
Algorithms for Regression and Classification
Robust Regression and Genetic Association Studies

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Robin Nunkesser

Dortmund

2009



Tag der mündlichen Prüfung: 24.02.2009

Dekan: Professor Dr. Peter Buchholz

Gutachter: Juniorprofessor Dr. Thomas Jansen
Professor Dr. Roland Fried



iii

Abstract

Regression and classification are statistical techniques that may be used to extract
rules and patterns out of data sets. Analyzing the involved algorithms comprises in-
terdisciplinary research that offers interesting problems for statisticians and computer
scientists alike. The focus of this thesis is on robust regression and classification in
genetic association studies.

In the context of robust regression, new exact algorithms and results for robust
online scale estimation with the estimators Qn and Sn and for robust linear regression
in the plane with the estimator least quartile difference (LQD) are presented. Addi-
tionally, an evolutionary computation algorithm for robust regression with different
estimators in higher dimensions is devised. These estimators include the widely used
least median of squares (LMS) and least trimmed squares (LTS).

For classification in genetic association studies, this thesis describes a Genetic Pro-
gramming algorithm that outpeforms the standard approaches on the considered data
sets. It is able to identify interesting genetic factors not found before in a data set on
sporadic breast cancer and to handle larger data sets than the compared methods. In
addition, it is extendible to further application fields.
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Introductory Part
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1 Introduction

In an early article dealing with the interface of computer science and statistics Shamos
(1976) wrote:

From the viewpoint of applied computational complexity, statistics is a gold
mine, for it provides a rich and extensive source of unanalyzed algorithms
and computational procedures.

Based on this “gold rush” of the late 1960s and early 1970s a two-way feedback between
computer science and statistics has since been established (see e. g. Gentle et al.,
2004 for more historic background). In 1967, the first joint conference Symposium
on the Interface of Computer Science and Statistics was held. The attendance at
the Interface Symposia grew rapidly in the 1970s. Besides these Interface Symposia,
the 1970s also saw the formation of further collaborative conferences and societies.
In the 1980s, when rapidly growing computing capabilities and computer availability
changed many sciences, the importance of interdisciplinary research grew even more.
In statistics, the advances in computer technology enabled statistical methods, that
were not practicable before. However, statistical methods with high computational
complexity may probably never be computed exactly in a reasonable amount of time.
The high computational complexity of many statistical methods is only one of many
reasons why statistics still offers many interesting problems for computer scientists.
In fact, the rich and extensive source of unanalyzed algorithms and computational
procedures will not run dry for a long time to come.

This thesis deals with two topics at the interface of computer science and statistics
from a computer scientist’s perspective. One topic is computational biology, which
emerged very recently as a multidisciplinary field involving both sciences. The other
topic is robust statistics, in particular robust regression.

Regression analysis is a technique to model the relationship between a response
variable and one or more explanatory variables. In linear regression, the mean or the
median of the response variable is modeled as a linear combination of the explanatory
variables. The best known linear regression method is least squares, which dates back
to Gauss and Legendre (for historical discussions of least squares see Plackett, 1972;
Stigler, 1981). One of the advantages of least squares is that it is has a closed form
solution. A disadvantage is that a single outlying value can have arbitrarily large
effects on the estimation. The aim of robust regression is to bound unduly effects of
influence factors like outlying values. One of the earliest linear regression methods
to be more robust than least squares is least absolute deviations, which is attributed
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4 1 Introduction

to Laplace (for a brief history and comparison with least squares see Portnoy and
Koenker, 1997). Although published earlier it is not as popular as least squares,
which is mostly due to its computational complexity. In fact, Bernholt (2005) proves
that many robust regression methods are NP-hard, which underlines the need for good
heuristics and for algorithms for manageable cases like low dimensional data. After
the introductory Part I of this thesis, we consider new algorithms for some robust
methods in Part II. Apart from the regression methods, we also consider two other
estimators that are helpful in the context of regression. When conducting regression
analyses, one frequently needs an auxiliary estimation of the variability of a variable
or a probability distribution. For this purpose, estimators of scale like the standard
deviation are used. The standard deviation is a non-robust estimator and algorithms
for robust alternatives are of high interest. Thus, we provide new algorithms for two
robust estimators of scale in Part II in addition to the algorithms for robust regression
methods.

Part III deals with genetic association studies which is a topic from computational
biology. The aim of these studies is to identify genetic factors that may contribute to a
medical condition, for example, a specific type of cancer. Among the most important
genetic factors considered are single nucleotide polymorphisms, i. e. genetic variations
that occur when different base alternatives exist at a single base pair position of the
DNA. In this thesis, we mainly cover the classification problem of identifying genetic
factors that distinguish between having the medical condition under consideration and
not having it. To this end, we consider a genetic programming (Koza, 1992) algorithm
for finding prediction models based on single nucleotide polymorphism data.

In detail, following this introduction, Chapter 2 gives an overview of the publica-
tions underlying this thesis and the contribution of the author. The part of the thesis
concerned with robust regression starts with Chapter 3, which introduces the needed
fundamentals of robust statistics. The first new results are presented in Chapter 4,
which contains new online algorithms for the robust scale estimators Qn and Sn out-
performing existing algorithms. In Chapter 5, we consider an estimator called least
quartile difference (LQD) which is based on the scale estimator Qn. We show that
computation of the LQD in the plane is possible in time O(n2 log2 n) or expected time
O(n2 log n) and state known algorithms achieving this bounds. The bounds are far
lower than the hitherto known time bound of O(n4). Additionally, we present two new
algorithms that almost perform within the theoretically possible runtime. Both algo-
rithms are advantageous in terms of applicability and simplicity of implementation.

In Chapter 6 we use evolutionary computation for NP-hard robust regression meth-
ods in higher dimensions. The provided algorithm enables us to compute good solu-
tions for least median of squares, least quantile of squares, least quartile difference,
least trimmed squares, least trimmed sum of absolute values, and similar estimators.
We also compare this new heuristic to existing ones and show its advantages.

Part III starts with Chapter 7 giving an introduction to genetic association studies.
After these preliminaries, Chapter 8 introduces a new genetic programming algorithm
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for genetic association studies called GPAS. The comparison of GPAS with state-of-
the-art algorithms indicates a superior performance in the investigated situations. In
addition, the algorithm is not restricted to the intended application field, but may also
be applied to other tasks, for example, logic minimization.

In the final part, Chapter 9 provides some conclusions and research outlooks. The
concluding Chapter 10 gives a detailed outlook on a genetic programming algorithm
for another classification problem in genetic association studies, namely classification
with more than two classes.
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2 Overview of Publications

Some of the material covered in this thesis has previously been published in journals,
conference proceedings, or as technical reports. Table 2.1 gives an overview of these
publications, the contribution of the author to the respective publications, and the
part of this thesis each publication contributes to. The first of the listed publications
is also the basis for a section in the Ph.D. thesis of Bernholt (2006).

Publication Contribution
of the author

Corresponding
chapter

Bernholt, Nunkesser, and Schettlinger (2007) 45% Chapter 5
Nunkesser, Bernholt, Schwender, Ickstadt, and
Wegener (2007)

45% Chapter 8

Nunkesser, Schettlinger, and Fried (2008) 40% Chapter 4
Nunkesser (2008) 100% Chapter 8
Morell, Bernholt, Fried, Kunert, and Nunkesser
(2008)

25% Chapter 6

Nunkesser and Morell (2008) 90% Chapter 6
Nunkesser, Fried, Schettlinger, and Gather (2009) 40% Chapter 4

Table 2.1: Overview of underlying publications and the contribution of the author

List of Publications

1. Bernholt, T., Nunkesser, R., and Schettlinger, K. (2007). Computing the least
quartile difference estimator in the plane. Computational Statistics & Data
Analysis , 52(2), 763–772. http://dx.doi.org/10.1016/j.csda.2006.12.039

2. Nunkesser, R., Bernholt, T., Schwender, H., Ickstadt, K., and Wegener, I. (2007).
Detecting high-order interactions of single nucleotide polymorphisms using ge-
netic programming. Bioinformatics , 23(24), 3280–3288. http://dx.doi.org/
10.1093/bioinformatics/btm522

3. Nunkesser, R., Schettlinger, K., and Fried, R. (2008). Applying the Qn estimator
online. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker, edi-
tors, Data Analysis, Machine Learning and Applications , Studies in Classifica-
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tion, Data Analysis, and Knowledge Organization, pages 277–284, Berlin, Heidel-
berg. Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-78246-9_33

4. Nunkesser, R. (2008). Analysis of a genetic programming algorithm for asso-
ciation studies. In GECCO ’08: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pages 1259–1266, New York. ACM.
http://doi.acm.org/10.1145/1389095.1389339

5. Morell, O., Bernholt, T., Fried, R., Kunert, J., and Nunkesser, R. (2008). An
evolutionary algorithm for lts-regression: A comparative study. In P. Brito,
editor, COMPSTAT 2008: Proceedings in Computational Statistics , volume II
(Contributed Papers), pages 585–593, Heidelberg. Physica-Verlag.

6. Nunkesser, R. and Morell, O. (2008). Evolutionary algorithms for robust meth-
ods. Technical Report 29/2008, SFB 475, Technische Universität Dortmund.

7. Nunkesser, R., Fried, R., Schettlinger, K., and Gather, U. (2009). Online analy-
sis of time series by the Qn estimator. Computational Statistics & Data Analysis ,
53(6), 2354–2362. http://dx.doi.org/10.1016/j.csda.2008.02.027

http://dx.doi.org/10.1007/978-3-540-78246-9_33
http://doi.acm.org/10.1145/1389095.1389339
http://dx.doi.org/10.1016/j.csda.2008.02.027
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3 Preliminaries

In this chapter, we introduce some fundamentals that are necessary for the following
chapters. Most of the notation and basic definitions are based on Mood et al. (1974).
In the following, we use capital Latin letters to denote random variables and the
corresponding small letters to denote the value of a random variable.

Classical statistical methods are often unduly affected by small influence factors like
aberrant values. To cope with this instability, robust statistics aims at bounding the
influence of such factors. A simple example for a non-robust estimator is the sample
mean X̄ of a finite sample X1, . . . , Xn which is defined as

X̄ =
1

n

n∑
i=1

Xi .

A single bad observation adjoined to the sample may cause a so called breakdown of
the estimator because its effect on the estimate is unbounded. The breakdown point
measures an estimator’s robustness against breaking down. First defined by Hodges
(1967), the definition nowadays commonly used in robust statistics is the one for finite
samples (Donoho and Huber, 1983). For the sample mean we use the contamination
breakdown point ε∗n.

Definition 3.1. Let X = (X1, . . . , Xn) be a sample of size n. The contamination
breakdown point ε∗n (T,X ) of an estimator T at a sample X is defined by

ε∗n(T,X ) = min

{
m/(n+m); sup

X ′
‖T (X )− T (X ′)‖ =∞

}
,

where X ′ is an arbitrary sample that is built by adding m observations to X and ‖·‖
is the Euclidean norm.

Thus, we consider the minimum fraction of adjoined observations leading to an un-
bounded change of the estimate. The contamination breakdown point of the sample
mean is 1/(n + 1) because one additional observation suffices for breakdown of the
estimator. It is common to state the contamination breakdown point of the sample
mean as its asymptotic value of 0%. One of the best known robust alternatives to
the sample mean is the sample median. This and other estimators can be defined by
means of the order statistic.

11



12 3 Preliminaries

new median

old median

Figure 3.1: Bounded change of the sample median after the insertion of n − 1 ob-
servations.

Definition 3.2. Let X1, . . . , Xn be a sample of size n. Then X(1) ≤ . . . ≤ X(n), where
X(i) are the Xi arranged in order of increasing magnitudes are defined to be the order
statistics corresponding to X1, . . . , Xn.

Definition 3.3. Let X1, . . . , Xn be a sample of size n. The sample median of
X1, . . . , Xn is defined by

med{X1, . . . , Xn} =

{
X((n+1)/2), if n is odd
(X(n/2) +X(n/2+1))/2, if n is even .

The contamination breakdown point of the sample median is n/(n + n) = 50%
because the estimator can only break down after the addition of at least n observations.
Figure 3.1 demonstrates the robustness of the sample median. Only when n bad
observations are added, the estimation will get unbounded. This first example already
demonstrates advantages of robust estimation.

In this thesis, we consider linear model estimators and scale estimators for which
Donoho and Huber (1983) give a different notion of breakdown point.

Definition 3.4. Let X = (X1, . . . , Xn) be a sample of size n. The replacement
breakdown point ε∗n (T,X ) of an estimator T at a finite sample X is the smallest
fraction of replaced values in X that can cause estimations arbitrarily far away from
T (X ). More precisely, for linear model estimators it is defined as

ε∗n(T,X ) = min

{
m/n; sup

X ′
‖T (X )− T (X ′)‖ =∞

}
and for scale estimators as

ε∗n(T,X ) = min

{
m/n; sup

X ′
‖log (T (X ))− log(T (X ′))‖ =∞

}
where X ′ is obtained by replacing any m observations in X by arbitrary points and
‖·‖ is the Euclidean norm.

A scale estimator is also said to break down if contamination drives the estimation to
0. The introduction of the logarithm in Definition 3.4 factors this in.
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The robustness of estimators is not for free and we have at least two typical disad-
vantages. First, the computational complexity is often higher (although the sample
median is computable in time O(n), see e. g. Cormen et al., 2001). To make statements
about the computational complexity of methods, we use asymptotic notation.

Definition 3.5. Let f : N→ R+ and g : N→ R+ denote functions. We say that

1. f(x) = O(g(x)) as x→∞ if and only if there exist c > 0 and x0 ∈ N such that

f(x)/g(x) ≤ c

for all x > x0,

2. f(x) = Ω(g(x)) as x→∞ if and only if g(x) = O(f(x)),

3. f(x) = Θ(g(x)) as x→∞ if and only if f(x) = O(g(x)) and f(x) = Ω(g(x)).

A second typical disadvantage of robust estimators is that they mostly have lower
efficiency at the normal distribution than non-robust estimators. Efficiency measures
the variance of an estimator in relation to the minimum possible variance for an
unbiased estimator. The efficiency of course depends on the distribution underlying the
data. Here, we only consider efficiency for a Gaussian model which is sometimes called
Gaussian efficiency. We denote the Gaussian distribution with mean µ and variance σ2

by N (µ, σ2). Consider as an example (without going into detail) a sample x1, . . . , xn
drawn from N (µ, 1). The minimum possible variance for an unbiased estimator is
1/n which is equal to the variance of the sample mean, leading to an efficiency of
100%. The asymptotic variance of the sample median on the other hand is π/2n
corresponding to an efficiency of 2/π ≈ 64%.

3.1 Robust Linear Regression

In regression analysis, we consider the relationship between a response variable Y and
one or more explanatory variables X i. The estimators we consider are linear regression
methods, i. e. they assume that the response variable can be modeled by a linear model
of the explanatory variables.

Definition 3.6. Let Y 1, . . . , Yn be a sample of a continuous variable and let xi1, . . . , xip
for i = 1, . . . , n be observed values of explanatory variables X1, . . . , Xp. The linear
model is given by

Y i = β0 + β1xi1 + . . .+ βpxip + εi i = 1, . . . , n

where β0 ∈ R is an intercept term, β1, . . . , βp are slope parameters, and εi ∼ N (0, σ2)
models statistical errors.
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Using linear models, we automatically make certain model assumptions. These as-
sumptions include

• linearity of the relationship between response and explanatory variables,

• continuousness of the response variable,

• independence of the errors,

• normality of the error distribution.

Applying a regression estimator to an observed data set
x11 · · · x1p y1

...
...

...
xi1 · · · xip yi
...

...
...

xn1 · · · xnp yn

 (3.1)

yields estimates β̂1, . . . , β̂p and typically also β̂0 for the parameters β0, . . . , βp. The
predicted value of Yi by that estimation then is

Ŷi = β̂0 + β̂1xi1 + . . .+ β̂pxip .

The difference between the observation and the estimation is called residual.

Definition 3.7. Let yi be the ith observed value of a data set structured like (3.1) and
let Ŷi be the predicted value of the corresponding random variable Yi. The residual of
the ith observed value is defined as

ri = yi − Ŷi

or in a parameterized form as

ri

(
β̂0, . . . , β̂p

)
= yi −

(
β̂0 + β̂1xi1 + . . .+ β̂pxip

)
.

Figure 3.2 shows an example for linear regression with the standard non-robust linear
regression method least squares.

Definition 3.8. The least squares (LS) estimates β̂0, ..., β̂p = β̂LS of the regression
parameters β0, ..., βp are given by

β̂LS = min
β0,...,βp

n∑
i=1

(ri (β0, . . . , βp))
2 .
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Figure 3.2: Linear regression example.

Similar to the sample mean, the breakdown point of LS is 1/n because it suffices to
replace one observation to cause breakdown. A long known more robust alternative is
least absolute deviations (LAD) where the estimates β̂0, ..., β̂p = β̂LAD are defined by

β̂LAD = min
β0,...,βp

n∑
i=1

|ri (β0, . . . , βp)| .

The LAD shows robustness when the response variable is contaminated. A classic
example for the difference between robust and non-robust estimation for such contam-
ination is an estimation on data of international phone calls made in Belgium between
1950 and 1973 (Rousseeuw and Leroy, 1987). The underlying data contains contam-
ination between 1964 and 1969. The reason for this is that in these years the total
duration of the calls was recorded instead of the total number. The years 1963 and
1970 are also partially affected by this change in recording. Figure 3.3 shows an LS
and an LAD estimation for this data.

The breakdown point of LAD for a contaminated response variable depends on the
design of the explanatory variables. Giloni and Padberg (2004) state that the LAD
estimation in Figure 3.3 is not bounded when more than six outliers are present.
However, LAD also breaks down even if only one value of the explanatory variables
is replaced by an aberrant value. Rousseeuw (1984) therefore introduces the least
median of squares (LMS) estimator which is also robust when the explanatory data
is contaminated.

Definition 3.9. The least median of squares (LMS) estimates β̂0, ..., β̂p = β̂LMS of the
regression parameters β0, ..., βp are given by

β̂LMS = min
β0,...,βp

med{r1 (β0, . . . , βp)
2 , . . . , rn (β0, . . . , βp)

2} .
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Figure 3.3: Data on international phone calls from Belgium between 1950 and 1973
with LS and LAD fit (left) and data on light intensity and temperature of the star
cluster CYG OB1 with LAD and LMS fit (right).

Similar to the sample median, the breakdown point of LMS is 50%. This breakdown
point holds for observations in general position.

Definition 3.10. A set of points in the d-dimensional Euclidean space is said to be
in general position if no d+ 1 of them lie on a common hyperplane.

When the observations come from continuous distributions, the probability that they
are in general position is 1 (Rousseeuw and Leroy, 1987).

Rousseeuw and Leroy (1987) give an example from astronomy that demonstrates
the robustness of the LMS estimator against contamination in the explanatory data.
Figure 3.3 shows the temperature and light intensity of 47 stars. Four of them are giant
stars which pull away an LS or LAD estimation. The LMS estimation is unaffected
by the giant stars.

In Chapter 5 and Chapter 6, we consider new algorithms for further robust estima-
tors. Chapter 5 deals with a particular estimator in the plane and Chapter 6 presents
an evolutionary algorithm for several estimators (including the LMS estimator) in
higher dimensions.

3.2 Robust Scale Estimation

In robust estimation one frequently needs an initial or auxiliary estimate of scale or
variability. The usual non-robust estimate of scale is the sample standard deviation
defined by

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(
Xi − X̄

)2



3.2 Robust Scale Estimation 17

MAD

0 2 4 6 8

MAD

0 20 40 60 80 100

Figure 3.4: Estimation by standard deviation and by MAD without and with an
outlier.

for a sample X1, . . . , Xn. Like the non-robust estimators in the previous sections,
the sample standard deviation cannot withstand a single outlier and therefore has a
breakdown point of 1/n. Like in the previous section, the introduction of the median
robustifies the estimation. Hampel (1974) suggests the median absolute deviation
(about the median) (MAD), given by

med {|Xi −med{X1, . . . , Xn}| ; i = 1, . . . , n}

as a robust estimator which attains a breakdown point of 50% if there are no identical
values in the sample (Donoho and Huber, 1983). Note that the MAD needs to be
multiplied by a correction factor of 1.4826 in large samples to ensure consistency for
the estimation of the standard deviation σ at normal distributed data.

As an example, consider the sample X = {0, . . . , 8} and another sample where the
8 is replaced by 100. The MAD is unaffected by the outlier and estimates the scale
in both cases as 2.97 while the standard deviation changes from 2.74 to 32.25 in the
presence of the outlier. Figure 3.4 depicts this example.

Rousseeuw and Croux (1993) point out two drawbacks of the MAD. First, its asymp-
totic Gaussian efficiency is only 37%. Second, the MAD is aimed at symmetric dis-
tributions, because it attaches equal importance to positive and negative deviations
from a central value. Thus, the next section deals with two alternatives to the MAD.
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4 Online Computation of Two
Estimators of Scale

In the previous chapter, we encountered the MAD scale estimator. The MAD has a
simple explicit formula, only needs O(n) computation time, and is very robust. On
the other hand, its low Gaussian efficiency and the fact that it is aimed at symmetric
distributions are drawbacks. Rousseeuw and Croux (1993) propose two alternatives
called Sn and Qn that use order statistics (see Definition 3.2).

Definition 4.1. Let X1, . . . , Xn be a sample of size n.

1. The scale estimator Sn is defined as

Sn = c ·med {med {|Xi −Xj| ; j = 1, . . . , n} ; i = 1, . . . , n} .

2. The scale estimator Qn is defined as

Qn = c · {|Xi −Xj| ; i < j}(k) with k =

(
bn/2c+ 1

2

)
.

The factor c is a consistency factor which is typically different for Sn and Qn.

Like the MAD, Sn and Qn typically need to be multiplied by a correction factor.
When we want to ensure consistency for the estimation of the standard deviation σ
at normal distributed data, this factor is 1.1926 for the Sn and 2.2219 for the Qn in
large samples (Rousseeuw and Croux, 1993). Sn and Qn can attain the same optimal
breakdown point as the MAD, but the asymptotic Gaussian efficiency of Sn and Qn is
58% and 82%, respectively (Rousseeuw and Croux, 1993). This is superior to the 37%
of the MAD. In addition, Sn and Qn do not presuppose a symmetric distribution. The
computation time needed is O (n log n) for both (Croux and Rousseeuw, 1992). This is
asymptotically optimal for Qn, because—as we will see later—computing Qn is equiv-
alent to a problem described in Johnson and Kashdan (1978) that needs Ω (n log n)
time. For Sn no better lower bound than the trivial bound Ω (n) for median com-
putation (Blum et al., 1973) is known. Our focus in this thesis is on efficient online
computation of these estimators.

19
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Figure 4.1: Heart activity measured by ECG.

4.1 Motivation

A time series is a sequence of data points typically measured at consecutive points of
time with uniform time intervals in between. In many application fields, time series
data has to be analyzed online to support real-time decisions. In computer science,
this corresponds to the online analysis of data streams (see e. g. Muthukrishnan, 2005).
High frequency data streams often arise in monitoring applications in which their
analysis is time critical. The analysis therefore needs to be done in near real time to
keep pace with the data updates and accurately reflect rapidly changing trends in the
data. For this task, fast online algorithms are needed.

Our main motivation for considering the online computation of robust estimators of
scale are automatic alarm systems in intensive care. The alarm systems currently used
produce a high rate of false alarms due to measurement artifacts, patient movements,
or transient fluctuations around the chosen alarm limit. Preprocessing the data by
extracting the underlying signal (the time-varying level observed) and variability of
the monitored physiological time series such as heart rate or blood pressure can im-
prove the false alarm rate. Additionally, it is necessary to detect relevant changes in
the extracted signal since they might point at serious changes in the patient’s con-
dition. Figure 4.1 shows an example of a patient’s heart rate taken from PhysioNet
(Goldberger et al., 2000). The high number of artifacts observed in many time series
requires the application of robust methods which are able to withstand some largely
deviating values. Gather and Fried (2003) recommend to use the Qn estimator in
robust signal extraction to measure the variability of the statistical error.

Another application where near-real time monitoring is of interest is the analysis of
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financial data. High frequency data are especially susceptible to errors as for example
stated by Brownlees and Gallo (2006):

The higher the velocity in trading, the higher the probability that some
error will be committed in reporting trading information.

In the financial context, we need preprocessing procedures for tasks like automatic
data cleaning and outlier detection. Non-robust estimators can be strongly misled
by outliers. Preprocessing the data with robust methods has the advantage that the
robust analysis resists isolated outliers and patches of outlying values. Robust scale
estimators allow us to extract possibly time-varying volatilities (the standard deviation
of returns for a given financial parameter, for example a stock market index) in the
presence of outliers, see Gather and Fried (2003) and Gelper et al. (2009).

Further online applications of robust scale estimators include the estimation of au-
tocorrelations within the process (Ma and Genton, 2000) and the standardization of
test statistics (Fried, 2007).

4.2 Online Computation with Moving Windows

To analyze the scale of an observed time series x1, . . . , xN online, we apply the scale
estimator at each time point t to a time window of length n ≤ N , which contains the
observations xt−n+1, . . . , xt. Instead of calculating the estimate for each window from
scratch, we use an online algorithm. This means that for each move of the window from
t to t+1 all stored information concerning the oldest observation xt−n+1 is deleted and
new information concerning the incoming observation xt+1 is inserted. Insertions and
deletions are called updates. Note that the online algorithms we propose in the next
sections are not restricted to moving time windows; they can also handle arbitrary
sequences of deletions and insertions of data points.

When dealing with online algorithms, dynamic data structures are helpful. The
standard operations that a data structure storing a multiset S of elements has to offer
according to Cormen et al. (2001) include

1. Search(S, x), which searches for x in S,

2. Insert(S, x), which inserts x into S,

3. Delete(S, x), which deletes x from S.

Depending on the data structure and the specific requirements, x could be an element
for the data structure, the key of an element, or a pointer to an element. An additional
operation we will need is Rank(S, x), which gives the rank of x in S, i. e. the position of
x in sorted S. For the first algorithm, we will need fast insertion, deletion, searching
and ranking of an element. Every balanced binary search tree guarantees insertion,
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deletion, and searching in time O(log n). The rank of an element may also be queried
in O(log n) if we store ranking information in each node of the search tree (see e. g.
Knuth, 1973 or Cormen et al., 2001). We use AVL trees (Adel’son-Vel’skĭı and Landis,
1962) as balanced binary search trees. In the second algorithm, ranking will be more
important than insertion and deletion. For that case, we may use simple array or list
structures that allow rank queries in time O(1) but come with no better bound than
O(n) for insertion and deletion.

4.3 Computation of Qn

Qn is a high breakdown estimator with very good Gaussian efficiency and therefore
a highly relevant robust scale estimator. Section 4.1 demonstrates that it is desirable
to have fast online algorithms for computing this estimator. We present a fast online
algorithm based on the optimal offline algorithm in the following. As a first step, we
show that Qn may be computed by solving selection in the multiset X + Y .

Problem 4.1 (Selection in X + Y ).

Given: Two multisets X = {x1, . . . , xn} and Y = {y1, . . . , yn} and a parameter k ∈ N.

Goal: Compute

{xi + yj;xi ∈ X and yj ∈ Y }(k) .

For this problem, Johnson and Kashdan (1978) state an upper bound of O(n log n)
and a lower bound of Ω(n+

√
k log k) for computation in a decision tree. Problem 4.1

may be used to solve different problems from statistics. In the considered problems,
k = Θ(n2) and thus the upper and the lower bound match.

Corollary 4.1. The complexity of computing the Hodges-Lehmann estimator (Hodges
and Lehmann, 1963) defined by

med{Xi +Xj; 1 ≤ i, j ≤ n}
2

for a sample X1, . . . , Xn is Θ (n log n).

Theorem 4.1 (Croux and Rousseeuw, 1992). The complexity of computing Qn for a
sample of size n is Θ (n log n).

Proof. Starting with Definition 4.1 we obtain

Qn = c · {|Xi −Xj| ; i < j}(k)
= c · {{− |Xi −Xj| ; i > j} ∪ {|Xi −Xj| ; i = j} ∪ {|Xi −Xj| ; i < j}}((n

2)+n+k)

= c · {Xi −Xj; 1 ≤ i, j ≤ n}((n
2)+n+k) .
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Figure 4.2: Regions in the matrix M with definitely smaller or certainly greater
values than x(i) + y(i).

This corresponds to Problem 4.1 for a multiset of type X + (−X) and the parameter(
n
2

)
+ n+ k.

Note that there are further estimators, e. g. the medcouple (Brys et al., 2004), that
may be computed with an algorithm for Problem 4.1.

4.3.1 Offline Computation

In Theorem 4.1, we saw that it is possible to compute the Qn by solving Problem 4.1.
This is why we only consider Problem 4.1 in the following. Shamos (1976) provides
an algorithm he devised with Jefferson and Tarjan for computing

med{xi + yj;xi ∈ X and yj ∈ Y }

in O(n log n) and also states a lower bound of Ω(n log n) communicated by Tarjan.
Johnson and Mizoguchi (1978) adapt this algorithm to compute an arbitrary order

statistic, i. e. to solve Problem 4.1. It is convenient to visualize the algorithm of
Johnson and Mizoguchi working on a partially sorted matrix M = (mij) with mij =
x(i) + y(j), although M is of course never constructed. Recall that x(1) ≤ . . . ≤ x(n)

and y(1) ≤ . . . ≤ y(n) denote the elements of X and Y ordered according to size. Thus,
the matrix M has monotonicity in the rows and columns, i. e. mij = x(i) + y(j) ≤
x(i) + y(`) = mi` and mji = x(j) + y(i) ≤ x(`) + y(i) = m`i for j ≤ `. The algorithm
uses this monotonicity to compute the desired order statistic (see Figure 4.2 for an
example of this monotonicity).

Algorithm 4.1 sketches the algorithm of Johnson and Mizoguchi (1978). Steps 1–3
take time O (n log n) because of the sorting of X and Y . No computation is done in
line 2. If the element in line 5 is carefully selected which takes time O (n) (we omit the
details), the while loop will run O(log n) times. Line 10 comprises a selection problem
which can be carried out in time O (n) (see e. g. Cormen et al., 2001).



24 4 Online Computation of Two Estimators of Scale

Algorithm 4.1: Sketch of the algorithm of Johnson and Mizoguchi (1978)
Input: Multisets X = {x1, . . . , xn} and Y = {y1, . . . , yn}, parameter k
Output: The kth order statistic of X + Y
Sort X and Y1

Let M = (mij) with mij = x(i) + y(j) denote the partially sorted matrix of X + Y2

Set c := n23

while c > n do4

Select an element m of M that is still a candidate for the kth order statistic5

Determine regions in the matrix definitely smaller or certainly greater than m6

Exclude all parts of these regions that cannot contain the sought order7

statistic
Update c, which denotes the number of matrix elements still under8

consideration
end9

Determine directly which of the remaining elements of M is the kth order10

statistic of X + Y
return the determined order statistic11

4.3.2 Online Computation

The offline algorithm has optimal running time. In this section, we try to be faster
for online computation and present a new algorithm. Online algorithms for a problem
similar to computing Qn exist. Bespamyatnikh (1998) states an online algorithm for
computing

{|xi − xj| ; i < j}(k) with k = 1 (4.1)

that achieves O(log n) per update step. This is optimal, because the lower bound for
offline compuataion is Ω(n log n) (Preparata and Shamos, 1985). Note, that (4.1) is
the well known problem of computing the minimal distance between two numbers in
a set. In an earlier work on minimal distance computation, Smid (1991) suggests to
use a buffer of possible solutions to obtain an online algorithm for this problem. The
buffer contains the elements {|xi − xj| ; i < j}(1) , {|xi − xj| ; i < j}(2) , . . . and enables
fast updates because the new minimal distance after an update is likely to be found in
the buffer. However, the computation of the Qn estimator requires larger k. Hence, we
generalize the idea of using a buffer to arbitrary values of k in the following, because
it is easy to implement and achieves a good running time in practice. The resulting
algorithm will have a worst case amortized time per update that is the same as for
the offline algorithm. However, we show that our algorithm runs substantially faster
under certain data assumptions and also runs faster for many data sets not fulfilling
these assumptions.

Algorithm 4.1 may easily be extended to compute a buffer B of s matrix elements
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m(k−b(s−1)/2c), . . . ,m(k+bs/2c) from M next to the solution m(k). We discuss the size
s of the buffer B later. We first describe the framework of the online algorithm in
Algorithm 4.2 and later give the details on how to insert and delete elements.

Algorithm 4.2: Moving window selection in X + Y

Input: Samples X and Y , parameter k, window width n, buffer size s
Output: The kth order statistic of each window in X + Y
Set Xw := {x1, . . . , xn} and Yw := {y1, . . . , yn}1

Compute the kth order statistic of Xw + Yw and a buffer B of size s offline2

for t← n to |X| − 1 do3

Call Insert(xt+1, Xw, Yw, B) and Delete(xt−n+1, Xw, Yw, B)4

Call Insert(yt+1, Yw, Xw, B) and Delete(yt−n+1, Y w, Xw, B)5

if Delete(yt−n+1, Y w, B) returned that the kth order statistic of6

{xt−n+1, . . . , xt+1}+ {yt−n+1, . . . , yt+1} is in B then
Determine the kth order statistic directly7

else8

Recalculate the kth order statistic and the buffer B offline9

end10

end11

return the determined order statistics12

To speed up online computation, we ensure fast insertion and deletion and few
of the recalculations done in line 9. To achieve this, we use indexed AVL trees as
the main data structure. As mentioned in Section 4.2, inserting, deleting, finding
and determining the rank of an element takes O(log n) time in this data structure.
Moreover—in the data structure we use—every element in the balanced tree has two
pointers allowing access to the element pointed at in time O(1). In detail, we store
X, Y and B in separate balanced trees and manage the following pointers:

1. Each element mij = x(i) + y(j) in the buffer B gets two pointers: one pointer to
x(i) ∈ X and one pointer to y(j) ∈ Y .

2. Each element x(i) in X (corresponding to elements in the ith row of M) gets one
pointer to the smallest and one pointer to the largest element such that mij ∈ B
for 1 ≤ j ≤ n.

3. Each element y(j) in Y (corresponding to elements in the jth column of M) gets
one pointer to the smallest and one pointer to the largest element such that
mij ∈ B for 1 ≤ i ≤ n.

Figure 4.3 shows an example for these pointers where the arrows with solid tips mark
the pointers of a matrix element and the “�”-tips mark the pointers to the smallest
and largest element. Note that the buffer may of course be much larger and the
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Figure 4.3: Example for the pointer structure.

pointers of elements in X and Y only point to the boundaries of the buffer. The
offline Algorithm 4.1 may easily be extended to return this data structure and the
buffer without using more time than O (n log n).

The following procedures Insert and Delete handle insertions into and deletions
from X. Insertions into and deletions from Y work analogously with slightly different
procedures.

Procedure Insert(xins, sample X, sample Y , buffer B)
Input: Element to insert xins, sample X, sample Y , buffer B
Output: changed sample X and buffer B, information whether the kth element

of X + Y is still in B
// Compute all elements in the new matrix row defined by xins that

belong into the buffer
Determine the smallest element bs and the greatest element bg in B1

Determine with a binary search the smallest j such that xins + y(j) ≥ bs and the2

greatest ` such that xins + y(`) ≤ bg
Compute all elements Bm := {xins + y(m) | j ≤ m ≤ `}3

// Insert these elements into the buffer and xins into X
Insert the elements in Bm into the buffer B4

Insert xins into X5

// Update the data structure
Update pointers to and from the inserted elements accordingly6

Compute the new position of the kth element of X + Y in B by counting how7

many smaller and how many greater elements were inserted
return X, B and whether the kth element of X + Y is still in B8

The basic operations in our data structure need time O(log n), following a pointer
needs time O(1). These time bounds apply for most of the algorithm steps. The binary
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Procedure Delete(xdel, sample X, sample Y , buffer B)
Input: Element to delete xdel, sample X, sample Y , buffer B
Output: changed sample X and buffer B, information whether the kth element

of X + Y is still in B
// Get the element to delete and its rank in the data structure
Search in X for xdel1

Determine the rank i of xdel and the elements bs and bg pointed at2

// Determine all elements in the matrix row defined by xdel that are
in the buffer

Determine y(j) and y(`) with the help of the pointers of bs and bg such that3

bs = x(i) + y(j) and bg = x(i) + y(`)

Find Bm := {x(i) + y(m) ∈ B | j ≤ m ≤ `}4

// Delete these elements from the buffer and xdel from X
Delete the elements in Bm from the buffer B5

Delete xdel from X6

// Update the data structure
Update the affected pointers accordingly7

Compute the new position of the kth element of X + Y in B by counting how8

many smaller and how many greater elements were deleted
return X, B and whether the kth element of X + Y is still in B9

search in line 2 of Insert needs time O (log n). The only operations needing more
time than O (log n) are the ones concerning the set Bm. Thus, we see that Insert
and Delete need a maximum of O(|Bm| · log n) time for insertion and deletion, where
Bm is defined as in the procedures. It is possible to introduce bounds on the size of
B and to recompute B if these bounds are violated to limit the space requirement of
the online algorithm. We will use a bound of O(n) in the following. For arbitrary
sequences of insertions and deletions, the size of B can vary more and we may have to
recompute the buffer more often than for moving time windows. To assess the running
time we have to consider first the number of elements in the buffer that depend on
the inserted or deleted observation, i. e. the typical size of Bm.

Theorem 4.2. For a constant signal with identically distributed noise variables the
expected time needed for insertion or deletion of data points is O(log n).

Proof. For a constant signal with identically distributed error terms, data points
are exchangeable in the sense that each rank of a data point in the set of all n
data points occurs with equal probability 1/n. Assume without loss of generality
that we only insert into and delete from X. We define random variables Dx(i)

=∣∣{x(i) + y(j) ∈ B; 1 ≤ j ≤ n}
∣∣ for x(i) ∈ X that describe the number of buffer elements

in the buffer B depending on x(i). As a first step, we consider the deletion of xdel from
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X with equiprobable ranks. The expected value E (Dxdel
) is given by

E (Dxdel
) =

1

n
Dx(1)

+ . . .+
1

n
Dx(n)

=
1

n

n∑
i=1

Dx(i)
=

1

n
|B| .

When we insert an element xins into X, it is inserted between two elements x(i) and
x(i+1). Because of the monotonicity of the matrix M , the number of buffer elements
depending on xins after its insertion cannot be greater than Dx(i) +Dx(i+1). Let Sx(i)

=
Dx(i) +Dx(i+1) with Sx(0) = Dx(1) and Sx(n) = Dx(n). We consider the insertion of xins

with equiprobable ranks. The expected value E (Dxins
) is given by

E (Dxins
) ≤ 1

n+ 1
Sx(0)

+ . . .+
1

n+ 1
Sx(n)

=
2

n+ 1

n∑
i=1

Dx(i)
=

2

n+ 1
|B| .

The size of the buffer |B| is O (n). Thus, E (Dxdel
) and E (Dxins

) are O(1) and we expect
to spend O(E (Dxins

) log n) = O(log n) time for the insertion and O(E (Dxdel
) log n) =

O(log n) for the deletion of a data point.

At times, we have to recompute the buffer which needs O(n log n) time and increases
the amortized time per update. The frequency of recomputations depends on how
much the kth element of X + Y may move in the buffer. With equiprobable ranks as
in Theorem 4.2, the expected position of the kth element in the buffer after a deletion
and a subsequent insertion is the same as before the deletion and the insertion. Thus,
we expect to recompute the buffer very rarely.

The next section contains running time simulations for data that fulfills the assump-
tions of Theorem 4.2 and for more complex data situations.

4.3.3 Running Time Simulations

To demonstrate the good performance of the new online algorithm in practice, we
conduct running time simulations for online computation of the Qn estimator. We use
three different simulated time series and a real time series and consider the extraction
of possibly time-varying volatilities.

The basis of the first time series (depicted in Figure 4.4) is a benchmark model
which is commonly used to estimate and predict volatility processes. This benchmark
model is given by the GARCH(1,1) model proposed by Bollerslev (1986)

Xt = σtεt, t ∈ Z ,

where εt ∼ N (0, 1) is an error term and σt is a time-varying volatility coefficient.
More precisely, the conditional variance σ2

t = Var(Xt|Xt−1, Xt−2, . . .) is given by

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1
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Figure 4.4: Simulated GARCH(1,1) series (left) and estimated volatilities (right).
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Figure 4.5: Time series with piecewise constant variance (left) and estimated volatil-
ities (right).

with parameters α0 > 0 and α1, β1 ≥ 0. Note that GARCH(1,1) processes with the
restriction α1 + β1 < 1 are stationary and thus fulfill the assumption of Theorem 4.2.
Figure 4.4 shows such a time series of length N = 1000 generated from a GARCH(1,1)
model with coefficients α0 = 0.1, α1 = 0.1 and β1 = 0.8. Additionally, we see the
volatilities estimated by the Qn when using a window width of n = 50. Qn tracks the
volatility rather well. However, since for online analyses only past observations are
taken into account, a sudden increase or decrease in volatility is traced with some time
delay. This time delay is relatively small for the Qn leading to a smooth sequence of
estimates.

The second time series of length N = 1000 (shown in Figure 4.5) possesses a piece-
wise constant volatility σt, which equals 1, 5, 1, 3, and 5, in time periods of length 200,
250, 150, 250, and 150, respectively. Such models with piecewise constant volatility
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Figure 4.6: Time series with piecewise constant level plus additive noise generated
from an AR(1) model (left) and estimated volatilities (right).
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Figure 4.7: Daily returns of Bayer AG stocks between January 4, 1960 and July 17,
2007 (left) and estimated volatilities (right).

are suggested by Mercurio and Spokoiny (2004) to approximate financial time series.
The simulated time series shown in Figure 4.5 consists of independent normal errors
with standard deviations given above, plus 10% positive additive outliers of size 6σt
at random time points. The Qn can cope with the outliers and yields a stable scale
estimation over time.

The third example (depicted in Figure 4.6) consists of a time series of length N =
1000 with positive level shifts of size 1, 3, and 5 at times 201, 401, 601, respectively,
and a negative level shift of size −9 at time 801. Thus, the observations vary around
the values 0, 1, 4, 9, and 0. The errors are generated from an AR(1) model which is
defined by

Xt = ϕXt−1 + εt t ∈ Z ,

where εt ∼ N (0, 1). The variance in this model is σ2
t = 1/ (1− ϕ2), which is indepen-
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Figure 4.8: Running time needed for the online analyses of the four considered data
situations in comparison to the offline algorithm for different window widths.

dent of t, see e. g. Brockwell and Davis (2002). Figure 4.6 shows a time series simulated
according to the settings above with ϕ = 0.4. We observe that the estimations lie close
to the true value of σt but that shifts cause strong biases. Larger shifts have larger
impact on the online scale estimation.

The fourth time series is a real data set depicted in Figure 4.7. It consists of the re-
turns (the first differences of the logarithms of daily closing prices) of Bayer AG stocks
between January 4, 1960 and July 17, 2007. The variability of these returns is impor-
tant for assessing derivate finance products like options. Because of unexpected events
like regulatory changes, technological advances, natural catastrophes or accidents, fi-
nancial time series can contain arbitrarily large outliers. We therefore should apply a
robust scale estimator to evaluate the (local) variability. In this particular case, this
is especially reasonable since the underlying prices are not adjusted for dividends and
splits. Figure 4.7 shows that the time series obviously contains periods of increased or
decreased variability as well as some outliers, a few of them being rather large. It also
shows the estimates of the time-varying volatility obtained from applying the Qn to
a moving window of width n = 250 corresponding to the commonly assumed number
of trading days within one year. Qn resists the outliers well since there are only a few
very large ones.

On these four data sets, we analyze the average time needed for an update of Qn

when using windows of width 50 ≤ n ≤ 5000 (shown in Figure 4.8). For windows with
width n < 50, the difference in running times is too small for accurate measurement,
i. e. smaller than 0.1ms, and there is little difference in using the offline or the online
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Figure 4.9: Positions of the buffer B in the matrix M for the GARCH(1, 1) data
(top left), the model with piecewise constant volatility (top right), the Bayer AG data
(bottom left), and the data with level shifts and AR(1) errors (bottom right).

algorithm.
In order to get similar situations for all window widths, we generate new data sets

for each n. For the GARCH model we simulate data sets of size N = n + 2500. For
the time series with a piecewise constant σt and the AR(1) process with level shifts
we set the length of each part to n+ 500.

Figure 4.8 illustrates a very good online running time for the GARCH(1,1) series,
as could be expected from Theorem 4.2. In case of the real data example and the data
set with piecewise constant variances, we also notice a considerable improvement in
running time. The improvement for the time series with level shifts is not as good.
The offline computation time is nearly the same for all data sets. Therefore, we include
only the overall average of the offline computation times for each window width for
comparison.

To gain some insight into the different runtimes needed, we analyze the position of
the buffer B in the matrix M over time when performing 1000 updates with a window
of size 1000. We see in Figure 4.9 that the more complex data situations result in a
more spread buffer and therefore more computation time per update.
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4.4 Computation of Sn

So far, we compared robust scale estimators in terms of breakdown point and Gaussian
efficiency. Under these criteria, Qn is superior to Sn. However, these properties are
asymptotic and not advantageous in all cases. In fact, Rousseeuw and Croux (1993)
recommend using Sn for most applications. Thus, computing Sn fast online is also of
high interest. Similar to Section 4.3, we start with a description of the existing offline
algorithm and then present a faster online algorithm.

4.4.1 Offline Computation

As a first step, we formulate the computation of Sn as an algorithmic problem. Croux
and Rousseeuw (1992) use a slightly different definition of Sn for computation.

Problem 4.2 (Computation of Sn).

Given: A sample X1, . . . , Xn and a correction factor c.

Goal: Compute{
{|Xi −Xj| ; j 6= i}(b(n+1)/2c) ; i = 1, . . . , n

}
(b(n+1)/2c)

and multiply it with the correction factor c.

Croux and Rousseeuw (1992) also describe an algorithm to compute Sn that needs
time O(n log n).

Theorem 4.3 (Croux and Rousseeuw, 1992). Computing Sn for a sample X1, . . . , Xn

is possible in time O(n log n).

Proof. In a first step, we sort the sample in time O(n log n). We may compute the
inner order statistics

{|Xi −Xj| ; j 6= i}(b(n+1)/2c)

of Problem 4.2 for each i = 1, . . . , n by computing({
X(i) −X(i−1), . . . , X(i) −X(1)

}
∪
{
X(i+1) −X(i), . . . , X(n) −X(i)

})
(b(n+1)/2c) .

Note that we do not need to compute all values of these sorted sets. Shamos (1976)
presents an algorithm by Jefferson to compute the common median (or b(n+ 1)/2cth
order statistic in this case) of two sorted sets in time O(log n). This has to be done
n times and afterwards, the b(n+ 1)/2cth order statistic of the n computed elements
has to be computed. Finally, the result is multiplied with the correction factor c. None
of these steps takes more time than O(n log n).
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Figure 4.10: Illustration of L1, G1, L2, and G2.

4.4.2 Online Computation

To our knowledge, there is no online algorithm for Sn, yet. Fried et al. (2006) present
an online algorithm for the repeated median estimator , which also contains an inner
and an outer median and therefore bears similarity to the Sn. The online algorithm for
the repeated median needs time O (n) per update. However, we state a much simpler
algorithm for the Sn which also needs time O (n) per update.

To construct this online algorithm, we review the offline algorithm sketched in the
proof of Theorem 4.3. The offline algorithm works on multisets

C (i) =
{
X(i) −X(i−1), . . . , X(i) −X(1)

}
∪
{
X(i+1) −X(i), . . . , X(n) −X(i)

}
.

The two sets in C (i) are sorted in increasing order. The algorithm presented by
Shamos (1976) that computes the common b(n+ 1)/2cth order statistic of these sets
C (i) returns the information which elements are smaller or equal and which elements
are greater or equal than the computed value. Thus, it is convenient to imagine
that

{
X(i) −X(i−1), . . . , X(i) −X(1)

}
and

{
X(i+1) −X(i), . . . , X(n) −X(i)

}
are split into

halves by the algorithm.
We can easily adapt the offline algorithm to return values m(i) that implicitly define

multisets reflecting this split. The multiset L1 contains the elements smaller or equal
than C(i)b(n+1)/2c and G1 contains the elements greater or equal than C(i)b(n+1)/2c in
the case that C(i)b(n+1)/2c is in the first set

{
X(i) −X(i−1), . . . , X(i) −X(1)

}
. L2 and G2

comprise the case that C(i)b(n+1)/2c is in the second set
{
X(i+1) −X(i), . . . , X(n) −X(i)

}
.

Figure 4.10 illustrates this idea. More precisely, the multisets L1, G1, L2, and G2 are
defined as

L1(m(i)) =
{
X(i) −X(i−1), . . . , X(i) −X(m(i)+1)

}
∪{

X(i+1) −X(i), . . . , X(m(i)+b(n+1)/2c) −X(i)

}
G1(m(i)) =

{
X(i) −X(m(i)−1), . . . , X(i) −X(1)

}
∪{

X(m(i)+b(n+1)/2c+1) −X(i), . . . , X(n) −X(i)

}
L2(m(i)) =

{
X(i) −X(i−1), . . . , X(i) −X(m(i)−b(n+1)/2c)

}
∪{

X(i+1) −X(i), . . . , X(m(i)−1) −X(i)

}
G2(m(i)) =

{
X(i) −X(m(i)−b(n+1)/2c−1), . . . , X(i) −X(1)

}
∪{

X(m(i)+1) −X(i), . . . , X(n) −X(i)

}
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such that

∃j ∈ {1, 2} : (|Lj(m(i))| = b(n+ 1)/2c − 1) ∧(
∀s ∈ Lj(m(i)), g ∈ Gj(m(i)) : s ≤

∣∣X(i) −X(m(i))

∣∣ ≤ g
)
.

It is possible to let the algorithm return the values m (i), because
∣∣X(i) −X(m(i))

∣∣ is
what the original offline algorithm computes as C(i)b(n+1)/2c. The algorithm only has
to report the position of

∣∣X(i) −X(m(i))

∣∣ in C(i) instead of its value. After executing
such an adapted offline algorithm on a sample X1, . . . , Xn all m(i) are known for each
i with 1 ≤ i ≤ n. This leads to the possibility of a fast update for the b(n+ 1)/2cth
order statistics. We will see, that it is possible to update each of the inner order
statistics {|Xi −Xj| ; j 6= i}(b(n+1)/2c) in time O(1) with this information. In principle,
only three cases can occur: the order statistic does not change, the biggest element
in Lj (m(i)) takes its place, or the smallest element in Gj (m(i)) takes its place. The
update of the outer order statistic then takes time O (n) leading to time O (n) per
update. Let us first look at the framework of the online algorithm working on the
observed values x1, . . . , xN of a sample X1, . . . , XN in Algorithm 4.5.

Algorithm 4.5: Moving window computation of Sn
Input: observed sample X = {x1, . . . , xN}, window width n
Output: Scale estimate Sn for each window in X
Set Xw := {x1, . . . , xn}1

Compute Sn of Xw offline2

Store the returned Sn value in sn and the returned m (i) values in m3

for t← n to |X| − 1 do4

Call Insert(xt+1, Xw, m)5

Call Delete(xt−n+1, Xw, m)6

Calculate {
∣∣x(i) − xm(i)

∣∣ ; 1 ≤ i ≤ |X|}(b(n+1)/2c)7

Store the calculated value in st+18

end9

return the determined scale estimates sn, . . . , sN10

To achieve the desired runtime, we need a data structure S for Xw = x1, . . . , xn that
allows the operations Rank(S, xi) and Search(S, xi) for an element xi in time O (1) if
the index i of either xi or x(i) is known, but may take up to O (n) time for Insert(S, xi)
and Delete(S, xi), respectively. As the first window Xw in Algorithm 4.5 gets sorted
in the offline algorithm, it suffices to use two arrays (one sorted by index, one sorted
by rank) with a function mapping between index and rank of an element.

As a first observation, we see that the time needed to update the Sn value after an
insertion and a deletion is O(n) in Algorithm 4.5 because selecting the b(n+ 1)/2cth
order statistic of {

∣∣X(i) −Xm(i)

∣∣ ; 1 ≤ i ≤ |X|} determines the runtime. To obtain the
overall update time, we have to look at the time needed for insertion and deletion.
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We confine insertion and deletion to the case where
∣∣X(i) −Xm(i)

∣∣ = X(i)−Xm(i) (the
searched element is in the left part of C(i)) because the other case works analogously.

Procedure Insert(xins, sample X, m)
Input: Element to insert xins, sample X, m
Output: changed sample X, changed m
// Desired order statistic before and after the insertion
k = b(|X|+ 1)/2c, k′ = b(|X|+ 1 + 1)/2c1

Insert xins into X and determine p such that x(p) = xins2

// Adapt the indices in m to the change caused by insertion
for i← 1 to |X| − 1 do if m(i) ≥ p then m(i) = m(i) + 13

for i← |X| downto p+ 1 do m(i) = m(i− 1)4

Compute m(p) by computing C(p)b(n+1)/2c5

foreach i ∈ {1, . . . , |X|} \ {p} do6

// Insertion into L1(m(i)) and no change in k

if
∣∣x(i) − x(p)

∣∣ ≤ x(i) − x(m(i)) and m(i) + k + 1 ≥ p > m(i) and k = k′ then7

if m(i) + k + 1 > |X| or8 (
m(i) + 1 < i and x(i) − x(m(i)+1) ≥ x(m(i)+k+1) − x(i)

)
then

m(i) = m(i) + 19

else10

m(i) = m(i) + k + 111

end12

// Insertion into G1(m(i)) and a change in k13

else if
∣∣x(i) − x(p)

∣∣ ≥ x(i) − x(m(i)) and (p < m(i) or p > m(i) + k) and k 6= k′14

then
if m(i) + k + 1 > |X| or15 (
m(i)− 1 < i and x(i) − x(m(i)−1) ≤ x(m(i)+k+1) − x(i)

)
then

m(i) = m(i)− 116

else17

m(i) = m(i) + k + 118

end19

end20

end21

return X, m22
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Procedure Delete(xdel, sample X, m)
Input: Element to delete xdel, sample X, m
Output: changed sample X, changed m
// Desired order statistic before and after the deletion
k = b(|X|+ 1)/2c, k′ = b(|X| − 1 + 1)/2c1

Determine p such that x(p) = xdel and delete xdel from X2

// Adapt the indices in m to the change caused by deletion and mark
the cases where the element m(i) points at was deleted

for i← 1 to |X|+ 1 do3

if m(i) = p then del(i) = true else del(i) = false4

if m(i) > p then m(i) = m(i)− 15

end6

for i← p to |X| do m(i) = m(i+ 1)7

foreach i ∈ {1, . . . , |X|} do8

// Deletion of x(i) − x(m(i)) or from L1(m(i)) and no change in k
if (m(i) + k ≥ p > m(i) or del(i)) and k = k′ then9

if m(i) + k > |X| or
(
m(i)− 1 < i and x(i) − x(m(i)−1) ≥ x(m(i)+k) − x(i)

)
10

then
m(i) = m(i)− 111

else12

m(i) = m(i) + k13

end14

// Deletion of x(i) − x(m(i)) or from G1(m(i)) and a change in k15

else if (p ≤ m(i) or p > m(i) + k or del(i)) and k 6= k′ then16

if del(i) then m(i) = m(i)− 117

if m(i) + k > |X| or
(
m(i) + 1 < i and x(i) − x(m(i)+1) ≤ x(m(i)+k) − x(i)

)
18

then
m(i) = m(i) + 119

else20

m(i) = m(i) + k21

end22

end23

end24

return X, m25
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Theorem 4.4. The time needed to update an Sn scale estimation on a sample of size
n after an insertion or deletion is O(n).

Proof. In the first part of the proof, we show the correctness of Insert and Delete.
In the second part, we consider the runtime.

Let X be the sample before insertion or deletion and let k = b(|X|+ 1)/2c, kins =
b(|X|+ 1 + 1)/2c, and kdel = b(|X| − 1 + 1)/2c.
Lines 2–4 of Insert ensure that m temporarily points to the same elements as

before, although some order statistics (indices) changed. Line 5 computes m for the
newly inserted value. Lines 6–21 contain the loop doing this for all other values. Lines
7–12 handle the case, that the element x(p) − x(i) defined by the newly inserted value
belongs into L1(m(i)) (the test is for m (i) + k + 1 ≥ p > m(i) and not m (i) +
k ≥ p > m(i) because the additional element changes the ranks). If kins = k + 1,
we have to do nothing because we already have one additional element in L1(m(i)).
Otherwise, we have to search for maxL1(m(i)) which is clearly the same as max{x(i)−
x(m(i)+1), x(m(i)+k+1) − x(i)}. Lines 14–20 handle insertion into G1(m(i)) analogously.

Lines 2–7 of Delete ensure that m temporarily points to the same elements as
before, and marks when the element pointed at is deleted. Lines 8–24 contain the
loop correcting the m values. Lines 9–14 handle the case, that an element was deleted
from L1(m(i)). If kdel = k − 1, we have nothing to do. Otherwise, we have to search
for minG1(m(i)), which is clearly the same as max{x(i) − x(m(i)−1), x(m(i)+k) − x(i)}
(x(m(i)+k) − x(i) is an element of G1(m(i)) and not of L1(m(i)) because one element
of L1(m(i)) was deleted). Lines 9–14 handle deletions from G1(m(i)) analogously. A
special case occurs, when the element originally pointed at by m(i) is deleted. If
kdel = k we have to do the same as if deleting from L1(m(i)). Otherwise, we have to
care about the ranks. Decreasing the old value of m (i) and beyond that doing the
same as if deleting from G1(m(i)) handles this case correctly. Therefore, all cases are
handled correctly and Insert and Delete work correctly.
The runtime is determined by the operations that select elements of X by rank.

In Insert and Delete this is done O(n) times. When we use the described data
structure, this needs time O (n). After Insert and Delete Algorithm 4.5 spends
O(n) time to update the Sn value. Thus, the overall time is as claimed.



5 Computing the Least Quartile
Difference Estimator in the Plane

The main reason why Rousseeuw and Croux (1993) suggest Qn and Sn as alternatives
to the MAD for robust scale estimation is their advantage in Gaussian efficiency.
For the case of linear regression, we saw in Section 3.1 that the LMS estimator shows
robustness advantages over LAD and LS. However, the LMS also has the disadvantage
of a low Gaussian efficiency, which is asymptotically 0% (Croux et al., 1994). Croux
et al. (1994) propose the least quartile difference estimator as an alternative.

Definition 5.1. The least quartile difference (LQD) estimates β̂0, ..., β̂p = β̂LQD of the
regression parameters β0, ..., βp are given by

β̂LQD = min
β0,...,βp

{|ri (β0, . . . , βp)− rj (β0, . . . , βp)| ; i < j}(hp
2 ) with hp =

⌊
n+ p+ 2

2

⌋
.

Note, that computing {|ri (β0, . . . , βp)− rj (β0, . . . , βp)| ; i < j}(hp
2 ) corresponds to com-

puting the Qn estimator on residuals. The LQD is a high-breakdown method with a
breakdown point of 50%, it has an asymptotic Gaussian efficiency of 67.1% and does
not presuppose a symmetric distribution. An additional property is that the function
LQD minimizes does not depend on the intercept term. Taking a look at the defini-
tion of a residual difference ri (β0, . . . , βp) − rj (β0, . . . , βp) (residuals were defined in
Definition 3.7) we see why this is the case. The residual difference of the estimates
β̂0, ..., β̂p

ri − rj = yi − Ŷi −
(
yj − Ŷj

)
= yi −

(
β̂0 + β̂1xi1 + . . .+ β̂pxip

)
− yj + β̂0 + β̂1xj1 + . . .+ β̂pxjp

= (yi − yj)− β̂1 (xi1 − xj1)− . . .− β̂p (xip − xjp) (5.1)

does not depend on β̂0. Therefore, the intercept of the LQD regression has to be
estimated afterwards, e. g. by

med{yi − (β̂1xi1 + . . .+ β̂pxip) | 1 ≤ i ≤ n} .

Several algorithms exist for the LQD. In the following, we state results for the case
p = 1, i. e. estimation in the plane. In their article, introducing the LQD estima-
tor, Croux et al. (1994) propose to use the subset algorithm developed by Rousseeuw

39
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and Leroy (1987). The subset algorithm is based on examining subsets of the data
points that determine local solutions, i. e. estimates β̂0, ..., β̂p that are not necessarily
the global solution. The

(
h1

2

)
th order statistic of the absolute residual differences of

a local solution can be computed in time O(n log n) as seen in Section 4.3.1. Croux
et al. (1994) propose to examine all O(n2) or alternatively just O(n) randomly chosen
2-subsets of the data points, which needs overall time O(n3 log n) or O(n2 log n), re-
spectively. However, the resulting algorithm is not exact because the global solution
is not necessarily determined by a 2-subset. The exact algorithm they propose needs
time O(n5 log n). Another possibility to compute the LQD regression fit is to adapt
LMS or least quantile of squares (LQS) algorithms. LQS is a generalization of LMS.

Definition 5.2. The least quantile of squares (LQS) estimates β̂0, ..., β̂p = β̂LQS of the
regression parameters β0, ..., βp are given by

β̂LQS = min
β0,...,βp

{r1 (β0, . . . , βp)
2 , . . . , rn (β0, . . . , βp)

2}(hp) with 1 ≤ hp ≤ n .

The adaption proposed by Croux et al. (1994) leads to a running time of O(n4), if
the algorithms of Souvaine and Steele (1987) or Edelsbrunner and Souvaine (1990) for
computing LMS in time O(n2) are used. Agulló (2002) proposes an approximation
algorithm for LQD, but only gives empirical running time results.

Due to the high computational effort needed when using common algorithms, the
LQD is not widely used, yet. However, Dryden and Walker (1999) propose to use it
for object matching in biology and Mebane, Jr. and Sekhon (2004) use the LQD fit
to detect outliers in vote counts.

5.1 The Concept of Geometric Duality

To construct a faster algorithm for LQD estimation, we utilize geometric duality.
Classically, geometric duality is defined in the plane. Points in the plane and lines in
the plane are both described by two parameters. It is therefore possible to map a set
of points to a set of lines, and vice versa, in a one-to-one manner. Such a mapping
from a primal space to a dual space is called duality transform and typically preserves
certain properties and relations existing in the primal space. It is widely believed,
that it is easier to search for a point in an arrangement of lines, than to search for a
line through a set of points. As a matter of fact, the data structures and algorithms
used in computational geometry strongly support that belief.

We concentrate on the version of geometric duality that Chazelle et al. (1985) pro-
pose for solving geometrical problems. In particular, we state the formulation of
de Berg et al. (2008). Their geometric transform maps a primal point p = (β1, β0)
to a dual line Tp : y = β1x − β0 and a primal line ` : y = β1x + β0 to a dual point
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Figure 5.1: Nine points and a line in primal space and the corresponding dual space.

T` = (β1,−β0). The merit of this transformation is that relative orientations are
preserved. We denote relative orientation with the help of half-spaces:

Definition 5.3. Let h : y = β1x1 + . . . + βpxp + β0 be a hyperplane. The open
half-spaces above and below H are defined by

h+ : y > β1x1 + . . .+ βpxp + β0

h− : y < β1x1 + . . .+ βpxp + β0 .

The corresponding closed half-spaces are defined by

h⊕ : y ≥ β1x1 + . . .+ βpxp + β0

h	 : y ≤ β1x1 + . . .+ βpxp + β0 .

We call h+ and h⊕ upper half-spaces and h− and h	 lower half-spaces.

Under the geometric transformation we use, a primal point p lies above the primal
line `, i. e. in `+, if and only if the dual point T` lies above the dual line Tp, i. e. in T+

p .
Incidence is also preserved: a primal point p is incident to a primal line ` if and only
if the dual line Tp is incident to the dual point T`.

Figure 5.1 shows an example of primal and dual space. This duality transform
can easily be extended to higher dimensions, where a primal point (β1, . . . , βp, β0) is
mapped to the dual hyperplane y = β1x1 + . . . + βpxp − β0 and a primal hyperplane
y = β1x1 + . . .+ βpxp + β0 is mapped to the dual point (β1, . . . , βp,−β0).

Starting with the work of Chazelle et al. (1985) geometric duality is a frequently used
concept in computational geometry and Johnstone and Velleman (1985) introduced
the concept to robust regression.



42 5 Computing the Least Quartile Difference Estimator in the Plane

5.2 Computing the LQD Geometrically

Methods from computational geometry frequently encounter problems with degenerate
cases like parallel hyperplanes. To avoid the handling of degenerate cases, we adopt
the typical geometric assumption that the inputs are in general position (see Defini-
tion 3.10). For most situations general position is given with overwhelming probability
(see e. g. Rousseeuw and Leroy, 1987). If general position is not given, it is possible
to use well-known techniques to handle that case (see e. g. Edelsbrunner and Mücke,
1990).

Using a duality transform, we are able to compute the LQD with the more general
problem of finding the minimum of the k-level in an arrangement of hyperplanes.

Definition 5.4. Let H be a set of n non-vertical hyperplanes in Rd. For a point
p ∈ Rd, let a (p) and b (p) be the number of hyperplanes h in H such that p is in h−
and h+, respectively. For 1 ≤ k ≤ n, define the k-level as the set of points p with

a(p) ≤ n− k and b(p) ≤ k − 1 .

Problem 5.1 (Minimum of k-level).

Given: A set H of n non-vertical hyperplanes in Rd and a parameter k.

Goal: Let the y-axis be the axis that distinguishes between upper and lower half-space
of the given hyperplanes (as in Definition 5.3). Find a point on the k-level with
minimal y-coordinate.

We call a point on the k-level a local solution and the minimum point on the k-level
the global solution. To compute the LQD, we use a modified concept of geometric
duality and the fact that the LQD estimator is independent of the intercept. This
enables us to redefine the LQD as a dual problem:

Problem 5.2 (Dual LQD).

Given: A data set of n explanatory data points x1, . . . , xn ∈ Rp, n responses
y1, . . . , yn ∈ R, and a positive integer hp.

Transformation: We transform the points for 1 ≤ i < j ≤ n to 2
(
n
2

)
hyperplanes

hi,j : v = +(xi1 − xj1)u1 + . . .+ (xip − xjp)up − (yi − yj)
h̄i,j : v = −(xi1 − xj1)u1 − . . .− (xip − xjp)up + (yi − yj) .

Goal: Find a point (β̂1, . . . , β̂p, r) with minimal v-coordinate r > 0 that lies in at least(
n
2

)
+
(
hp

2

)
closed half-spaces h⊕i,j or h̄

⊕
i,j, i. e. the minimum of the

(
n
2

)
+
(
hp

2

)
-level.
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Figure 5.2: An example for the mapping of the points (0, 0.15), (1, 0.8), (3, 2.7),
and (7, 7.4) to 12 dual lines. The LQD solution for hp = 3 is determined by the
minimum 9-level point, here: (0.85, 0.2). The bold line shows local solutions. The
LQD regression line is therefore y = 0.85x + β0, and the corresponding third order
statistic of the absolute residual differences takes on its minimal value of 0.2.

We will show in the next lemma, that an optimal LQD solution is obtained by solving
Problem 5.2. An example in the plane is given in Figure 5.2.

Lemma 5.1. Let hp = b(n + p + 2)/2c. If the point (β̂1, . . . , β̂p, r) is an optimal
solution of Problem 5.2, then β̂1, . . . , β̂p are the LQD estimates of the regression
parameters β1, ..., βp in primal space and r is the minimal

(
hp

2

)
th order statistic of

{|ri(β̂0, β̂1, . . . , β̂p)− rj(β̂0, β̂1, . . . , β̂p)|; i < j} for arbitrary intercept β̂0.

Proof. Let (β̂1, . . . , β̂p, r) be an optimal solution of Problem 5.2 and consider arbitrary
i and j with 1 ≤ i < j ≤ n and the corresponding hyperplanes hi,j and h̄i,j. Now,
consider the following three possible cases:

1. (β̂1, . . . , β̂p, r) is in h⊕i,j ∩ h̄⊕i,j.

2. (β̂1, . . . , β̂p, r) is in h⊕i,j ∩ h̄−i,j or in h−i,j ∩ h̄⊕i,j.

3. (β̂1, . . . , β̂p, r) is in h−i,j ∩ h̄−i,j.
Case 3 does not occur because

(β̂1, . . . , β̂p, r) is in h−i,j ∩ h̄−i,j
⇔ +(xi1 − xj1)β̂1 + . . .+ (xip − xjp)β̂p − (yi − yj) > r and
−(xi1 − xj1)β̂1 − . . .− (xip − xjp)β̂p + (yi − yj) > r

⇒ r < 0
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but r ≥ 0. In case 1, the stated relations translate to the original problem as follows:

(β̂1, . . . , β̂p, r) is in h⊕i,j ∩ h̄⊕i,j
⇔ +(xi1 − xj1)β̂1 + . . .+ (xip − xjp)β̂p − (yi − yj) ≤ r and

−(xi1 − xj1)β̂1 − . . .− (xip − xjp)β̂p + (yi − yj) ≤ r

⇔
∣∣∣(yi − yj)− (xi1 − xj1)β̂1 − . . .− (xip − xjp)β̂p

∣∣∣ ≤ r

(5.1)⇔ For arbitrary β̂0 : |ri(β̂0, β̂1, . . . , β̂p, r)− rj(β̂0, β̂1, . . . , β̂p, r)| ≤ r . (5.2)

Now, recall that (β̂1, . . . , β̂p, r) is in at least
(
n
2

)
+
(
hp

2

)
closed upper half-spaces. Because

of counting arguments, there are at least
(
hp

2

)
pairs (i, j) such that (β̂1, . . . , β̂p, r)

is in h⊕i,j ∩ h̄⊕i,j. Due to Equation (5.2), we obtain at least
(
hp

2

)
absolute residual

differences smaller than or equal to r with respect to a hyperplane with parameters
β̂1, . . . , β̂p and an arbitrary parameter β̂0. In addition, r ≥ 0 is the minimal value,
such that (β̂1, . . . , β̂p, r) is in at least

(
n
2

)
+
(
hp

2

)
closed upper half-spaces. Therefore,

(β̂1, . . . , β̂p, r) is in at most
(
n
2

)
+
(
hp

2

)
−1 open upper half-spaces ((β̂1, . . . , β̂p, r) has to

be incident to a hyperplane) and due to counting arguments at most
(
hp

2

)
− 1 absolute

residual differences are strictly smaller than r. Hence, r is the
(
h
2

)
th order statistic of

{|ri(β̂0, β̂1, . . . , β̂p)− rj(β̂0, β̂1, . . . , β̂p)|; i < j}.
We claim that no other hyperplane y = β

′
1x1 + . . . + β

′
pxp + β

′
0 leads to a smaller(

hp

2

)
th order statistic r′ . Assume for the sake of contradiction that there are param-

eters β ′1, . . . , β
′
p leading to a smaller

(
hp

2

)
th order statistic r′ . Due to Equation (5.2),

(β
′
1, . . . , β

′
p, r

′
) is in

(
hp

2

)
half-space intersections of the type h⊕i,j∩h̄⊕i,j, that are defined by

2
(
hp

2

)
hyperplanes. (β

′
1, . . . , β

′
p, r

′
) lies in at least (2

(
n
2

)
−2
(
hp

2

)
)/2 upper half-spaces de-

fined by part of the remaining 2
(
n
2

)
−2
(
hp

2

)
hyperplanes (recall, that case three does not

occur). Thus, (β
′
1, . . . , β

′
p, r

′
) lies in at least 2

(
hp

2

)
+(2

(
n
2

)
−2
(
hp

2

)
)/2 =

(
n
2

)
+
(
hp

2

)
closed

upper half-spaces and therefore is a solution to Problem 5.2 with r′ < r. That is a con-
tradiction, because (β̂1, . . . , β̂p, r) is the global solution to Problem 5.2 (and therefore
the local solution with the smallest v-coordinate). Hence, y = β̂1x1+. . .+β̂pxp+β̂0 min-
imizes the

(
hp

2

)
th order statistic of {|ri(β̂0, β̂1, . . . , β̂p)− rj(β̂0, β̂1, . . . , β̂p)|; i < j}.

Lemma 5.1 enables us to compute the LQD by using a duality transform and solving
Problem 5.1. Thus, we can concentrate on solving Problem 5.1. All of the following
algorithms work for p = 1, i. e. estimation in the plane. As a first step, we use the
known algorithms for Problem 5.1.

Theorem 5.1. It is possible to compute the LQD estimator for n data points in the
plane in expected running time O(n2 log n) or deterministic running time O(n2 log2 n).

Proof. Problem 5.1 and the equivalent k-violation linear programming are solved with
parametric search (see Megiddo, 1979) by Cole et al. (1987) and by Roos and Wid-
mayer (1994) in time O(n log2 n). Chan (1999) states a randomized algorithm using
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cuttings that needs expected time O(n log n) for Problem 5.1. As we consider an input
transformation to O(n2) hyperplanes in Problem 5.2 and Lemma 5.1 shows that solv-
ing Problem 5.1 on a transformed input computes the LQD, the theorem is proven.

Regression through the origin names regression with fixed intercept 0. It is easy to
see that a transformation of n points pi = (xi1, . . . , xip, yi) to 2n hyperplanes

hi : v = +xi1u1 + . . .+ xipup − yi
h̄i : v = −xi1u1 − . . .− xipup + yi

enables us to compute LQS and LMS regression through the origin with Problem 5.1.

Corollary 5.1. It is possible to compute LQS and LMS regression through the origin
for n data points in the plane in expected running time O(n log n) or deterministic
running time O(n log2 n).

This improves a result of Barreto and Maharry (2006), who state an algorithm with
running time O(n2 log n) for LMS regression through the origin.

The shortcomings of the algorithms proposed in Chan (1999), Cole et al. (1987),
and Roos and Widmayer (1994) are the rather complicated techniques involved (see
e. g. Agarwal and Sharir, 1998 or van Oostrum and Veltkamp, 2002 for drawbacks of
parametric search and e. g. Section 4 of Har-Peled, 1998 for problems in the imple-
mentation of cutting algorithms). To overcome these shortcomings, we provide two
easy to implement algorithms with similar running times. The algorithms are based
on solving a decision problem that underlies Problem 5.1.

5.3 Solving the Underlying Decision Problem

In the following, we specify the method SearchLocalSolution which is used in the
next sections to solve the underlying decision problem: Given a set of non-vertical
lines L and a fixed value r ∈ R, we need to decide whether a point (x, r) on the k-level
of L exists. Let x and y be the axes of the plane and let the y axis distinguish between
the upper half-space and the lower half-space of a line. Using this convention, the
terms above and below are clear. We will also use left and right as relative positions
on the x axis. Further, let v (r) : y = r denote the vertical line with intercept r.

The idea to solve this decision problem is to use a plane sweep algorithm (see e. g.
de Berg et al., 2008). We sweep an imaginary sweep line from left to right over the
plane and change the count of lines above or below the sweep line when we encounter
a line in the plane.

The procedure named SearchLocalSolution to do this is described in the following.
Figure 5.3 additionally illustrates the idea of using a sweep line in the procedure
SearchLocalSolution.



46 5 Computing the Least Quartile Difference Estimator in the Plane

Procedure SearchLocalSolution(set of lines L, value r, level parameter k)
Input: Set of lines L, value r, level parameter k
Output: Information whether a local solution exists at height r
Compute all intersections of v (r) with the lines in L1

Let s (i) be the slope of the line in L that caused intersection i2

Sort the intersections from left to right resulting in
(
i1, . . . , i|L|

)
(intersections i3

with the same x-value are ordered ascending according to s (i))
Determine b, the number of different closed upper half-spaces of L that i1 is in4

if s (i1) < 0 then b = b− 15

foreach i ∈
(
i2, . . . , i|L|

)
do6

if s (i) < 0 then b = b+ 1 else b = b− 17

if b ≥ k then8

return true, i. e. a local solution exists at height r9

end10

end11

return false, i. e. no local solution exists at height r or a smaller height12

Figure 5.3: The idea behind SearchLocalSolution.

Lemma 5.2. The procedure SearchLocalSolution needs time O (n log n) to decide
whether a local solution to Problem 5.1 in the plane exists at a given height.

Proof. It is easy to see, that SearchLocalSolution is correct. Of all computation
steps, sorting costs most time, namely O (n log n).

Note, that SearchLocalSolution can additionally report the encountered local
solution if necessary. We will need this in the following algorithms.

5.4 Searching for the Optimal Point

To search for the minimum point on the k-level, we propose two methods:

1. A search based on the geometric mean to get an approximative solution.

2. A randomized search leading to a Las Vegas algorithm.
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In both proposed methods we denote the upper bound for the height of the optimal
solution by rmax and the lower bound by rmin. To obtain an approximative solution
with approximation ratio 1 + ε the inequality rmax/rmin ≤ 1 + ε has to hold (the
approximation ratio refers to the height of the computed solution in comparison to
the height of the optimal solution and therefore—concerning the LQD—to the ratio
between the computed solution and the minimal

(
h1

2

)
th order statistic of the absolute

residual differences). We state the approximation algorithm in Algorithm 5.2.

Algorithm 5.2: Approximate minimum of k-level
Input: Set of lines L, approximation ratio ε, level parameter k
Output: A point on the k-level
rmax =∞ and rmin = 01

foreach r ∈ {0, 1/(1 + ε), 1, 1 + ε} do2

found = SearchLocalSolution (L, r, k)3

if found and r < rmax then rmax = r4

else if not found and r > rmin then rmin = r5

end6

if rmax = 0 or rmin, rmax ∈ {1/(1 + ε), 1, 1 + ε} then go to 197

if rmax =∞ then8

while not SearchLocalSolution (L, r2
min, k) do rmin = r2

min9

rmax = r2
min10

else if rmin = 0 then11

while SearchLocalSolution (L, r2
max, k) do rmax = r2

max12

rmin = r2
max13

end14

while rmax/rmin > 1 + ε do15

if SearchLocalSolution
(
L,
√
rminrmax, k

)
then rmax =

√
rminrmax16

else rmin =
√
rminrmax17

end18

return the local solution at height rmax19

The basic ideas of this algorithm and the randomized algorithm we present later are
illustrated in Figure 5.4.

Theorem 5.2. Algorithm 5.2 computes the minimum k-level point with approxima-
tion ratio 1 + ε (0 < ε ≤ 1) (concerning the y-coordinate) on n lines in the plane in
worst case time{

O(n log n log log(1+ε) max{ 1
r∗
, r∗}), whenever max{ 1

r∗
, r∗} > 1 + ε

O(n log n), otherwise ,

where r∗ is the height of the optimal solution.
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Figure 5.4: The basic idea behind the approximation and the randomized algorithm.

Proof. The correctness of the algorithm follows from the correctness of the procedure
SearchLocalSolution. As the running time is bounded (we show this below), the
algorithm terminates.

If r∗ = 0 or r∗ ∈ [1/(1 + ε), 1 + ε] ⇔ max{ 1
r∗
, r∗} ≤ 1 + ε, the four initial tests at

heights 0, 1/(1 + ε), 1, and 1 + ε suffice to attain the desired approximation ratio.
If max{ 1

r∗
, r∗} > 1 + ε either rmax is still ∞ or rmin is still 0 after these tests. We

only consider the case that rmax is still ∞, because the calculations for the other case
are similar. If rmax is still ∞, rmin has to be the greatest of the initially tested values,
namely 1 + ε. After the while loop in line 9 terminates, rmax = r2

min (recall, that
rmin is updated if no local solution is found) and therefore (r∗)2 > rmax (recall, that
rmin ≤ r∗ ≤ rmax). Hence, the maximum number of times SearchLocalSolution is
called to obtain rmax is determined by the smallest integer k1 that is a solution to

(1 + ε)2k1 ≥ (r∗)2 .

Therefore, the maximum number of times SearchLocalSolution is called is

d2 log log r∗ − log log (1 + ε)e .

Since rmax = r2
min, we obtain rmax/rmin = rmin. In lines 15–18, the geometric mean

of rmin and rmax is tested until the approximation ratio 1 + ε is reached. In each loop
cycle, we obtain new bounds rmin and rmax. One is identical to the former bound, the
other is the geometric mean of the former bounds. For the case that rmax is updated,
the new ratio between rmax and rmin is

rmax

rmin

=

√
r′maxrmin

rmin

=

√
r′max

r′min

,

where r′min and r′max denote the old values of rmin and rmax, respectively. The other case
leads to the same ratio. Hence, the new ratio is the square root of the old ratio. Since
the ratio we begin with is less than r∗, the maximum number of times the procedure
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SearchLocalSolution is called until we reach a ratio of 1 + ε is determined by the
smallest integer k2 that is a solution to

(r∗)(1/2)k2 ≤ 1 + ε .

Therefore, the maximum number of times SearchLocalSolution is called is

dlog log r∗ − log log (1 + ε)e .

Each call of SearchLocalSolution costs time O (n log n).

Corollary 5.2. Algorithm 5.2 finds the LQD fit with approximation ratio 1 + ε (0 <
ε ≤ 1) on n points in the plane in worst case time{

O(n2 log n log log(1+ε) max{ 1
r∗
, r∗}), whenever max{ 1

r∗
, r∗} > 1 + ε

O(n2 log n), otherwise ,

where r∗ is the
(
h1

2

)
th order statistic of the absolute residual differences of the LQD fit.

Note, that with input values not larger than 2n, we may also write

O
(
n2 log n (log n− log log (1 + ε))

)
as a simpler but less precise term for the running time.

For the randomized algorithm, we need the following definition.

Definition 5.5. An inversion in a permutation π is a pair of values where i > j and
π (i) < π (j) or i < j and π (i) > π (j). An inversion table contains the number of
inversions for each element i, denoted by inv(i).

We use the inversion table to calculate the number of intersections of an arrangement
of lines between two vertical lines.

Procedure NoOfIntersectionsBetween(set of lines L, intercept r1, intercept r2)
Input: Set of lines L, intercept r1, intercept r2
Output: Number of intersections of lines in L that lie between v(r1) and v (r2)
Compute all intersections of v (r1) with the lines in L1

Compute all intersections of v (r2) with the lines in L2

Label the lines in L according to their intersections on v(r1) from left to right3

Interpret the intersections on v(r2) as a permutation π of the labels4

Compute the inversion table of π5

return 1
2

∑
i∈π inv(i)6

Taking Figure 5.4 as an example, we get π = (3, 1, 4, 2, 8, 5, 7, 6, 10, 9, 11) if we label
the intersections on v (rmax) (in the boundaries of the figure) from left to right. The
corresponding inversion table (2, 1, 1, 2, 3, 1, 2, 2, 1, 1, 0) clearly reflects the intersections
each line has between the vertical lines. As each intersection is counted two times, the
total number of intersections equals half the sum of the inversion table.
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Lemma 5.3. NoOfIntersectionsBetween computes the number of intersections of
an arrangement of n lines between two vertical lines in time O (n log n)

Proof. The correctness of NoOfIntersectionsBetween is clear. The calculation of
the number of intersections between two vertical lines is possible in time O (n log n),
because the inversion table can be computed in this time (for example with an extended
merge sort algorithm) and no other step takes more time than O (n log n).

We are now able to state the randomized algorithm.

Algorithm 5.4: Randomized algorithm for minimum of k-level
Input: Set of lines L, level parameter k
Output: Minimum point on the k-level
rmin = 01

Randomly choose a point (x, 0) that is incident to a line in L2

rmax = {y | (x, y) is a local solution}3

I = NoOfIntersectionsBetween (L, rmin, rmax)4

while I > 0 do5

// Randomly choose an intersection between v(rmin) and v(rmax)
Choose a line ` in L (line i is chosen with probability inv(i)/I)6

Choose an intersection (·, rmid) on ` uniformly at random (rmin < rmid < rmax)7

if SearchLocalSolution (L, rmid, k) then rmax = rmid else rmin = rmid8

I = NoOfIntersectionsBetween (L, rmin, rmax)9

end10

return the local solution at height rmax11

Theorem 5.3. Algorithm 5.4 computes the minimum k-level point of n lines in the
plane in expected running time O(n log2 n).

Proof. The correctness of the algorithm follows from the correctness of the procedures
NoOfIntersectionsBetween and SearchLocalSolution. In the following, we show
that the expected running time of the algorithm is O(n log2 n).

It is possible to compute a starting value for rmax by computing the best local
solution for a fixed x-coordinate in time O (n log n). To do this, we have to calculate
all intersections of the lines with the chosen x-coordinate, sort them according to their
y-coordinate, and sift through the intersection points increasing the count of closed
upper half-spaces it lies in until we reach the value k.
Randomly choosing an intersection between v(rmin) and v(rmax) can be done in time

O (n log n), because computing the intersections on the randomly chosen line is the
costliest step.

Let I (v(r1), v(r2)) denote the number of intersections between two horizontal lines
v(r1) and v(r2) and let m := I (v(rmin), v(rmax)). Furthermore, assume that no two
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intersections have the same y-coordinate. The algorithm choses each intersection be-
tween v(rmin) and v(rmax) with probability 1/m, therefore the expected number of
remaining intersections is

E(I (v(rmin), v(rmid))) = E(I (v(rmid), v(rmax))) =
m−1∑
i=0

1

m
i <

m

2
.

Intersections with the same y-coordinate can only lead to a smaller value. Hence, we
expect to execute O (log n) cycles of the while loop and expect an overall running time
of O(n log2 n).

Corollary 5.3. Algorithm 5.4 finds the LQD fit on n points in expected running time
O(n2 log2 n).

5.5 Running Time Simulations

In contrast to Chan (1999), Cole et al. (1987), and Roos and Widmayer (1994), where
no implementation of the algorithms in Theorem 5.1 is mentioned, we have imple-
mented Algorithm 5.2 and Algorithm 5.4. The implementation is available as part of
the R (R Development Core Team, 2008) package robfilter (Fried and Schettlinger,
2008).

While it is theoretically possible to choose ε in such a way that the approximation al-
gorithm is slower than the randomized algorithm, trial runs with our implementations
show that the approximative version is generally faster in practice. For the conducted
experiments, we used 64 bit floating point numbers according to IEEE 754-1985. If
we choose ε sufficiently small and wait until rmin and rmax are indistinguishable from
their geometric mean the approximative version computes the same results as the
randomized version.

The experiments show that even with such a precision, the approximative version is
faster than the randomized one. However, for greater ε it is of course much faster. We
compare the approximative version with maximal precision for 64 bit floating point
numbers to the approximative version with ε = 0.01 and to the randomized version
on two types of data sets with n points. The first type of data set is

{(xi, yi) | xi = 2 (i− 1) / (n− 1) ; yi = −xi + 1.2 + e1; 1 ≤ i ≤ n}

and the second is
{

(xi, yi)
∣∣∣xi = 2(i−1)

n−1
; yi = e2; 1 ≤ i ≤ n

}
, whenever i ≤

⌊
n
2

⌋
+ 1{

(xi, yi)
∣∣∣xi = 2(i−1)

n−1
; yi = − 1

10
xi + 3

2
+ e2; 1 ≤ i ≤ n

}
, otherwise
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Figure 5.5: Boxplots of the running time in seconds on a Pentium 4 CPU with
2.56GHz and 1024MB of RAM for the data sets.

where e1 ∼ N (0, 10−4) and e2 ∼ N (0, 10−560). While the first type of data set
represents uncontaminated normal data, the second type contains dn/2e − 1 outliers.
Thus, data set number two can result in local solutions that are far from the optimum.

Computing times of these three versions of the algorithm are measured for each n in
{100, 200, . . . , 1000} for 100 different data sets. The results are shown in Figure 5.5.
The figure shows boxplots of the running times for each n and each algorithm. These
boxplots illustrate the minimal and maximal running time for each n as well as the
first and third quartile and the median of the running times. In detail, the upper and
lower boundary of a box in a boxplot mark values such that 25% of the data is greater
or equal and 25% of the data is smaller or equal. The middle line of a box marks the
median of the data. The so called whiskers above and below a box denote the greatest
and smallest value in the data that is not further away from the box than 1.5 times
the distance between upper and lower boundary of the box. Points that are further
away are marked by a circle.

The boxplots in Figure 5.5 clearly show that the randomized version has a consid-
erably larger variance in its computation time and needs much more time than the
approximative version. Another noticeable fact is that the two figures do not differ
very much. The high number of outliers and local solutions in the second data set
does not slow down the algorithms. On the contrary, the possibility to start at a local
solution that is far below other local solutions leads to better performance.

In conclusion, the randomized version of the algorithms presented in Section 5.4
provides a large improvement in computation time on currently available LQD algo-
rithms. However, the experiments show that the proposed approximation algorithm
yields even better results. Therefore, these algorithms might increase the practical
relevance of LQD regression in the future.



6 An Evolutionary Algorithm for
Robust Linear Regression

The algorithms in Chapter 5 work only in the plane, but it is of course desirable to
compute robust linear estimators in higher dimensions. Unfortunately, the compu-
tation of these estimators is quite hard. More precisely, Bernholt (2005) shows that
estimators with the exact fit property (whenever a sufficiently large majority of the
observations lies on a common hyperplane, an estimator with the exact fit property
yields that hyperplane, see e. g. Rousseeuw, 1984) are NP-hard to compute. Under
the assumption that the complexity classes NP and P are not equal, we therefore have
little hope to compute exact solutions for large high dimensional data sets. All of the
so far considered robust estimators—namely LMS, LQS, and LQD—possess the exact
fit property (Rousseeuw, 1984; Croux et al., 1994). Here, we additionally consider
least trimmed squares proposed by Rousseeuw (1984) which also possesses the exact
fit property.

Definition 6.1. The least trimmed squares (LTS) estimates β̂0, ..., β̂p = β̂LTS of the
regression parameters β0, ..., βp are given by

β̂LTS = min
β0,...,βp

hp∑
i=1

{r1 (β0, . . . , βp)
2 , . . . , rn (β0, . . . , βp)

2}(i) with 1 ≤ hp ≤ n .

The very similar least trimmed sum of absolute values (LTA) proposed by Hössjer
(1994) is defined as

β̂LTA = min
β0,...,βp

hp∑
i=1

{|r1 (β0, . . . , βp)| , . . . , |rn (β0, . . . , βp)|}(i) with 1 ≤ hp ≤ n

and may also be computed by the algorithm we propose in the following.
All of the estimators LMS, LQS, LQD, LTS, and LTA are high-breakdown methods,

possessing the optimal finite sample breakdown point of almost 50% for the appropriate
choice of hp.
LQS and LMS have the disadvantage of a low efficiency at Gaussian samples, which

is asymptotically 0% (Croux et al., 1994). Arguments for LQS/LMS used to be the
easier computation of the objective function compared to LTS and LQD—though the
computation of the estimators is still NP-hard—and the intuitive definition. LTS and
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LQD are alternatives with higher Gaussian efficiencies of 7.1% and 67.1%, respectively.
An additional advantage of LTS is its smooth objective function leading to a lower
sensitivity to local effects (Rousseeuw and Van Driessen, 2006).

Because of the above mentioned advantages and disadvantages, the considered esti-
mators are relevant for different data situations. Therefore, algorithms for them are of
high interest. We consider situations where exact algorithms are not feasible and there-
fore concentrate on heuristics. The heuristics most commonly used are PROGRESS
for LQS/LMS and LTS (Rousseeuw and Leroy, 1987; Rousseeuw and Hubert, 1997)
and FAST-LTS for LTS (Rousseeuw and Van Driessen, 2006). LQD may be computed
with LQS algorithms with a quadratic blow-up of computation time (Croux et al.,
1994). Aside from the best known heuristics, Hawkins and Olive (1999) propose a so
called feasible solution algorithm (FSA) for LQS/LMS and LTS. The FSA is based on
sampling data subsets of size hp and iterative swapping of data points in the sample
with data points outside the sample.

We propose to use evolutionary computation to compute the named robust estima-
tors. As a matter of fact, all algorithms proposed in the remainder of this thesis are
evolutionary computation algorithms.

6.1 Evolutionary Computation

The concept of evolutionary computation is well known in computer science and gain-
ing importance in statistics as well. Examples for the application of evolutionary com-
putation in computational statistics include evolutionary clustering (Hruschka et al.,
2006), computation of robust estimators (Meyer, 2003), time series modeling (Barag-
ona et al., 2004), and many more.
The idea of evolutionary computation is to mimic the Darwin–Wallace principle

of natural selection in order to obtain an efficient search heuristic. Evolution’s main
principle is that populations of individuals evolve through variational inheritance where
a concept of fitness reflects the ability to survive. Transfered to optimization, the
population of individuals is a collection of candidate solutions, where the fitness reflects
the goodness of the candidate solution, e. g. the objective value.

Individuals may be characterized by genotypes (the genetic makeup) or phenotypes
(observed qualities). In algorithmic terms, these are the computer representation of
the candidate solution and its (mathematical) interpretation if not apparent. Essential
modules of evolutionary algorithms are therefore the fitness function that maps indi-
viduals to fitness values, the genotype search space and an optional mapping between
genotype and phenotype.

Further, selection schemes determining which individuals are selected for variation,
and concepts to modify individuals are needed (typically called mutation or recombi-
nation/crossover depending on whether one or more individuals are involved).
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By nature, an evolutionary process is infinite. To obtain an algorithm that termi-
nates, we additionally need a stopping criterion.
The basic evolutionary process used by evolutionary algorithms is described in Al-

gorithm 6.1.

Algorithm 6.1: Basic Evolutionary Algorithm
Create an initial random population1

Perform the following steps on the current generation of individuals2

begin3

Select individuals in the population based on a selection scheme4

Adapt the selected individuals.5

Evaluate the fitness value of the adapted individuals6

Select individuals for the next generation according to a selection scheme7

end8

if stopping criterion is not fulfilled then set next generation as current and go to9

3
return the final population10

Evolutionary computation is a very general and adaptive framework and ideas used
in evolutionary algorithms can also be found in existing algorithms for robust re-
gression. For example, the point interchange Hawkins (1993) uses in his feasible set
algorithm to compute LMS can be seen as a mutation operator.

6.2 Outline of the Algorithm

As a first step, we have to appoint the genotype of the individuals we work on. In order
to have a limited number of candidate solutions, we restrict ourselves to candidate
solutions uniquely determined by a data subsample of fixed size. In the most common
algorithms PROGRESS and FAST-LTS the subsamples are for sound reasons of size
p+ 1 (the value p+ 1 fits the notation used in Definition 3.6; in the notation used by
Rousseeuw and Leroy, 1987, the value would be p). These reasons include the fact, that
p + 1 linear independent points uniquely define a hyperplane. Additionally, smaller
subsamples decrease the possibility of having outliers in the subsample. Although,
strictly speaking, we are computing a different estimator when using subsamples of
size p + 1, it remains being a high breakdown estimator (Rousseeuw and Basset Jr.,
1991).
We will adopt this in defining for explanatory data Ze = {x1, . . . , xn} with xi ∈ Rp

for 1 ≤ i ≤ n the genotype of our individuals as

G =

{
(g1, . . . , gn) ∈ {0, 1}n :

n∑
i=1

gi = p+ 1

}
.
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A genotype in G is mapped to its phenotype by m : G→ {U ⊆ Rp : |U | = p+ 1} with

m ((g1, . . . , gn)) = {xi ∈ Ze; gi = 1} .

Thus, we obtain
(
n
p+1

)
different possible individuals. The determination of the fitness

or goodness of these individuals comprises two steps leading to Algorithm 6.2:

1. Compute a unique candidate solution hyperplane H from the given individual
(defining an estimate β̂0, ..., β̂p of the regression parameters β0, ..., βp ).

2. Compute—depending on the estimator chosen—one of the objective functions

LQS: {r1(β̂0, ..., β̂p)
2, . . . , rn(β̂0, ..., β̂p)

2}(hp)

LTS:
hp∑
i=1

{r1(β̂0, ..., β̂p)
2, . . . , rn(β̂0, ..., β̂p)

2}(i)

LQD: {|ri(β̂0, ..., β̂p)− rj(β̂0, ..., β̂p)|; i < j}(hp
2 )

Algorithm 6.2: Evolutionary Algorithm for Robust Regression
Input: Data set, objective function of desired estimator
Output: Estimated parameters β̂0, ..., β̂p
Select (g1, . . . , gn) ∈ G uniformly at random, constituting the initial population1

Compute a unique hyperplane H defined by β̂0, ..., β̂p from (g1, . . . , gn)2

Determine the objective value f for the chosen estimator3

Conduct one of the following adaptions chosen uniformly at random:4

Point mutation: Randomly select gi, gj ∈ (g1, . . . , gn) with gi 6= gj and5

exchange their values to obtain (g′1, . . . , g
′
n).

Hyperplane mutation: Let ri be the residuals defined by β̂0, ..., β̂p.6

Randomly select k > p+ 1 and compute a set I of p+ 1 indices such that

{r2
1, . . . , r

2
n}(k−p) ≤ min{r2

i ; i ∈ I} ≤ max{r2
i ; i ∈ I} ≤ {r2

1, . . . , r
2
n}(k) .

Set g′i ∈ (g′1, . . . , g
′
n) to 1 if and only if i ∈ I.

Compute a unique hyperplane H ′ defined by β′0, . . . , β′p from (g′1, . . . , g
′
n)7

Determine the objective value f ′ for the chosen estimator8

if f ′ ≤ f then set (g1, . . . , gn) = (g′1, . . . , g
′
n), H = H ′, β̂i = β′i and f = f ′9

if none of {elapsed time,conducted adaptions,consecutive adaptions without better10

fitness} exceeds its predetermined maximum then go to 4
return β̂0, ..., β̂p11

It is helpful to also use a resampling adaption that selects a completely new indi-
vidual (g′1, . . . , g

′
n) ∈ G uniformly at random. We included it equiprobable, but the

algorithm is typically faster when not using it as often as the other adaptions.
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We omitted LMS and LTA in the description because of their similarity to LQS and
LTS, respectively. The main difference of our algorithm to PROGRESS and FAST-LTS
is that we have a continuous process changing subsamples instead of drawing a fixed
number of subsamples. Thus, we are able to use the information of good candidate
solutions in a better way. Only using the point mutation would lead to staying in local
optima. The hyperplane mutation redeems this disadvantage in potentially moving
far away from local optima, but still using information contained in the solution.

The question how to compute a unique hyperplane from a subset of size p+1 remains.
As a first step, we compute the hyperplane H through the subset of data points. As we
again assume general position, this hyperplane is unique. The second step depends on
the estimator and is described in more detail in the following. A third optional step is
to adjust the intercept of the unique hyperplane by doing an LTS/LQS/LQD univariate
estimate on the residuals defining the objective value (Rousseeuw and Hubert, 1997).
We include this step in our algorithm.

6.2.1 Computing a Unique Hyperplane for LTS

Rousseeuw and Van Driessen (2006) show that the following procedure guarantees an
improvement in the objective value of the LTS estimate H:

1. Determine the hp points with the smallest squared residuals with regard to H.

2. Compute the least squares fit β̂LS on these hp points which defines the unique
hyperplane.

6.2.2 Computing a Unique Hyperplane for LQS

The situation for LQS is more complex. The following procedure also guarantees an
improvement in objective value (Stromberg, 1993):

1. Determine the hp points with the lowest squared residuals with regard to H.

2. Compute a a minimax fit estimation

β̂minimax = min
β0,...,βp

max{r1 (β0, . . . , βp)
2 , . . . , rhp (β0, . . . , βp)

2}

on these hp points where r1, . . . , rhp denote the residuals for the chosen hp points.

One possibility to compute such a fit is based on computing least squares fits on all(
hp

p+2

)
possible subsamples of size p + 2 (Stromberg, 1993). For large hp or p this is

clearly prohibitive. A feasible possibility to compute a unique hyperplane is to do a
least squares fit on a subset of the data uniquely defined by H. We again propose to
use least squares on the hp points with the smallest squared residuals with regard to H.
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This often leads to an improved objective value, but in contrast to LTS regression the
improvement is not guaranteed. Thus we only choose the new hyperplane instead of H
if it leads to a better objective value. A third possibility to improve the objective value
is to do weighted least squares on the data points with the lowest squared residuals
with regard to H and give higher weight to the data points with higher residuals.

6.2.3 Computing a Unique Hyperplane for LQD

The similarity of LQD to LQS allows us to use the following procedure to obtain a
guaranteed better objective value:

1. Determine the set of points Z = {(xi − xj, yi − yj)} such that the corresponding
absolute residual differences |ri − rj| with regard toH are among the hp smallest.

2. Compute a minimax fit estimation on Z.

It is easy to see that this procedure guarantees a better objective value, because Croux
and Rousseeuw (1992) showed that it is possible to compute the LQD by computing
an LQS on the data set of differences {(xi − xj, yi − yj) ; 1 ≤ i < j ≤ n}. This is
however, due to a typically larger hp than in LQS estimation, even more prohibitive
than in case of the LQS for large hp or p. Again, a good alternative is to use least
squares fits on subsets of the data (this time on the according data sets of differences).

6.3 Comparison

We compare our algorithm with results from PROGRESS for LQS and results from
FAST-LTS for LTS. We omit the LQD, because—as we have seen—a transforma-
tion to LQS exists and to our knowledge, no implementation of LQD algorithms
for high dimensional data exists. PROGRESS is implemented in the function lqs
of the R (R Development Core Team, 2008) package MASS (Venables and Ripley,
2002) and FAST-LTS is implemented in the function ltsReg of the R package ro-
bustbase (Todorov et al., 2007). Our own algorithms are implemented in the function
robreg.evol of the R package RFreak (Nunkesser, 2008).
To compare the algorithms, we simulate data with n = 500 data points for p =

1, . . . , 30 from two different models. In the first model, the independent regressors are
normally distributed. In the second model, they stem from a uniformly distributed
random design on the interval (0, 1). The first model is given by

Yi = β0 + β1xi1 + . . .+ βpxip + εi i = 1, . . . , n

where β0 is an intercept term and εi ∼ N (0, 1) are random errors. The parameter
β0 is set to 0, while β1, . . . βp equal 2. We add 40% outliers to the data in choosing
two disjunct subsamples of size 20%. We add 3 to the explanatory data in the first



6.3 Comparison 59

�2 0 2 4

�5
0

5
10

First model

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10

Second model

x

y
Figure 6.1: Example of simulated data for p = 1.

10
0

14
0

18
0

22
0

LTS (first model)

Number of regressors

L
T

S 
cr

it
er

io
n 

va
lu

e

0 5 10 15 20 25 30

ltsReg
robreg.evol

10
0

20
0

30
0

LTS (second model)

Number of regressors

L
T

S 
cr

it
er

io
n 

va
lu

e

0 5 10 15 20 25 30

ltsReg
robreg.evol

Figure 6.2: Comparison of robreg.evol with ltsReg.

subsample and 6 to the response in the second subsample, generating additive outliers
in the explanatory and the response variables, respectively.

The second model contains a structural change. The parameter β1 is 1, while
β2, . . . βp are 0. Thus, the corresponding regressors add only noise to the problem.
The structural change is in the intercept, which is

β0 =

{
0, if xi1 ≤ {xj1; 1 ≤ j ≤ 500}300:500

10, if xi1 > {xj1; 1 ≤ j ≤ 500}300:500
.

A good robust estimate of β should give β0 close to 0 and the slopes as above. Figure
6.1 shows an example of two simulated data sets based on these models with p = 1.
To compare the algorithms honestly, we measure the runtime lqs and ltsReg,

respectively, need for the computation and give our algorithm exactly the same amount
of time. Figure 6.2 shows the results for LTS and Figure 6.3 shows the results for LMS.

In nearly all conducted runs, our algorithm achieves better results than the estab-
lished algorithms lqs and ltsReg. Another observation is that the structural change
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Figure 6.3: Comparison of robreg.evol with lqs.

in the second data set affects the LTS estimation of ltsReg heavily for p ≥ 15 while
the effect on robreg.evol is far less.

Further experiments show that the gap between our algorithm and the established
ones widens more, if we allow the algorithms to spend even more time. All in all,
robreg.evol seems to be better suited for the considered data situations.



Part III

Genetic Association Studies
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7 Preliminaries

The aim of genetic association studies is to identify genetic factors that may contribute
to a medical condition. We consider case-control studies, in which patients who have
the medical condition (the cases) are compared with subjects who do not have the
condition but are otherwise similar (the controls). The genetic factor we consider
is genetic variation. The most common and also often considered most important
genetic variation is the single nucleotide polymorphism (SNP, pronounced snip).

7.1 Single Nucleotide Polymorphisms

Schwender et al. (2006) give an overview of the necessary basics of SNP studies. We
take up the concepts presented by Schwender et al. (2006) needed here.
The nucleus of almost every human cell comprises the complete human genome,

which is a blueprint for all cellular structures and activities in the human body. The
genome consists of chromosome pairs (one chromosome from the mother, one from
the father). Each chromosome is a huge chain of two intertwined strands of deoxyri-
bonucleic acid (DNA), structured as a double helix . The DNA strands are sequences
of nucleotides, where each nucleotide consists of a phosphate group, a sugar, and a
nitrogenous base. The four different nitrogenous bases adenine (A), thymine (T), cy-
tosine (C), and guanine (G) build four different nucleotides. The nitrogenous bases
on the two DNA strands are paired via hydrogen bounds. A is paired with T and C
is paired with G. Thus, one sequence of letters in {A, T, C,G} suffices to describe the
two strands of DNA. Figure 7.1 shows an example of a DNA sequence according to
Drew et al. (1981) and created with UCSF Chimera (Pettersen et al., 2004). Addi-
tionally, Figure 7.1 shows a representation of the same DNA sequence in the layout
used by Alberts et al. (2002).
Less than 1% of the human DNA differs between individuals. In absolute terms,

these are still millions of base pair positions at which different bases can occur. Each
of the forms a DNA segment can take is called an allele. Alleles occurring in more than
1% of the population are called polymorphisms. Looking at a fixed base pair position or
locus, a polymorphism at this specified locus is called a single nucleotide polymorphism,
because it is a polymorphism at a single nucleotide position. In an analysis concerning
the genotype of individuals, we consider the chromosome pairs of an individual. A SNP
has typically two alleles, the major allele occurring in the majority of the population
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G

C

A

T

C CG G A TA T C CG G

G C G C T T G C G CA A

Figure 7.1: DNA sequence described by CGCGAATTCGCG.

and the minor allele (often denoted by A and a). As we consider chromosome pairs,
a SNP in our analysis can take three forms: AA (homozygous reference), Aa/aA
(heterozygous variant), aa (homozygous variant). Figure 7.2 shows an illustration of
the three different SNP forms.

Note, that there is a difference between the SNP forms Aa and aA (one has the
minor allele in the father chromosome, the other form has the minor allele in the
mother chromosome). However, in the measuring methods underlying the data we
work on, Aa and aA cannot be distinguished. Thus, we are only able to consider
three different SNP forms. Our approach for genetic association studies on SNP data
is to use evolutionary computation. Many of the classification problems underlying
case-control studies are NP-hard (depending on the prediction model used) and thus
motivate the use of heuristics. In addition, the sheer amount of data in genetic studies
impedes exact algorithms. The algorithm we propose in the following uses genetic
programming (GP).

7.2 Genetic Programming

Genetic programming is an evolutionary computation (see Section 6.1) concept by
Koza (1992). When we adopt a unified view of evolutionary computation like the view
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Figure 7.2: The three different SNP forms AA, Aa/aA, and aa.

of De Jong (2006), genetic programming may also be described by Algorithm 6.1. The
main difference to evolutionary algorithms as used in Section 6.2 is the genotype search
space. The idea of genetic programming is to apply the Darwin–Wallace principle of
natural selection to obtain computer programs by evolution. Computer programs
in genetic programming are described by symbolic expressions. The set of possible
symbolic expressions constitutes the genotype search space. It is typically described by
all symbolic expressions that can be recursively composed of functions from a function
set F and terminals from a terminal set T . Consider as an example F = {∧,∨,¬}
and T = {x1, x2}. The genotype search space can then be interpreted as all Boolean
expressions that may be formed with the variables x1 and x2 and the operations ∧, ∨,
and ¬.

Some part of the comparison of heuristics may be done by hypothesis testing.

7.3 Hypothesis Testing

In principle, it is possible to analyze the stochastic process underlying an evolutionary
computation algorithm theoretically. Unfortunately, the class of problems that may
be analyzed with state-of-the-art techniques is limited (see e. g. Oliveto et al., 2007 for
a survey on theoretical results for combinatorial optimization algorithms). Where a
theoretical analysis is not yet possible, empirical results may help. In order to obtain
statistically valid results, hypothesis testing is proposed e. g. by Bartz-Beielstein (2006)
and Zitzler et al. (2008).

Hypothesis testing (see e. g. Mood et al., 1974) is a statistical inference method.
Statistical inference is concerned with inferring information on some collection of ele-
ments from samples. In our case, we want to infer information on the performance of
variants of a particular algorithm from observations made in algorithm runs. In hy-
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pothesis testing, the information we would like to infer is, whether or not a hypothesis
about the algorithm variants should be accepted. The statistical inference we would
like to make here (if it is true) is that one algorithm variant outperforms other variants.
When testing hypotheses, we instead assume the null hypothesis H0 that the algorithm
variants produce samples drawn from the same distribution or from distributions with
the same mean value, i. e. that no variant outperforms the other significantly. The
probability of obtaining a result at least as extreme as the one observed, assuming
H0 is true, is called p-value and computed using an inferential statistical test. A p-
value lower than a chosen significance level α signifies, that the null hypothesis can
be rejected in favor of an alternative hypothesis H1, at a significance level of α. Here,
we mostly define the alternative hypothesis one-sided, i. e. the alternative hypothesis
states that the result of an algorithm variant produces results coming from a “better”
distribution.

For results from stochastic optimizers, we typically use nonparametric tests (see e. g.
Conover, 1999), i. e. tests that only make weak assumption about the distributions pro-
ducing the samples. This is a safe choice, because stronger distribution assumptions
cannot be theoretically justified for stochastic optimizer outputs in general. The ap-
propriate test to compare the results of two algorithm variants in our scenario is the
Wilcoxon signed rank test.

TheWilcoxon signed rank test works on the absolute differences of pairs of algorithm
outputs measurable as real numbers, i. e. results two different algorithms variants out-
put for the same data set. Our null hypothesis is that these differences are symmetric
about 0, our alternative hypothesis is that there is a location shift in favor of the
algorithm variant assumed to be better. In the test, the cases with zero difference are
eliminated from consideration and the remaining absolute differences are then ranked
from lowest to highest, with tied ranks included where appropriate. These rank values
get a negative sign, if and only if the original difference was negative. The positive
and negative ranks are then summed. The higher the absolute sum, the higher the
evidence, that the null hypothesis should be rejected. As we consider one-sided tests,
we have to specify if a large negative or a large positive sum shows that an algorithm
variant is better. Table 7.1 shows an example for the Wilcoxon signed rank test.

To compare more than two algorithm variants, we use the Friedman rank sum test.
The Friedman rank sum test works on the ranks of blocks of algorithm variant outputs
for the same data set. These ranks are summed for each algorithm variant. Our null
hypothesis is, that the differences between these rank sums are symmetric about 0. The
higher the difference in rank sums, the higher the evidence, that the null hypothesis
should be rejected. Table 7.2 shows an example for the Friedman rank sum test.

When conducting these tests, we will often only state the alternative hypothesis in
an informal way, implying that one of the algorithm variant outcomes contains better
results and report the p-value.
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Output A Output B A−B |A−B| rank signed rank
78 78 0 0 - -
24 24 0 0 - -
64 62 2 2 1 1
45 48 −3 3 2 −2
64 68 −4 4 3.5 −3.5
52 56 −4 4 3.5 −3.5
30 25 5 5 5 5
50 44 6 6 6 6
64 56 8 8 7 7
50 40 10 10 8.5 8.5
78 68 10 10 8.5 8.5
22 36 −14 14 10 −10
84 68 16 16 11 11
40 20 20 20 12 12
90 58 32 32 13 13
72 32 40 40 14 14∑

· = 67

Table 7.1: Example for the Wilcoxon signed rank test

Output A Output B Output C block rank
of A

block rank
of B

block rank
of C

9.0 7.0 6.0 3 2 1
9.5 6.5 8.0 3 1 2
5.0 7.0 4.0 2 3 1
7.5 7.5 6.0 2.5 2.5 1
9.5 5.0 7.0 3 1 2
7.5 8.0 6.5 2 3 1
8.0 6.0 6.0 3 1.5 1.5
7.0 6.5 4.0 3 2 1
8.5 7.0 6.5 3 2 1
6.0 7.0 3.0 2 3 1∑

· = 26.5
∑
· = 21.0

∑
· = 12.5

Table 7.2: Example for the Friedman rank sum test
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8 Genetic Programming for
Association Studies

One of the major goals of association studies is to identify SNPs and SNP interactions
that lead to a higher disease risk. Since individual SNPs typically only have a slight to
moderate effect—in particular when considering more complex diseases—the focus is
on the detection of interactions (Garte, 2001; Culverhouse et al., 2002), i. e. the effect
a combination of SNPs has. The search for such interacting SNPs is additionally
impeded by the facts that the interactions are usually of a high order and that they
are explanatory for relatively small subgroups of the patients (Pharoah et al., 2004).

Various methods have been suggested for and applied to genotype data to identify
SNP interactions. These procedures span from exhaustive searches based on e. g.
multiple testing approaches (Marchini et al., 2005; Goodman et al., 2006; Ritchie et al.,
2001) to methods based on discrimination procedures (e. g. Lunetta et al., 2004). For
overviews on such approaches, see Heidema et al. (2006) and Hoh and Ott (2003).

One of the most promising methods is logic regression (Ruczinski et al., 2003), an
adaptive classification and regression procedure that tries to identify Boolean combi-
nations of binary variables associated with the response (e. g. the case-control status).
In several comparisons with other regression or discrimination approaches, logic re-
gression has shown a good performance in its application to SNP data (Kooperberg
et al., 2001; Witte and Fijal, 2001; Ruczinski et al., 2004; Schwender, 2007). More-
over, logic regression can be employed for detecting interactions and quantifying their
importance (Kooperberg and Ruczinski, 2005; Schwender and Ickstadt, 2008).

8.1 Boolean Concept Learning

Similar to logic regression, the procedure we propose also uses logic expressions as
predictors. Our intention is to classify with logic expressions.

From a computer scientist’s point of view, classification with logic expressions is
identical to Boolean concept learning (see e. g. Valiant, 1984). We intend to learn a
concept that produces output (examples) in B = {0, 1} from inputs from Bn. More
precisely, in case-control genetic association studies on SNP data, we intend to under-
stand a procedure that produces output in {case, control} (encoded by B = {0, 1})
from inputs in {AA, aA/Aa, aa}n (encoded by P n = {0, 1, 2}n). In order to generalize
our procedure for other data than SNP data, we set P = {0, . . . , p− 1}. Our predic-
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tion models for this concept are so called multiple-valued input, binary-valued output
functions f , which are a mapping

f : P n → B .

In order to use Boolean concept learning and the advantages of a Boolean algebra,
we do not search for such functions directly with multi-valued variables but use a
mapping to Boolean variables. To our knowledge, there are three approaches to map
multi-valued input variables to Boolean variables, leading to a Boolean algebra and
an easier interpretation of the functions. The approaches differ in generality and the
number of generated literals. The most general approach was suggested by Rudell and
Sangiovanni-Vincentelli (1987) and defines

xS :=

{
1, if x ∈ S
0, otherwise (8.1)

and its complement

x̄S :=

{
0, if x ∈ S
1, otherwise , (8.2)

for a set S ⊆ P of input values leading to 2p distinct positive literals and 2p distinct
negative literals. Su and Sarris (1972) define

xa,b :=

{
1, if a ≤ x ≤ b
0, otherwise (8.3)

and its complement

x̄a,b :=

{
0, if a ≤ x ≤ b
1, otherwise , (8.4)

for a, b ∈ P leading to p(p − 1)/2 distinct positive literals and p(p − 1)/2 distinct
negative literals. Finally, Dussault et al. (1976) restrict (8.3) and (8.4) to literals
xa = xa,b where a = b and their complements, leading to p distinct positive literals
and p distinct negative literals. We will use this approach, because it leads to the
smallest genotype search space.

To additionally downsize the search space, only polynomials of the chosen literals
are allowed (also called functions in disjunctive normal form or DNF). The following
definition is based on Wegener (1987).
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Definition 8.1.

1. A monomial m is a product (conjunction) of some literals. The length of m is
equal to the number of literals of m.

2. A polynomial p is a sum (disjunction) of monomials. The length of p denoted
by length(p) is equal to the sum of the lengths of all monomials m which are
summed up by p.

3. A polynomial p computes f : D ⊂ P n → {0, 1} if p(x) = f(x) for x ∈ D. It is a
minimal polynomial for f , if p computes f and no polynomial computing f has
smaller length than p.

An additional benefit of restricting the search to polynomials is that polynomials
are easier to interpret and may even reveal biologically meaningful information in
case-control association studies. Depending on the problem at hand, it may also be
convenient to allow only a subset of the literals, e. g. if there are biological reasons not
to consider certain literals.

In Definition 8.1 we defined that a polynomial p computes a partial function f if
p produces the same output in the domain of f . The problem of finding a minimal
polynomial computing a partial function is the first we will consider in the presentation
of our algorithm in the following section.

8.2 Genetic Programming Algorithm

The described problem of finding a minimal polynomial formally is the following:

Problem 8.1 (Minimum Polynomial).

Given: Truth-table of a partial function f : D ⊂ {0, 1}n → {0, 1}.

Goal: Find a minimal polynomial computing f .

The original problem to develop models distinguishing between cases and controls
is a learning problem. Thus, we will allow solutions to Problem 8.1 to contradict
parts of the given truth-table. Otherwise, the prediction model would surely overfit.
The reason to first consider the stated version of Problem 8.1 is twofold. First, this
more rigid case allows us to prove that the problem of finding minimal polynomials is
NP-hard (Lukas and Czort, 1999, show this by applying a result of Haussler, 1988).
Second, Problem 8.1 is also an interesting problem by itself and we will consider it
more closely in Section 8.5.

For association studies however, we have to allow contradictions to the given truth-
table.



72 8 Genetic Programming for Association Studies

Definition 8.2. Let the truth-table of a partial function f : D ⊂ P n → {0, 1} be
given. Further, let p be a polynomial consisting only of literals of the form xa and x̄a
with a ∈ P .

1. The number of cases predicted correctly by p is defined by

cases(p) := |{x ∈ D | p(x) = f(x) = 1}| ,

the number of specified cases by

cases(f) := |{x ∈ D | f(x) = 1}| .

2. The number of controls predicted correctly by p is defined by

controls(p) := |{x ∈ D | p(x) = f(x) = 0}| ,

the number of specified controls by

controls(f) := |{x ∈ D | f(x) = 0}| .

3. The number of observations predicted correctly by p is defined by

observations(p) := cases(p) + controls(p) ,

the number of specified observations by

observations(f) := |D| .

4. The misclassification rate (MCR) of p is defined by

mcr(p) := 1− observations(p)

observations(f)
.

Allowing contradictions leads to a multicriterial problem.

Problem 8.2.

Given: Truth-table of a partial function f : D ⊂ P n → {0, 1}.

Goal: Find a polynomial computing f that consists of literals of the form xa and x̄a
with a ∈ P , has short length and a low MCR.

In the context of multi-objective optimization, an individual dominates another indi-
vidual, if at least one objective has a superior value and none an inferior. An individual
is pareto optimal , if it is not dominated by another individual. Thus, we seek to find
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pareto optimal individuals. The GP approach proposed for this is described by Algo-
rithm 8.1 (GPAS). Figure 8.1 shows the adaptions used in GPAS.

Algorithm 8.1: Genetic Programming for Association Studies (GPAS)
Input: Data set, i ∈ {1, 2} determining which fitness function to use
Output: Set of polynomials
Create an initial random population composed of two individuals each of which1

consists of one randomly selected literal
Perform the following steps on the current generation2

begin3

Select all individuals in the population for reproduction, and draw seven of4

the individuals uniformly at random with replacement
Conduct each of the following adaptions to one (mutations) or two (crossover)5

of the seven randomly selected individuals
Crossover: Combine one of the two chosen individuals with one randomly6

chosen monomial from the other individual
Literal insertion: Insert a new literal7

Literal deletion: Delete a literal8

Literal replacement: Replace a literal by a new literal9

Monomial insertion: Insert a new literal as a new monomial10

Monomial deletion: Delete a monomial11

Evaluate the fitness of the adapted and reproduced individuals with fitness12

function fi that maps an individual p to a triple:

f1(p) := (cases(p), controls(p), length(p))

f2(p) := (mcr(p), controls(p), length(p))

Select all adapted and reproduced individuals that are not dominated for the13

next generation.
end14

if none of {elapsed time,conducted adaptions,consecutive adaptions without better15

fitness} exceeds its predetermined maximum then go to 3
return the final population16

Using polynomials as the genotype has the additional benefit that the adaptions in
one generation are possible in amortized constant time, when we store the polynomials
as trees and the children in this tree in dynamic arrays. The major computational part
of the fitness evaluation is to determine the number of cases and controls classified
correctly by the logic expression. For fast fitness computation, we additionally store
a bitset in each node of the tree representing the polynomial. The bitset consists of
as many bits as there are observations in the data set, and the ith bit is true if the
polynomial is true for the SNP values of the ith observation.
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Original individual Second individual Crossover Replace literal

Delete monom Delete literal Insert literal Insert monom

or or or or

or or or or

and and and and and

and and and andand

Figure 8.1: Example for the crossover and the different mutations used in GPAS
(with the notation x = a and x 6= a instead of xa and x̄a).

The bitsets of the literals are initially computed for all possible literals. If a mono-
mial is changed during a mutation operation the bitset of the monomial is recomputed
using the bitsets of its literals. The computation is sped up, since the bitsets of the
other monomials remain unchanged and can be reused to compute the bitset of the
whole polynomial. In addition, bitsets are compact and allow fast logic operations.
For example, one logic operation of the bitset of the whole polynomial with the bitset
describing the case-control status suffices to compute the number of cases and controls
predicted correctly.

Algorithm 8.1 contains two different fitness functions. To elucidate the difference
between f1 and f2 consider, e. g., two individuals a and b with the same length for a
data set with the same number of cases and controls. Suppose, that a predicts 50% of
the cases and 90% of the controls correctly and b predicts 89% of the cases and 50%
of the controls correctly. When we use f2, a dominates b, while it does not dominate
b when we use f1. Thus, f1 treats cases and controls equally, while f2 prefers models
that contradict with few controls. If our task is to discriminate between cases and
controls, f1 is the appropriate fitness function. If we want to search SNP interactions
that explain subsets of the cases with few contradictions in the controls like Pharoah
et al. 2004 suggest, f2 is better suited. To aid the detection of such interactions, we
additionally devise a visualization of the final population.
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8.2.1 Visualization for Interaction Search

The visualization we present displays the interactions in the final population in a
tree. Thus, we are able to see many different interactions at a glance. To obtain this
visualization (for an example of a resulting tree see Figure 8.4) we proceed as described
in Algorithm 8.2.

Algorithm 8.2: Construct Interaction Tree
Input: Population P
Output: Interaction tree
Compute the set M of all monomials occurring in P1

Create a tree T consisting of its root node t.2

SearchMostCommonLiteral (M, t, T )3

return T4

Procedure SearchMostCommonLiteral(set of monomials M , tree node t, tree T)
Search for the most common literal ` in M1

Determine the set M` of monomials in M containing `2

Set M` := M \M`3

Delete ` from all monomials in M`4

Construct a node t` containing information about `5

Set t` to be a new child of t in T6

if M` 6= ∅ then SearchMostCommonLiteral (M`, t`, T )7

if M` 6= ∅ then SearchMostCommonLiteral (M`, t, T )8

We additionally store information in the tree nodes on how often the resulting in-
teractions and partial interactions occur, and on how many observations they explain.

In the remainder of Section 8.2, we investigate some decisions in the design of GPAS,
for example the application of crossover.

8.2.2 The Role of Crossover

The usage of crossover is discussed controversially (see e. g. Banzhaf et al., 1998).
To analyze the merit of crossover for our algorithm, we conduct hypothesis testing
on simulated data. To simulate data, we use the R package scrime (Schwender and
Fritsch, 2008), which is intended to mimic a process from nature. We generate data sets
consisting of m inputs in {0, 1, 2} on n ≥ 10 variables X1, . . . , Xn. The probabilities
for a 0, 1, and 2 are 0.5625, 0.375, and 0.0625, respectively. This corresponds to a
minor allele frequency of 0.25. The output y is then randomly drawn from a Bernoulli
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distribution with mean Prob
(
Y = 1

)
, where

logit
(
Prob(Y = 1)

)
= −0.5 + 1.5

(
X0

3X
0
9X

0
10

)
+ 1.5

(
X̄0

6X
0
7

)
(8.5)

such that the probability for being a case is 0.924 if for an input both logic expressions
are true, and 0.731 if one of them is true. This probability is still 0.378 if neither of
the two is true.
We run Algorithm 8.1 with fitness function f1 and a variant without crossover on

100 data sets built according to (8.5) until they create the 10000th individual, i. e.
both algorithms create the same number of individuals. Afterwards, we test with a
Wilcoxon signed rank sum test, if the best individuals in the last populations of the
algorithm with the crossover operation (measured by MCR) are significantly better
than without crossover, i. e. if the crossover operation leads faster to good results.
Thus, we conduct a one-sided test of the alternative hypothesis that the algorithm

variant with crossover produces better individuals in terms of the MCR. In the follow-
ing, we state such alternative hypotheses together with the computed p-value of the
hypothesis test.

Hypothesis 8.1 (p-value 1.45 · 10−8). GPAS with crossover obtains better results
after creating 10000 individuals than GPAS without crossover on data built according
to (8.5).

To analyze if crossover is generally necessary to attain better solutions, we repeat
the experiment on 100 new data sets until the 1000000th individual is created. This is
long enough to reach stagnation in the parts of the final population typically containing
the best individual.

Hypothesis 8.2 (p-value 8.34 ·10−9). GPAS with crossover obtains better results after
creating 1000000 individuals than GPAS without crossover on data built according to
(8.5).

The computed p-values are far below the typical choice of the significance level
α = 0.05. Therefore, we should reject the corresponding null hypotheses that the
results with crossover are not better and instead assume that crossover is helpful.

8.2.3 The Role of Literal Replacement

Similar to the crossover operation, one might ask, if the mutation replacing a literal
by another literal is necessary for the algorithm, because an insertion and deletion
mutation could lead to the same individual. To answer this question, we conduct the
same experiments as for the crossover operation again for this mutation on new data
sets.

Hypothesis 8.3 (p-value 0.002). GPAS with literal replacement obtains better results
after creating 10000 individuals than GPAS without literal replacement on data built
according to (8.5).
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Figure 8.2: MCRs for the best individuals of different sizes in 100 training and 100
test runs.

Hypothesis 8.4 (p-value 0.02). GPAS with literal replacement obtains better results
after creating 1000000 individuals than GPAS without literal replacement on data built
according to (8.5).

The computed p-values are also below the typical choice of the significance level
α = 0.05. Therefore, we conclude that literal replacement is also helpful.

8.3 Automated Rules to Select the Best Individual

Problem 8.2 contains multiple objectives. Thus, solutions to Problem 8.2 are in most
cases a set of individuals not dominating each other. It is possible to inspect them
manually and to pick the most interesting ones by hand. Since the population may be
very big, it is helpful to have an automated selection instead. We present automated
rules intended to select the individual that best reflects the underlying concept we
want to learn. To illustrate this, we look at the problem on data simulated according
to (8.5).
The main problem in determining the best individual of the final population is

illustrated in Figure 8.2. The figure shows the result of 100 training runs on data
sets built according to (8.5). The best individual, i. e. the individual with the smallest
MCR for each length between 1 and 12 is then tested on a test data set, which is
also built according to (8.5). We see that—not surprisingly—the longest individuals
perform best on the training data. We also see that the individuals with the true model
size 5 perform best on the test data. Our task here is to find automated rules that
conclude from a training run result, that the true model size is indeed 5. Such rules
help to evade overfitting of the data, i. e. they avoid choosing a longer individual in
the training run with worse generalization and prediction properties. A first apparent
idea is to only consider points on the convex hull of the point set P consisting of the
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Figure 8.3: MCRs improvement per length for individuals represented by points on
the convex hull.

points (length(p),mcr(p)) ∈ N×R for every polynomial p in the final population of a
training run.

Definition 8.3. A subset S of the plane is called convex, if and only if for any pair of
points p, q ∈ S the line segment {τp + (1 − τ)q | 0 ≤ τ ≤ 1} is completely contained
in S. The convex hull of a set S is the smallest convex set that contains S.

Computing the convex hull of n points in the plane needs time O(n log n) (see e. g.
de Berg et al., 2008 for details). When we only consider points on the convex hull, we
exclude individuals with a gain in MCR that is relatively too small. For the remaining
points we now consider the slope between any two points lying next to each other, i. e.
the improvement in MCR per length when considering the longer individual. More
precisely, for two points lying next to each other representing polynomials p1 and p2

with mcr(p1) > mcr(p2) we consider

mcr(p1)−mcr(p2)

length(p2)− length(p1)
. (8.6)

The resulting values are depicted in Figure 8.3. The figure illustrates, that the
choice of length 5 is a much more apparent choice after these considerations.

On this basis, we try a simple threshold rule. We accept the largest individual
guaranteeing a higher relative MCR improvement than 1. In 92% of the runs, this
rule chooses the correct model size. One may argue, that using a threshold poses too
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much adaption to the data situation. To investigate this, we try the threshold rule
on true model sizes between 1 and 12 again with 100 runs per size. The rule still
determines the best model size in 70.41% of the runs. In 14.42% it misses the correct
size by one and in 15.17% of the runs it misses the correct size by more than one. In
conclusion, the automated rule is apt for the considered data situations. For different
data situations it may be necessary to replace the constant threshold by a threshold
function depending on the length of the individual. Another idea would be to use
a gap statistic as proposed by Tibshirani et al. (2001) to detect gaps between data
clusters.

8.4 Results on Real and Simulated Data

Apart from data simulated according to (8.5), we use GPAS for the analysis of two
different real data sets described in the following. All analyses are conducted on a
Pentium 4 CPU with 2.56 GHz and 1024 MB of RAM.

8.4.1 GENICA

The GENICA study is an age-matched and population-based case-control study car-
ried out by the Interdisciplinary Study Group on Gene ENvironment Interaction and
Breast CAncer in Germany, a joint initiative of researchers dedicated to the identi-
fication of genetic and environmental factors associated with sporadic breast cancer.
Cases and controls have been recruited in the greater Bonn, Germany, region. Apart
from exogenous risk factors such as reproduction variables, hormone variables and life
style factors, the genotypes of about 100 polymorphisms have been assessed from these
women (for details on the GENICA study, see Justenhoven et al., 2004).

Here, the focus is on a subset of the genotype data from the GENICA study. More
precisely, data of 1258 women (609 cases and 649 controls) and 63 SNPs are available
for the analysis. Since a small number of observations show a large number of missing
values, we remove all women with more than five missing values leading to a total
of 1191 observations (561 cases and 630 controls). The remaining missing values are
replaced SNP-wise by random draws from the marginal distribution.

8.4.2 HapMap

The goals of the International HapMap Project (The International HapMap Consor-
tium, 2003) are the development of a haplotype map of the human genome and the
comparison of genetic variations of individuals from different populations. To achieve
this goal, millions of SNPs have been genotyped for each of 270 people from four
different populations.
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Here, the SNP data of 45 unrelated Han Chinese from Beijing and 45 unrelated
Japanese from Tokyo are considered. We focus on the BRLMM genotypes (Bayesian
Robust Linear Model with Mahalanobis distance; see Affymetrix Inc., 2006) of the
262264 SNPs measured by an Affymetrix GeneChip R© 250K Nsp microarray. All SNPs
showing one or more missing genotypes (54400 SNPs), for which not all three genotypes
are observed (75481 SNPs), or that have a minor allele frequency less than or equal
to 0.1 (10609 SNPs) are excluded in this order from the analysis leading to a data set
composed of the genotypes of 121774 SNPs and 90 individuals.

8.4.3 Identification of Interesting SNP Interactions

In association studies concerned with sporadic breast cancer it is assumed that not
individual SNPs but combinations of many SNPs have high impact on the cancer risk,
and that each of these interactions is a risk factor for a particular (relatively small)
subgroup of patients (Pharoah et al., 2004). In the analysis of the GENICA data
set, we are thus interested in identifying high-order interactions explaining several ten
cases, but only a few controls.

Here, we constrain each individual in Algorithm 8.1 to consist of a maximum of two
monomials. As SNP0

i codes a dominant effect of SNPi, and SNP2
i a recessive effect, we

restrict the set of literals used to these two literals and their respective complements.
In this application of GPAS to the GENICA data set, we gather the individuals of 50

independent runs each of which stops after 500000 generations, which takes about ten
minutes. From the resulting 49564 individuals, the tree visualization is constructed
with Algorithm 8.2. An excerpt from this tree is shown in Figure 8.4.

Each path from the root to an inner node or leaf represents an interaction occurring
in the final population. The first line in each node consists of the number of monomials
containing the corresponding interaction and the percentage of monomials consisting
of the ancestral interaction that also contain the literal represented by the node, where
this literal is displayed in the second line. The third line shows the number of cases and
controls explained by the corresponding interaction. For example, the eight marked
literals form an interaction that explains (is true for) 81 cases and only 12 controls
and is contained in 404 of the individuals.

Figure 8.4 also reveals that the most interesting SNP interactions all contain the
interaction ERCC20

6540ERCC20
18880 (for better readability, we write SNP names like

ERCC2_18880 as ERCC218880). This two-way interaction has already been found by
Justenhoven et al. (2004) and by Schwender and Ickstadt (2008), but they were not
able to identify interactions of higher orders with better odds ratios.

For comparison, GPAS is again applied to the GENICA data set using random
assignments of the case-control status to the women. In this case, all detected indi-
viduals show ratios of explained cases to explained controls that are smaller than the
ratios of comparable interactions found in the original application. For example, the
individual that is best comparable with the interaction that is marked in Figure 8.4
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Figure 8.4: Excerpt from a tree visualization on GENICA (with the notation x = a
and x 6= a instead of xa and x̄a).
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Figure 8.5: Number of generations (in thousands) in which individuals of cer-
tain lengths predicting all observations correctly are found in the application of Al-
gorithm 8.1 to the HapMap data set using the real ethnicity and a random group
assignment.

and explains 81 cases and 12 controls is a logic expression that is true for 89 cases and
30 controls.

To examine if the exclusion of SNP1
i and its complement has a large influence on

the detection of interesting interactions, we also apply GPAS to the GENICA data set
using the complete set of literals. In this analysis, some of the literals in the identified
monomials are indeed of this type. However, these literals have mostly only a small
effect, or they are equivalent to one of SNP0

i , SNP0
i , SNP

2
i , and SNP2

i , i. e. we obtain
the same or nearly the same results if we replace SNP1

i and SNP1
i by one of SNP0

i ,
SNP0

i , SNP
2
i , and SNP2

i .
To exemplify that GPAS is not restricted to data sets consisting of several ten to

a few hundred SNPs, but can also be applied to data from whole genome studies, we
apply GPAS to the subset of the HapMap data set described in Section 8.4.2. As
it might be possible that individual SNPs have a large influence in this example, we
do not restrict the number of monomials in an individual. Furthermore, we only run
GPAS once but without a termination criterion. All other settings remain unchanged
compared to the analysis of the GENICA data set.

After running for nine minutes, GPAS detects an individual composed of ten literals
in generation 13683 that can be used to distinguish between the Japanese and the Han
Chinese unambiguously.

This individual can still be optimized by reducing the length of the polynomial.
Shortly after detecting this individual, GPAS finds individuals down to length six (see
Figure 8.5), and finally in generation 16691641 an individual composed of five literals,
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Figure 8.6: Misclassification rates of GPAS and logic regression in their applications
to the GENICA data set with restricted numbers of variables in the models.

where each of these individuals predict all observations correctly. The final individual
is

SNP_A2
2104109 ∨ SNP_A2

2181939SNP_A0
2148128SNP_A0

2226436 ∨ SNP_A2
2132375 .

For comparison, GPAS is applied to the HapMap data set using random group
assignments. Not surprisingly, the run on the data set with random group assignments
also leads to perfect separations of the two groups because of the low number of
observations in the data. However, the detected logic expressions are composed of
more than five literals, and it takes much longer to detect these individuals (for an
example of the results of such an application, see Figure 8.5). Thus, we may conclude
that our algorithm detects structure in this large data set although many perfect
separations of the two groups exist because of the low number of observations.

8.4.4 Discrimination

To examine how the misclassification rate depends on the number of variables in the
model, GPAS is applied to the GENICA data set considering individuals composed of
differing numbers of literals. For each number of variables considered, we let GPAS
run for 10000 generations, which takes about one minute for each run. For comparison,
the GENICA data set is also analyzed using logic regression (Ruczinski et al., 2003),
where the number of variables allowed is constrained in the different applications.
In Figure 8.6, the resulting misclassification rates estimated by ten-fold cross-valida-
tion are displayed. Cross-validation is a technique that is used to uncover too strong
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GENICA HapMap Simulation
GPAS Mean

St. Dev.
0.392
0.047

0.011
0.034

0.329
0.018

Logic Regression Mean
St. Dev.

0.405
0.049

0.144
0.103

0.342
0.022

CART Mean
St. Dev.

0.429
0.034

0.356
0.101

0.371
0.015

Bagging Mean
St. Dev.

0.453
0.031

0.022
0.044

0.382
0.018

Random Forests Mean
St. Dev.

0.450
0.021

0.011
0.034

0.379
0.018

Table 8.1: Means and standard deviations of the misclassification rates of the ap-
plications of several discrimination methods to the GENICA, the HapMap and the
simulated data sets.

adaptation to the data. In k-fold cross-validation, the original data is partitioned
into k subsamples. The cross-validation process is then repeated k times with each of
the k subsamples as test data for an algorithm run on the combined remaining k − 1
subsamples (training data). Thus, the algorithm runs on the training data and tests
its results on the test data. We report the mean MCR on the ten test data results.
Figure 8.6 shows that the misclassification rates of Algorithm 8.1 and logic regression
are equal if the number of literals is less than 3. This is due to the fact that both
use ERCC20

6540 or ERCC20
6540ERCC20

18880, respectively, as classification rule in any of
the respective iterations of the cross-validation. However, the misclassification rate
of Algorithm 8.1 becomes smaller than the one of logic regression if the models are
allowed to be composed of three to eight variables.

For a comparison of GPAS with further tree-based discrimination methods, CART
(Breiman et al., 1984), Bagging (Breiman, 1996) and Random Forests (Breiman, 2001)
are applied to the GENICA data set, where the parameters of the latter two procedures
are optimized over several values.

In Table 8.1, the misclassification rates of these applications are summarized. This
table reveals that GPAS leads to less misclassifications than the other discrimination
procedures.

For the application of these discrimination methods to the HapMap data set, the
number of variables has to be reduced to a size that these approaches can handle.
On the computer we run our experiments on, only our algorithm works on the full
data set. We therefore use the Significance Analysis of Microarrays (SAM) (Tusher
et al., 2001) adapted for categorical data (Schwender, 2005) to reduce the number of
SNPs from 121774 to 157. All discrimination methods are then applied to this subset
of SNPs, and the misclassification is estimated by nine-fold cross-validation, where
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each of the nine subsets is composed of five randomly chosen Han Chinese and five
randomly chosen Japanese.

Since for each of the training sets several models might exist that predict all train-
ing observations correctly, we additionally use bootstrap aggregating to stabilize the
discrimination. In this case, we take 100 bootstrap samples of each training data set.
A bootstrap sample is a uniformly drawn sample with replacement of the same size as
the data set sampled from. Thus, we get 100 results for one training run. To discrim-
inate between Han Chinese and Japanese, we take for each observation the result of
the majority of the 100 results. These runs are also stopped after 10000 generations,
which takes about twelve minutes for one training (consisting of 100 runs due to the
use of bootstrap aggregating).

As Table 8.1 shows, both our algorithm and Random Forests only misclassify one
observation, whereas the discrimination methods that use a single model as classifica-
tion rule, i. e. CART and logic regression, show a comparatively high misclassification
rate.

Furthermore, the five discrimination methods are applied to 50 simulated data sets
built according to (8.5), where each of these data sets is used once as training set and
once as test set. (The classification rule trained on data set 1 is tested on data set
2, the rule trained on data set 2 is tested on data set 3, and so on.) As Table 8.1
reveals, GPAS again shows a misclassification rate that is smaller than the ones of
the four other discrimination procedures, and that comes very close to the actual
misclassification rate of 32.6%.

8.4.5 Learning the 11-multiplexer

Problem 8.2 describes the problem behind concept learning of multi-valued input,
binary-valued output functions. This problem is obviously not limited to genetic
association studies. Thus, we look at logic circuit data here. Algorithm 8.1 searches for
single output functions, which complicates finding hard to solve benchmark instances
from VLSI design (typically containing multiple outputs, see e. g. Brayton et al., 1984).
Typical benchmark instances for Boolean concept learners like the multiplexer (Koza,
1992) or the parity function (Koza, 1994) are for multiple reasons also inadequate.
First, there is no apparent meaningful variant with multi-valued input and binary-
valued output. Second, parity has a DNF of exponential size and Algorithm 8.1 only
searches for DNFs. Nevertheless, we include results on the multiplexer function as a
binary-valued input function, because it comes closest to our requirements. Here, we
consider the 11-multiplexer.

Definition 8.4. The 11-multiplexer MUX11 : B11 → B is defined as

MUX11(a2, a1, a0, d7, . . . , d0) := da222+a121+a020 .
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m 64 128 256 512 1024
MCR 28.12 8.59 0.4 0.0 0.0

Table 8.2: Mean MCR when learning MUX11.

Algorithm 8.1 needs only a few seconds to find the DNF of MUX11 on the complete
truth table. To test the ability of Algorithm 8.1 to learn MUX11, we determine the
MCRs of runs on sampled training data sets with sizes {26, . . . , 210}. We draw 100
samples for each size and report the mean MCR on the complete truth table of MUX11
in Table 8.2. The results indicate that GPAS is also useful for concept learning of logic
circuits.

8.5 Logic Minimization

So far, we considered the application of Algorithm 8.1 to case-control genetic associa-
tion studies and Boolean concept learning of a multiplexer. In Section 8.2, we encoun-
tered the similar problem of logic minimization on incompletely specified truth tables
(Problem 8.1) which is our topic here. In fact, in Section 8.4.5 we already encountered
a small example for logic minimization with Algorithm 8.1 when we searched for the
DNF of MUX11 on the complete truth table of MUX11. However, Algorithm 8.1 is
able to deal with multi-valued inputs. This is why we consider the multi-valued version
of Problem 8.1 here.

Problem 8.3 (Minimum Polynomial).

Given: Truth-table of a partial function f : D ⊂ P n → {0, 1}.

Goal: Find a minimal polynomial computing f .

The major difference between concept learning and logic minimization is that logic
minimization requires to find functions explaining the given truth table completely,
while in a case-control study with a complicated underlying process (which is certainly
the case in genetic association studies) this would inevitably lead to overfitting, i. e.
functions that are not able to predict for further inputs. So clearly, standard logic
minimization approaches cannot hope to compete with our algorithm on genetic asso-
ciation studies. But it is an interesting question, if our algorithm is able to compete
with logic minimization approaches on problems with an underlying logical process.

The standard logic minimization tool for this purpose is Espresso MV (Rudell and
Sangiovanni-Vincentelli, 1987). For the Boolean case of logic minimization on incom-
pletely specified truth tables, there is also a GP algorithm by Droste (1997) using
ordered binary decision diagrams (OBDDs). Kristensen and Miltersen (2006) show
that finding small OBDDs for incompletely specified truth tables is NP-hard. This
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indicates another reason, why logic minimizers are inapt for genetic association stud-
ies. For binary-valued logic minimization on completely specified truth tables and
for Boolean concept learning various evolutionary approaches exist (see e. g. Banzhaf
et al., 1998).

8.5.1 Choice of the Fitness Function for Logic Minimization

Algorithm 8.1 contains the fitness function f1, which we may also use for logic mini-
mization. While there are many intuitive reasons to use three objectives and therefore
large populations when an underlying natural process is assumed, less objectives may
also work when minimizing logic circuits. Thus, we also consider the following fitness
functions for a partial function f , a polynomial p, and a length restriction `max, i. e.
the maximum value allowed for length(p):

f3(p) := (observations(p), length(p))

f4(p) :=
cases(p)
cases(f)

+
controls(p)
controls(f)

− length(p)

`max · observations(f)

Note, that the last term in f4 prevents an individual of length `+ 1 that is not better
than an individual of length ` in the remaining term of f4 from being accepted. Similar
to (8.5), we construct data sets consisting ofm three-valued inputs on n ≥ 10 variables
X1, . . . , Xn. This time, we draw 0, 1, and 2 with equal probability and evaluate the
polynomial

X0
3X

0
9X

0
10 ∨ X̄0

6X
0
7

of length 5. We conduct 100 runs of variants of Algorithm 8.1 with f1, f3, and f4

with n = 50 and m = 1000 until the algorithm variant stagnates for 10000 consecutive
generations. In these runs, the original algorithm with f1 delivers better results than
the variants, i. e. shorter polynomials. As a first testing step for this finding, we
conduct a Friedman test on the results, which delivers a p-value of 2.2 · 10−16. Thus,
we may assume that the algorithm variants do not perform equally well. To clarify if
f1 really outperforms f3 and f4 we conduct multiple Wilcoxon signed rank sum tests.
When we use multiple testing, the significance of the test result changes. To factor
this in, we use Bonferroni correction, i. e. multiply the resulting p-value by the number
of tests.

Hypothesis 8.5 (corrected p-value for both tests 7.4 · 10−15). For the task of logic
minimization on the considered data situation, fitness function f1 outperforms fitness
functions f3 and f4.
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m = 100 1000 10000 25000 50000
n = 10 yes yes yes yes yes
20 yes yes yes yes no
30 yes yes yes no no
40 no no no no no
50 no no no no no

Table 8.3: Situations where Espresso MV terminated.

8.5.2 Results on Simulated Logic Circuit Data

As mentioned before, the standard multi-valued logic minimization tool is Espresso
MV (Rudell and Sangiovanni-Vincentelli, 1987). To compare the performance of Algo-
rithm 8.1 and Espresso MV, we construct data sets with the process described in the
previous section for all 25 combinations of m ∈ {100, 1000, 10000, 25000, 50000} and
n ∈ {10, 20, 30, 40, 50}. On these data sets, we run our algorithm and Espresso MV
each for a maximum of 1 hour. When the algorithms terminate within that time, both
are able to compute solutions consisting of the minimal possible number of monomials,
i. e. 2. But Espresso MV does not compute a solution in the given time span for larger
m and n (see Table 8.3) and for n ≥ 40 it even did not terminate after 16 hours.
Algorithm 8.1 always finds the optimal solution, i. e. the true model, which leads to
the conclusion that the application as a concept learner is also successful on these data
sets.

It is an interesting question, if the success of our genetic programming algorithm
transfers to standard GP (Koza, 1992), i. e. if the success is solely based on the evolu-
tionary approach. Koza (1992) argues that standard GP produces nonrandom results,
i. e. delivers better results than blind random search on functions like MUX11. On the
other hand, Koza (1992) states that there are Boolean functions that are too hard to
learn or minimize for standard GP. To elucidate how our approach compares to stan-
dard GP, we run standard GP with the function set F = {∧,∨,¬, IF} and a terminal
set T comprising the same literals as used in Algorithm 8.1 on the 25 data sets. The
result of the runs is that standard GP is not able to compute a minimal solution in
any of the runs in the given time span. Hence, Algorithm 8.1 drastically outperforms
standard GP on the considered data situations.

These first results already show that our algorithm is successful in situations the
standard approach cannot cope with. Algorithm 8.1 works well in these examples,
because the underlying function has a small DNF (although larger DNFs would not
help Espresso MV either). Therefore, we look at the performance on larger DNFs in
the following. We reconsider the example with n = 50 and m = 1000 but this time,
we generate data sets with more literals. Strong imbalances in the relation between
the number of monomials and the size of the monomials lead to either too much cases
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Figure 8.7: Generations needed to find an optimal solution for underlying DNFs of
different sizes. Thinner boxes indicate that not all runs were successful.

or too much controls in the generated data. To cover a reasonable amount of different
DNF lengths, we consider DNFs consisting of five monomials. For these DNFs we
consider monomial sizes in {1, 2, . . . , 10}, again for a maximum running time of one
hour per run and report the generation the optimal solution is found.

The result, depicted in Figure 8.7, indicates that up to DNF size 25 it gets harder for
the algorithm to find optimal solutions and gets easier again after size 25. Note, that
the width of the boxes is proportional to the square root of the number of successful
runs and that the box for size 25 is the thinnest, i. e. for this size many runs did
not find an optimal solution in the given time span. It is not surprising that it gets
easier for the algorithm again for large sizes, because of the values of n and m, i. e. for
large sizes of the DNF, the relation between 0s and 1s in the output gets imbalanced
and easier functions than originally intended are sufficient to explain the data. When
considering m ∈ {100, 1000, 10000, 25000, 50000} output values out of 3n possible ones
this is not surprising and typical for highly inspecified truth tables. Nevertheless, we
see that Algorithm 8.1 shows good performance when used for logic minimization in
situations with a high amount of inspecified truth table values.
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9 Conclusions

The introduction of this thesis started with a quote from Shamos (1976):

From the viewpoint of applied computational complexity, statistics is a gold
mine, for it provides a rich and extensive source of unanalyzed algorithms
and computational procedures.

The interface between computer science and statistics offers fruitful exchange and in-
teresting problems. In this thesis, we picked computational problems from regression
and classification—in particular robust regression and classification in genetic associ-
ation studies—and tackled them from a computer scientist’s perspective.

The result is a number of new algorithms (see Table 9.1 for an overview) and insights
into the treated problems that are useful for further work in the field. The new
algorithms improve and complement existing ones and contribute to the respective
communities. Many of the presented algorithms are available in the statistics software
package R and ready to be used (see Table 9.2 for an overview). The evolutionary
computation algorithms are implemented in an extendible framework and allow an
easy implementation of evolutionary approaches for different problems.

Apart from the algorithms, much of the methodology used here is applicable to other
problems. Other robust regression methods may be tackled with similar techniques,
giving a prospect of future work. In particular, geometric duality and the use of deci-
sion problems are useful for exact algorithms. The evolutionary approach is useful for
heuristics which we often need for high dimensional data because of the NP-hardness
of many robust regression methods.

The use of evolutionary computation is already a growing field and especially the
ideas for our genetic programming algorithm are extendible in the future. Many
classification and learnings problem are of a similar kind and amenable to our ap-
proach. With logic minimization, a first example of a different application field was
given. In the light of the generality of the problem, many more applications are con-
ceivable. In addition to new application fields, the extension of the ideas to more
general functions than f : {0, . . . , p− 1} → {0, 1} is of high interest. In the next
and concluding section, we give a more detailed outlook of the possible extension to
f : {0, . . . , p− 1} → {0, . . . , q}.
A very promising field for the application of similar genetic programming algorithms

is clustering, where already some evolutionary computation approaches exist (see e. g.
Chen and Wang, 2005; Hruschka et al., 2006).
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Problem Main contributions
Qn Online algorithm with good running time for many data

situations
Sn Online algorithm with update time O (n)

LQD in R2 Upper runtime bounds of time O(n2 log2 n) and expected
time O(n2 log n)
Randomized algorithm with expected runtime O(n2 log2 n)
Approximation algorithm with runtime
O (n2 log n (log n− log log (1 + ε)))

Robust regression in
high dimensional data

Evolutionary Algorithm for LMS, LQS, LTS, LTA, and
LQD.

Case-control genetic
association studies

GP algorithm for interaction search and discrimination
Automated rule to select good solutions

Logic Minimization GP algorithm

Table 9.1: Summary of main contributions

Algorithm R
Package

Function

Algorithm 5.2
Approximation algorithm for the LQD in R2

robfilter lqd.filter

Algorithm 6.2
Evolutionary algorithm for robust regression

RFreak robreg.evol

Algorithm 8.1
Genetic programming for association studies

RFreak GPASDiscrimination
GPASInteractions

Table 9.2: Algorithms available in R



10 Classifying with Decision
Diagrams

The HapMap data we encountered in Section 8.4.2 originally contained genetic data
on four ethnies, not just two. Apart from case-control studies, the observable traits
investigated in genetic association studies often have more than two categories. It
is therefore of high interest, to extend Algorithm 8.1 to multi-valued responses. Un-
fortunately, multi-valued polynomials have certain disadvantages, e. g. they are hard
to interpret in a biological meaningful way. Therefore, we propose to use decision
diagrams instead for multi-valued responses (see e. g. Wegener, 2000).

Definition 10.1 (Wegener, 2000). A Binary Decision Diagram (BDD) on the variable
set Xn = {x1, . . . , xn} consists of a directed acyclic graph G = (V,E) whose inner
nodes (non-sink nodes) have outdegree 2 and a labeling of the nodes and edges. The
inner nodes get labels from Xn and the sinks get labels from {0, 1}. For each inner
node, one of the outgoing edges gets the label 0 and the other one gets the label 1.
In a BDD on Xn, each node v represents a Boolean function fv ∈ Bn defined in the
following way:

The computation of fv(a), a ∈ {0, 1}n, starts at v. At nodes labeled by xi, the
outgoing edge labeled by ai is chosen. Then fv(a) is equal to the label of the sink
which is reached on the considered path.

A straightforward generalization for multi-valued responses are multiterminal decision
diagrams, which allow the sinks to be labeled by more than two different values. In the
intended application, we additionally have to deal with multi-valued input data, for
example SNP data. We may use the transformation to a Boolean algebra encountered
in Section 8.1 and label the BDD nodes with literals

xb :=

{
1, if x = b
0, otherwise

and their complements. Another possibility is to use multivalued decision diagrams
whose inner nodes have outdegree 3 and edge labeling {0, 1, 2} in case of SNP data.
Figure 10.1 shows an example of a multivalued multiterminal decision diagram that
determines the relation between two inputs x, y ∈ {0, 1, 2}2. It computes whether
x < y, x > y, or x = y by alternately reading parts of x and y.

We define computation, prediction, and misclassification similar to Definition 8.2
and obtain a problem analogous to Problem 8.2.
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Figure 10.1: Multivalued multiterminal decision diagram determining the relation
between two inputs x, y ∈ {0, 1, 2}2.
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Definition 10.2.

1. A multiterminal decision diagram d with root r computes g : D ⊂ {0, . . . , p} →
{0, . . . , q} if fr(x) = g(x) for x ∈ D.

2. The number of observations predicted correctly by d is defined by

observations(d) := |{x ∈ D | fr(x) = g(x)}| ,

the number of specified observations by

observations(g) := |D| .

3. The misclassification rate (MCR) of d is defined by

mcr(d) := 1− observations(d)

observations(g)
.

Problem 10.1.

Given: Truth-table of a partial function f : D ⊂ {0, . . . , p− 1}n → {0, . . . , q}.

Goal: Find a multiterminal decision diagram computing f that has a small number
of nodes and a low MCR.

It seems advisable to also use multiobjective fitness functions for Problem 10.1.

10.1 Ordered Decision Diagrams

Decision Diagrams like we introduced them have a lot of representational power but
many typical operations are hard to perform. Bryant (1986) introduced variable or-
derings as a restriction that allows more efficient operations.

Definition 10.3. A variable ordering π on Xn = {x1, . . . , xn} is a permutation on
the index set {0, . . . , n}. The position of xi in the π-ordered list of variables is π (i).
An ordered decision diagram is a decision diagram, where the sequence of tests on a
path is restricted by the variable ordering π, i. e., if an edge leads from an xi-node to
an xj-node, then π(i) < π(j).

Using a variable ordering has the advantage of more efficient operations and a smaller
search space, but the disadvantage of having to control violations of the variable
ordering.
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10.2 Ideas for Adaptions

Apart from the genotype search space and the fitness function, the used adaptions are
the most important choice in designing a genetic programming algorithm for decision
diagrams. We cannot use exactly the same adaptions as in Figure 8.1, because changes
like deleting or inserting nodes need more care in decision diagrams. For example,
when deleting a node we have to redirect the ingoing edges. When inserting a node we
have to split an edge and decide where the outgoing edges should lead. Redirecting
edges itself poses an interesting local adaption.

We also have to take more care of the adaptions when we use a variable ordering.
Droste (1997) proposes two crossover operations, that respect the variable ordering.
The path crossover randomly chooses an edge e1 to a node v1 in decision diagram D1

and a node v2 in decision diagram D2 with π (v1) ≤ π (v2). The subtree starting at
v2 is then inserted into D1 as the new target of e1. The complete crossover instead
replaces the subtree starting at v1 with the subtree starting at v2 and redirects all
ingoing edges of v1 to v2.
Wegener (2000) also describes how to generate ordered binary decision diagrams

(OBDDs) with genetic programming. The mutation Wegener (2000) uses takes the
given truth-table into account. In a first step, an OBDD that computes 1 for a random
number of truth-table rows and 0 else is constructed. In the second step, this OBDD
is used to mutate an OBDD by conducting an XOR-synthesis. The result is, that the
mutated OBDD computes the opposite than before on the randomly chosen truth-table
rows.

All in all, a genetic programming algorithm using decision diagrams and the ideas
used for Algorithm 8.1 seems promising for association studies with multi-valued re-
sponses.
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