the first stage we observed, see

Table 1, x̄T1 − x̄C1 = 0.52, x̄T1 − x̄R1 = 0.09, and σ̂1 = 0.87, associated with ν1 = 203− 3

degrees of freedom, see (7).

For the testing problem (1), we compute, see (10), ZTC
1 (0) = 2.86 > 2.289 = cν1, such

that by (13), the null-hypothesis HTC
0 can be rejected already after the first stage. For the

testing problem (2), with ∆ = ∆0 = 0.2, we compute ZTR
1 (−0.2) = 2.06. In the further

planning, we can look only on the testing in (2). By (70), we obtain the projected p-value

p̂TR(2,3)(−0.2) = 1− Φ

[
2.289

√
3− 2.06√
2

]
= 1− Φ[1.3468].

Using the estimates of the first stage, that is, θ̂TR(1) = 0.09 and σ̂2
T (1) = σ̂2

R(1) = 0.872,

see (63), we obtain by (73),

MT2 ≥ (1 + 2)(1.3468 + 1.282)2(0.87/[0.9 + 0.2])2 = 186.6.

Using (74), we compute a minimum of 24 blocks of size 7 for the second stage, implying

the sample sizes nT2 = 96, nR2 = 48 and nC2 = 24.

In stage 2, we observed the estimates, see Table 1, x̄T2− x̄R2 = 0.18, x̄T2− x̄C2 = 0.54,

and σ̂2 = 0.81, associated with ν2 = 168− 3 degrees of freedom, see (7). We compute for

the testing problem (2), ZTR
2 (−0.2) = 2.06 + 2.64 = 4.70 > 2.289

√
2 = 3.237 = cν2 such

that the noninferiority of T with regard to R is shown, too. Consequently, the study is

stopped after stage 2. The observed treatment effects seemed to be not favourable (or too

expensive) for an attempt to reach superiority also in (2) at the third stage. Note that in

the second stage, too, the test for (1) exceeds the critical value, ZTC
2 (0) = 2.86 + 2.90 =

5.76 > 3.237.

21



In the hierarchical testing problem, we could add as a third step to test at level α,

too:

HRC
0 : µR = µC versus HRC

1 : µR > µC (77)

provided both null-hypotheses HTC
0 in (1) and HTR

0,∆0
in (2) are rejected at level α each. But

then the sample sizes of both groups T and R should be equal in each stage. Otherwise,

the comparisons will become unfair, that is, in the present constellation, T has a greater

chance than R to be significantly superior to C.

The combining test statistic from (10), applied to the testing problem (77) above, takes

on the value ZRC
2 (0) = 2.16 + 1.77 = 3.93 > 3.237, such that in a third step, HRC

0 could

have been rejected at the second stage, too. Otherwise, the study had to be continued,

provided we had included (77) in advance.

But in the present study, the interest is directed mainly towards the new drug T. The

reference drug R is already on the market and had shown its superiority, when compared

to placebo groups earlier in large studies. So also for safety concerns about the treatment,

the number of observations on the new drug was chosen larger than on the reference drug.

Since the treatment difference between T and C was expected to be larger than between

T and R−∆0, the control group C was chosen smaller than the reference group R but in

a minimum relation to the test group T . So external considerations were more important

than an optimal allocation of the sample sizes according to the formulae (72) to (75).

In the further analysis of the present example, the treatment effects are illustrated by

the confidence intervals from (31). We obtain in the realized two stages of the study the

following (≥ 0.95)-confidence intervals on the treatment difference µT − µC ,

CI1(µT − µC) = [0.10, 0.94] and CI2(µT − µC) = [0.23, 0.83]

and (≥ 0.95)-confidence intervals on the treatment difference µT − µR as

CI1(µt − µR) = [−0.23, 0.41] and CI2(µT − µR) = [−0.10, 0.36].

The simultaneous confidence level is at least 90% by Bonferroni’s inequality.

Confidence intervals on the single parameters are provided by Section 3.5. We con-

fine ourselves to the common variance parameter σ2. Using the same critical values as

above and the data from Table 1, we obtain (≥ 0.95)-confidence intervals on σ2 by the

approximation (51) as:

V I1(σ2)appr = [0.7812, 1.0182] and V I2(σ2)appr = [0.7712, 0.9392],
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that is,

V CI2(σ2)appr = V I1(σ2)appr ∩ V I2(σ2)appr = [0.7812, 0.9392],

and using (47), by equating

V1(σ2) = Φ−1

[
Fχ2

200

(
200

0.872

σ2

)]
= ±2.289 and

V2(σ2) = V1(σ2) + Φ−1

[
Fχ2

165

(
165

0.812

σ2

)]
= ±3.237,

and solving for σ2, we compute the exact (≥ 0.95)-confidence intervals on σ2 as

V I1(σ2) = [0.7802, 0.9822] and V I2(σ2) = [0.7762, 0.9202],

so that

V CI2(σ2) = V I1(σ2) ∩ V I2(σ2) = [0.7802, 0.9202].

In the same way, let us consider only the parameter σ2 for point estimation discussed in

Section 4. The approximate median unbiased ML-estimates implied by (58) are

σ̂2
(2)

(1) = 0.872 and σ̂2
(2)

(2) = 0.84662

and by (59), we get the meta-analytical estimates

σ̂2
(3)

(1) = 0.872 and σ̂2
(3)

(2) = 0.84342.

The exact median unbiased ML-estimates, see (57), are obtained by equating V1(σ2) =

0 and V2(σ2) = 0 and solving for σ2 as:

σ̂2
(1)

(1) = 0.87152 and σ̂1
(1)

(2) = 0.84282.

It should be noted, that by the early stopping of the study, we passed up the chance

to improve the point and interval estimates in the third stage.

Further, we would like to remark, that the placebo arm C was not dropped after

the first stage for several reasons. For example, the homogeneity, see (20), and eventual

unwanted adverse side effects should be controlled in the following stages by a placebo

group, too. Ethical and legal problems could be excluded.

Finally, it might be noted, that in the present study we had reliable a priori informa-

tion, which, however, could be recognized earliest in the first interim analysis. So, when

23



we had conducted a non-adaptive group sequential trial by taking in the second stage

the same sample sizes as computed by our formulae for the initial stage, we would had

observed nearly surely quite similar results. Hence, the benefit of the adaptive design is

here just having saved the costs for observing the difference of 35 patients.

But with non-reliable a priori information, the consequences might become quite dif-

ferent, see, for instance Hartung (2006), who points out ethical aspects and possible legal

complications with non-adaptive designs, when, for instance, the treatment concerns a

severe disease where patients cannot get back their status from baseline.

7 Final Remarks

In Section 5, we have computed sample sizes n using a normal approximation for applying

t-variates. Nearly exact values are achieved by correcting the sample size n with the

variance of a tn−1-variate, that is, replacing n by ncorr = n(n − 1)/(n − 3), n ≥ 4. The

idea behind the correction is the same as in replacing a t-variate by a normal variate with

identical variance. However, computed values have usually to be modified to fit some side

conditions.

In Section 2.1 we have defined positive one-sided critical values cνj, j = 1, . . . , K, by

the probability condition (11). For a fixed number of stages K and an overall significance

level α, we get an O’Brien and Fleming (1979) design with constant critical values in (11),

say cvj = consOBF (K,α), and a Pocock (1977) design with monotone increasing critical

values given as cvj =
√
j consPO(K,α), j = 1, . . . , K, see Hartung (2006), where also

some of these one-sided critical values are tabulated. Designs with intermediate values of

the critical values are considered, for instance, in Jennison and Turnbull (2000).

Usually, two-sided critical values at level 2α for the corresponding symmetric two-

sided tests are tabulated in literature. For K ≥ 2, these two-sided critical values are

slightly smaller than the one-sided critical values at level α. At least for α ≤ 0.05, these

two-sided critical values may be used here for practical applications, see Jennison and

Turnbull (2000, p. 192).

We have defined the two-sided confidence interval CIk, see (31), as the intersection of

the one-sided intervals CIk,I and CIk,II , see (25) and (28), and the confidence coefficient

of CIk is at least 1− 2α. If we use the critical values of the correspondent two-sided tests

at level 2α, we get a two-sided confidence interval, say CI0
k , that is slightly narrower than

CIk for K ≥ 2, but has a confidence coefficient of at least 1− 2α as well. Moreover, the
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final CI0
K reaches a confidence coefficient of exactly 1− 2α.

However, using the lower boundary of CI0
k in the test decisions (27), the test level α

cannot be guaranteed. Indeed, no severe differences are expected for practical applications

at least for α ≤ 0.05, see above.

Moreover, let us consider the testing situation in a group sequential trial. In a superior-

ity test, for example, the null-hypothesis is rejected at level α, if we observe Zk∗(0) > cνk∗

in at least one stage k∗ ∈ {1, . . . , K}, see (12). Usually the study is stopped after stage

k∗ because of having shown significance, see, for instance, Jennison and Turnbull (2000),

Hartung (2006). Such a stop is a correct decision, since the study result cannot be re-

versed later in the same study. Consequently, when we continue the study, we have no

risk to lose the already shown significance.

Suppose k∗ < K and the study is continued to reach a larger data base, for instance,

for safety reasons in clinical trials, then we may observe Zk(0) ≤ cνk in all further stages

k > k∗ without contradicting the already shown superiority. This fact is able to induce

misunderstandings in practical applications caused by a lack of knowledge on the theoreti-

cal background. The same problem may arise, when, after shown significant noninferiority,

the trial is continued for an attempt to reach superiority. Such possible misunderstand-

ings are avoided by using CIk, that means, its lower boundary, and the testing procedure

(27). The automatically implied homogeneity test (20) by computing CIk would react

when quite different results would have been observed in later stages.
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